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Foreword

The increase in the volumes of data creates new challenges that require novel and more
efficient solutions to handle big data and scalability issues. Today we are witnessing
advances in many areas that are dependent on recommender systems such as social
networks, e-commerce websites, search engines, blogs, and sensor networks. Many
of these advances are due to the many developments in algorithmics and analytics,
wireless networking, Internet of things, high performance computing, and more.

Big Data Recommender Systems, 2Volume Set, is an exciting and comprehensive
reference that deals with a wide range of topical themes in the field. It is composed of
two volumes that showcase the state of the art in recommender systems. Volume 1, Big
Data Recommender Systems: Algorithms, Architectures, Big Data, Security andTrust,
covers aspects related to recommender systems preliminaries, algorithms, and archi-
tectures; recommendation approaches for big data; and trust and security measures
for recommender systems. Volume 2, Big Data Recommender Systems: Application
Paradigms, presents a good overview of the many applications that show the richness
of this field and its great potential.

This two-volume work will serve as a source of up-to-date and innovative
research in this continuously evolving area. The books will provide an opportunity for
researchers to explore the use of recommender system technologies and their impact
on enhancing our capabilities to conduct more sophisticated studies. It will also be an
ideal reference for graduate classes focusing on big data and recommender systems.

I believe that this book set is a great addition to the literature on the topic and
should be well received by the research and development community.

Albert Y. Zomaya
Editor-in-Chief

The IET Book Series on Big Data



Chapter 1

Introduction to big data recommender
systems—volume 2

Osman Khalid1, Samee U. Khan2, and Albert Y. Zomaya3

1.1 Background

The rapid development of e-commerce websites and social networking applications
has drastically increased the volumes of online generated data, leading to the term big
data. With the rise in Internet population to 3.2 billion worldwide, on the average, 2.5
quintillion bytes of data is generated on daily basis [1]. Such greater volumes of data
introduced information overload problem, when it is difficult to find the most rele-
vant information from numerous diverse sources, e.g., websites, blogs, e-commerce,
and social networking applications. The growing size of data has forced the research
community to think beyond the simple search problem to the next level of filtering
of pertinent information [2]. Past few years have seen significant progress in the
development of powerful and intelligent tools to process and analyze the complex
patterns in big data to extract the knowledge that is more meaningful for users. The
potential ability to create intelligence from the analysis of raw data has been success-
fully applied to diverse areas, such as business, industry, sciences, social media, and
e-commerce, to name a few. The ever-growing volume, complexity, and dynamic-
ity of online information have necessitated the use of recommender systems as an
appropriate tool for facilitating and accelerating the process of information engineer-
ing. The recommender systems apply numerous knowledge discovery techniques on
users’ historical and contextual data (e.g., location, time, preference, weather, device,
and mood) to suggest information, products, and services that best match the user’s
preferences [3].

The recommender systems have been implemented in various application
domains, including e-commerce, e-health, e-learning, tourism, and knowledge man-
agement [4]. Well-known examples include Amazon web store where users are
suggested with various products of their choice based on their past purchase history
[5]. Similarly, FourSquare has an integrated recommender system to suggest highly

1Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Pakistan
2Department of Electrical and Computer Engineering, North Dakota State University, USA
3School of Information Technologies, University of Sydney, Australia
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rated venues, Netflix has built-in movie recommender system [6], and YouTube has
a video recommender system integrated [7]. Traditional recommender systems per-
form data processing to compute a list of top K items that satisfy a specific preference
criteria identified for a user, and the items in the list are ranked based on the close-
ness to the user’s preferences [8]. A user’s context information, such as location,
time, and conditions have been increasingly integrated in the recommender systems
to provide more accurate or personalized recommendation information, compared
to the simple approaches [9]. Most conventional recommender systems are based
on collaborative filtering (CF) algorithms, content-based recommender systems, and
hybrid recommender systems [3]. The CF utilizes the ratings from multiple users
in a collaborative way to predict the missing ratings. The CF-based recommender
systems are further subdivided into memory-based and model-based recommender
systems. The memory-based approaches can be further subdivided into user-based
CF and item-based CF. The user-based approaches compute similarity among users
based on the ratings given to the items by the users [5]. A target user is recommended
with items that are also rated by other users whose similarity is at its maximum with
the target user. In contrast, the item-based CF first computes a set S of items rated by
a user u that are most similar to the target item I . The ratings of items in S are used
to predict rating of the target item I for the given user u.

The model-based CF makes use of data mining and machine learning (ML) algo-
rithms to establish models based on training data to predict rating for a user for unrated
items. There are many techniques of model-based CF, including, Bayesian networks,
clustering models, and latent semantic models such as singular value decomposition,
probabilistic latent semantic analysis, multiple multiplicative factor, latent Dirichlet
allocation, and Markov decision process-based models [10]. The content-based rec-
ommender systems maintain a user profile of items rated by the user. The new items
are recommended to the user based on their similarity to the items present in the
user’s profile. Finally, the hybrid approaches combine different approaches based on
content-based or CF-based models to develop hybrid recommender systems. Several
studies have indicated that hybrid approaches produce more accurate recommenda-
tions compared to purely content-based or CF-based techniques [3]. These methods
can also be used to overcome some of the common problems in recommender systems
such as cold start and the sparsity problem.

Despite significant development, the recommender systems still face numer-
ous challenges, such as data sparsity, cold start, and scalability, to name a few
[2]. The data sparsity occurs if there are insufficient ratings against items and the
target user has rated only a few items. In this case, the precision of the recom-
mendation system will decrease significantly due to large number of zero similarity
values. The cold start issue occurs if a user is new to the system and does not have
enough preferences’ data stored in the system due to which the system is unable
to match the user’s preferences with existing users to compute recommendations.
A major issue faced by the traditional recommender systems is scalability. With the
explosive growth of the information on the Internet, the similarity computations on
large size user–item rating matrix have almost become impractical and pose sim-
ilar challenges to the modern recommender system. Moreover, obtaining a user’s
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real-time contextual information and effectively utilizing it for timely recommenda-
tion is also a big challenge as the context information is time varying, and a user’s
privacy setting may not allow the system to collect such information. In past few
years, numerous recommendation approaches have been developed to address vari-
ous aspects of recommender systems. However, there are still many open issues and
challenges that require novel and more efficient recommendation solutions to handle
big data.

1.2 About the book

The book Big Data Recommender Systems consists of two comprehensive vol-
umes. Each volume consists of good quality chapters contributed by world renowned
researchers and domain experts.

Volume 2 of Big Data Recommender Systems is in the continuation of Volume 1.
The content presented in Volume 1 is aimed to cover the recent advances, issues, novel
solutions, and theoretical foundations on big data recommender systems. Volume 1
encompasses original scientific contributions in the form of comparative analysis,
surveys, case studies, techniques, and tools for recommender systems. The topics
covered in Volume 1 include benchmarking of recommendation algorithms using
MapReduce, social recommendations, hybrid approaches, deep learning-based tech-
niques, unstructured big data recommendations, ML-based models, and geo-social
recommendations. A special section is included to cover the security and privacy
concerns, cyberattacks on recommender systems, and their defensive measures.

The current Volume 2 of Big Data Recommender Systems is the collection of
chapters written by world-leading researchers and scholars with a specific focus on
application domains of recommender systems. A specific focus is given to emerging
trends and the industry needs associated with utilizing recommender systems. We
envisage the book to serve as a professional reference for researchers, research stu-
dents, and practitioners in the field of data mining and knowledge discovery and also
for undergraduate- and graduate-level courses in a wide range of disciplines including
computer science, healthcare, automotive, and engineering. The book is also of inter-
est to researchers and industrial practitioners in areas such as knowledge engineering,
human–computer interaction, artificial intelligence, intelligent information process-
ing, decision support systems (DSSs), and knowledge management. Volume 2 will
help computer scientists to develop new concepts and methodologies for complex,
scientific, industrial, and business applications. As there have been numerous devel-
opments and advancements in the aforementioned research fields, Volume 2 intends
to conclude the quality research in a book and identify future directions. Volume 2
is organized into 23 chapters. A brief summary of the chapters is presented in the
following.

Chapter 2: This chapter provides a comprehensive introduction to deep neu-
ral network-based recommendation models. The authors discuss in detail several
deep neural networks with a discussion on applications areas and the state-of-the-art
solutions for deep learning-based recommender systems.
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Chapter 3: The chapter describes the cold start problem in recommendation
systems. The authors mainly focus on CF systems being the most popular approaches
to build recommender systems. Moreover, the authors discuss multiple scenarios
where the cold start issues may happen and explain different solutions for them.

Chapter 4: The chapter focuses on the performance metrics identified for
both the traditional recommender systems and context-aware recommender systems
(CARS). In addition to all the possible performance metrics used in those systems,
the authors have discussed various issues affecting the performance of CARS.

Chapter 5: The chapter models the lifestyles of individuals that according to
authors become a more challenging problem with higher variability when compared
to the aggregated behavior of city regions. Using collective matrix factorization, the
authors propose a unified dual view of lifestyles. The application of the proposed
solution ranges from the targeted advertisements and promotions to the diffusion of
digital financial services among low-income groups.

Chapter 6: This chapter proposes to embed the principal component analysis
(PCA) inference stage in a low-cost Field-Programmable System on Chip (FPSoC)
while performing a design space exploration for a general PCA inference problem.
To this end, the authors analyze metrics, such as latency, scalability, and usage of
hardware resources. The resulting architectures are compared to a multi-core OpenMP
approach to be executed in an Advanced RISC Machines (ARM) processor to analyze
the advantages of using the FPSoC implementation.

Chapter 7: This chapter aims to explain the Cipher project, which is a DSS
based on ML and big data technologies, and is capable of alerting a clinician when a
situation of risk is detected in a patient suffering from a certain pathology so that the
system is able to carry out the appropriate measures.

Chapter 8: In this chapter, it is highlighted that big data analytics (BDA) can
provide efficient solutions in specific problems related to data processing in smart
grids (SGs). The chapter summarizes the state of the art in specific problems of
SGs that can be resolved using data analytics processing and exploitation. The chap-
ter recognizes that data analytics can offer a feasible solution to efficient dynamic
energy management, failure detection, estimation of load, and price forecasting. It is
reported that in order to deal with the extreme size of data, the smart grid requires the
adoption of advanced data analytics, big data management, and powerful monitoring
techniques.

Chapter 9: The chapter examines the importance of the Internet of things (IoT)
and big data in the development of recommender systems for SGs. It is shown that the
involvement of novel technologies contributes to improvements in load forecasting,
renewable energy forecasting, demand response and energy management programs
as well as SG state estimation. The general aim of this chapter is to provide an
overview of the ongoing scientific research, recent technological innovations and
breakthroughs, and BDA role in designing recommendation systems that will facilitate
the development and evolution of future global energy systems.

Chapter 10: The chapter addresses the problem of traditional bibliotherapy in
coping with pressures of adolescents and proposes an online reading recommendation
system as a new exploration of bibliotherapy. The chapter first provides a brief review
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of bibliotherapy and recommendation techniques in the literature. Then, the chapter
reports the design and implementation of proposed reading recommendation system
for easing teens’psychological stress. Finally some application interfaces are provided
to demonstrate the usage of the system.

Chapter 11: The chapter discusses various techniques for big data stream pro-
cessing for e-healthcare. Moreover, the authors conduct a qualitative comparison of
the most popular data processing systems, namely Storm and Spark Streaming. The
authors describe their respective underlying bases and the functionalities they provide,
and discuss how they can be introduced into e-healthcare analysis programs.

Chapter 12: The chapter presents a discussion about how Hadoop and Spark
benchmarking algorithms can improve remote health monitoring and data manage-
ment. The chapter introduces the characteristics of e-care platform and the concept of
ontology to help the reader understand the system that implements big data tools for
its migration. Moreover, most popular systems in the Hadoop Ecosystem are illus-
trated with an emphasis on MapReduce and Spark. A survey on applications using
ML techniques in the medical field is presented, with examples for Apache Spark.
Finally, a benchmarking comparison of MapReduce, Spark, and Flink is provided.

Chapter 13: The chapter performs data analytics of the sample data using Hadoop
framework based on crucial metrics related to consumer behaviors such as (a) cus-
tomer acquisition cost, (b) customer retention cost, (c) lifetime value, (d) customer
satisfaction and happiness, and (e) average purchase amount and behavior. The
chapter provides the conclusion of video image based sentiments extraction using
neuromarketing techniques.

Chapter 14: The chapter presents a recommendation system for allocating video
resources in multiple partitions. The recommendation system is responsible to allo-
cate the data to the most appropriate partition according to their current contents.
A decision-making scheme combined with a Naïve Bayesian classifier is developed
for deriving the appropriate partition. The focus is on the management of streams of
video files. The proposed system derives the appropriate partition for each incoming
video file based on a set of characteristics.

Chapter 15: The chapter presents a mood-sensitive recommendation system
that incorporates the mood-sensitivity feature into the truth discovery solution. The
reviewed recommendation system estimates (i) the correctness and mood neutrality of
claims and (ii) the reliability and mood sensitivity of sources. The model is compared
with existing truth discovery solutions using four real-world datasets

Chapter 16: The chapter focuses on the methods that seek to address new chal-
lenges raised by discovering key opinion leadership behavioral patterns for one of the
most popular Chinese social media platforms. A big data analytic framework is pro-
posed by implementing the Hadoop-based cloud-computing platform, which is used
as the fundamental tool for storing and processing massive datasets. Accordingly, raw
data samples are collected, processed, and categorized to cover details such as film
data, textual content, and user profiles. In addition, a parallel rule mining algorithm
is employed to discover leadership patterns.

Chapter 17:The chapter presents an overview of route recommendation systems.
A classification of route recommendation systems is provided on the basis of services
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they provide. Besides, a layered architecture of route recommendation systems is
discussed to deal with big data and to serve optimal real-time recommendations.

Chapter 18: The chapter investigates the relationships between high-level user
contexts and application usage by analyzing a large amount of application usage
log. The chapter reports the findings of the experiments that conducted association
rule mining on the collected logs. The presented study provides a guideline on how
to collect big data on user’s high-level contexts and how to utilize it for important
context-aware applications such as application recommendation.

Chapter 19: The chapter develops a neural network model for stock classifica-
tion using input features derived from widely known momentum factors and apply it to
two problems: long-short strategy construction and stock recommendation. Empirical
findings suggest that the model can create a long-short portfolio generating a signif-
icant profit and high Sharpe ratio. It can also be effective in making buy/hold/sell
recommendation, although the evidence is less strong.

Chapter 20: The authors discuss new opportunities and challenges brought by
smart phones to recommender system. Specifically, three recommendation scenarios
are covered: common recommendation, app recommendation, and point of interest
(POI) recommendation. Moreover, a probabilistic model is introduced that can learn
from the temporal sequence of user–app interactions. Finally, a model of geographical,
social, and temporal influence in POI on location-based recommender system is
introduced.

Chapter 21: In this chapter, a generic approach for uncovering latent preference
patterns from user data is proposed and evaluated. The approach relies on representing
the data using graphs and then systematically extracting graph-based features and
using them to enrich the original user models. The extracted features encapsulate
complex relationships between users, items, and metadata. The enhanced user models
can then serve as an input to any recommendation algorithm.

Chapter 22: This chapter presents a fully labeled domain name dataset Amri-
taDGA, using domain generating algorithm (DGA). The generated data can be used
for research in the field of detecting malicious domain names. Additionally, the per-
formances of various deep learning architectures are evaluated on AmritaDGA to
detect and categorize malicious domain names to corresponding DGA family.

Chapter 23: This work proposes Deep-Segregation of Plastic architecture which
sorts waste materials into plastic and non-plastic using deep learning technique and
convolutional neural network. The developed framework is highly scalable and capa-
ble of collecting data from different sensors, and preprocessing and analyzing data
using distributed algorithms. The framework is specifically developed for plastic seg-
regation. Moreover, the framework can be easily extended to handle large volumes of
other waste categories by adding additional resources.
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Chapter 2

Deep neural networks meet recommender
systems

Shuai Zhang1, Lina Yao1, Aixin Sun2, Guibing Guo3,
Xiwei Xu4, and Liming Zhu4

Deep learning has been widely used in many software disciplines in both academia
and industry including computer vision, speech recognition and translation, natural
languages processing, search engine, bioinformatics, sensor data processing, finance,
etc., due to its scalability in big data environments and accuracy at higher level than
ever before. Especially, deep neural networks can utilize the parallel computational
power of GPU to accelerate the learning process and ensure higher efficiency for big
data problems.

Recently, deep learning has been successfully applied to recommender systems
and became the primary fuel for driving the progress in many recommendation
fields [1] such as e-commerce, image, music, video, article, mobile and desktop
applications. There are several advantages of deep neural network based recom-
mendation models: (1) with deep neural networks, we can introduce non-linearity
to recommendation models and capture the intricate user–item interaction patterns,
(2) deep neural network is powerful in representation learning which makes it an
ideal tool to process the abundant side information of users and items, (3) deep neu-
ral networks can be used to model the sequential patterns in historical interactions
and perform sequential recommendations, (4) the flexibility of deep neural networks
makes it possible to combine different neural network models to capture more complex
relationships and characteristics of heterogeneous data sources.

In this chapter, we will give a comprehensive introduction to deep neural net-
work based recommendation models. We begin with a brief introduction to several
deep neural networks. The following four sections are organized based on the afore-
mentioned four advantages. We detail several representative works in each part and
summarize them in at a high level. Section 2.6 introduces several related advanced and
promising research topics. Section 2.7 discusses possible challenges and concludes
this chapter.

1School of Computer Science and Engineering, University of New South Wales, Australia
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3Software College, Northeastern University, China
4Data61, The Commonwealth Scientific and Industrial Research Organization, Australia
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2.1 Preliminary

Before diving into the details of deep neural network based recommendation model,
we would like to give a brief introduction to recommender systems and deep neural
networks.

2.1.1 Introduction to recommender systems

In a standard setting of recommender system, we have a list of M users and a list of N
items. The preferences of users to items will form an M × N matrix, and we denote it
as X ∈ RM×N . Let Xu∗ denote the uth row of the interaction matrix X , and X∗i denote
the ith column. The value of Xui can either be explicit ratings (e.g., 1–5) or binary
implicit feedback ([0, 1]). The binary implicit feedback can represent a broad range
of interactions such as clicks, buy, watch, like/dislike. To make recommendations,
we need to generate a list of items ranked based on the predicted preference scores.
In addition, we can also take user or item side information, such as age, gender, used
languages, item description, appearance, images, prices, into consideration. In some
cases, context information like time, location, weather and mood can also be utilized.

2.1.2 Introduction to deep neural networks

A standard deep neural network consists of multiple connected hidden layers between
the input and output layer, with each hidden layer having a number of neurons. It
has demonstrated the revolutionizing performance on applications such as image and
speech recognition, language translation, question answering, self-driving, image
generating [2]. For a clear presentation, we would like to briefly introduce four basic
neural networks: multilayer perceptron (MLP), autoencoder, convolutional neural
network and recurrent neural network (RNN).

2.1.2.1 Multilayer perceptron
MLP consists of three or more fully connected layers (input layer, output layer and one
or more hidden layers) with nonlinear transformations. It is learned in a supervised
manner and can be applied to both regression and classification tasks. In formal, an
MLP is defined as follows:

h1(x) = a1(W1x + b1)

h2(x) = a2(W2h1 + b2)

· · ·
fMLP(x) = o(WLhL−1 + bL)

where W∗ and b∗ are the weights and biases. a∗ is the nonlinear hidden activation
function which can be hyperbolic tangent (tanh): g(x) = (ex − e−x)/(ex + e−x), sig-
moid: g(x) = 1/(1 + e−x) or rectifier (ReLU): g(x) = max (0, x). o(x) is the output
activation which is adjusted based on the tasks. For example, we usually use linear acti-
vation for regression task and sigmoid (binary classification) or softmax (multi-label
classification) for classification problem.
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2.1.2.2 Autoencoder
Autoencoder is an unsupervised neural network. It is primarily used for dimensionality
reduction. A typical autoencoder consists of three layers. The input and output have
the same dimensionality and the size of hidden layer is usually smaller. The process
from input to hidden layer is referred as encoder and that from hidden layer to output
layer is called decoder. Suppose the input x is a d dimensional vector, we have:

z = a1(W1x + b1)

x′ = a2(W2z + b2)

where z ∈ Rk is the low-dimensional representation and x′ is the reconstruction of
input. Autoencoder learns its parameters by minimizing the reconstruction error:

L (x, x′) = ‖ x − x′ ‖2

We can stack several autoencoders to formulate a deep neural network. There are
many variants of autoencoder such as variational autoencoder [3], contractive autoen-
coder [4] and marginalized autoencoder [5]. Denoising technique (reconstructing
the corrupted inputs) could be applied to prevent the autoencoder from learning the
identity function [2].

2.1.2.3 Convolutional neural network
Convolution neural network (CNN) has achieved tremendous success in dealing with
grid-like data such as images. The success mainly ascribes to the two key operations:
convolution and pooling.

Convolutional layer is the building block of CNN. In many real world data, such as
images, the original pixel representations are very huge and there exist some spatial
relations between pixels. MLP will encounter scalability problem and miss some
key relationships when processing these data. The basic idea of CNN is using some
predefined small filter matrices to scan the original inputs grid-by-grid and project the
big inputs into small ones while preserving the spatial relationships between pixels.
With different filters, we can detect various small or meaningful features like edges.

Pooling is mainly used for dimensionality reduction and makes the model more
invariant to small translations of input. For example, if our task is to detect cats on an
image, we need to focus on whether there is a cat rather than where the cat is. Pooling
can help the model to reduce the side effects of position translations. In practice, max
pooling, average pooling and sum pooling are usually adopted.

There are many standard CNN architectures such as LeNet, AlexNet, VGG,
GoogleNet, ResNet and DenseNet [6].

2.1.2.4 Recurrent neural network
In the abovementioned models, all inputs are assumed to be independent of each
other, which means that they cannot capture the dependencies patterns of sequential
information. RNNs are proposed to solve such problems. RNN allows operation on
sequential and time-series data to model their temporal dependencies. Figure 2.1
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Figure 2.1 The structure of basic RNNs and its unrolled version

shows a basic RNN and the unfolded full network. Mathematically, RNN can be
expressed as

ht = ah(Uxt + Wht−1 + bh)

ot = ay(Vht + by)

where xt is the input at time step t. ht is the hidden state and ot is the output. W , U , V
and b∗ are model weight matrices and biases. a∗ is the activation function.

The major problem of RNN is the gradient vanishing problem that the gradient
tends to vanish when being passed back through many time steps. This problem
prevents RNN from modelling long-term dependencies. Two popular variants of RNN
were proposed to tackle this issue: long short-term memory and gated recurrent unit
(GRU) [2]. Both of these two variants adopt the gate mechanisms to control the
previous memory and current inputs. GRU is more popular in recent years due to its
lower computational cost and complexity. Readers are referred to [2] for more details
on these two variants.

2.2 Introducing nonlinearity to recommender systems

Most notable recommendation models such as matrix factorization and factoriza-
tion machine (FM) are essentially linear methods, for example, matrix factorization
models user–item interaction patterns with inner product and can be deemed as a
linear model of latent factors; FM also models the feature relationships in a linear
manner. This makes it difficult to capture the non-linear and intricate inherent struc-
tures of real-world big data. One feasible solution is to introduce nonlinearity to these
models with nonlinear activation functions such as sigmoid, tanh and ReLU. Several
recent work achieved this by generalizing these methods with deep neural networks,
such as neural matrix factorization [7,8], deep FM [9].
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Figure 2.2 Basic component of neural matrix factorization

2.2.1 Deep neural generalization of collaborative filtering

2.2.1.1 Neural matrix factorization
Figure 2.2 shows the basic component of neural matrix factorization. The basic idea
of neural matrix factorization is to add some nonlinear layers over the results of
element-wise multiplication between user and item vectors.

ŷui = fMLP(Pu � Qi)

where P ∈ RM×k and Q ∈ RN×k are user and item latent factors. � is element-wise
multiplication. Traditional matrix factorization scores each user–item pair with dot
product which is the sum of the products of the corresponding entries of user and item
latent factors, while neural matrix factorization replaces the simple addition with a
neural network. It not only allows varying the importance of each latent factor but
also makes it possible to integrate nonlinear transformations for matrix factorization.
If we enforce fMLP to be a one-layer network with uniform weights of 1, the above
scoring function will be boiled down to traditional matrix factorization. This structure
can be applied to both rating prediction and item-ranking tasks. Here, we introduce
two representative works: neural network matrix factorization (NNMF) [7] and neural
collaborative filtering (NeuMF) [8].

NNMF is designed for rating prediction. This model has four latent matrices:
P ∈ RM×k , Q ∈ RN×k , P′ ∈ RM×d and Q′ ∈ RM×d . The former two vectors are the
user and item latent factors, while the last two vectors can be viewed as the user and
item biases. The input of NNMF is the concatenation vector [Pu � Qi, P′

u, Q′
i]. The

ratings are predicted with an MLP and the objective function is defined as

L =
∑

(u,i)∈O

(Xui − fMLP([Pu � Qi, P′
u, Q′

i]))
2 + λ�(�)
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where � = {W , b, P, Q, P′, Q′} is the model parameters; W and b denote the weights
and biases of neural network; λ is a regularization rate; � is Frobenius norm reg-
ularization; O denotes the observed ratings set. Optimization is done with gradient
descent and RMSProp is used to adjust the learning rate.

Another similar model is neural collaborative filtering (NeuMF) which is
designed for top-N recommendation. NeuMF consists of two components, a gen-
eralized matrix factorization (GMF) and an MLP, and models the interactions in dual
embedding space (thus, we reuse the notations Pu, Qi, P′

u, Q′
i). NeuMF allows GMF

and MLP to learn separate embeddings.

φGML = Pu � Qi, (2.1)

φMLP = fMLP([P′
u, Q′

i]), (2.2)

ŷui = σ (hT [φGML, φMLP]) (2.3)

where σ ( · ) is the sigmoid function. The GMF does not have any nonlinear trans-
formation. The combination of GMF and MLP enables NeuMF to capture both the
linear and nonlinear relationships. With this neural framework, the two components
can mutually enhance each other to learn more effective user and item embeddings.

To learn the model parameters, NeuMF treats the ranking problem as a
classification task by minimizing the binary cross-entropy loss.

L = −
∑

(u,i)∈O∪O−
yui log ŷui + (1 − yui) log (1 − ŷui)

where O− is the negative sample set. We uniformly sample them from unobserved
interactions in each iteration with controlled sampling ratio. To avoid getting stuck in
local-minimum, pretraining is usually adopted to train GMF and MLP separately first
and then use their model parameters to initialize the corresponding parts of NeuMF.
The pretraining step is done with Adam algorithm and the final model is trained with
vanilla SGD.

Both NNMF and NeuMF are based on matrix factorization. NeuRec [10] provides
another idea to introduce nonlinearity to recommendation model. NeuRec is built
upon sparse linear method (SLIM) [11]. It aims to replace the linear projection of
SLIM with nonlinear projection and shows promising performance on personalized
ranking task. NeuRec has two variants user-based NeuRec (U-NeuRec) and item-
based NeuRec (I-NeuRec). Both of them consist of two components: an MLP with user
historical interactions (or item historical interactions) as input and item embeddings
(or user embeddings). U-NeuRec learns user latent factors from user consumption
records while I-NeuRec learns item latent factors from item click-through data.

2.2.1.2 Autoencoder-based collaborative filtering
Autoencoder can be structured to model the collaborative effects for users and items.
Instead of focusing on the bottleneck layer like traditional autoencoder, it usually
relies on the reconstruction of autoencoder. As shown in Figure 2.3, the inputs are
the columns or rows of the interaction matrix X , and the outputs are the recon-
structed columns or rows. The inputs are partially observed, autoencoder reconstructs
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Figure 2.3 Autoencoder based collaborative filtering

the partially observed columns/rows and attempts to anticipate a value for missing
observation. It is suitable for both rating prediction and item-ranking tasks as well.

AutoRec [12] is an autoencoder-based rating prediction model. It has two
variants: I-AutoRec and U-AutoRec. The inputs of I-AutoRec are the columns of inter-
action matrix, while that of U-AutoRec are the rows. Basic AutoRec corresponds to a
single hidden layer autoencoder. Formally, I-AutoRec solves the following objective:

L =
N∑

i=1

‖X∗i − a(W · g(VX∗i + μ) + b)‖2
O +λ(‖W‖2

F + ‖V‖2
F )

where ‖ · ‖2
O means that it only considers the observed ratings during training.

W ∈ RM×k and V ∈ Rk×M are weight matrices (k is the dimension of hidden layer).
μ ∈ Rk and b ∈ RM are the biases. a(·) and g(·) are activation functions. U-AutoRec
can be easily derived from the above equation. A deep version of AutoRec can be
built by adding more hidden layers. Dropout technique can be adopted to prevent
overfitting [13].

CDAE [14] is a ranking extension of U-AutoRec. Nonetheless, it only works
on implicit feedback and takes binary user preferences as inputs. CDAE projects
the corrupted inputs to a low-dimensional hidden layer and then mapped it back to
the original input space and get the predicted ranking score. The scoring function is
formulated as follows:

ŷu∗ = a(W ′ · g(W X̃u∗ + Vu + μ) + b)

where Vu is the user-specific bias. X̃u∗ is the corrupted version of Xu∗. The elements
of input Xu∗ are corrupted and set to 0 with a probability of q which is also known as
corruption level. The objective function is defined as

L = 1

M

M∑

u=1

�(Xu∗, ŷu∗) + λ(‖W ′‖2
2 + ‖W‖2

2 + ‖V‖2
2 + ‖b‖2

2 + ‖μ‖2
2)

where the loss � could be squared loss or logistic loss similar to NeuMF. To accelerate
the training process, negative sampling strategy is usually employed and the overall
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complexity is linear to the size of observed instances. This model can be optimized
in pairwise or pointwise manner. Empirical study suggests that pointwise approach
performs much better. The parameters are learned with AdaGrad which can adapt the
step size and save the trouble for learning rate tuning. CDAE can also be viewed as a
generalization of latent factor models and latent factorized similarity model.

2.2.2 Deep neural generalization of factorization machine

FM is a generic approach that combines the generality of feature engineering with
the superiority of factorization models. It is very effective for sparse and feature-rich
datasets and can be applied to a variety of tasks such as regression, classification and
ranking. Recent studies show that FM is essentially a linear approach and may not
be expressive enough to capture the complex and nonlinear structures of real-world
datasets [9]. Here, we will introduce two approaches that incorporate deep nonlinear
transformations to FM.

The first approach is neural FM (NFM) [9], NFM proposed adding nonlinear
layers to the core component (order-2 interaction part) of FM. NFM achieves this goal
via a Bi-interaction layer. Formally, let x ∈ Rn denote the real-valued feature vector,
and vi ∈ Rk denote the embedding representation of the ith feature. The bi-interaction
layer is defined as

fBI =
n∑

i=1

n∑

j=i+1

xivi � xjvj

here the output of this operation is a k dimensional vector, which makes is easy to
add nonlinear transformation layers over the output like GMF. Finally, the scoring
formulation of NFM is given as

ŷ(x) = w0 +
n∑

i=1

wixi + hT fMLP(fBI )

where hT is the neuron weight for scaling the output of MLP. Similar to FM, the first
term is the global bias and the second term is a linear transformation. NMF replaces
the final term with a neural network. It is proved that FM is a special case of NMF
with no hidden layers. To further improve the performances, dropout regularization
can be adopted to prevent overfitting, and batch normalization could be applied for
faster convergence.

Another model is called DeepFM [15]. Instead of adding nonlinear transfor-
mation to the third term of FM, this model consists of an FM component and a
deep component (MLP). These two components have different model parameters but
shared inputs. The FM component is used to model the low-order feature interactions,
while the deep component is used to model the higher order interaction patterns. The
prediction rule of this joint model is as follows:

ŷ = σ (yFM (x) + yMLP(x))

where yFM is the result of the FM component while yMLP is the result of MLP. The
two components are learned together by minimizing the cross-entropy loss.
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2.3 Representation learning for recommender systems

Deep neural network, to some extent, is a representation methodology as it learns
multilevel of representations from original inputs [16]. Abundant auxiliary informa-
tion, such as abstract of article, plot and posters of movies, music audio signals, of
items and users is usually available. Incorporating these descriptive data sources will
usually enhance the performances of recommender systems. With deep neural net-
works, we could process this auxiliary information more effectively and get a deep
understanding about the items and users. Moreover, learning user and item embed-
ding representations from interaction history (watches, clicks, searches, etc.) with
deep neural networks is also viable.

2.3.1 Representation learning with multilayer perceptron

MLP is a basic yet powerful supervised feedforward neural networks. It cannot only be
used to incorporate nonlinearity as introduced in the former section, it is also possible
to be applied on feature representation learning [17–21]. Due to its effectiveness and
scalability, it is widely employed in many real-world applications to feature represen-
tations of users and items, such as video recommendation in YouTube [17], Android
application recommendation in Google play store [18], App, TV recommendation in
Microsoft [19,20].

For instance, the recommendation in YouTube [17] is divided into two separate
tasks. The first task is candidate generation which aims to select hundreds of can-
didates from a very large corpus. In this step, to ensure the personalization, users’
video watches, search tokens, location and gender are embedded in the input layer,
and the user embeddings are learned via several fully connected nonlinear layers. The
video age is also considered during this stage to capture viral effects. The second
task refines the ranks of the picked candidates with another MLP. More features like
the impression video ID, watched video ID, user language, time since last watch are
coded in this step. At last, the ranks are generated based on the predicted watch time
with weighted logistic regression.

Another MLP based industry-level recommendation model is named Wide and
Deep [18], which is employed in the Google Play store. It consists of two parts: the
wide part and the deep part. The wide part is a generalized linear model while the
deep part is a fully connected neural network. The motivation of this combination is to
reach some degree of balance between generalization and memorization, because the
deep part does well in generalization and the wide part can memorize some important
features. This model is formulated as

ŷ = σ (Wwide[x, φ(x)] + WdeepfMLP(x) + b)

Note that φ(x) is the cross-product transformation. Usually, this transformation is
applied to a small number of selected features.

In addition, a semantic matching approach based on MLP called deep semantic
similarity model (DSSM) can also be applied to make recommendations. DSSM has
a query network and a candidate network. In recommendation task, the query is
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replaced by a users’ profiles, and the candidates are made up of items the user has not
seen. High-level semantic user and item representations can be obtained with DSSM.

From the above models, we observe that feature engineering such as feature
transformation, crossing, rescaling, normalization is a critical step for industrial
recommender systems; abundant side information of usage history and item prop-
erties are usually available in the systems; scalability is one of the most important
considerations for quick response to online users.

2.3.2 Representation learning with autoencoder

We have discussed the use of autoencoder for nonlinearity modelling where the recon-
struction layer is the main focus. The encoder and decoder structure of autoencoder
is initially proposed for dimensionality reduction. Thus, it is also suitable for feature
representation learning in recommender systems.

To utilize the representation learning capability of autoencoder, one feasible
solution is to integrate it into traditional recommendation models. Wang et al. (collab-
orative deep learning (CDL)) [22] proposed integrating autoencoder to probabilistic
matrix factorization by constructing the autoencoder from a Bayesian perspective.
Autoencoder is used to learn low-dimensional feature embedding vectors from item
side information. Li et al. (collaborative variational autoencoder (CVAE)) [23] sug-
gested replacing the traditional autoencoder of CDL with variational autoencoder.
Li et al. [24] proposed utilizing marginalized autoencoder to extract features from
both user and item side information and feed them into latent factor models. Zhang
et al. (AutoSVD++) [25] proposed combining contractive autoencoder with SVD++
to model item content information as well as implicit feedback. These works are very
close and can be included in a generic framework: deep collaborative filtering [24].
Let Suser and Sitem denote the side information of users and items, respectively. The
generic framework is formulated as

L = �(X , P, Q) + β(‖P‖2
F + ‖Q‖2

F ) + γ L(Suser , P) + δL(Sitem, Q)

where β, γ and δ are trade-off parameters. L(Suser , P) and L(Sitem, Q) act as link
functions that connect autoencoder with the latent factor model.

Figure 2.4 illustrates the architecture of the deep collaborative filtering. By spe-
cializing the variants of autoencoder and used side information, we can get many
variants. It is obvious that CDL, CVAE and AutoSVD++ are special cases of this
framework.

Another feature representation learning approach is based on the modelAutoRec.
AutoRec uses the rows or columns of the rating matrix as inputs. We can easily
extend the inputs to incorporate side information [26,27] and further enhance the
performances.

2.3.3 Representation learning with convolutional neural network

CNN is capable of extracting the local and global feature representations from hetero-
geneous data sources. The convolution and pooling operation make it more effective
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to process textual, visual, audio and even video information. In many real-life appli-
cations, there are many texts, visual and multimedia sources about items such as plots,
posters, screen-shots, movie (film) trailer available. Here, we introduce several works
using CNN for text, image and audio representation learning.

CNN for text representation learning. Zheng et al. [28] presented a deep coop-
erative neural network (DeepCoNN) for rating prediction by jointly modelling both
user and item reviews. It couples two CNNs together and maps users and items review
texts into a common feature space. However, this model assumes that the review texts
(of test set) are known when performing rating prediction, which limits its practical
use [29]. To solve this problem, Catherine et al. [30] extended the DeepCoNN by
adding an additional layer to represent the target user–item pair. Shen et al. [31] pro-
posed using CNN to learn latent representations from text information of learning
resources. Kim et al. [32] proposed using CNN to learn representations from docu-
ments. They advised that CNN is very suitable for document modelling as it considers
the contextual information like surroundings words in articles.

CNN for image representation learning. CNN has achieved tremendous suc-
cess on image analysing tasks. Recent works show that it can also be applied to image
processing in recommendation scenarios. He et al. [33] presented an image ranking
algorithm, visual Bayesian personalized ranking (VBPR), under the Bayesian pair-
wise scheme. VBPR adopts CNN to extract visual features from products and then
integrates them into Bayesian personalized ranking (BPR)–based matrix factorization
model. The predictor of VBPR takes the form

ŷui = μ + bu + bi + PT
u Qi + θT

u (Efi) + b′T fi

here μ, bu, bi are global bias, user bias and item bias. Pu and Qi are user and item
latent factors. fi is the visual features obtained with pretrained deep CNN. E is a
transformation matrix. θu is the user visual factor. b′ is a visual bias term used to
model user’s overall preferences on the visual appearance of given items.
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He et al. [34] extendedVBPR by incorporating fashion awareness but still adopted
CNN to extract product images representations. Niu et al. [35] proposed a pairwise
image recommendation model NPR with abundant contextual information. In this
model, CNN is also utilized to derive visual features. Wang et al. [36] explored
the effectiveness of using CNN to extract features from images for point-of-interest
recommendation. Here, VGG16 is adopted for visual feature extraction. Chu et al. [37]
presented a restaurants recommender system by modelling user preferences from
restaurants images with CNN.

CNN for audio-representation learning. One of the most seen audio-based
recommendation tasks is music recommendation. Music plays a very important role
in our daily life, and personalized music recommendation services also play a key
role in music vendors. Van den Oord et al. [38] proposed using CNN to predict latent
factors from music audio as CNN allows intermediate feature sharing and operations
on multiple timescales of music audio signals.

2.3.4 Representation learning with Word2Vec

The former three subsections mainly focus on feature representation learning. Most
of these models are built in the same way of traditional recommendation algorithm
(latent factor model). However, with the increase of users and items, it will become
highly expensive to compute. Especially, in some real-world applications, the number
of users (millions/billions of) is far more than the quantity of items, which will result in
high sparsity to user–item matrix. Moreover, user and item interactions are not always
available in some cases, for example, a portion of online shopping transactions are
done without user identifications. To solve these problem, it is more feasible to learn
item and user embeddings separately.

Word2Vec is a two-layer neural network that is used to generate low-dimensional
word embeddings. It captures the relationship between words and their surroundings.
In general, the continuous skip-gram architecture is adopted to predict the surrounding
context words given the current word. Word2Vec train the neural network and consider
the weight matrix as word representations.

Inspired by this word embedding model, Barkan et al. [20] proposed an Item2Vec
approach to learn item embeddings and model the item–item relations; it treats the set
of items as the sentences in word2Vec. These sets or sequences of items are generated
from interaction logs such as “shopping baskets,” “Click sequences.” The user iden-
tification is not compulsory for constructing these sets. Afterwards, item2Vec adopts
the same idea of skip-gram algorithm and learns a k dimensional dense embedding for
each item (Figure 2.5). Formally, item2vec aims to maximize the following objective:

1

K

K∑

i=1

K∑

j �=i

log p(itemj|itemi)

where K is the size of the item sets. This model does not consider the spatial/time
information and do not use the window size of Word2Vec. Similar to Word2Vec, a neg-
ative sampling strategy is used to reduce the computational complexity of calculating
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Figure 2.5 Architecture of the neural item embedding technique Item2Vec

the Softmax probability in the output layer. After training, we can get the item embed-
dings from weight matrix (the input-hidden weight matrix or the hidden-output weight
matrix, or their combination). Afterwards, we can calculate the affinity between
items from the embeddings with cosine similarity and make recommendations with
item–item collaborative filtering approach.

2.4 Sequence modelling for recommender systems

In many recommendation models, the temporal dynamics are usually ignored, which
means that these models cannot model the sequential patterns of user activities.
Nevertheless, the time information will also reflect the change of user interests
somehow. Figure 2.6 illustrates a high-level overview of sequential recommender
systems [39]. Note that the user can be identifiable or anonymous; we categorize
the sequential modelling recommender systems into session-based recommender
system, where interactions are presented session-by-session, and sequence-aware
recommender systems.

2.4.1 Session-based recommendations

Let us first consider an unappreciated problem: session-based recommender system
where user identifications are not present. Here, recommendations are usually made
based on the most recent interactions. The system need to predict the next action
based on time-ordered logs of historical actions. Just like session in web browser,
each session records an action sequence (e.g., click[item3, item7, item1, . . . , item9],
means that one clicked item3, then item7, then item1,…) during that session. The
sequential pattern theoretically favours sequence modelling techniques such as RNN.

GRU4REC [40] is the first session-based recommendation model using RNN.
In formal, assume we have T sessions sm ∈ [s1, s2, . . . , sT ]. Each session is made up
of a sequence of items sm = [im,1, im,2, . . . , im,n, . . . , im,|sm|]. During the training stage,
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it takes the current item in the session as input. The output is the probability of being
the next item in this session for all items.

hm,n = GRU (im,n, hm,n−1), n = 1, . . . , |sm|
where m denotes the session sm, im,n is the one-hot representation of the current item n.
hm,n is the hidden state at step n (it iterates over all items one-by-one in the session).
The output is formulated as

ŷm,n = g(hm,n), n = 1, . . . , |sm|
where g is a nonlinear activation function. The output indicates the likelihood being
the next item for all items. However, computing scores for all items is very compu-
tationally expensive and will lead to unstable results when the number of items is
large. Thus, pairwise loss such as BPR or TOP1 is usually adopted. The BPR loss is
defined as

L = − 1

NS

NS∑

j=1

log (σ (ŷm,i − ŷm,j))

where NS denotes the number of negative samples sampled for each positive item (i is
the next item since we know the next item in the training stage). The authors also
devised an improved pairwise loss TOP1 which is formulated as

L = 1

NS

NS∑

j=1

(ŷm,j − ŷm,i) + σ (ŷ2
m,j)

TOP1 has a regularization term σ (ŷ2
m,j) to force the scores of negative items to zero.

Figure 2.7 gives the general structure of the GRU4REC model. In the original paper,
the authors found that using one-hot encoding of the preceding item (instead of all
previous items) as input and single hidden GRU layer will lead to the best performance.

There are many follow-up works which attempt to improve the performance of
GRU4REC. Hidasi et al. [41] proposed a parallel RNN to incorporate the rich side
information of items for session-based recommendation. It uses two parallel GRU to
process item ID and features (e.g., images or text). The authors also explored four
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training strategies to train the two sub-nets: simultaneous, alternating, residual and
interleaving. Twardowski et al. [42] suggested that incorporating the contextual infor-
mation will also enhance the performance. Jannach et al. [43] found that combining
the recommendation lists of session-based neighbourhood approach with GRU4REC
will lead to superior performances. Tan et al. [44] proposed improving the GRU4REC
model with data augmentation, model pretraining and distillation of privileged infor-
mation with a teacher model. Li et al. [45] presented a neural attentive model to
further increase the accuracy by capturing user’s main purpose in the session with
attention mechanism. Bogina et al. [46] proposed considering the dwell time (the time
spent on an item) and showed a huge improvement over basic GRU4REC. In some
session-based recommendation scenarios, the user identification can be available,
which makes it possible to generate personalized recommendations for each user and
consider the user’s interests and intents in the specific session [47,48].

2.4.2 Sequence-aware recommender systems

In sequence-aware recommender systems, both user identifications and timestamp
of interactions are present and utilized. There are no sessions in this task and
the datasets are usually in the form of four-tuple 〈item, user, interaction, time〉. As
we mentioned in the preliminary section, we still have a user set with M users:
U = {u1, . . . , uM } and an item set with N items: I = {i1, . . . , iN }. In the sequence-
aware recommender systems, we also have a user historical interaction sequence for
each user u derived from the timestamp: Su = {Su

1 , . . . , Su
t , . . . , Su

|Su|}, where Su ∈ I
(the exact time does not necessarily need to be taken into account). The goal of
sequence-aware recommender system is to predict a list of items that the user will
interact (e.g., watch, buy, click) in the near future given the historical interaction
Su. Compared with traditional collaborative filtering problem, there are mainly two
differences: (1) the historical interactions are organized as sequences based on the
timestamp instead of set without chronological order. (2)Train and test sets are strictly
partitioned with time, so there will be no leakage of future information, while in
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one-class collaborative filtering, train and test sets are selected based on random split
with ignoring the time information.

Similar to session-based recommender systems, RNN is the most widely inves-
tigated approach among all the deep neural network techniques for sequence-aware
recommender systems. Donker et al. [49] proposed revising the GRU cells of RNN to
incorporate the user specific vectors. They designed three variants: linear user-based
GRU, rectified linear GRU and attentional user based GRU. Cui et al. [50] proposed
a hierarchical GRU to explore the contextual information (historical interactions) for
sequential recommendation. The hierarchical GRU consists of two hierarchical atten-
tion layers. The first attention layer is used to catch the user short-term interests, while
the second attention layer is used to model the long-term dependencies. Liu et al. [51]
also used the RNN to incorporate the different types of context information including
external contexts (e.g., location, time, weather) and transition contexts (the sequences
of historical interactions) for sequential recommendation. It is worth pointing out that
attention mechanism can also be coupled with other deep neural networks such as
MLP or CNN for other recommendation tasks [52,53].

Other nonrecurrent models are also viable for modelling the sequential informa-
tion. Chen et al. [54] designed a user memory-augmented network which makes use
of memory network to model user’s embeddings. Tang et al. [55] proposed solving
the sequential recommendation problem with the convolutional sequence embedding
approach via modelling the user consumption history with horizontal and vertical
convolutional layers.

Next basket recommendation can be considered as a special case of sequence-
aware recommender system. The only difference is that the historical interactions
Su are organized in baskets. One basket consists of several items that are bought at the
same time. Deep neural networks can also be applied to solve this task. For example,
Yu et al. [56] proposed a dynamic RNN model for next basket recommendation.
It tries to simultaneously integrate dynamic representations and global sequential
behaviours. Wan et al. [57] proposed using MLP to model the interactions between
users and their bought baskets.

Sequence modelling in recommendation has attracted much attention specially
in recent years when deep neural networks become the jack of all trades. Neverthe-
less, most research works are scattered, and there is no common understanding and
well-established evaluation strategies. More works are expected to well shape this
research area.

2.5 Deep hybrid models for recommender systems

We have introduced recommendation models based on several different neural net-
works. These techniques have different advantages and limitations. For example, CNN
performs well in image processing; RNN is good at capturing the sequential patterns
of time series data. Naturally, we could integrate these techniques to form a combined
model which enjoys all the advantages. Luckily, the flexible structure of deep neural
networks makes it easy to integrate several techniques together to better model the
complex relations and characteristics of real-world datasets. Here, we briefly reviewed
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Table 2.1 Deep hybrid models with different deep neural networks. �Means that
the network is present in the corresponding

Models MLP Autoencoder ConvolutionalNN RecurrentNN

Zhang et al. [58] � �
Li et al. [59] � �
Ni et al. [60] � �
Lei et al. [61] � �
Zhang et al. [62] � �
Wang et al. [63] � �
Rawat et al. [64] � �
Lee et al. [65] � �
Zhang et al. [66] � �

some representative works. Table 2.1 illustrates several research studies who exploit
the combinations of deep neural networks for recommendation.

With these combinations, the model can usually achieve some goals that a single
model cannot achieve. For example, Zhang et al. [58] adopted the stacked con-
volutional autoencoders (combination of autoencoder and CNN) to extract feature
representations from images and feed them into the collaborative filtering framework.
Li et al. [59] adopted MLP to model the user–item interaction and RNN to gener-
ate reviews to explain the recommendations. Similar idea can also be found from a
simultaneous work [60]. Lei et al. [61] proposed an image recommendation model by
using CNN to learn image representations and MLP to learn user embeddings. Wang
et al. [63] designed a recurrent autoencoder to learn the sequential patterns from item
side information. Rawat et al. [64] proposed an image tag recommendation system
by utilizing CNN to learn image representations and MLP to model user context
information. Lee et al. [65] combined RNN with CNN for quote recommendations
where CNN is used to learn high-level representations from sentences, and RNN is
used to model the sequential information of dialogues. Zhang et al. [66] proposed
a joint representation learning approach using CNN to learn representations from
images and MLP to learn embeddings from rating data. Many combinations could be
inverted for various application fields. There is no standard rule for how to combine
them, but each neural network is integrated for specific purpose.

2.6 Advanced topics

In this section, we will introduce several advanced recommendation techniques based
on deep neural networks.

2.6.1 Metric learning

Recently, metric learning has been successfully applied to recommendation task
[67–69]. Metric learning models the user–item closeness with Euclidean distance
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instead of dot product. The dot product does not satisfy the triangle inequality, which
might greatly limit its expressiveness and feasibility. Hsieh et al. [67] first introduced
the idea of large margin nearest neighbour to collaborative filtering task and designed
the collaborative metric learning (Figure 2.8). This model is trained with weighted
approximate-rank pairwise loss (WARP) by pushing the items that the user dislikes
away from items that she likes. The authors further improved this model by incorpo-
rating item side information with MLP. The incorporation approach is similar to the
idea of deep collaborative framework. The complete objective function is defined as
follows:

L =
∑

(u,i)∈O

∑

(u,k)∈O−
wij[m + d(u, i)2 − d(u, k)2]+ + λf

∑

j∈I

‖ fMLP(sj) − vj ‖2

where wij is precomputed weight of WARP loss (the interested readers are
referred [70]). d is the Euclidean distance. The second term is used to make the
learned embeddings for items close to its feature representation extracted with MLP.
λf is used to control the weight of feature loss.

Tay et al. [71] argued that the distance function of CML is an ill-posed algebraic
system when there are a large number of interactions. To better model the distances,
they proposed incorporating the relation vectors into the distance function.

d(u, i) = ‖Pu + r − Qi‖2

The relation vector r is learned via the neural attentive memory module from the user
and item embeddings. This model can also be optimized with hinge loss.

2.6.2 Generative adversarial networks

Generative adversary network (GAN) [72] is a generative model which has been
successfully applied to image generation and text generation. GAN is made up of two
components: discriminator and generator. The generator generates new data instances,
while the discriminator evaluates the data authenticity. The whole network is trained
by playing a minmax game between discriminator and generator.

Recent work IRGAN [73] proposed applying the idea of GAN to the informa-
tion retrieval tasks including web search, question answering and recommendation.
In information retrieval, there are two schools of thinking: generative retrieval and
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discriminative retrieval. They happen to correspond to the generator and discriminator
of GAN. Thus, we could let the generative retrieval model and discriminative retrieval
model to compete with each other and finally find an equilibrium. The performance
will also be enhanced via the minmax game.

2.6.3 Neural autoregressive distribution estimator

Neural autoregressive distribution estimator (NADE) is a tractable distribution and
density estimator. Recently, NADE has been successfully applied to recommendation
tasks. For example, Zheng et al. [74] proposed using NADE to model the distribution
of user ratings for rating prediction. In the follow-up work [75], they extended it to top-
N recommendations on implicit feedback. These models usually have a user-based
and an item-based variants, which means that each variant can only capture either
the user–user or item–item correlations. To exploit both correlations, Du et al. [76]
proposed a user–item co-autoregressive recommendation model to make use of the
two aspects of information for further improvement.

2.7 Future challenges and conclusion

In this book chapter, we introduced the deep neural networks based recommender
systems in details. As seen from aforementioned works, the collisions between deep
neural networks and recommender systems have sparked many new ideas for solving
the recommendation problems in various domains.

Despite the effectiveness and popularity of deep neural network based recom-
mendation models, there are still many open-research issues that remain to be solved.
Moreover, the incorporation of deep neural networks and the emergence of big data
also pose some interesting new challenges for this research area.

● Hyper-parameters study. Neural network heavily relies on hyper-parameter tun-
ing, such as number of hidden layers, activation functions, number of neurons
of each layers. The increase of hyper-parameters has aggravated the difficulty of
parameter-selection process and makes it harder to find the optimal solutions.
What’s worse, the hyper-parameters settings of deep neural networks are usually
not transferable, that is, a set of hyper-parameters which work well on one datasets
might not lead to satisfying results on other datasets.

● Data volume and model complexity. In the big data era, the increase number of
users and items has hindered the use of many models proposed in the academia.
In many real world applications, millions and even billions of users and items are
available, which makes it very hard to employ those proposed models. Especially,
the number of users is usually very large, which greatly makes personalized
recommendation become a tough task. The introduced work item2vec has shed
some light for embedding learning on big data.

● Modelling multimedia data-sources. Deep neural networks have achieved tremen-
dous success on multimedia data-sources such as images, audio and video.
However, a vast majority of deep learning based recommendation model still
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focus upon images related recommendations. Few works attempt to model the
audio and video signals directly. Recommender systems might get a better under-
standing of the content from the video frames instead of mining the textual or
visual descriptors.

There are many novel neural networks proposed each year, and some of them
might be suitable for solving some specific recommendation problems. Deep neural
networks bring many opportunities for recommender systems as well as some chal-
lenges. Some of the recommendation tasks are still in their early stage, and more
advanced models are expected.
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Chapter 3

Cold-start solutions for recommendation systems
Farshad Bakhshandegan Moghaddam1 and Mehdi Elahi2

Recommendation systems are essential tools to overcome the choice overload prob-
lem by suggesting items of interest to users. However, they suffer from a major
challenge which is the so-called cold-start problem. The cold-start problem typically
happens when the system does not have any form of data on new users and on new
items. In this chapter, we describe the cold-start problem in recommendation sys-
tems. We mainly focus on collaborative filtering systems which are the most popular
approaches to build recommender systems and have been successfully employed in
many real-world applications. Moreover, we discuss multiple scenarios that cold start
may happen in these systems and explain different solutions for them.

3.1 Introduction

One of the challenges in everyday life is to make the right decision when purchasing
a product. This challenge has been worsen due to the growing volume, variety and
velocity of data associated with products.1 Although the massive increase in the num-
ber of choices has been an opportunity for consumers to choose the most interesting
products, however, this has led to the problem of choice overload, i.e., the problem of
having unlimited number of choices, especially when they do not differ significantly
from each other [1,2].

Recommender systems (RSs) can mitigate this problem by choosing and sug-
gesting a short list of items for users, based on their personal needs and constraints
[3–6]. These systems, that have been primarily developed and integrated into the
eCommerce websites, have shown to be effective in supporting users when making
decision. However, their application has gone far beyond that as now they have been
extensively exploited almost anywhere, from social networks to intelligent personal
assistants. Their effectiveness has been proved whenever an enhanced decision sup-
port is required in assisting users during their interaction with a system. Such an
enhanced support enables the users to expand their experience, e.g., by receiving

1Institute AIFB, Karlsruhe Institute of Technology, Germany
2Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
1https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
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serendipitous suggestions from a less-explored part of item catalog and allowing the
users to experience surprising items that might not be known to them.

For that aim, RSs carefully observe the users’ behaviors and collect different
forms of user preferences, in order to understand the personal tastes of users [7–9].
These systems then attempt to filter a long list of items and choose a shortlist of
suggestions. This capability has made them to become an essential component of any
type of commercial information systems that needs to deal with a large catalog of
items [10].

3.1.1 Recommendation approaches

From the mid-1990s when early works on RSs [4,11] have been emerged, till now,
variety of recommendation approaches have been proposed. These various approaches
still share commonalities, based on their underlying algorithms, that makes it possible
to classify them into a number of classes [9,10,12,13]. We can briefly describe each
of these classes based on the definitions in the literature.

One of the most popular class of RSs is collaborative filtering (CF) [14,15]
which analyzes a set of known ratings and predicts the unknown ratings, expected
to be given to the items by the users. A CF system, then, recommends to a user the
items with the highest predicted ratings. Content-based (CB) [16,17] class of RSs
analyze the content of the items and recommends items based on their associated
content attributes (features). Utility-based [18,19] class of RSs predicts the utility
scores of users corresponding to the different items (as choice options). This is done
by taking into account the needs and constrains of each user when computing the
utility scores. The items with the highest predicted utility scores are recommended
to the users. Demographic [20,21] class of RSs considers the demographic data
associated with the users and builds recommendations by taking into account the
particular demographic group a user may belong to. Knowledge-based [22,23] class
of RSs adopts a specific reasoning process which begins by formulating the users’
needs and preferences and ends with identifying whether or not an item matches the
specific criteria for a target user. Hybrid [24,25] class of RSs combines a number of
different approaches from a single or multiple class(es) of RSs in order to cope with
the limitations of each single approach.

Regardless of the class of the implemented recommendation approach, a pre-
requisite to any RS is the availability of the data that may indicate the needs and
preferences of the users. Indeed, in spite of the fact that the algorithm performance
plays an important role, however, the quality of recommendations based on any class
of RSs may become poor if no or low quality data has been provided by users [26,27].
This is a situation known as cold-start problem, which typically happens when a new
user registers to the system and no preference data is available for that user. This is a
major problem in RSs specially with large number of users.

In this chapter, we address the cold-start problem in RS. We mainly focus on CF
systems as they are very popular type of the real-world RSs. We describe different
scenarios that cold start may happen in these systems and survey the solutions for the
problem that have been proposed by the literature.
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Figure 3.1 Rating matrix: rows represent users and columns represent items. The
entries of the matrix contain the “known” ratings, users have provided
to items. The “unknown” ratings are represented with question marks

3.2 Collaborative filtering

CF-based RSs exploit a dataset of user feedbacks, mainly in the form of ratings,
that have been provided by a network of users to a catalog of items. The dataset is
typically represented as matrix where rows represent users and columns represent
items (see Figure 3.1). CF systems then use this dataset and predict which items
could be interesting to a target user [14,15]. For that, these systems mine patterns of
relationships and similarities among the users and use them to learn predictive models
that can generate recommendations.

Such predictions are computed for every unknown rating for a pair of user–item
within the rating matrix. This results in a rank list of items, computed for a target
user, where items are sorted accordingly to their predicted ratings. CF system selects
a short list of items with the highest predicted ratings and recommends it to the
target user.

While RSs based on CF approach have presented promising performance; how-
ever, they can largely suffer from cold-start problem due to the lack of data for certain
users or certain items [12,28]. The main form of cold-start problem is the new user
problem which occurs when a new user registers to the system and requests to receive
recommendations before she has provided any rating to any item (see Figure 3.2).
Another type of cold start is the new item problem which occurs when a new item
is added to the item catalog, and none of the users has yet rated that new item (see
Figure 3.2). The sparsity of the data can be also considered as relevant issue to the
cold-start problem. In severe cases of data sparsity, the performance of the CF systems
can be seriously damaged leading to a very poor quality of recommendation. This is
a situation where the number of known ratings is extremely smaller than the num-
ber of unknown ratings, and the system has to compute predictions for the unknown
ratings [12,29].

The remaining sections discuss a set of solutions that have been proposed by the
literature, in addressing the cold-start problem.
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Figure 3.2 Illustration of cold-start problem in recommender systems: new user
problem (left) and new item problem (right)

3.3 Active learning in recommender systems

One of the main solutions to the cold-start problem in RSs is active learning. Gen-
erally, active learning is part of a broader research topic of machine learning, a
well-known research area which focuses on design and development of novel algo-
rithms in solving a large variety of tasks such as regression and classification tasks
[30–33]. These algorithms typically need big datasets to learn patterns behind data
and build models that can be used to predict unprecedented data [34]. This is a form of
learning process that is called passive learning [35]. However, the availability of such
big data cannot be always presumed as there are realistic cases where the data is (e.g.)
partially available. In such cases, the system may not be able to achieve a certain level
of accuracy unless more data is collected. While this could be beneficial, however,
collecting more data can be an expensive process and may require extensive human
involvement. Therefore, the system has to focus on collecting only high-quality data
by carefully controlling the data collection process. This will help the system to min-
imize the cost of data collection while maximizing the expected benefit. This form
of learning process is called active learning [27,35,36].

In comparison to the passive learning, there can be two big advantageous, brought
by the active learning. The first advantage is that, in active learning, the system does
not need to have access to the entire data and instead, it can iteratively obtain further
data. The second advantage is that, active learning allows the system to carefully
analyze the available data and decide which data to be collected. This process will
disallow the noisy data to be collected and may improve the quality of the input data.

In the context of RSs, active learning can bring similar advantageous, and hence,
it can be a natural solution to the cold-start problem. This can be the reason why the
initial interaction of new users with RSs begins with active learning where the system
requests the new users to provide ratings for a set of selected items [37]. This allows
the system to obtain a minimum amount of data that can describe the preference of a
new user (see Figure 3.3). Hence, an active learner follows a set of defined rules that
is used to automatically regulate the item selection process. By applying these rules,
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Figure 3.3 Active learning in recommender systems: a new user registers to the
system, where active learner proposes her to rate a selection of items,
and elicits the ratings

the system elicits ratings from the (new) users and use them to build or update their
profiles. The very precise definition for selecting items to propose to a user to rate is
called active learning strategy [8,27,38,39].

While there has been a broad range of active learning strategies, proposed in the
literature, however, according to [27,37], these strategies can be classified into few
classes, listed below:

● Uncertainty reduction [8,38] strategies try to select items with more diverse
ratings as the system is less certain about them. Suppose that a lot of users have
given high ratings to an item, while many users have given low ratings to the
same item. In such a case, it will be difficult for the system to predict whether
or not to recommend that item. Conversely, an item that has received low ratings
from nearly all users can be easily excluded from the recommendation. Hence,
collecting the ratings of items with diverse ratings may be very informative and
may decrease the uncertainty of the system when computing predictions [8,38].

● Error reduction [27,39] strategies attempt to select items that collecting their
ratings may directly reduce the prediction error. This is due to the fact that there
are items with highly diverse ratings where the ratings are poorly correlated with
the ratings of the other items (e.g., Napoleon Dynamite movie in Netflix dataset)
[39]. While selection of such items for active learning may not contribute to the
predictive power of the system, still uncertainty reduction strategies may select
them for active learning. Instead, error reduction strategies may ignore these items
and focus more on items with ratings that can positively improve the prediction
accuracy [27].

● User adaptation [38,40] strategies try to personalize the active learning process
to the particular characteristics of the users by selecting and proposing different
items for different users to rate. This is due to the fact that different users may
have different knowledge, familiarity and preferences toward different category
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of items, and hence, it is not very convenient to select a similar set of items for
these different types of users. Accordingly, taking into account such differences
among users in active learning process could lead to collecting higher quality and
quantity of ratings.

● Acquisition probability [27,41] strategies try to maximize the chance that a user
can rate an item and hence they select items that are more likely to be known by
a user. Suppose that a user has not been in a restaurant while the system requests
her to rate that restaurant. The rating of that user may not be so informative and
instead may increase the level of noise within the data. Hence, it is crucial for the
active learner to take into account the likelihood that a user is familiar with an
item when requesting her to rate the same.

● Decision-tree-based [38,42] strategies adopt decision tree algorithms in order
to identify informative items to be selected for active learning. Each node of
such decision tree contains a candidate item to be proposed to a new user to rate.
Therefore, the node somehow represents a group of like-minded users who has
rated that candidate item similarly. Accordingly, each node splits the users into
three groups, i.e., those who have given that candidate item (i) high rating, (ii)
low ratings or (iii) no rating. The active learner builds this decision tree based on
an optimization term that leads to the reduction of the prediction error. Once the
decision tree is built, the system can use it to iteratively select items to propose to a
new user, hence traversing from root node of the tree to the leaf nodes, depending
on the ratings provided by the user.

● Prediction-based [36,43] strategies build prediction models that are used to
decide which items to be selected for active learning. The prediction-based
strategies rank items according to the predicted ratings and select the top items
with highest predicted ratings. The adopted predictive models may vary from
probabilistic models [27,40,44] to matrix factorization models [45,46]. An advan-
tageous of these strategies is that they select items that are likely to be interesting
for users, and hence, the users are not bothered during the active learning process.
Indeed, the users may even enjoy checking and rating the selected items. It is also
highly probable that the proposed items are familiar to the users, and hence, the
chance to actually obtain the ratings by these strategies is high.

● Hybrid [47,48] strategies combine a number of individual strategies in order
to take advantages of multiple ones. This may allow the hybrid strategies to
simultaneously optimize different metrics, such as accuracy, diversity and user
satisfaction. Moreover, there are situations that an individual strategy may fail to
properly select items to propose to a target user to rate. However, in such particular
situations, hybridizing the individual strategies can tackle the problem and lead
to improving the performance of the individual strategies.

3.4 Semantic-based recommender systems

The traditional solutions for the cold-start problem are based on the popular CB filter-
ing approaches. These approaches build user profiles by associating their preferences
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Figure 3.4 Recommendation based on semantic attributes, in addressing the new
item problem as part of cold-start problem

with the semantic attributes of the item content [6,49–53]. Exploiting the content of
the items has been used to address the new item problem. When a new item is added
to the catalog, the item profile is built by various types of semantic attributes (see
Figure 3.4). The recommender can use such profiles to compute similarity or built
machine-learning models to generate relevant recommendations.

In early RSs, semantic attributes were based on less-structured form of semantic
content such as item category or item description. These attributes are exploited by
the RSs to establish vector space model [17], where, each item is represented by a
multidimensional vector of content attributes [54].

More novel class RSs has been emerged after the famous article of Berners-Lee2

(as known as the father of the Semantic Web) [55]. He proposed to formulate a set
of rules to create the Web of Data, known as linked data principles [56]. In order to
better understand linked data, the following brief description of content architecture
in Web could be beneficial.

Current Web, as known as Web of Document, contains billions of documents
which are related to each other by hyperlinks. This architecture makes it possible for
users to traverse the Web by visiting hyperlinks. While the content of the Web is human
readable, however, it still suffers from massive ambiguity originated from the lack of
a proper structure with respect to the representation of information. This ambiguity

2https://en.wikipedia.org/wiki/Tim_Berners-Lee
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in information consequently makes it incapable for machines to understand the pro-
vided information. Linked data principles [56] are indeed proposed in addressing this
problem.

According to the noted proposal, the knowledge is modeled by Resource
Description Framework (RDF) which provides a generic graph-based data model
for describing resources, including their relationships with other resources [57]. By
interlinking some publicly available linked data dataset such as DBpedia3 and Wiki-
data,4 Linked Open Data has been emerged as a network of interconnected datasets,
accessible via endpoints. It is possible to query Linked Open Data by query languages
such as RDF query language [58].

Such database has been used by novel class of RSs that are relied on the new
form of semantic data that can better represent the knowledge of human. These novel
semantic RSs focused on exploiting the semantic content information rather than the
raw content data based on theWeb of Data [59]. This has brought variety of advantages
to RSs, such as, mitigating the new item cold-start problem, as well as, empowering
RSs to provide semantic-aware explanations for recommendations.

3.5 Recommendation based on visual features

Another group of recommendation approaches, that can address the cold-start prob-
lem, implements the idea of enriching the item profiles with additional source of data.
The enriching mechanism allows them to be capable of coping with the new item prob-
lem. A representative technique within this group of RSs is proposed by [60] where
the authors exploited a set of visual features in a multimedia RS (see Figure 3.5). The
proposed features are called Mise-en-scene features, and they are based on variation
of colors, camera and object motions, and lighting within the multimedia items. The
results of the experiments have shown that these automatically extracted features can
solve the new item cold-start problem [60–62]. The same authors have extended that
work and proposed another recommendation technique based on exploiting MPEG7
and deep learning visual features [63]. Again, the results have shown the substantial
power of visual features in solving the new item problem in RSs. There have been
many recent related works that have used visual features in RSs but mainly focused
on deep learning features [64–67].

There have been also earlier works that have studied the potential of building
style-aware RSs based on visual features [68–73]. As an example, the authors of [71]
introduced VideoReach which is an RS that can extend the semantic item profile with
visual features. The results of their experiments have shown that this extension has
positively affected the click-through-rate. The work in [72] presented an algorithm
that can integrate different ranking lists, generated based on visual features and none-
visual attributes. The results have shown improvement.

3https://wiki.dbpedia.org/
4https://www.wikidata.org/wiki/Wikidata:Main_Page
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Figure 3.5 Recommendation based on visual features, in addressing the new item
problem as part of cold-start problem

A limitation of these works is that they have typically assumed that there are
already a set of semantic attributes collected and the visual features are used in
combination with these semantic attributes. Therefore, further studies are needed in
investigating the actual power of visual features, mainly when traditional semantic
attributes are not available.

3.6 Personality-based recommender systems

One of natural solutions to tackle with the cold-start problem is to use additional
user attributes (as known as side information), in order to build the initial profile
of a new user [74,75]. There have been already different types of such attributes,
proposed in the literature. However, one of the most representative forms of attributes
is the psychological ones related to the personality traits of users. These personal
traits are based on predictable and stable characteristics of users, and they describe
the “consistent behavior pattern and interpersonal processes originating within the
individuals” [76]. Personality traits can portray the differences of users in terms of
emotional, interpersonal, experiential, attitudinal and motivational aspects [77].

Psychology literature is already mature in the personality field and various psy-
chological models are available on how to represent the personality aspects of an
individual person. One of the most well-known models is the Five Factor Model
[78], which is commonly adopted in different research disciplines [79]. This model
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describes the personality of a person with respect to five dimensions as known as big
five traits: openness, conscientiousness, extroversion, agreeableness and neuroticism
(as known as OCEAN).

It has been shown that users with different personality traits express differences
in their decision-making process [80,81]. Accordingly, users with similar personality
traits are more likely to share similar preferences [82]. Authors of [83] have studied the
correlation of personality traits with musical preferences and showed that users with
high openness trait typically share similar preferences for jazz, blues and classical
musical genres, and users with high extroversion and agreeableness traits are likely
to enjoy rap, hip-hop, funk and electronic musical genres. The authors of [84] have
conducted an experiment that showed a strong relation between the preferences of
users for certain web applications and their particular personality traits. In [85], the
relation of personality traits and emotional expressions have been investigated for
users who were watching movies in different social contexts. The results have showed
that different patterns of emotional expressions can be observed for different users
with their unique personality traits.

The promising results of the above-described works, showing the correlation of
personality and preferences of users, has motivated further studies on the idea of
exploiting personality in RSs, e.g., in addressing the cold-start scenario [29,43,81,
82,86]. Hence, when a new user enters the system and has not provided any data
associated with her preferences, personality traits can be used to profile her and
generate personalized recommendation (see Figure 3.6). Hence, the personality can
be used either to compute the similarity among users for similarity-based RSs, or as
additional user attributes, in model-based RSs.

As an example of works within this area, the authors of [87] adopted different rec-
ommendation approaches and showed that incorporation of personality may lead to a

Target domainUser personality

4 1 2 1 5 ? ? ? ? ?

5 2 2 1 5 3 ? 4 ? 1

4 5 3 4 1 ? 5 ? ? 3
2 3 3 3 4 ? 2 ? 1 ?

3 2 5 1 2 5 ? 5 ? 2

New user

Figure 3.6 Personality-based recommender systems, in addressing the new user
problem as part of cold-start problem
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better recommendation quality in cold-start scenario. Reference [88] has investigated
the potential of using personality and showed that personality characteristics can lead
to improvement in the performance of RSs. In [79,89], the relation of personality of
musical tastes is exploited in order to generate relevant recommendation for users.
Finally, [90] has developed an RS that uses personality profiles of users to generate
recommendations for them. This is done by first analyzing the hotel reviews written
by users. Then using the correlations among the reviews and the personality traits, the
system extracts the personality profiles of the users and compute similarities among
the users in order to build similarity-based recommendations.

A limitation of personality-based approaches is that, before the personality data
is used, the users should complete a personality questionnaire, which can be a time-
consuming process. This is why there are recent machine-learning techniques that
are built to extract the personality traits from other sources such as social network
profiles of the users.

3.7 Cross-domain recommender systems

Another solution for the cold-start problem in RSs is based on exploitation of axillary
domains in order to generate recommendations in a target domain. This is called
cross-domain recommendation and it is one of the research topics that have been
well-studied in the community of RSs. The reason can be due to the fact that current
e-commerce web applications typically operate in multiple domains, and they use
mechanisms to aggregate multiple types of data from multiple domains. Availability
of such data can bring benefits to an RS and enables it to perform, e.g., cross-selling
or coping with the cold-start problem in its target domain.

There have been various algorithms developed for cross-domain recommenda-
tion [91–93]. While these algorithms may implement different mechanisms for the
cross-domain recommendation, they share commonalities which enables us to clas-
sify them into two major classes, i.e., knowledge aggregation approaches [94–97] and
knowledge transfer approaches [98–101].

The former approach aims to aggregate the knowledge from different auxiliary
domains in order to generate recommendations in the target domain (Figure 3.7). The
latter approach is based on the idea of eliciting the user ratings from auxiliary domains
and transfer this knowledge to the target domain. In this sense, the latter approach
attempts to link different domain knowledge in order to support the recommendation
for the target domain [98].

An example of former approach can be the work in [102], that proposed various
knowledge aggregation mechanisms that have proved to be effective in improving the
accuracy of target domain recommendations in cold start. An example of the latter
approach is presented in [103] where the authors propose leveraging the preference
knowledge transfer from an auxiliary domain to the target domain. The results of eval-
uation have shown that the proposed recommendation method overtakes the classical
recommendation methods.
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Figure 3.7 Cross-domain recommender systems, in addressing the new user
problem as part of cold-start problem

A limitation of the cross-domain recommendation is that, there has to be a con-
siderable overlap among the adopted datasets in different domains. Hence, without
having the axillary domain and the target domain overlap, it would be not feasible to
apply the techniques described in this section.

3.8 Conclusion

In this book chapter, we addressed the cold-start problem in RSs. This problem
happens when the system is not able to recommend relevant items to a new user
or to recommend a new item to the existing users.

We discussed various solutions that have been proposed in the literature. These
solutions are summarized in Table 3.1. These solutions can be classified into five
classes, i.e., active learning, semantic attributes, visual features, personality traits and
cross-domain recommendation. Although all of these solutions have been successfully
applied and evaluated in prior works, however, none of these solutions can be seen
as a conclusive remedy to the cold start as a generic problem. Indeed, each of these
solutions can be effective in a particular situation of cold start. Some of these solutions
(semantic attributes and visual features) can address the new item problem while
some others (personality traits and cross domain) can address the new user problem.
Active-learning techniques can address both of these problems.

It is worth noting that, the cold-start research area in RSs is a multidisci-
plinary field of research and involves disciplines of machine learning, psychology
and human–computer interaction. For instance, each of the cold-start solutions need
proper adoption of the interface design patterns [117] when obtaining user prefer-
ences or presenting a recommended item. Therefore, collaboration among researchers
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Table 3.1 Summary of the solutions for the cold-start problem

Solution Cold start Methods

New user New item

Active learning � � ● Uncertainty reduction [8,38,104]
● Error reduction [39,105]
● User adaptation [8,39,106]
● Acquisition probability [107–109]
● Decision tree based [38,42,46]
● Prediction based [36,40,45]
● Hybrid [36,47,110]

Semantic attributes � ● Graph-based [111,112]
● Machine learning [113–115]

Personality traits � ● Similarity based on personality [102]
● Personality traits in the model [103]

Visual features � ● Mise-en-scene features [60,61,116]
● MPEG7 features [62]
● Deep learning features [65–67]

Cross domain � ● Knowledge aggregation [102]
● Knowledge transfer [103]

within these disciplines can surely be useful in improving the quality of the current
state-of-the-art approaches.

In conclusion, this chapter shall hopefully provide an overall overview of the
research on cold-start and can be a useful source of guidelines for researchers in the
academia and practitioners in the industry. It can hopefully advance the knowledge
in this area, as well as the related areas.
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Chapter 4

Performance metrics for traditional and
context-aware big data recommender systems
Rab Nawaz Jadoon1,2, WuYang1, and Osman Khalid2

Recommender System (RS) concept was coined in the mid-1990s, when researchers
took interest in recommendation problems that primarily used the concept of ratings
to obtain the user preferences for different items. A lot of work has been exercised and
investigated in this area for recommending the most relevant information and contents
to users without taking the contextual information, such as date, time, location and
event. In the last few years, context-aware recommender systems (CARS) have made
tremendous contributions in all domains of life and improved the recommendation
process based on the contextual information along with the traditional approaches.
The effectiveness of an algorithm can be measured in the sense that how efficiently it
returns the recommendation to users/customers with respect to context or occasion. To
assess the effectiveness and performance of any recommender algorithms completely,
some common metrics are defined to assess the performance of the recommender
algorithm beforehand.

There are numerous performance metrics that can be used to efficiently eval-
uate any recommender algorithm, but the root-mean-squared error (RMSE) is the
most important and commonly used to appraise a recommender algorithm. Nor-
mally, RMSE is used to measure the difference between the predicted preferences
and actual/true preferences over items, while the Recall method is used to com-
pute the favored items that are recommended. Other variants include the mean
square error (MSE), mean average error (MAE), and normalized MAE (NMAE).
NMAE basically normalizes MAE by the range of the ratings for ease of compar-
ing errors across domains. RMSE is very suitable for the prediction task, because
it measures the inaccuracies on all the ratings, whether negative or positive. Pre-
dicted ratings are assessed based on the accuracy of these predictions. Usually, it
is done through regression analysis and classification algorithms in the machine
learning domain. In CARS, accuracy and diversity are major performance met-
rics for measuring the effectiveness of the real-time context-aware recommender
algorithms.

1School of Information Science and Technology, University of Science and Technology of China, China
2Department of Computer Science, COMSATS University Islamabad, Pakistan
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In this chapter, we primarily focus on the performance metrics identified for
both the traditional RSs and CARS. In addition to all the possible performance
metrics used in those systems, we have discussed various issues affecting the per-
formance of CARS. These performance metrics are used to measure the accuracy and
to categorize/grade the recommender algorithms. Some of these measure the similar
features, while the others measure significantly different quantities. Moreover, we
have also presented the common criteria for evaluating the metric selection for any
recommender algorithm in order to measure its performance.

4.1 Introduction

Recommender Systems (RSs) are primarily used for providing recommendation to
users or customers in diverse online social and commercial services. These algorithms
are popular among both the researchers as well as the commercial community [1].
These systems have different nature with respect to various computational domains
and applications. It is quite important to know beforehand the nature and application
area of interest of an algorithm to be developed.

Many evaluation metrics have been suggested for comparing recommender algo-
rithms with respect to different usage environment. The selection of the proper
evaluation metric for any recommender algorithm is often very difficult because
each metric may be used in an algorithm based on some specific scenario [2].

In many modern online social and commercial applications, the RS provided the
user a diverse set of recommended items. Such systems assist the customers to select
the appropriate items of his/her choice of interest. For example, Netflix1 recommender
engine publishes the predicted ratings for every released movie in order to assist the
users to select an appropriate movie of their choice. Amazon2 (the online book retailer)
displays the average user ratings for the published books along with a list of other
similar books which are bought by other users [2]. Microsoft provides many free
software downloads such as bug fixers, antiviruses, and many other products and
plug-ins. When a user downloads something, the system presents an additional list
of the similar items that can be downloaded together. Such systems provide diverse
services and works as an intermediate agent for providing a win-win situation for
both the parties (seller and buyer) [3].

In the recent past, a lot of new efficient algorithms for recommendation tasks have
been proposed. An application designer can add the most appropriate recommendation
system from the list to his/her application. Normally, such selection is made by
comparing the performance of several algorithms of the same type of category over
the real data. The developer then selects the best algorithm that has the possible
structural constraints as per the application requirements. Furthermore, most of the
researchers have compared the performance of their proposed algorithm to a set

1www.netflix.com
2www.amazon.com
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of existing approaches. Such comparisons are typically exercised by defining some
evaluation metrics for ranking/grading the algorithm.

Several performance metrics are exercised in the literature to measure and
rank/grade/categorize the recommendation algorithms. Among those, some are used
for computing the same features, while the others are used for measuring the differ-
ent quantities. For instance, root-mean-squared error (RMSE) computes the distance
between the actual and predicted preferences against the items, and recall is used to
measure the favored items that can be or recommended already.

More specifically, it is unlikely that a single algorithm would outperform all the
others against all possible methods. Therefore, we have a number of options to select
the most appropriate metrics for ranking the recommender algorithm.

This chapter is an attempt to briefly discuss the different performance evalu-
ation metrics that are used to evaluate the RS algorithms specifically in big data
environment. In Section 4.2, we briefly discuss the context-aware recommender sys-
tems (CARS). How the recommender algorithms are evaluated and what are the basic
metrics used to evaluate the recommender algorithms are discussed in Section 4.3.
Section 4.4 discusses the diversity and accuracy measurement in the CARS. The crite-
ria of choosing an appropriate performance metric for the recommendation algorithm
with respect to the application domain area are presented in Section 4.5. Finally,
Section 4.6 concludes the chapter.

4.2 CARS—a brief overview

Majority of the recommender algorithms may not consider the contextual information
(i.e., time, location, event, people, etc.) while recommending the items or information
to the user [4]. The conventional algorithms depend only on two entities, i.e., users
and items, and do not consider any real-time information while providing the recom-
mendation. In our daily life, we encounter such scenarios where we could not rely
merely on the user and items, but we need to use the real-time data while recommend-
ing something to users [5]. To elaborate this concept further, consider a vocational
package in which only the personalized contents are not sufficient, but we need to
know and embed the contextual information into the recommender process.

For instance, the recommendation of the travel RS that uses the temporal context
would be quite different in the winter and summer. Similarly, in case of personalized
content delivery on a website, it is important to determine what content is recom-
mended to a user and when [3]. More specifically, on weekdays a user might prefer
to read world news and check the stock market report in the evening, and read movie
reviews and do other things.

4.3 Evaluation of RSs

Before going into the details, we first need to highlight the most common scenario,
where an RS can be used.
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The most common tasks for an RS are prediction, ranking, and classification.
The ratings against unread items are predicted in the prediction tasks. For example, a
movie rental website might publish the predicted ratings in order to aid the users for
easy decision-making.

Recommender algorithm used ranking to generate a top k list of items. This can
be commonly seen in e-commerce applications, where a top k items are shown in a
sidebar or on a dedicated page. However, the web news portals, contents, and other
information providers make heavy use of such top k lists.

In classification, the algorithm finds a set of limited number of recommended
items having no order among them; e.g., the items of interest to a user are predicted
and then highlighted explicitly on the page. After that, a top k list of recommended
items is generated as a classification task, especially if the number of items is less
and the order is less dominant; e.g., recommended items are presented in the form of
a grid or in a circular fashion on the webpage (Amazon.com).

4.3.1 Evaluation metrics

Generally the evaluation metrics for an RS can be categorized into the following three
classes [2]:

1. Prediction accuracy metrics
2. Classification accuracy metrics
3. Rank accuracy metrics.

4.3.1.1 Prediction accuracy metrics
Prediction accuracy is the most popular and commonly discussed metric in the RS
literature. Almost all the RSs have the prediction engine which predicts the user
opinions over items or the usage probability.

Accuracy measurement for rating predictions
In some applications, rating is predicted normally through 5-star rating heuristics. In
such applications, it is very important to calculate the accuracy against the predicted
ratings. Some commonly used methods are as follows:

1. Root-mean-squared error
Generally, this method is used to calculate the accuracy of the predicted ratings.
The algorithm makes the predicted ratings Pr against the test set T having user–
item pairs (u, i) for which the true ratings Tr are known. Normally, true ratings
are known as these are hidden in the offline processing. The RMSE between the
predicted and actual ratings is given in the following equation:

RMSE =
√

1

|T |
∑

(u,i)∈T
(Pr − Tr)2 (4.1)
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2. Mean absolute error
Mean average error (MAE) is the most popular and commonly used substitute
of the RMSE and is generally represented by the following equation:

MAE = 1

|T |
∑

(u,i)∈T
|Pr − Tr| (4.2)

Unlike MAE, RMSE excessively castigates large errors. For a test set containing
four hidden items, RMSE generates an error of 2 on 3 ratings and 0 on the 4th to
one that makes an error of 3 on 1 rating and 0 on all others 3, while MAE would
favor the 2nd system.

3. Normalized RMSE and normalized MAE
Normalized RMSE and normalized MAE are the versions of the RMSE and
MAE used primarily for normalizing the range of the ratings (i.e., rmax − rmin).

4. Average RMSE and average MAE
These metrics are used where the dataset is uneven. For example, for a dataset
having unbalanced entries/items, the RMSE or MAE has high chances of pro-
ducing error on a few very frequent items. If we are interested to calculate the
prediction error of any item, it is better to calculate MAE or RMSE separately
against each item and later take the average.

RMSE and MAE are used for measuring the errors. In some applications, the
prediction error does not depend on its magnitude. In such cases, one may need to
calculate the proper distortion measure d(Pr, Tr), and then square the difference.
For example, a system having 3-star rating in which 1 is used for “disliked,” 2
for “neutral,” and 3 for “liked.” One of the main conditions in the algorithm is to
recommend an item that user dislikes is worse against not recommending an item
to a user that he or she likes. The distortion measures against different predicted
and true ratings with following pairs are reasonable.

d(3, 1) = 5, d(2, 1) = 3, d(3, 2) = 3, d(1, 2) = 1, d(2, 3) = 1, and d(1, 3) = 2.

4.3.1.2 Usage prediction measurement/classifying accuracy metrics
A user preference for items is not predicted by the RS in many applications, but RS
still recommends items that may favor users. For example, when movies are queued,
Netflix recommend movies that may also have an interesting factor. In this case, we
are highly interested that the algorithm correctly predicts that those movies would be
queued by the user.

In offline processing, we are interested in a dataset comprising items that are
used by the user. In this way, we randomly select a user, hide some of its information,
and then ask the RS to predict a set of items that the user might be interested in. We
then have four ultimate possibilities against the recommended and unrecommended
items, as shown in Figure 4.1.

Sometimes a user may not be interested in an item due to its unavailability, but
once the RS exposed that item, then a user may aware of it and can select it. In this
case, the numbers of false positives are overestimated.
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Used

Not-used

Recommended

True-positive (tp)

False-positive (fp) True-negative (tn)

False-negative (fn)

Not-recommended

Figure 4.1 Possible outcomes of recommending an item to a user

Precision1

2

3

Recall (tp)

Precision = 
No. of tp

No. of tp + No. of fp

No. of tp
No. of tp + No. of fn

No. of fp
No. of fp + No. of tn

Recall (true positive) = 

False positive rate = False positive
rate

Figure 4.2 Precision, recall, and false positive rate computation

All possible scenarios fall into each cell of the table and computed against the
following quantities presented in Figure 4.2.

In some cases, the recommendations are predetermined to the user. In such cases,
the most powerful measure is the “Precision.”

In some cases when we have the recommendations that are not determined before-
hand, then it is better to run algorithms over a range of recommendation list’s length.
And after this, it is important to compute the true positive rate to false positive rate.
The former types of curves are known as precision–recall curves, while the later
referred as Receiver Operating Characteristic3 or ROC curves.

As both the curves are used to measure the recommended preferred items,
precision–recall curves highlight the fraction of the recommended items that are
ideal while ROC curves highlight the fraction of items that are not ideal, but end up
being recommended to the user.

The appropriate selection between the ROC and precision recall is based on the
application domain area; e.g., an online video rental service recommends movies to
the users. The precision metric checks the recommendations that are according to the
user choice. The irrelevant recommendations represent a small/large proportion of
the unsuitable movies that could have been recommended, but may not be relevant

3A reference to their origins in signal detection theory.
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to the fraction of the similar items that the system recommends to the user. So a
precision–recall curve best answers this situation. On the opposite side, taking an
example of marketing system, in which an item is marketed through an e-mail aid to
a customer who may ignore it if the items are in lack of interest. In this case, we are
actually interested to increase the sale, while minimizing the marketing cost. ROC
curves outperform precision–recall curves.

4.3.1.3 Rank accuracy metrics
In many cases, a list of recommendations is presented to the user by an application,
normally displayed in vertical or horizontal order that shows a standard browsing
heuristic. For example, in Netflix, the “movies you’ll love” tab has subcategories, and
each predicts a list of movies that the users like. As these lists have a lot of data spans
across the multiple pages, so a user may visit all the pages till reaching the end. In such
systems, predicting an explicit rating is not an ultimate goal, but items are arranged
and presented as per user’s likings. Normally, this is done through rankings. Such
situations are handled through two methods that measure the accuracy against the
ranking. The correct order can be determined for each user and found how a system is
near optimum to this corrected order or an attempt is made to calculate the system’s
ranking to a user against the utility. These methods are described first for offline
measurements, and then its applicability to user studies and online assessments.

Reference ranking
In order to evaluate a ranking algorithm with respect to reference ranking, it is nec-
essary to first have such reference. In some cases, an item rating by the users is
explicitly available, which is ranked in descending order. For example, Netflix DVDs
are ranked in descending order, with 5-star movies tied, followed by the others and so
on (like 4-star and 3-star). In case of usage data, it can be suitable to build a reference
ranking in which used items are ranked on top of the unused items. However, this is
only valid once the user is aware of the unused items, so it can easily infer that the
used items are favored over the unused items by the user. The best-suited example
of an online music application (Pandora4) uses reference ranking, where the listened
tracks are ranked on top of the skipped ones.

In both the types discussed above, two items are tied together when we have no
idea about the user’s relative ranking. However, an RS is responsible for ranking items
having no ties. In reference ranking, a system might not be punished for ranking one
item over another as they have strong coupling.

Normalized distance-based performance measure
The normalized distance-based performance measure (NDMP) is best suitable for the
above cases. If we have reference rankings RRui and system rankings SRui of Nu items
i for user u, we can define the ranking as follows:

T + =
∑

ij
sgn(RRui − RRuj)sgn(SRui − SRuj) (4.3)

4www.pandora.com
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T − =
∑

ij
sgn(RRui − RRuj)sgn(SRuj − SRui) (4.4)

T u =
∑

ij
sgn2(RRui − RRuj) (4.5)

T s =
∑

ij
sgn2(SRui − SRuj) (4.6)

T u0 = T u − (T + + T −) (4.7)

where the sums ranges over the 1
2 nu(nu − 1) pairs of items. Thus, T u is the number

of item pairs for which the reference ranking is ordered. The system ranking does the
correct and incorrect order of these pairs, and it is presented by T + and T , respectively.
T u0 is the number of pairs where the system ranking has strong coupling, but the
reference ranking does not have such provision. The NDPM is calculated in the
following equation:

NDPM = T − + 1
2 (T u0)

T u
(4.8)

The above equation returns 0 to the system upon correctly predicting all the
preferred relations stated by the reference. If 1 is returned to the system, this means
that every reference preferred relation is contradicted.

A system is said to be perfect that might not rank one item higher than the other.
In such cases, Spearman’s ρ is used as a rank correlation measure or measure of
rank correlation [6] and handling ties in ranking [7] can be used. These are highly
correlated in practice [8]. Kendall’s τ is calculated in the following equation:

τ = T + − T −
√

T u
√

T S
(4.9)

Equation (4.10) shows the Spearman’s ρ:

ρ = 1

nu

∑
i (RRi,u − RR/)(SRi,u − SR/)

σ (RR)σ (SR)
(4.10)

where τ and σ are mean and standard deviation respectively.

Utility-based ranking
As the reference ranking is based on correlation with some “true” ranking, there
exists another criterion that is used for ordering a list of items. One popular alterna-
tive assumption is that the utility of a list of recommendations is additive by taking
the summation of utilities of the individual recommendations. The utility of each
recommendation is the utility of the recommended item that is discounted by a factor
that primarily depends on its position.

Normally, the recommendation list is traversed from the start to end with an
assumption that the utility of the recommendations are tailored toward the end of the
list. The outcome of this analysis is to observe a particular position in the list not the
item that is recommended.

In many applications, a very small set of items is used by the users. In such cases,
the recommendation engine is not used as a browser. The users may predict only a
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few items located at top of the list. The R-Score metric [9] returns the following score
for each user u in the ranked list, where the value is declined exponentially in the list.

Ru =
∑

j

max (Ru,ij − d, 0)

2
j−1
∝−1

(4.11)

Variables Description

ijm ijm (J th location)
Ru,i User u’s rating for item i
d Task-dependent rating (also called do not care rating as well.)
a Half-life parameter

In case of ratings prediction tasks, each item is rated by Ru,i (e.g., 4 stars), and d
is the task-dependent neutral rating (e.g., 3 stars). Items with higher ranking (e.g., 4,
5 star) are get credited by the algorithms. In case of the usage prediction, Ru,i would
be 1 if the user u selects an item i and 0 otherwise, while d is 0.

Using,
Ru,i = − log(popularity(item i)) (4.12)

If i is used and having value 0 otherwise, we can get the recommended information
[10]. Per-user scores are accumulated by the following equation:

R = 100

∑
u Ru∑
u R̂u

(4.13)

where R̂u represents the score of ranking for user u.
Online evaluation of ranking
This is evaluated by knowing the interaction of users with the system. User may select
items from the presented list following an assumption that a user has scanned the list
deeply at least once.

That is, if item number 1, 3, and 10 are selected by the user, this means the user
has seen all the items from 1 to 10. Another assumption that can be made is the user
has found items 1, 3, and 10 of his utmost interest, and all the others are of his no
interest. In certain cases, we have some extra information to check whether more
items are observed by the user or not? Let’s take a simple scenario, if the list is too
long and spans across several pages and each page has 20 results, and the user visits
the second page and has seen results from 11 to 20 and finds nothing as per his/her
choice. In this case, the results of this session are divided into three parts—first, the
items of interest (1, 3, 10 in the scenario stated above), the least interested items (items
from 1 to 20), and the unfamiliar items (starting from 21 till the end). Then, to score
the original list, reference ranking metric is used. There are two methods to do the
measurements. First, all the interested and desired items are located at the top of the
reference list, unfamiliar located at the middle, and the undesired items are at the end of
the list. Through this reference list, a user may choose only few interesting items, and
unfamiliar list may have high number of probability of having more interesting items.

Second, the interesting items are located at the top of the reference list, after that
the undesired items, while the rest are ignored. This is somehow handier, especially



66 Big data recommender systems, volume 2

when some unknown items are favored to the undesired items. In either case, the
main crux of the reference ranking is quite different from the offline measurements.
In offline experiments, we assumed that the single reference ranking is acceptable in all
respect, and we calculate the RS result deviation from the correct rankings. In case of
online evaluation, the user is assumed to be preferred by the recommender’s ranking.
In simple words, this can be concluded as there is only one correct ranking in the
offline evaluation, but multiple correct rankings are assumed in the online evaluation.

4.4 Diversity and accuracy metrics used in CARS

Accuracy and diversity measures are taken into consideration when we are interested
to compare the performance of pre-filtering, post-filtering, and contextual modeling
techniques that are the main techniques used in CARS.

4.4.1 How recommendation accuracy is measured in CARS?

The recommendation accuracy is measured only through simple Precision, Recall and
F-measure methods [11].

The Precision and Recall methods are calculated as follows: against the “find
all relevant items” strategy, the threshold between relevant and irrelevant items is set
to 1, so we assume that if a user chose an item more than once, it is relevant (“good”)
for that client and we recommend it; otherwise, it is not recommended. Then, check
the selected items are validated or not? If yes, it seems a “good” recommendation,
otherwise it’s treated as a “bad” one. To “recommend top k items,” we determine the
top k items as “good” items to be presented as a good recommendation to a user.
For Precision and Recall measurements, the actual items selected by the user are
compared with the predicted ones. Finally, each dataset is partitioned into two parts
normally referred as the training and validation sets, where the training and validation
set should be 2/3 and 1/3 of the whole dataset, respectively.

4.4.2 Diversity measurement in CARS

The recommendation diversity is measured in CARS are classified into three divers
metrics [12]:

1. Probability-based
2. Logarithm-based
3. Rank-based.

Simpson’s diversity index, the Shannon’s entropy, and the Tidemann & Hall’s
index [12] are the popular measurement techniques against the above stated categories.

1. The normalized Simpson’s diversity
The normalized Simpsons’s diversity index (D) is calculated as follows:

Diversity Index (D) = 1 − ∑
i ρ

2
i

1 − 1
n

(4.14)

where ρi the proportion of recommended items in the ith category and n is the
number of categories. The denominator of the formula is a normalization factor.
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2. The normalized Shannon’s diversity index (E)
It is calculate as:

Shannon′s Diversity Index (E) = −
∑

i
ρi logn ρi (4.15)

where pi is the amount of recommended items in the ith category and n is the
total number of categories. In this case, the normalization factor is treated as the
base of the logarithm, which is equal to the number of categories, i.e., k .

3. The Tidemann & Hall’s diversity index (TH)
Its general form is as follows:

Tidemann & Hall′s Diversity Index (TH ) = 1 − 1

(2
∑

i rρi) − 1
(4.16)

In the above equation, r is the rank for the ith category. In TH, there is no need to
normalize the index because its value always tends to 1 (1 mean, the maximum
value). Second, 1 shows the increase in the number of items.

4.5 How to choose an appropriate evaluation metrics?

It is quite important to select which evaluation metric is the most appropriate for
the given recommender algorithm. The appropriate category can be selected from
Figure 4.3 with respect to an application domain area [13].

Is there a distinction
between rated and unrated
items?

1

2

3

4

5

If all items are implicitly rated predictive accuracy metrics are not
applicable, because there are no unrated items for which we can predict a
rating and measure the accuracy.

A binary rating scale usually suggests a classification or ranking task.

If users only care about top-ranked (or lowest-ranked) items and not about
individual rating scores for items this suggests a classification or ranking task.

If yes, a metric that measures the overall predictive accuracy or overall
ranking accuracy is not appropriate. The exact rating predictions and ranking
of other items are irrelevant to users and should not be considered by the
metric.

Users will usually consider recommendations in a certain order, in particular if
many recommendations are shown. If this is the case, basic information
retrieval metrics such as precision recall are not sufficient since they ignore
the order among the recommended items. A metric that considers the order
of recommended items as well is more appropriate for this purpose.

Are items rated on a
numerical or a binary
scale?

Are users interested in
rating predictions or only
in top-ranked items?

Is a limited list of top-
ranked items shown?

Do the recommended
items have or imply an
order?

Figure 4.3 Criteria for selecting an appropriate evaluation metric for
recommender algorithm
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4.6 Conclusion

In this chapter, we have primarily focused on the performance metrics used in tradi-
tional systems as well as the CARS. Along with all the possible performance metrics
used in those systems, we have discussed different methods to measure the accuracy
and the ranking of the recommender algorithms. Moreover, we have also presented the
common criteria for selecting an appropriate metric for any recommender algorithm
in order to measure its performance.
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Chapter 5

Mining urban lifestyles: urban computing,
human behavior and recommender systems

Sharon Xu1, Riccardo Di Clemente2,
and Marta C. González3

In the last decade, the digital age has sharply redefined the way we study human
behavior. With the advancement of data storage and sensing technologies, electronic
records now encompass a diverse spectrum of human activity, ranging from location
data [1,2], phone [3,4], and email communication [5] to Twitter activity [6] and open-
source contributions on Wikipedia and OpenStreetMap [7,8]. In particular, the study
of the shopping and mobility patterns of individual consumers has the potential to give
deeper insight into the lifestyles and infrastructure of the region. Credit card records
(CCRs) provide detailed insight into purchase behavior and have been found to have
inherent regularity in consumer shopping patterns [9]; call detail records (CDRs)
present new opportunities to understand human mobility [10], analyze wealth [11],
and model social network dynamics [12].

Regarding the analysis of CDR data, there exists a wide body of work charac-
terizing human mobility patterns. As a notable example, [10] describes the temporal
and spatial regularity of human trajectories, showing that each individual can be
described by a time-independent travel distance and a high probability of returning
to a small number of locations. Further, the authors are able to model individual
travel patterns using a single spatial probability distribution. There has also been
work at the intersection of similar datasets, such as the inference of friendships from
mobile phone data [13], or the analysis such data in relation to metrics on spending
behavior such as diversity, engagement, and loyalty [14]. Recent work [15] uses the
Jaccard distance as a similarity measure on motifs among spending categories and
then applies community-detection algorithms to find clusters of users. These studies
propose models for either mobility or spending behavior, but not in conjunction.

The only known paper that incorporates both aspects [16] frames its analysis only
on an aggregate scale of city regions. However, the coupled collaborative filtering
methods (also known as collective matrix factorization) used in [16] have been suc-
cessfully applied in a variety of urban computing applications for data fusion and

1Operations Research, Massachusetts Institute of Technology, United States
2Centre for Advance Spatial Analysis, University College London, United Kingdom
3City and Regional Planning Department, University of California, Berkeley, United States
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prediction [17–19], from location-based activity recommendations [20,21] to travel
speed estimation on road segments [22]. Recent work includes methods that use Lapla-
cian regularization [23] to leverage social network information and use geometric deep
learning matrix completion methods to model nonlinearities [24].

In this chapter, we jointly model the lifestyles of individuals, a more chal-
lenging problem with higher variability when compared to the aggregated behavior
of city regions. Using collective matrix factorization, we propose a unified dual
view of lifestyles. Understanding these lifestyles will not only inform commercial
opportunities but also help policymakers and nonprofit organizations understand the
characteristics and needs of the entire region, as well as of the individuals within that
region. The applications of this range from targeted advertisements and promotions
to the diffusion of digital financial services among low-income groups.

5.1 Mining shopping and mobility patterns

Location and transactional data offer valuable perspectives on the lifestyles of each
user. For example, we may expect the shopping purchases of middle-aged parents to
include groceries and fuel, while their mobility patterns may center around localities
near home and work locations, in addition to points of interest such as supermarket
and laundry. We use mobility information to aid in the prediction of shopping
behavior, connecting the two views using collective matrix factorization [25]. In this
way, we discover representative patterns relating shopping and mobility, characteriz-
ing behavior for a richer understanding into urban lifestyles and improved prediction
of behavior.

The high granularity of such digital records allows modeling at the level of the
individual, providing a new framework in which to relate movement and spending.
However, in using CDR data for data on individuals, we must deal with issues of
sparsity and lack of contextual information on the user’s activities. In proposing this
dual view of lifestyles, our contributions can be summarized as follows.

5.1.1 Prediction of shopping behavior with data sparsity

There are many individuals for which we have no CDR data. To deal with this data
sparsity issue, we construct a framework that uses mobility patterns as supplementary
information in the prediction of shopping behavior. We connect the two perspectives
on lifestyles using collective matrix factorization (collective matrix factorization). In
comparison to modeling only shopping behavior, we find that incorporating mobility
information in the prediction of shopping lifestyles leads to a significant reduction in
root mean square error (RMSE).

5.1.2 Adding contextual information to location data

We transform mobility data using external data sources to better relate CCR to CDR
data. Although CCRs provide high granularity at the level of the individual user,
spatial granularity can range from a radius of 200–1,000 m, and there is no contextual
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information for the user’s activities within that region. Thus, there has been little
previous work leveraging CCR data for prediction with CDR data.

5.1.3 Multi-perspective lifestyles

We describe the mappings between shopping and mobility patterns, connecting the
two views to provide a novel understanding of consumer behavior in urban regions
(Figure 5.1).

5.2 Data

The primary datasets used in this chapter consist of two sets of anonymized data for
residents in Mexico throughout five months in 2015:

● CDRs. CDRs are produced with each telephone exchange. These location records
give the nearest cellular tower at the time of a placed call. There are 1192 cell
towers throughout Mexico City—as users tend to visit a small subset of these
towers, this mobility data is extremely sparse. In a count matrix denoting user
visits to towers, 98% of entries indicate zero visits.
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● CCRs. CCRs are recorded with each purchase and denote the purchase category,
or Merchant Category Code (MCC), of the transaction as well as the amount
spent. Each month, we have on the order of 10 million financial transactions and
200 million location records.

5.3 Discovering shopping patterns

Our spending habits reflect our lifestyles, capturing an essential aspect of our behavior.
Within the computational social science community, the question remains whether
pervasive trends exist among disparate groups at urban scale [15]. In this chapter,
we use latent Dirichlet allocation (LDA) [26] to identify topics (behavioral patterns)
among individuals, representing each individual’s spending lifestyle as a finite mix-
ture of an underlying set of behaviors. Each behavioral pattern, in turn, is modeled as
a mixture of a set of words (MCCs). These topics are determined by co-occurrences
of words within a document. For example, in an article database, we may uncover a
topic containing the words “data,” “processing,” “computer,” and so on because these
words frequently appear in an article together.

By putting a Dirichlet prior on the per-user behavior distribution and per-behavior
MCC distribution, LDA controls the sparsity of the number of topics per document
(the number of behaviors per individual), as well as the number of words per topic (the
number of MCCs per behavioral pattern). In this way, each individual is represented
by a small number of behaviors, and each behavior involves making a small set of
purchase categories with high frequency.

As a generative model, LDA allows us to calculate the probabilities (assignments
to shopping behaviors) of previously unseen users. We train the model on 40% of the
users and generate the matrix S for the remaining 60%. In so doing, we set up the
prediction of lifestyles for unseen users, assessing the LDA model itself in addition
to the relation of shopping with mobility patterns. We experiment with the choice
of number of behaviors to learn, as well as adding a categorical variable describing
amount spent to each MCC. To maximize interpretability, we choose five topics while
using MCCs as input only.

In Figure 5.2, we plot the 20 most highly weighted MCCs of the five shopping
behaviors. The first shopping behavior describes credit card usage that is centered on
food-related purchases such as grocery stores, misc. food stores and restaurants. The
second shopping behavior seems to be associated primarily with business purchases,
with spending within MCCs such as fax services and financial institutions. The third
shopping behavior is dominated by relative “luxuries” such as purchases in the cable
and department store categories and is characterized by a relatively high proportion of
air travel and hotel lodging MCCs. The fourth shopping behavior contains primarily
purchases in computer network services and service stations (gas stations). The third
and fourth shopping behavior describe a slightly wealthier portion of the population,
as only 35% of Mexicans owned a computer in 2010 [27], and only 44.2% own a
car [28]. Lastly, the fifth shopping behavior captures purchase primarily for toll fees
and subscription services.
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Figure 5.2 The top weighted purchase categories of the five shopping behaviors
learned from LDA

5.4 Mobility pattern extraction

5.4.1 Extracting cellular tower location types

Within the CDR data, each tower is the site for a corresponding cell within the
Voronoi diagram, i.e., it is the closest tower to any point within this cell. We define
a “visit” to a cellular tower as a call placed within its corresponding cell. In order
to relate cellular towers to spending behavior, for each tower, we crawl Google’s
API for points of interest within a certain radius. To determine this radius, we use
Delaunay triangulation, a widely used method in computational geometry. Delaunay
triangulation gives the dual graph to the Voronoi diagram, maximizing the minimum
angle among all the triangles within the triangulation and connecting the sites in a
nearest neighbor fashion [29]. For each tower, we set the crawling radius to be half
the average distance from the site to its neighbors.

Treating each of the Voronoi cells as a document and the POI categories as words,
we use LDA to discover underlying tower “classes” that will be more informative of
shopping behavior. We remove from the vocabulary any POI categories that occur
with over 25% frequency. These removed categories are uninformative classifications
such as “point of interest” and “establishment.” For purposes of interpretability, we
learn the LDA model with 20 classes on the 1,192 towers.

In Figure 5.3, we show a subset of tower classes highly weighted within our
final lifestyles (see Section 5.6), and the corresponding points of interest with the
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from LDA

0.617''hospital'' + 0.264''doctor''
+ 0.041"travel_agency“
+ 0.038"dentist" + 0.023"gym"
0.569"clothing_store"
+ 0.090"department_store"
+ 0.048"shopping_mall"
0.765"lodging" + 0.059"bar"
+ 0.052"museum" + 0.018"travel_agency"

0.247"atm" + 0.176"bank" + 0.118"police"
+ 0.088"post_office" + 0.079"city_hall"
+ 0.071"local_government_office"

Figure 5.4 Sample topics from learned from LDA, treating each tower as a
document and each POI as a word

highest probabilities. From the sample topics in Figure 5.4, we see each tower class
puts specific emphasis on related points of interest, such as “hospital” and “doctor,”
“car rental” and “car repair,” or “book store” and “library.” In this way, we cluster
the towers in terms of nearby POI categories, obtaining contextual information more
directly related to shopping.
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5.4.2 Baseline methods

Before introducing our model, we present the results of several baseline methods,
illustrating the challenges of incorporating CDR data into the prediction of shopping
patterns.

5.4.2.1 Regression on average amount spent
Using the columns of the per tower count matrix W directly as features, we use
regression with L1 regularization to predict the average amount spent by the user
per week. As we increase regularization, we increase the test R-squared, but due to a
combination of sparsity and lack of signal, we achieve a maximum test R-squared of
0 as the coefficients shrink to 0.

5.4.2.2 Classification of primary shopping behavior
For each user, we take as our outcome the highest weighted shopping behavior from
the topic proportions learned from LDA. This is the user’s primary behavior. Again
using the columns of W as our features, we employ a range of classifiers including
SVM and AdaBoost to predict primary behavior. We find that the best classifier
achieves only 21.6% accuracy, when already 21.9% of users fall into a single class.

5.4.3 Characterizing mobility patterns

From the Voronoi diagram of the p cell tower locations, we construct a matrix
W ∈ R

nxp where each entry wij is the number of days individual i visited tower j
throughout five months. We weight these counts using TF-IDF, a common method for
text representation [30]. Using TF-IDF, we offset the tower counts by the frequency
of the tower in the data, so that a user’s visit to an uncommonly visited tower is
assigned a higher weight. We now have a matrix W ∈ R

nxp that characterizes users in
terms of tower visits, and a matrix Cm ∈ R

pxd , where d is the chosen number of tower
classes. We define our mobility pattern matrix as M = WT , achieving a significant
dimensionality reduction with M ∈ R

nxd . In this manner, we obtain a representation
of mobility more closely related to shopping behavior, as users are now characterized
by their visits to tower classes defined by POI categories.

5.5 Predicting shopping behavior

For many users, we have access to data on mobility patterns (M ) but not shopping
patterns (S). In this section, we describe our methodology for incorporating mobility
information in addition to shopping information for the matrix completion problem
of predicting the shopping behavior of unseen users.

5.5.1 Collective matrix factorization

We denote S as the matrix of behavior proportions obtained from LDA, and M as
the matrix of weighted visit frequencies to the different tower classes. Modeling each
user’s shopping and mobility behavior as two views of the same lifestyle, we assume
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that S and M are generated from a matrix Ul containing the latent lifestyle information
of each user.

S ≈ UlV
T
s

M ≈ UlV
T
m

Traditionally, the objective function under this model is represented as

L (Ul , Vs, Vm) = ||S − UlV
T
s ||2 + ||M − UlV

T
m ||2 + λ1||Ul||2

+ λ2||Vs||2 + λ3||Vm||2
In this chapter, we use group-wise sparse collective matrix factorization [31], which
puts group-sparse priors following N (0, σ 2

k ) on the columns of matrices Vs and Vm,
where the columns are the groups indexed by k and σ 2

k is small. This allows the matrix
to learn private factors for the relation between latent lifestyles (Ul) and the shopping
aspect (Vs), and correspondingly between latent lifestyles (Ul) and the mobility aspect
(Vm). More specifically, if the kth column of Vm is null, the kth factor impacts only
the shopping pattern matrix S.

5.6 Results

5.6.1 Prediction

In our problem, credit card data is unknown for many users, but we would like to use
mobility information to predict their shopping behavior, i.e., S contains many empty
rows. Thus, to test the performance within this setting, we remove rows from the
shopping behavior S to predict the shopping behavior of users for which we have no
credit card information. We use 10-fold cross validation and compare our collective
matrix factorization predictions with the actual values. We use the popular metric
RMSE to evaluate our model.

RMSE =
√

1

T

∑

i,j

(Si,j − Ŝi,j)2

Using cross-validation to determine the rank (number of lifestyles), we find that the
inclusion of mobility data leads to a 1.3% decrease in RMSE and obtain a test error
of 21.6%.

5.6.2 Dual lifestyles

Using collective matrix factorization, we also obtain both the dual shopping and
mobility views of these latent lifestyles, in Vs and Vm, respectively.

Lifestyle 1 is connected with wealthier shopping behavior typical common to urban
white collars. The top weighted shopping patterns indicate spending on cable, air
travel, hotels, and at department stores as well as gas stations and computer network
services (Figure 5.2: behaviors 3 and 4, respectively). This suggests that people who
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can afford to spend on relative luxuries tend to have vehicles and thus higher mobility,
visiting a wider range of tower classes. The mobility patterns of this lifestyle focus
on areas with points of interest such as universities, accounting, electronics, bakeries,
and car repair (Figure 5.3: tower classes 6, 7, 12, 17, and 20).
Lifestyle 2 is extremely food oriented, with high weight on shopping behavior 1.
Mobility patterns suggest visits to cafes, gyms, and convenience stores.
Lifestyle 3 primarily captures the transportation aspect of lifestyles. Top-weighted
mobility patterns indicate visits to areas with car rental and car repair (tower classes
10 and 12), while shopping patterns include gas stations in behavior 4 and food in
behavior 1.

5.7 Discussion

In this study, we relate the shopping and mobility patterns of consumers on an individ-
ual level for the first time. Viewing these as aspects of the same underlying lifestyle,
we set up a framework to incorporate CDR data in the prediction of shopping pat-
terns for unseen users. We achieve a significant increase in prediction and recover
interesting relationships between shopping and mobility.

There are many directions for future work. In terms of modeling formulation,
it would be interesting to introduce a temporal dimension into the task of shop-
ping prediction, as human behavior and needs vary over time. There is also the
opportunity to include social regularization in the collective matrix factorization for-
mulation, constraining each user to be similar to his or her neighborhood. In addition,
stronger prediction methods may be achieved by modeling nonlinear relationships
using geometric deep learning methods described by [24].
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Chapter 6

Embedding principal component analysis
inference in expert sensors for

big data applications
Rodrigo Marino1, Jose M. Lanza-Gutierrez1,

and Teresa Riesgo1

The increasing relevance of big data applications in fields as the Internet of Things
(IoT) and Industry 4.0 implies that sensors are requested to be secure and accurate.
In the last years, sensors are evolving toward complex monitoring functionalities,
increasing the complexity of data, meaning that the analysis stage is usually per-
formed away from the sensor layer, i.e., the fog or the cloud. This separation entails
issues for response time and security. As a possible way to address this data analy-
sis closer to the edge, embedded machine-learning (ML) techniques have shown to
be a good solution, leading to expert sensors. Feature extraction tools, as principal
component (PC) analysis (PCA), might offer a solution to reduce the amount of data
transmitted through the network, adding additional security because information is not
transmitted as raw data. However, PCA is time-consuming and therefore, it should be
carefully optimized according to the hardware used in the sensor device. This chapter
proposes to embed the PCA inference stage in a low-cost field-programmable system
on chip (SoC) (FPSoC) while performing a design space exploration for a general
PCA inference problem. To this end, the authors analyze metrics, such as latency, scal-
ability, and usage of hardware resources. The resulting architectures are compared to
a multicore OpenMP approach to be executed in an ARM processor, analyzing the
advantages of using the FPSoC implementation in speedup.

6.1 Introduction

As is well known, big data solutions try to enhance productivity and system capa-
bilities by identifying trends of interest in large-volume of sophisticated datasets,
which usually come from multiple distributed sources, leading to a collaborative

1Centro de Electrónica Industrial, Escuela Técnica Superior de Ingenieros Industriales, Universidad
Politécnica de Madrid, Spain
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complex environment [1]. During the last years, big data approaches are gaining
special attention in fields as physics, finance, industry, social media, and healthcare
due to the interesting results offered by this data-analytic technology [2,3].

A general big data application usually considers four main stages: data genera-
tion, data acquisition, data storage, and data analysis [4]. Data generation focuses on
defining the type and amount of data which the system needs to manage. Data acqui-
sition focuses on acquiring the data previously defined in the data generation stage,
considering different technologies as sensors and actuators. Data storage includes the
tools needed for managing huge amounts of data as specialized databases. Data anal-
ysis focuses on developing techniques to extract information and trends of interest
from all the data in the system.

Big data approaches usually combine technologies capable of generating huge
amounts of data to detect trends of interests. A technology of distinctive relevance
today fulfilling this premise is the IoT. As is well known, IoT consists of the intercon-
nection of many tiny computing devices embedded in everyday objects, transmitting,
storing, and processing data all over the world via the Internet [5]. From a computing
capacity point of view, IoT is divided into three layers: cloud, fog, and edge. The
cloud layer takes place in large computing centers far away from end users, handling
the highest computing intensity stages of the systems, including for example ML and
deep-learning algorithms. The fog layer has a medium computing capacity and takes
place in switches and routers, which are relatively close to end users [6,7]. The need
of highly processing-demanding IoT applications leads to the creation of this layer, in
which the cloud layer cannot manage certain constraints related to the distance from
the place where the action is taking place. Some examples of such constraints are
the real-time response and the sending of confidential data via the Internet. The edge
layer takes place in the “things,” i.e., the everyday objects interacting with the environ-
ment and end users. This layer has the most limiting constraints related to computing
capacity and energy consumption. Therefore, it is usually composed of low-power
low-cost devices as field-programmable gate arrays (FPGAs), small microprocessors
and microcontrollers, and SoC as FPSoCs1 [8].

Along with this chapter, the authors address the issue of improving both data
acquisition and data-analysis stages of big data applications. To this end, they focus
on how to enhance the edge layer, bringing the computation closer to end users.
For instance, implementing some intelligence in the edge nodes instead of being
simple sensing devices, which send data to be processed in upper layers. This is the
transformation known as from “smart sensors” to “expert sensors” [5]. Specifically,
the proposal in this chapter is motivated by the following facts: (i) sensing systems
are becoming more sophisticated, and then the data generated increment in size and
complexity, meaning a high cost in data transmission through upper layers; (ii) more
and more applications require near instant response time close to end devices, which
leads to reducing the data traffic going toward upper layers; (iii) sending data as
captured toward upper layers could mean a security risk for many applications [9].

1An heterogeneous system, including a hard processor and an FPGA in the same chip.
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Thus, the goal of this chapter is to embed ML algorithms in edge devices as a
quick response mechanism for end users, but taking into account the hardware limita-
tions in this layer. Of course, under certain situations, an edge device could ask for a
more accurate prediction to upper layers, which implement more complex intelligent
algorithms because of the higher computing capacity. As the first step in this task, we
propose to study how to embed one of the most hardware-demanding steps in ML, the
feature extraction stage. Note that feature extraction is also considered as a compres-
sion step because it is possible to transmit a reduced set of features extracted instead
of all the data, which leads to improving security, energy cost, and response time.
Specifically, we propose to study how to embed in edge nodes the feature extraction
tool known as PCA [10]. This tool has been applied intensely during the last decades
in a wide range of applications, such as natural disaster prevention [11], spectrum
sensing [12], arrhythmia detection [13], tumor margin diagnosis [14], seizure detec-
tion [15], intelligent video surveillance [16], and triggering control for the Large
Hadron Collider [17].

PCA is a multivariate statistical technique, which applies an orthogonal transfor-
mation to convert a set of high-dimensional correlated variables (a problem with many
attributes) to a set of linearly uncorrelated ones called PCs. The PCA method consists
of two stages: training and inference. During the inference stage, the PCs for new
data projections are calculated based on coefficients previously obtained during the
training stage. As PCA is a demanding task, there are specialized implementations for
platforms as graphics processing units [18,19] and massively parallel processor arrays
[14,20], which could be considered in powerful devices in both fog and cloud layers.

Based on this knowledge, this chapter provides a design space study for imple-
menting a general PCA inference stage taking into account the hardware limitations
in the edge layer. Thus, the authors compare different architectures under a low-
cost state-of-the-art FPSoC,2 analyzing features as scalability (number of PCs and
attributes), latency, hardware parameters (pipelining and unrolling), and FPGA
resources used, i.e., digital signal processors (DSPs), flip-flops (FF), and lookup
tables (LUTs). The hardware implementations presented in this chapter are based
on both 8- and 16-bit architectures because most analog–digital converters, used in
embedded systems for the data acquisition, usually move in a precision range from
8 to 16 bits. The resulting architectures are compared to a multicore PCA implementa-
tion executed under an ARM processor usually found in embedded devices. Note that
the architectures proposed in this chapter could be implemented under a traditional
FPGA with similar resources. The reason for selecting an FPSoC is because of the
flexibility offered by the platform for future implementation of the ML system.

The remainder of this chapter is structured as follows. Section 6.2 includes the
related work on PCA inference implementations within both FPGAs and FPSoCs.
Section 6.3 includes the PCA mathematical formulation focusing on the inference
stage. Section 6.4 discusses the workflow followed to embed the PCA inference in

2An FPSoC with a trade-off between performance and cost, which allows doing massive deployments in
IoT applications.
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the edge layer. Section 6.5 describes embedded architectures proposed. Section 6.6
discusses the experimental methodology followed. Section 6.7 includes the experi-
mental results obtained applying the PCA inference in the 8- and 16-bit architectures,
as well as the multicore approach. Section 6.8 concludes the paper with some final
remarks and future directions of research.

6.2 Related work

This section gives a brief overview of PCA inference implementation within FPGAs
and FPSoCs. The works discussed below are grouped by the word size of the
architecture.

Starting with 32-bit architectures, the authors in [11,21,22] proposed an imple-
mentation under a high-cost Virtex-7 FPGA by Xilinx. To this end, they used a soft
processor inside the FPGA to deploy some parts in software instead of implementing
the whole PCA in hardware. This fact causes a system latency issue because of a com-
munication bottleneck and a loss of parallelism, which the authors tried to mitigate
using a direct memory access module. In [9], the authors considered a high-cost Arria
10 FPSoC by Intel, where they implemented a PCA inference for 32 PCs using 1,518
DSPs, a number exceeding, by far, the typical values in low-cost FPGAs. In [16], the
authors used a high-cost Virtex-6 FPGA by Xilinx, designing an architecture which
takes advantage of the Peripheral Component Interconnect express (PCIe) commu-
nication, meaning that the system is intended to be used with a high-performance
system, such a computer, instead of an edge device. In [12], the authors considered
a low-cost Cyclone II FPGA by Xilinx. However, the system was not fully deployed
in the FPGA because of the high-resource utilization, so implementing part of the
system in a computer.

Following with 16-bit architectures, the authors in [23] considered a low-cost
Zynq-7020 FPSoC by Xilinx, for a problem with 23 attributes and a floating-point
data type. In [17], the authors proposed to consider the DSP logic block inside a
high-cost Kintex 7 FPGA by Xilinx.

Finishing with 8-bit architectures, the authors in [24] considered a low-cost
Spartan-6 FPGA by Xilinx, using a soft processor inside the FPGA. This fact causes
the same communication problem discussed before for [11,21,22]. In [25], the authors
considered a low-cost Zynq-7010 FPSoC by Xilinx. However, in this proposal, the
architecture is designed to be controlled externally using a computer, and then it is
not intended to be used within an edge device. Moreover, the design presented used
an external random access memory (RAM), reducing the performance when running
in parallel. The authors in [26] designed a PCA inference architecture using a high-
cost Virtex-7 FPGA by Xilinx. As a result, the proposal utilizes up to 99% of DSPs,
meaning that it is not suitable to deploy the architecture in a low-cost device with
a reduced number of DSP. In [27], the authors deployed a CORDIC soft processor
inside a Virtex 7 FPGA. This implementation might increase latency as discussed
before for [11,21,22,24].

In addition to the traditional 32/16/8 bit architectures, there are also cus-
tom designs for specific applications. In [28], the authors developed a 64-bit
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floating-point architecture, under an Arria 5 FPSoC by Intel, to detect different carrier
signals in telecommunication applications. In [29], the authors considered an 18-bit
architecture, under an Arria 5 FPSoC, including a CORDIC soft processor with the
same limitation as before.

From the previous literature, we have found that there are a large number of
architectures proposed to solve the PCA inference for specific applications, most
of them using high-cost FPGAs and FPSoCs. However, as far as we know, there is
no study, which performs a design space exploration for a general PCA inference
problem. Thus, the study in this chapter could be particularly interesting for system
designers, facilitating decision-making when selecting the hardware needed to build
an expert sensor. This is the reason why the authors of this chapter, according to the
edge layer constraints, focus on using low-cost hardware devices.

The proposal in this document is based on a preliminary work [30], where the
authors performed a design space exploration for a specific problem with 3,648
attributes and two PCs under a 32-bit architecture, studying number of block RAMs
(BRAMs), pipelining usage, latency, data type, number of unrolls, and FPGA
resources (DSPs, FF, and LUTs). As will be discussed in Section 6.5, some details
of the embedded architecture proposed are supported by the main conclusions in this
preliminary work.

6.3 Principal component analysis: problem formulation

Let n be the number of attributes of the problem. Let k be the number of observations
for the training stage. Let X be a matrix of initial observations for the training stage
with as many columns as attributes and as many rows as observations. The PCA
training stage provides two sets of data, which will be used before during the inference
stage:

● The sample mean vector X , which contains the average of the observations for
each attribute during the training stage, that is,

X = [x1, x2, . . . , xn]T , (6.1)

where xj ∈ X is the average value of the jth attribute for the k observation, with
j ∈ 1, . . . , n, that is,

xj = 1

k

k∑

i=1

xij, (6.2)

where xij ∈ X is the value of the jth attribute of the ith observation, with i ∈
1, . . . , k .

● The matrix of eigenvectors W obtained based on X , that is,

W = [w1, w2, . . . , wm]T , (6.3)

where wz ∈ W is the zth n-dimensional eigenvector, with z ∈ 1, . . . , m. m is the
maximum number of PCs, with m � n. Based on that, an eigenvalue shows how
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much variance there is in the data in that direction, the eigenvector with the
highest eigenvalue is the PC (w1). The eigenvector with the second highest eigen-
value is the second PC (w2), and so on. Additional information about eigenvector
calculation is in [10].

Once PCA training is performed, PCA inference transforms new input samples
B ∈ R

n according to the reference space defined by the PCs. To this end, the usual
criterion is to consider a reduced number of PCs m′ instead of using the previously
obtained value m, with m′ ≤ m. The idea is to use the minimum number of PCs to
reach at least 95% of variance explained according to eigenvalues. Thus, a new sample
is transformed as given by

Y = W ′ (B − X ), (6.4)

where Y ∈ R
m′

and

W ′ = [w1, w2, . . . , wm′ ]T . (6.5)

6.4 Workflow description

This section describes the workflow considered to embed the PCA inference in the
edge device, which comprises online and offline tasks to be done. Generally speaking,
offline tasks refer to processes whose performance does not require to satisfy time,
resource, or energy constraints. On the contrary, online tasks should satisfy specific
requirements as the ones introduced before. A two-stage workflow as the one consid-
ered in this chapter allows system engineers to only perform online tasks under the
constrained edge devices while demanding offline tasks are performed in powerful
devices. Thus, PCA training is performed offline, i.e., at a conventional device, such
as a computer, and PCA inference is performed online, i.e., at the edge device.

PCA training is fully performed in software using third-party tools as the ones
provided by MATLAB in the Statistics and Machine Learning Toolbox. As usual, the
data used to train the system should be revised through data-cleansing methods as
outlier study. Data usually come within a table with as many columns as attributes the
problem has and as many rows as observations. Note that the data type used during
the training should be converted to the same data type considered in the architecture
of the embedded device, then reducing the precision error during the inference stage.

PCA inference is fully performed in the embedded device according to the sample
mean vector and the matrix of eigenvectors obtained during the training stage, as
discussed before in Section 6.3. This stage is implemented using high-level synthesis
(HLS) tools, specifically Vivado HLS by Xilinx, transforming C/C++ code into a
hardware description language as VHDL. Moreover, Vivado by Xilinx is considered
to design the whole architecture and Xilinx software development kit (SDK) by Xilinx
is used for programming the processor and running/debugging the whole system.

Based on this workflow, Figure 6.1 shows the methodology considered for
debugging the embedded PCA inference implementation. Thus, after performing the
training stage, as usual, PCA inference is performed in both hardware and software
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Figure 6.1 Methodology for debugging the PCA inference implementation

with the goal of checking whether the hardware implementation coincides with the
software one. Otherwise, the hardware implementation is revised and verified again.

6.5 Embedded architecture

This section presents the embedded architecture proposed for PCA inference cal-
culation while considering a top-down methodology. Thus, we first describe the
system-level-architecture, including the main types of hardware blocks, as memo-
ries and intellectual property (IP) blocks. Next, we provide specific details for the
PCA inference IP proposed, going from a simplistic to a generalist design.

6.5.1 System-level architecture

This section describes the PCA inference implementation from a system-level point
of view. As Figure 6.2 shows, the architecture proposed has two main high-level
elements according to the FPSoC concept: ARM processor and FPGA.

The ARM processor deals with controlling the FPGA and proving connectivity
with the physical world. Both ARM processor and FPGA are connected through a
communication bus, which not only handles data transmission but also controls the
IP blocks implemented inside the FPGA.
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Figure 6.2 System-level design architecture of the embedded system

The architecture includes two main types of blocks focusing on the FPGA: mem-
ories and an IP for PCA inference calculation. The memory blocks considered are as
follows:

● An input_data BRAM saving the data to be transformed through PCA inference,
i.e., B in (6.4). This BRAM has as many storage units as attributes that the problem
has. Without loss of generality, we assume that a storage unit is equivalent to the
word size of the architecture considered. This BRAM is updated by the ARM
processor each time a PCA inference must be calculated.

● m′ BRAMs saving the eigenvectors obtained during the training stage, denoted as
eigenvector1 BRAM to eigenvectorm′ BRAM. Each of these BRAMs has as many
storage units as attributes the problem has (see W ′ definition in (6.5)). The m′

BRAMs are initialized by the ARM processor with the values obtained during the
PCA training stage after starting the system.

● A mean_vector BRAM saving the sample mean vector obtained during the training
(see X in (6.1)). This BRAM has as many storage units as attributes the problem
has and is initialized by the ARM processor with the values obtained during PCA
training after starting the system.

● A PCA_projection_BRAM saving the output of the PCA inference stage (see Y
in (6.4)). This BRAM has as many storage units as the number of PCs (m′) was
defined during the training. This memory is updated each time the PCA inference
IP is executed.

The fact that each eigenvector is in a different BRAM instead of having the m′

eigenvectors in the same BRAM provides benefits in terms of parallelism as the
authors shown in [30]. Thus, PCA inference IP applies the same mathematical
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operation using data from different eigenvectors in parallel by following a single
instruction multiple data (SIMD) approach. Otherwise, the information from different
eigenvectors should be sequentially obtained.

6.5.2 PCA inference IP description

Let z be the word size of the architecture considered in bits. Let a be the memory
alignment3 value in bits. Let k = a/z be the parallelism factor based on the relation
between the memory alignment and the word size of the architecture. For the case in
this chapter, a = 32, z ∈ {8, 16}, and then, k ∈ {2, 4}. Note that memories are aligned
on 32 bits because BRAM access from/to ARM processor is restricted to this value
when using the platform considered in this work. As will be discussed below, the
architecture presented here takes advantage of this limitation in memory alignment
to reduce the system latency by performing some operations in parallel.

Figure 6.3 shows a simplification of the PCA inference IP for a PC depend-
ing on k . This IP has three input memory words with a width of a bits, where
the words come from a reading in input_data_BRAM , eigenvector_1_BRAM , and
mean_vector_BRAM . A splitter block divides the memory word into k sub-words
according to the architecture considered, providing parallelism with factor k when
applying subtraction and multiplication operations according to (6.4). The k values
obtained after this step are summed and accumulated in the same addition block,
resulting in a word of a bits. After n/k iterations of this process, i.e., from reading
the memory blocks to accumulating the k values, the PC value is fully calculated and
then it is written in PCA_projection_BRAM. The ARM processor manages how this
accumulation process is initialized and finished.

Based on Figure 6.3, Figure 6.4 shows a generalization of the PCA inference IP for
z PCs depending on k . This IP has 2 + m′ input words with a width of a bits, where
the words come from a reading task in input_data_BRAM , mean_vector_BRAM ,
and eigenvector_1_BRAM to eigenvector_m′_BRAM . The procedure for the first

Sub1

Add

Mult1

Subk Multk

z

z

z

z

a

Subtraction Accumulative multiplication

Splitter

Splitter

Splitter

Word from
input_data_BRAM

a

z
z

z

z

z

z

Word from
mean_vector_BRAM

a

Word from
eigenvector_1_BRAM

Word to
PCA_projection_BRAM

a

a

Figure 6.3 Simplification of the PCA inference IP for a PC according to k

3It refers to the way in which data is arranged and accessed in memory.
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PC is the same as for Figure 6.3. For the remaining PCs, input words from
eigenvector_2_BRAM to eigenvector_m′_BRAM , the procedure is similar, but tak-
ing the values directly from the subtraction block, saving resources. As before, n/k
iterations are needed to fully calculate the m′ PCs, then the values are written in
PCA_projection_BRAM, in this case through a BRAM controller, which manages
how to write the m′ values in memory.

The architecture proposed in this chapter could be affected by a critical path risk,
causing that the design is not synthesizable. This risk comes from the accumulative
multiplication block in Figure 6.3. This situation is due to the synthesizer is trying
to execute multiplication and addition operations in the same clock cycle. However,
the resulting latency executing this block surpasses the time for a clock circle. As a
solution, the summing step is forced to use DSPs of 32 bits instead of 8 or 16 bits,
having a greater latency. Thus, the synthesizer is forced to execute the two operations
independently.

6.6 Experimental methodology

This section describes the experimental methodology followed to perform the exper-
imentation, in which the hardware architecture proposed is studied based on several
problem and hardware parameters to analyze some metrics of interests, as latency
and FPGA resources used (see Table 6.1). Moreover, it describes how the hardware
architecture is compared to the multicore equivalent.

The main problem parameters are the number of PCs and attributes, both related
to how the architecture scales with the problem size. For the number of PCs, we
consider a range which goes from 1 to 10 PCs. This range is adequate for most
applications in the literature [31–34]. For the number of attributes, there is no clear
trend in the literature with applications which move from a few attributes [23] to a
great deal of them [11]. Thus, we consider a wide range of values from 100 to 5,000
attributes to represent most applications.

The main parameters related to hardware are the data type, word size of the
architecture, and the usage of unrolling and pipelining optimizations during hard-
ware synthesis. For data type, fixed-point architectures perform better in terms of
latency if compared to traditional floating-point ones, as the authors shown in [30]
for a PCA inference use case. For word size of the architecture, we consider 8 and
16-bit architectures as we justified before. For unrolling, this optimization increases
the parallelism (concurrency) by replicating hardware elements following a SIMD
approach but also consumes FPGA resources. Thus, we consider several unroll val-
ues to study how different degrees of parallelism affect performance and the use of
resources, specifically we consider 2, 4, 8, and 16 unrolls. In the architecture in this
chapter, the unroll parameter affects the way in which subtraction and multiplica-
tion blocks are implemented. For pipelining, this optimization is considered because
pipelining provides better performance in terms of latency, as the authors shown
in [30] for a PCA inference use case.
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Table 6.1 Details of the experimental methodology

Problem parameters

Number of attributes: 100, 500, 1,000, 2,500, 5,000, 7,500, 10,000, 25,000, 50,000
Number of PCs: [1,10]

Hardware parameters

Data type: Fixed point
Word size of the architecture: 8, 16
Number of unrolls: 2, 4, 8, 16
Pipelining: Yes

Platform

Device: Zynq-XC7020400CLG-1
Vendor: Xilinx
Software: Vivado 2017.2, Vivado HLS 2017.2, Vivado SDK 2017.2

Metrics to analyze

Latency, DSP usage, FF usage, LUT usage

For each combination of both problem and hardware parameters, a hardware
design is synthesized. Each design is used for executing the PCA inference stage a
number of 30 independent runs for getting statistical conclusions measuring latency.
Note that W ′, B, and X were synthetically generated because it is not necessary to
consider real data to perform the study in this work. Each hardware design is com-
pared to the multicore equivalent by using the same problem parameters. Algorithm
1 shows the implementation considered using OpenMP directives for C/C++. This
implementation will be run using as many threads as the number of cores the ARM
processor has. The notation in Algorithm 1 is inspired by the one used in Section 6.3,
where bj ∈ B is the value of the jth attribute of B, yd is the value of the dth PC,
and w′

dj is the value of the jth position of the dth eigenvector, with j ∈ 1, . . . , n and
d ∈ 1, . . . , m′.

All hardware experiments are performed using the low-cost Zynq XC7Z020400-
CLG-1 FPSoC by Xilinx with a frequency of 125 MHz within a bare-mental approach.
The multicore experiments are performed using the ARM Cortex-A9 dual-core
processor inside the FPSoC within a Linux operating system.

6.7 Experimental results

This section first discusses the experimental results obtained in terms of latency
and FPGA resources for the 8- and 16-bit architectures proposed for PCA inference
calculation. To this end, the authors study several problem and hardware parameters.
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Second, the results obtained using both architectures are compared to an OpenMP
multicore implementation, using to this end latency and speedup metrics.

Algorithm 1: Multicore PCA inference code based on OpenMP for C/C++.

#pragma omp parallel
#pragma omp for
for j = 1 to n step 1 do

bxj ← bj − xj

end for
#pragma omp for
for d = 1 to m′ step 1 do

for j = 1 to n step 1 do
yd ← yd + w′

cj bxj

end for
end for

6.7.1 8- vs. 16-bit architectures

Table 6.2 shows the latency metric in μs for the configurations synthesized using the
8-bit architecture while studying the number of unrolls, attributes, and PCs. In this
table, we check that latency is increased with the number of attributes, as expected.
This fact is because the number of iterations needed to calculate the PCs directly
depends on n, as discussed in Section 6.5.2. The increment observed in latency is
almost linear with the number of attributes and, therefore, the proposed architecture
properly scales with the problem size as Figure 6.5 shows. Focusing on the number
of unrolls, it is expected that a greater value of this parameter provides a higher level
of parallelism, reducing latency. However, latency remains constant independently of
the number of unrolls for the same number of attributes. This fact is due to a limitation
in the parallelism, which causes that pipeline is stalled waiting for the completion of
the addition block in Figure 6.3. Thus, it makes sense that increasing the number of
unrolls, and therefore the number of resources, does not reduce latency. Focusing on
the number of PCs, latency follows the same trend as for unrolls due to the same
reason as before, and then increasing the number of PCs does not modify latency.
From this analysis, we conclude that the architecture properly scales with the number
of attributes and that the number of unrolls and PCs do not affect latency because of
a limitation in the parallelism caused by the accumulative multiplication.

Table 6.3 shows the FPGA resources used for the configurations synthesized
using the 8-bit architecture while studying the number of unrolls and PCs. The number
of attributes does not affect the resources used because it only affects the number
of iterations needed for calculating the PCs. In this table, the number of DSPs is
increased with the number of PCs because the number of multiplications and additions
is also increased. However, the number of DSPs remains constant independently of
the number of unrolls. This fact is due to the HLS synthesizer detects a limitation in
parallelism caused by the addition block and decides not to implement more DSPs.
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Table 6.2 Latency (in (μs) for the configurations synthesized using the 8-bit
architecture, while studying the number of unrolls, attributes, and PCs

Number of attributes

PCs Unrolls 100 500 1,000 2,500 5,000 7,500 10,000 25,000 50,000

1 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

2 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

3 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
3 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

4 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
4 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

5 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

6 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
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Table 6.3 FPGA resources used for the configurations synthesized using the 8-bit
architecture while studying the number of unrolls and PCs

DSP usage (%) FF usage (%)

PCs PCs

Unrolls 1 2 3 4 5 6 1 2 3 4 5 6

1 12 18 23 29 34 40 14 20 26 32 38 44
2 12 18 23 29 – – 20 29 38 47 – –
4 12 18 – – – – 35 50 – – – –

LUT usage (%)

PCs

Unrolls 1 2 3 4 5 6

1 28 41 54 66 79 92
2 39 56 73 91 – –
4 60 87 – – – –

Focusing on FF usage, the number of FFs is increased with both the number of PCs
and unrolls because the usage of registers is also increased. Focusing on LUT usage,
we check that this is the most limiting resource because of the combinatorial logic
needed, increasing LUT usage up to 10% for each PC in the system. Thus, Tables 6.2
and 6.3 only show architectures using resources below the maximum allowed. This is
the reason why no configuration with PCs between 7 and 10 nor unrolls greater than
4 are shown. Note that entries with a dash in Table 6.3 also refer to this problem of
resource usage exceeding the limit.

Table 6.4 shows the latency metric in μs for the configurations synthesized using
the 16-bit architecture while studying the number of unrolls, attributes, and PCs.
Comparing Tables 6.4 to 6.2 for the 8-bit architecture, we check that latency values
are almost identical in both tables. This fact is due to a limitation in the parallelism,
where the pipeline is stalled waiting for the addition block in Figure 6.3. From this
analysis, we conclude that both 8- and 16-bit architectures provide a similar latency,
and then, the conclusions reached for the 8-bit architecture are also valid, i.e., the
16-bit architecture properly scales with the number of attributes and the number of
unrolls, and PCs do affect latency in most cases.

Table 6.5 shows the FPGA resources used for the 16-bit architectures synthesized
while studying the number of unrolls and PCs. As before, the number of attributes does
not affect the resources used because it only affects the number of iterations needed
for calculating the PCs. In this table, the number of DSPs is increased with the number
of PCs and unrolls. Focusing on FF usage, the number of FFs is increased with both
the number of PCs and unrolls because it increments the data stored between blocks,
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Table 6.4 Latency (in μs) for 16-bit architectures, while studying the number of
unrolls, attributes, and PCs

Number of attributes

PCs Unrolls 100 500 1,000 2,500 5,000 7,500 10,000 25,000 50,000

1 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 8 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
1 16 1.1 4.3 8.3 20.3 40.3 60.3 80.2 200.3 400.2

2 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 8 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
2 16 1.1 4.3 8.3 20.3 40.3 60.3 80.2 200.3 400.2

3 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
3 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
3 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
3 8 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
3 16 1.1 4.3 8.3 20.3 40.3 60.3 80.2 200.3 400.2

4 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
4 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
4 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
4 8 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

5 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
5 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
5 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
5 8 1.1 4.3 8.2 20.3 40.2 60.3 80.2 200.2 400.2

6 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
6 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
6 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
6 8 1.1 4.3 8.2 20.3 40.2 60.3 80.2 200.2 400.2

7 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
7 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
7 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
7 8 1.1 4.3 8.2 20.3 40.2 60.3 80.2 200.2 400.2

8 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
8 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
8 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

9 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
9 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
9 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2

10 1 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
10 2 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
10 4 1.0 4.2 8.2 20.2 40.2 60.2 80.2 200.2 400.2
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Table 6.5 FPGA resources used for 16-bit architectures, while studying the number
of unrolls and PCs

DSP usage (%)

PCs

Unrolls 1 2 3 4 5 6 7 8 9 10

1 3 5 7 9 10 12 14 16 18 20
2 4 6 8 10 13 15 17 20 22 24
4 5 8 11 14 17 20 24 27 30 33
8 6 11 16 21 26 31 36 – – –

16 10 19 27 – – – – – – –

FF usage (%)

PCs

Unrolls 1 2 3 4 5 6 7 8 9 10

1 3 5 7 8 10 12 13 15 17 18
2 5 8 10 12 15 17 20 22 25 27
4 9 13 17 22 26 30 35 39 43 47
8 15 23 31 39 46 54 62 – – –

16 29 45 59 – – – – – – –

LUT usage (%)

PCs

Unrolls 1 2 3 4 5 6 7 8 9 10

1 7 10 13 16 19 22 26 29 32 35
2 9 13 18 22 26 31 35 39 44 48
4 14 21 27 34 41 47 54 61 68 74
8 23 35 46 58 69 80 92 – – –

16 43 63 84 – – – – – – –

thus, the usage of registers increases. Focusing on LUT usage, we check that this
is the most limiting resource because of the combinatorial logic needed, increasing
LUT usage up to 5% for each PC in the system. Thus, Tables 6.4 and 6.5 only show
architectures using resources below the maximum allowed. Note that entries with a
dash in Table 6.5 also refer to this problem of resource usage.

Comparing Tables 6.5 to 6.3 for the 8-bit architecture, we check that the 16-bit
architecture requires less resources than the 8-bit ones. This fact is due to the 8-bit
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architecture that implements a higher level of parallelism (see k definition in Section
6.5.2), and then it consumes more resources for the same problem configuration.
This situation causes that there are more synthesizable configurations for the 16-bit
architecture than for the 8-bit one. As a result, we conclude that the 16-bit architecture
is more appropriate for implementing the PCA inference than the 8-bit one because
it consumes fewer resources and provides the same latency.

6.7.2 Hardware architecture vs. multicore approach

Table 6.6 shows the latency metric in μs for the multicore approach based on Algo-
rithm 1, while studying number of attributes and PCs. In this table, latency is increased
with the number of attributes and PCs. According to that, the 16-bit architecture out-
performs the 8-bit one as concluded in Section 6.7.1, Table 6.7 compares the latency
metric for the 16-bit architecture in Table 6.4 to the multicore approach in Table 6.6.
To this end, the speedup metric in latency from Amdahl’s law is considered, which is
given by

Slatency = l1

l2
, (6.6)

where l1 and l2 are the latency of the multicore approach and the hardware architecture,
respectively.

Analyzing Table 6.7, we reach that considering the hardware implementation is
advantageous in latency with speedups up to 27.5 for ten PCs. Moreover, we check
that the speedup metric is higher than 1.0 for all the cases, specifically the minimum
speedup is 1.9, and then the hardware implementation provides a lower latency for all
the cases. This behavior is shown in Figure 6.6, evidencing how scales in latency with
the number of attributes the multicore approach, the hardware implementation (either
8- or 16-bit architectures), and the linear curve (generated based on the latency for 100

Table 6.6 Latency (in μs) for the multicore approach, while studying the number of
attributes and PCs

Number of attributes

PCs 100 500 1,000 2,500 5,000 7,500 10,000 25,000 50,000

1 15.7 13.1 24.3 37.67 86.8 170.3 345.38 877.1 1,762.8
2 18.6 16.3 26.8 48.8 114.6 227.8 464 1,170.4 2,422.9
3 21.8 19.2 32.7 60.6 144 290.2 592.1 1,486 3,134.3
4 20.3 21.9 38.2 71.3 172.6 347 703.4 1,772.1 3,808.1
5 21.23 24.8 44.3 83.6 205.1 412.2 833.34 2,115.8 4,566.9
6 23.5 27.9 49.9 94.5 233.7 472.4 947.6 2,400.7 5,269.1
7 24.6 30.6 55.6 106.1 263.3 532.2 1,069.2 2,803.7 6,125.7
8 25.1 33.2 60.6 126.8 291.2 591.3 1,200.6 3,120.9 6,675
9 27 36.8 67.8 132.6 326.2 656.6 1,317.2 3,510 7,470.4
10 28.2 38.8 71.7 140.4 346.8 703.6 1,403.3 3,776.6 8,030.3
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Table 6.7 Speedup metric comparing the 16-bit architecture to the multicore
implementation, while studying the number of attributes and PCs

Number of attributes

PCs 100 500 1,000 2,500 5,000 7,500 10,000 25,000 50,000

1 16.5 3.2 3.0 1.9 2.2 2.8 4.3 4.4 4.4
2 19.4 3.9 3.3 2.4 2.9 3.8 5.8 5.8 6.1
3 22.5 4.6 4.0 3.0 3.6 4.8 7.4 7.4 7.8
4 20.8 5.2 4.7 3.5 4.3 5.8 8.8 8.9 9.5
5 21.6 5.9 5.4 4.1 5.1 6.8 10.4 10.6 11.4
6 23.7 6.7 6.1 4.7 5.8 7.8 11.8 12.0 13.2
7 24.6 7.3 6.8 5.3 6.5 8.8 13.3 14.0 15.3
8 24.9 7.9 7.4 6.3 7.2 9.8 15.0 15.6 16.7
9 26.6 8.7 8.3 6.6 8.1 10.9 16.4 17.5 18.7
10 27.5 9.2 8.7 6.9 8.6 11.7 17.5 18.9 20.1
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Figure 6.6 Evolution of latency with the number of attributes for the multicore
approach, the hardware implementation, and the linear curve

attributes using the hardware implementation). In this figure, we opted for showing
the best case (the lowest latency) for the multicore approach, where the number of
PCs equals one. Note that for the hardware implementation, latency remains constant
interdependently of the number of PCs.
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6.8 Conclusions

This chapter addressed the issue of improving both data acquisition and data analysis
stages in big data applications. To this end, the authors focused on improving the edge
layer in IoT as a quick response mechanism for end users. As the first step in this task,
the authors proposed to study how to embed one of the most hardware-demanding
steps in ML, the feature stage. Specifically, they proposed to embed the PCA inference
stage in a low-cost FPSoC, while performing a design space exploration for a general
PCA inference problem.

Thus, the authors proposed two hardware architectures for solving the PCA infer-
ence stage using a word size of 8 and 16 bits. The two architectures were compared
analyzing features as scalability (number of PCs and attributes), latency, hardware
parameters (pipelining and unrolling optimizations), and FPGA resources.

As a result of this comparison, the authors reached that both 8- and 16-bit archi-
tectures provided a similar latency, which scaled linearly with the number of attributes,
and that the number of unrolls and PCs do not affect latency because of a limitation
in the parallelism. Focusing on FPGA resources, the authors reached that the 16-bit
architecture consumes fewer resources than the 8-bit one, implying that there are
more synthesizable configurations for the 16-bit architecture than for the 8-bit one.
As a result, the authors concluded that the 16-bit architecture is more appropriate for
implementing the PCA inference than the 8-bit one.

Based on the previous conclusion, the 16-bit architecture was compared to a
multicore OpenMP approach to be executed in the dual-core ARM processor inside
the FPSoC. As a result, the authors concluded that the hardware implementation
was beneficial in latency, with speedups up to 27.5. Moreover, they reached that the
hardware implementation provided a lower latency for all the cases.

As future lines of research, it could be interesting to include a power consumption
analysis in the design space exploration, as well as to analyze different data sizes in
fixed-point architectures.
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Chapter 7

Decision support system to detect hidden
pathologies of stroke: the CIPHER project
José González Enríquez1, Leticia Morales Trujillo1,

Sara Moreno Leonardo1, Francisco José Domínguez Mayo1,
Julián Alberto García García1, and Manuel Mejías Risoto1

Currently, it is difficult to find platforms connected to health systems that exploit data
in a coherent way and that allow, on the one hand, to send sanitary warnings and on
the other, to validate the performance of medical specialists according to the models
set by the best practices of the specialty.

This chapter aims to explain the CIPHER project, a decision support system
(DSS), based on machine-learning (ML) and big data technologies, capable of alerting
a clinician when a situation of risk is detected in a patient suffering from a certain
pathology, so that could be able to carry out the appropriate measures.

CIPHER, is a project born from scratch. For its development, different method-
ologies, such as design sprint (for product prototyping), navigational development
techniques (for product analysis and testing) or SCRUM (for product development),
have been applied. In addition, this product has been defined in direct contact with
medical specialists and under the umbrella of international standards and models such
as ISO 13606, SNOMED, REGICOR or CHADS2.

As a result of the development of this product, we have obtained a DSS, which
offers health professionals the possibility of receiving alerts from patients who may be
at risk of suffering from a specific pathology, based on a series of criteria defined by
international standards. Moreover, health professionals would be able to find hidden
symptomatology of the pathology mentioned above, which, a priori, are not known.

7.1 Introduction

The technological development achieved at present, has allowed any health entity to
be able to store all the data generated by its activity. This facility to generate and
store information has fostered in recent years the development and improvement of

1Department of Computer Languages and Systems, University of Seville, Spain
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data mining and ML techniques for the extraction of knowledge from large data sets
(knowledge discovery in databases) and the development of DSS. A DSS [1] has
inference mechanisms (rules and ways of interpreting the problems) and a knowl-
edge base drawn from experts in the field, which evaluate different alternatives and
allow to warn the decision maker about the risks and benefits of the decision that is
going to take. In the health context, the union of Information Technology and new
technologies in the field of biomedicine has given rise to a new scientific area known
as “Bioinformatics” [2], which has not been developed in our country (Spain) due to
the lack of clear objectives and a strategic approach to global issue.

Currently, it is difficult to find platforms connected to health systems that exploit
data in a coherent way and that allow, on the one hand, to send sanitary warnings and on
the other, to validate the performance of medical specialists according to the models
set by the best practices of the specialty. In this context, the CIPHER project emerges,
whose main objective, creating a platform on the vertical health and using the specific
case of brain strokes as use case for validation.

Brain stroke is a sudden disorder of cerebral blood flow that transiently or per-
manently alters the function of a certain region of the brain [3]. Today, according to
data from the World Health Organization [4], it represents the second cause of death,
after heart diseases. In the comparison with the national of Spain, it is observed
that, although this pathology occurs less frequently in Andalusia, the mortality rate is
higher there than in the whole of Spain. For this reason, its study to identify possible
symptoms for early detection, as well as the identification and assimilation of possible
risk factors, is essential to reduce the impact that it may have on an aging population.

There is a scientific consensus to define a temporal period, which is known as
a “therapeutic window” [5], during which it is still possible to reverse or reduce the
effects of cerebrally with the appropriate treatment. But that requires having a well-
thought and coordinated care system that ensures fast and efficient patient care. In
this sense, CIPHER intends to be a platform that, through an expert system, analysis
algorithms and big data technologies, acts within such “therapeutic window.”

In addition, it is essential to corroborate that the action protocols, diagnostic
tests and prescriptions (pharmacological or not) have the expected effect. In this
sense, several research [6–8] have been carried out to corroborate the existence of
micro-strokes in a population at risk but apparently healthy that are not diagnosed and
that entail a significant cognitive deterioration and a high risk of definitive strokes.
This lack of capacity for symptomatic analysis is a habitual pattern in other very
diverse pathologies.

At present, thanks to the advancement of information systems, there are sufficient
tools to maintain a digitized information on the clinical history of patients. This is
known as electronic health record (EHR) [9]. However, the analytical exploitation of
this information and its predictive capacity is very poorly developed. There is a great
research potential in the EHR that, together with the synergy produced by the joint
work of health professionals and technological professionals and specialized in the
treatment of information, can generate great scientific contributions.

The remainder of this chapter is organized as follows: after this introduc-
tion, Section 7.2 explains in detail the CIPHER project based on its objectives; in
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Section 7.3, the standards used and the models that have been defined and imple-
mented during the development of the project are described. Section 7.4 details a
real-world case study on which the solution obtained has been applied and its threats
to validity. Finally, Section 7.5 states our ongoing work and conclusions.

7.2 Context: the CIPHER project

The general objective of the CIPHER project is the creation of an expert system based
on ML algorithms and big data technologies, capable of discovering characteristic
symptomatology of the pathology studied in EHR that are not considered or adequately
valued today. This detection must serve to feed a DSS that alerts the clinician at the
moment in which a situation of risk is detected so that it is possible to begin the
appropriate measures for the treatment of the patient. In addition, the development
of the project must be carried out thinking about its reuse for any kind of pathology,
although, at this moment, the case study will be focused on brain strokes.

As a secondary objective, but not less important, it is proposed that the procedures
of the expert system mentioned above facilitates the monitoring of compliance with
the guidelines and good clinical practices associated with the pathologies treated by
the medical specialists.

As a result of the objectives described, the following specific objectives have
been defined for the CIPHER project:

● Definition and implementation of loading, normalization and temporal referenc-
ing processes of EHR for its semantic exploitation.

● Definition and implementation of assisted learning processes based on associated
ontologies. Typification of results in the identification of underlying pathological
variables.

● Obtaining software solutions that allow, over the results obtained in the pre-
vious phases, alerts to the medical specialists through integration with the
corresponding EHR repositories and clinical stations.

● Obtaining quantitative and qualitative simulation software solutions based on
the impact of the variation in diagnostic and therapeutic techniques, as well as
decision support tools based on the application of the developed procedures.

In order to give a solution to the objectives proposed above, the following con-
ceptual model (Figure 7.1) was proposed. As illustrated in Figure 7.1, CIPHER will
be a system based on three main pillars: (i) hospital extension, (ii) pathologies and
(iii) big data storage an processing.

● Hospital extension: Its main objective is the analysis and normalization of EHR
on the CIPHER system.

● Pathologies (for this particular case, brain stroke):
– Pathology analysis: Its main objective is to incorporate the intelligence for

the early detection of the pathology based on the analysis of the EHR of the
users.
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Figure 7.1 Conceptual model of CIPHER

– BUS services: Its main objective is the integration of all elements involved
in the CIPHER architecture through services, in such a way that all internal
accesses be crosscutting to all parties involved.

– Control and administration: Its main objective is the management and con-
trol of the interfaces of the CIPHER system aimed at users with different
profiles.

– Verification of medical processes: Its main objective is the verification of
medical processes according to the data that the application contains and on
which it has been learning throughout the analysis of them.

● Big data storage and processing: Elements that make up the unit large volumes
of data and where the analysis tasks will be carried out and processing them by
the detection and learning algorithms.

As possible to see in Figure 7.2, to land this model, a technological architecture
was defined. The design of this architecture contemplates a series of subsystems and
elements in each of them. Going into the detail of the purpose of each of them, we
found the following:

● Big data storage and processing subsystem: It is the subsystem that contains
the capacity to store the data, be cataloged as large data volumes or not, and
process them in large quantities by running of simple or recurring algorithms.
– Node X: Under large storage and processing capacity data volumes, more

than one element of this type shapes the cluster designed to offer the said
capacity within the system. Initially, consider that the cluster consists of two
nodes that, according to the need to be more real, they can be extended to
form a cluster with the nodes needed according to the demand.

– DBMS SQL:As a complement to the storage and processing of large data vol-
umes (Not Only Structured Query Language (NoSQL)), the system must be
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Figure 7.2 Technological architecture of CIPHER

prepared for the management of other elements such as relational configu-
ration data sets, users or metrics. To satisfy this requirement, this element
is included within the subsystem, which offers this capability through a
relational database management system (SQL).

● CIPHER Software execution subsystem: In this case, it is the element destined
to offer the necessary infrastructure for the correct execution of services functions
of the CIPHER Software. The existing elements in this subsystem have all in
common the ability to communicate with the elements external to the project
CIPHER, process the operations accessing the data and respond with the results
of the same.
– CIPHER core: Element on which all the functionality of the CORE is exe-

cuted of CIPHER, where the user interfaces for management are included,
standardized communication interfaces and procedures on pathology of brain
stroke. It can be said that all the properties of this element are abstracts to
third systems, everything being encapsulated characteristics of CIPHER, its
model and its interfaces.

– CIPHER Sistema Andaluz de Salud (SAS, Andalucian Health System
in English)–extension: Element on which all the functionality is executed
specific to the SAS, which provides the necessary transformations for the
use of the functionality deployed on the CIPHER Core element by the SAS.
Unlike the previous element, it can be said that the properties of this element
are specific to the SAS systems to which it offers support standardization and
checking of EHR.
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– Cluster control: Element that contains all the functionalities of the control
and management of the large storage and the cluster data volumes processing.
This element is not part of the remit of this characteristic, but it provides the
necessary functionality to perform the monitoring operations of the cluster at
a general level and of each node at a particular.

● External systems for the consumption of the CIPHER Software: Although
this section of the diagram does not belong to the CIPHER project, it has been
embodied in the design of the technological environment to inform that CIPHER
is ready to be consumed by external systems. In this context, at the level of the
network and interconnection diagram, user interfaces and web services may have
been published.

7.3 Decision support system

Currently, health professionals use risk classification tables to identify patients who
are candidates of suffering a brain stroke. There are a set of classification tables of
cardiovascular risk and identification of patients candidates for lipid-lowering or anti-
hypertensive treatment such as REGICOR [10], SCORE [11], CHADs2, CHADs2d2
and ATRIA [12], which have the function of stratification of the risk of suffering
from diseases, relating values of defined factors of influence on stroke (age, smoker,
cholesterol, etc.) with estimated percentages of presenting the mentioned disorder.

Thanks to the CIPHER platform, an automation of this process of diagnosis of
brain stroke is achieved, changing the manual analysis of the classification tables
performed by medical specialists, by an expert system that, considering the clinical
data of the patients and the predefined rules extracted from the tables, shows as result
the percentage of stroke disease calculated from the combination of patient factors.

This automation makes up what is known in CIPHER as “decision model” (DM)
module. This module is one of the main pillars of the CIPHER core component.
Figure 7.3 shows a state machine where the behavior of this module is described.

Initial
state

isEmptyModel()

!is EmptyModel()

Empty
addRule()

deleteModel()

addRule()

Decision
model

deleteRule()

Figure 7.3 Decision model
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As illustrated in Figure 7.3, the first function that the DM state machine performs
is to check if the model is empty. If there is no model, the first state of the machine will
be “empty” and the navigation to the next state, called “decision model,” will be once
the function “addRule()” had been executed. This function consists of adding a new
rule to the DS. It is possible to go back to the “empty” state by executing the “delete-
Model()” function, which consists of deleting the all DM. When the machine is in the
“decision model” state, there are two available functions: (i) “addRule()” that consists
of adding a new rule to the DM and (ii) “deleteRule()” that consists of removing a
rule of the defined DM. Finally, it is possible to go directly to the “decision model”
state if at the beginning of the process the model is already created and it is not empty.

Considering what was mentioned in the context section, the CIPHER project do
not only aim to help the medical specialists to make decisions based on an automatized
version of the known standards but also it tries to discover new hidden symptomolo-
gies, so that the treatment of this type of disease is more effective. In this sense, a
new module called “predictive model” was defined for the CIPHER Core component.
This module is another one of the main pillars of the CIPHER Core. Figure 7.4 shows
a state machine where the behavior of this module is described.

This module considers all patient parameters that a group of medical specialists,
experts in this disease, have considered relevant to consider (the decision model only
takes the parameters collected in the standards) when making a forecast. This model
must be trained in advance with information regarding to the patients who have expe-
rienced strokes and with patients that, in principle, do not show signs of being possible
candidates to suffer it. With this information, underlying relationships between the
registered factors are created, and subsequently, the prediction of a diagnosis of a new
patient may be obtained.

Predictive model (Figure 7.4) starts as well as decision model, from an empty state
that is completed as patient parameters are inserted. This model is fed periodically
with patient information, although it can be also done manually if it is considered
necessary by the medical specialist.

By means of the comparison between the decision model and the predictive
model, CIPHER aims to discover new rules for the detection of stroke that can be
incorporated into the decision model. To do this, the results obtained for a patient
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model

automaticUpdate()

Figure 7.4 Predictive model
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Table 7.1 Comparative models

Decision model Predictive model Result

Greater than percentage Yes Patient presents risk of stroke
Less than percentage No Patient does not present risk of stroke
Greater than percentage Yes The predictive model requires more

training data
Less than percentage No There is a possibility of existence of

hidden symptomatology detected

The percentage of column “decision model” must be defined by a medical specialist in the CIPHER
management module. This percentage is not always the same, and it depends on the hospital in which the
patient is being treated; therefore, it is a parameter that is left open for modification.

after applying the algorithms are compared in each case through both models. In this
sense, as showed in Table 7.1, it is possible to obtain the following interpretations.

Both the input data of the predictive model and that of the decision model is
obtained from the analytics of the patients, being this direct obtaining; since numerical
values do not need to be normalized, the problem lies in the information that is
necessary to extract from clinical reports.

In the clinical reports, the information is structured in several sections of which
in this case, the background, clinical judgment and treatments are selected. The
information contained in each of these sections is plain text so that the knowledge
they contain must be extracted and normalized before entering it in the database. For
them, information extraction algorithms have been used, algorithms that process in
natural language and obtain the information that is indicated to be relevant.

All patient information is stored in the CIPHER database in a way that com-
plies with the CEN/ISO EN13606 [13] standard, designed to achieve semantic
interoperability in the EHR communication of a single patient.

7.4 Validation

7.4.1 Data processing

To provide data to the decision model and train and validate the predictive model, it
was necessary to retrieve information of patients that have suffered a brain stroke.
This was one of the main problems of the project. Due to bureaucratic issues with
the protection of the data, we are still waiting to receive this data. For this reason, it
was decided to carry out a generation of a sample as close as possible to the hospital
reality to execute the performance tests of the algorithms.

The collaboration with the Instituto de Biomedicina de Sevilla (Institute of
Biomedicine of Seville in English) research group and some studies that they
have developed [14–18], an initial sample of 400 patients were taken as reference
to generate the missing characteristics according to the CIPHER data model and
complete the sample that the algorithms should query.
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As mentioned before, this project has been developed under the umbrella of
the CEN/ISO EN13606 standard [13]. Following the recommendations of that stan-
dard, the data model defined for CIPHER (Figure 7.5) contains the following storage
requirements (SR):

● SR-01. Patient: Sick person who is attended by a health professional.
● SR-02. General analysis: Clinical analysis to know the health status of a patient

or establish a diagnosis.
● SR-03. Prescription: Document by means of which the legally trained doctors

prescribe the medication to the patient for its dispensation by the pharmacist.
● SR-04. Clinical report: Document that certifies the findings obtained by the

medical evaluation of a patient; it is issued by the attending physician.
● SR-05.Anamnesis: Set of data that are collected in the clinical history of a patient

with a diagnostic objective.
● SR-06. Discharged clinical report: Document issued by a responsible doctor

about the care of a patient and that refers to an episode of hospitalization.
● SR-07. EHR: Mechanized registry of the social, preventive and medical data of

the patient.
● SR-08. Clinical data: Information that the doctor gathers through the patient’s

interview, physical exams or complementary explorations.
● SR-09. Analysis: Clinical analysis or group of them to know the state of health

of a patient or establish a diagnosis.
● SR-10. Medication: Set of medicines and means used to cure or prevent a disease.
● SR-11. Antecedent: Conditions that a certain patient experiences.
● SR-12. Consequent: Results obtained according to certain conditions.
● SR-13. Alarm: Alarms that specify the percentage with which a patient has to be

referred to primary care or specialist.
● SR-14. Role: Roles of users that interact with the system.
● SR-15. User: User that operates with the different functionalities offered by the

system, both in the administration and management roles.
● SR-16. Rule: Rules that are predefined for a particular result.
● SR-17. Category: Categories associated with the users that interact in the system.
● SR-18. Alarm manager: Set of alarms to be managed.
● SR-19. Medical group: It will collect the information of the percentage of alarm

and the medical group to which the patients will derive.
● SR-20. Medical groups: Contains the collection of media groups that have been

defined.
● SR-21. Model: Model that includes both the predictive model and the decision

model.
● SR-22. Preprocessing: The standardization manager will have the EHR as

entered and will return the clinical history in a standardized manner.
● SR-23. Decision model: Model that contemplates learning through rules.
● SR-24. Predictive model: Model that contemplates predictive learning.
● SR-25. Input data: Data entry for the algorithms.
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Figure 7.5 Storage requirements diagram

A set of interesting parameters, such as smoking, alcoholism or brain strokes in
family history, are stored in the clinical reports of the patients as clinical narratives
that describe the medical reasoning behind the prescription [19]. Medical specialists
consider that this kind of information will take a very important value when analyzing
data of the sample. In this sense, these clinical narratives must be processed to obtain
the knowledge it contains.
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Figure 7.6 Activity diagram of clinical narratives processing algorithm

An information extraction algorithm has been defined to process the information
mentioned above. Figure 7.6 shows the activity diagram, divided in three blocks
(input, processing, output), that makes up the algorithm as well as the sequence of
logical and ordered steps with which the problem is solved.

The purpose of this algorithm is to obtain, from a clinical report and a set of
regular expressions (input), another sample of regular expressions, with associated
values (output).

Next, each step of the processing block (from second to fifth activity of Figure 7.6)
of the process followed to deal with the information of the input is detailed.

1. First, the sentences were fragmented. The heterogeneous formats of the clinical
reports include several headings, sections and footnotes. Thanks to a rigorous
study of the sample, it was noticed that most of the sections begin with a new line,
capitalized and end with a dot. Therefore, a regular expression and an algorithm
was used to extract each section. Within the clinical reports, three sections were
identified as relevant. These are as follows:

i. Family history: It is unique for each person. The key factors in the family
history are the diseases that have occurred at a younger age than usual, those
that appear in more than one close family member, those that usually do not
affect one of the sexes in particular and certain combinations of diseases
within a family.

ii. Personal history: Collection of information about a person’s health which
allows them to manage and follow-up on their own health information.

iii. Clinical judgment: It consists of the evaluation of the set of symptoms and
signs of a patient, together with the data provided by the complementary
tests, to make an estimate on the diagnosis of the same, the state of the
patient and the most appropriate treatment

iv. Treatment: It is the set of means whose purpose is the healing or relief
(palliation) of diseases or symptoms. It is a type of clinical judgment.
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2. Once the sentences are extracted, we proceed to syntactic labeling (third activity),
so that each of the words are labeled according to nouns, adjectives, adverbs, etc.
For this labeling, the Stanford CoreNLP [20] library has been used. Only the
words labeled as nouns and adjectives preceded by nouns are selected from the
classification that is generated.

3. Fourth activity deals with a search for matches between the different regular
expressions obtained from syntactic labeling and the regular expressions that
the algorithm receives as input. In addition, each of the regular expressions
received as input in the algorithm has a list of associated synonyms that are
also compared. The list of synonyms forms what is known as an ontology,
in this case written in OWL (Ontology Web Language) [21] format, a lan-
guage designed to formalize ontologies. OWL’s expressive resources include
union, intersection, complement and equivalence of concepts, functional roles,
inverse roles, existential and universal quantification of roles and numerical
restrictions.

4. It is common to find words (regular expressions) that differ morphologically (for
example, “diabetes” and “diabetic”) or have spelling errors because medical spe-
cialists usually write the reports during the medical consultation. For this reason,
for each comparative regular expression, a normalization process is carried out
in the fifth activity. To eliminate these differences, an algorithm that calculates
the percentage of proximity that exists between two strings of characters (words)
making use of the distance of Levenshtein [22], which calculates the minimum
number of operations required to transform one character string into another,
has been used. Therefore, two strings of characters are considered equal if they
exceed a certain percentage of proximity.

Finally, a sample of regular expressions with an associated value is returned based
on whether matches have been found or not with the regular expressions extracted
from the clinical reports.

7.4.2 Algorithm selection

To make sure that the choice of algorithms that was going to be used was the optimal
one, a comparative study was made of the most used tools on the market that solve
this type of problem. To achieve this goal, it created a classification framework based
on different characteristics. These are as follows:

● License: Type of license (free or not).
● API: The solution offers an application programming interface.
● Language: Type of language programming of the algorithms.
● Input/Output

– ARFF: The input or the output is given in Attribute-Relation File Format.
– Other formats: The input or the output is given in other formats.
– Database connection: The solution offers connection to one or more

databases.
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● Preprocessing
– Discretization: The solution offers discretization of parameters.
– Parameters selection: The solution offers parameters selection.
– Instances selection: The solution offers instances selection.
– Lost values imputation: The solution offers lost values imputation.

● Learning
– Classification: The solution offers classification algorithms.
– Regression: The solution offers regression algorithms.
– Clustering: The solution offers clustering algorithms.
– Association rules: The solution offers association rules algorithms.

● Execution
– Online start: The solution offers the possibility of online start.
– Offline start: The solution offers the possibility of offline start.

● Advanced characteristics
– Post-processing: The solution offers post-processing algorithms.
– Meta-learning: The solution offers meta-learning.
– Statistic test: The solution offers statistic tests.
– EAs: The solution offers evolutionary algorithms.

Once the classification framework was created, twelve frameworks, applications
or tools were selected to be analyzed. In addition, it set the values that each of the
characteristics could take. These were as follows:

● B: The solution offers basic support of the characteristic.
● M: The solution offers medium support of the characteristic.
● A: The solution offers advanced support of the characteristic.
● Y: Yes, the solution presents the characteristic.
● N: No, the solution does not present the characteristic.
● N/S: Not stipulated or unknown.

Figure 7.7 represents the results obtained from the study. Finally Apache Spark
[23] was chosen by three reasons: (i) it offers a large number of programming lan-
guages; therefore, the migration from one language to another would be less expensive
than using other alternatives, (ii) it is 100% compatible with the framework chosen
for the processing of big data and (iii) most of the qualifications obtained in most of
the characteristics are A or Y (the highest ones).

7.4.3 First results

Once the algorithms for generating the sample were developed and the algorithms
applying the ML were implemented according to the data model defined for CIPHER,
the first results were obtained.

Different tests were executed to select the best algorithms that Apache Spark
offers, being selected the “DecissionTree” [24] because of its highest accuracy.
Figure 7.8 shows the preliminary results of the execution of the “DecissionTree”
algorithm for the sample described before of 400 EHRs.



Software

RapidMiner

Weka

Orange

KNIME

R

ADaM

Apache SINGA

Deeplearning4j
Dlib

TensorFlow
MS Cognitive Toolkit

Apache Spark

Software

RapidMiner

Weka

Orange

KNIME

R

ADaM

Apache SINGA

Deeplearning4j

Dlib

TensorFlow

MS Cognitive Toolkit

Apache Spark

RapidMiner

Weka

Orange

KNIME

R

ADaM

Apache SINGA

Deeplearning4j

Dlib

TensorFlow

MS Cognitive Toolkit

Apache Spark

RapidMiner

Weka

Orange

KNIME

R

ADaM

Apache SINGA

Deeplearning4j
Dlib

TensorFlow
MS Cognitive Toolkit

Apache Spark

Licence API Language Software

Software

N/S

Free

Free

Free

Free

Free

Free

Free

Free

Free
Free

Free

Y

Y

Y

Y

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y

N

Y

Y

Y

N

Y
N

N
N

N

Y

Y

Y

Y

Y

N

Y

Y
Y

Y
Y

Y

M

Y

N

Y

Y

N

Y

Y
Y

Y
Y

Y

Y
Y

N

N

N

N

N

N

N

N

N

N

N

N N

N

N

N

N

NN

Y

Y

Y

Y

Y

Y

Y

N

N

Y
Y

Y
Y

Y

Y

Y

Y

Y

Y

Y
Y

Y

A

M

A

M

B

N

N

M
N

M
N

A

M

M

M

M

N

M

M

A

A A

A

A

A

A

A

A

A

A

A

A

A A A

A

A

A

A
A

A

A

A
A

A
A

A

A

A

A

A

A

A

A

A

A

A

M

M

M

M

M

A

M

N

N

M

M

N

N

B

B B

B

B

B

B

N/S

N/S

N/S

N/S

N/S

N/S

N/S

B

B

B

B

M

B B

B

B

B

B

B

B

B

B

B

B
B

N N

N
N

N

N

N

B

B

A

A

A

M

A

B

A

A

A
B

A

A

A

A

Java
Java

C++

C++

C++

Scala,Python, R, Java

C++

C++,Python

Java

Java

Java/JVM

R

ARFF
format

Other
formats

Database
connection Discretization

Input/Output

Parameters
selection

Instances
selection

Lost values
imputation

Preprocessing

Classification Regression Clustering Association
rules

Online
Start

Offline
Start

Learning Execution Advanced characteristics

Postprocessing Meta
learning

Statistic
test EAs

Figure 7.7 Comparative study of algorithms



Decision support system to detect hidden pathologies of stroke 121

Figure 7.8 Accuracy of tests

Figure 7.9 Performance test of predictive model

Figure 7.10 Performance test of decision model

Next, some performance tests were executed to check how fast the algorithm
runs in the architecture defined based on a large workload. Figure 7.9 shows the
preliminary results of the execution of the predictive model for 4,000 EHRs.

Finally, Figure 7.10 shows the preliminary results of the execution of the decision
model for the same number of EHRs (considering the time showed in the figure, the
time of analysis for each EHR).

7.5 Conclusions and future works

This chapter has presented the CIPHER project, the main objective of which is to
create an expert system software, based on big data and ML algorithms able to dis-
cover hidden symptomatology characteristic of the studied pathology. In addition, this
detection must serve to feed a DSS that alerts the medical specialists at the moment in
which a situation of risk is detected so that they will be able to carry out the appropriate
measures.

The definition of the DSS system has been based on two main pillars: (i) a
decision model and (ii) a predictive model.

The decision model is an implementation of the known standards that are applied
in the brain strokes context (case of study of the validation). These standards are
REGICOR [10], SCORE [11], CHADs2, CHADs2d2 and ATRIA [12].

The predictive model is an implementation of decision tree algorithms of Apache
Spark [23]. The configuration that have been set for this algorithm takes 70% of
the data to perform the training and for the remaining 30%. The algorithm elimi-
nates parameter result of the CIPHER data model and applies the model generated
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by the training to calculate the result of whether the patient is susceptible to suffer a
brain stroke.

The DSS system takes the output from both, decision and predictive models, and
shows a final result based on the study of the results. This final result depends on
three factors: (i) the percentage defined by the medical specialist of having a high risk
of suffering a brain stroke, (ii) the percentage of suffering a brain stroke obtained from
the decision model and (iii) a Boolean parameter that indicates if the patient has risk
of suffering a brain stroke based on the knowledge generated by the ML algorithms
and the training of the sample. With all this, the medical specialist obtains one of the
following results: the patient presents risk of stroke, the patient does not present risk
of stroke, the predictive model requires more data training and there is a possibility
of existence of hidden symptomatology detected.

One of the main problems that have been encountered in the development of the
project has been obtaining real data due to bureaucratic problems. Due to this problem
and with the objective of testing and validating the system in an environment as close
to reality as possible, different algorithms were designed to generate data, based on
an anonymized sample resulting from previous studies. The model of data generated
was based on the recommendations of the international standard of clinical history
CEN/ISO EN13606 [13].

Preliminary results show that the selection of “DecisionTree” has been a very
good option, obtaining an accuracy very close to the 100% considering a sample of
400 EHRs. In addition, the design of the data model of CIPHER and the algorithms
for processing the information and the ML modeling, also works great, obtaining, in
the worst case, an execution time of less than 2 min for a sample of 4,000 EHRs.

As far as what future work is concerned, the main and most ambitious one is to
overcome the bureaucratic obstacles found and to be able to put CIPHER to work
in a real environment with real data. On the other hand, a very interesting work in
which many efforts are being made is in the automation of the detection of hidden
symptoms without the medical specialist having to do complementary studies to the
results obtained. Finally, and once validated for the case study of cerebral infarcts, it
will be very interesting to create a new data model of a different pathology and check
the behavior of the system as well as the results obtained.
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Chapter 8

Big data analytics for smart grids
Panagiotis D. Diamantoulakis1 and

George K. Karagiannidis1

The Internet of Things (IoT) has recently emerged as an enabling technology for
the next-generation electricity grid, namely, smart grid (SG). The efficient operation
of the smart electricity grid depends on the efficient acquiring, analyzing, and pro-
cessing of a large volume of data generated by the utilized smart sensors, individual
smart meters, energy-consumption schedulers, aggregators, solar radiation sensors,
wind-speed meters, and relays. In order to deal with the extreme size of data, the
adoption of advanced data analytics, big data management, and powerful monitor-
ing techniques is required. This approach creates huge opportunities and challenges,
especially considering the real-time monitoring, load, renewable energy, and prices
forecasting, identification and prediction of faults, and integration of electric vehi-
cles, functioning in a mobile SG environment. Among others, intelligent algorithms,
robust data analytics, high performance computing (HPC), efficient data network
management, and cloud computing (CC) techniques are critical toward the optimized
operation of SG. This chapter presents the big data issues faced by SG networks and
the corresponding solutions.

8.1 Introduction

The development of new applications and requirements, such as the integration of
millions of alternative distributed systems, the electric vehicles, the two-way flow of
power, etc., places tremendous pressure on the existing power electricity grids, which
need to be rapidly evolved [1–3]. The IoT is one of the major driving forces behind
the next-generation power electricity grids, termed as SGs. The IoT refers to the use
of advanced digital information technologies, such as sensing, data communications,
and actuation [4], which are coordinated and controlled in a completely automatic
manner, without any human intervention, by an end-to-end platform. The integration
of this platform with the power electricity grid generates many new opportunities, such
as the ability to manage electricity demand in a sustainable, reliable, and economic

1Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
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manner. More specifically, SGs, by properly exploiting the new capabilities provided
by the IoT, are envisioned to achieve

● steady availability of power,
● energy sustainability,
● environmental protection,
● prevention of failures, as well as optimized operational expenses of power

production and distribution, and
● reduced future capital expenses for thermal generators and transmission net-

works [1].

For this purpose, each consumption/production location, as well as several
components of the transmission and distribution network, such as relays, switches,
transformers, and substations, has to be equipped with a smart meter for monitoring
and measuring the bidirectional flow of power and data. Also, supervisory control and
data acquisition (SCADA) systems are needed to control the grid operation [5–10].
Data mining is the standard process to harvest useful information from a stream of
data, such as users’ electricity demand, renewable power generation, and state of bat-
tery of electric vehicles (EVs), and transform it into an understandable structure for
further use. The data-mining process is based on the utilization of algorithms for dis-
covering patterns among the data [11]. Efficient and effective data mining is crucial
toward the optimized operation of the SG, since it strongly affects the related costs, the
reliability of the grid and the service interruptions, the provided level of security, and
the self-organization capability. Indeed, most of the research related to data mining in
SGs deal with predictive analytics and load classification (LC), which are necessary
for the load forecasting, bad data correction, anomaly detection, determination of the
optimal energy resources scheduling, and setting of the power prices [12,13].

In order to deal with the stochastic nature of the SG, the data volume, variety,
and velocity, as well as and the requirement for real-time learning/decision-making
and collective awareness, the SG demands advanced data analytic techniques, big
data management, and powerful monitoring techniques [14–16]. Various techniques
such as artificial intelligence, distributed and HPC, simulation and modeling, data
network management, database management, and data warehousing are to be used to
guarantee smooth running of SGs. The main challenges of efficient data processing
in SGs is the selection, deployment, monitoring, and analysis of aggregated data in
real-time [17]. The efficient processing of the produced vast amount of data requires
increased data storage and computing resources, which create the need for cloud and
HPC techniques.

In this chapter, it is highlighted that big data analytics (BDA) can provide efficient
solutions in specific problems related to data processing in SGs, which are described
in the next sections. Section 8.2 focuses on the application of big data processing
techniques for dynamic energy management (DEM) in SGs. Section 8.3 presents the
main challenges in failure detection using data analytics. Load, price, and renewable
generation forecasting is discussed in Section 8.4. Section 8.5 focuses on efficient
smart meter data stream mining and presents the most commonly used methods in
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the available literature. Section 8.6 is dedicated to privacy and security challenges,
while Section 8.7 concludes the chapter.

8.2 Dynamic energy management

DEM requires system monitoring, power and data flow optimization, real-time oper-
ation, and plannings of productions [18]. DEM is a complicated procedure in SG,
because SG has enabled an interconnected network of power distribution through two-
way flow of data and power, as shown in Figure 8.1. In contrast, in a traditional power
grid, the electricity is generated centrally and distributed to consumers. As a conse-
quence to bidirectional flow of power and information, the grids are more adaptive to
distributed energy sources. This encourages the participation of users in cooperative
energy saving through demand-side management (DSM) mechanism [13,19,20]. For
example, traditionally passive consumers, such as households and small businesses,
are being empowered to be outfitted with generation capacity, such as roof-mounted
solar photovoltaic (PV) panels; hence, they can take a more active role in the system.
SG could potentially produce millions of alternate microenergy sources (solar, wind,
etc.). The locational, and sometimes intermittent, character of distributed generation
will emphasize local energy management and require higher stakeholder engagement,
such as through the creation of cooperatives, or “energy communities” [21], and local
electricity markets [22]. One of the main goals is to reduce the power peak load and
to balance between the power supply and demand [23].

Although DEM in conventional electricity grids is a well-investigated topic, the
corresponding algorithms cannot be directly applied to SGs. The latter is far more
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complicated, mainly due to the complex decision-making processes that are required
by the control centers [24,25]. Energy-management systems (EMSs) in SGs include

● through advanced monitoring and metering systems, wide-area, real-time
situational awareness of SG status;

● participation of consumers through DSM algorithms, EMSs, and vehicle-to-grid
technology; and

● computer-based system supervisory control [26].

8.2.1 Demand side management

DSM can be applied to industrial and domestic loads (e.g., heating, cooling, charging).
DSM constitutes of [27] (a) demand-wise shifting of energy production/consumption
to periods of low/high demand, (b) reduction in energy consumption, and (c) storage
systems’ efficient utilization [28]. Taking into account for the careful scheduling of
charging/discharging processes has benefits, however, with the increased complexity
of DEM algorithms, as new parameters are added [29]. Therefore, it is critical to
manage the demand response (DR) in SGs to reduce electricity load at peak times,
thereby making efficient use of renewable energy and storage systems. The effec-
tivity of DR algorithm depends on various parameters, such as demand, load, price,
forecasting ability of renewal energy that mandates the requirements for sophisticated
signal processing techniques [30].

DSM can be realized in three ways, namely, direct load control (DLC) [31],
autonomous DR [20], and/or dynamic pricing [32]. Due to users’ demand for privacy,
DLC, which is a completely centralized approach, is not appropriate for residential
electrical load control. On the other hand, autonomous DR is a very important mech-
anism for the future SGs, since it enables the automatic scheduling of the energy
consumption. Also, if autonomous DR is combined with an incentive-based con-
sumption scheduling scheme, it leads to promising results on reducing the energy
costs and the peak to average power ratio. Similarly to autonomous DR, dynamic
pricing does not require users to allow direct access of the operator to their electrical
appliances. Also, it does not require users to declare their usage hours before turn-
ing on the switch. However, one major problem in dynamic power pricing is load
synchronization, especially when there are limitations on the exchanged information.
Since the power provider sets the power price selfishly without a proper contract on
time-of-use and prices between operator and users, it is difficult for the operator to
accurately predict and set an appropriate power price.

8.2.2 Data-driven DEM

There are several factors that affect the demand and production of SG environment,
such as microclimatic variations, weather conditions, random disturbances, time of
day, DSM profiles, electricity prices, micro-grids, storage cells, and the manufac-
turing of EVs [33–36]. To increase the reliability and reduction in operation cost,
the accurate forecasting helps in appropriate generation and transmission planning of
power plants that which of those should operate and how much power they generate
at a specific time period [37]. This also helps in accurate estimation of electricity
cost and setting up of prices, and also finding the dependencies among demand and
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prices [38]. For instance, the load synchronization is one such example of interde-
pendency where a load is shifted from high-price to low-price hours without effecting
the peak-to-average ratio [33].

DEM depends highly on quality of data collected and its reliability. To effectively
manage and utilize the sensor data, the data-mining tools for predictive analytics
become essential [39], as DEM depends on short-time power price forecasting,
power supply, and consumption [40]. Moreover, the important correlations, pat-
terns, and trends exist in sensor data that need to be exploited for optimized energy
consumption [24].

8.3 Failure protection

Insufficient monitoring and control of the power flow can increase the possibility of
failure (e.g., due to load synchronization, overloading, congestion). The power grid,
which consists of multiple components such as relays, switches, transformers, and
substations, must be carefully monitored. Lack of robustness of the power grid is well
known; the grid is running to capacity and has become prone to failures caused by
overloads, human errors, and natural disasters. Therefore, the SG requires intelligent
real-time monitoring techniques in order to be capable of detecting abnormal events,
finding their location and causes, and most importantly predicting and eliminating
faults before they happen. This self-healing behavior renders the power grid a real
‘immune system’, which is one of the most important characteristics of an SG frame-
work [41,42]. One major problem of self-healing control is the ‘uninterrupted power
supply problem’, that is, real-time monitoring of network operation, prediction of the
state power grid, timely detection, rapid diagnosis and elimination of hidden faults,
without human intervention or only in a few cases. With self-healing capacity, the SG
can also monitor a variety of disturbances, compensate for reactive power, redistribute
the trend, and avoid expansion of accidents.

Critical events in SGs usually have temporal–spatial properties, which calls for
temporal–spatial analysis [43]. A promising approach of BDA for fault detection,
identification, and causal impact analysis has been proposed in [44], which manages
to keep comprehensive information from synchrophasor measurements in spatial and
temporal domains, while substantially reducing data volume. The derived scheme
manages to achieve a high level of situational awareness, which is investigated based
on hidden Markov model. Interestingly, the proposed scheme has been tested on IEEE
39-bus and IEEE 118-bus systems. Also, five representative fault types are employed
for evaluating the proposed characterization approach, i.e., generator grounding, load
loss, generator outage, single transmission line outage, and three-phase transmission
line outage.

8.4 Load and price forecasting

The load data in SG environment is massive, dynamic, high-dimensional, and hetero-
geneous [12]. Thus, in order to build an accurate real-time monitoring and forecasting
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system, two novel concepts have to be taken into account in the system design. First, all
available information from different sources, such as individual smart meters, energy
consumption schedulers, aggregators, solar radiation sensors, wind-speed meters and
relays, has to be integrated, while a communication point has to be designed where
multiple artificial experts can interact and make decisions on data. The factors that
affect the load forecasting can be separated in two categories: (a) the traditional factors
and (b) the SG factors [37]. The traditional factors include the weather conditions,
time of the day, season of the year, and random events and disturbances. On the other
hand, the SG factors include the electricity prices, DSM, distributed energy sources,
storage cells, and electric vehicles.

The timeliness and accuracy of the load forecasting have significant effects on
power system operations and production costs. The importance of these factors is
predominant in the SG environment as the spot-market prices and electricity demand
are interdependent [37]. If the forecasted demand by utility is less compared to the
actual value, it may end up buying the deficit power at higher prices than the market
prices. On the other hand, if the forecasted demand is high compared to the actual
value, utilities end up starting too many units resulting in high operating costs.

8.4.1 Load classification

The classification tries to predict the class label for a given test item through a clas-
sifier trained on a training data set [13]. LC is based on the unsupervised method of
clustering to identify groups in the data provided. For LC in SGs, the artificial neu-
ral networks (ANNs) are used that are computational models to predict approximate
functions against large number of inputs and are used when no accurate mathemati-
cal model is available to describe the phenomenon [45]. The ANNs have been used
for consumer load curves classification to generate consumption patterns and facil-
itate selection of appropriate DSM technique [46]. The authors in [12,47] utilized
self-organizing mapping for LC. The other classification approaches proposed in the
literature are K-means, fuzzy c-means, hierarchical clustering, and so on [12]. In [48],
a scalable online clustering method is proposed by improving the eXtended classifier
system for clustering that suits well to dynamical nature of SGs, and it outperforms
the off-line schemes in the performance of storage system [49].

8.4.2 Short-term load forecasting

The various models of short-term forecasting are developed, such as linear time-series
based, regression models, nonlinear time-series based, state-space models [50]. Lit-
tle progress has been made in load forecasting in SGs, in terms of very-short-term
(VST), and ultra-short-term, which is also necessary for self-recovery of SG [50–52].
For load forecasting in micro-grids, the authors in [53] propose a short-term load
forecasting method based on extended Kalman filter, empirical mode decomposi-
tion, and extreme learning with Kernel. In the area of STLF, the Kernel methods have
been frequently utilized in research [54,55] as they increase the energy efficiency of
computing [56–59]. The user convenience has also been taken into account for effec-
tive price forecasting, which is performed using supervised learning algorithms [60].
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Online learning is an effective way of dealing with prediction and load monitoring
in SGs, as the online learning algorithm observes a stream of examples and per-
forms prediction for each stream element [61]. The statistical machine-learning (ML)
properties of a target variable may change with time in the load forecasting in SGs.
This makes the predictions less accurate as the time passes. The authors in [62] discuss
solutions based on online learning to mitigate the aforementioned problem.

8.4.3 Renewable generation forecasting

For VST wind-power-generation forecast, there are myriad of approaches, which can
be divided into two big categories: (a) forecasting the wind and direction for a specific
windmill farm and (b) forecasting the generated power in a single step [63]. More
interesting details on this issue can be found in [63]. Finally, short-term PV power
prediction is mainly based on the past power output [64].

8.4.4 Price forecasting

The accurate point forecasting is essential for most DEM concepts [23] and directly
affects the decision-making process of both the industries and the customers [23]. In
contrast to accurate price forecasting, electricity price classification requires lower
accuracy, while it might be sufficient, in order to set the user-defined thresholds,
which determine if the load will be turned on or off [65].

The most common approaches used for electricity price forecasting are ML and
time-series [23]. Neural networks have been used by [66] and [67,68] to provide per
day and per hour electricity forecasting, respectively. On the other hand, electricity
prices forecasting using time series has been investigated by [69] and [70], where an
ARIMA based and a seasonal autoregressive moving average Hilbertian model is pro-
posed, respectively. A different approach is proposed in [23], which integrates three
modules, i.e., a hybrid feature selector based on gray correlation analysis (GCA) that
helps to avoid redundancy, a combination of Kernel function and principle compo-
nent analysis for feature extraction, and a differential evolution-based support vector
machine classifier for the price classification forecasting [23].

8.4.5 Predictive control for electric vehicles power demand

Plug-in electric vehicles (PEVs) can substantially reduce the greenhouse gas emis-
sions, due to their lower dependency on fossil fuel [71]. Also, PEVs can substantially
reduce the corresponding expenses, which also depend on efficient battery charging.
PEVs power demand is fundamentally different to other types of power demand, i.e.,
residence, since it is only known after random PEVs arrivals [72].

To this end, a novel method has been proposed in [73], in order to accurately
estimate charging load using a fuzzy logic method, that accounts for random driver
behaviors and statistical distribution of different vehicle types. Also, a practical sce-
nario is investigated in [72], where unlike in related works, no assumptions are made
about the probability distribution of PEVs. More specifically, joint PEV charging
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Figure 8.2 Charging load shifting using two dimensions, space and time

scheduling and power control is issued by the development of a novel model pre-
dictive control-based computational algorithm that can achieve a globally optimal
solution.

In general, accurate PEV’s power demand estimation depends on many param-
eters, such as speed information, roads congestion, the level of charge in each PEV,
the PEV’s location, historical data, tire pressure. Also, different use-case scenarios
have to be considered, such as plug-in hybrid electric vehicles, i.e., vehicles that use
a mix of electric motor and combustion engine and self-driven PEVs. For example,
joint optimization of route planning and charging planning of PEVs is a challeng-
ing problem [71], while temporal and spatial load shifting options, illustrated in
Figure 8.2, have to be jointly considered. Consequently, exploitation of BDA for
accurate predicting of the charging loads is a promising direction that needs to be
further investigated.

8.5 Efficient processing of extreme size of data

8.5.1 Avoidance of redundancies

Due to large volumes of data from the sensors installed around SG being collected,
the features extracted in this phase also need to be refined as there is noise and
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redundancy in the features. For example, the weather condition that may affect both
the generation of solar and wind energy will be reflected in the redundancy among
weather, solar, and wind. If the input features contain redundant information (e.g.,
highly correlated features), ML algorithms in general perform poorly because of
numerical instabilities. Some regularization techniques can be imposed to solve such
problems. The techniques that can be used to build an optimal subset for the load or
price predicting problem in SG are greedy hill climbing [74], minimum-redundancy-
maximum-relevance [75], regularized trees [76], random multinomial logit [77], GCA
[23], etc.

8.5.2 Dimensionality reduction

Smart meters generate large volume of data, and thus acquiring and processing all of
them is inefficient—if not prohibitive—in terms of communication cost, computing
complexity, and data storage resources utilization. For this purpose, dimensionality
reduction has been applied in [78], in order to provide a reduced version (sketch)
of meters’ original data via random projection (RP). It is shown that processing the
produced summarized version of data instead of the original stream of data leads
to an acceptable relative error. The main advantage of RP is scalability, complexity
reduction, and execution speed increase.

Dimensionality reduction has mainly been explored in the area of synchrophasor
data. More specifically, online dimensionality reduction has been proposed in [79], in
order to extract correlations between synchrophasor measurements, such as voltage,
current and frequency. The proposed method can be utilized as a preprocessing method
in data analysis and storage, when solely an approximation of the initial data is needed.
Online dimensionality reduction has also been successfully used in for early event
detection in [80], where an early event detection algorithm is proposed.

8.5.3 Data summarization

As it is pointed out in [81], summarization can significantly improve the scalability
and efficiency of various SG data analytic tasks including transactional database min-
ing and data streams mining, intrusions and anomalies detection, network monitoring,
point of sales data mining, and information retrieval. Summarization is a perfect fit
for the explosive volume of SG data, in order to extract useful and actionable intelli-
gence. For this reason, a summarization paradigm has been developed in [81], which
facilitates the utility company to accurately infer various energy consumption pat-
terns in real-time by automatic monitoring of SG data, reducing using substantially
the corresponding complexity. Moreover, the proposed paradigm takes into account
spatiotemporal properties of the data, i.e., both the period of time and graphical loca-
tions. Note that the consideration of spatiotemporal is extremely important in many
SG operations, such as faults detection and DEM. Also, it is highlighted that such
composite analysis of SG data cannot be supported by most of existing management
systems, due to the lack of support for arbitrary hierarchical and temporal analysis of
data [81].
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8.5.4 MapReduce parallel processing

It has been recognized that MapReduce deployment is suitable for SG data process-
ing [61]. MapReduce is a programming model for processing large data sets with a
parallel, distributed algorithm on a computing cluster of low-cost commodity com-
puters. A MapReduce application typically consists of two phases (or operations);
map and reduce with many tasks in each phase [82]. A map/reduce task deals with a
chunk of data independently and thus, tasks in a given phase can be easily parallelized
and effectively processed in a large-scale computing platform. In order to improve
the system’s efficiency, two main mechanisms have to be taken into account, namely:

● the data locality-aware scheduling algorithm, and
● the application-specific resource allocation mechanisms.

Specifically, tasks requiring common data sets are dispatched to computers (compute
nodes) with close proximity to those data sets. For the majority of SG data processing
applications, storage capacity, such as disk and memory, is more important than
computing power.

8.5.5 Distributed data mining

The traditional centralized frameworks for acquiring, analyzing, and processing data,
require huge exchange of information among the remote sensors (e.g., the smart
meters and the centralized processor), which is inefficient in terms of telecommu-
nication resources management and economic cost. To this end, the authors in [24]
present several distributed data analysis techniques that can be successively used
for energy demand prediction. The provided analysis emphasizes on the problem of
multivariate regression and rank ordering in a distributed scenario that is based on
polynomially bounded computations per node. Decentralized data-mining algorithms
have the advantage of scalability, while they are less affected by peer failures and they
need little computing and communication resources [83].

8.5.6 Efficient computing

Real-time monitoring, DEM, and power flow optimization are all based on fast data
processing and BDA, which need high-computing power. Efficient data-mining algo-
rithms based on task parallelism, using multi-core, cluster, and grid computing, can
reduce the computational time [84]. However, covering the increased data storage and
computing resources needs is still a big economic challenge, mainly for the operators
of the electricity grids. Therefore, distributed computing seems to be a promising
perspective [85].

In order to enhance the existing computational capabilities and increase effi-
ciency, a dedicated grid-computing-based framework is proposed in [86]. In more
detail, an architecture of three layers is proposed, namely, (a) the resource layer,
which consists of the hardware part of the computing grid, (b) the grid middleware,
which provides access of grid resources to the grid services, and (c) the application
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layer, which consists of the services. It is shown that this computational grid can pro-
vide HPC by combining the processing power, memory, and storage of the available
computers.

The CC model meets the requirements of data and computing intensive SG appli-
cations [87,88]. The main advantages of CC over traditional models are energy saving,
cost saving, agility, scalability, and flexibility, since computational resources are used
on demand [89]. Many approaches have been developed so far to further increase the
energy efficiency of HPC data centers, such as energy conscious scheduling in [90],
the cooperation with the SG in [91], and thermal-aware task scheduling in [53]. In [87],
a model for SG data management is presented, taking advantage of the main charac-
teristics of CC computing, such as distributed data management, parallelization, fast
retrieval of information, accessibility, interoperability, and extensibility. Most of SG
applications, such as advanced metering infrastructure, SCADA, and energy manage-
ment, can be facilitated by the available cloud service models, namely, software as a
service, platform as a service, and infrastructure as a service [92]. For the selection
of the most appropriate cloud models, the recovery of data in the case of a possible
failure of the cloud service needs is highly prioritized [92].

8.5.7 Testbeds and platforms

The majority of the available power grid testbeds focus on modeling of traditional
network components, i.e., the generation systems, loads, and transmission network.
A different approach is followed in [93], where a distribution grid testbed has been
proposed, which can be used to test the designs of integrated information management
systems. The purpose of this testbed is to successfully represent the correlation and
interdependency among data sets, aiming to efficiently monitor the status of the SG
and detect abnormalities.

Storing and processing the large SG’s data sets generated by the smart meters,
require improved platforms and appropriate for BDA, such as Hadoop, Cassandra and
Hive [94]. Hadoop is a collection of open-source tools and includes the concept of
MapReduce. Cassandra database, which supports the cloud infrastructure, can be used
in order to store the large data sets which are needed for the effective DEM. Moreover,
Hive data warehouse software utilizes a simple Structured Query Language (SQL) like
language and be used to query data sets which are stored in a distributed environment.

8.6 Security and privacy issues in the smart grid

Security, privacy, and confidentiality are major challenges for the application of BDA
on SG data processing [95,96].

8.6.1 Privacy

In order to ensure privacy, there are two different approaches, i.e.,

● Approach 1: data processing before sending it to the utility provider.
● Approach 2: modifying the actual user demand.
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According to the first approach, which is the most common in the available litera-
ture, privacy of end users can be guaranteed by data aggregation, data anonymization,
and data obfuscation, which is used in most SG architectures. Data aggregation is
based on aggregating power measurements over a group of households so that the
provider cannot have knowledge of individual consumption [97]. In data anonymiza-
tion, pseudonyms are used instead of the real identities [98]. The aggregation can
be performed by a trusted third party, when necessary. Data obfuscation refers to
the perturbation of metering data by adding noise [99]. Note that the designed data
architectures must be multi-tenant, following one of the three different approaches
for such architectures, namely, the separate databases, separate schemas, or shared
schemas [87]. Although the first approach is quite practical, its main disadvantage
is that it still suffers from a privacy risk, since the operator is able to install a sensor
for directly monitoring a residence or a business. Even worse, extra sensors can be
placed by intelligent agencies or thieves. Also, data obfuscation method may provoke
a mismatch between the real energy consumption and the reported values.

The second approach is investigated in [100–103], among others. In this
approach, privacy is measured by the information leakage rate [103], which denotes
the average mutual information between the user’s real energy consumption and the
energy requested from the grid, which the smart meter reads and reports to the util-
ity provider. The minimum information leakage rate is a computable information
theoretic single-letter expression, when the battery capacity is infinite or zero. It is
noted that by using this approach, an interesting trade-off between privacy and cost
is created [101]. This is because higher privacy can be achieved by modifying the
smart meters readings, which, however, might have a negative impact on energy cost.
Furthermore, when renewable energy sources are available, they directly affect the
level of privacy that can be achieved [103]. More specifically, although the infor-
mation leakage rate decreases with the renewable energy increase, larger storage
capacity is required to take full advantage of the available energy to improve the
privacy.

8.6.2 Security

Security is a challenging problem from both consumers’ and electrical companies’
perspective, since the hackers of systems located in the cloud cannot be easily traced.
Also, data injection attacks, which aim to corrupt the estimate that the operator
obtains, are among the most important concerns. Authentication, encryption, trust
management, and intrusion and attack detection are important security mechanisms
that can prevent, detect, and mitigate such network attacks [26,104].

The cybersecurity threats to which the SG is exposed requires a multidisciplinary
approach, combining cryptography-advanced ML and information theoretic security
[105]. Using ML, the measurements are classified either as secure or attacked [106].
Although cryptography and ML are well-known concepts, information theoretic secu-
rity in SGs is a relatively new approach, which aims to quantify the information loss
sue to the attack, as well as the probability of attack detection.
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8.7 Conclusions

In this chapter, we have summarized the state-of-the-art in specific problems of SGs
that can be resolved using data analytics processing and exploitation, as well as the
proposed solutions, approaches, and concepts. More specifically, it has been rec-
ognized that data analytics can offer a feasible solution to efficient dynamic energy
management, failure detection, estimation of load, and price forecasting. It has been
highlighted that, in order to deal with the extreme size of data, the SG requires
the adoption of advanced data analytics, big data management, and powerful mon-
itoring techniques. We also presented a brief survey on the works that investigate
efficient smart meter data processing, such as avoidance of redundancies, dimension-
ality reduction, data summarization distributed and parallel processing, cloud-based
computing, and HPC. Finally, we have elaborated on challenging issues that are
related to privacy and security, which call for a multidisciplinary approach, combining
cryptography, advanced ML, and information theoretic security.
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Chapter 9

Internet of Things and big data recommender
systems to support Smart Grid

Mirjana Maksimović1 and Miodrag Forcan1

Since its appearance, the Internet of Things (IoT) has completely revolutionized
almost all aspects of our lives. Among present and potential numerous and diverse
applications of IoT, its utilization in the energy sector is of particular interest. The
IoT inclusion in the power industry and Smart Grid (SG) evolution opens a whole
world of high-potential opportunities to optimize the grid operation. The realization
of SGs utilizing smart metering technology or advanced metering infrastructure with
bidirectional IoT-based communication between demand and utility could improve
existing energy balancing procedures. Keeping energy consumption and supply in
balance with minimal operating costs and optimal grid conditions is not an easy task,
especially in presence of renewable energy sources. As the IoT is established on the
utilization of a large number of smart things/devices that generate a prodigious amount
of data on a daily basis, successfully managing big data represents a key issue. In
order to obtain valuable insights and knowledge from data gathered, the appliance of
big data analytics is demanded. Hence, effective analysis and utilization of a massive
amount of diversity of data that arrive at high speed and can be of uncertain provenance
are mandatory in the process of obtaining valuable insights and enable the creation
of knowledge-based recommender systems. Big data analytics applied to data gath-
ered from smart meters could be used to make valuable recommendations regarding
consumption prediction, demand response and management programs, voltage and
frequency control, state estimation, and power quality. The overall operation of SG
could be certainly optimized in various aspects by using large-scale near real-time
measurements. The general aim of this chapter is to provide an overview of ongoing
scientific research, recent technological innovations and breakthroughs, and big data
analytics role in making recommendation systems that will facilitate the development
and evolution of future global energy systems.

9.1 Introduction

The IoT paradigm is based on the Internet working “things” that are able to sense
the environment and collect, process, and analyze large quantities of data in order to

1Faculty of Electrical Engineering, University of East Sarajevo, Bosnia and Herzegovina
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perform actions of interest. It is a ubiquitous network which can connect anyone and
anything, anytime, at any place, ideally using any path and any service. Therefore,
IoT progress can be looked as a technological revolution which holds the poten-
tial to dramatically reshape and transform almost all the aspects of our lives. The
IoT evolution is accompanied by the rapidly increasing number of a wide range of
smart interconnected devices and systems. According to Cisco estimations, 50 billion
diverse devices will be connected to the Internet by 2020 [1]. Present Internet-aware
devices already produce huge amounts of a variety of data on a daily basis. Some pre-
dictions highlight that the volume of data produced by IoT devices will be 507.5 ZB
(1 zettabyte = 1 trillion gigabytes) of data per year or 42.3 ZB per month by 2019
[2]. An analysis of large volumes of fast generating diverse IoT data is essential for
achieving useful insights and knowledge on which basis appropriate decision can be
made and actions performed.

Just like numerous application areas, IoT implementation has also improved the
energy sector. A better balance between energy demand and energy supply can be
achieved by using energy network integrated with a large network of Information and
Communication Technology (ICT) which automatically monitors energy flows and
adjusts it to change. This network of billions of smart objects (smart appliances, smart
meters, actuators, sensors, etc.) is known as the Smart Grid (SG) [3,4]. It is forecasted
that SG in the future will be composed of micro-grid networks, connected to each
other via the Cloud, and be able to monitor, run, or disconnect themselves and heal
based on the data collected with smart metering devices [4,5]. It is anticipated that
by the end of the decade, the expected number of installed smart meters will reach
250 million in Europe, 150 million in the United States of America and Canada, and
400 million in China [6]. The increasing number of smart meters and other smart
devices in large SGs will create an enormous quantity of data and its management
poses several challenges such as reliability, security, and scalability.

Traditionally, processing, analyzing, and storing data from large-scale distributed
system, such as SG, are handled by the Cloud architecture [7]. However, transmitting
a large volume of complex data sets generated in SG to the Cloud causes problems
with the bandwidth demands, latency issues, and the amount of time. Data processing,
storage, and networking services at the edge of the Cloud, instead of routing it over
Cloud channels and enabling real-time decision without transmitting an amount of
data to the Cloud, are known as Fog computing [8]. Fog layer is a middle layer
between end devices and Cloud which collects data, stores and processes it locally,
and then transmits the outcome to the Cloud in order to store or perform in-depth data
analysis. With the assistance of accurate prediction algorithms, both better renewable
energy integration to the system and reduction of the amount of energy wasted, can be
achieved [9]. Hence, Fog infrastructure implementation in SG makes data processing
faster, reduces latency and the need for bandwidth, improves security and quality
of services (QoS), and provides reliability and location awareness in SG. Still, there
are numerous challenges for Fog computing implementation. They are mainly related
to the load balancing between edge devices and Cloud. The potential solution for
overcoming this problem is seen in Osmotic computing [10–12]. Osmotic computing
is a paradigm that enables decision where analytic tasks will be performed, with
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Cloud- or edge-based resource, and in such way balances load of resources, minimizes
latency, and maximizes throughput.

Irrespective of infrastructure implemented in SG vision, the constant analysis of
continually arriving data from smart meters and other smart devices in SG is manda-
tory. Historical analysis, real-time analysis, and predictive analytics naturally lead to
the development of recommender systems that, based on the performed analysis and
obtained knowledge and insights, make recommendations which appliance in partic-
ular cases significantly contribute to optimized SG work and its reliability. In other
words, the massive volumes of heterogeneous data collected in SG and its effective,
on-time, and precise analysis hold the potential to dramatically transform the energy
sector.

Therefore, this paper is an attempt to briefly present the inclusion of novel tech-
nologies, IoT and big data, particularly in the power sector. The second section is
devoted to the communication principles in IoT-supported SG while the power of
collection, analysis, and decision-making based on big data is discussed in Section
9.3. The attention of Section 9.4 is given to the development of recommender systems
in SG vision, with the emphasis on their potential utilization in load forecasting (LF),
renewable energy forecasting (REF), demand response (DR) and energy management
programs, and SG state estimation. The last section contains concluding remarks, and
directions of future work.

9.2 IoT-supported SG—a communication perspective

The technology development consequently leads to the modernization of the power
grid, at both the transmission levels and distribution levels, in order to provide a
reliable and sustainable supply of electricity but at the same time makes it affordable
[13]. The inclusion of smart devices, intelligent sensing, control, and communication
results in the realization of SG vision (Figure 9.1), which poses significant differences
compared to existing grid [14] (Figure 9.2).

The main building blocks of an SG infrastructure shown in Figure 9.1 can be
classified into three categories:

● Smart energy system—power grid, transmission grid, distribution grid, and micro-
grid;

● Smart information system—smart sensors, smart meters, phasor measurement
units (PMUs), and information metering and measurement;

● Smart communication system—communication networks (HAN, home area net-
work; LAN, local area network; BAN, business area network; NAN, neighborhood
area network; WAN, wide area network), and communication technologies (wired
and wireless).

A number of sensors and control devices, supported by dedicated communi-
cation infrastructure, are used in smart meters that play an important role in SG
vision [15]. Basic innovative features of these advanced energy meters are real-
time measurements, bidirectional communication with utility and house appliances,
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remote service disconnects, power outage notification, and power quality monitoring.
Besides conventional energy measurements, smart meters are capable of recording
and periodically transferring various electric variables such as frequency and har-
monic distortion. The smart meters offer several benefits to a customer, such as the
ability to estimate bills and hence manage their energy consumptions based on the
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gathered data. The collected information from SGs helps companies to realize real-
time pricing and optimize the power flows as well as limit the maximum electricity
consumption, with appropriate mechanisms remotely [15].

As SG is composed of smart meters, HANs, LANs, BANs, NANs, WANs, data
centers, and substation automation integration systems [7,16], it must be supported by
an integrated communications network and well-defined communications protocols.
Deployment of IoT technology in SG results in an immense smart network composed
of people and equipment that collaborate with the existing technologies and enable
dynamic and optimized monitoring and control based on fast and accurate information
exchange of the following [17,18]:

● temperature, humidity, air pressure, and other parameters of the electrical
equipment in power system;

● electrical parameters that monitor all network nodes in the power system;
● health state in power system;
● management information of technical personnel; and
● service condition of environmental protection equipment.

For the communication and exchange of such information, wired and wireless
technologies can be utilized, depending on various factors [18]. This communica-
tion is commonly split into two types of information flows: between smart meters
and IoT devices, sensors and home appliances, and between smart meters and utility
control centers [19]. Hence, communication depends on different types of networks.
In a case of access networks, a sensing information about the power grid device
states can be transmitted using short-range communication technologies (e.g. WiFi,
Bluetooth, or ZigBee), while in area networks are usually implemented machine
to machine (M2M), Cellular networks (2G, 3G, 4G), Ethernet, IP/MPLS (Internet
Protocol/Multiprotocol Label Switching) approach is implemented in the core net-
work, while the backbone network includes both wired and wireless point-to-point
and point-to-multipoint broadband systems, fiber and microwave systems [20,21].
In other words, wide area communication technologies that can be implemented
in IoT-supported SG vision are IP-based Internet, power line carrier (PLC), opti-
cal fiber composite low-voltage cable (OPLC), power information wireless network,
public 2G/3G/4G mobile communication network, Time-Division Long-Term Evo-
lution (TD-LTE) 4G network, and satellite communication network [22]. In the case
of Fog-assisted SG, it is important to keep in mind that implementation of Fog com-
puting means that most of the functions of data processing are executed out from
the Cloud. Therefore, a reliable and efficient communication system is mandatory in
order to get a robust, affordable, and secure power supply through SG. Fog infras-
tructure in SG supports real-time two-way communication flows between utilities
and consumers, enabling at the same time customers access to their own applications
at any time, through a device connected to the edge of the network [8]. Authors of
[7] proposed a model that follows a three-tier architecture, i.e. smart meters, Fog
servers, and the traditional Cloud (Figure 9.3), while four types of communication
are performed among tiers, i.e. smart device to smart device, smart device to Fog
server, Fog server to Fog server, and Fog server to Cloud server. For instance, the
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smart device can communicate with each other using ZigBee, USB, or Bluetooth,
while smart device and Fog server can communicate through Ethernet. Furthermore,
connecting Fog server to the Internet, through WiFi or General Packet Radio Service
(GPRS), enables the user to perform monitoring and controlling actions locally or
remotely through the Internet [23].

During literature research, we have not found papers that implement Osmotic
computing paradigm in SG. However, we believe that the inclusion of Osmotic com-
puting and IoT symbiosis in SG holds the potential to completely revolutionize energy
sector. The idea of Osmotic computing is established on the well-known principle of
osmosis [11]. For instance, the implementation of Osmotic computing at the Fog
servers as shown in Figure 9.3 makes this Fog layer a place where decisions when,
where (to a Cloud data center or Edge resource), and how to move micro-services
across different computing infrastructures are being made. In other words, displace-
ment of services is performed within Cloud data centers and Edge resources in such
way that lightweight micro-services are deployed at the Edge devices while more com-
plex micro-services are deployed at the Cloud data centers. This leads to balancing a
load and resource utilization, what is of immense importance.

Reduction of both energy consumption and CO2 emissions in SG can be also
achieved through the implementation of green technologies. Green SG (G-SG) is
a new vision that includes green communication and green computing technolo-
gies implementations in SG alongside green power resources integration into the
energy distribution system, control power usage, and balance energy load [7]. The
next-generation SG will be highly automated and IoT based, allowing variable and
decentralized energy generation, storage, and distribution, as well as facilitating dis-
tributed and renewable energy sources [5]. ICT-enabled solutions are able to better
incorporate green and renewable energy sources into the grid, making G-SG vision
more present. Self-healing and autonomous system, environmental protection, high
reliability and quality, security, and optimized asset utilization and minimized cost
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are the fundamental characteristic of G-SG [24,25]. Having in mind that the most
energy is spent during communication and that IoT devices, including smart meters,
are energy-limited, the deployment of green communication and the system model
in IoT has been a core challenging issue [26]. Consequently, the realization of G-SG
vision requires the utilization of green communication techniques. Fog infrastruc-
ture significantly contributes to the realization of green communication principles
in G-IoT-supported SG. The primary focus on green communication technology
is in decreasing energy consumption and CO2 transmission in communication and
networking device. Evolving communications architectures, green wireless commu-
nication, energy-efficient routing, relay selection strategies for green communication,
energy efficient packet forwarding, and networking games are the main research
points of interest in green communication technology. The utilization of G-SG com-
munications leads to decreased energy use and reduced emission in SG products
and services, and consequently reduced carbon footprint in other industries, such as
networks powered by the SG. More efficient energy usage and better integration of
alternative energy sources into the power grid consequently lead to economic growth
without damaging the environment.

9.3 Big data in SG

The realization of IoT-supported SG is based on the utilization of a large number of
smart metering devices and various sensors that produce a great quantity of high-
dimensional, dynamic, and heterogeneous data. These data must be treated in an
appropriate manner in order to gain benefits of IoT-supported SG systems, which
implies the requirement for a successful data management. In order to obtain valu-
able insights and knowledge, the data have to be collected, processed, and analyzed,
which makes dealing with the complex nature of the data (usually described with 5
Vs—volume, velocity, variety, value, and veracity), significant storage capacity, and
utilization of advanced data analytics main demands for an effective data manage-
ment system [21]. In the modern approaches, the solution can be found in the big
data techniques that enable advanced and efficient management of large amounts of
diverse types of data that need more real-time analysis. The successful SG data man-
agement contributes to better understanding the numerous aspects of SG and whole
energy sector through the information regarding energy conservation, consumption
and demand, power failures, customer behavior, etc. In other words, based on the
knowledge and insights gained from collected, processed, and analyzed data, the big
data recommender systems for providing relevant and effective recommendations can
be developed followed by certain decision-making and action execution. In this way,
IoT and big data enable the modernization of the traditional power grid enabling
feedback data about the energy demanded, consumed and delivered, recommenda-
tions regarding most suitable tariffs for customers, the adjusting electricity needs in
a facility on a daily basis, and at the end leading to general optimizations over how
the energy is managed and consumed.

Before computing recommendation models, there are certain steps that have to be
performed and include five phases of big data life cycle: data sources, data integration,
data storage, data analysis, and data visualization.
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The precondition for efficient data management is the quality and reliability
of the data collected from various sources, such as smart meters, sensory devices,
substations, mobile data terminals, distributed energy resources (DERs), customer
devices, and historical data (Figure 9.4) [21]. These various sources, according to
[21], generate distinct data classes, such as operational data (e.g. the data regarding
real and reactive power flows, DR capacity, and voltage), nonoperational data (e.g.
data related to power quality and reliability), meter usage data (e.g. data associated to
power usage), event message data (e.g. voltage loss/restoration data and fault detection
event data), and metadata that is used to describe any other kind of data. Hence, the big
data in SG is diverse and includes data related to power utilization habits of users, data
from PMU for situational awareness, data from energy consumption measured by the
widespread smart meters, energy market pricing and bidding data collected by auto-
mated revenue metering system, data from management, control, and maintenance of
device and equipment in the electric power generation, transmission, and distribution
in the grid, and operational data for running utilities, like financial data and large data
sets, not directly obtained through the SG measurement, but used in decision-making,
like weather data or geographical information system (GIS) data [6,27].

All these data, after collection, have to be integrated, usually implementing some
of software architectures (Figure 9.4) such as service-oriented architecture (SOA),
which enables data integration and information exchange seamless (essentially used
on demand systems) [28–30], Enterprise Service Bus (ESB) for interconnecting
devices and systems of very different capabilities alongside reduced cost and time
effort associated with an integration [21,30], Common Information Model (CIM) as
an integration framework that refers to the integration of applications in an energy
management system accompanied with the reduced latency and expenses [31,32],
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and messaging platforms that represent communication systems based on exchang-
ing messages (data and other information from different applications managed by
messaging server) [21,33].

Another step is data storage that is of crucial interest since SG is a source of
complex data, generated in massive amounts and high velocity and quite often with
the demand for fast responses. The data have to be systematically stored and be avail-
able for retrieving, processing, and analysis either immediately or later. The detailed
analysis of database systems, modern database management technologies, and their
applications in SG is presented in [34]. Among various types of big data databases,
such as in-memory or main memory databases, object-oriented database management
systems, time-series database servers, and spatial and GIS-based databases [35], it is
important to highlight the following two storage mechanisms, mostly applied to SG
applications:

1. Distributed File System that allows multiple users and applications to share data
and storage, enabling every user to get a local copy of the stored data on their
own computer [21,36].

2. Not Only Structured Query Language (NoSQL) databases, relying on a key-value
store approach to data storage and lookup, are useful when working with a huge
quantity of data and when the data’s nature does not require a relational model
[34,37,38]. Some of the most known NoSQL database types are the Key Value
Pairs, Column-based, Document-based, and Graph-based databases [39].

Regarding big data processing, it can be performed in several ways: batch pro-
cessing, which is performed in a period of time and suitable for static and non-real-time
applications of IoT-supported SG systems (e.g. weather forecasting), stream process-
ing used for real-time applications (e.g. online monitoring, self-healing, and fraud
detection), and hybrid processing that can handle both batch and real-time processing
[19,21].

Having in mind that latency requirements are an important aspect of energy
management system [32] (Table 9.1), sending and storing all data on the Cloud does
not seem as the most adequate solution.

Posting data on the Cloud and transmitting response data back requires a larger
bandwidth and a considerable amount of time, can suffer from latency issues, and is
not tolerable in cases when there is a need for fast reactions. Instead, carrying out
miniature data analysis centers closer to the place where data are being produced
reduces greatly the quantity of data being transmitted to and from Cloud, and seems
a far better approach, especially for large-scale distributed control systems such as
SG, where on-time information can improve the efficiency, reliability, and security
of energy management. This approach is known as Fog computing and supports
decentralized and intelligent processing, and posts only obtained results to the Cloud
for further analysis and storage (Figure 9.3) [43]. In this way, Fog computing has
successfully dealt with congestion and latency issues, enabling real-time and online
analytic even in the event of loss of connectivity or poor connection with the Cloud.
Hence, even Cloud computing solves many problems related to big data management
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Table 9.1 Requirements of SG applications [40–42]

Application Security Bandwidth Reliability Latency

Substation automation High 9.6–56 kbps 99.0–99.99% 15–200 ms
Overhead transmission High 9.6–56 kbps 99.0–99.99% 15–200 ms
line monitoring
Home energy management High 9.6–56 kbps 99.0–99.99% 300–2,000 ms
(HEM)
Advanced metering High 10–100 kbps per node, 99.0–99.99% 2,000 ms
infrastructure (AMI) 500 kbps for backhaul
Wide-area situational High 600–1,500 kbps 99.0–99.99% 15–200 ms
awareness
(WASA) systems
DR management High 14–100 kbps 99.0% 500 ms-

per node several min
Outage management High 56 kbps 99.0% 2,000 ms
Distribution automation High 9.6–56 kbps 99.0–99.99% 20–200 ms
Distribution management High 9.6–100 kbps 99.0–99.99% 100 ms to 2 s
Asset management High 56 kbps 99.0% 2,000 ms
Meter data management High 56 kbps 99.0% 2,000 ms
DERs and storage High 9.6–56 kbps 99.0–99.99% 300 ms to 2 s
Vehicle-to-Grid (V2G) High 9.6–56 kbps 99.0–99.99% 2 s to 5 min
technology
Electrical vehicles charging High 9.6–56 kbps 99.0–99.99% 2 s to 5 min

for SG [18], the Fog computing poses numerous advantages compared to traditional
Cloud computing utilization in SG [7]:

● The Fog layer splits big data to sub-data that is easier to handle, and hence it
simplifies extracting key data when handling with big data.

● Scalable real-time services enable customers to monitor electricity usage informa-
tion in almost real time. SG empowered with the Fog infrastructure offers detailed
information to its customers with a low latency while reducing the amount of the
data. Clients can supervise and analyze their daily/weekly/monthly electric use.

● The faster reaction time and less congestion possibility and fewer problems with
connectivity loss are a few advantages.

● Fault-tolerant and consistent services are an advantage.
● It provides enhanced data privacy through separating the public and private

data.
● Geographically distributed Fog services in the SG enhance locality awareness and

reduce response time issues.
● It’s supported with a large number of nodes, heterogeneity and mobility support,

and wireless access.

Authors of [8] have classified Fog-based SG issues able to handle with large
quantities of data into three classes: energy management, information management,
and security.
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Implementation of Osmotic computing paradigm at the Fog layer will undoubt-
edly lead to improved outcomes. Osmotic computing enables distribution, manage-
ment, and execution of data tasks across any available Cloud data center and Edge
devices and therefore contributes to faster and nonredundant computation and load
balancing.

In order to perform the environmentally aware utilization of ICT equipment and
related resources in SG, it is necessary to implement green computing principles. As a
highly virtualized platform accompanied with storage consolidations, Fog computing
can be considered as a green computing paradigm to support IoT applications [44],
thereby presenting a great potential in realizing the G-SG vision.

To make grids smart, efficient, and gainful, collected and stored data must be pro-
cessed so that certain insights and knowledge can be obtained. There are various kinds
of analytics in SGs, such as signal analytics (e.g. sensor signals, substation, and line
sensor waveforms), event analytics (e.g. detection, classification, filtering, and cor-
relation), state analytics (e.g. system identification, grid topology, and electrical state
in real time), engineering operations analytics (e.g. system performance, operational
effectiveness, load trends, and forecasts), and customer analytics (e.g. customer seg-
mentation, demand profiles and responses, and diversion analytics) (Figure 9.4) [21].
Data analytics holds a potential to contribute to improved efficiency and reliability of
power grids, increased consumer satisfaction, better capital spend, and reduced cost.

Several models, such as descriptive, diagnostic, predictive, and prescriptive mod-
els describe an operational side of the grid and can combine the various kinds of the
previous analytics classes, depending on the business goals. While descriptive models
describe customers’ behaviors that can be performed using a variety of data mining
techniques (e.g. frequent pattern mining, classification, clustering, association rule
mining, regression, and outlier detection), diagnostic models help to understand cus-
tomers’ behaviors and to analyze their decisions [21]. Before applying some of the
traditional data mining techniques or new distributed data mining, data stream min-
ing, or time-series data mining that are most relevant to the SG, it is compulsory to
perform cleanup, integration, and reduction of the data alongside data transformation
and discretization. Literature reviews show a number of data mining applications for
power generation, transmission, distribution, and utilization [34]. These activities are
a precondition for making predictive models of customers’decisions in the future with
the help of statistical models or forecast techniques. A prescriptive model, implement-
ing machine learning, business rules, or computational modeling procedures, affects
marketing, engagement strategies, and the decisions to make [21,35].

Data visualization is of immense importance as it improves the assessment of
SG through the visualization of historical information, geographical visualization, or
a sort of visualization techniques that enable the 2D and the 3D visualization that
can be utilized for the SG purposes. The visualization technologies can be used for
real-time monitoring of power system status and intuitively and accurately present a
clear picture of the current status of the SG, identifying potential relationships and
patterns in SG [13,27].

All the five discussed phases of big data life cycle are affected by data transmis-
sion. Hence, a key requirement of SG is to enable high performance and advanced
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communication capabilities for bidirectional data flows (e.g., high bandwidth capacity
and rate, high-level of security and privacy) [33].

9.4 Making recommendations in SG

The lack of efficient monitoring, fault diagnostic, and automation techniques are the
main causes of unreliability in the traditional power grids. Compared to these grids,
where dynamic energy management is being employed, energy management systems
in SGs involve real-time wide-area situational awareness (WASA) of grid status with
the help of advanced metering and monitoring systems, consumers’ participation
through HEMs, DR algorithms, Vehicle-to-Grid (V2G) technology, and supervisory
control through computer-based systems [45]. The evolution of SG technology con-
tributes to more secure, reliable, efficient, flexible, and sustainable power systems.
This is achieved by developing and integrating intelligent algorithms for information
collection and processing, which enables automated control over the power grid. In
the case when natural accidents or catastrophes occur, it is of essential interest to real-
ize a reliable and real-time monitoring and ensure real-time responses, so that power
disturbance and outage can be prevented [46]. This implies the necessity of building
a recommender system that uses different sources of data and is capable of dealing
with the continuously arriving newest data in order to enable the recommendations to
the user very fast. With the technology advancements, the accuracy of predictions and
recommendations of such system have raised. However, they try to balance among
accuracy, novelty, dispersity, and stability in the recommendations [47]. The most
common methods used in recommender systems are based on filtering techniques
such as collaborative filtering that enable the creation of recommendations based on
experience and existing knowledge, content-based filtering (making recommenda-
tions based on context analysis), and hybrid filtering (recommendations are made
through different known technologies) (Figure 9.5) [47,48].

The increasing use of mobile devices and the development of IoT lead to the
evolution of location-aware collaboration filtering and location-aware recommender
systems. However, the choice of recommender system type depends on numerous
factors: the type of data stored in a database, the implemented filter algorithm, the
chosen model (memory based or model based), the used techniques (e.g. probabilis-
tic approaches, fuzzy networks, Bayesian networks, nearest-neighbors algorithm,
neural networks, and singular-value decomposition techniques), scalability, system
performance, the desired QoS, and demanded objectives. The evaluation of recom-
mender systems can be executed through prediction metrics such as accuracy and
coverage (e.g., mean absolute error (MAE), root of mean square error (RMSE),
normalized MAE (NMAE)), recommendation metrics (e.g. Precision, Recall, and
Receiver Operating Characteristic), rank recommendation metrics (e.g. the half-life
and the discounted cumulative gain), and diversity metrics (e.g. the diversity and the
novelty of the recommended items) [47,48].

In order to improve the quality of recommender systems’ predictions and rec-
ommendations, current and future research is focused on a proper combination of
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existing recommendation methods that use various types of data, together with the
development of novel data mining techniques and evaluation measures and flexi-
ble frameworks for automated analysis of diverse data. In addition, the evolution of
new recommender systems involves the maximum use of smart IoT devices and sen-
sors potential, enabling security and privacy as well as current trends related to the
customers’ habits [47].

Efficient data analysis, using a variety of algorithms and data mining techniques,
has a tremendous influence on decision-making processes (e.g. determination of the
optimal energy resources scheduling, setting of the power prices) and hence is of
essential interest for the optimized SG work and its reliability. As an important part
of recommender systems for SG, predictive analytics and load classification are cru-
cial in order to predict load and hence give some recommendations regarding the
energy consumption, optimal energy resources scheduling, energy production level
adjustments, and setting of the power prices and maximizing return on investment
for SG infrastructure. Several factors such as weather, time of the day, electricity
prices, GIS data, sources of renewable energy, DRs, and storage cells affect the elec-
tricity demand and renewable production in the SG [45]. The aim of the forecast
analytics and recommender system in SG is to save energy and money through the
predictions of power demands and costs. This is of particular interest in the case when
there is available a small quantity of historical data or when some rapid and dramatic
changes can happen when prediction and prevention of future incidents are immensely
important [35]. There is a wide scope of electricity forecasting methods, with differ-
ent complexity and estimation procedures. However, every forecasting method should
pose next several performances: objectivity, validity, reliability, accuracy, confidence,
and sensitivity. Some of forecasting methods used in electricity demand forecasting
are fuzzy logic, neural networks, multiple regression, and knowledge-based expert
systems [49]. Evidently, a large amount of reliable and quality data contributes to bet-
ter short- to long-term predictions and more accurate recommendations. The most
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important aspects of SG where forecasting and making recommendations are of
immense importance are presented in the rest of the paper.

9.4.1 Load forecasting

The most important activity in the planning of power production is short-term LF
(STLF)—demand prediction for the next few hours up to one week. Based on STLF,
several important power system operations are performed: generating unit commit-
ment, load shedding, spinning reserve scheduling, determination of transfer capability
and stability margins, etc. [50]. Conventional STLF methods use mathematical and
statistical load models (parametric methods), load historical data (nonparametric
methods) and artificial neural networks (ANNs) load models (ANN methods) [51].
Forecasters mainly use historical load (hourly averaged), weather, and time data
to establish load models and predict future variations. In deregulated power sys-
tems, very STLF (VSTLF)—demand prediction for the next few minutes—enables
load-frequency control and economic dispatching functions [52]. Forecasters perform
extrapolation of recently measured data to the nearest future.

According to [53], a load can be classified as deterministic, weather-independent,
weather-dependent, and remaining (error component). VSTLF of weather-dependent
load component can be very challenging due to an uncertainty of input data. Input
data certainty can be improved by using real-time and more accurate measurements
of load and weather variables. The ultimate goal is to achieve reliable real-time LF
(RTLF) in modern SG. Powerful sensor networks are required for fast and reliable
measurements of power demand and weather variables in real time [54].

Unlike conventional supervisory control and data acquisition system (SCADA),
limited with the number of installed remote terminal units (RTUs) and communication
latency, smart metering architecture with IoT communication technology seems to
be promising for future SG. The application of IoT would lead to more precise and
reliable RTLF. A simple diagram of IoT-based RTLF in future SG is presented in
Figure 9.6.

Reliability of RTLF also depends on a number of significant input variables.
Weather-dependent load variations are affected by air temperature, precipitation, wind
speed and direction, humidity, pressure, etc. A larger number of significant input
variables provide more accurate RTLF, but also require a large number of sensors,
huge communication traffic support, complex computing ability and training of the
ANN, expensive physical and cyber security systems, huge data analytics, etc. RTLF
based on IoT would require reliable, fast computation and small communication
latency. The implementation of Fog computing principles in SG holds a potential to
contribute to solving latency-related issues. The big data recommender system can be
used for processing of huge data related to load and weather variables. In the absence
of a cluster or super computers, the time complexity problem can be solved by using
parallel processing based on particle swarm optimization algorithm and/or designing
small ANNs [51].

There are relatively new interesting papers dealing with IoT applications for LF.
In [51], authors introduce IoT-based LF, where weather data at a given location is



IoT and big data recommender systems to support Smart Grid 159

Smart
meters

Fast wired/wireless communication
minute-by-minute observations

minute-by-minute observations

Online
weather maps

Recent and
historical load data

Recent and historical
weather data

Big data analytics - ANN
based computing algorithms

Forecasted load application in
Smart Grid

Forecasted
weather data

Figure 9.6 IoT-based RTLF in future SG

collected from Internet. An IoT-based deep learning system to automatically extract
features from the captured data and, ultimately, give an accurate estimation of future
load is recommended in [55]. The proposed method is compared to some existing
approaches, and significant advantages are illustrated.

9.4.2 Renewable energy forecasting

Future SG concept includes real-time REF (RTREF) beside RTLF in order to achieve
optimal economic dispatching functions. Both solar and wind plants require backup
ancillary power generation for periods with highly variable weather conditions (sud-
den wind power deficit and fast movement of Clouds covering the sun represent the
most critical conditions for dispatching). A special analysis is required to determine
the impact and cost benefits of energy storage systems in economic dispatching. With
the aim to efficiently reduce backup operational costs fast, precise and reliable RTREF
methods are necessary. Modern telecommunication networks with low latency need
to provide qualitative data transfer from remote sensors to control centers in SG.

Nonlinear and chaotic effect of Cloud motion on solar irradiance at the ground
level represents the key issue for real-time solar energy forecasting (RTSEF) [56]. The
intermittent nature of wind makes forecasting of its speed and power very challenging
[57]. All methods for REF are based either on deterministic or statistical approach. For
real-time applications, statistical methods using historical data and based on artificial
intelligence are preferred. To achieve precise prediction in a variation of variables
such as solar irradiation, ambient temperature, wind speed and power, etc., in the
nearest future (few minutes up to an hour), high-speed sensors for intra-minute dis-
patching of data to high-performance computers are required. A typical example is
intra-minute solar irradiance forecasting using wireless sensor networks (WSNs) pro-
posed in [58]. WSNs and IoT communication technology have the potential to enable
the development of the new, intra-minute, low-cost, and very accurate methods for
RTREF. RTREF approaches based on ANN algorithms using readings of significant
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Figure 9.7 Typical daily consumption diagram in power system

weather variables from recent past would be of great benefit to economic dispatching
in the modern deregulated market.

Currently, there is no scientific information publicly available about IoT-based
REF systems, but it is known that companies such as Hitachi use IoT, big data analyt-
ics, and machine learning to make it more predictable and secure to forecast energy
generation and delivery [59].

9.4.3 DR and energy management program

DR implies manipulation of end-use customers’ power consumption with the main
goal to reduce operating costs and optimize network conditions. Meeting of standard
peaks and occasional spikes in consumption are the main tasks of utility. By utilizing
DR strategy instead of adding extra generation capabilities, significant cost reductions
could be achieved. DR could be classified into three types according to application
purpose: emergency DR, economic DR, and ancillary services DR. Emergency DR
is mainly used to improve system reliability in the case of generating unit failures.
Economic DR often implies the introduction of the near real-time pricing system to
motivate dynamic consumption changes convenient for reducing peak power demand,
as shown in Figure 9.7. Ancillary services DR is defined as the employment of variable
consumption for implementation of special power system services, such as reactive
power and voltage control, frequency control, and system protection.

Residential, commercial, and industrial customers all could take place in DR
strategy through bidirectional communication with utility enabled by smart metering
technology. A number of customers with local energy production from renewable
sources and storage capabilities are increasing every day. It is a very complicated
task for customers to alternately use energy from the network and renewable sources
to achieve efficiency and simultaneously participate in DR programs. As a part of
demand side management (DSM) programs, complex algorithms must be created for
efficient control of modern consumption. DR and energy management program based
on smart metering technology in future SG is illustrated in Figure 9.8. The program is
designed to utilize wireless local and wide area communication networks to establish
IoT concept.
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According to IoT-based program in Figure 9.8, network operator would be able
to remotely decrease consumption in the period of peak demand by sending deter-
mined pricing information to customers or even to directly manipulate consumption
to the level of even individual house appliances. Additionally, available renewable
energy can be stored in the period of low demand and again used in the period of
peak demand by the remote instructions from a network operator. In order to support
such sophisticated control, high-speed IoT communication network is required along
with fast and efficient algorithms containing multiple tariff schemes. Powerful com-
putational resources are needed to analyze big data in short-time frames at operating
center level.

An interesting algorithm for smart direct load control and load shedding is intro-
duced in [60]. The presented approach relies on IoT to provide real-time load control,
based on their demands, comfort, and the forecasted load model. This research can
be used as a role model for future in-depth analysis of IoT-based DR.

9.4.3.1 Home demand management
Future smart households will be equipped with a local energy management program
integrated into smart meters and designed to control individual appliances and stored
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energy from local renewables. The household consumption scheduling can be defined
as linear optimization problem [61]:

min
L,xa,h∈R

L (9.1)

where L is the peak hourly load and xa,h represents the power demand of appliance a
in the particular hour h. The corresponding cost function is to minimize the hourly
load L subject to the following constraints:

∑

a∈A

xa,h ≤ L, ∀h ∈ H (9.2)

ITxa = la, ∀a ∈ A (9.3)

xa,h ≥ 0 (9.4)

where I = [1,1, …, 1]T. a is defined as individual appliance in a set of appliances A.
h ∈ H, H ∈ [1,2, …, 24], represents the particular hour of the day. In every hour, load
should be greater than or equal to the sum of the scheduled power for all appliances.
According to (9.3), daily supply for each appliance has to meet the constraint la.

As appliances are classified as power shiftable and non-shiftable, additional
constraints are added:

xa,h ≥ δa, ∀h ∈ Hop (9.5)

αa ≤ xa,h ≤ βa, ∀h ∈ Hop (9.6)

where δa is fixed hourly power requirement of power non-shiftable appliances. αa and
βa are standby power and maximum working power of power shiftable appliances,
respectively. Hop is hourly based operating time. Additional constraints are required
to account time-shiftable appliances with specific consumption patterns [61].

In modern future households, local renewable energy production will be an
important part of the DSM programs. Previously described household consumption
scheduling optimization problem needs to be extended to account renewable energy
production and storage. DSM for residential customers with renewables is conceptu-
alized in [62]. High-speed communication networks will allow shorter time frames for
home demand management (HDM) (minute-based scheduling). Thousands of local
DSM algorithms operated on the users’ smart meters will send huge amounts of data
every minute to central DR algorithms at the power system level.

9.4.4 SG state estimation

Electrical network state is determined by complex bus voltages’ values, from which
all complex power flows and injections can be calculated. Power system safe oper-
ation depends on the accurate knowledge of the electrical quantities in the grid
[63]. State estimation algorithms use network topology data, power system elements
data, available measurements, and pseudo-measurements (measurements from the



IoT and big data recommender systems to support Smart Grid 163

past). Computation is traditionally done by the least square solution to the following
equation (more measurements than states):

y = Ax + ε (9.7)

where y and x are vectors of measurements and state, respectively. A is a matrix with
more rows than columns and ε represents a vector of measurement errors.

The solution of the optimization problem is to find an estimate that minimizes
errors:

xe = (ATA)−1ATy (9.8)

When more information about the errors ε is known, weighted least squared method
is used. In the case of nonlinear functionality between measurements and states,
nonlinear weighted least squared method based on recursive minimization is used.

Nowadays, state estimation is mainly calculated for high-voltage transmission
networks by network operators and rarely in distribution networks (DNs) due to lack
of measurement units. Observability of transmission networks is significantly higher
when compared to DNs. However, modern DN is rapidly evolving because of the
growing presence of DERs, including small-scale generators, electric vehicles, and
new high efficiency residential and commercial appliances [64]. While the evolution-
ary process is taking place, significance and observability of the DNs is increasing
and state estimation is becoming more important for the concept of SG.

Prior to PMU application, state estimation algorithms relied on unsynchronized
data measurements delivered from RTU by utilizing SCADA system. Power system
state was considered as static between two successive scans. Modern PMUs have a
high reporting rate (RR), and with corresponding communication, infrastructure scans
could be performed near real time. PMUs introduce the new idea of the dynamic state
estimation capable of tracking even power system transients. PMU measurements
are available as often as every cycle or two (20–40 ms) and counting communication
delays of a few hundred milliseconds leaves dynamic estimation imaginable in future
[65]. Basic communication requirements for power systems related to data transfer
delays are presented in Table 9.2.

Table 9.2 Communication requirements for power systems [66]

Performance Data transfer time Service examples
class threshold (ms)

TT0 >1,000 Files, events, log contents, SCADA
TT1 1,000 Events, alarms
TT2 500 Operator commands
TT3 100 Slow automatic interactions
TT4 20 Fast automatic interactions
TT5 10 Releases, status changes
TT6 3 Trips, blockings
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9.4.4.1 Communication architectures for PMU-based DSSE
In most current applications, phasor data are used remotely, and corresponding
communication network is required. Typical and generally accepted communication
architecture for wide area measurement (WAM) is of vertical hierarchy type and it is
presented in Figure 9.9.

It can be seen in Figure 9.9 that conventional communication architecture for
PMU-based WAM system consists of three layers: DN, phasor data concentrator
(PDC), and super data concentrator. DN layer represents physical PMU devices con-
nected to current and voltage transformers in substations, measuring phase currents,
bus voltage, frequency, rate of change of frequency (ROCOF), etc. PMUs receive the
referent time stamp (pulse) signals from Global Positioning System (GPS) satellites
every second with coincidence error lower than 1 μs. The next level communication
layer consists of regionally placed PDCs. PDCs align received PMU signals in the
same time frame with high accuracy. Aggregated and time-tagged data is then sent to
the application layer or super data concentrator which is responsible for distribution
system state estimation (DSSE). The typical communication medium is fiber optic
technology.

Cloud-based IoT communication for DSSE is recently proposed in [67]. Cor-
responding PMU-based WAM system communication architecture is presented in
Figure 9.10. The new concept of WAM is based on virtualization of the PMUs,
context-awareness at the PMUs, and Cloud-IoT-based DSSE application [68].

Unlike conventional communication architecture (Figure 9.9), the new one (Fig-
ure 9.10) consists of four layers: DN (PMUs), virtual objects (VOs), composite VOs
(CVOs), and Cloud-based application. The first layer is the same as in the case of
conventional communication architecture. The key point of virtualization layer is
the creation of digital counterparts of real PMUs in IoT (VOs), which enables a
higher level of an object’s context awareness. Instead of PDC technology, CVOs are
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introduced in the third layer to enhance decentralized communication. Unlike PDCs,
many CVOs can receive data from the same VOs, and mutual communication is estab-
lished. DSSE is performed in the Cloud at the top-level application layer. The most
common local communication medium between PMUs and corresponding VOs is
fiber optic cabling, while CVOs and VOs communicate utilizing HTTP GET/POST
commands.

9.4.4.2 Big data of dynamic Cloud-based DSSE
Real-time dynamic DSSE represents the ultimate goal of SG concept. The RR of
PMUs can be as fast as 50 f/s (frames per second). In SG normal operating state,
typical high-speed PMU RR is second-based, e.g. 1 f/s. With thousands of anticipated
PMUs in SG, typical RR would already produce huge amounts of data to be trans-
ferred, computed, and stored. In order to capture transient operation in SG, minimum
RR needs to be 50 f/s, which is 50 times more data than in the case of the nor-
mal state. By utilizing powerful Cloud computational resources, modern high-speed
DSSE algorithms can solve (9.7) in less than 10 ms. Cloud technology is also capable
of storing thousands of gigabytes of desired DSSE resulting data. The main problem
in the handling of dynamic big data is communication network capability—latency
and channel bandwidth. These issues can be successfully overcome with the imple-
mentation of Fog infrastructure. Authors of [68] and [69] propose the introduction of
adaptive DSSE and LAN communication between CVOs and VOs for solving channel
bandwidth problem. Due to communication latency, measurements from PMUs will
be available for computing with a delay of few hundreds of milliseconds. According
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to data in Table 9.2, communication requirements for alarms, events reporting, and
operator commands would be fulfilled.

9.4.4.3 Application benefits of dynamic DSSE
More precise and efficient DSSE would be achieved by increasing observability of
the SG through placing PMUs in almost every network node. Dynamic DSSE based
on IoT concept has potential to enable proper operational reactions in case of fast-
paced changes in the electric grid. With increasing presence of DERs, SG operation
is becoming more dynamic, which requires up-to-date DSSE with a proper RR of
PMUs. The power production of DERs could be very variable in time with significant
impact on power flows in SG. Capturing of fine-resolution power flow data could
reveal near real-time voltage state in SG and enable fast operational action involving
voltage regulators. More frequent data related to reactive power flows in SG would
lead to more efficient remote control of compensation devices. High-speed power
quality estimation in SG relying on voltage, frequency, and ROCOF measurements
would enable more efficient reaction.

9.5 Conclusion

The rapid technological advancements in ICTs have the tremendous influence on all
aspects of our lives. The power sector, as an important part of socioeconomic devel-
opment, did not remain immune to innovative technologies. The future of energy
and power sector consists in SGs, and evolution depends on the development of well-
defined ICT solutions. Novel concepts and approaches, mainly the utilization of smart
devices, sensors, and smart meters, IoT vision, and big data, have led to the realization
of SGs that compared to the traditional power grids enable dynamic and optimized
management and control of the energy demanded, consumed, and delivered. The
inclusion of G-IoT concepts and Fog infrastructure in SG vision holds a potential to
completely revolutionize the power sector. The main benefits of these approaches are
significant energy savings and reduced negative impacts on the environment. As SGs
consist of numerous smart devices (sensors and meters), they represent a source of
voluminous, heterogeneous, and fast-generated data. The availability and accessibil-
ity of such data generated in SGs contribute to more efficient energy management
through the use of appropriate recommendation techniques and systems. Hence, with
the help of a variety of data mining techniques and artificial intelligence, the data can
be processed and analyzed in appropriate manners leading to the extraction of valu-
able knowledge and insights. On this way, adequate recommender systems that enable
consumption predictions, the selection of the most suitable tariffs and adjustment of
electricity needs, reduction of outages, etc., can be created. The inclusion of Osmotic
computing at the Fog servers will contribute to more optimal load balancing and
resource utilization. Depending of application scenario and data tasks that have to be
performed, Osmotic computing will enable distribution, management, and execution
of those tasks at the edge devices or within Cloud data centers. Hence, the recommen-
dation can be made much faster and certain actions can be performed in real time.
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This chapter examines the importance of IoT and big data in the development
of recommender systems for SGs. It has been shown that the involvement of novel
technologies contributes to improvements in LF, REF, DR, and energy management
programs as well as SG state estimation. Smart meters and PMUs have been identified
as key elements in the future SG infrastructure. Application of the IoT concept as basic
communication technology certainly represents an efficient solution for collecting
and managing huge amounts of data necessary for power system operator activities.
Further technological advancement related to bandwidth and latency has potential to
enable new application areas. As a result of more up-to-date measurements available,
advanced algorithms will be based on selected information provided by big data
recommender systems. Hence, the development of recommender systems leads to the
general optimizations over how the energy is managed and consequently contributes
to the immense improvements in the power sector, making it more secure, reliable,
efficient, flexible, and sustainable than ever before.

Nevertheless, on the way of most effective use of the IoT (G-IoT), big data tech-
niques, Cloud/Fog/Edge, and Osmotic computing in the energy sector are numerous
challenges. Some of them are related to data aggregation and distribution strategies,
handling and management of a variety of types and range of services, resource orches-
tration, data mining techniques, energy conservation, privacy and security issues, QoS
demands, etc.

Our future research will address selected issues and limits in existing sensor
and communication networks applied in conventional power grids with the aim to
highlight practical and economically justified solutions based on IoT. We also plan
to propose big data recommender systems specialized for certain sets of algorithms
with potential to be used by future SG operators. As Osmotic computing and G-IoT
symbiotic approach promises to deal successfully with present challenges related to
load balancing, latency, and bandwidth issues, their utilization in SGs will be the
direction of our future work.
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Chapter 10

Recommendation techniques and their
applications to the delivery of an online

bibliotherapy
Yunxing Xin1 and Ling Feng1

With the rapid progress of economy and society, people have to undertake unprece-
dented consistent and severe stress. Bibliotherapy is an effective way to help people
cope with psychological stress. By selecting and recommending specific reading
materials to patients with mental illness or emotional disturbance, it facilitates patients
recovery and rehabilitation. Currently existing bibliotherapy requires professional
staff with the background of both psychological and library service to give reading rec-
ommendation, which is quite labor costly and demanding, and the booklists for variant
individuals need to be highly customized by therapists. To address this limitation, this
chapter delivers an automatic reading recommendation solution for online bibliother-
apy, whose aim is specifically for adolescents to manage their stress coming from
study, family, peer relationship, self-cognition, to romantic relationship. The 6-week
user study preliminarily demonstrated the effectiveness of the solution, in which the
recommended articles hold both high-stress easing effect and good attractiveness.

This chapter first gives a brief review of bibliotherapy and recommendation
techniques in the literature. Then reports the design and implementation of our
reading recommendation system for easing teens psychological stress. Finally some
application interfaces are provided to demonstrate the usage of the system.

10.1 What is bibliotherapy?

Bibliotherapy is recognized as an effective method of psychotherapy [1–5]. There
are two interpretations of bibliotherapy according to Webster’s Third New Interna-
tional Dictionary: (1) the use of selected reading materials as therapeutic adjuvants
in medicine and in psychiatry and (2) guidance in the solution of personal problems
through directed reading [6].

The first interpretation says bibliotherapy could be used as a treatment of dis-
eases caused by physiology or psychology. The second one explains from a broad

1Department of Computer Science andTechnology, Centre for Computational Mental Healthcare Research,
Institute of Data Science, Tsinghua University, China
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perspective that bibliotherapy could deal some personal problems. More specifically,
Rongione categorized the applicable scenarios of bibliotherapy into five areas, includ-
ing physical disability, chronic illness, emotional problems, personality disorders, and
socioeconomic issues [7].

Research on bibliotherapy has lasted hundreds of years in the west. In 1848,
John M. Galt read the paper in the annual convention of the American Psychologi-
cal Association about the effects of bibliotherapy and analyzed the classification of
patients and corresponding reading measures. This paper is considered to be the first
one in bibliotherapy [8]. The formal and systematic research on bibliotherapy began
with Samuel McChord Crothers. He published a paper named A Literary Clinic at
Atlantic Monthly and invented the word bibliotherapy [9]. After 1930s, bibliother-
apy has received more attentions from relevant institutions in Western countries. In
1939, the Hospital Library Branch of American Library Association (ALA) set up
a bibliotherapy committee. In 1964, ALA held the first seminar on bibliotherapy.
In 1970s, there were more than 4,000 hospitals providing bibliotherapy services in
the Soviet Union. Later in 1980s, a new wave of research on bibliotherapy occurred
with the rapid rising of people’s psychological problems. International Federation of
Library Associations and Institutions had affirmed the significance of bibliotherapy
in patients’ recovery.

The doctors of University of Bristol in England believe that after years of research,
reading poetry is more effective in treating anxiety and depression than swallowing
pills. After the analysis of the experiment statistics, it was concluded that bibliother-
apy is effective, especially in enhancing self-confidence, perfecting behavior, and
improving interpersonal relationships [1].

To explain the mechanism of bibliotherapy, Hou took reading as a process that not
only includes the recognition of characters, languages, and image symbols but also
provides a way in which their inner feelings and emotions are deeply communicating
with the works [10]. Yang also argued these good mental stimulations from reading
are able to regulate people’s immune function [11]. Wang et al. further explained the
mechanism of bibliotherapy based on physiology and psychology. The reason why a
book could cure is that the feelings it conveys to the reader have just weakened or
offset the hidden unhealthy emotions. This is helpful in easing and alleviating reader’s
pathogenetic condition [12].

Nowadays, bibliotherapy has formed a fairly complete theory system and become
an important research content in both library science and medical rehabilitation.

With the advent of information age, the notion of computer-based bibliotherapy,
coined as e-bibliotherapy [13,14], arises. But until now, there is no effective solution
to put it into practice.

10.2 Review of recommendation techniques

This section gives a summary of some widely used recommendation approaches.
Recommender systems could automatically provide users with predictions and rec-
ommendations based on users’ preferences from massive sources of information.
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They are getting more essential to people’s daily life, especially in the age of big data.
There are many recommendation approaches proposed in the last 20 years, which
can generally be divided into seven categories, namely, stereotyping, content-based
filtering (CBF), collaborative filtering (CF), co-occurrence, graph-based, global
relevance, and hybrid [15].

10.2.1 Stereotyping approach

Stereotyping is one of the earliest recommendation approaches and was first intro-
duced by Rich in his article recommender system Grundy [16]. Rich defines
stereotype as a collection of characteristics and recommend articles with the maxi-
mum matching with the stereotypes. The advantage of stereotyping is that it works
effectively even with little computing power and may perform quite well in some spe-
cific area, e.g., article recommendation. However, there are two major problems with
stereotyping. The first one is its inflexibility. Stereotypes may rigidly pigeonhole peo-
ple. For instance, many men may have a negative interest in shopping, but it is not true
for all men. The second one is its labor cost. Characteristics are manually classified
into different stereotypes. This is labor consuming and limits the scale of items.

10.2.2 Content-based filtering approach

CBF is one of the most widely used recommendation approaches [17]. Its basic process
is to match up the attributes of users preferences and interests with the attributes of the
content object, with an aim to recommend new interesting items to users. Specifically,
the CBF recommendation process proceeds in the following three steps:

● Content analyzer. There are many feature-extraction techniques in this component
to shift the original content of items (e.g., text, webpages, news) from different
sources to the structured representation suitable for further analysis.

● Profile learner. This module collects the representations of items that have been
rated by the user to construct the user profile, which contains users interests.
Machine-learning techniques are generally used in profile-learner component.

● Filtering component. This module recommends to users the most relevant items
by matching the user profile against that of candidate items. The relevance is
judged by some similarity metrics, e.g., cosine similarity.

CBF has many advantages. First, CBF is user independent, which means the
ratings of candidates is only relevant to the user’s own profile and have nothing to do
with her/his neighbors. Second, there are good explanations on how CBF works by
explicitly listing content features of users and items. This is much better than CF.Third,
CBF has no problem of new items, because the new items can also be recommended
based on their item profiles. Nevertheless, CBF also has some shortcomings. The most
important is the limitation of features for items. Content analyzer can hardly be able
to assign complete features to represent items. Take a movie for example, some users
want to know its directors, actors and themes, however, some others pay more attention
to its box-office and user rating. Another problem of CBF is over-specialization. CBF
only recommends items similar to the user profile, while the user profile is generated
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from what items have been rated. Hence, other items that have not been rated will
never be recommended. Lastly, for a new user, there is no recommendations because
she/he has no enough ratings for generating a valid user profile.

10.2.3 Collaborative filtering approach

CF was first introduced by Resnick et al. [18], whose general idea is that if two
users have similar historical ratings, they may like the same items. Compared to
CBF, CF has two main advantages. First, CF need not assign features to items and
recommend only based on users real ratings. Second, CF could provide serendipitous
recommendations, which is rated by the similar users. But CF faces the difficulty of
sparse matrix and cold start. Sparse matrix problem refers to the situation where there
are masses of users and masses of items, but the ratings of users are not that enough,
so most elements in users–items matrix are not defined. Sparse matrix problem poses
a challenge on storage and recommendation accuracy. As for cold start, new users
without ratings cannot get recommendations.

10.2.4 Co-occurrence recommendation approach

Co-occurrence recommendation was first used in Small’s co-citation analysis sys-
tem [19]. Small proposed that if the two papers are frequently co-cited, they are likely
related to each other. Different from CBF and CF, co-occurrence recommendation
focus on the relatedness instead of similarity (either feature similarity of CBF or rat-
ings similarity of CF). Similarity is often not ideal because of the limited features
or user ratings. In contrast, relatedness only cares about how frequently two items
appears. Its complexity is rather low but can provide more serendipitous recommen-
dations. Co-occurrence works quite well, except for the situation where the number
of co-occurrence is extremely small, just like arXiv.org [15].

10.2.5 Graph-based approach

Graph-based approach build grapy network based on the inherent connections. These
connections could be citations, purchases, authorship, relatedness, co-occurrence,
and so on. Once the graph is built, the recommender system will find the closest
items using graph metrics.

10.2.6 Global relevance approach

Global relevance is based on a very simple assumption that people like what most
others like. So the relevance is not calculated for specific users, e.g., the similarity
of items with user profile in CBF, but for overall popularity. Taking the book rec-
ommender system as example: the system will recommend to every user the most
popular books during the last 1 month.
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10.2.7 Hybrid approach

Hybrid approaches combine several recommendation classes to enhance the recom-
mending effect and make up for the shortcomings of one specific method. TechLens
is one of the most influential hybrid recommender system, which consists of three
CBF variations, two CF variations, and five hybrid approaches [15].

10.3 Reading recommendation in bibliotherapy

Different from the previous work, this chapter aims to facilitate teens to release their
psychological stress by reading recommendation. Thus, it shall not only recommend
articles with the best easing effect to users, but also recommend attractive articles to
users to make them willing to read.

10.3.1 Categories of adolescent stress and reading articles

To unify the two factors (stress easing and reading interest) into recommendation, we
categorize users stress and interested readings.

1. Six typical categories of adolescent psychological stress, denoted as
SCategory = {study-life, family-life, peer-relation, self-cognition, romantic-
relation, employment}. An user may experience different kinds of stress at the
same time period.

2. Over ten categories of articles, denoted as ACategory = {study-life, family-life,
peer-relation, self-cognition, romantic-relation, employment, daily-life, art,
humor, book, …}, where SCategory ⊂ ACategory. Due to the diversity and huge
volume of reading materials, we further classify reading materials into sub-
categories, as shown in Table 10.1. We use AsCategory to denote the set of all
subcategories in the whole reading repository.

An article may belong to multiple categories and multiple subcategories. For
example, an article entitled “Advice into Society” gives suggestions on job, personnel
relation, self-cognition, etc., falling into multiple categories and subcategories.

10.3.2 Unifying stress easing and reading interests for articles
recommendation

Given an article a, assume function AC(a) and AsC(a) returns the categories and
subcategories which article a belongs to, where AC(a) ⊆ ACategory and AsC(a) ⊆
AsCategory.

Assume user u bears stress of categories, denoted as Stress(u) ⊆ SCategory. Fur-
thermore, assume an user u has a reading interest set, containing a set of categories and
subcategories, returned from function InterestAC(u) ⊆ ACategory and InterestAsC(u)
⊆ AsCategory, respectively.
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Table 10.1 Article categories and article subcategories

No. Category Subcategory

1 Study life University, course, resource, competition, rank, dual-degree,
final year project, exempt from postgraduate recommendation,
postgraduate entrance exam, study-abroad, etc.

2 Family life Family member, kinship, blind date, trifles, etc.
3 Peer relation Peer, roommate, classmate, society, etc.
4 Self cognition Self-observation, self-evaluation, etc.
5 Romantic relation Love, gloom, setback, psychology, etc.
6 Employment Job selection, internship, part-time-job, job-seeking, written-test,

interview, hiring, etc.
7 Daily life Campus life, food, entertainment, sports, outdoors,

life experience, encouragement, realization, travel,
popular science fiction, etc.

8 Art Literature, painting, music, dance, movie, drama, building,
sculpture, poem, etc.

9 Humor Joke, anecdote, satire, gossip, etc.
10 Book History, figure, reading, philosophy, etc.

10.3.3 Recommending procedure

The recommending method adopted by our system is a type of content-based method.
Based on the above two steps, the system assign for each article with corresponding
stress categories and article (sub-)categories. In the meanwhile, the system maintains
for each user with a stress vector S(u) and an interest vector I (u), each element
of which indicates the degree of user’s stress level or interest level to one category,
donated as Si(u) and Ii(u), where i is one category. Users can explicitly configure their
stress and interest vectors at the first use as shown in Figure 10.3. After setting, the
system will further tune users’stress and interest based on their reading behavior, e.g.,
the specific articles they read, the time cost on reading, the supporting, committing
and sharing behaviors, and so on. In the phase of recommending, the system computes
the score of articles based on their correlation with users’ stress vector and interest
vector:

Score(a, u) = α · Sim(AC(a), S(u)) + (1 − α) · Sim(AsC(a), I (u)) (10.1)

Sim(AC(a), S(u)) =
∑

i∈AC(a)

Si(u) (10.2)

Sim(AsC(a), I (u)) =
∑

i∈AsC(a)

Ii(u) (10.3)

where α is the coefficient balancing the weight of stress easing effect and reading
interest.

The higher Score(a, u) returns, the more likely that article a is recommended to
user u.
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10.4 System implementation

10.4.1 The framework

Figure 10.1 briefs our reading recommendation framework, which comprises two
major modules:

1. User-management module. It is in charge of the following three tasks. (1) Regis-
tration and login. The system will check the validity of users’ login information.
In case a user forgets his/her password, there is also a way to help him/her to
reset a password. (2) Update of users reading interests and stress categories. The
system maintains users’ reading interests and stress categories and allows users’
manual modification. (3) Management of users personal information, including
user account information, credits, and online reading behaviors such as reading
time reading sequence, sharing and commenting actions for future analysis and
inference.

2. Article-recommendation module. It leverages users stress categories and read-
ing interests to recommend a few articles (which is 4 per week in the study) to
the users.

10.4.2 System interfaces

In this section, we show how to use the reading recommendation system. All the
figures are screen shots of Safari on a mobile iPhone.

1. Users registration and login (Figure 10.2).
In registration, new users are requested to input a valid email to receive the
verification code. In login, users provide their emails and passwords, and the
system provides a way to reset the passwords in case they forget their passwords.

2. Users setting of reading interests and stress categories (Figure 10.3).
3. Weekly recommending a reading theme associated with four articles under each

theme (Figures 10.4–10.7).
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Figure 10.2 Users setting of reading interests and stress categories

Figure 10.3 Users’ setting of reading interests and stress categories
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Figure 10.4 Example of reading theme—new life begins

Choose classes in university

Figure 10.5 Example of reading theme—courses selection
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Figure 10.7 Example of reading theme—career planning
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Articles under
one category

Article categories

Figure 10.8 Article lists, where the top menu lists article categories, and specific
articles are listed under each category

4. Article lists under different categories and subcategories (Figure 10.8).
5. For each recommended article, users commenting, agreeing, and sharing activ-

ities are supported in order to get feedbacks and better serve the users’ needs
(Figure 10.9).

10.5 Conclusion

The chapter addressed the problem of traditional bibliotherapy in coping with pres-
sures of adolescents and proposed an online reading recommendation system as a
new exploration of bibliotherapy. Its major advantage is that articles with stress-
easing effects as well as much attraction are automatically recommended to users
without human intervention. The recommendation process is based on CBF, where
user profile is represented as interest vector and stress easing vector, and article fea-
tures consist of one or more categories and subcategories. Our 6-week user study
with 10 stressful college students showed that the recommended articles are thought
interesting with 3.22 (the maximal score is 5) and stress easing effect with 2.89 (the
maximal score is 5). This preliminary experiment demonstrates the effectiveness of
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Figure 10.9 Users can comment, agree, and share an article

the online reading recommendation system in dealing with adolescent psychological
problems.

Regarding to the dynamic evolution of users’ reading interests and stress status,
real-time monitoring and automatically adjusting the users profile information are
desirable functions worth exploration in the future work.
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Chapter 11

Stream processing in Big Data for e-health care
Tariq Lambachri1,2, Amir Hajjam El Hassani1,
Abderrahim Sekkaki3, and Emmanuel Andres4,5

11.1 Introduction

For quite some time now, data have become the new oil of the digital industry. The
spread and the evolution of information technologies as well as the connectivity
between people and devices have enabled a new dimension of Big Data storage and
analytics. This can bring massive improvements across many industries, including
healthcare.

However, while performance remains mandatory for any software trying to deal
with a huge amount of data, only a small part of the today’s data potential can be
exploited using traditional Big Data systems based on batch-oriented approaches. For
the last couple of years, the business needs have driven data processing systems to
deviate from the batch-oriented approaches to the processing of data items as they
arrive, recognizing by such the importance of the low latency and the velocity in Big
Data analytics.

The idea of processing data in motion is not new, and it is used in a lot of fields.
Complex event processing (CEP) and stream event processing (SEP), e.g., can provide
a low latency, but they are much more complicated to set up and to manage, conversely
to new systems presented in the course of this chapter. In fact, the achievement of
these new systems is the abstraction from scaling issues which makes development,
deployment and maintenance easier.

Throughout this chapter, we will present the stream processing and batch pro-
cessing. Besides, we will conduct a qualitative comparison of the most popular
data processing systems, namely Storm and Spark streaming. We will describe their

1Nanomedicine Laboratories, Université de Bourgogne Franche-Comté, UTBM, France
2ADBI, Paris, France
3Laboratoire de Recherche et Innovation Informatique, Faculté des Sciences Aïn Chock, Université Hassan
II Casablanca, Morocco
4Service de Médecine Interne, Diabète et Maladies Métaboliques de la Clinique Médicale B, CHRU de
Strasbourg, France
5Centre de Recherche Pédagogique en Sciences de la Santé, Faculté de Médecine de Strasbourg, Université
de Strasbourg, France
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Figure 11.1 Big Data and batch processing

respective underlying bases and the functionalities they provide and discuss how they
can be introduced into e-health care analysis programs.

11.2 Stream processing for low-latency analytics

In an increasingly connected world, the volume of available data is growing on a
massive scale. The Internet of things (IoT) is generating real-time events that are
transforming the way companies engage their customers and deliver their services.
Companies such as Amazon, Google and Netflix have already established processes
to monitor their users’activity to optimize their recommendation systems. As a result,
they become more efficient and react to business conditions in real time. In contrast
to traditional approaches that collect and periodically process huge volumes of static
data, stream processing acts on data as it becomes available, minimizing the amount
of time it takes for a single data item to be processed. In this way, results are available
the moment data start entering the system. Thus, we can consider that the purpose of
a real-time infrastructure is to have the necessary flexibility to intervene at the right
time [1].

11.2.1 Batch processing vs. stream processing

Before introducing the streaming data, it is worthwhile to compare and contrast batch
processing and stream processing. Batch processing is an efficient way to process large
volumes of data when we have all the data required for our analysis. As illustrated
in Figure 11.1, data are first collected, entered and processed, and then the batch
results are displayed. Batch processing uses separate algorithms to collect, process
and display results.

Real-time data processing is generally associated to a continual input, a process-
ing system and an output of data. Data must be processed in a small time period (or
near real time). This manner of processing data allows organizations to react instan-
taneously upon data entry. The aim of this approach is to obtain the insight required
to act carefully at the right time. The main differences between the real-time data
processing and the batch processing lie in the fact that real-time data process data in
memory, before it hits the disc [2,3]; see Figure 11.2.
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A good example of stream processing is when sensors track the behaviour of an
object and send data to a streaming application. The goal is to monitor the performance
and detect any potential defects prior to equipment downtime.

To sum up, stream processing and batch processing can be regarded as two sides
of the same coin. Each of them can be efficient depending on the business objective.
Real-time processing is better when time matters. Batch processing is more suitable
when all the data required for analysis are available. So, when and how can one say
that stream processing is better than batch processing?

To answer this question, let’s consider the following example: the detection of
credit card fraud, which is one of many examples where stream processing approach
is used. In order to have a more accurate fraud detection system, banks and financial
services use streaming data application to be able to take immediate action without
impacting the customer’s banking experience. It means that the stream-based archi-
tecture is powerful where new and dynamic data are generated on a continual basis.
Companies often start with simple applications and evolve to more sophisticated
real-time processing software. Initially, companies used to implement applications
based on data stream architecture to perform simple actions, such as emitting alarms
when a threshold is exceeded. Eventually, these applications perform more sophisti-
cated analysis, like extracting deeper insights from the data using machine learning
processing algorithms.

11.2.2 Challenges of stream processing

Dealing with streaming data processing requires two layers: a storage layer and a
processing layer.

The storage layer has to deal with the heterogeneity of data and the data quality.
In fact, the storage layer needs to enable cheap, fast and recurrent reads and writes of
large volumes of data. Concerning the processing layer, it constitutes the part of the
architecture that consumes data from the storage layer, executes the computation and
notifies the storage layer in order to delete data that are no longer needed. Besides,
streaming data architecture needs to be scalable and fault tolerant in both layers.
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Currently, many platforms have been set up to provide the infrastructure required to
build streaming data applications. In the following sections, we will give a qualita-
tive comparison of the most popular contenders, namely Storm, Samza and Spark
(Streaming).

11.3 Real-time processors

Once data are collected, they need to be processed. There are a considerable number
of streaming platforms that are suitable to a large part of business objectives. The
difficulty lies in choosing the solution that is the most suitable to the need. In the
following subsections, we will introduce the most famous platforms namely Storm,
Samza and Spark.

11.3.1 Storm platform

Apache Storm [4,5] is a free and open source distributed real-time message computa-
tion system for processing fast and large streams of data. Storm was born as a project
of Back-Type, a marketing intelligence company bought by Twitter in 2011. After
being open sourced by Twitter, it moved to the Apache software foundation.

Storm is designed for massive scalability, supports fault tolerance and guarantees
that every tuple will be processed. Storm is written in Clojure and made from the three
following abstractions:

● Stream: It is an uninterrupted flow of a long sequence of tuples.
● Spout: It is a source of streams in a computation. Typically, it can read from

a broker such as Kafka. It can also read from somewhere else like the Twitter
streaming application programming interface (API). Besides, they are considered
as one of the strengths of Storm due to their capacity of receiving data from all
types of sources.

● Bolts: These are the nodes that consume the sequences of tuples emitted by one or
more spouts. Their role is to perform different operations (filters, aggregations,
joins, read/write to and from a database, etc.) and if necessary to generate a new
sequence of tuples.

● Topology: It is the cornerstone of Storm. It is a class where we describe how
spots and bolts will be connected. A topology is a complex multi-stage stream
computation that runs indefinitely when deployed.

Storm is considered as a simple framework where developers can use any
programming language to write Storm topologies (see Figure 11.3).

There are six characteristics that make Storm one of the best solutions for real-
time data processing. These characteristics could be summarized as follows:

● Storm is Open source.
● Fast: Storm processes more than 100 bytes/s.
● Scalable: Storm is a distributed calculating platform that runs across a cluster of

machines.
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● Fault tolerant: When a worker dies, Storm will automatically restart it. If a node
dies, the worker will be restarted on another node. The Storm daemons, Nimbus
and Supervisors, are designed to be stateless and fail-fast. If they die, they will
restart seamlessly.

● Reliable: Storm guarantees that each tuple will be processed at least once or
exactly once. Messages are only replayed when there are failures.

● Easy to operate: Standard configurations are suitable for production from the
first day.

For a better understanding of Storm’s mechanism, let us consider the below
example. The aim of this example is to count the occurrence of words in a text
message using Storm. As illustrated in Figure 11.4, the required topology will be
constituted of the following:

● One Spout: It will split the text into sentences.
● Three Bolts: The first one for splitting sentences into words, the second one for

counting the word’s occurrence and the third one for displaying the result.

In our case, we will have three types of streams (see Figure 11.5):

● Type 1: Streams containing sentences. They are created by the spout and used by
the blot that splits these sentences into words.

● Type 2: Streams containing words. They are created by the bolt of splitting and
used by the bolt of counting.

● Type 3: Sequence of tuples < word, occurrences > containing the occurrences of
each word.
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11.3.2 Samza platform

Apache Samza [6] is a distributed stream processing framework. It usesApache Kafka
for messaging and Apache Hadoop YARN [7] to provide fault tolerance, processor
isolation, security and resource management. Samza was born as a project of
LinkedIn, after it was moved to the Apache software foundation.

To understand the idea behind the use of Samza, let us consider the use case of
LinkedIn. On this website, you can probably get information such as user’s profiles,
companies and universities. If recruiters are looking for a developer on LinkedIn,
there is a good chance that they would also like the search to display the profiles of
‘Rockstar’, ‘Code artist’ and other original names because basically they mean the
same thing. On the other hand, the recruiter does not wish that the profiles of ‘Rock-
star’ or developers in real estate to be displayed. LinkedIn has therefore developed a
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system of standardization for its main information (job titles, company name, etc.)
with some constraints:

● When a new data entry is made by a user, the standardization system must be able
to quickly retrieve the associated synonyms and update the search index so that
members can be retrieved easily.

● When a standardization model is updated, it is necessary to reprocess the existing
data so that they take into consideration the model updated instantaneously.

Thus, LinkedIn uses Samza to rework existing data and process new data.
Now, we will focus on the key concepts of Samza:

● Streams: They are uninterrupted flows of a long sequence of data (see
Figure 11.6).

● Jobs: A job is a part of code in charge of making transformations in a stream. It
receives one or more streams in the input and generates the transformed data in
the output.

To insure performance and efficiency, Samza uses the concept of partitions
and tasks:

● Partitions:As shown in Figure 11.7, each stream is broken into one or more parti-
tions. Each partition in the stream is a totally ordered sequence of messages. Each
message in this sequence has an identifier called the offset, which is unique per
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partition. The offset can be a sequential integer, bytes offset or string depending
on the underlying system implementation.

● Tasks: A job is split into tasks. Each task consumes data from one partition for
each of the job’s input stream (see Figure 11.8).

● Dataflow graph: A dataflow graph is the combination of multiple jobs. The
graphs are made up of streams that have been transformed by jobs (see
Figure 11.9).

11.3.2.1 Samza architecture
Samza architecture [8] consists of three components (see Figure 11.10):

● A streaming Layer: It provides partitioned streams that are replicated and
durable.
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● An Execution Layer: It schedules and coordinates tasks across the machines.
● A processing Layer: It processes the input stream and applies transformations.

The advantage of this architecture is that we can include any existing implemen-
tation. For instance, Kafka or Hadoop [9] can be used as a Streaming Layer. Similarly,
solutions like Mesos [10] and Yarn can be plugged-in for job execution systems.

11.3.3 Spark platform

Apache Spark [11, 12, 13] is an open source Big Data processing framework built
around speed. It was developed in 2009 in UC Berkeley’sAMP Lab., and open sourced
in 2010 as an Apache project.

Spark is a fast and general engine for large-scale data processing that has sev-
eral advantages compared to other Big Data platforms such as Storm and Hadoop.
Spark allows rich programming APIs like SQL, machine learning and graph pro-
cessing to run on clusters of computers to achieve large-scale data processing and
analysis. Besides, Spark makes distributed processing easy by providing a distributed
and parallel processing framework in addition to scalability, fault tolerance and a pro-
gramming paradigm that makes it easy to write code in a parallel manner. Moreover,
Spark provides API for data munging, ETL (extract, transform, load), machine learn-
ing, graph processing, streaming, and interactive and batch processing. It can replace
several SQL, streaming and complex analytics systems with one unified environment.

It is also considered as Lightning fast speeds due to in-memory caching and
DAG-based processing engine. Spark is considered 100 times faster than
Hadoop’s MapReduce for in-memory computations and 10 times faster for
on disk. [11]

Another particularity of Spark lies on the fact that it is not a data storage system.
Indeed, Spark is not a data store, but it is versatile in reading from and writing to
a variety of data sources including Hadoop Distributed File System (HDFS), Cas-
sandra, S3 and Hbase. It can also access to traditional BI tools using a server mode
that provides a standard Java Database Connectivity (JDBC) and Open DataBase
Connectivity (ODBC) connectivity.
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11.3.3.1 Spark use cases
In this section, we will present some use cases that require dealing with the velocity,
variety and volume of Big Data, for which Spark is also well-suited:

● Fraud detection: Spark streaming and machine learning applied to prevent fraud.
● Network intrusion detection: Machine learning applied to detect cyber hacks.
● Customer segmentation and personalization: Spark SQL and machine learning is

applied to maximize customer lifetime value.
● Social media sentiment analysis: Spark streaming, Spark SQL and Stanford’s

CoreNLP wrapper help achieve sentiment analysis.
● Real-time ad targeting: Spark is used to maximize online ad revenues.
● Predictive healthcare: Spark is used to optimize healthcare costs.

In the following, we describe how companies such as Uber, Netflix and Yahoo
use Spark:

● Spark at Uber
– Business problem: A simple problem of getting people around a city with an

army of more than 100,000 drivers and using data to intelligently size the
business in an automated and real-time way.
◦ Accurately paying drivers according to a dataset based on their trips
◦ Maximizing profits by positioning cars optimally
◦ Helping drivers avoid accidents
◦ Computing surge pricing.

– Solution: Use Spark streaming and Spark SQL as the ETL system and Spark
MLlib and GraphX for advanced analytics

● Spark at Netflix
– Business problem: A video streaming service with emphasis on data quality,

agility and availability. Using analytics to help users discover movies and
showing them what they like is the key to Netflix’s success.
◦ Streaming applications are long-running tasks that need to be resilient

in cloud deployments.
◦ Optimize content buying.
◦ Renowned personalization algorithms.

– Solution: Use Spark streaming in AWS cloud and Spark GraphX for
recommender system.

● Spark at Yahoo
– Business problem: Deep learning is critical for Yahoo’s product team to

acquire intelligence from huge amounts of online data. Examples are image
recognition and speech recognition for improved search on photo sharing
service Flickr.
◦ Run deep learning software on existing infrastructure.
◦ Distribute deep learning processes across multiple Big Data clusters.
◦ Handle potential system failures on long running deep learning jobs.

– Solution: Create a way to run deep learning system Caffe on Spark.
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Components and architecture of Spark
The Spark Core constitutes the base engine of the framework. It is in charge of the
following tasks:

● Workloads distribution
● Applications monitoring across the cluster
● Tasks scheduling
● Memory management
● Fault recovery
● Storage systems interaction
● Housing of API that defines Resilient Distributed Datasets (RDDs).

In addition to Spark Core API, Spark powers additional libraries that are part of
the Spark ecosystem and provides additional capabilities in Big Data analytics and
machine learning areas (see Figure 11.11).

These libraries include the following:

● Spark SQL: Provides structured data processing.
● Spark streaming: Enables processing of live streams of data.
● Spark MLlib: Contains common machine learning functionalities.
● GraphX: Library for manipulating graphs and performing graph parallel

computations.
● SparkR: R package that provides a lightweight frontend to use Apache Spark

from R.
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The spark cluster managers are the part of the framework responsible for allo-
cating resources across applications on a cluster. Spark supports the following three
cluster managers:

● Standalone: A cluster manager included with Spark that makes it easy to set up
a cluster.

● Apache Mesos: A general cluster manager that can also run Hadoop MapReduce
and service applications.

● Hadoop YARN: A resource manager in Hadoop 2.

Spark runtime architecture
In this part, we will introduce the Spark runtime architecture. Spark has a master/slave
architecture where the master is the driver and the slaves are the executors. Drivers
and executors run in their own Java processes (see Figure 11.12).

The Spark runtime architecture is composed of a SparkContext, a driver, a cluster
manager and executors. Table 11.1 summarizes the role of each of these elements:

To finish this part, we will summarize the execution flow inside a Spark program.

● Step 1: The user submits an application that launches the driver program.
● Step 2: The driver calls the main ( ) method specified by the user.
● Step 3: The driver asks the cluster manager for resources to launch the executors.
● Step 4: The cluster manager launches the executors.
● Step 5: The driver divides the user program into tasks and sends them to the

executors.
● Step 6: The executors run the tasks, compute and save the results, and return

results to the driver.
● Step 7: When the driver’s main () method exits or SparkContext.stop () is called,

the executors are terminated and the cluster manager releases the resources.
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Table 11.1 Roles of Spark components

Component Roles

SparkContext • Main entry point to all Spark’s libraries
• Defined in the main/driver program
• Tells Spark how and where to access a cluster
• Connects to cluster managers
• Coordinates Spark processes running on different cluster nodes
• Used to create RDDs and shared variables on the cluster

Driver • The process where the main ( ) method of the Spark program runs
• Responsible for converting a user program into tasks
• Driver schedules the tasks on executors
• Results from these tasks are delivered back to the driver

Executors • Launched at the beginning of the application and typically run for the
entire lifetime of an application

• Executors register themselves with the driver, thus allowing the driver
to schedule tasks on the executors

• Worker processes run the individual tasks and return results to the driver
• Provide in-memory storage for RDDs, as well as disc storage

Cluster Manager • A pluggable service for acquiring resources on the cluster

Kafka
HDFS

Databases

Dashboards

Flume

HDFS/S3
Kinesis
Twitter

Figure 11.13 Spark streaming [14]

Spark streaming: network word count use case [14]
Before presenting our example, let us introduce the Spark streaming API. Spark
streaming uses the scheduling of the Spark Core for streaming analytics on mini
batches of data. It permits to ingest data from many sources like Kafka [15], Flume
[16], Twitter, ZeroMQ [17], Kinesis [18] or TCP sockets. Data can further be pro-
cessed using MLlib, Graph processing or high-level functions like map, reduce, join,
and window (see Figure 11.13).

As described in Figure 11.14, Spark streaming follows the following steps:

● Spark streaming starts by collecting live input data streams and divides data into
batches.

● Batches of data are processed by the Spark engine to produce batches of results.
● High-level API called DStream (Discretized Stream) represents continuous

stream of data.
● Internally DStreams is represented as a sequence of RDDs.
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Figure 11.14 Steps in Spark streaming [14]

● DStreams can be created either from input data streams from sources such
as Kafka, Flume and Kinesis, or by applying high-level operations on other
DStreams.

● Example: Network word count using Spark streaming:
– Create a StreamingContext, main entry point to all streaming functionality

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
#Create a local StreamingContext with two working thread and batch interval of 1
Second sc =SparkContext("local[2]) ","NetworkWordCount")
scc=StreamingContext(sc,1)

– Create a DStream from a Transmission Control Protocol (TCP) source

#Create a DStream that will connect to hostname:port, like localhost:9999
lines =ssc.socketTextStream("localhost",9999)

– Define MapReduce functions to count the number of words from the
streaming data

#Split each line into words
words= lines.flatMap(lambda line:line.split(" "))
# Count each word in each batch
pairs = words.map(lambda word: (word 1))
wordCounts = pairs.reduceByKey(lambda x,y:x+y)
#Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.pprint()

– Start processing after setting up of all transformations

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate

– Start the Netcat server in terminal 1: ‘nc–lk 9999’
– Submit Spark command in terminal 2: ./bin/spark-submit examples/src/main/

python/streaming/network_wordcount.py localhost 9999
– The result is illustrated in Figure 11.15.
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Figure 11.15 Results of the example word count using Spark streaming

11.4 Stream processing in e-health care

So far, we have introduced the stream processing and have given an overview of
the stream processors for low-latency Big Data analytics. We have also conducted
a qualitative comparison between Storm, Spark and Samza. In this section, we
will discuss on how this concept can be introduced to the e-health care analysis
programs.

Nowadays, the healthcare industry is increasingly moving towards a value-
based model. There are more needs on real-time decision-making to personalize
patient marketing campaigns, improve patient outcomes and create greater patient
engagement.

When everything is connected, from administrative perspective to historical data
and output in near real-time data points, health institutions have the opportunity to
deepen the patient and physician connections and enhance their experiences. This
helps for better understanding of the correlation between genetic and environmental
factors and also for the development and the spread of diseases.

Real-time and near-real-time data processing allow healthcare systems to make
better decisions based on more robust and better data quality. As a result, they can
take immediate actions based on data analysis, which can be significant on the health
of a patient as well as their experience with a hospital or a health institution.

Through the following example, we will be able to measure the importance of
the introduction of real-time data processing in healthcare.

For the NeoNatal Intensive Care unit at the Hospital for Sick Children (SickKids)
in Toronto, Big Data tools have proven valuable. They allow doctors to monitor the
vital signs of premature infants around the clock. The introduction of a stream data
process has permitted the early identification of newborn babies with an infection
called late-onset neonatal sepsis, a blood infection that occurs in children between
days 8 and 89.

Doctors get digital reporting that provide real-time data about respiratory rates,
heart rates, blood pressure and blood oxygen saturation, and can analyse these data
using a platform called Artemis. This platform allows doctors to monitor infants’vital
signs in real-time and detect changes in their conditions [19].
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Table 11.2 Spark, Storm and Samza in direct comparison

Storm Samza Spark streaming

Strictest guarantee At-least-once At-least-once Exactly-once
State management Yes Yes Yes
Processing model One-at-a-time One-at-a-time Micro-batch
Backpressure mechanism Yes Not required (buffering) Yes
Ordering guarantees No Within stream partitions Between batches
Elasticity Yes No Yes

11.5 Conclusion

In this chapter, we described some of the aspects that make real-time processors such as
Storm, Samza and Spark (Streaming very powerful). Besides, we gave some examples
that illustrate how real-time processors could improve human’s life especially when
applied in e-health domain.

To sum up, Spark streaming is an incremental micro-batching stream processing
that uses the scheduling of the Spark Core for streaming analytics on mini batches of
data. One of the Streaming distinctions of Spark is its use of DStream (Discretized
Stream) that simplifies the work with continuous data streams by using one single
RDD at a time.

Apache Storm is a distributed real-time data processing platform focused on
complex event processing. Storm is designed to process multiple computations or
large amount of data in a fault tolerant and horizontal scalable method. It is generally
used to transform real-time data into a desired format.

The main difference between Storm and Spark streaming lies in the fact that Spark
performs Data-Parallel computations while Storm performs Task-Parallel computa-
tions. Hence, Spark streaming is considered as ten times faster than Storm using the
Word Count benchmark.

Concerning Samza, it’s claimed to be the most suitable solution to deal with vast
amount of states. Samza co-locates storage and processing on the same machines in
order to process efficiently the states that won’t fit in memory. Besides the framework,
it gives the possibility to plug in engines: the storage, execution and messaging engines
can each be replaced with many choices of alternatives. Table 11.2 provides a quick
comparison on the properties of these systems.
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Chapter 12

How Hadoop and Spark benchmarking
algorithms can improve remote health

monitoring and data management platforms?
Anna Karen Garate Escamilla1, Amir Hajjam El Hassani1,

Emmanuel Andres2,3, and Mohamed Hajjam4

12.1 Introduction

Telemedicine, mobile applications, and electronic health systems have changed the
medical rules. Having high quality equipment and facilities is no longer adequate,
and now they have to be connected to improve their management and have better
results. From a medical standpoint, it is vital to improve medical care with aspects
such as the integration of medical records with technology and medical devices inter-
connected through the Internet. This helps medical staff to collect information and
improve the treatments and the attention of the patient. Internet of things (IoT) is the
interconnection of devices through the web. The development of this concept is what
makes it possible to improve healthcare with the help of telemedicine.

E-care project is an intelligent platform with interest in the health sector. Through
telemedicine and tools, it allows the reduction of rehospitalizations, better patients’
quality of life, remote health monitoring, and an improvement in management.
With the large-scale deployment of the E-care platform within the framework of
the PRADO (Programme d’Accompagnement du Retour à Domicile) program of the
French healthcare system (CPAM, i.e. Caisse Primaire d’Assurance Maladie), E-care
will have a large amount of data from different sources. It is important to keep the
patients’ information in a low-cost cloud storage that helps the remote monitoring of
the information and a better data management. In fact, this is what brings big data
to E-care. Big data can handle the volume, variety, and velocity of the information,
stored in a distributed, scalable, and resilient database system. Big data most famous
analytics tools are the ones inside Hadoop ecosystem, such as MapReduce, Spark,

1Nanomedicine Laboratories, Université de Bourgogne Franche-Comte, UTBM, France
2Service de Médecine Interne, Diabète et Maladies métaboliques de la Clinique Médicale B, CHRU de
Strasbourg, France
3Centre de Recherche Pédagogique en Sciences de la Santé, Faculté de Médecine de Strasbourg, Université
de Strasbourg, France
4PREDIMED Technology, France
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Flink, and Storm. One way to judge the performance of E-care, with the analytics
tools from Hadoop ecosystem, is using benchmark testing software.

The concept of benchmarking was introduced by Xerox in response to the lack
of innovation in its products and the necessity to provide a feedback to its processes.
Benchmarks are important tools to evaluate systems through different scenarios to
answer important questions of performance, management, and behavior and reveal
the weaknesses and strengths of any company. They run with a particular program,
kernel, or workload to measure and predict the performance of the system, or make a
comparison with another one. They are the most important aspect of IT system evalu-
ation. The benchmarking itself is a complicated process because it is not standardized.
As a result, big data benchmarking is even a greater challenge considering that it does
not have precise characteristics and it is more complicated than the traditional systems
characterized for having a small amount of data.

The remainder of the chapter is organized as follows. Section 12.2 introduces the
characteristics of E-care platform and the concept of ontology which helps the reader
understand the system that will implement big data tools for its migration. Section 12.3
explores the concept of big data, while Section 12.4 focuses on the most popular sys-
tems in the Hadoop ecosystem, emphasizing MapReduce and Spark. Section 12.5
surveys applications using machine learning techniques in the medical field. Exam-
ples are given with Apache Spark. Section 12.6 applies the concept of benchmarking
in big data. Section 12.7 presents the benchmarking tools in Hadoop and Spark and
Section 12.8 provides a benchmarking comparison between MapReduce, Spark, and
Flink. Section 12.9 presents the system considered most suitable for E-care platform
as well as the best benchmarking tools that align to its purposes. Finally, Section 12.10
concludes the chapter.

12.2 E-care platform

E-care project [1] is an intelligent platform developed by academic laboratories and
industries. Its interest is the health sector, more particularly patients with heart failure.
Through telemedicine and its tools, the E-care platform reduces rehospitalizations and
the days of hospital stay, and ensures a better quality of life for patients with heart
failure in Stage III. The New York Heart Association (NYHA) Functional Classifica-
tion [2] describes Stage III patients as marked with (1) limitation of physical activity;
(2) comfort in a resting state; (3) and fatigue, palpitations, and dyspnea caused by
common activities. Patients with these characteristics need constant monitoring of
their health in order to achieve early detection of dangerous situations.

In 2011, the E-care project was selected among projects under “Health and auton-
omy at home through digital technology” from the program Investissements d’Avenir
[3]. This is a French national program with 22 million euros to be spent in higher
education and research [4] in e-health. E-care started as a prototype deployed at the
Strasbourg CHRU in October 2013 [5]. Clinical experimentation was carried out and
the concept was tested with 20 beds inside the internal medicine unit. Since 2015, it
has been deployed at homes, where it provides assistance to the medical staff with the
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help of noninvasive sensors communicating via Bluetooth with tablets applications.
E-care processes data from multiple sources, including, weight, blood pressure, pulse
oximetry (the monitoring of oxygen saturation), patient ergonomics, and diet; all
these are combined with the notes and comments from patients and medical staff,
mostly nurses and doctors [3]. The integration and processing of this information
allows the platform to generate alerts in case of risky situations related to cardiovas-
cular diseases and their underlying pathologies. It is understood that the concept of
underlying pathology refers to the way a disease manifests. For example, a person
that bleeds and the subjacent cause is leukemia; or a person that has a yellow skin
and the subjacent cause is hepatitis. Also, the alerts are generated by related chronic
pathologies like diabetes mellitus, fatigue, renal failure, and respiratory insufficiency.
This information reaches an information repository where doctors can access the data
at any time; this helps the medical staff to have a better understanding of the clinical
picture as it improves the existing ontologies.

The E-care platform uses an ontology that improves the decision support sys-
tem [6] through data, semantics coupling and an extended vocabulary with diseases,
medications, and the symptoms and contraindications that are related to heart failure
monitoring. Ontologies provide a common semantics that improves the quality of
diagnosis, the decision-making process, the accuracy of information, and the level of
daily workflow abstraction [7,8]. For every patient, collected data from the sensors
are processed in real time, and then analyzed with the ontologies. This will pro-
vide the first learning process by adding new data to the patient’s information. Then,
E-care consolidates the information and improves the system by looking for similar
patterns in critical events [3]. The goal of E-care is the creation of new knowledge by
the enrichment of this ontology. This enrichment generates an assessment that will
consider quality aspects and consistency validation [5]. The rules are generic and
evolve with the patient. If an abnormal condition is detected, the system should send
an alert to the medical staff. For example, weight measurements are retrieved from the
ontologies. If it increases two or three days in a row, an alert will be sent to medical
staff to review its cause. Also, there are cases in which it is important to have all the
patient’s information connected to make the system reliable; e.g. if the heart rate of
70 beats per minute is not dangerous for a normal patient, it may be dangerous if we
know that the patient is alcohol-dependent [7].

Ontology includes the patients’ profile and their associated measures, alerts, and
data. Also, it describes all the system users (medical doctor, administrator, patient,
and nurse), their tasks, and equipment definitions (sensors, tablets, etc.) [7].

The E-care architecture illustrated in Figure 12.1 is based on ontologies for
telemonitoring elderly persons suffering from chronic diseases. The architecture is
generic and relies on three principal components: (1) physiological, environmental,
and behavioral sensors; (2) a medium of communication to transmit the data; and (3)
institutional information system where data are stored and processed. It also makes a
patient–medical staff interaction through a call center, a tablet, and a website. Some
projects have educational tools.

The ontology architecture [7] presented in Figure 12.2 is a patient center. It
means that the patient data are collected by a sensor (structured data) and other
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information can be entered by medical staff and the patients themselves (unstructured
data). The two principal actors involved are medical experts and system experts. The
most important part of the internal architecture is the data management. Its main tasks
are the following:

● To receive data from external systems like sensors.
● To communicate with other systems.
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● To receive the alert recommendations and the rules provided for the inference
engine and the reception of the data.

● To manage the data base and the ontologies. The architecture contains two types
of ontologies:
– Application ontologies: They describe the components of the system such

as the users, the sensors, the measurements, the input data, and the generated
alerts. They also define the tasks of the different system actors.

– Domain ontologies: They provide a controlled vocabulary. These ontologies
can provide a language to facilitate data sharing between different system
actors, so it can interact easily with other systems. These ontologies are built
by medical experts, aided by engineers’ knowledge to formalize them. These
ontologies can be linked to other elements; e.g. they can link a disease with
its symptoms.

12.2.1 Security and privacy challenges for healthcare applications

If there is an area where security in IT is paramount, then it’s the healthcare. This
is because there is no other information more private than the personal data of the
patient. E-care, like any health system, has the obligation to maintain the patient
information safely. Patients must be certain that no one will see their information or
that it will be used for harmful purposes. This section addresses aspects of security
and privacy regulations in electronic healthcare systems.

As information has increased over the past few years in the healthcare setting, the
risk associated with a person who has unauthorized access to confidential data has
also increased. The literature addresses the challenges of security and privacy in the
health community and the regulations that their own systems must have to address the
problem of information sensitivity. The study of [9] proposes a software that uses SMS
to transfer information using the Health Insurance Portability and Accountability Act
(HIPAA) regulations and explains the mechanisms and authentication requirements of
the system taking into account that it will be treated with personal health information,
the document ends with the comparison between the message with encryption and
without encryption, showing improved performance with encryption. In another stud-
ies [10], they monitor in real-time health conditions through smartphones and pose the
challenges of security and privacy using mobile health networks with the perspective
of Quality of Protection (QoP), concluding that without QoP, mobile health networks
are still at an immature stage. There are also investigations [11,12] that discuss the
security and privacy challenges in wireless body area network (WBAN) which is a
tool that monitors and collects the patient’s health history through portable sensors.

There are security and privacy policies that health agencies must follow. The
National Agency for Shared Health Information Systems, ASIP Santé (Agence des
Systèmes d’Information Partagés de Santé), is a digital health agency created to
develop shared systems in the field of health. Taking into account the growth of med-
ical data and the need to move to electronic health, the goal ofASIP is to do this in a safe
and secure environment. ASIP facilities the development or improvement of e-health
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projects focused on the actors of the health community, such as health professionals,
health institutions, the industrial sector, or the institutional entrepreneur.

ASIP creates a series of documents, the General Security Policy of Health Infor-
mation Systems (PGSSI-S), [13] to improve the security and privacy of data in the
field of health, thus ensuring better protection of patient information through a better
approach for IT tools. These documents complete the international e-health safety
standards. One of the objectives is the authentication of the health actors, knowing
them as an individual or group with interest in patient care. To verify identity, they must
choose one or more authentication options (password, ID, smartcard, one-time pass-
word (OTP) token, or something the individual is or does). Authentication can be just
one factor (simple authentication) or combine multiple factors (strong authentication).
In addition, user accounts must be personal unless temporary access is necessary.

Comparable with France, the federal government of the United States launched
the HIPAA in 1996 [14] to guarantee people that they have rights to their own infor-
mation and to ensure that healthcare providers establish a safeguard to protect the
patient information.

The important security measures that systems can use are the following:
● Access controls: It include numbers and passwords to restrict access to patient

information.
● Encrypting: This means that only authorized parties can access patient informa-

tion using a key generated by an encryption algorithm.
● Audit trail: It registers who has accessed the patient’s information and the changes

made to their file.

Although it is a new project, E-care considers that it is essential to take care of the
privacy and safety of patients. For security, E-care uses a username and a password.
Each patient has a security code generated specifically for a slot and the system gives
it to the user; e.g. each patient can only see their own information with the tablet. It
is planned in the near future to implement the encryption of the data to reinforce the
protection of hacking.

E-care establishes an anonymous relationship between the patient and the data
with an algorithm called Anonymization [15]. It is a type of data privacy protection,
which attempts to preserve the format of the data without revealing the identity of
persons; this could be done removing or encrypting data.

This is a strong method to counteract the problems of security data. Anonymiza-
tion is used when the data is sensible, there is an increase in employees, it has an
external collaboration or a partner, and it wants to comply with all legal require-
ments. It should be added that for this method to be adequate, it must be supported by
laws and policies. Some of the advantages of data anonymization are the following: it
reduces the misuse of information, adjusts to privacy laws, and lowers operating costs.

12.2.2 Problematic of E-care

It is expected that E-care will provide a coherent solution in the field of telemedicine.
One of its biggest challenges is to achieve an algorithm sequence that can exploit all
this amount of data.
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All tests are currently in a pilot program with few patients. With the large-scale
deployment of the E-care platform within the framework of the PRADO program of
the French healthcare system (CPAM), it is expected that in a near future E-care will
have thousands of patients and millions of data. For a regular daily use, all patients
will use the platform almost at the same time in the morning. This can represent a big
challenge for E-care and it must be tested for its capacity of resilience and support.

The necessity of a benchmarking test came as a solution for this problem. It can
evaluate the performance of the platform by stressing the system and checking the
number of patients that E-care can handle and its response time. Also, the application
needs to support streaming data. For the data characteristics, the evaluation of the
benchmark will consider the methods, techniques, or algorithms used to test the big
data Hadoop and Spark systems. Another thing to consider is the other evaluations
that E-care will need to perform in the future, such as a machine learning test.

12.3 Big data

Big data does not have a single definition. Not only is it important for the IT industry,
it has also become relevant on different fields such as healthcare, manufacturing,
transportation, and the public sector [16]. Big data refers to a large amount of infor-
mation that flows continuously in the organization, including video, text, sensor, and
transactional records [17].

Big data analytics is the process that involves large and different types of infor-
mation to enable data miners to analyze it with nontraditional tools [18,19]. Big data
analysis requires data mining or machine learning algorithms [20]. More often, big
data analytics evaluates and processes the information in Hadoop and Spark [21].
Both have advanced algorithms processes to analyze large data sets. Section 4 will
discuss the Hadoop ecosystem and the most common analytical tools.

Big data [22] provides valuable information from the analyzed data, which can
be transformed into real competitive advantages for the organization. The advantages
may include the following [17]:

● Anticipate changes in behavior.
● Evaluate competitive threats.
● Improve marketing campaigns.
● Improve relations with stakeholders.

The first question that organizations ask is why quitting their traditional plat-
forms? Traditional platforms such as relational database (RD) and enterprise data
warehouse (EDW) have been used over the past decades by organizations to store
and analyze data. The systems are used by most companies and designed to work
with structured data. Companies use a traditional ETL (extract, transform, load) pro-
cess that extracts and analyzes data [17]. The biggest challenge occurs when the data
source is large and unstructured.

Most platforms, including E-care, deal with different types of information and the
increasing volume of their data. These characteristics make it difficult for companies
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to continue using traditional platforms: they are complex and expensive and require
a long time to operate their system.

In response to the limitations of traditional platforms, big data characteristics,
known as the Vs [18,22,23], were introduced by Gartner [24] to describe its ele-
mental features. The three aspects are categorized: (1) volume, (2) variety, and (3)
velocity. The definition of the three Vs and their qualities on the healthcare field are
the following:

1. Volume: It represents the amount of data such as terabyte or petabyte [25]. The
volume is growing considerably in the medical domain. This is because of the
great amount of data that are generated by electronic health records, medical
imaging (magnetic resonance imaging (MRI), electrocardiography, scan, and
XR), sensors, devices, and healthcare applications [19,26].

2. Variety: It denotes the types and sources of data [25]. The information is presented
in different ways including structured, semi-structured, and unstructured data
[27]. This is a challenge because most of the data came from different sources
such as medical notes, images, and sensors [26].

3. Velocity: It is the speed of creating, updating, and processing the data [25]. In
many medical areas, such as public health, it is important for researchers and
medical staff to have time-saving tools to improve patient’s care.

E-care will retrieve the information from structured and unstructured data
(sensors and notes from patients and medical staff). Also, the volume will increase
exponentially with the integration of real-time data. The system will migrate to a big
data platform that supports batch and streaming processes.

12.4 Hadoop ecosystem

Apache Hadoop [28] is an open-source software for reliable, scalable, and distributed
computing. It has emerged as the predominant platform for big data and many compa-
nies have adopted it: Google, Facebook, IBM, Adobe, EBay, Hulu, LinkedIn, and The
New York Times. It is a big data system which includes structured, semi-structured,
and unstructured data that allows less storage and processing algorithms [29]. It
is ideal for data management of sensors, videos and images, medical records, and
geolocation information.

There are multiple advantages of the Hadoop ecosystem; some of them are cost-
effective management, massive scalable platform, failure recovery, efficient use of
resources, and the fact that it is designed with the assumption that hardware will fail.
Hadoop framework is mostly written in Java language and has native C applications.
There are four basic components of Hadoop framework [28]:

● Hadoop Common: Common libraries and utilities to support other Hadoop
modules.
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● Hadoop Distributed File System (HDFS): A distributed file system that pro-
vides high-throughput access to its application. It is the Hadoop core and supports
the framework, storing large files across multiple machines.

● Hadoop Yet Another Resource Negotiator (YARN): A framework responsible
for computer resource management and job scheduling. It was introduced as a
Hadoop 2.0 and born from the need to enable other interaction patterns for data
stored in HDFS beyond MapReduce framework.

● Hadoop MapReduce: YARN-based system for parallel processing of large data
sets that escalates data across different processes.

Hadoop ecosystem arrives as the best solution for big data information process-
ing. Hadoop has different systems to cover different needs. An advantage of a program
that will migrate, such as E-care, is that it can analyze the big data architecture and
the advantages of Hadoop tools in order to choose the ones that meet their needs and
improve their architecture.

There are different tools that are on the top of the Hadoop framework [30]. In their
ecosystem, they have a variety of vendor architectures that influence the performance
of the systems. All applications evolved to meet the needs of companies (e.g. Google
and Facebook). They had to process and collect all their newly generated information.
A brief description of the most important tools, namely MapReduce and Spark, will
be presented in the following sections.

12.4.1 MapReduce

Apache MapReduce [31] framework is developed by Google. It was designed to
process large data sets. It enables computation through two simple functions: Map
and Reduce. The operation can be with a parallel and distributed algorithm on a cluster.

The idea is that the job splits data into chunks across all the computer nodes.
When the map tasks are over, the framework sorts the output, and the reduced tasks
will use the map sorting data as input and perform reduction operations, giving the
output of the program.

An example is having a big amount of data that is growing and you will need many
hard drives. Probably all the information came from different parts of the Internet and
spread out among the hard drives. You need to process the data, but you do not want
to spend time and effort making links between them with the imminent probability of
ending up with chaotic results. If you need a simple process, then it would be optimal
to have a system with a framework like MapReduce that helps organize the spread of
data and generate an output.

12.4.2 Spark

Apache Spark [32] was originally developed in the AMPLab at UC Berkeley. Spark
emerged as the replacement of MapReduce and solves similar problems. It runs pro-
grams 100 times faster than MapReduce in memory and 10 times faster on disk.
Spark differs from MapReduce in the implementation of multiple Resilient Dis-
tributed Dataset (RDD), a collection of data blocks across a cluster, which makes
it fast not only for task computations, but also for store cache. The framework sorts
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the output, and the reduced tasks will use the map sorting data as input [33]. If
necessary, Spark can run without YARN and could run directly on HDFS. It can be
integrated with Hadoop and other tools like Shark, Spark Streaming, Cassandra, and
HBase.

Spark is a flexible engine for large-scale processing. Most of the functions and
workloads are easy to handle. It can manage cyclic data flows, which makes it more
efficient in cases like processing machine learning and stream algorithms. Another
good thing about Spark is that it can be accessed from Java, Python, Scala, and R. It
has important extensions like its exiting libraries that can handle machine learning,
streaming applications, Structured Query Language (SQL) applications, graphics,
and batch applications.

12.4.3 Other tools

The other tools on top of the Hadoop framework are the following:

● Apache HBase [34] is inspired by Google BigTable. It is a non-relational dis-
tributed database and the key component of the Hadoop stack. It can handle
massive data tables in real time. HBase goal is to host massive tables with billions
of rows and billions of columns. It has the capacity of backing up MapReduce
jobs with HBase tables. HBase has a linear and modular scalability, a database
shard and an automatic failover support.

● Apache Pig [35] provides an engine to execute data flows in parallel on Hadoop. It
is a platform that analyzes a large data set and comprises a series of high-level data
operations for MapReduce. Pig includes a language called Pig Latin to express
data flows, which has the properties of being easy to program. Pig optimizes its
execution automatically and users can create their own functions to do special
processing.

● Apache Hive [36] is data warehouse software that facilitates the query and man-
agement of large data sets that reside in the storage of distributed files. Its EDW
infrastructure was developed by Facebook and employs MapReduce framework.
A programmer familiar with SQL language can prefer operations with Hive even
if the data are not stored in a traditional RD. It provides an SQL language called
HiveQL.

● Apache Storm [37] is a complex event processor and a distributed computation
framework. It is distributed in real time for fast processing. Storm consists of a
master and working nodes, with the coordination by Zookeeper. It is simple and
fast and can be used with any programming language, but it is mostly written
in the Clojure programming language. Storm does for stream data what Hadoop
MapReduce did for batch processing.

● Apache Flink [38] is a powerful framework for Java and Scala programming
and has a high runtime performance. It is listed as a data processing system
among MapReduce and Spark. Flink is an alternative of MapReduce and can work
separately from the Hadoop ecosystem because it is not built on MapReduce. It
can also access HDFS and YARN. Flink has a distributed stream processing that
is fault-tolerant and scalable and performs at large scale.
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12.5 Computational techniques

The increase in the analysis of medical information has been a relevant issue in recent
decades. If the medical staff want to have a good management of the information
and improve the health systems, they should look for the adequate tools to make
this happen. This section addresses different studies focused on talking about the
different techniques of machine learning in the field of health and examples using
Apache Spark.

12.5.1 Machine learning techniques in medical field

Machine learning offers many tools that help in the decision process, improves the
quality of life of patients, and optimizes costs. Studies that use their tools are present in
many areas such as genomics, imaging, preventive medicine, cardiovascular diseases,
diabetes, and chronic and epidemiological diseases.

In a recent investigation [39], the authors reviewed the state of the art of different
computational intelligence (CI) techniques used for analyze the accuracy, sensitiv-
ity, and specificity of single and hybrid (two or more methods) machine learning
techniques. For both, they conclude that Support Vector Machine (SVM) is the algo-
rithm with the best results in medical studies. In the case of the hybrid method, it
is determined that SVM together with the techniques of artificial immune recogni-
tion system (AIRS), genetic algorithm (GA), artificial immune system (AIS), fuzzy
logic (FSVM), and extreme learning machine (ELM) has the best results, highlight-
ing the SVM–AIRS method as the remarkable of all. They also conclude that hybrid
methods provide better results than the single methods. Analyzing the accuracy, sen-
sitivity, and specificity, the following results were obtained: the most accurate hybrid
methods were SVM–AIRS, SVM–GA, AIS–SVM, and FSVM; the most sensitivity
hybrid methods were SVM–AIRS, GA and particle swarm optimization (GA-MLP),
FSVM, AIS and GA (AIS–GA), and SVM–ELM; and the most specificity hybrid
methods were SVM–AIRS, fuzzy logic and GA (FGA), FSVM, AIS-GA, GA-MLP,
and wavelet packet transform and ELM (WPT–ELM). Nithya [40] also explores the
literature to understand the different processes of machine learning, highlighting the
techniques of decision tree, Bayesian methods, artificial neural network, instance-
based learning, clustering methods, and regression algorithms. Furthermore, the
author mentions the models applied to different areas of health such as cardiovascular
diseases, hepatitis disease, and cancer.

In another study [41], the authors used a data set of patients at Boston hospital
to predict the rehospitalizations caused by heart diseases. The goal is to avoid a
hospitalization before this happens. They check the accuracy with two indicators: the
false alarm rate (the false positives) and the detection rate (the true positives). For this,
matrix of correlation coefficients is used. They apply five supervised machine learning
techniques SVM, AdaBoost using decision tree, logistic regression and naïve Bayes
and a similar technique of K-likelihood ratio test. The comparison puts AdaBoost
as the method with the best performance and Naïve Bayes with the worst in the
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experiment. The resulting precision was of 82%. Also, the K-likelihood ratio test
helps to know the important characteristics for the doctor’s visit.

The present study [42] applies the deep learning model to improve the decision-
making process, considering the clinical features of the patients. They use two data
sets: the first was the personal records and disease history from an electronic medical
record (EMR), and the second data set was retrieved from a hospital information
system and was focused on hypertension. For the analysis of unsupervised learning,
they employ a version of deep belief network (DBN) and then use the parameters
to perform the supervised analysis, using a model with DBN and support vector
machines (SVM), a standard SVM, and a decision tree model. The best predictions
were with the DBN and SVM model; the author considers that this result is due to
the fact that in this model, key features of the problems were used.

Other problems that are solved through machine learning are the detection of dis-
eases centered in the epidemic field, such as influenza, dengue, and hepatitis B, among
others. This is explored in this study [43], where the machine learning approach is to
predict the outbreak forecasting process, peak time, maximum height, activities per
day, and duration of the outbreak and to review the most commonly used techniques,
e.g. SVM for text processing, firefly algorithm for optimization, autoregressive mov-
ing average, and linear or nonlinear regressions, concluding that the best technique to
predict outbreak forecasting is the SVM. Epidemiological problems should be treated
as quickly and efficiently as possible, in order to help decision-making.

12.5.2 Spark with machine learning techniques in medical field

The use of machine learning in Spark has become popular in the different studies; this
is due to the speed of processing that Spark has with the use of RDDs and its capacity
for parallelism. Spark has been replacing both traditional systems and Hadoop in the
medical area. Its development and integration are considered as a challenge due to
the high complexity of biomedical data. That is why the present studies show the way
in which Spark’s architecture and its models of information analysis have overcome
these challenges, becoming the most viable option for its purposes.

In [44], authors used real information of cell phones and sensors to predict the
probability of miscarriages using an unsupervised machine learning algorithm called
K-means for clustering with Apache Spark Databricks. To create the model, they used
a data set that contains 10,000 documents that had factors such as age, body mass
index (BMI), the number of previous miscarriages, activity, location, weight, and
height. As a result, the authors not only consider that they had a low error rate, but
also the time it took to process the information was efficient.

In another research [45], the authors modify the Chemogenomics pipeline of a
pharmaceutical that develops drugs to find the molecules of certain proteins, trying to
change from a single node to a multiple parallel node with Spark. They use machine
learning techniques for making the predictions and discover drugs. They made the
comparison with the original pipeline and found that Spark is 8 times faster using
8 nodes and 13 times faster using 16 nodes. They concluded that Spark solved their
problem, saving time and network bandwidth and making better predictions for the
searching of proteins. This is another study [46] that improved their system taking



Hadoop and Spark in e-health and data management platforms 217

advantage of Spark’s parallelization. They present a monitoring platform for elderly
people using Spark to cluster information with the SVM algorithm and process it
in real time via Spark Streaming. The authors used the data set of University of
California Irvine (UCI) machine learning repository [47] to make a clustering and
classification test. For this, they used 2, 4, and 12 cores with the method of K-means
clustering analysis. Regardless of the number of cores, Spark always got better results
than Hadoop. This will help to make the analysis of the information and the feedback
faster.

In another recent investigation [48], the authors propose a mechanism to find the
relationship between symptoms and diseases in a more efficient way with the algo-
rithm Faster-interactive and adaptive partitioned incremental (IAPI) that runs in Spark
RDD. The data they used to test the model were taken from the UCI machine learn-
ing repository and considered the factors of age, sex, chest pain type, resting blood
pressure, cholesterol, fasting blood sugar, and resting electrocardiographic results.

This work [49] develops a system that predicts the health status of a person
considering attributes in previous tweets. They process the information with a machine
learning model and Apache Spark streaming, sending back the results to the user. The
information is retrieved from the Heart Disease Data Set of University of California
Irvine (UCI) machine learning repository and processed with a decision tree algorithm
on real time. Once the prediction has been completed, the user receives a direct
message that says “Your health status is OK” or “You are requested to consult a
Cardiologist immediately.”

Another important use of Spark with machine learning is the improvement of
medical ontologies, which is one of the topics addressed by E-care. For example, the
techniques by Chen et al. [50] propose a Disease Diagnosis and Treatment Recom-
mendation System (DDTRS) to be more accurate in the identification of a disease
using a Density-Peaked ClusteringAnalysis (DPCA).They benefit from Spark’s paral-
lelism and data mining techniques using the Apriori algorithm. With this information,
the authors construct a medical domain ontology with the association rules for diag-
nosis and treatment; this is for the knowledge of patients and new doctors. For the
experimental part, they are taken into account the accuracy, recommendation qual-
ity, and performance of the DDTRS. Then they compare classification algorithms
(C4.5 and Random Forest) with clustering algorithm (K-means). For diseases with a
few treatment stages, such as influenza and diabetes mellitus, the classification algo-
rithms has higher accuracy than the clustering ones. On the contrary, for diseases with
more treatment stages or symptoms, the clustering algorithm has a higher accuracy
compared to the classification algorithm.

12.6 Benchmarking

Benchmarking is a tool that seeks to improve competitiveness by comparing the best
in the industry and how they do it. Michael Spendolini [51] points out one of the
first definitions of benchmarking: “A continuous, systematic process for evaluating
the products, services, and work processes of organizations that are recognized as
representing best practices for the purpose of organization improvement” (p. 9).
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Benchmarking began as a business technique in Xerox [51] as a consequence
of a bad run that the company was going through. Xerox had the best machines in
the field compared to its competitors; Xerox stopped innovating its products and had
bankruptcy threats from the Japanese market that offered more attractive machines.
Despite the resistance of the people who could not understand how someone else could
do it better than them, Xerox instituted the benchmarking process. When the process
started, the company benchmarked each function and task in terms of productivity,
cost, time, and quality.

Like Xerox, other companies adopted benchmarking for evaluation. There was no
any real standard, and those created were of dubious credibility. The creation of TPC
(Transaction Processing Performance Council) came as a solution to this problem in
the computing field.

The TPC is a leading benchmarking nonprofit corporation [52]. Two of its major
activities are (1) creating good benchmarks (2) and creating a good process for the
evaluation of the benchmarks. TPC was created to answer the question: “Who was
the best in the competition among computer vendors?” [53].

Even if TPC has been evolving slowly and presents new benchmarks and work-
loads [54], it recently reinvented itself and introduced a benchmark that standardizes
big data systems.

In July 2014, an express benchmark called TPCx-HS was developed. The first
TPC standard was designed to benchmark the Hadoop ecosystem [55]. TPCx-HS
Version 2 for Apache Spark and Hadoop was announced in May 2017, bringing TPC
on the cloud [56].

TPCx-HS provides verifiable measurements of performance, price, availability,
and energy consumption. It is also used to stress the Hadoop cluster [57].

TPCx-HS measurements include the following:

● Hadoop runtime
● Hadoop File system
● API compatible systems
● MapReduce layers.

TPCx-HS processing reduces the cost of TPC participation and makes it
approachable to more practitioners, including academics, consumers, analysts, and
computer manufactures [54].

12.6.1 Benchmarking and big data

Benchmarking is the foundation of any computer system research that provides a real
quantitative evaluation [23]. Benchmarks are the most important tools for assessing
the performance of the system, and it is vital for them to have transparency and to
be able to replicate the evidence [54]. They are designed to predict the performance
of systems and reveal their weaknesses and strengths [51]. The accuracy of these
predictions is what determines the quality of the benchmarking [58].

Benchmarking is designed for a particular type of systems. It is important to
decide the kind of benchmark that will be better for the system. Many benchmarks
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only evaluate system performance, architecture, and application protocols [58]. The
evaluation is difficult, since there is not a single benchmark that can have all the
requirements and satisfy all the system’s standards [27]; even TPC standards cannot
fulfill everything. In addition, it is used to compare the performance of different
systems with different architectures.

Now, with the new big data applications, platforms have become more complex,
diverse, and difficult to analyze. Big data is constantly changing. It is still considered
a new technology not very well understood compared to traditional systems [22]. One
of the problems is that currently, the characteristics of big data applications are not
completely defined [60].

Without clear standards and characteristics of big data, benchmarking is relevant
for the understanding of a platform. It is also used to evaluate the fault tolerance of a
big data system [22]. Benchmarking is developed to meet different needs; some are
for specific algorithms and others for multiple platforms, where they can stress the
system with microbenchmarks or with multiple types of loads.

12.6.2 Types of benchmarking

A classification of benchmarks can be microbenchmarks, macrobenchmarks, program
kernels, and application benchmarks programs [58]:

● Microbenchmarks
They measure a specific part of the computer system: CPU speed, memory speed,
I/O speed, and network. In general, they are used to characterize the maximum
performance that the system could obtain if it was limited by a single component.
They tend to be a kernel.

● Macrobenchmarks
They measure the performance of the complete system. These benchmarks do not
show if the system performs in a right or wrong way.

● Program kernel
It measures a small program usually extracted from the actual program. It is used
to characterize the main part of a specific type of program. Program kernel makes
an accurate comparison and prediction of the performance.

● Application programs
They measure a specific application. They are normally described in terms of the
functions to be performed and use almost all the resources of the program. These
benchmarks are real and complete and give significant results.

A Benchmark can be a real program with a real performance or a synthetic pro-
gram designed to evaluate specific functions and conditions. In the case of big data
benchmark programs, benchmarks use specific workloads for an application [25]
that provide an input to the real system under the study used [58]. Workloads are
important benchmarking operations that allow some optimal behavior evaluations,
leading to competent and cost-effective architectures [58]. They need to be repre-
sentative, diverse, and focused on a core operation [61] and specific to match the
system requirements [17]. Workloads can be real-world data based or synthetics.
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Both alternatives work; the choice depends on whether you can get real information
(concerning confidentiality issues) and whether its truthfulness is vital to the results,
or if synthetic results can emulate real-world scenarios and the results will not be
affected.

12.7 Benchmarks in Hadoop and Spark

There are many efforts in the area of big data benchmarking such as PigMix [62],
GridMix [63], Big Data Generator Suite (BDGS) [64], BigBench [65], BigDataBench
[66], BigFrame [67], HiBench [68], Hive [36], SparkBench [69], and SWIM [70].
These benchmarks are shown with their characteristics or workloads.

12.7.1 Amp Lab Benchmark

The AMPLab [71] at UC Berkeley provides quantitative and qualitative comparisons
of five systems: Redshift [72] of Amazon, Hive [36] of Hadoop, Shark [73] (now
included in Spark SQL), Impala [74], andTez [75] of Hadoop too. The SQL workloads
that use AMPLab are Scan, Aggregation, Join, and External Script.

12.7.2 BigBench

BigBench [65] is a recent effort to design a benchmark that has elements of existing
ones, such as TPC-xHS, GridMix, PigMix, and HiBench. The BigBench has two key
components: data and workload specifications. The structured part is adopted from
the TPC-DS [76]. Information from stores and web sales distribution channels are
used by BigBench.

12.7.3 BigDataBench

BigDataBench [66] is an open-source software under the Apache version 2.0. The
current version, BigDataBench 3.2, models five application domains, and includes
14 real-world data sets and 33 big data workloads. Table 12.1 shows the summary of
the implemented workloads in BigDataBench 3.2.

Big data systems include Hadoop, Spark, Flink, Hive, and Impala and cover
offline batch processing, machine learning, and query processing [77].

12.7.4 BigFrame

BigFrame [67] is a benchmark generator for big data and relies on Hadoop to do paral-
lel data generation. Unlike microbenchmarks or very specific benchmarks, BigFrame
generates a specific set of data and workloads. It has two different types of work-
loads: offline analytics and real-time analytics. The latest version implemented is
Business Intelligence which provides relational data, nested text data, and graph
data [78].
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Table 12.1 Summary of the workloads implemented in BigDataBench 3.2

Applications Workloads or algorithm Types

Search Engine Grep Offline analytics,
streaming

WordCount Offline analytics
Index Offline analytics
PageRank Offline analytics
Nutch Server Offline analytics
Search Streaming
Sort Offline analytics
Read Cloud online transaction

processing (OLTP)
Scan Cloud OLTP

Social Networks Rolling Top Words Streaming
Connected Components (CC) Graph
K-means Streaming, offline analytics
Label Propagation Graph
Triangle Count Graph
BFS Graph

E-commerce Select Query EDW
Aggregation EDW
Join Query EDW
Collaborative Filtering (CF) Streaming, offline analytics
Bayes Offline analytics
Project EDW
Filter EDW
Cross Product EDW
Order By EDW
Union EDW
Difference EDW

Multimedia Analytics BasicMPEG Offline analytics
Scale-invariant feature Offline analytics

transform (SIFT)
DBN Offline analytics
Speech Recognition Offline analytics
Ray Tracing Offline analytics
Image Segmentation Offline analytics
Face Detection Offline analytics

Bioinformatics Scalable Assembly Offline analytics
at Notre Dame (SAND)

Basic local alignment Offline analytics
search tool (BLAST)

12.7.5 GridMix

GridMix [63] is a benchmark for Hadoop clusters that consists of a combination of
synthetic jobs reading in bytes. It evaluates MapReduce and HDFS performance and
not the projects on top of them. The benchmark emulates different users of the same
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cluster and submits different types of job, identifies bottlenecks, and stresses the
framework at scale. The following characteristics of job load can be captured in job
traces and reproduced in GridMix:

● File system properties: It does not have block sizes matching, namespace hier-
archies, or any properties of input. This means that some heavy parts of the
system, such as processing and streaming, cannot be tested with the current
implementation.

● I/O rates: The rate at which the records are consumed is limited by the speed of
the reader/writer.

● Memory profile: The data on the memory usage of the task is not available.
● Job failure: It is assumed that the user code is correct.
● Job Independence: The output of a job does not affect the next one.

12.7.6 HiBench

HiBench [68] is a big data benchmark suit for different big data frameworks (speed,
throughput, and resource utilization) and applications (Hadoop MapReduce, Hive,
Spark, Storm, and Flink). The versions that HiBench supported are the following:

● Hadoop: Apache Hadoop 2.x, CDH5, Hortonworks Data Platform (HDP)
● Spark: Spark 1.6.x, Spark 2.0.x
● Flink: 1.0.3
● Storm: 1.0.1
● Gearpump: 0.8.1
● Kafka: 0.8.2.2.

Table 12.2 summarizes the six categories and the 19 workloads of HiBench. The
benchmark consists of microbenchmarks and real-world applications. These include
the following:

● Microbenchmarks
– Sort, WordCount, and Terasort are popular programs representative of

MapReduce. Sort and WordCount are generated using RandomTextWriter
and TeraSort is generated by Hadoop TeraGen. Sleep will snooze on each
task to test the framework. Enhanced DFSIO performs measures on HDFS
using MapReduce. This benchmark does not have a Spark implementation.
DFSIO processes the average I/O rate of each map task and throughput each
map task.

● Machine learning
– Machine learning is another important use of MapReduce. The Bayesian Clas-

sification and K-means Clustering are contained in Mahout/Spark-MLLib.
Both workloads are part of a classification algorithm for data mining and
knowledge discovery. The Bayesian Classification generates documents
through Zipfian distribution and K-means through GenKMeansDataset. The
inputs of K-means are samples represented by a numerical d-dimensional
vector.



Hadoop and Spark in e-health and data management platforms 223

Table 12.2 Summary of the workloads
implemented in HiBench

Category Workloads

Microbenchmarks Sort
WordCount
Terasort
Sleep
Enhanced DFSIO

Machine learning Bayesian Classification
K-means
Logistic Regression
Alternating Least Squares

SQL Scan, Join, Aggregate

Websearch benchmarks PageRank
Nutch

Graph benchmark NWeight

Streaming benchmarks Identity
Repartition
Stateful WordCount
Fixwindows

– Logistical Regression and Alternating Least Squares are implemented in
Spark-MLLib. The input data by Logistic Regression are generated by
LabeledPointDataGenerator and contain three types of data, including cate-
gorical data, continuous data, and binary data. The Alternating Least Squares
workload is generated by RatingDataGenerator.

● SQL
– Contains Hive queries performing online analytical processing (OLAP)

queries. Its input is generated by Zipfian.
● Websearch Benchmarks

– PageRank is an algorithm implemented in Spark-MLLib/Hadoop. The data
source is also generated from Zipfian distribution. The workload consists of
a series of Hadoop jobs and is used in web search engines like Google. The
Nutch indexing is a subsystem of Nutch [64], an open-source search engine of
Apache. Workloads use automatically generated web data whose hyperlinks
and words follow the Zipfian distribution.

● Graph Benchmark
– NWeight is an iterative graph-parallel algorithm implemented by Spark

GraphX. The algorithm computes associations between two vertices that are
n-hop away.

● Streaming Benchmarks
– Workloads arrive through Kafka [79]. It is a distributed streaming system

of Apache. Identity reads input data from Kafka and writes back the result.
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Table 12.3 Summary of the workloads implemented in
SparkBench

Category Workload

Machine learning workloads Logistic Regression
SVM
Matrix Factorization

Graph computation workloads PageRank
SVD++
Triangle Count

SQL workloads Hive
RDD Relation

Streaming workloads Twitter Tag
Page View

Other workloads unclassified K-Means
LinearRegression
DecisionTree
ShortestPaths
LabelPropagation
ConnectedComponent
StronglyConnectedComponent
PregelOperation

Repartition reads input data from Kafka and changes the level of parallelism
by creating more or fewer partition tests, testing the efficiency of data shuffle
in the streaming frameworks. Stateful WordCount counts the words received
from Kafka every few seconds. It is used for testing the performance of
the operator and the cost of Checkpoint/Acker in the streaming frameworks.
Fixwindow performs a window-based aggregation.

12.7.7 PigMix

PigMix [62] is a set of queries used to test Pig performance. PigMix has a set of 12
queries, and PigMix2 includes another 5 additional queries. Some of the queries test
some features, such as data loading, scalability, different joins, groups, and unions.

12.7.8 SparkBench

SparkBench [69] is a benchmarking suit specific for Apache Spark developed by
IBM. It has four different types of application with multiple workloads. The complete
workloads can stress an entire cluster and identify the system resource bottlenecks.
It can analyze the workloads with respect to the CPU memory, disk, and network I/O
[33]. Table 12.3 summarizes the category and workloads of SparkBench.
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12.7.9 Statistical Workload Injector for MapReduce

Statistical Workload Injector for MapReduce (SWIM) [70] is a framework that can run
real-life workloads from MapReduce systems. SWIM uses some synthetic workloads
with the characteristics of an original workload. It reproduces a mix of job submission
[78]. SWIM includes a repository of workloads from MapReduce, synthetic tools,
and replay tools.

The system mentioned in this section is used to stress a complete system or its
parts. Some use similar workloads and can test different Hadoop ecosystem tools.
In order to be able to mention which system and benchmarking test are appropriate
for E-care, Section 12.8 will make system comparisons as found in the reviewed
literature.

12.8 Benchmark comparison

There are many benchmark big data systems in the market. Some of them are
developed directly in Apache with the purpose of examining their own systems:
MapReduce, Hive, Pig, Spark, etc. Others are developed for external companies and
are implemented in theApache systems, namelyAMPLab, BigBench, BigDataBench,
and TPC.

Each benchmark has its own advantages. In their homepages, they display their
competitive features over other alternatives. In the available literature, some systems
are described and analyzed. Others try to demonstrate why a particular benchmark is
the best option. It must be considered that there is not a correct answer or a bench-
marking that covers all the features of all the systems. Every system is different;
some need batch information, SQL analytics, graph processing, stream processing,
or a combination of those.

For a system like E-care which seeks to migrate from a traditional system to a big
data system, the most important thing at the beginning is to find a platform that helps
the program to have the best performance and can handle all the information. For the
moment, E-care’s plan is to use batch and stream processing. The other processing
schemes will be taken into account for the future of the application. In addition, E-care
needs to have benchmarking options with an extensive set of workloads.

Even if there are studies talking about the benchmarking and workloads systems
in Hadoop ecosystem [17,80–83], the most popular and/or complete programs are
MapReduce, Spark, and Flink. MapReduce is the most studied in the literature [84,85].
It is the oldest and the native batch processing benchmark of Hadoop. It is also
compatible with other Hadoop’s frameworks with multiple workloads. Spark, the
successor of MapReduce with streaming processing, focuses on the speed of the
batch processes in data memory. Flink can also handle stream and batch processes. It
is still a young system, and even though it has a lot of advantages, there are not many
studies regarding its limitations.

The thesis of Liu [86] makes a comparison using HiBench between the results
of the workloads of MapReduce and Spark (PageRank, WordCount, Sort, TeraSort,
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K-means, and Naïve Bayes). They put Spark with an outstanding performance on
machine learning workloads: K-means and Naïve Bayes [20,87]. Other workloads
have also better results than MapReduce. The problem mentioned with Spark in this
and other investigations [87] is its restricted memory. If the input size is big and the
system does not have a lot of memory, the result is that MapReduce will be faster.
MapReduce tends to be fast with the largest data sets; also disk space is not a resource
problem, unlike Spark.

An interesting comparison between Spark and Flink is shown in Marcus’ paper
[88], which is focused on comparing their frameworks. The study uses batch
workloads (Word, Count, Grep, and TeraSort) and iterative workloads (K-Means,
PageRank, and Connected Components). The identified parameters are the follow-
ing: task parallelism, network behavior during the shuffle phase, memory, and data
serialization. For each run, they measure the time needed to finish the execution
(excluding the time to start and stop the cluster).

The results of their experiment were the following:

● For the aggregation component, Flink seems to be more efficient than Spark.
● For complex workflows with multiple filter layers, Spark seems to be more effi-

cient in the control over RDDs than Flink which does not have that implementation
yet.

● For the execution of the pipeline (TeraSort), Flink is more efficient in resource
usage.

● For iteration performance (K-means), both frameworks have similar resource
usage when loading the data point and processing the iterations. Flink has a better
execution than Spark by 10%.

● For Graph processing (PageRank and Connected Components), the results depend
on the size and nodes used. For larger graphs, Spark has better results, and for
smaller graphs, Flink has better results.

The above-presented results are important because there are very few works
analyzing the frameworks of Spark and Flink. With their experiments, they conclude
that Flink does not accumulate many objects in the memory region unlike Spark. The
analysis of the pipelined execution is that, in general, Flink is better than Spark but
has issues related to the fault of tolerance. Flink can automatically build optimizations
unlike Spark and requires less memory configuration.

Even if MapReduce is the best studied system of all, E-care needs a big data
system that has a better design in its architecture for streaming processes. MapReduce
is a good and less expensive option for batch systems. For batch and stream systems,
Spark and Flink are both good options. Flink seems to have a unique framework
but lacks research and more workload tests compared to Spark, which is a more
constitutive system. For the E-care platform, it is vital to migrate the program to a
well-known system, where its strengths and weaknesses are recognized. Similarly to
MapReduce, Spark has compatibility with other Apache systems, and this can help
E-care to have a better interconnectivity in the future.
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12.9 Proposal

With all the data sets extracted from different sensors and the increase of the IoT in
the medical field, the only alternative for E-care is to migrate to a big data system in
order to make a real integration of medical information, process the data, and improve
the patient’s quality of life. The goal of E-care is to make a better decision support
system using an existing ontology. The system must be able to help to move from
patients’ generic information to personalized data in real time, with the intention to
have a learning process by looking for similar patterns in each patient. Big data algo-
rithms can handle and process this large, different, and changing information on its
system.

For E-care, Apache Spark is the closest option to satisfy its needs. It has a
good performance in batch and streaming applications (lambda architecture), and
the studies show Spark with an outstanding performance on machine learning. It has
a large library for machine learning and iteration performance. Even if Spark has
low latency process, its other qualities compensate it. Knowing the characteristics
of Spark will help to accomplish the best algorithms for the E-care system at the
time of migration and for the data mining analysis that will be needed to improve the
ontology. It will benefit the E-care’s personal staff making the data easy to use and
the system resilient for any error.

HiBench and SparkBench have an interesting and complete set of workloads that
can be used for stressing E-care and predict the performance of the system. Both
can perform the first benchmarking part, which consists in stressing the system and
discovering E-care flaws points and resilience capacity. Machine learning and data
mining are the central keys for E-care goals, and both systems have very complete
workloads to run in Spark when E-care migrates.

For HiBench, the workloads that will be used are from the category of
Microbenchmarks (except for Enhanced DFSIO), Streaming Benchmarks, and
Machine Learning. In the case of SparkBench, the workloads that will be used are prin-
cipally from the Streaming Workloads and Machine Learning Workloads categories.
The workloads exhibit different characteristics, stress different system bottlenecks,
and enable a comparison for Spark system. They cover CPU, memory, scheduling,
and I/O workloads. For streaming data, Spark will be integrated with Kafka, which
connects and streams different systems from beginning to end.

The workloads algorithms from machine learning are used for classification,
clustering, prediction, and a decision support. Spark system will support group cre-
ation considering the patients’ characteristics and their future predictions. Some of
them are the following:

● Classification: E-care already knew, from the previous ontology, the patients’
characteristics (antecedents, clinical history, chronic diseases, etc.). In this
case, it is easier to place their new patients and learn from previous informa-
tion. The benchmark techniques used for classification are SVM, The Bayesian
Classification, Decision Tree, etc.



228 Big data recommender systems, volume 2

● Clustering: In this case, even if E-care uses the existing ontology, it will learn new
information from patients who can make a new group arrangement. An example
of clustering consists of predicting if a patient with certain characteristics will
have a heart attack two months later or will develop a sinus arrhythmia without a
previous examination. The benchmark techniques used for clustering are K-means
and Matrix Factorization.

After the migration to Spark, E-care’s first tests will be for stressing the sys-
tem. This is to check the capacity of handling a bigger amount of information (e.g.
new patients with new data entries), different types of data (e.g. tests with different
measurements and comments from the patient), and the capacity to stream the data
swiftly. The second group of tests will focus on machine learning benchmarks.

12.10 Conclusion

There is limited information available in the literature about the complex process
of implementing big data in healthcare systems such as E-care. There is also little
evidence related to benchmarking tests to prove the strengths and weaknesses of
E-care. These changes aiming at maintaining the medical field in the forefront of
progress and big data, especially Hadoop ecosystems, must be given the opportunity
to be accomplished. In this way, the patient’s quality of life will be improved and the
availability of knowledge about medicines will increase.

In the current technological era, it is vital that telemedicine has an orderly, simple
and understandable data management. A good distant-monitoring system makes it
possible to reach people from remote locations and improves their well-being while
generating cost-saving alternatives for the health system. This will also give health
staff and researchers the opportunity to analyze patients’data and improve the ontology
of chronic diseases mentioned at the beginning of the chapter. E-care believes that
the best way to have the information ready for analysis and the architecture that
allows it is through big data tools with a constant improvement of benchmarking
tests. Benchmark tests are the tools that make a system work in its best capacity, for a
remote system in the medical field. This is the key for life improvement for patients
with chronic diseases.
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Chapter 13

Extracting and understanding user sentiments
for big data analytics in big business brands

Jaiteg Singh1, Rupali Gill2, and Gaurav Goyal2

Consumer behavior has become the niche of the market for every user from a manu-
facturer to a customer. People are fairly good at expressing what they want, what they
like, or even how much they will pay for an item. But they are not very good at access-
ing where that value comes from. Behavior is triggered from sentiments generated in
response to an external stimulus. Sentiments and emotions are the subjects of study
of sentiment analysis and opinion mining, and this field of study coincides with rapid
growth of social media on the web, e.g. social networks, blogs and Twitter, and for the
first time, we have huge volume (big data) of data in digital form with us to analyze.
Developing algorithms for computers to recognize emotional expression is a widely
studied area, and the study of big data analytics and neuromarketing techniques acts
as the most powerful tool to develop these algorithms for better understanding of
consumer preferences, purchase behavior and decision patterns. The research aims
to extract/read user behavior/sentiment to predict future preferences and to plan the
business branding policies.

The major objective of this chapter is to perform data analytics of the sample
data using Hadoop framework based on crucial metrics related to consumer behavior:
(1) customer acquisition cost; (2) customer retention cost; (3) lifetime value; (4)
customer satisfaction and happiness; and (5) average purchase amount and behavior.
The understanding of these metrics helps in extraction of customer buying trends
leading to match the specific customer personas, hence meeting business strategies.
The chapter provides a study of user sentiment using neuromarketing techniques and
providing data analytics on the user-recorded sentiments based on consumer behavior
metrics. The chapter provides an understanding of (1) user sentiments, (2) consumer
behavior and neuromarketing process and (3) big data analytics.

13.1 Introduction

Markets today are controlled by products and services premeditated for the general
consumer. According to business dictionary, consumer markets fall into four main

1Department of Computer Applications, Chitkara University Institute of Engineering and Technology,
Chitkara University, Punjab, India
2Department of Computer Science and Engineering, Chitkara University Institute of Engineering and
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categories: consumer products, FMCG products, sale and retail products, and ship-
ping products. To make a market successful, brand loyalty has become a major concern
for the industries to manage the perspective popularity of products and services. Brand
loyalty is directly related to consumer satisfaction. Consumer plays a major role in
examining whether the product/service provided by the company matches the con-
sumer expectation. Marketers and big business brand owners are provided with a key
metric by the consumers to deal with and develop better business strategies.

Markets today do have already changed from buyer market to seller market.
Consumer research plays a major role to dig deeper to dredge more consumer insights
for a way to sustain growth and ride higher with competitors. Most appropriate way is
to understand consumer behavior. Consumer behavior is based on understanding of
other people’s behavior, habits, motivation to “do the right thing,” self-expectations,
and loss-averse need to feel involved and effective to make a change.

13.2 Consumer behavior for understanding
consumer sentiments

Consumer behavior is classified as making decisions and actions that influence the
purchase behavior of a consumer. The marketers analyze product based on consumer
decision which is based on emotions and reasoning. Consumer behavior helps in
prediction of past and future purchase decisions and patterns.

Sentiment analysis of consumer behavior is required in making decisions in the
following areas:

● Effective packaging
● Advertisement efficiency
● Revealing hidden responses
● Brand promotion
● Prototype testing
● Website layout
● Programming promotions
● Product experience and product development.

Sentiment analysis performs analysis of images and videos based on three
techniques:

● Machine learning: It involves data replacing experts and creating models.
● Pattern recognition: It entails splitting images into sections and requires human

analysis.
● Deep learning: It uses several layers to identify images using visual maps.

13.3 User sentiments

Sentiment analysis is based on understanding of the feelings, attitude, opinion and
emotions expressed through written expression, facial expression and other body
gestures.
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User sentiments are widely used for gathering public opinion for various products,
brands, movies, political reviews, etc. Sentiment analysis widely used to extract
insights from user opinions is being adopted by big business organizations across the
world.

13.4 What is consumer sentiment?

Consumer sentiment is a measurement based on collected statistics and cost-effective
sign of the general economic status as determined by consumer expression and sen-
timent. Consumer sentiment takes into account an individual’s feelings toward his or
her own current financial health, the health of the economy in the short term and the
prospects for longer-term economic growth.

Sentiment analysis for extraction of the user sentiment is based on user under-
standing of user facial expression, eye gestures, walking traits and inner senses.
Analysis based on visual content is easy to understand and explainable to the user.
Visual content through image/video is considered to be the most effective way to
express opinions and user experiences. Sentiment analysis of visual content can help
in better understanding of user emotions.

13.4.1 Why sentiment analysis is required?

Sentiment analysis of images is required in making decisions in the understanding
consumer behavior that is used to predict the decision in case of product pricing and
promotion.

The decision is based on ten principles of psychology:

● Leading: Decisions based on preconceived expectations and prejudices of what
an experience will be, not what it is.

● Frequency illusion: Do not always consider all elements of an experience, but
focus on certain noticeable factors of it.

● Social proof: Influenced by social factors that may or may not be directly related
to context question

● Distraction effect: Do not know about the things that influence us; just
subconsciously perceive get influenced by eye-catching offers.

● Loss Aversion: Emotional twinges affect “in the moment” of decision-making
and hence behavior.

● Scarcity: Prone to be cautious of anything that threatens the well-being and
scarcity.

● Anchoring: What is expected from an experience at a deep level. People perceive
what they like at the first level

● Grouping factor: The memory of an event is not faultless, but is subject to
manipulation.

● Word for word effect: Follow the herd, and get influenced with what people say
and bored with the same old.

● Reciprocity: Influenced by the public dealings and gift offers.
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13.4.2 Need for neuromarketing based on psychology principles
● Human brain processes the data subconsciously, where there is no conscious

awareness.
● Subconscious dispensation is emotional. Emotional means dominion of the

unintentional or intentional.
● Subconscious dispensation has significant effect on consumer attitude, behavior

and emotions.
● Subconscious dispensation leads to a wide variety of decisions.
● Consumers cannot draw any inference from these decisions at subconscious level.

So there becomes a need to understand consumer behavior and apply neurological
processes to draw inferences from it.

These neuromarketing lessons lead to the study of consumer behavior.

13.4.3 How sentiment analysis can be correlated
to consumer behavior?

Sentiments play a large part in purchase and sale of a brand. Understanding of
consumer behavior focuses on cognitive and affective response articulated by the
viewers to become conscious of intended viewers responds to business, products
and brands. Integrating sentiment marketing with consumer behavior focuses on the
human brain’s responses on the positivity–negativity values, so as to build up an
advertising/marketing approach that takes up the user data from business planning
and promotion.

This method makes a multilayered process which requires tasks like extraction
and pooling of images/videos, understanding the emotions and applying clustering
concepts to images/videos.

Sentiment from a video/image to understand the consumer behavior can be
detected following neuromarketing tools.

Sentiment analysis of image/video uses neuromarketing techniques to detect
human expressions. The expressions can be classified into two types—positive and
negative—which can be listed into seven emotional states as anger, dislike, disgust,
sadness, joy, fear and surprise as shown in Figure 13.1.

Sentiment analysis of these emotions for an image/video sample is done through
webcam for analyzing the emotional responses toward the stimuli and can be per-
formed best using neuromarketing techniques. Neuromarketing tools are used to
uncover hidden structures in the mind. The motivation behind using tools is to deter-
mine marketing issues, especially with “four Ps” of marketing—Product, Price, Place
and Promotion. Neuromarketing provides substantial insight into marketing science
and business strategies by discovering decision-making from a consumer behavior.

13.5 The concept of neuromarketing

The concept of neuromarketing was developed at Harvard University in 1990 by psy-
chologists. A nonprofit “Commercial Alert” organization in US claims that brain
scanning exists to conquer the mind for marketable growth. The study of consumer
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Figure 13.1 Emotion states based on valence and arousal

neuroscience is a most often used concept in modern medical equipment and technolo-
gies attempting to provide competence in opposition to conventional set of business
methods. The traditional marketing strategy, based on product’s inherent properties
and tangible features or benefits, is now shifting to branding the product through
subconscious brain activities before being bought by the customer. For marketers, it
is becoming important to make the product fit into customer’s memory, rather than
being placed on a shelf.

According to business to consumer (B2C) study [1], 73% of respondents’ mobile
searches are based on location-based advertising to understand consumer attention.

It’s a noteworthy fact that India is the seventh largest nation in size, second most
populated country and the seventh largest economy of the world. Neuromarketing
may still be talked less in India or not so evidently, globally it is a well-established
marketing strategy for many big companies with huge advertising and promotional
spends. Arguably, Neuromarketing is becoming a serious research area in application
of cognitive science to understand consumer decision-making. The involvement of
neuro-scientist varies from user preference over brands and the need of the prod-
uct. The study is totally based on the understanding the subconscious brain cells to
recall and movement of eyes toward a video for an advertisement. Neuromarketing
research study can be applied understanding the right mix of product, price, place
and promotion by applying neuro-imaging techniques.

Neuromarketing researches are not 100% successful, but they offer great bene-
fit over traditional marketing strategies. Neuromarketing judicially handled through
subconscious readings can provide positive and useful impact on understanding and
improving hidden market behaviors.

Neuromarketing is market research activity that uses the brain activities to
understand and analyze human sentiment to provide insights into marketing
activities. (https://www.newneuromarketing.com/what-is-neuromarketing)
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13.5.1 Neuromarketing techniques

Neuromarketing techniques can be categorized into five major categories (see
Figure 13.2): Neuro-metrics, Facial action coding, Implicit response testing,
Eye-tracking and Bio-metrics [2].

Table 13.1 indicates most of the marketing research using functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG), facial coding and biometric
sensors for understanding basic consumer behavior traits like memory encoding,

Neuro-metrics

MEG
EEG

fMRI

Facial coding

Facial action
coding

Implicit
response testing

Neuromarking
techniques

Eye-tracking Bio-metrics

Galvanic skin
response (GSR)

Electro-dermal
response (EDR)

Facial EMG
PET

Figure 13.2 Neuromarketing techniques

Table 13.1 Consumer behavior traits measured by neuromarketing techniques [3]
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sensory perception, trust, brand loyalty, attention, cognition and emotion detections.
The studies also indicated that fMRI and EEG detect most of the basic emotional states
but marketing companies nowadays prefer EEG over fMRI to study the consumer
behavior due to high equipment cost of fMRI tools. Eye-tracking captures human
attention by detection gaze point over various eye positions which are recorded by
facial coding or facial EMG using a webcam. The biometric sensors like galvanic skin
response (GSR) and electro-dermal response (EDR) detect the loyalty and valence of
an emotion. Tables 13.1 and 13.2 indicate the analysis to carry out an effective study
that indicates the use of EEG with eye-tracking, facial analyzer and GSR which is
preferred these days to understand the consumer behavior.

13.5.2 How it works?

The neuromarketing framework, see Figure 13.3, involves the collection of neuro-
metric data so that knowledge base can be driven out of it. The neural response
of the volunteers is to be taken with for a given marketing stimulus. For this step,
response would be taken by using GSR, eye-tracking, facial expression analyzer and
electroencephalogram responses.

● The GSR sensor (Sweating) allows the measurement of the electrical conductance
of the skin. It works as an indicator of physio-psychological arousal.

Table 13.2 Parameters tested by neuromarketing techniques [3]
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Figure 13.3 Neuromarketing framework
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Figure 13.4 Interpretation of EEG signals into classes

● Eye-tracking data can be collected using either a remote or head-mounted “eye-
tracker” connected to a computer or it can be hand-coded as well. The most
common is to analyze the eye movement of one or more volunteers across an
interface such as a computer screen. Each eye data collected through gaze points
are converted into pixel coordinates to indicate the eye movement in various screen
locations. The detected points from eye are used to analyze the features like atten-
tion, pupil dilution and expansion, eye moves, when a particular feature captures
attention, how quickly the eye moves, what content is ignored and virtually any
other gaze-related question. High accuracy series of facial images (video) would
be recorded and fed into a computer for decoding facial expression(s) using a
high-resolution webcam.

● EEG-based brain–computer interfaces consist of very typical components, each
of which performs its own critical function. Figure 13.4 shows the process cycle
to record and interpret EEG data. First a stimulus and test protocol is defined.
During testing, the test subject will be exposed to the stimuli according to the test
protocol. The resulting voltage changes in the brain are then recorded through
an electroencephalogram, from which noise and artifacts are to be removed. The
resulting data will be analyzed and relevant features (like power spectra) will be
computed. Based on a test set from these features, a classifier will be trained, and
the rest of the data will be classified using this classifier. This step provides an
interpretation of the original raw brain signals.

The EEG uses receiver operating characteristic (ROC) graph for visualizing,
organizing and selecting classifiers based on their performance. The classification
is considered by taking only two classes. Formally, each instance I is mapped to
one element of the set {p,n} of positive and negative class labels. A classification
model (or classifier) is a mapping from instances to predicted classes. To distinguish
between the actual class and the predicted class, we use the labels {Y , N} for the
class predictions produced by a model. Given a classifier and an instance, there are
four possible outcomes. If the instance is positive and it is classified as positive, it
is counted as a true positive; if it is classified as negative, it is counted as a false
negative. If the instance is negative and it is classified as negative, it is counted as
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Figure 13.5 Confusion matrix and common performance metrics calculated from it

a true negative; if it is classified as positive, it is counted as a false positive. Given
a classifier and a set of instances (the test set), a two-by-two confusion matrix (also
called a contingency table) can be constructed representing the dispositions of the set
of instances. This matrix forms the basis for many common metrics.

Figure 13.5 shows a confusion matrix and equations of several common metrics
that can be calculated from it. The numbers along the major diagonal represent the
correct decisions made, and the numbers of this diagonal represent the errors—the
confusion—between the various classes. The true positive rate1 (also called hit rate
and recall) of a classifier is estimated as follows:

tp rate ≈ Positives correctly classified

Total positives

The false positive rate (also called false alarm rate) of the classifier is

fp rate ≈ Negatives incorrectly classified

Total negatives

Additional terms associated with ROC curves are the following:

sensitivity = recall

specificity = True negatives

False positives + True negatives

= 1 − fp rate

Positive predictive value = precision

Algorithm for multiclass classification of various emotions captured using
camera:

1. Load training data for all emotions (happy, sad, neutral, surprised and angry) that
will be used for classification (see Table 13.3).
● Training data will be cropped images of dimensions 50 × 30 of eyes and

mouth of each emotion for a variety of persons.
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Table 13.3 Size of training data used to detect emotions

Emotion Cropped object No. of samples

Happy Eyes 200
Sad Eyes 200
Surprised Eyes 200
Angry Eyes 200
Neutral Eyes 200
Happy Mouth 200
Sad Mouth 200
Surprised Mouth 200
Angry Mouth 200
Neutral Mouth 200

Training data:
● Create different csv files containing the names of files for training data for

each emotion (see Figure 13.6).
● Read each csv file to fetch the names of training data files.
Code:
with open(‘smiles2.csv’, ‘rb’) as csvfile: � opens csv file

for rec in csv.reader(csvfile, delimiter=‘|’):� reads each filename
into a list “smilefiles”

smilefiles += rec

sadfiles = []
with open(‘sad.csv’, ‘rb’) as csvfile:

for rec in csv.reader(csvfile, delimiter=‘|’):
sadfiles += rec

surprisefiles = []
with open(‘surprised.csv’, ‘rb’) as csvfile:

for rec in csv.reader(csvfile, delimiter=‘|’):
surprisefiles += rec

angryfiles = []
with open(‘angry_mouth.csv’, ‘rb’) as csvfile:

for rec in csv.reader(csvfile, delimiter=‘|’):
angryfiles += rec

neutralfiles = []
with open(‘neutral2.csv’, ‘rb’) as csvfile:

for rec in csv.reader(csvfile):
neutralfiles += rec

● Read each training data file and vectorize it, i.e. convert the 2d matrix of
50 × 30 into oned array of 1 row and 1500 (50 × 30) columns.



246 Big data recommender systems, volume 2
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sad_(23).png sad_(24).png sad_(25).png
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sur_(21).png sur_(22).png sur_(23).png

Figure 13.6 Sample training data and created csv file containing names of files
within training set
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Figure 13.7 Sigmoid of the dot product of the weights

Code:
oned_array = im_array.reshape(1, size[0] * size[1])

2. Train the training set—Apply logistic regression on the training data to label the
data.
i. Select random weights using np.random.normal with mean = 0 and standard

deviation = 1.
ii. Update the weights using gradient descent until convergence.

• Calculate hypothesis (y_n), i.e. predict the probability using sigmoid
function either 0 or 1 of a training image to be in one of the classes of
emotions.

Code:
y_n = self.evaluate(phi[n],case)

def evaluate(self,phi_n,case):

r=sig (np.dot(self.weights[case], phi_n.T))�Calculate the
sigmoid of the dot product of the weights(assumed slope of
the different features) and feature space (see Figure 13.7).

def sig(x):
return 1.0 / (1.0 + np.exp(-x)) � returns 0 or 1

• Compute a gradient of error function, i.e. grad_E = (Hypothesis −
Original value) * features.

Code:
grad_E += (y_n - labels[case][n]) * phi[n]

Update randomly selected weights using gradient descent or error
function and a learning rate.

Code:
self.weights[case] = w_prev - (learn_rate * np.array(grad_E))

• Stop updating the weights when the absolute difference is less than
0.0001. This shows that the gradient descent has converged.
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Figure 13.8 Captured data image

Mouth: Eyes:

Figure 13.9 Haar cascaded output

Figure 13.10 Output showing identified emotion

Code:
if abs(x) < 0.0001:

converged = True

3. Capture image to be classified using high-resolution camera (see Figure 13.8).
4. Crop eyes and mouth using Haar-cascading (see Figure 13.9).
5. Using One versus All algorithms for multiclass classification, predict the class

of the test data (cropped mouth and eye image); see Figure 13.10.

13.6 Big data analytics

Big data is defined in terms of 4 V’s—Volume, Velocity, Variety and Variability. Big
data is the next context in marketing which leads to big opportunities. In the current
digital age, for marketing organizations, to grow big data is the new big opportunity.

Big data analytics is beneficial in solving business dealings and provides impor-
tant business results. To come up with maximum return on investment from the
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investment, the new big thing comes up with various challenges as posed by marketing
leaders:

● big data analytics roadmap to achieve marketing objectives;
● business outcomes to leverage big data around customers;
● development of services and capabilities to leverage big data for competitive

advantage;
● technology preferences to enable big data analytics platform; and
● development of appropriate skills and resources to get onto the big data platform.

13.6.1 Why big data for understanding of consumer behavior?

Bid data �= Big opportunity �= Big marketing
Big data does not directly mean bigger opportunity and hence better marketing.

But by combining big data with consumer behavior strategies, big business brands
can have an insight on three key areas:

● consumer commitment;
● consumer retention and reliability; and
● marketing optimization/performance.

The three keys areas are major focus for understanding consumer behavior. A
rewarding cooperation for a better consumer understanding is suggested by applying
data mining techniques to neuromarketing data. In the current age, both big data
applications and neuromarketing tools mainly focuses on understanding of consumer
behavior. Both of emerging fields require collection and analysis of large amounts of
data, and extract potentially useful information for supporting management decision-
making for better consumer commitment, reliability and retention. Hence, the need of
big business brands is to store and receive large amount of data from various sources
and apply inventive neuromarketing techniques such as facial coding and implicit
action response measures to derive user sentiment for understanding of consumer
behavior.

An efficient method of extraction is required to extract large amount of rich,
unstructured and dissimilar data from limitless and heterogeneous sources, to detect
patterns and derive sentiments from the data. Robust data mining tools, such as
machine learning techniques and neural network analytics, are required to practice all
the retrieved data and uncover hidden knowledge patterns. That is, to provide better
understanding of consumer behavior for effective marketing strategies, the integration
of big data and neuromarketing techniques is required. This can be done by applying
data mining techniques to big data and recorded sentiments.

The extraction and understanding of user sentiments is three-layered process
with big data as the innermost layer, sentiment analysis as the middle layer and
neuromarketing techniques as the outer layer as shown in figure [4, 5]:

The model is named as three-layered architecture for neuro-sentiment mining
with big data analytics (see Figure 13.11):

● collection of massively large amount of data—big data analytics;
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Figure 13.11 Three-layered architecture for neuro-sentiment mining with big data
analytics

● collection of user sentiments—sentiment analysis; and
● analysis of user sentiments—neuromarketing techniques.

13.6.2 Big data analytics—next big thing

The “next big thing” providing valuable insights about consumer behavior to the
marketers is the combination of “big data” and “neuromarketing.” Effective decision-
making in the marketing industry requires generation, collection and analysis of data,
which the abovementioned technologies can provide by extracting potential useful
information. The pace at which data is being generated in today’s time has led to the
deprecation of structure-based database management systems and has bought big data
analytics into the picture. Storing or collection of data is not difficult, but analyzing
it for specific patterns is. The managerial implications of big data analytics like
affective computing, social media network, smart home and e-Health systems can be
used in day-to-day business practices, and to realize the abovementioned managerial
implications, an emotion-aware big data framework is the need of the hour.

Understanding consumer behavior is the key requirement of the marketing indus-
try and proceeding with this requirement is a major task. Multiple consumers have
multiple perceptions about a single product and it gives rich understanding of product.
These perceptions are heavily required for the good understanding of product value.
Feedback forms and questionnaires are a thing of the past for analyzing consumer
behavior. With the emergence of social media platforms, the consumers are posting
their feedbacks on them in textual and non-textual format (videos). The volume and
variety of data being generated generates a bottleneck for the marketers. This is the
new era of computer and technology which has begun; in old day we used traditional
systems to store the data, and then we moved to the computerized databases like
dbase, FoxPro, DBMS and RDBMS. But now the data are increasing day by day;
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Emotion aware big
data cloud

Figure 13.12 Emotion detection with neurotechniques for big data cloud

in 2013 IDC estimated the digital data about 4.5 zettabytes and it is estimated that
in 2020 we have around 46 zettabytes of digital data, i.e. around 10 times of 2013
estimated value. There are plenty of sources that can generate huge amount of data
every day. Facebook, New York Stock Exchange, Internet Archive stores, Tweeter,
Snapchat, etc., are the major sources of digital data.

Not only the volume and variety but to analyze such huge amounts of data for
effective understanding of consumer behavior requires the use of specialized hardware
such as EEG, GSR and Oximeter. Figure 13.12 shows the various specialized hardware
devices under neurometrics techniques that collect a variety of data from potential
customers and transfer the same to emotion-aware big data cloud where the data
will be filtered and analyzed for specific patterns using predefined business rules.
Based on the interpretation, emotions experienced by the consumer will be detected
in detail. The challenges regarding users’ sentiments or emotions should be taken into
consideration in order to create an enhanced mobile user experience.

Consumer behavior can be analyzed by effectively predicting the sentiment of
a potential consumer toward a particular product and there is no existing framework
that can effectively predict sentiments shown by a human using a big data processing
framework and provide instant user feedback to marketers. The answer to the big data
problem is Hadoop, which is a new era of databases which is growing rapidly.

13.6.3 HADOOP

Hadoop is an open-source software framework developed by Apache Software Foun-
dation. Hadoop uses clusters to divide the data into smallest units. By using clusters,
we can divide the large data sets and provide scalability, reliability and distributed
computing. In Apache Hadoop framework, cluster can act as a node and if a node
fails at application layer then it provides high availability of the service again (Figure
13.13). Involving Hadoop cluster on more than a single machine is imperative to
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Figure 13.13 Layered architecture of Hadoop

understand what clusters and grids mean, although both can work similar but there
is difference in both terms. Hadoop framework can be operated from single server
node or from thousands of computers where each computer is responsible for locally
processing data and storage. Hadoop takes slightly different approach to store data
in parallelism. Parallelism is achieved by a special file system used by Hadoop, i.e.
HDFS (Hadoop Distributed File System).

13.6.3.1 What is a cluster?
A cluster is a collection of computers (nodes) that can have an identical hardware
configuration and can be connected to each other via LAN (local area network). The
result of all the active nodes are collected and then combined to solve problems that
require high processing availability of the system with very less computational time.
In Hadoop1 by default size of cluster is 64 Mb and in Hadoop2 by default size of
cluster is 128 Mb.

Hadoop HDFS can perform five functions that are further divided into two long-
run daemons (daemon is a background process):

1. Master daemon (primary)
2. Slave daemon (secondary).

Master daemon consists of

1. NameNode
2. Standby NameNode
3. Job Tracker.
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Figure 13.14 Example showing the working of MapReduce

Slave daemon consists of

1. DataNode
2. Task Tracker.

13.6.4 Master/Slave architecture of Hadoop

The primary function of Master daemon is to perform NameNode function, Job
Tracker function and Standby NameNode function. Client provides data to NameN-
ode, and it is the responsibility of NameNode to assign task to every single node in a
cluster. NameNode takes the data from client and processes the data. If NameNode
is a master service then its corresponding slave service is performed by DataNode
and if Job Tracker is a master service then its corresponding slave services should be
Task Tracker.

13.6.5 What is MapReduce?

MapReduce is a programming model mainly used to implement and process large
data sets. MapReduce takes a big task and divides that task into distinct tasks that can
be processed on different data nodes in parallel. MapReduce is a combination of map
and reduce, map is the first task and reduce is the second; i.e. first map will work
and the output of map function is provided to reduce function and then reduce will
perform the rest job. The function of map is to process the key/value pair by using
two functions shuffle and sort. After shuffling and sorting, all mappers provide the
output files to reducer and it is responsibility of reducer to merge the intermediate
values to intermediate keys. At the end, single group is created for each unique key
(see Figure 13.14).

13.7 Conclusion

This chapter provides the concept of video image-based sentiments extraction using
neuromarketing techniques. The chapter introduced the concept of big data analytics
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which should be merged with neuromarketing techniques for better understanding of
user sentiments. In Sections 13.2 and 13.3, we explained the importance of user sen-
timent and provided the introduction to consumer behavior for understanding of user
sentiment. Consumer behavior is the key point for the understanding of user buying
and selling behaviors as explained in Section 11.4. The buying and selling behav-
ior can be better understood by applying neuromarketing techniques. Section 13.5
explains neuromarketing framework to extract the user sentiment from a video image
by applying neuro-metric techniques like GSR sensors, EEG signals and facial cod-
ing analyzer. Facial coding was analyzed using webcam and eye movement recorded
using eye-trackers. Section 13.6 detailed the role of big data analytics in understand-
ing user sentiment. Further, it provided an introduction of various big data analytics
techniques for understanding user sentiments.
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Chapter 14

A recommendation system for allocating video
resources in multiple partitions

Kostas Kolomvatsos1,2, Maria G. Koziri2, and
Thanasis Loukopoulos3

A recommendation system or recommender aims to deliver meaningful recommen-
dations for items or services to any interested party (e.g., users and applications).
Recommenders provide their results on top of the collected data related either to
the items’ and users’ description or ratings defined by users. Recommenders can be
adopted in the domain of large-scale data management with significant advantages.
Due to huge volumes of data, many techniques consider the separation of data into
a number of partitions. Analytics are delivered on top of these data partitions and,
accordingly, are aggregated to form the final response into the incoming queries. Data
separation techniques can be incorporated to allocate the data into the appropriate par-
titions, thus, to improve the efficiency in the delivery of analytics. In this chapter,
we propose a recommendation system responsible for allocating the data to the most
appropriate partition according to their current contents. Our approach facilitates the
provision of the analytics for each data partition by collecting “similar” data into the
same partition. The aim is to support statistical insights into every partition to effi-
ciently define query execution plans. We adopt a decision-making scheme combined
with a naïve Bayesian classifier for deriving the appropriate partition. We focus on
the management of streams of video files. The proposed recommender derives the
appropriate partition for each incoming video file based on a set of characteristics.
We evaluate our scheme through a set of simulations that reveal its strengths and
weaknesses.

14.1 Introduction

The current form of Web and the Internet of things makes available to end users a
huge infrastructure where numerous devices produce and consume data. Among these

1Department of Informatics and Telecommunications, University of Athens, Greece
2Department of Computer Science, University of Thessaly, Greece
3Department of Computer Science and Biomedical Informatics, University of Thessaly, Greece
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data are video files that could be produced and uploaded by end users or enterprises.
Personal videos, videos retrieved by security cameras, movies, etc., are common
examples. Videos produced are characterized by heterogeneity making difficult the
definition of queries for searching on the top of numerous files. In addition, due to
huge volumes of data, videos are stored to a set of separate partitions to facilitate their
parallel management. Hence, queries should be defined into a number of partitions,
e.g., for finding a video file of interest. Analytics on top of the provided files are
significant to support intelligent applications. However, the separate storage of videos
without adopting a specific technique could increase the heterogeneity of the data
present in a partition. For instance, a partition may contain video files that belong
to different categories; thus, a querying mechanism should visit multiple locations
to derive a list of relevant videos provided to end users or applications. Such an
approach requires time and resources before it is in a position to provide the final
response.

In the aforementioned setting, there is the need for keeping the relevance/
similarity of the video files in each partition at high levels, thus, to reduce the need
for visiting multiple partitions when responding to a query. In addition, the storage
of similar files in the same partition increases the statistical “compactness” that pos-
itively affects the performance of the query-answering process. In this work, our aim
is to keep the statistical “compactness” of each partition to high levels. The better
the information we have for the data, the better choices we make for executing the
incoming queries. Specific query plans are adopted for the execution of each query.
Such plans are defined before the execution thus, we need the statistical information
for the underlying data to build efficient plans. Statistics reduce the amount of data
that are to be processed during the optimization of a query execution plan.1 Research
efforts so far target to the implementation of data separation algorithms applied after
the reception and storage of data. In this chapter, we focus on a streaming environment
where video files are reported at high rates limiting the time available for deciding
their allocation. The immediate storage and the separation of data afterwards require
time and resources due to the huge volumes of data. To alleviate this problem, we
propose a scheme that recommends the most appropriate partition for storing the
current video file just after receiving it from the stream responding in real time. In
general, recommenders produce suggestions, i.e., a list of items, to a user based on
her preferences [1]. It is also based on information related to (a) the user preferences,
(b) the description of each item, and (c) the preferences of other users. Our scheme dif-
fers from these “typical” recommendation systems in the sense that only video files’
descriptions are available with no knowledge on the preferences of users/applications
realized in the form of queries.

The proposed framework consists of two parts: (a) a preselection process based
on a decision-making technique (i.e., analytic hierarchy process—AHP); (b) a classi-
fication part for the final allocation of each video file on the top of the results derived
by the preselection process of the proposed recommender. The preselection process

1https://www.red-gate.com/simple-talk/sql/performance/queries-damned-queries-and-statistics/#third
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aims to select the partitions that closely match to the incoming video files based on
a set of predefined evaluation criteria. Accordingly, the results of the preselection
process are processed by the classification scheme. The preselection process is based
on nominal characteristics of the video files while the classification scheme is applied
on numeric data to secure the statistical “compactness” of each partition. We aim to
maximize the similarity that our scheme enjoys when assigning a video file into a
partition. The similarity is affected by the relevance of the current video with the other
files stored into a specific partition. We adopt the known AHP and a naïve Bayesian
classifier for deriving the solution to our problem. AHP acts on the top of a set of
alternative options among which the best decision is to be made. It is important to
notice that, since some of the criteria could be contrasting, it is not true that the best
option is the one which optimizes each single criterion, rather the one which achieves
the most suitable trade-off among the different criteria. Bayes theorem is adopted to
derive the most appropriate partition after we select the subset that satisfies our needs
according to the AHP execution. The advantage is that our scheme does not require
any modeling of the area under consideration while being efficient in practice.

The rest of the chapter is structured as follows. Section 14.2 presents the related
work while Section 14.3 provides the description of our problem. In Section 14.4, we
provide a discussion on the proposed solution. In Section 14.5, we reveal the strengths
of the proposed scheme through an experimental evaluation. Finally, in Section 14.6,
we conclude our chapter by giving our future research plans.

14.2 Related work

Large-scale data refer in continuous growing of data that are received and stored
in various locations. The management of huge volumes of data requires powerful
mechanisms and complex algorithms that will set up the basis for deriving intelligent
analytics. In the respective literature, large-scale data are characterized by [2]: (a) large
volumes of data generated by numerous resources (e.g., smartphones, applications,
social networks, and sensors), i.e., volume; (b) data generated in high speed; thus, they
should be immediately (pre-)processed especially when applications require responses
in real time, i.e., velocity; (c) data generated by heterogeneous sources, i.e., variety.
Such data should be efficiently analyzed to support intelligent applications. However,
this is a very difficult task due to that they may contain ambiguous or abnormal
information [3]. Therefore, a number of open issues should be handled before the
technology is in a mature level. One can find multiple frameworks for the analysis of
data like in [4–10]. A comparison between multiple models can be found in [3].

Video files are significant for many applications domains. For instance, video
analytics are adopted in machine vision or decision engines. Video is the appropriate
format for supporting applications requiring the management of multiple images.
They can provide real-time insights on the behavior of entities with great potential for
building intelligent applications (e.g., security applications and monitoring activities).
Some frameworks adopted for the video management are presented in [11] and [12],
while a survey in the field is presented in [13]. The majority of the efforts in the field
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deal with the analysis of the video files instead of studying the location where files
could be stored to efficiently support search queries. For instance, multiple research
efforts provide analyses and propose models for supporting security applications. The
main focus of these efforts is on the analytics provided by the video contents and not
on the efficient searching of the video files just before they are subject of processing.

Additional research efforts can be found for data separation. These efforts are
originated in the cloud domain and the majority aim to handle security issues. Data
separation provides the basis for splitting the data into partitions/pieces where each
partition refers into the same organism. One of the most known approaches is clus-
tering. In [14], the authors present a clustering algorithm for large-scale databases
called DBSCAN. DBSCAN is a density-based clustering algorithm applied into large
spatial databases. Extensions of DBSCAN are OPTICS [15], ST-DBSCAN [16],
and MR-DBSCAN [17]. As DBSCAN exhibits limited efficiency for high dimen-
sions, researchers propose the DENCLUE algorithm [18]. Cloud computing solutions
involve mechanisms for separating the data to increase the security levels. In [19], the
authors present a framework for a secure data storage strategy in cloud. The proposed
model splits data into a number of partitions while ensuring the security level. In [20],
an algorithm for separating the data belonging to different organizations is proposed.
The discussed solution provides security, reliability, confidentiality, and availability
of the data. The authors describe, among others, major issues in data separation and a
method through which data are separated. In [21], the authors present a metadata and
real data separation model for cloud storage named MeSe. The proposed framework
keeps metadata and real data separated aiming to provide integrated cloud storage
service with two parts of separate servers.

Recommender systems are widely studied in the past. A variety of algorithms and
techniques are adopted to provide efficient results. In general, recommenders could
be identified to content-based [22] and collaborative filtering [23]. Content-based
approaches require ratings from users in contrast to collaborative filtering models
that cannot derive an efficient result without the ratings of the community of users.
Content-based models depend on the performance of the content analysis methodol-
ogy they utilize. The performance of the matching process between items descriptions
with users’ profiles is a very significant issue. Some widely adopted techniques in
content-based recommenders are keyword-based recommendations [24–27], seman-
tic models [28–32], and probabilistic methods [33–36]. In collaborative filtering
approaches, the provided results are based on the similar tastes of users and their com-
bination. New items are handled easier than in other models as the recommendation is
based on their descriptions even if ratings are not yet present. Collaborative filtering
methods are separated in [23]: (i) user-based, (ii) item-based, (iii) model-based, and
(iv) fusion-based approaches. In the user-based approaches [37], a similarity matrix
is utilized to store the ratings of each user for every item. The item-based methods
[38–40] adopt pairwise item similarities which are more reliable than user similari-
ties, thus, resulting in high quality of the result. The model-based methods [41–43]
exploit the sparsity of data in the similarity matrix.

AHP is also adopted in recommenders especially for the support of decision-
making. In [44], the authors discuss a decision support system that is responsible
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to provide salary recommendations. The system adopts the multi-attribute decision
theory while being evaluated with the adoption of synthetic data. In [45], the pro-
posed system deals with TV program recommendations. The proposed method adopts
AHP for predicting group genre preference and, finally, selecting recommended TV
programs. The accuracy of the framework is enhanced by the adoption of parameter
learning from users’ historical data. Finally, in [46], the authors describe a method to
handle the cold start problem based on the AHP. The proposed method calculates the
weight between product attributes and creates a candidate product set. Accordingly,
it conducts the final recommendation from the candidate set.

All the aforementioned data separation algorithms focus on the “post-processing”
of data to result the required partitions. The difference with our work is that our model
“pre-processes” the data as they arrive through streams. Our aim is to limit the time and
the required computational resources for “post-processing” by providing the appropri-
ate partitions where each data piece (i.e., a video file) should be allocated. In addition,
the aforementioned recommenders require the existence of users’ ratings for a set of
items. In our scenario, the “items” are the data partitions where the incoming files
will be stored. We want to limit the storage requirements; thus, historical “ratings”
(the “similarity” between files) for each partition are not taken into consideration. We
adopt a model that results the appropriate partition in real time. The aim is to find
the partition that resembles to the incoming files, however, taking into consideration
multiple parameters (i.e., video files characteristics) at the same time.

14.3 Problem description

The envisioned setting consists of a number of partitions where video files
will be allocated. Without loss of generality, we consider |PA| partitions, i.e.,
PA = { p1, p2, . . . , p|PA|}. Each partition has an upper threshold for storage. This is
because we aim to have an environment where the execution time for queries cannot
exceed an upper time limit. For instance, if we restrict the size of each partition, we
can also positively affect the time required for getting a response from this partition.
When the predefined upper size is violated, a new partition is defined in the same
location.

Each partition is characterized by a set of attributes that are common with the
incoming files, i.e., C = {c1, c2, . . . , c|C|}. For instance, attributes could be the type
of files, the format, the number of image channels, etc. Attributes in each partition
are realized in the form of counters, averages, or the number of the files. Such
kind of information is available to a Video Files Processing Engine (VFPE). VFPE
is responsible to receive video files from streams and, accordingly, based on the
proposed recommender to decide the partition where the files should be stored. Files
are reported in streams at high rates; thus, the adopted decision-making model should
provide solutions in real time. The incoming files should be “matched” against the
contents of the partitions to secure the consistency of the stored data. However, the
“matching” process is not based only on a single attribute but on the entire set C. For
instance, files of the same format should be allocated, if possible, in the same partitions
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to secure the efficient responses in relevant queries. Our mechanism pays attention
on the entire set of the attributes and tries to facilitate the retrieval of documents when
queries request for resources. Hence, according to the characteristics of the incoming
video files, the VFPE should allocate them to the most appropriate partition.

The characteristics of the files could be separated in two categories: (a) charac-
teristics that take nominal values; (b) characteristics that take numeric values. This
means that the set C could be separated in two subsets, i.e., C = CM ∪ CN, where
CM is the subset of nominal attributes and CN is the subset of numeric attributes.
Ordinal values could be easily considered as nominal values. As we discern two main
categories for characteristics, we provide a mechanism that builds on the top of these
categories. The AHP is adopted to “manage” the nominal characteristics and, after-
wards, the numeric data are managed by the classification process. The proposed
recommender builds on the top of video files attributes and the attributes of each
partition as depicted by the set of files already present there. The recommender, after
receiving an incoming file, executes the preselection process (i.e., the AHP—the
first part of the proposed approach) and derives a (sub)set of the appropriate parti-
tions, i.e., SP = { p′

1, p′
2, . . . , p′

|SP|}, SP ⊆ PA. Accordingly, the classification process
is applied on the set SP and derives the final recommended partitions, i.e., the set
FL = { p′′

1, p′′
2, . . . }. If no partitions are present in the FL or the process does not derive

results at a predefined time interval, a partition is randomly selected from SP. The
classification process is based on the statistical data of the files present in a parti-
tion and derives the probability that a file belongs there. Actually, the classification
process tries to find the partition that maximizes the aforementioned probability. The
aim is to maximize the similarity between the incoming file and the most appropriate
partitions through the maximization of the statistical “compactness.” From the final
list, the partition exhibiting the highest similarity score is finally selected to host the
incoming file.

14.4 The proposed approach

In Figure 14.1, we present the architecture of our scheme. At the bottom layer, a set of
streams deliver video files to be allocated in the available partitions placed at the upper
layer. Each video file is processed by the proposed parts of our system in a sequential
manner. The preselection process identifies the partitions that are closely matching
to the file according to a set of predefined criteria. These criteria are evaluated in a
hierarchy of importance for the specific scenario. For instance, the format of the file
plays an important role as files with the same format could be placed in the same
partitions to facilitate relevant queries. The important is that the allocation of a file
into a partition should be based not only on a single characteristic (like the format)
but also on the entire set of the characteristics. Hence, the first part of our framework
deals with multiple criteria and derives a list of candidate partitions (i.e., the set SP).
Accordingly, the list of candidates is fed into the Naïve Bayesian classifier applied
on the numeric characteristics of the incoming files. The classification process tries
to keep the statistical “compactness” of the partitions at high levels while delivering
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Figure 14.1 The proposed recommender

the final list (i.e., the set FL). Finally, the allocation process starts from the partition
located in the first place of the FL and concludes the partition where each file should
be allocated.

The selection of the appropriate partitions involves strategic decision-making to
identify the partitions that maximize the similarity of the incoming video files. AHP
[47,48] offers a method for decomposing the allocation problem into a hierarchy of
subproblems. Each subproblem can be easily evaluated and, thus, solved. A numerical
scale is adopted to support the ranking of each alternative, i.e., the allocation of
the file in a specific partition. AHP allows users to assess the relative weight of
multiple criteria or multiple options against given criteria in an intuitive manner. In
case quantitative ratings are not available, policymakers or assessors can still recognize
whether one criterion is more important than another. The basic process to carry out
the AHP consists of the following steps:

1. The first step is to decompose the problem into a hierarchy or goal, criteria, sub-
criteria, and alternatives. The decision problem is separated into its constituent
parts. The resulted structure comprises a goal or focus at the topmost level and
criteria (and sub-criteria) at the intermediate levels, while the lowest level contains
the options.

2. For each pair of criteria, the decision-maker rates the relative “priority” of every
criterion against the others. An assignment of a weight between 1 (equal impor-
tance) and 9 (extreme importance) to the more important criterion is included in
this step.

3. A square matrix is generated for the pair comparisons. The elements in the diag-
onal are set to 1. When in the place (i, j) of the matrix, it is a value over 1 means
that the ith criterion is better than the jth criterion. The opposite stands when the
cell (i, j) contains a value lower than 1.
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Table 14.1 Example of pairwise comparisons

Format Type Color model Format Type Color model

Format 1/1 5/2 2/1 1/1 5/2 2/1
Type 1/1 4/3 ⇒ 2/5 1/1 4/3
Color model 1/1 1/2 3/4 1/1

4. We calculate the principal eigenvalue and the normalized eigenvector of the
aforementioned matrix to get a relative importance of the criteria under
consideration.

5. In a final step, each element’s score is combined with the criterion weights to
produce an overall score for each option.

As mentioned, in our framework, we consider two types of attributes,
i.e., CM, and CN. In the first part of our scheme (the preselection process), we take
into consideration the attributes that take nominal values, i.e., the set CM. For CM,
we provide the ranking of each cM

i , i = 1, 2 = , . . . , |CM| and create the |CM|X|CM|
matrix. Table 14.1 presents an example matrix. In this matrix, we denote that the
format of a file is two times more important than the color model and so on.

Based on the aforementioned matrix, we can calculate the “significance” sj for
the jth partition. The parameters sj shows the similarity between the incoming file
and a specific partition according to the adopted strategy as realized through the AHP.
sj is calculated as follows:

sj =
∑

wi
Aij∑

Aij
,

{
1 ≤ i ≤ |CM|
1 ≤ j ≤ |P| (14.1)

where wi is the weight of ith characteristic derived by AHP and Aij is the frequency of
the specific ith characteristic in the jth partition (e.g., format, color model, and type)
that matches with the corresponding video file characteristic. If no characteristics are
observed in the partition, then the weight is defined equal to 1. The list SP consists
of the |SP| partitions with the highest significance as calculated by (14.1).

The second part of the proposed scheme involves the final selection of the parti-
tion where the file will be allocated. For this, we adopt a naïve Bayesian classification
model [49]. We have to select a single partition from the |SP| available based on
the “similarity” of the numeric characteristics with the contents of each partition.
The tuple [cN

i ], i = 1, 2 = , . . . , |CN| will be the basis for calculating the probabil-
ity that the video file belongs to each partition. Our scheme tries to predict if the tuple
is derived by each partition based on statistics for the numeric characteristics. Based
on this rationale, we try to maximize the probability P( p′

i|CN), ∀i. According to the
Bayes theorem, we have

P( p′
i|CN) = P(CN|p′

i)P( p′
i)

P (CN)
(14.2)
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Probabilities P(CN) and P( p′
i) can be easily evaluated. P(CN) is constant for the

available partitions and P( p′
i) can be evaluated by the adoption of the uniform distri-

bution, i.e., P( p′
i) = 1

|PA| . Hence, we have to focus on the maximization of P(CN|p′
i).

The following equation holds true:

P(CN|p′
i) =

∏|CN|
k=1

P(cN
i |p′

i) (14.3)

Each probability P(cN
i |p′

i) can be calculated through the adoption of statistical
measures. In this work, we adopt the Gaussian distribution for depicting the prob-
ability that the video file belongs to each partition. The probability is calculated as
follows:

P
(
cN

i |p′
i

) = 1√
2πσi

e− (cN
i −μi)

2

2σ2 (14.4)

The final probability for a partition is multiplied by the similarity of each partition
as defined in the first part of our scheme, i.e., (14.1).

14.5 Experimental evaluation

As mentioned, for defining efficient query execution plans, we should have insights
on the statistical information of the data in each partition. The proposed model tries to
maintain the statistical “compactness” of the data to set up the basis for the definition
of efficient execution plans. Increased computational costs will be paid when the query
execution optimizer should visit the entire set of data and multiple partitions to derive
the necessary statistical information. In this section, we report on the realization and
the evaluation of our scheme as a mechanism to support the statistical “compactness”
of the partitions.

For characterizing video files and calculating the statistical data, we adopt the
following characteristics:

● CM = {Format,Type, Color_Model}
● CN = {Size, Image_Channels,Audio_Channels}

These characteristics can be easily expanded to cover more “aspects” of video
files according to the adopted strategy. In our evaluation setup, based to the Saaty’s
scale, the format of the files is moderately important rather than the type and very
strongly important rather than the color model while the type is strongly important
rather than the color model. In addition, for numeric characteristics, we assume
specific upper values.

We report on the statistical “compactness” of each partition after the management
of a high number of files. Initially, for a warm-up period, we insert ten random files in
each partition. Afterwards, we simulate the management of 10,000 files with random
characteristics. For nominal characteristics, we get a random value in the set of the
most frequent values as observed in the relevant literature. For instance, for the format
of the files, we adopt famous formats like mpg, avi, mov, asf, flv, and mp4. For numeric
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Table 14.2 Statistics for contents of partitions for |SP| = 2

Partitions

0 1 2 3 4 5 6 7 8 9

Total files 184 1,670 1,505 405 27 161 1,135 2,262 124 2,627
Format mpg 0 0 2 0 1 1 1 988 117 452

avi 1 12 1,497 191 1 1 1 0 1 0
mov 3 3 1 0 2 151 6 1,011 1 548
asf 178 3 3 2 1 2 1 0 1 1,500
flv 1 4 1 211 3 5 1,123 262 2 124
mp4 1 1,648 1 1 19 1 3 1 2 3

Type Video 67 582 520 134 13 48 359 1,069 33 498
Movie 75 561 490 142 8 52 366 1,193 33 497
Security 42 527 495 129 6 61 410 0 58 1,632

Color RGB 47 429 397 104 7 35 0 734 32 753
model CMYK 41 390 376 99 6 52 368 529 29 607

HSV 52 436 380 98 6 33 379 534 29 640
HSL 44 415 352 104 8 41 388 465 34 627

characteristics, we get a random value in a specific interval. For instance, the size is
randomly selected in the interval [1,100] while image and audio channels are selected
in the interval [1,5].

We provide results for |SP| ∈ {2,7}. Recall that |SP| defines the number of par-
titions selected in the first part of the proposed process (preselection) that will be
fed into the Bayesian classifier. In Table 14.2, we present our results for nominal
characteristics in when |SP| = 2. We observe that the majority of files with the same
characteristics are allocated in a limited number of partitions (two or three). This
observation is more intense in the case of the file format as the format is adopted to
be the most significant characteristic in the AHP model. Adopting this strategy, we
force the AHP to assign higher similarity to partitions that contain files in the same
format as the incoming video file. Video files are concentrated around the most sig-
nificant nominal characteristic. For instance, mpg files are allocated in the last three
partitions, avi files are mainly allocated in partitions 2 and 3 and so on. The concen-
tration of files with similar characteristics in limited number of partitions assists not
only in the increment of the statistical “compactness” but also in the allocation of
queries when we consider a query processor in front of each partition.

In Figures 14.2–14.4, we provide the statistics for the numeric characteristics
(i.e., size, image, and audio channels). We adopt a boxplot for each characteristic
where, among others, the mean (with a line) and the median (with the black circle)
are depicted. We observe that the mean and the median are at the same levels indicat-
ing symmetric data. In addition, the majority of partitions exhibit similar statistics.
This stands for all the adopted characteristics. If we combine these results with the
outcomes presented in Table 14.2, we conclude that the proposed allocation process
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Figure 14.2 Boxplot for video files size (|SP| = 2)
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Figure 14.3 Boxplot for video files image streams (|SP| = 2)
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Figure 14.4 Boxplot for video files audio streams (|SP| = 2)

delivers similar files in the partitions maintaining the statistical “compactness” at
high levels.

In Table 14.3, we provide our results for nominal characteristics when |SP| = 7.
We observe similar behavior as in the scenario where |SP| = 2. The AHP leads to the
allocation of files with similar format to a limited number of partitions (two or three).
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Table 14.3 Statistics for contents of partitions for |SP| = 7

Partitions

0 1 2 3 4 5 6 7 8 9

Total files 753 6,631 439 23 10 10 11 10 91 2,122
Format mpg 191 0 108 6 1 1 1 1 26 1,357

avi 191 1,077 22 0 2 2 1 1 18 356
mov 0 1,317 88 4 1 1 3 1 0 314
asf 1 1,533 45 5 1 2 2 2 27 52
flv 195 1,376 94 8 3 1 2 3 1 42
mp4 175 1,328 82 0 2 3 2 2 19 1

Type Video 258 2,302 141 4 5 6 2 3 26 632
Movie 268 2,114 133 8 1 1 7 4 29 832
Security 227 2,215 165 11 4 3 2 3 36 658

Color RGB 181 1,626 167 7 0 2 2 1 25 520
model CMYK 173 1,686 0 5 3 3 3 2 24 609

HSV 214 1,733 160 5 4 2 2 5 22 475
HSL 185 1,586 112 6 3 3 4 2 20 518
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Figure 14.5 Boxplot for video files size (|SP| = 7)

The difference with the scenario where |SP| = 2 is that the observation stands also
for the remaining nominal characteristics and not only for the most significant char-
acteristic (i.e., the format). In general, the majority of files are allocated in a limited
number of partitions. The high number of the selected partitions in the preselection
process of our scheme leads to a high “compactness” of the partitions related to the
nominal characteristics. However, even if it is positive for the creation of query exe-
cution plans and queries allocation, such an approach will lead to increased storage
requirements in the partitions where the majority of files are assigned to.

In Figures 14.5–14.7, we present our results for numeric characteristics when
|SP| = 7. We observe a different behavior of the proposed model compared to the
scenario where |SP| = 2. Statistics are characterized by fluctuations depicted the
variations of the files’ characteristics stored in each partition. However, statistics
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Figure 14.6 Boxplot for video files image streams (|SP| = 7)

Partition 
0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Partition 
1

Partition 
2

Partition 
3

Partition 
4

Partition 
5

Partitions

V
id

eo
 fi

le
 a

ud
io

 st
re

am
s

Partition 
6

Partition 
7

Partition 
8

Partition 
9

Figure 14.7 Boxplot for video files audio streams size (|SP| = 7)

related to the partitions where the majority of files are allocated are characterized by
limited fluctuations. In partitions 0, 1, and 9, the mean and the median are very close
indicating symmetric data.

We report on the number of video files (V ) allocated in each partition. In
this set of experiments, we get |SP| as the 60% of |PA| and experiment with
|PA| ∈ {10, 50, 100, 500, 1, 000}. We aim to simulate scenarios with a limited num-
ber of partitions as well as scenarios where the number of the available partitions is
very high. Table 14.4 presents our results. We observe that, as natural, V is reduced
as |PA| increases. A high number of partitions lead to a few video files allocated in
each of them. In our model, the |SP| does not affect the performance concerning the
pre-processing phase.

An additional set of experiments is devoted to the evaluation of the time (T )
required for concluding an allocation of a video file. Actually, we get the average
time as recorded for each allocation. Table 14.5 presents our results, i.e., the necessary
milliseconds (ms) for each allocation. We observe that the proposed scheme is very
efficient as it requires, at most, 2 ms for each allocation. This means that our model
could be practically adopted in real applications without limiting the performance of
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Table 14.4 The average number of the allocated
files in each partition

|PA| V

10 920.00
50 209.52
100 109.90
500 29.77
1,000 19.99

Table 14.5 The average time for concluding
allocations

|PA| T (ms)

10 0.208
50 0.269
100 0.300
500 0.685
1,000 2.034

the system. It should be noted that the discussed results concern both steps of the
decision process.

14.6 Conclusions and future work

Recommendation systems have widely been adopted for proposing items to users or
applications. This technology could be also adopted for providing the appropriate
data partitions where video files arriving through streams could be allocated. In
this work, we propose a recommendation system responsible to provide the partition
where each file will be assigned to. The decision is based on the characteristics
of files that could take nominal or numeric values. Our model tries to handle both
types of characteristics and takes them into consideration when deciding the final
allocation. The aim is to increase the statistical “compactness” of each partition, thus,
to efficiently support the creation of query execution plans and their allocation to
specific processors. The proposed scheme consists of two parts: the first realizes
a decision-making mechanism and incorporates the desired strategy related to the
management of nominal characteristics; the second builds on the top of the results
derived by the first part and delivers the final decision, i.e., the partition where the file
will be allocated. The first part of the proposed scheme adopts the AHP algorithm and
the second is based on a naïve Bayesian classifier. Our experimental results focus on
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the statistical “compactness” of each partition and show that similar files are allocated
in the same partitions. This is more intense when the number of the selected partitions
in the first part of the proposed model is high.

Future research plans involve the implementation of a classification scheme that
will derive decisions on the top of the entire set of characteristics no matter their type.
An automated, dynamic classification process should provide efficient recommenda-
tions in real time as the video files arrive in high rates. In this scenario, the training
process is significant for the performance of the system while an adaptive approach
for the classification scheme should be also incorporated.
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Chapter 15

A mood-sensitive recommendation system
in social sensing

Dong Wang1

This chapter reviews a mood-sensitive (MS) recommendation system in social
sensing. This work is motivated by the need to provide reliable information recom-
mendation to users in social sensing. The key idea of social sensing is to use humans
as sensors to observe and report events in the physical world. We define the mea-
surements from human sensors as claims. A key challenge in social sensing is truth
discovery where the goal is to identify truthful claims from the false ones and estimate
the reliability of data sources with minimum prior knowledge on both sources and
their claims. While current solutions have made progress on addressing this chal-
lenge, an important limitation exists: the mood sensitivity of human sensors has not
been fully explored. Therefore, the true claims identified by existing schemes can be
biased and lead to useless or even misleading recommendations. In this chapter, we
present an MS recommendation system that incorporates the mood sensitivity feature
into the truth discovery solution. The reviewed recommendation system estimates
(i) the correctness and mood neutrality of claims and (ii) the reliability and mood
sensitivity of sources. We compare our model with existing truth discovery solutions
using four real-world datasets collected from online social media. The results show
the reviewed recommendation system outperformed the baselines by finding more
correct and mood neutral claims.

It is a critical challenge in building reliable recommendation systems in social
sensing that effectively recommend trustworthy and credible information for decision-
making.

15.1 Introduction

This chapter reviews a principle-based mood-sensitive (MS) recommendation system
to address the truth-discovery problem in social sensing [1,2]. Social sensing becomes
an emerging research area where the humans are used as sensors to their observations
about physical environment [3]. Social sensing is driven by the rapid integration of
digital sensors with mobile and IoT devices [4], increasing network connectivity [5]

1Department of Computer Science and Engineering, University of Notre Dame, United States
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and open information sharing platforms (e.g., Twitter, Facebook) [6]. For example,
people may report the damage and outage in a city on Twitter when disasters happen.
Citizens may report geotagged photos to document the potholes on city streets or litter
locations in a park [7,8]. We define these human-sensed measurements as claims.
A key challenge in social sensing is truth discovery where the goal is to identify
truthful claims from the false ones and estimate the reliability of data sources with
minimum prior knowledge on both sources and their claims [9].

One real-world example of the truth discovery problem in social sensing is
Hurricane Sandy (Nov. 2012). In the aftermath of the hurricane, people were posting
the gas availability of different stations onTwitter when they tried to find places to fuel
their cars. A reliable information recommendation system could accurately identify
the gas stations that are most likely to have gas from the large amount of noisy and
emotionally biased tweets. However, the data sources in social sensing are not neces-
sarily reliable, and we often do not have sufficient prior knowledge about the source
reliability [10]. Furthermore, sources may generate completely mood-biased claims
in relation to the disastrous event to attract public attention or show their personal
opinions [11,12].

There exist a few important challenges in addressing MS truth discovery problem.
First, the data sources and their reliability are often unknown a priori in a social-sensing
application due to the open data contribution paradigm and unvetted nature of data
sources [13]. Second, identifying MS claims from the neutral ones is a nontrivial
problem since human sensors are often good at mingling their emotions with the
reported observations [14]. The ignorance of MS aspect of the truth discovery problem
can lead to biased and uncertain results that can significantly affect the decision-
making process [15,16].

This chapter reviews a principled approach to solve the MS truth discovery prob-
lem by addressing the above challenges. In particular, the reviewed approach develops
a multidimensional expectation maximization (EM) scheme known as MS-EM. The
scheme solves the problem by jointly estimating (i) correctness and mood neutral-
ity of claims and (ii) reliability and mood sensitivity of sources without knowing
either of them a priori. In the evaluation, we reviewed the performance comparison
between the MS-EM and several state-of-the-art mood-ignorant truth discovery solu-
tions through real-world case studies using data from online social media. The case
studies include Brussels bombing, Oregon shooting, Baltimore riots and Paris attacks,
which occurred in 2015 and 2016. The reviewed MS truth discovery scheme is impor-
tant because it directly contributes to building reliable recommendation systems in
social sensing that explicitly considers the unique complexity of human sensors (e.g.,
mood sensitiveness).

15.2 Related work

Unknown source reliability has been studied in data mining and machine-learning
communities, and a set of models on fact finding have been developed to address this
problem [17]. Hubs andAuthorities [18] developed an intuitive fact-finding algorithm
that estimates the reliability of a source based on the credibility of claims made by
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the source. Similarly, it estimates the credibility of a claim based on the estimated
reliability of sources that make the claim.Yin et al. proposedTruthFinder, an enhanced
fact-finding framework, that replaces the linear assumption between source reliability
and claim credibility used in Hubs and Authorities with a probabilistic model [19]. Qi
et al. further improved the above fact-finding frameworks by explicitly considering
the dependency between the data sources and studied how such dependency would
affect the estimation on the source reliability [20]. Inspired by the insights from the
fact-finding literature, MS-EM scheme builds a principled framework that jointly
estimates the source reliability and claim credibility by explicitly considering the
moody nature of human sensors and factor that developed into a solution.

Truth discovery is a critical problem in social sensing that receives a great amount
of attention recently [21]. Several principled based solutions have been developed to
address this problem. For example, Wang et al. proposed a maximum likelihood
estimation (MLE) framework that models both the source reliability and claim cred-
ibility as unknown parameters of the model [10]. It developed an iterative algorithm
to estimate the parameters in a way that is most consistent with the observed sensing
data from the participants in social sensing. The follow up studies further quantified
the confidence of the MLE estimation [22,23], considered the dependency between
human sensors [24,25] and the dependency between claims [26,27], handled stream-
ing data [28], addressed conflicting claims [29] and hardness of the claims [30],
and studied the uncertain data provenance issue [31]. More recently, a set of new
truth discovery models has been developed to consider the scalability [32], data
sparsity [33,34], sensor selection [35,36], resource allocation [37], heterogeneous
data [38] and the physical world constraints [39,40]. However, the mood sensitive-
ness aspect of the truth discovery problem has not been fully explored by the current
literature; the MS-EM scheme reviewed in this chapter is one of the pioneering work
along this direction.

Finally, MS-EM is an initial effort that belongs to a new type of reliable
information recommendation systems [41]. In recommendation systems, EM-based
approaches have been widely adopted in both content-based analysis [42] and collab-
orative filtering [43]. For example, Wang et al. proposed an online recommendation
system that suggests scientific articles using EM-based collaborative filter tech-
nique [43]. Pomerantz et al. developed a movie recommendation system that explicitly
considers the context information using EM-based content analysis [42]. In con-
trast, the MS-EM solves a different recommendation problem where the goal is to
recommend high-quality information from a massive set of noisy and moody sens-
ing report from human sensors. Furthermore, a reasonable training dataset is often
assumed in traditional recommendation system. However, we often do not have such
training dataset in social-sensing applications, which often leads to unsupervised or
semi-supervised learning approaches.

15.3 Problem formulation and terminology definition

We first review the formulation of the MS truth discovery problem. In particular, the
problem is formulated as a constraint multidimensional MLE problem. For example,
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consider a social-sensing application that consists of a set of M sources (Users)
S = (S1, S2, . . . , SM ) and a set of N claims C = C1, C2, . . . , CN reported by the users.
In the MS truth-discovery problem, two important dimensions of a claim are explicitly
considered: (i) mood sensitivity: it indicates if a claim is of MS or not and (ii) cor-
rectness: it indicates if a claim is true or not. We define some notations: Su represents
the uth source and Ck represents the kth claim. Ck = O and Ck = O represent that
Ck is MS or not, respectively. Ck = T and Ck = F represent the claim to be true or
not, respectively. We further define the following terms to be used in our model.

● SM , a source-mood matrix that represents if a source indicates a claim to be MS
or not. In SM , SuMk = 1 when source Su indicates Ck to be MS and SuMk = −1
when source Su indicates Ck to be mood neutral and SuMk = 0 if Su does not make
Ck at all.

● SC is defined as a source-claim matrix that represents if a source reports a claim
to be true. In SC, SuCk = 1 if source Su reports claim Ck to be true and SuCk = 0
otherwise.

In social sensing, not all claims are truthful and mood neutral. In MS-EM, we
define the mood sensitivity of Su as Mu:

Mu = Pr(Ck = O|SuMk = 1)

Ru = Pr(Ck = T |SuCk = 1) (15.1)

A set of additional probabilities that are related with Mu and Ru are defined as
below using the notations we defined.

V T
u,O = Pr(SuMk = 1|Ck = O)

V F
u,O = Pr(SuMk = −1|Ck = O)

V T
u,O = Pr(SuMk = 1|Ck = O)

V F
u,O = Pr(SuMk = −1|Ck = O) (15.2)

Iu = Pr(SuCk = 1|Ck = T )

Ju = Pr(SuCk = 1|Ck = F) (15.3)

To capture the fact that sources may make different numbers of claims; we further
define the likelihood that Su reports a claim to be MS and mood neutral as mpu,O

(i.e., mpu,O = Pr(SuMk = 1)) and mpu,O (i.e., mpu,O = Pr(SuMk = −1)), respectively.
Additionally, we define the likelihood that source Su reports a claim to be true by spu
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(i.e., spu = Pr(SuCk = 1)). We further denote hO = Pr(Ck = O) and d = Pr(Ck = T ).
We can derive the relationship between the above items as below.

V T
u,O = Mu × mpu,O

hO
, V F

u,O = (1 − Mu) × mpu,O

hO

V T
u,O = (1 − Mu) × mpu,O

1 − hO
, V F

u,O = Mu × mpu,O

1 − hO

Iu = Ru × spu

d
, Ju = (1 − Ru) × spu

(1 − d)
(15.4)

Finally, ϒ represents hidden truth on the mood neutrality of claims and Z repre-
sents the hidden truth on the correctness of claims. In particular, rk = 1 in ϒ when
claim Ck is MS and rk = 0 otherwise. zk = 1 in Z when Ck is true and zk = 0 when
Ck is false. The MS truth discovery problem can be formulated as follows:

∀k , 1 ≤ k ≤ N : Pr(Ck = O|SM , SC)

∀k , 1 ≤ k ≤ N : Pr(Ck = T |SM , SC)

∀u, 1 ≤ u ≤ M : Pr(Ck = O|SuMk = 1)

∀u, 1 ≤ u ≤ M : Pr(Ck = T |SuCk = 1) (15.5)

15.4 Mood sensitive truth discovery

In this section, we review the solution of the MS-EM solution to address the MS
truth-discovery problem. We first derive the likelihood function L = (�ms; X , ϒ) for
MS-EM as follows:

L(�ms; X , ϒ) = Pr(X , ϒ |�ms)

=
∏

k∈C

Pr(rk |Xk , �ms) ×
∏

u∈S

�k ,u × Pr(rk ) (15.6)

where�ms = (V T
1,O, . . . , V T

M ,O; V F
1,O, . . . , V F

M ,O; V T
1,O

, . . . , V T
M ,O

; V F
1,O

, . . . , V F
M ,O

; hO) rep-
resents the model parameters. �k ,u and Pr(rk ) are defined in Table 15.1. Other
notations are defined in the previous section. The model structure is illustrated in
Figure 15.1.

Following the EM steps, the E-step of the MS-EM scheme is derived as follows:

Q(�ms|�(n)
ms) = V

ϒ |X ,�(n)
ms

[logL(�ms; X , ϒ)]

=
∑

k∈C

ϒ(n, k) ×
∑

u∈S

( log �k ,u + log Pr(rk )) (15.7)

where ϒ(n, k) is defined in Table 15.1.
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Figure 15.1 MS-EM model

Table 15.1 MS-EM notations

�k,u Pr(rk) ϒ(n, k) Constrains

V T
u,O h0 ϒO(n, k) SuM O

k = 1, SuM O
k = 0, rk = 1

V F
u,O h0 ϒO(n, k) SuM O

k = 0, SuM O
k = 1, rk = 1

V T
u,O

hO 1 − ϒO(n, k) SuM O
k = 1, SuM O

k = 0, rk = 0

V F
u,O

hO 1 − ϒO(n, k) SuM O
k = 0, SuM O

k = 1, rk = 0

1 − V T
u,O − V F

u,O h0 ϒO(n, k) SuM O
k = 0, SuM O

k = 0, rk = 1
1 − V T

u,O
− V F

u,O
hO 1 − ϒO(n, k) SuM O

k = 0, SuM O
k = 0, rk = 0

ϒO(n, k) can be further expressed as

ϒO(n, k) = Pr(rk = O; Xk , �(n)
ms)

Pr(Xk , �(n)
ms)

= LO(n, k) × hO

LO(n, k) × hO + LO(n, k) × hO

(15.8)

where LO(n, k), LO(n, k) are defined as

LO(n, k) = Pr(Xk , �(n)
ms |rk = O)

=
M∏

u=1

(V T
u,O)SuM O

k × (V F
u,O)SuM O

k

× (1 − V T
u,O − V F

u,O)1−SuM O
k −SuM O

k
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Table 15.2 Optimal solutions of MS-EM

Notation Solution Notation Solution

(V T
u,O)∗ (

∑
k∈SFO

u
ϒO(n, k)/

∑N
k=1 ϒO(n, k)) (V F

u,O)∗ (
∑

k∈SFO
u

ϒO(n, k)/
∑N

k=1 ϒO(n, k))

(V T
u,O

)∗ (
∑

k∈SFO
u ϒO(n,k)/

∑N
k=1 ϒO(n, k)) (V F

u,O
)∗ (

∑
k∈SFO

u
ϒO(n, k)/

∑N
k=1 ϒO(n, k))

h∗
O (

∑N
k=1 ϒO(n, k)/N ) h∗

O
(
∑N

k=1 ϒO(n, k)/N )

LO(n, k) = Pr(Xk , �(n)
ms |rk = O)

=
M∏

u=1

(V T
u,O)SuM O

k × (V F
u,O)SuM O

k

× (1 − V T
u,O − V F

u,O)1−SuM O
k −SuM O

k (15.9)

In the M-step, we set derivatives (∂Q/∂V T
u,O) = 0, (∂Q/∂V F

u,O) = 0,
(∂Q/∂V T

u,O
) = 0, (∂Q/∂V F

u,O
) = 0, (∂Q/∂hO) = 0, (∂Q/∂hO) = 0. The results are

shown in Table 15.2 where SFO
u is the set of claims that Su reports to be MS and SFO

u
is the set of claims that Su reports to be mood neutral.

15.5 Evaluation

In this section, we review the evaluation of the MS-EM scheme through several
real-world case studies using data from Twitter. The evaluation results show that
MS-EM can successfully identify both neutral and correct claims and outperformed
the state-of-the-art baselines.

15.5.1 Datasets and preprocessing

15.5.1.1 Information about datasets
Social sensing is an emerging area in networked sensing community where the humans
are used as sensors to collect observations about the physical environment. The
human-reported measurements in social sensing are known to be noisy, moody and
unstructured [3]. We collected four real-world datasets from Twitter for our evalu-
ation: (i) Brussels Bombing (Mar. 22, 2016); (ii) Paris Terrorists Attack (Nov. 13,
2015); (iii) Oregon College Shooting (Oct. 1, 2015); and (iv) Baltimore Riots (Apr.
14, 2015). We summarize the information of the four datasets in Table 15.3.

15.5.1.2 Preprocessing steps
We preprocess the raw datasets to generate the meta-data that MS-EM scheme needs
to perform the MS truth discovery problem.

Clustering: The goal of clustering step is to generate the “claims” in the applica-
tion by grouping tweets that have similar content into the same cluster. In particular,
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Table 15.3 Data traces statistics

Data trace Brussels bombing Paris attack Oregon shooting Baltimore riots

Start date Mar. 22, 2016 Nov. 13, 2015 Oct. 1, 2015 Apr. 14, 2015
Time duration 7 days 11 days 6 days 17 days
Location Brussels, Belgium Paris, France Umpqua, Oregon Baltimore,

Maryland
Search Brussels, Attacks, Paris, Attacks, Oregon, Shooting, Baltimore,

keywords Explosions ISIS Umpqua Riots
# of Tweets 986,560 873,760 210,028 952,442
# of users 466,398 496,753 122,069 425,552
Tweeted

we use the Jaccard distance metric to compute the “distance” between any pair of
tweets and choose the K-means clustering algorithm to generate the claims. The Jac-
card distance measures the distance (i.e., similarity) between two tweets by checking
the words that appear in both tweets [44].

Source-mood matrix and source-claim matrix generation: The SM matrix is gen-
erated as follows: if Su reports Ck using a moody word, SuMk = 1. Similarly, if Su

reports claim Ck without using any moody words, SuMk = −1. Otherwise, SuMk = 0.
A list of moody words are pre-collected from Twitter for this task [45]. The SC matrix
is generated as follows: if Su reports Ck , SuCk = 1. Otherwise, SuCk = 0.

15.5.2 Performance evaluation of MS-EM

We reviewed the performance of the MS-EM scheme in comparison with a few existing
truth discovery solutions that do not explicitly explore the MS aspects of the reported
claims.

15.5.2.1 Evaluation on mood neutral identification
We first study the performance of the MS-EM scheme in terms of identifying the
mood neutral claims. A few baselines are used for performance comparison: Voting:
it correlates the neutrality of a claim with the number of times it is reported by
different sources. Mood classifier: it is a bag-of-word-based approach where a claim is
considered as neutral if it does not contain the moody word in the pre-collected corpus.
Sums [18]: it is a modified fact-finding algorithm where the credibility of a claim is
replaced by the neutrality of the claim. TruthFinder [19]: it is a modified version of the
original TruthFinder scheme by replacing the claim correctness with claim neutrality.

We manually graded the claims to decide its mood sensitiveness. We collected
the ground truth labels of all claims using the following rubric:

● MS claims: Claims that clearly reflect the user’s emotions (e.g., anger, sadness,
excitement, disappointment).

● Mood neutral claims: Claims that do not contain any of the user’s emotions.

We report the results of the MS-EM scheme on the Brussels bombing dataset in
Table 15.4. We can observe that MS-EM performs best (shown as bold numbers in
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Table 15.4 Performance results

Algorithm Precision Recall F1- Accuracy Precision Recall F1- Accuracy
measure measure

Brussels bombing Baltimore riots

MS-EM 0.72 0.79 0.74 0.71 0.79 0.74 0.75 0.77
Mood-classifier 0.64 0.62 0.63 0.61 0.69 0.62 0.66 0.67
TruthFinder 0.64 0.57 0.53 0.54 0.65 0.59 0.57 0.53
Sums 0.6 0.66 0.61 0.58 0.66 0.6 0.62 0.64
Voting 0.54 0.59 0.57 0.54 0.63 0.58 0.56 0.5

Oregon shooting Paris attacks

MS-EM 0.72 0.74 0.73 0.72 0.72 0.69 0.68 0.69
Mood-classifier 0.63 0.62 0.64 0.65 0.63 0.6 0.59 0.59
TruthFinder 0.6 0.59 0.57 0.54 0.6 0.58 0.56 0.52
Sums 0.63 0.58 0.56 0.55 0.59 0.55 0.54 0.52
Voting 0.57 0.64 0.61 0.54 0.56 0.59 0.57 0.6

the table) compared to all other baselines. For example, MS-EM outperforms the best
performed baseline by 11% and 10% on F1-measure and accuracy, respectively. Such
performance gain is achieved by explicitly modeling the MS aspect of the claims in
the truth-discovery problem and derive a principled solution to address the problem.
The results on Baltimore Riots, Oregon Shooting and Paris Attacks are similar and
MS-EM continues to outperform other baselines.

15.5.2.2 Mood-sensitive truth-discovery evaluation
We further review the evaluation results of the MS-EM in terms of solving the MS
truth-discovery problem. We added one more baseline Regular EM [10], which also
uses an MLE-based framework to solve the truth discovery problem. The only dif-
ference is it completely ignores the mood-sensitiveness aspect of the claims in its
solution.

We define a new concept of valuable claim to represent the claims that are both
correct and mood neutral. The valuable calms are the describable outputs of the
reliable information recommendation system since they represent the credible and
factual information, which will be critical to facilitate decision-making. We collected
the ground truth of valuable claims using the following rubric:

● Valuable claims: Claims that are statements that are both neutral and credible
(e.g., can be cross validated by the mainstream news media).

● Unconfirmed claims: Claims that do not meet the above definition of valuable
claims.

We report the evaluation results of MS-EM scheme on Brussels bombing dataset
in Figure 15.2. We observe that the MS-EM is the best performed scheme over
different evaluation metrics. Specifically, the largest performance gains achieved
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Figure 15.2 Truth discovery results on Brussels bombing dataset
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Figure 15.3 Truth discovery results on Baltimore riots dataset
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Figure 15.4 Truth discovery results on Oregon shooting dataset
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Figure 15.5 Truth discovery results on Paris attack dataset
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Figure 15.6 Convergence rate of MS-EM: (a) Brussels bombing dataset,
(b) Baltimore riots dataset, (c) Oregon shooting dataset, (d) Paris
attack dataset

by MS-EM are 13%, 16%, 20% and 19% on precision, recall, F1-measure and accu-
racy, respectively. The results on Baltimore riots, Oregon shooting and Paris attacks
datasets are presented in Figures 15.3, 15.4 and 15.5, respectively. MS-EM continues
to outperform other baselines. The MS-EM achieves the above performance gains
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by exploiting the both mood-sensitiveness and correctness aspects of claims under a
rigorous analytical framework.

The convergence results of the MS-EM scheme are shown in Figure 15.6. MS-EM
scheme converges quickly on all four datasets we experiment with.

15.6 Conclusion

This chapter reviews a reliable information recommendation system in social sensing
applications. The reviewed system takes a principled approach to solve an MS truth-
discovery problem where both mood-sensitiveness and reliability of data sources are
unknown to the application a priori. The proposed solution (i.e., MS-EM) has been
evaluated extensively on four real-world social-sensing datasets collected fromTwitter
during disaster and emergence events. The evaluation results showed that the MS-EM
scheme outperform the current truth discovery solutions in terms of identifying more
valuable claims. The reviewed system lays out an important analytical foundation to
build principled reliable information recommendation system that can identify both
credible and mood neutral claims from a large set of noisy and biased human-sensing
measurement in social-sensing applications.
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Chapter 16

The paradox of opinion leadership and
recommendation culture in Chinese online movie

reviews
Jie Yang1 and Brian Yecies2

In this empirical study of online leadership, analysis for movie recommendations
on Douban, one of the biggest interest-oriented online Chinese-language social net-
working systems of its kind, we address the identification of the characteristics of key
opinion leaders using a big data processing framework. As an illustrative case study,
we focus on a niche subset of popular audience content on Douban: approximately a
half million short comments regarding the top 94 most popular South Korean films
produced between 2003 and 2012. Raw data samples, including film details, review
comments, and user profiles, are harvested via one asynchronous scraping crawler,
and then their heterogeneous features are manipulated accordingly. Finally, a paral-
lel association rule-mining (ARM) algorithm is employed for revealing leadership
patterns. The proposed framework explains how to extract high-level features that
can then be used to gauge the effectiveness of these so-called key leaders and their
ability to generate word-of-mouth (WOM) awareness and interest surrounding their
recommendations. In turn, researchers can edge closer to determining the kind of
charismatic ‘soft power’ appeal of leading reviewers and reviews that are facilitat-
ing among follower networks new opportunities to evaluate a film and ultimately to
decide to view it.

16.1 Introduction

With the increasing global popularity of social media, and its expanding role in
the commercialisation of China’s digital platforms and applications, it has become
imperative for scholars and industry stakeholders to develop new understandings of
audiences and online opinion leadership. Investigating this aspect of Internet WOM

1SMART Infrastructure Facility, Faculty of Engineering and Information Sciences, University of
Wollongong, Australia
2Communication and Media Studies, School of the Arts, English and Media, University of Wollongong,
Australia
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recommendation culture and the agents who help drive it is essential for improving
communication about digital media content, which is rapidly transforming Chinese
society. At the same time, it is encouraging deeper engagement and a higher level
of recommendation activity for both content producers and user communities. Key
opinion leaders, that is, individuals that demonstrate expertise in the field and to
whom others look for informed WOM viewpoints on movies and a range of other
popular topics, play a crucial role in improving communication and encouraging group
members to have greater level of information exchange. Yet, ironically, identifying
such pivotal active social media users who voice leading WOM opinions continues
to pose new challenges for industry players, such as Hollywood and Chinese media
companies, which rely on big data to guide current promotional campaigns and to
shape future productions around changing audience tastes.

Presently, from what the authors have learned by regularly interviewing a number
of active film industry representatives in China, some of the chief problems facing
this arena include a lack of access to relevant big data, ways of categorising data,
and strategies for identifying key opinion leaders.1,2 In spite of the growing interest
in opinion leadership and WOM analysis in general, there has been little research
into these three problem areas, and how one might overcome their limitations. Thus,
there is an increasing need to develop alternative frameworks for conducting opin-
ion leadership analysis. Our aim is to develop an efficient and practical technique
for investigating online opinion leadership based on massive user-generated content
(hereafter UGC). The main contribution of this proposed work can be summarised as
follows:

● An efficient analytical framework is implemented for investigating large volumes
of online user-generated data (i.e. collection, distribution, storage, and process)
using the cloud-computing platform.

● A comprehensive analysis is executed to construct high-level features using origi-
nal film metadata, textual reviews, and user profiles. In addition, we also manage
to facilitate quantification of the constructed features;

● We further apply our framework to explore opinion-leader characteristics. A par-
allel rule-mining algorithm is introduced to discover patterns within ‘leader’ and
‘non-leader’groups. These functionalities hold significant meaning for improving
user experience, and for advising both film producers and distributors.

The preliminary research can be found in our previous study [1]. However, the current
chapter builds upon this former work by introducing additional user-activity features
and conducting different experiments. Furthermore, in experiments of the perfor-
mance validation through an analysis of features among movie metadata, textual

1The authors thank industry leaders Niel Xie (Base FX, Beijing), Christopher He (Twilightstar Enter-
tainment, Beijing), Even Yang (Douban Film Operations), Charles Wang (Beijing Film Academy), Liao
Zhuodi (T2Cloud, Beijing), Fay Wang and Marja Zhang (Perfect World Pictures, Beijing), and Wang Ting
and Nicole Li (U17, Beijing) for sharing their insights on this evolving topic.
2This research was supported by the Australian Research Council Discovery Project (DP170102176), titled
Digital China: From Cultural Presence to Innovative Nation.
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content from review comments, and user profiles, the results show the flexibility and
applicability of the proposed framework for extracting important information from
complex social media data. It is hoped that the specific findings provided in this
study can be used to inform strategies not only for promoting opinion leadership but
also for customising recommendation cultures and practices among specific markets,
regions, and target audiences that are rapidly increasing in China and beyond.

The remainder of this chapter is organised as follows. The following section
briefly sets the scholarly background of opinion leadership within recommendation
culture and other related studies. A survey of the relevant literature in Section 16.2
reveals that previous investigators have devised a number of approaches regarding
leadership analysis and recommendation systems. Next, the implemented framework
is introduced in Section 16.3. We first provide the general architecture and then
elaborate its three major modules, i.e. data collection, feature builder, and rule-
mining functionality. In Section 16.4, we evaluate the performance of the implemented
framework by discovering leadership patterns using real-word social media data. We
also quantitatively characterise the significance of the proposed features with regard
to opinion leadership. Finally, the article concludes by suggesting further prospects
for the proposed work in Section 16.5.

16.2 Related work on online leadership and recommendation

This section offers a brief review on the study background related to the ‘rise of
China’, as well as existing work on online leadership and recommendation systems.
First, we discuss the general nature of China’s changing media landscape. Second, we
address leadership identification gleaned from users’ comments and their profiles.
We then investigate recommendation approaches associated with user preference.

16.2.1 The rise of China

For many people, China is associated with an authoritarian regime, propaganda, cor-
ruption, mass production, pollution, and the manufacture of fake goods [2]. While
China’s economy is undoubtedly powerful, it is more bad than good news when it
comes to its international reputation. Writing a decade ago, Ramo asserted, ‘China’s
image of herself and other nations’ views of her are out of alignment’ [3]. Since then,
China’s image has undergone some refashioning, its global strategy taking a new
form, concomitant with a powerful push into global markets via the production of
legacy media. Both developments have contributed to the transformation of China’s
international image. For many Chinese people the ‘going out’ of this varied type of
media culture is a means to tell China’s story through its own words, rather than
through the foreign lenses of the BBC or Hollywood. Notwithstanding, the domestic
and diasporic expansion of social media WOM platforms such as Douban, consid-
ered as ‘essential reading for any serious movie fan in China’ [4], has accentuated
China’s leadership contributions to the global media playing field – especially now
that translation websites and applications are making Chinese-language content more
accessible than ever before.
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In a survey of scholarship, Sun observes that Chinese scholars regard the media
and communication sectors, including social media platforms, as ‘the backbone of
China’s going global effort’ [5]. Some commentators noted in Sun’s survey suggest
that China’s media is successfully challenging international giants. There is no doubt,
for instance, that Dalian Wanda’s acquisition in 2014 of the AMC Entertainment cin-
ema chain (in the US), and in 2015 Hoyts (Australia), as well as the purchase of
Hollywood’s Legendary Pictures in 2016 have provided it with Hollywood clout as
well as new global outlets for Chinese content. More recently, Douban has followed
in some of Wanda’s, as well as Baidu, Alibaba and Tencent’s footsteps by expand-
ing into the media production arena with Douban Time, a fee-based web series in
which experts and stars, serving as ‘change agents’, discuss and recommend content,
such as poetry, novels, music, and films to audiences. Clearly, ‘opinion leadership’
and the WOM clout that they are generating among followers is become the driving
force behind the continued expansion and commercialisation of the legacy and social
mediasphere in China.

16.2.2 Opinion leadership

The general concept of opinion leadership and personal WOM influence has a long
history spanning across multiple fields, such as the humanities, management and
marketing, and computer science. Suffice it to say that early theories of opinion
leadership were popularised by Lazarsfeld et al. in their study on the decision-making
processes of voters in the USA during the 1940 presidential election [6]. Through this
study, as well as subsequent studies, such as Katz and Lazarsfeld [7], it was discovered
that mass media messages were mediated by a number of so-called opinion leaders
that stood out for their increased familiarity with related mass media content and a
concentrated dose of group discussion. In short, such key opinion leaders provided
a critical link between specific information and ideas generated by the media and
circulating among the wider population in the public sphere. Today, it has become
conventional, for example when theorising how social influence in addition to mass
media coverage, for such agents to play a determinant role in the diffusion and adoption
of new ideas, products, and innovations [8,9].

Here, depending on the level of trust among social media followers, user-
generated reviews – or what is generally known as e-WOM – enable users to judge the
quality and rating of particular media or products. However, at face value, the rating
system used by Chinese film fans, at least on the Douban site, seems less efficacious
as a measure of audience approval than ratings used on English-language sites by
western film fans – for example on IMDb or Metacritic. Chinese users on Douban –
that is, members of a ‘collectivist society’ – have been observed showing increased
alignment with their fellow netizens in terms of film ratings. In other words, they
value group harmony over the expression of individual opinions that are extremely
different from the group. As a result, we may ask what are some of the other ways of
measuring or gauging audience opinions of a film? And, how is it possible to employ
a new framework to conduct this analytical process?

As a concept, WOM is considered by industry professionals and theorists alike as a
powerful communication tool and social-networking channel for spreading awareness
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of a product or service in both offline and online worlds. WOM appears most effec-
tive when knowledgeable consumers stand out by actively creating and/or distributing
information about or recommendations of products and services to other consumers.
This process creates an ostensible sense of grassroots legitimacy because the mes-
sage appears to be initiated by a member of one’s own peer or interest group rather
than by the manufacturer of the product or service. Via online platforms and mobile
applications such as Douban, social media networks have radically changed the ways
in which information is shared and spread beyond traditional offline WOM, that is,
face-to-face conversations. This tool has also given rise to the creation of new opinion
leaders that generate a kind of power to motivate the decisions and actions of their
followers who actively seek and accept recommendations online. Today, e-WOM
appears to be a critical factor in a film’s commercial success.

With this background in mind, the value of using data quarried from Douban
to achieve a better quantitative and qualitative understanding of Chinese audience
tastes becomes apparent. Yet, the technical process of identifying online leaders in
this domain is more complex and non-linear than it may appear. Therefore, a variety
of sophisticated algorithms is required to extract subjective information from UGC
and categorise particular reviewers either as a ‘leader’ or a ‘non-leader’. To express
this matter in mathematical terms, let x = {x1, x2, . . . , xn} be a vector representing n
high-level features extracted from UGC (such as textual reviews and user profiles),
and y ∈ {leader, non − leader} be the class label. Leadership identification aims to
train a classifier that extracts the decision rule subject to the following constraint:

y = f (x) + e, (16.1)

where f (·) is an unknown decision function to be estimated by the classifier and e is
the corresponding error. Essentially, UGC features (xi, i ∈ [1, n]) and classification
function ( f ( · )) play the largest and most critical role in accurately determining the
leadership of a given user. Here we review a number of existing technical studies on
which our study builds.

Some studies linked to the search for online leadership trends have been devel-
oped by using available information from user networks. The basic idea is to represent
users as nodes within a large network topology and then compute their leader score
before ranking nodes with higher scores as opinion leaders. In [10], an improved
PageRank algorithm is presented while employed features include reviewers’ live-
ness, degree of attention, and reviewers’ awareness; another reviewer-network-based
method has been introduced in [11], in which the network topology is defined using
directional links between fans and their leaders, and a modified PageRank algorithm
is applied. Another type of leadership identification algorithm is based on textual con-
tent to distinguish leaders from their followers. In [12], for example, authors harvest
quantitative review contents and ratings, etc. Then the polarity of the original posts is
calculated, followed by a consensus-based approach to classify influential reviewers.

More recently, some alternative hybrid algorithms have been proposed. In [13],
the authors propose an opinion-leader identification approach in cloud environments.
Leadership is measured by the availability, reliability, data integrity, identification,
and capability presented in different cloud environments. They further apply three
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topological measures, including input-degree, output-degree, and trust to evaluate a
leadership value.

Zhao et al. have introduced an improved bounded confidence model to simulate
the opinion dynamics [14]. The traditional-bounded confidence model is an agent-
based method, where each agent is associated with a continuous value that represents
a certain opinion level. The interaction among agents occurs only if they have a similar
opinion value, which is referred to as the bounded confidence level. Then to better
simulate the opinion evolution, two additional extensions are made on the traditional-
bounded confidence model by dividing agents into conflict opinion groups and taking
the environment uncertainty into account.

A supernetwork-based algorithm is presented in [15] to discover opinion lead-
ership patterns, which combine both network topology and textual content. The
method first defines four networks, including node superdegree, superedge degree,
superedge–superedge distance, and superedge overlap. These four-layer supernet-
works are further associated with information, psychology, viewpoint to a paralleled
position with opinion leaders. Then the supernetwork theory is applied to describe and
express the interaction and effect between networks and eventually identify opinion
leadership. While each of these above-mentioned studies has their own merits, the
processes required to generate results and findings remain overly complex and with
limitations in their applicability to industry stakeholders.

16.2.3 Recommendation system

Recommendation systems aim to suggest new items such as films, products and
services to audiences based on their established preferences and historical search
activities. There is a long history of studies on developing personal recommendation
technology that date back to the 1990s. In academia, one of the earliest recommenda-
tion systems is called MovieLens developed by the GroupLens initiative at University
of Minnesota in the United States. The system was designed to collect individual rat-
ings from a series of favourite films and then predict what each member might be
interested in watching. As a practical application, industry stakeholders attempt to
make full use of this type of recommendation technology in order to promote their
products among targeted relevant groups, such as Amazon [16].

Most existing recommendation systems fall into two categories: content-based
(CB) and collaborative filtering (CF) methods. On the one hand, the CB recom-
mendation system considers an item’s metadata. For instance, in terms of a film
recommendation, the metadata could be film genre, actor, director, and basic descrip-
tions [17–19]. That is to say, the correlation between multiple items is utilised as the
key criteria for recommendations. Let the list M = {mi|∀mi ∈ M } be the favourite
item list for the ith user. Let the content( · ) function represent item metadata, i.e.
a set of predefined attributes or features characterising selected items. Accordingly,
CB methods estimate a user’s (ui) preference for other items mj (mj /∈ M ) based on
their similarity with M :

sim
{
M , mj

} =
∑

sim
(
content(mi), content(mj)

)
, (16.2)
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where sim {∗} denotes a predefined function to measure the similarity between M
and mj.

By contrast, the CF method makes recommendations based on a group of
users outside the sample group that share similar preferences. Given a user list
U = {ui|∀ui ∈ U }, for any one target user ui, CF methods generate a sorted user
list Û , which satisfies the following conditions:

● Û ⊂ U , and ui /∈ Û ;
● sim{uj, ui} ≥ sim{uk , ui}, subject that ∀uj, uk ∈ Û and j < k .

Again, the variable sim{uj, ui} represents the similarity between user uj and ui. By
finding the most similar user(s) to ui, the recommendation is made by aggregating the
historical watching information from Û . Examples of the CF-based recommendation
system include [20–22].

More recently, several hybrid algorithms have been proposed to improve the accu-
racy of recommendations. For instance, in [23], both CF and CB-based recommenders
are employed in parallel. A K-nearest-neighbourhood algorithm is implemented to
estimate similarity. Meanwhile, clustering algorithms are also combined with the CF
method to combine similar items before making a recommendation [24]. Li et al.
further suggest using a fuzzy K-means algorithm to cluster items with similar pro-
files [25]. These hybrid algorithms demonstrate their superiority over traditional
recommendation systems by addressing problems such as data sparsity and cold start.

16.2.4 Leadership for recommendations among social networks

Now we address the intersections between opinion leadership and recommendation.
The basic recommendation system is a two-way communication platform that enables
the circulation of opinions. Typically, recommenders express and share opinions with
their peers, while readers contribute feedback with regard to the received opinion
with their own experience.

Further, an online or mobile recommendation system provides a convenient chan-
nel for opinion leaders to influence their followers because of the e-WOM power that
they possess. This reflects a natural social process as people are mostly likely to
follow recommendations from a perceived leader. In practice, for example, a review
written by a well-known celebrity or highly recognised leader from a digital platform,
such asYouTube, can result in better product sales and/or generate increased attention
among the user network. Therefore, discovering leadership patterns can assist with
discovering what kinds of opinions people will follow or adopt, so as to improve the
performance of the recommendation service.

16.3 Methodology

In this section, we introduce the leadership analytical framework used to analyse
massive quantities of UGC. To store and process the large data collected from social
network applications, a platform with a high storage capacity and computing power
is essential. As a result, the proposed analytical framework is built using some
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Figure 16.1 Architecture of the implemented big-data processing platform for
leadership analysis

cutting-edge software for the reliable, scalable, and distributed-computing purpose.
The system architecture is shown in Figure 16.1.

As observed, raw data samples are imported to this platform through a trans-
mission module, which provides real-time and stable transmission using Kafka [26]
and Flume [27]. More precisely, collected data records will first reach the Kafka
component that is employed to process and save individual samples into one or more
message queues according to a predefined format or user’s operation. Furthermore,
Kafka is also utilised for performing a data-distribution task so that data from message
queues can be (re)consumed by other components as many times as required. Kafka
also provides a fault-tolerant way to store streams of records in this message queue.
Without Kafka, however, raw data samples can only be consumed by one simulta-
neous process (such as writing or reading), and the data flow with high-throughput,
low-latency is not guaranteed. Next, Flume is employed to move data from Kafka
to other components in the storage module. In other words, Kafka is employed as a
Flume source, and Flume helps to move large amounts of streaming data efficiently
to different destinations via its sinks. Due to the distributed Flume capability, the data
can flow smoothly from Kafka to various storage components.

In the storage module, due to the diversity of the data format, three storage
mechanisms are employed, i.e. Hadoop Distributed File System (HDFS) [28], HBase
[29], and MySql [30]. MySql performs well for a small amount of data, while HDFS is
used to store and distribute much more samples. The reliability of HDFS enhances the
big data processing capability, and the storage space under HDFS can be extended
easily by adding hard disks or new machines. Compared to the structured data in
relational database management system (RDBMS) and HDFS, non SQL (NoSQL) is
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employed to store semi-structured records with a good scalability and fault-tolerance
capability. In our study, the RDBMS is used to store the ‘movie’ metadata as the
number of films is relatively smaller than that of the comments. The massive ‘review’
data is then saved using HDFS given its huge volume, and ‘User’profile and behaviour
(such as their watching lists) data is saved into HBase due to the semi-structured data
format.

Next, we use Hive [31] and Spark [32] to process the massive data. Hive is
a big data extraction, transformation and load tool; Spark is an open source envi-
ronment for fast data analytic, which provides a scalable platform for in-memory
computing, thereby achieving advanced performance over other approaches. In addi-
tion, to monitor the whole platform, we also have developed a management module
using ZooKeeper [33] to maintain configuration information, naming, and to provide
distributed synchronisation and group services.

Based on this implemented big-data processing platform, we introduce the leader-
ship analytical framework, consisting of an asynchronous scraping crawler (harvesting
film details, online reviews, and user profiles), a feature builder (removing data
noise and extracting high-level features from raw data), and rule-mining functionality
(discovering opinion leadership patterns). More details are given below.

16.3.1 Data collection

The proposed work focuses narrowly on a subset of popular Korean films and their
influence on Douban, one of the biggest interest-oriented Chinese social networking
site (SNS) of its kind. This social media networking digital platform currently attracts
approximately nearly 400 million unique visitors and over 1 billion unique page views
per year. The result is the generation of vast quantities of self-interested reviewer
records, including online reviews and users’ profiles.

To explore this rapidly changing arena, we selected a total of 94 Korean films
released between 2003 and 2012. This subset includes the top ten performing films
in each year according to Korean box office statistics, which are publically available
on the Korean Film Council online database [34]. Whilst these films were conspic-
uously popular among Korean fans, the case is not necessarily the same for Chinese
fans, and thus this particular dataset offers a relatively unbiased opportunity to inves-
tigate the nature of their reception in user comments on Douban. The open nature
of the Korean and Chinese-Douban dataset and its potential for reuse makes it pos-
sible for independent observers and readers to replicate and build upon the results
discussed below.

Accordingly, an asynchronous scraping crawler has been developed with certain
functionalities, such as multiple-thread collection, to access the Douban data via
the public application programming interface. This implemented crawler consists
of one global controller and multiple workers, which are configured separately in
different computer nodes. Among them, the controller is used to manage the entire
collection task and split it into sub-jobs, while workers execute harvesting sub-jobs
concurrently. Additional details on this implementation can be found in [1]. To this
end, three categories of Douban content are collected and extracted, including movie
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Table 16.1 Summary for generated features representing raw attributes

Category Generated features

Film Genres, movie rating
Review Actor, director, writer, story, emotion, review rating, length,

posted time, leadership label
User Activity, membership duration, centrality

details, textual comments, and user profiles. Raw attributes are then illustrated in
Figure 16.2.

16.3.2 Feature builder

A high-level feature can be regarded as a user-defined hierarchical representation of
these initial raw attributes. In accordance with the record category, related feature
lists are generated to cover the same aspects: film details, review comments, and user
profiles, and the outcome of this feature builder is summarised in Table 16.1 . These
features are generated as they are typically found in English-language comments on
most OSNs. Among these, the ‘Genres’ feature can be directly extracted from raw
attributes, whereas others require high-level aggregation and quantification process.
More details about extracting and quantifying features, including movie rating, actor,
director, writer, story, emotion, review rating, activity, membership duration, can be
found in our previous study [1]. Next we will elaborate newly introduced features
such as length, posted time, leadership label, and centrality.

Length is a simple but efficient measurement for evaluating review content, which
is counted as the total number of written words from a review. In addition, the posted
time feature is used to discover the exact time when a review has been made. Centrality
is the feature for estimating the potential influence exerted by a given reviewer within
his/her entire social network. In this study, the centrality is calculated as the number
of followers a reviewer has, which is also known as the connection ratio of one given
reviewer compared to all others within the entire user network.
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Therefore, let li, j represent the length from the jth reviewer’s review to the ith
film, and li be the number of words from the longest review for the ith film; the length
feature Li, j can be calculated as follows:

Li, j = li, j

li
. (16.3)

Furthermore, let di, j be the posted time of the review made by the jth reviewer to
the ith film, di represent the time when the first review appears, Tnow be the constant
for the current date, and the function date(∗) for the number of days between two
given dates, we have posted time as

Ti, j = date(di, j, Tnow)

date(di, Tnow)
. (16.4)

As for the centrality (Cj) feature, let K be the total number of collected users, and
kj the number of followers for the given jth reviewer. To this end, we have centrality
estimated as follows:

Cj = kj

K
. (16.5)

At last, we mark different reviewers with a ‘Leadership Label’ to separate opinion
leaders from others, which is done by determining leading reviews. The basic assump-
tion here is that a leading review will be prone to receiving a higher number of votes
than other reviews. Accordingly, the reviewers with the larger number of votes can
be identified as the key opinion leaders. To split so-called leaders and non-leaders,
we first rank all reviews based on the number of votes that they receive. Then we
further select reviews that have received more votes than a predefined threshold. The
selected reviews are regarded as the leading reviews, and accordingly, their authors
become key opinion leaders, whereas the rest of the users are taken as non-leaders.
Note that there is usually a host of opinion leaders for a single film. Conversely, a
single reviewer can also become a leader for numerous movies.

In summary, a total of 14 features are produced using the feature builder, and raw
data samples are represented accordingly and categorised to cover online contents
from the Douban site, including film details, review content, and user profile. Then
the mapping algorithm for feature quantification from [1] is introduced to discretise
continuous features. Finally, Table 16.2 shows the final outcome for generated features
and relevant value ranges.

16.3.3 Rule-mining functionality

In the final stage of the proposed framework, we implement an ARM algorithm to
discover the leadership pattern due to its efficiency. In general, ARM has been widely
used to search for correlation or dependence among the item set. In our case, the entire
item set consists of two parts: one independent set and one dependent item. More
precisely, the independent item set includes extracted features from textual reviews
and user profiles, and the dependent item is the label of opinion leader. The process
of discovering such leadership patterns now is equivalent to finding the relationship
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Table 16.2 Extracted high-level features and relevant quantification outcomes for
Douban contents

Features Quantification outcomes

Genres (drama), (comedy), (action), (Thriller),

(love), (crime), (history), (Mystery)
Movie rating High, medium, low
Actor, director, writer, story Mentioned at least once, none
Emotion Positive, neutral, negative
Review rating High, medium, low
Length Long, medium, short
Posted time Early, medium, late
Leadership label Leader, non-leader
Activity High, medium, low
Membership duration Long, medium, short
Centrality High, medium high, medium low, low

between the independent item set and dependent item. Thus, the ARM approach is
introduced herein. In addition, we consider to facilitate ARM parallelisation using
the FP-Growth strategy from the Spark platform [32].

The advantages of the parallel-ARM are two-fold. First, the proposed method
has less constraints on the item set, either independent sets or the dependent item. By
contrast, other approaches, such as linear or nonlinear multiple regression, require a
linear relationship between the dependent and independent items. Second, the pro-
posed algorithm is cost-effective because it is faster than traditional ARM methods.
For instance, one traditional way is to utilise a ‘bottom-up’ strategy to compute all
candidate frequent-item sets, requiring researchers to scan the entire dataset repeat-
edly. This typically leads to the combinatorial explosion problem if the input data
size increases. By contrast, the implemented parallel ARM method aims to find all
frequent item sets without generating and testing all candidates, thereby reducing the
computational time and storage cost. Overall, we adopt this parallel-ARM algorithm
to discriminate a reviewer’s leadership traits.

Furthermore, ARM might result in thousands of rules, some of which are more
significant than others. There are some common critical measurements determining
the significance of rules, including support and confidence degree. Support degree
indicates to what extent both the antecedent(s) and consequence(s) occur simultane-
ously in the dataset. Confidence degree indicates to what extent the consequence(s)
occurs following the antecedent(s). We will adopt these three measurements later in
our experiment to evaluate the significance of a rule and a feature.

16.3.4 Methodology outline

In summary, the proposed leadership analytical framework is shown in Figure 16.3,
consisting of a scraping crawler for harvesting streaming data, a feature builder to
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Figure 16.3 Proposed framework of mining opinion leadership for
user recommendation

extract high-level features, and association-rule-based analysis. The outcome of the
proposed framework will offer better insights into the characteristics from review
opinion leaders, which can be tailored to provide better recommendation service for
audiences.

16.4 Leadership and recommendation analytics

This section presents experimental results following the application of the proposed
framework for leadership analysis. We first present the experimental setup and data
sets in Section 16.4.1. And then we provide a detailed overview of the correla-
tion between independent features and leadership in Section 16.4.2. Finally, the
performance of the rule-mining algorithm is evaluated in Section 16.4.3.

16.4.1 Experimental setup

Our cloud-computing platform is built upon a virtual computer cluster infrastructure.
In our work, two Dell servers with Intel Xeon (R) E5-2609 2.4 GHz cores and 32 GB
memory are employed. A virtual cluster of eight nodes is then deployed accordingly.
For each node, two virtual CPU and 6 GB of memory are allocated. In addition, one
node is set up as the master machine for data collection module, Hadoop and Spark,
while the rest is used as the slaver node or worker. In addition, for the Hadoop platform,
the 1.2.X version is installed. Accordingly, we take Spark 1.5.X as the running version
and the standalone model is adapted to cope with the Hadoop framework. Other details
about the system environment configuration are shown in Table 16.3.

Table 16.4 shows the summary statistics for the data harvested from Douban for
94 Korean films until April 2015. During this period, a total of 451,145 comments are
collected from 190,665 distinct users. Each film received, on average, around 4,799
comments. In addition, from all collected comments, 35,397 were made without
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Table 16.3 System environment configuration

Service Details

Kafka 3 nodes with 4 cores and 4 GB memories
Flume 3 nodes with 4 cores and 4 GB memories
MySQL 8 cores and 32 GB memories
HBase 3 nodes with 4 cores and 16 GB memories
ZooKeeper 6 nodes with 4 cores and 4 GB memories
Hadoop/Spark 1 NameNode (master) and 6 DataNodes (workers)

Table 16.4 Descriptive statistics relating to film data collected

Variable Mean Standard deviation Total

Number of comments 4,799 1,127 451,145
Rating 3.68 1.15 1.664 × 106

Number of users 2,028 915 190,665

allocating a rating. These statistics resulted in an average film rating of 3.68 (with a
range of 1–5) for all films, suggesting they are in fact popular films in their own right
among some of Douban’s film literati.

Next, the leading reviews for each of the selected films are determined based on
the number of received votes per comment. More precisely, a threshold parameter λ

is introduced by which reviews receiving votes above this threshold are considered as
the leading ones. To discover an optimised value for λ, we first look at the statistics
for received votes. As shown in Table 16.5, the majority of comments has no votes,
while only 2.4% of them received more than one vote. To this end, we set λ = 1 to
learn about any potential motivations for people to vote for one particular comment.
Consequently, there are a total of 10,828 leading reviews against 440,317 non-leading
reviews, and 7,075 distinct reviewers have accordingly been selected as the opinion
leaders.

16.4.2 Feature statistics

In this section, we will provide a comprehensive understanding of individual features.
More precisely, a calculation is performed to highlight the comparison between leaders
and non-leaders in terms of the review content each has posted, and users’ profile. We
try to provide answers to questions like ‘Is there any significant difference in terms of
users’ profile between different reviewer groups?’, ‘What is the unique characteristic
of textual content from leaders compared to non-leaders?’, ‘Do leaders have a different
membership duration than non-leaders’ and ‘Will leaders post their review at same
time as others?’, etc.
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Table 16.5 Descriptive distribution relating to
the number of received votes

Value of votes Number

= 0 440,317
(0, 1] 7,996
(1, 10] 1,597
(10, 100] 936
(100, 1,000] 286
(1,000, 7,730] 13

Table 16.6 Comparison of the feature statistics from textual review between
leaders and non-leaders

Leader Actor Director Writer Story

Mentioned at least once (%) 23.38 4.67 3.25 20.87
None (%) 76.62 95.33 96.75 79.13

Non-leader Actor Director Writer Story

Mentioned at least once (%) 15.73 2.24 2.59 15.24
None (%) 84.27 97.76 97.41 84.76

Emotion Review rating

Positive Neutral Negative High Medium Low

Leader (%) 85.23 4.67 10.10 47.94 10.01 42.05
Non-leader (%) 85.03 4.01 10.96 48.03 14 37.97

Length Posted time

Long Medium Short Early Medium Late

Leader (%) 52.34 28.20 19.46 58.49 25.55 15.97
Non-leader (%) 36.78 31.99 21.23 33.41 33.30 33.29

To begin with, we first look at the features from a textual review. In total, eight
features, including actor, director, writer, story, emotion, review rating, length, and
posted time, are compared between leading and non-leading commentators, and the
average results from these two groups are shown in Table 16.6.

In terms of features like actor, director, writer, story, we mainly focus on
whether reviewers mentioned relevant people from films when they posted their com-
ments. Overall, fewer reviewers mentioned film-related people from both leader and
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Figure 16.4 Responses from both the leading and non-leading reviews in terms
of readers and reviewers

non-leader groups. For instance, the comparison of average percentage between
mentioned and non-mentioned is 13.04%, 86.96%, respectively, from the leader
group. However, for those who indeed mentioned film-related people, they are likely
to write more about actor and story rather than the director or the writer. In particular,
leaders seem to mention more about actor and story compared to non-leaders, as the
percentage of mentioning film-related people is at least 5% higher.

Not surprisingly, on the other hand, the majority of reviewers show the positive
emotion. Besides, more reviewers offered a higher rating from both the leader and
non-leader group. This again shows the popularity of selected films among Douban’s
film literati.

One of the major differences between the two groups under investigation derives
from the length and posted time features. As observed from Table 16.6, leaders are
prone to write much longer reviews than non-leaders, indicating the review length
seems to play a significant role while promoting the leadership. In other words, by
writing longer comments, reviewers have a higher probability to become the opinion
leaders.

Similarly, leaders also posted their comments much earlier than their peers. For
instance, more than half of leading reviews appear in the early stage after the film
release, compared to a mere 33.41% non-leading reviews. Generally speaking, this
suggests that review leaders posted their comments before a film’s popularity begins
to fade away so as to catch other readers’ attention.

Building upon the above features regarding textual reviews, next is a discussion
about the features derived from reviewers’ profile, including their activity, member-
ship duration, and centrality. Among them, the activity feature is computed from
users’ previous comment lists. The more comments a user made to Korean films, the
higher activity level he/she has. Figure 16.4 shows the quantified measurement of user
activities between leaders and non-leaders. In particular, the blue colour represents
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Table 16.7 Comparison of membership duration between
leaders and non-leaders

Membership duration

Long Medium Short

Leader (%) 16.40 63.19 20.41
Non-leader (%) 10.18 63.18 26.64
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Figure 16.5 Comparison of centrality (reviewer’s influence) from both leaders
and non-leaders

the activities (measured using the number of comments made to Korean films) from
leaders while the red represents non-leaders. Not surprisingly, on average, leaders
achieve a higher activity than those of non-leaders. This demonstrates that leading
reviewers spend more time or give more attention to post Korean-film comments.

The membership duration feature is used to measure the period of time elapsed
since a user’s registration. Obviously, the earlier the date of registration with Douban,
the longer the time-span. The analysis of membership duration belonging to reviewers
in the leading and non-leading groups is shown in Table 16.7. Both leaders and non-
leaders have a similar distribution in terms of their membership duration. For example,
a majority of reviewers has a medium membership background. This suggests that
the individual membership is not a dominant feature enabling a reviewer to become
an opinion leader. When readers vote for a review, they would not depend on whether
the comment’s author has an earlier registration date.

Finally, the centrality feature is considered to measure a reviewer’s influence
around his/her social network. The results (shown in Figure 16.5) indicate that the
leader group attracts a larger number of follower than the non-leader group. For
instance, the average of followers from leader groups is 196.7, which is more than
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25.3 of non-leaders from all selected films. Therefore, the leader groups have a
stronger centrality than their peers.

In the sections above, we have analysed each single features from either textual
review or a user’s profile. Overall, by summarising the statistics of individual features
with regard to leader and non-leader groups, it is clear that a commentator needs to
grow a larger follower network, write a long comment, and also post their comments
as early as possible.

16.4.3 Discovering leadership patterns

Hereafter, we apply the parallel-ARM algorithm to discover leadership patterns using
all of the proposed features. The purpose of applying theARM method on the extracted
features is to identify where potentially significant relationships may exist.

To do this, leadership was chosen as a threshold to investigate patterns within
different groups. Accordingly, two datasets are created: dataset 1 includes only leaders
while dataset 2 includes data from all non-leaders. In this way, we are able to discover
important patterns within the same opinion group, while also making the relevant
comparison between different reviewer groups.

To run the parallel-ARM algorithm, we further decide the minimum support
threshold (μ). A smaller value for μ is more prone to generating more rules than a
larger value for μ. To analyse the impact of the minimum support threshold, we then
consider to use different values for μ – i.e. μ was set at 10%, 20%, 30%, 40%, and
50%, respectively, while minimum confidence c was maintained at 50%. As a result,
only rules that satisfied the predefined μ and c were selected. Again, our parallel-
ARM algorithm is implemented based on Spark [32] so that data can be processed
and cached in the machine memory.

Table 16.8 shows the running outcome in terms of the number of generated rules,
frequent itemset, and execution time with two different datasets. As observed, with a
decrease in the minimum support threshold, more rules (as well as frequent itemsets)
are generated. For instance, the proposed ARM algorithm produced 198 and 25,942
rules for μ = 50% and 10% using only leader data, respectively.

In addition, the reported execution time reflects the entire mining process includ-
ing loading data, execution of rules mining algorithm, and generation of the rule
results. The proposed parallel mining algorithm performs stably as there is a linear
(not exponential) growth in terms of execution time with the decreasing μ, indicating
its flexibility and suitability for massive-data mining.

For generated association rules, we are more interested in rules with high lift,
which is a measurement to investigate the interest value of rules [35]. Herein we sum-
marise some critical rules from two datasets, while the minimum support threshold,
confidence, and lift values are set at 40%, 50%, and 100%, respectively. Furthermore,
to better understand those rules, we employ a graphical representation to visualise
and interpret the results. There are two main advantages to representing generated
rules in the directed graph form: (1) the directed graph provides an efficient way to
visualise hundreds of thousands of rules, which can be difficult or impossible using
conventional techniques; and (2) it enables the analysis of interactions among different
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Table 16.8 Performance of parallel-ARM algorithm in terms of number of
generated rules and execution time as a function of μ

D1 (only leaders) μ = 50% μ = 40% μ = 30% μ = 20% μ = 10%

Number of generated rules 198 661 2,275 8,221 25,942
Number of frequent itemset 101 243 611 1,875 10,109
Execution time (seconds) 14.88 23.32 17.32 34.73 40.42

D2 (only non-leaders) μ = 50% μ = 40% μ = 30% μ = 20% μ = 10%

Number of generated rules 446 941 1,786 5,287 21,750
Number of frequent itemset 139 243 527 1,793 9,449
Execution time 20.67 21.11 27.31 56.75 58.05
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Figure 16.6 Comparison between rules identified from the leader and non-leader
group, while the minimum support threshold μ, confidence c, and lift
values were set at 40%, 50%, and 100%, respectively: (a) leader rules
and (b) non-leader rules

factors, that is, it provides an intuitive way to understand influence or relationships
among individual factors.

As a result, rules generated from two datasets are converted to two directed
graphs, in which each feature from the antecedent and consequent set (of a rule) is
converted as a single node in the graph. A directed connection is made between two
feature nodes if these features exist in the same rule. For instance, a typical rule takes
the form A −→ C, where A and C represent the antecedent and consequent set of the
rule, respectively. We then add a directed edge (in the form of an arrow) from the node
A to C, which implies that the feature A has a high probability of being associated
with C. Figure 16.6 presents visualisations of important rules identified from leader
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Table 16.9 Mapping between node index and actual feature

Index Actual feature Index Actual feature

0 Emotion = positive 1 Director = none
2 Leader 3 Actor = none
4 Story = none 5 Centrality = high
6 Activity = high 7 Length = long
8 Membership = medium 9 Posted = early
10 Non-leader

and non-leader groups, and the mapping between the node index from visualisations
and the actual feature is shown in Table 16.9.

Visualisations of these rules reveal unique and interesting patterns between leader
and non-leader groups, and a few observations can be made. First, there is a notable
absence of significant rules that relate to features, such as movie rating and review
rating. This may be because the specific cohort under investigation at this time pays
less attention to a commercial film’s production context.

Second, features like ‘(0) emotion = positive’, ‘(1) director = none’, ‘(3) actor =
none’, ‘(4) story = none’, and ‘(8) membership = medium’ appear within both leader
and non-leader groups, indicating those features play less of a role while differentiat-
ing opinion leaders with non-leaders. On the other hand, features such as a high user
centrality, elevating activity, and early posting of longer comments (node index: 5, 6,
7, 9) help to promote the leadership. Therefore, they are found in Figure 16.6(a) instead
of (b). This finding is consistent with the feature statistics analysis in Section 16.4.2.

16.4.4 Discussion

In the sections above, a parallel rule-mining algorithm is applied quantitatively to
characterise the relationship of individual features with regard to the leading and non-
leading groups. The results show that the adapted features are capable of effectively
differentiating leaders from other non-leading commentators.

As our findings highlight, among features investigated, opinion leaders follow
a number of distinctive behaviour patterns, compared to non-opinion leaders. For
instance, they generally post early and longer comments and also actively post reviews
on a range of South Korean films. As a result, they are likely to hold a larger number
of followers (high centrality).

Still, both opinion leaders and non-opinion leaders are paradoxically similar in
terms of their membership duration. For instance, both opinion leaders and non-
leaders turn out to be members registered for about 12 months. Thus, they are likely
to generate a similar amounts of WOM awareness of and interest in the same films.
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16.5 Conclusion

An important part of information gathering has always been to discover how people
behave. With the growing availability and popularity of opinion-rich resources, new
opportunities and challenges arise – especially in China where the traditional and
digital media landscapes are rapidly transforming. People now can, and will, actively
use information communication technologies to seek out and share opinions and
recommendations with others via online and mobile platforms and applications. The
eruption of various activities in the social mediasphere, particularly involving digital
media, has thus attracted great interest and new development.

Our focus in this chapter is on methods that seek to address new challenges
raised by discovering key opinion leadership behaviour patterns for one of the most
popular Chinese social media platforms. A big data analytic framework is proposed
by implementing the Hadoop-based cloud-computing platform, which is used as the
fundamental tool for storing and processing massive data sets. Accordingly, raw data
samples are collected, processed, and categorised to cover details such as film meta-
data, textual content, and user profiles. In addition, a parallel rule-mining algorithm
is employed to discover leadership patterns.

An exploratory simulation of results demonstrates the flexibility and applicability
of the proposed work on identifying key opinion leaders based on their complex online
behaviour. This process can further help in maximising users’ satisfaction towards
the recommendation service, while assisting in the promotion of other digital media
content.
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Chapter 17

Real-time optimal route recommendations using
MapReduce

Majid Khalilian1, Lida Farajpour1, and Maryam
Fathi Ahmadsaraei1

17.1 Introduction

Nowadays, we observe the global consumer confusion phenomenon. The growth in
the amount of information supplied the world with various forms of products and ser-
vices, making it grueling to decide which product to buy or which service to choose.
To avoid complication related to the decision-making process, Recommendation Sys-
tem are introduced to suggest a ranked list of items which most meet special user’s
requirements [1]. One of the useful types of Recommendation Systems is Route Rec-
ommendation System (RRS). The Route Recommendation apps provide a variety of
services for their users. Some of these services are beating the traffic, finding the new
and ideal route that depends on roads condition, aiding disabled people to find their
destination independently, guiding strangers such as tourists in an unfamiliar area,
leading pedestrian in emergency, etc.

In this chapter, we will present an overview of RRSs and their details. After pre-
senting the basic concepts, we can classify them based on services which they provide.
Besides, we are going to discuss about the input data and answer the question “Why
it is big?” Our aim is to provide you with a layered architecture of RRSs which can
deal with such big data and also be able to serve optimal real-time recommendation.
In order to achieve our purpose, the big data technologies mapped to each layer are
introduced. Moreover, we will set up a brief discussion about MapReduce paradigm
and its strengths as one of the techniques to make parallel computation possible.

17.2 An overview of RRSs

In this section, we introduce RRS as a kind of Recommendation System. First we
define Recommendation Systems then take a look at the kinds of applications in
which these systems are practically helpful.
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17.2.1 Recommendation Systems

Recommendation Systems can be considered as a subclass of information filtering
system. Reference [2] is a fully functional software system which provides users
with special interesting information. It tries to decrease the amount of information
which particular user is drowning in by just retrieving a piece of information that was
recognized interesting from similar users’ points of view [3].

Generally, a Recommendation System tries to forecast a user rate or preference of
an item by considering his/her profile and comparing it to some reference attributes.
The question is, What are these comparing attributes achieved from? To answer the
question, two approaches should be introduced: the collaborative filtering approach
and the content-based filtering approach.

Collaborative filtering approaches use a model to predict the list of items (or rank
the items) which is probable that a specific user is interested in. This model is driven
from the user’s former behavior. In fact, the items which were purchased or chosen
by user and/or also the rates that he/she gave to the items are considered as the user
behavior.

Content-based filtering approaches are able to suggest extra items by using some
distinct and separate attributes of an item and find the items which have similar
characteristics.

Since both approaches have some advantages and disadvantages, the combination
of them is often applied in a Recommendation System [3].

17.2.2 Route Recommendation Systems

Compared with the modern lifestyle with the old one, people are more mobile. We are
eager to travel and take a trip to new places and go for sightseeing in strange ones and
even go for a coffee to some new coffee bars. However, it is not always easy to find
our way in strange places or choose the best route among others in order to satisfy
our personal preferences. Thanks to the RRS, we have been provided with guide in
new places [4].

As mentioned before, the RRS is one of the kinds of Recommendation Systems
and extensively applied location-based services recently. This system is playing a
leading role in reducing traffic and making a big difference to our state of driving.
Given a pair of user-specified origin and destination, a route recommendation service
aims to provide users with the routes of the best travelling experience according to
given criteria [5]. Just specify the points of beginning and destination and get all the
information you required by one click [6].

You may think there is no difference which one to use since they all perform
only one main function—helping users to find the shortest and fastest way to their
destination. It seems all RRSs are the same since their main function, directing user
to his/her destination through the fastest or shortest route, are exactly like each other.
However, it is not entirely correct if you consider the details which are provided by
them to help users more [4].

While generally both time and distance are the most important parameters for
those types of systems, the mechanisms which they apply are not identical in detail [5].
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Nowadays, those routing services are routinely used, which affect many aspects
of our lives. Therefore, a question comes into our mind, Are the suggested routes the
best route for people at all times?

Some studies discovered that experienced drivers would rather not follow the
route chosen by Recommendation Systems [5,7]. Popular routes differ enormously
from suggested ones because there are other parameters besides time and distance
which affect drivers’ choice. Traffic lights’ count, weather information, speed limi-
tation, and road condition are some of the parameters. To consider the variety of the
preference factors at the same time, some previous studies suggest using usual and
favorite routes obtained from historical paths as recommended route, while others take
the emerging idea of crowdsourcing that clearly leverages human knowledge [5,6].

The second group believes that the first approach has noticeable disadvantages
such as adequate volume of historical trajectories is not always available in order
to obtain reliable route recommendation. CrowdPlanner is one of the examples of
a system which is an innovative crowd-based RRS that asks some people to assess
candidate routes which are recommended by various sources and methods, and specify
the best route by considering the feedbacks of these people [8].

17.2.3 Classification of RRSs

Users have different tastes and requirements which cannot meet in one route recom-
mendation app. The varieties of apps are developed to provide specific group of people
such as taxi drivers, disabled person, and passengers with specialized navigation ser-
vices they demand. We classify them based on their services to some categories as
below:

17.2.3.1 RRS for individual drivers
Thanks to the fast development of Global Positioning System (GPS) technologies and
a few navigation service providers (such as Google Map, Bing Map, and TomTom),
nowadays people are able to go around the world and also strange areas more easily
than before, by just following the recommended routes.

People who drive to their destination may consider some parameters such as
distance, the number of speed bumps, the number of traffic lights, fuel consumption,
and weather prediction to choose their path. Each of the existing RRSs has its own
specifications and attempts to outperform its competitors in meeting their users’
demands and requirements.

Google Maps, Waze, Maps.Me, Sygic GPS Navigation, and Navigon are five
examples of this type of apps which will be briefly discussed in the following.

Google Maps: The app was exclusively created by Google. Some of its strengths
are the following:

● its user-friendly and intuitive interface
● to be applied simply
● being precise
● giving users possible driving options in detail
● providing users with information about traffic dynamics and it is multifunctional
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● being useful not even for drivers but also for pedestrian
● free to download.

Its weakness is

● not to gather the most recent data on abnormal conditions such as damages caused
by bad weather or a road under construction [4].

Waze: With Waze, users know about what is going on along the road. Some of
its strengths are the following:

● It warns about police, dangers, traffic, your speed, etc., during your drive.
● It suggests immediate routing changes in order to eschew heavy traffic.
● It provides you with estimated time to arrive, based on live traffic data.
● It directs you to the cheapest gas station around you.
● It offers you different kinds of voices of director who guides you while you drive.
● It’s free to download.

Its weakness is

● its ability that depends on drivers’ activity [4,9].

Maps.Me: It is appropriate and free navigation app. Some of its strengths are
the following:

● It provides user with offline navigation without any charge.
● It is used by not only drivers but also pedestrian and cyclists.
● It provides users with points of interest such as ATM machines, petrol stations,

and subway.

Its weakness is the following:

● It is not able to present real-time information during offline mode [4,10].

Sygic GPS Navigation: It effectively merges online real-time tracking with the
possibility to download maps for the offline usage as well. Some of its strengths are
the following:

● It’s a precise navigation system.
● It provides you with data about lane traffic.
● It finds the cheapest gas station around you.
● It shows you parking spots.
● It determines speed limits.

Its weakness is

● achieving full features of the app, you have to pay for them [4].

Navigon: This app merges the best industry practices in its navigation system. It
has a nearly large number of users in spite of its high price. Some of its strengths are
the following:

● It provides users with complete interface and a lot of different helpful features.
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● It is quite accurate.
● It is able to work in offline mode.

Its weakness is that

● the download of full app is not free of charge [4].

17.2.3.2 RRS for pedestrians
Fast is just one option. You might look for the path that is not only the shortest one but
also the safest or will burn the most calories. Some people may prefer emotionally
pleasant route rather than the short one. Some RRSs have been developed recently;
some of them are introduced in the following.

In [11], a system presented computes a globally optimal pedestrian route
assignment that keeps people flow safe while proposing efficient routes to all
pedestrians.

Lujack and Ossowski in [12] have explained that due to environmental unsafe
conditions, under panic, people may exhibit herding and stampeding behaviors. To
achieve efficient and safe pedestrian transit, these behaviors should be prevented.
Their approach to this issue is based on finding critical network areas where per-
sonally adaptable real-time smart space guidance will facilitate a coordinated people
flow while reducing irrational behaviors. It is known that pedestrians tend to evacuate
together if they are familiar with one another. Thus, they apply individual and col-
lective rationality in pedestrian route optimization depending on the characteristics
of each pedestrian and, therefore, minimize the triggers for panic-induced irrational
behaviors.

Lujack and Ossowski in [13] first analyze quantity and distribution of various
kinds of landmarks in a given zone. They partition the given zone into some small
regions. After determining regions, they classify them into two categories: quiet
regions and bustling regions. Finally, they create bustling or quiet route from a start
point to a destination. Experiment results show that it efficiently obtains both bustling
routes and quiet routes in urban and rural zone.

Pedestrian Pal is an android-based app that provides its users with route recom-
mendation according to their requirements and preferences. Although it is probable
that the recommended routes are not the fast one, it meets the users’ requirements and
preferences since it considers collected user ratings, aesthetic interests, and users’
inputted parameters in order to recommend the route. The goal of this project was to
develop a mobile device’s application that uses Google Maps in order to find routes
in a strange city and then try to recommend beautiful, safe, and user-targeted one
to its user. Despite the project just developed for Missoula, a city in the US state of
Montana, it is possible to expand its scope [14].

In reference [15], they treat pedestrian evacuation in emergency scenarios of
networked smart areas. Personal safety may be endangered because of natural disas-
ters (e.g., hurricanes, tornadoes, and earthquakes) and/or actions of deliberate foes.
The intensity of emergency evacuation throughout evacuation may increase leading
to partial or complete blockage in some routes. Therefore, (re)routing those peo-
ple based on updated real-time structure safety conditions is absolutely necessary.
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They have proposed a multi-agent based architecture for dynamic route safety opti-
mization in large smart area evacuation. The goal of this system is to ensure that the
smart space network becomes evacuated securely while appropriately responding to
sudden happenings in the network safety.

17.2.3.3 RRS for riding bicycle
Cycling has obtained more enthusiasts than few years ago as a result of increasing in a
number of health-conscious and eco-friendly individuals. MapMyRide, Cycle Meter,
Strava, RiderLog, Runtastic, MotiFit, Ride Report, Ride Star, iBiker, Bike Computer,
and Ryde are some examples of apps that you can use while cycling. In addition
to bike share services and enhanced paths for riding, there are several distinctive
apps to guide you through planning your biking route and navigate simply. Some of
them have other features along with providing their users with the best route. These
features include calculating users’ duration, distance, space, and calories burned that
eliminate the need for other apps in order to track their cycling fitness. Others focus
on individuals using cycling as transport [16]. We will discuss about four famous
apps among others in the following.

MapMyRide provides a lot of features which you may require during mapping
out your bike route. You are able to not only choose a route among more than 120
million bike routes but also create yours. The site also has online training tools for
competitive bikers, nutrition tracking calculators, and the capability to share your
routes with friends. The design of app is very clean and it is very simple to use and
you can specify your personal motivation and objectives on it in order to observe and
control your progress with ease [16].

BikeMap has 900,000 worldwide biking routes. It enables you to explore the
routes around you or other situations you are going to visit. In addition, BikeMap
updates in real time to make you aware of your exact location and share it with your
friends. You can download it without any charge and easily set up it on your iOS,
Android, and Windows Phone [16].

Possibly the most all-encompassing biking app out there, BikeBrain is a big win
for habitual bikers searching anything from GPS mapping and in-app picture uploads
to sport cyclers looking for heart rate monitoring and training mode features. In
addition, the app doesn’t require a reminder that you will want to keep your previous
biking routes on hand: it automatically archives details of your rides and optimizes
battery life so pulling up those routes won’t deplete your battery [16].

Bike Hub is another biking app since efficiency is one of the most important
features nowadays; it could have been named the modern world biking app. It rec-
ommends you a fastest safe biking route including both road and cycle paths from
beginning point to your destination. The app uses voice directions to alert you to
upcoming turns or a sudden shortcut Voice direction is another its feature to warn
cyclist about imminent turns or an abrupt shortcut [16].

17.2.3.4 RRS for disabled people
As full citizens, people with disabilities have same rights and are entitled to dig-
nity, identical treatment, living without dependency, and full participation in society.



Real-time optimal route recommendations using MapReduce 323

A clear acknowledgement of the requirements of an impaired citizen demonstrates
the level of integration within the society. There are two major aspects which have
effect on the mobility of an individual in an area: the locomotion capability and the
ability to perceive distinct elements from each other in the area. The locomotion abil-
ity is intended as the possibility to physically move. On the other hand, the perception
ability influences the real possibility to arrive at the intended destination, through
the knowledge of reference points and obstacles along the path. People affected by
specific pathologies or disabilities, with a reduced ability to move or to perceive
the environment, suffer from low autonomy in mobility. As a matter of fact, people
with reduced mobility move almost only in limited environments, typically near their
home. Regarding to blind people, moving through routes which are strange and also
not safe can jeopardize their safety. In addition to this, we should consider that any
technology allotted to diminish obstacles and cause life to get better has to take into
account the social and emotional aspects that come out with everyday use, because
the adaption of a device specially designed to help the disabled can sometimes cause
the refusal, as it highlights even more the “diversity” feeling.

Everyday a person with disabilities has to control all the action that he is able
to complete in autonomy, because sometimes even a small act, e.g., going out for a
walk, hides insurmountable obstacles [17].

Using recent technologies make it possible for people with physical disabilities
to travel more safely and comfortably. The following is a brief introduction of such
apps:

HEARE: Disabled people can make their own 3d audio route here and instantly
use it in this app. They can guide people to their office, home, or wherever they
want, or select one of the routes made by their selected partners. Even blind
people can use it [18].
TripTripHurray: It is a free travel platform for people with particular require-
ments and lets him/her fast search for accommodation, public transport, places
of interest, shops, restaurants, and services. It is efficaciously a customized trip
recommender. It demonstrates related options both locally and worldwide [19].
WheelyApp: This app aims to help New Yorkers navigate the subway [20].
LoroDux: It helps in pedestrian routing for mobile devices for the blind [21].
Rollstuhlfahrer-Routing: It’s a German project for wheelchair routing [21].

17.2.3.5 RRSs for taxi drivers to pick up passengers
A 2006 study reported that taxis spend 35%–60% of their time cruising along the roads
looking for passengers. The diminution of taxis’cruising distances and, consequently,
energy consumption cause an urgent challenge [22].

There are some mobile Recommendation Systems that offer taxi drivers possibly
fruitful driving routes in a city. This system takes as input data in the form of GPS traces
of the routes that taxi drivers took while working, which include location (latitude and
longitude), time stamps, and operational status (with or without passengers). It then
recommends a list of pickup points along a route that will lead to optimal occupancy
times and profits. This kind of system is clearly location-dependent [3].
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Smartaxi is an app for taxi drivers. It tries to collect and store the location data of
taxis in a city. The data are stored and processed to be sent back to taxi drivers through
the Internet, showing them a heat map with colors that indicate the best areas in their
city to find customers. After processing those stored data, it provides taxi drivers
with a heat map with colors in order to show the best local places to find passengers.
Having a smartphone or tablet connected to the Internet is the only necessity that
a taxi driver should have to use this useful app. First of all, it needs information
shared by taxi drivers: the moment a client enters a taxi, the driver has to open the
application on his phone or tablet and tap on the Start button. When the customer
arrives at his destination, the driver taps on the Finish button. With this simple gesture,
the drivers generate information about where a client was picked up and what was
his destination. The idea of this app is very simple. It requires that drivers share the
information about the points they pick up customers and the destination by just tap
on the Start button of the app when a customer enters their taxi and tap on the Finish
button when arrive at the destination. Smartaxi processes the information by using
an artificial intelligence system to predict which areas have most demands for taxis.
Providing the taxi drivers with the heat map helps them to find the best area at that
special time at first glance.

Pick-Up Sign is another example of this kind of app. It is especially designed
for taxi drivers, chauffeurs, and other professionals who need to pick up people from
airports, railway stations, etc. [23].

17.2.3.6 RRS for passengers
The passengers who prefer to use public transport system such as bus and are
informed about the arrival, the departure, and also the location of bus or other public
transportation are the next users of RRSs.

With rising urban population, there is a growing demand an efficient pub-
lic transport system to make cities environmentally sustainable and economically
competitive.

Reference [24] classifies the studies which have done on personalizing transport
services into three groups:

● The first group focuses on developing an adaptive interface by using commuter
context and historical data.

● The second group is developing algorithms in order to recommend routes based
on commuter interests.

● The third group passively determines commuter preferences by considering
information which is stored in Automated Fare Collection cards.

The authors of [24] believe most of them personalize commuter experience based
on their convenience demands. They offer the “best” path among the possible paths
recommended by multiple transit modes and their interconnections.

Finding this personal “best” path for a commuter needs to realize his/her per-
ception of convenience by considering the parameters which are identified by the
application and also it should be done in real time due to the dynamic nature of the
transit network [24].
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In [24], MetroCognition, an Android participatory sensing application, fully-
functional personalized RRS is developed. Providing exact and appropriate informa-
tion such as schedules of transit for commuters, on-demand navigation support, and
real-time traffic updates are some of the services which are offered by this app [24].

ROSE (ROuting SErvice) is another application for mobile phones. It proposes
events and locations to the users and directs them to those via public transportation.
It provides its users with recommending events and navigating them by live public
transport system. It reacts in real time to delays in the public transport system and cal-
culates alternative routes when necessary. If it is essential, it will calculate alternative
routes in order to react to real-time events and delays [25].

17.2.3.7 More gentle RRSs for senior citizens
Over the last 50 years, the number of elderly people has increased dramatically, nearly
triple that of the past. The same trend has happened in Canada, USA, Japan, and the
other developed countries. They will become more than triple again for the next
few decades. The number of elderly drivers will correspondingly grow globally and
therefore particular and targeted care for this part of drivers should be considered.

Driving is very significant and necessary for maintaining elderly individuals’
mobility and living without dependency, making it easy for them to take part in
their common social activities and carry out practical routine requirements. However,
researchers state that they are not able to judge speed and distance precisely and
multi-tasking is much harder to them than other drivers. They often have an accident
where fast deciding and rapid reactions are needed such as at an intersection. Some
apps are developed in order to help them in this section of their lives.

In-vehicle navigation systems (IVNS) are common applications using feedback
and support. They use a Geographic Information System (GIS), which combines a
map and a database, and a satellite navigation system such as GPS.

IVNS have the potential to maintain elderly drivers’ mobility and therefore pre-
serve their independence and enhance quality of life. For instance, they can provide
distance information to determine the location of imminent maneuvers to create oppor-
tunity and more time for elderly drivers in order to properly prepare for them. They
also make elderly drivers be able to travel unfamiliar places where they often feel dis-
inclined to travel. Another problem that they may face with is being lost in a familiar
area due to dementia. IVNS helps elderly drivers in the early stages of dementia to
return to their home [26].

17.2.3.8 RRS for sailing
The ship routing agency issues initial route recommendations and advice before sailing
in order to eliminate or decline the effects of bad weather or sea conditions. It sug-
gests track changes while underway (diversions), and weather advisories to warn the
commanding officer or master about approaching adverse weather and sea conditions
which cannot be effectively evaded by a diversion. The initial route recommendation
is based on a survey of weather and sea prediction between the starting point and the
destination. It considers the type of vessel, hull type, speed capability, safety consid-
erations, cargo, and loading conditions. The vessel’s progress is regularly observed,
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and if bad weather and sea conditions are predicted along the vessel’s current track,
a recommendation for a diversion or weather advisory is transmitted.

Therefore, maximizing both speed and safety are the results of the actions of
ship routing agency that include offering an initial route and monitoring the ves-
sels along their track to avoid or decrease the affection of adverse weather and sea
conditions [27].

Three conditions are required in order to gain the best result of weather routing:

● The passage should be almost long, about 1,500 miles or more.
● The area should be unrestricted; thus, there exist a number of routes which can

be selected.
● Weather is a parameter which defines the best route [27].

17.3 The requirements for RRS

The Recommendation System uses data mining methods and prediction algorithms to
forecast the interest of its users on information, product, and services [3]. The principal
methods and algorithms within the data mining process used to Recommendation
System are categorized into three phases according to the reference [28]:

● Phase 1 (pre-processing): Data cleaning, filtering, or transformation are the steps
of this phase.

● Phase 2 (data analysis): It is the main phase since the algorithms of this phase
(especially Machine Learning classifiers and clustering methods) are applied to
find items to recommend.

● Phase 3 (interpretation of results): The data, acquired during the second phase,
are applied to deliver business value [1].

In this section, we introduce RRS as a kind of Recommendation System. First,
we discuss about the data as a raw material of RRS then continue with the layered
architecture of this type of apps. Finally we are going to answer the question of what
items and techniques can be applied.

17.3.1 Data requirements

Although data collection was expensive and hard process a few years ago, thanks to the
recent technologies such as public transport smart card records, passive positioning
counts for car navigation systems and bike share program records, it is easy and cheap
nowadays [29].

Apps are able to gain information about location and enable their users to view,
store, and share travel routes. The data can be collected, analyzed, and visualized to
yield insights into the time and location individuals are navigating through the built
environment, providing an opportunity to enhance our comprehension of urban move-
ments. Data produced by the users are becoming more important with the ubiquity of
smartphones, the diversity of embedded sensors in these devices, and the increased
usage of mobile phone apps for day-to-day activities in the society [29].
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Data mostly used in RRSs are the following:

● Personal information of users, e.g., gender and age.
● Location tags
● Geo-coordinates
● Data generated by sensor networks about the urban traffic situation, etc.
● Traffic status which some apps such as Millennium and TrafficSense produced by

using smartphones that users have with themselves all the time as traffic probes
● Weather forecasting
● Data that come from blogs, freely available community-contributed pictures,

videos, posts in social networks, user’s reviews, and log messages from servers
containing the navigation and any relevant actions of users [14,30].

The sources of data used for learning and the recommending can be categorized
into three classes:

● GPS trajectory data
● Travelogues (blogs)
● Geo tagged pictures.

Geo-tagged and timestamps pictures will create the typical pathways which
individuals move along [31].

For achieving the data from geo-tagged photos, it needs some steps to be done.
First is to gather pictures from websites like Facebook, Instagram, or Flickr, where
members share and tag their pictures. Then recognize the place where pictures are
taken. In the next step, the specifications of individuals present in pictures are dis-
covered. Gender, age, race, and travel season are the example of the specifications.
After discovering them, group types such as family, friends, couple, and solo are
forecasted from discovered individuals’ specifications. Routings are produced from
those specifications by sorting out pictures of users in accordance with captured date
and time [31].

17.3.2 Big or small Data?

Data is nothing new. We have been creating data for centuries. What has changed is
the amount of data we produce [32].

Each app generates huge volume of data despite their differences. The explosion
of data has produced an unheard amount of data and several new apps to use this
amount, leading to a novel reality which is called big data [1].

Contemporary datasets are described by their volume (large size of the data), their
velocity (data are created fast and continuously), and variety (data are of multiple types
and acquired from various sources).These are known as the 3Vs of big data, and have
been updated in the literature to 5Vs, through the addition of veracity and value.
While the first 3Vs (volume, velocity, and variety) focused on the issues related to the
origin and characteristics of big data, the additional two (veracity and value) highlight
issues associated to the use and application of the data to related purposes [29].
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The data evolution is indeed creating new opportunities that are changing whole
ecosystems. New business models are appearing that did not exist before and are only
made possible through data. But more data alone does not mean more business models
or more insights. More data means more pain. It means more issues in handling the
data and finding what you really want. We need to make binary decisions, yes or no;
therefore, what we want is small data, not big data. We want information. Thus should
we then dismiss all of those big data discussions? No, not at all. Some things only
work because we have big data. However, the important part is to reduce these data
so you are looking at the right metric [32].

Big data has created three different kinds of data-driven products:

● Data used to benchmark
● Data used for recommendation and filter systems
● Data used for predictions.

A Recommendation System proposes a few data points out of this volume of
data. The section of “people you may know” on LinkedIn for instance suggests only
a few members out of a database of 300,000,000 members [33].

It is apparent that both archived and real-time data used in Recommendation
Systems could potentially be remarkable big [30]. These systems face the challenge
of finding right data through this huge volume of data. In addition, transmuting
such large and complex datasets into forms that are usable for urban research and
planning, however, entails several challenges including device inaccuracies, human
inconsistency, sampling bias, and privacy issues.

Although GPS-tracked data by smartphones is one of the most useful in terms
of the application models, these kinds of data lead to challenges with respect to
precision and volume. GPS is known to generate error and location imprecision for
various reasons. Automating the process of decreasing or eliminating errors from
GPS-tracked data is not a simple task, especially with high amounts of data produced
by smartphone apps. In spite of many analytic tools that have been developed, handling
high amounts of data changing in time stays problematic [29].

In reference [29], they compared smartphone application samples (self-selected
sample) to traditional travel surveys (statistically defined sample) for seven cities
in the USA. They found that smartphones tended to undersample females, older
adults, and lower-income populations, and to oversample some minority ethnicity
populations [29]. Moreover online photos are noisy [34].

17.3.3 Real-time issue

RRS’s objective is guiding users to their destinations considering individually opti-
mal routes while optimizing global people flow based on the infrastructure real-time
conditions. It is the other challenging issue that should be considered in RRS Archi-
tecture. As the response must take place in real time, all the computational complexity
is better to be done in the offline mode and distributed. We will focus more on it in
the proposed architecture in the following.
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Figure 17.1 The layered architecture of Recommendation System [1]

17.3.4 An architecture

Although each company’s Recommendation System has its exclusive architecture with
different implementations, they are sharing identical issues. Hence, providing a soft-
ware architecture which can be simply comprehended, implemented, and extended, if
essential, would assist any companies to develop their own efficient Recommendation
System, contributing to maintaining and expanding their business [1].

The architecture in [1] is able to handle a high amount of data, answer user interac-
tions, and deliver real-time recommendations. This architecture is modular, admitting
of applying different technologies and platforms on each component, consequently
making it easy to use the technology that has the best implementation to solve the
problem in spite of e-commerce size.

One of the key points of the architecture is how to combine and manage online
and offline computation in a seamless manner. Therefore, the architecture is catego-
rized into three principal layers. Each layer has its responsibility, with components
to perform various roles. It has been observable in Figure 17.1 that the each com-
ponent can have one or more technologies, letting the architecture to be extended
according to the complexity of the problem. Three main layers have included some
components.

● First layer: Interactive layer is responsible for receiving, interpreting, and for-
warding e-commerce requests. It has API (Application Programming Interface)
and Serving Store module.
– API: It is the interface between the e-commerce and the Recommendation

System. All the requests are made in this module which has high availability
as its main requirement.

– Serving Storage: It stores all the recommendations processed by Streaming
Tasks and Batch Jobs modules.
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● Second layer: Speed layer processes real-time recommendation. Consequently, it
does not perform machine learning training algorithms, but it applies the trained
models and pre-processed data to perform the recommendation. It has Event
Distributor and Streaming Tasks modules.
– Event Distributor: It is a service that can decide whether the request should

be handled by speed or batch layers, forwarding the message to the correct
recipient.

– Streaming tasks: It processes a task in real time. Processing the recommen-
dation trained using templates and pre-processed data by batch layer is the
main task of this module.

● Third layer: Batch layer is the next one that its tasks are performed with a long
response time. It has the precomputed views, Batch Jobs, and Batch Storage
Modules.
– Precomputed views: It provides data to be consumed by the speed layer.

Among these data, there are trained machine learning models and the pre-
pared information used for recommendation. The storage is optimized for
reading and searching.

– Batch bobs: It processes request on tasks like machine learning training algo-
rithms and calculates product similarity and pre-processing data (products
and users). The result is stored in Precomputed views module.

– Batch storage: It stores the recovered raw data of e-commerce (user, product,
and tracking). Storage is optimized for writing.

Big data technologies have been developed to handle massive data sets and pro-
vide scalability for data analysis. In addition, almost all these technologies are open
source and can be used for a low cost. Figure 17.2 has shown the implementation
of the proposed architecture which investigates the performance of some big data
technologies in each layer. The technology mapped to the architecture proposed:

● API: Java EE (Servlets or frameworks such as Spring and Playframework), Spray
(http://spray.io/), NodeJS, and .NET.

● Serving store: Redis and MongoDB.
● Event distributor: Apache Kafka and RabbitMQ.
● Streaming tasks and batch jobs: Apache Hadoop (YARN/HDFS),Apache Mahout,

Apache Spark, and Apache Hive.
● Batch storage and precompute views: Apache Cassandra and Apache HBase.
● Possible programming languages: Java, Scala, Python, R, and C#.

The technologies of streaming tasks, batch jobs, batch storage and precompute
views are the Recommendation System architecture key points. The Apache Hadoop
is open source technology reported by many authors as the main piece of a big data
environment that can be used in these modules. Apache Hadoop was developed by
theYahoo Company; the principal goal of its developer was to provide a fault-tolerant
and highly available scalable parallel computing environment. Hadoop enables the
distributed processing of large data sets across clusters of computers using easy
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Figure 17.2 Applying some technologies of big data in layers of the architecture [1]

programming models. It is designed to scale up from single servers to thousands
of machines, each of them offering local computation and storage.

Apache Hadoop is divided into four modules:

● Hadoop Common: Bundle of utilities and programs that support the other
modules.

● Hadoop Distributed File System (HDFS): Distributed File System for data
storage.

● HadoopYARN: Platform that manages cluster resources and performs processing
tasks.

● Hadoop MapReduce: It implements the MapReduce paradigm parallel pro-
gramming proposed by Google which more details about it will be provided
further.

There are many projects which have been developed around the Hadoop and oth-
ers are still being developed. This induces Hadoop to consider as a perfect ecosystem
which is used for data processing and storage:

● Apache Hive enables queries through a similar SQL (Structured Query Language)
to the HDFS.

● Apache HBase produces a database structure NoSQL (not only SQL) using HDFS
as storage, facilitating reading and writing in real time.

● Apache Mahout, a scalable machine learningAPI and data mining, has algorithms
implemented in the MapReduce paradigm developed to run at YARN.
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All of these are big data technologies and also open source and scalable. Redis
database was designed to store all the recommendations processed by Spark and
Mahout. The reason is to make certain that when the API requested it, the response
would be in real time.

In the proposed architecture, Hadoop can be used for the recommendation
processing by the machine learning algorithm implementations using MapReduce
paradigm (Apache Mahout) and other paradigms (Apache Spark) executed inYARN.
In addition, the architecture enables the development of specific jobs using Java and
R, since both are compatible and are able to be run on a Hadoop cluster (Java is the
native Hadoop language).

Apache Kafka and RabbitMQ technologies stand out as a distributed messag-
ing system based on the publish–subscribe model capable of playing as an event
distributor.

The NoSQL databases MongoDB and Redis can store the recommendation in
serving store. These technologies are emphasized since they can read and write
quickly. The API can be developed with any technology, language, or platform that
meets the HTTP requests. The JavaEE and .NET technologies stand out as the most
used while Spray and NodeJS stands out for its performance.

The languages listed can be used to develop jobs inside Hadoop (Java), Mahout
(Java), Spark (Scala, Java, R) and implement statistical functions and machine
learning (R, Python).

In spite of meeting the requirements proposed, each of the items of Recommen-
dation System can be changed to others without affecting on the other layers of the
architecture, reinforcing the modularity importance.

17.3.4.1 MapReduce
Generating high-quality recommendations has become a challenge recently. Tradi-
tional Recommendation Systems are not able to fetch and examine the huge data.
Undeniably, increasing in the amount of data involved in the recommendation pro-
cess causes some scalability and effectiveness problems. Researchers try to parallelize
data mining algorithms in order to accelerate the mining of the ever-increasing sized
databases.

While the parallelization may enhance the mining performance, it also raises
several issues for solution containing load balancing, jobs assignment and monitoring,
data partition and distribution, parameters passing between nodes, etc. These issues
have encouraged the research of novel technologies. A distributed framework was
considered based on the known quality and ease of the MapReduce project [34,35].

MapReduce brings its users several advantages containing easily performing
parallel computation, simply distributing data to the processors and effortlessly load
balancing between them, and effortlessly providing an interface that is not depending
on the backend technology [36].

When the user program calls the MapReduce function, the following order of
actions happens (the numbered labels in Figure 17.3 match to the numbers in the list
below): The MapReduce library in the user program first divides the input files into
M pieces of typically 16 megabytes to 64 megabytes (MB) per piece (identified in
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an optional parameter by the user). It then starts up many copies of the program on
a cluster of machines. One of the copies must be the master and others are workers
assigned work by the master. There are M map tasks and R reduce tasks to assign. The
master picks vacant workers and assigns each one a map task or a reduce task. A map
worker reads the contents of the corresponding input split. It parses key/value pairs
out of the input data and transfers each pair to the user-defined Map function. The
intermediate key/value pairs produced by the Map function are buffered in memory.
Periodically, the buffered pairs are written to local disk, partitioned into R regions by
the partitioning function [3].

The locations of these buffered pairs on the local disk are passed back to the
master in order to be able to forwarding these locations to the reduce workers. When
a reduce worker is informed about these locations by the master, it reads the buffered
data from the local disks of the map workers by remote procedure calls. When a
reduce worker has read all intermediate data, it sorts it by the intermediate keys so
that all occurrences of the same key are grouped together. The sorting is required since
typically many distinct keys map to the same reduce task. If the intermediate data is
larger than the size of memory, an external sort is applied. The reduce worker iterates
over the sorted intermediate data, and for each unique intermediate key encountered,
it transfers the key and the corresponding set of intermediate values to the user’s
Reduce function. The output of the Reduce function is added to a final output file
for this reduce partition. After all map tasks and reduce tasks have been finished,
the master wakes up the user program. At this point, the MapReduce call in the user
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program returns back to the user code. After finishing it successfully, the output of the
MapReduce execution is available in the R output files (one per reduce task, with file
names as specified by the user). Typically, users do not require to combine these R
output files into one file—they often pass these files as input to another MapReduce
call, or use them from another distributed app that is able to deal with input that is
partitioned into multiple files [3].

17.3.5 The categories of requirements from another perspective

Reference [14] looks at the RRSs from another perspective. It provides a list of the
requirements for its system as follows:

● Project requirements:
The mobile devices range in screen sizes from device to device, and user interfaces
can change significantly on different displays. To avoid major discrepancies and
possible problems (buttons that show only half on a screen or are absent entirely),
they carefully designed the interface with cross-platform flexibility in mind.

● Functional requirements:
The user will be able to
– Create a profile with name and password
– Rate routes based on the overall appeal
– Rate sections of routes
– Create new routes and sections
– Choose whether to use global, group, and/or personal data and ratings
– Request a quick suggestion for a route based on location in an urban setting

and distance of routes
– Hide/show overlays
– Login to the system and Logout of the application
– Select a route from a list.

● Data requirements:
– Geo-coordinates
– Personal information (users)
– Location tags (strings describing locations—street names or specifics about

setting).
● Usability requirements:

– The user should be able to receive a route recommendation (drawn on map
with overlain information) within one minute of starting the task.

– The user should be able to rate a route or a section of route under 30 seconds.
– All colors of the interface (menus, buttons, and overlays) will remain

consistent throughout the application.
– The buttons and menus of the interface should be sensible—with icons and

choices that are not confusing or misleading.
– The system will be intuitive and has an easy and brief learning curve.

(Depending on the user’s ability, learning the basic functionality of the system
should not take longer than 15 minutes.)
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– User documentation will offer helpful insights, with photographs and
walkthroughs, for using the application.

– Any error messages will offer clear problems and solutions.

17.4 Summary

This chapter highlighted the benefits of RRSs in daily life. These types of Recom-
mendation Systems use some sources of data to provide user with optimal route
recommendation based on his/her query. There are lots of apps in this field which
give different types of services to people who have plans to go to destination on foot,
by taxi, using public transport system, or by driving his/her car.

The chapter has showed that developing RRSs is a fairly challenging process due
to several reasons, such as the data are extremely big and the response must produce
in real time. Cloud infrastructure is able to elastically manage such huge amount
of data and successfully providing almost unlimited computing by using MapReduce
paradigm and storage resources to hosted apps, to perform analysis for both long-term
decision-making and near real-time query.
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Chapter 18

Investigation of relationships between high-level
user contexts and mobile application usage

Takahiro Hara1 and Jun Osawa1

Along with the widely spreading of smartphones, users leverage various functions of
the smartphones in their everyday life. To reveal the behavior of smartphone users,
many existing works collect low-level contexts such as location and movement status
of users from sensors (e.g., GPS, acceleration sensor) to predict the users’ situations
when they use smartphones. However, it seems that not only low-level contexts but
also high-level contexts (e.g., how busy, how good in health, working/day off, and
with whom the user is) have significant impact on smartphone users’ behavior. In our
previous work, we developed a log-collection system to collect high-level contexts
by questioning users directly. In this system, to collect a large amount of logs from
general smartphone users from whom we have adopted a game-based approach. So
far, we have collected approximately 0.7 millions of logs from about 400 users.

In this chapter, we investigate relationships between high-level user contexts and
application usage by analyzing a large amount of application usage logs collected
through this system. Specifically, we report our experiments which have conducted
association rule mining on the collected logs and show some findings.

Our study described in this chapter will be a guideline on how to collect big data
on user’s high-level contexts, and how to apply them for important context-aware
applications such as application recommendation.

18.1 Introduction

Recently, smartphones equipped with highly functional operating systems, such
as iOS, Android OS, and Windows Phone OS, are widely spreading. Applications
for these operating systems are explosively increasing because everyone who has
software-developing kit can develop applications and release them on application
markets. Therefore, various kinds of applications are available on markets, for exam-
ple, social network service (SNS), web browser, news, game, map, camera. Users can
choose and install ones in their own smartphone freely; thus, functions of smartphones
are much more various than feature phones.

1Department of Multimedia Engineering, Osaka University, Japan
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It is changing the mobile user’s lifestyle to have highly functional device every
time and everywhere. Users leverage various functions according to their context. For
example, a user who is on a trip may use a map application to check sightseeing spots
while a user who goes out with some of his/her friends may use a restaurant search
application to have a dinner with them at a good restaurant. In order to improve or
invent services for smartphones, it has recently been gathering considerable attentions
to understand smartphone user’s behavior.

Almost all existing works that aim to reveal user’s behavior deal with low-level
contexts (e.g., GPS data, acceleration data) to know how the user uses mobile appli-
cations. To recognize the semantics of the sensor data, low-level contexts should
be converted to high-level contexts by adapting some preprocessing or analysis. For
example, if a user records the same GPS location at daytime on every weekday, that
location is predicted to be work place. However, such prediction often fails when the
volume of data is not enough or high-level contexts of interest do not often occur
(i.e., rare contexts). Furthermore, some high-level contexts (e.g., the person who is
with the user, the user’s current activity, feeling good or bad) are almost impossible
to predict from the sensors equipped on current smartphones.

In this study, we aim at investigating relationships between application usage and
high-level context. For this purpose, in our previous work [1], we have implemented
a log-collection system, which requires a user to input information about high-level
contexts and monitors the user’s application usage at the same time. In this way, we
have collected high-level contexts by questioning users directly. The advantage of our
approach is that it can deal with any contexts that the user can recognize, including
the user’s subjective feelings. Therefore, the data we have collected can describe
the user’s situation more directly and concretely. In order to reduce user’s burden of
inputting information and collect a large number of logs (i.e., context information
and application usage logs) from ordinary people, we have adopted a game-based
approach for this system. Concretely, we have implemented the system as a monster
breeding game. To encourage a user to provide information about his/her contexts,
a monster gets some experience points and grows up when the user inputs his/her
information. We have released this system since October 2012. Until March 2017, we
have collected approximately 0.7 millions of application usage logs from about 400
users.

In this chapter, we report our experiments which have conducted association rule
mining on the collected logs and show some findings. The main contributions of this
chapter are as follows:

● We have collected a large volume of log data that contain the information on
application usage and high-level contexts.

● We have observed concrete application usage patterns of smartphone users.
● We have found that combinations of multiple contexts bring different impact on

applications from each single context.

The rest of this chapter is organized as follows. In Section 18.2, we review related
work. In Section 18.3, we describe our log-collection system. In Section 18.4, we
observe the logs collected by our system. In Section 18.5, we investigate relationships
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between application usage and high-level contexts. In Section 18.6, we provide some
discussion on this study. Finally, in Section 18.7, we conclude this chapter.

18.2 Related work

18.2.1 Investigation of mobile user’s behavior

Mobile devices are used anytime and anywhere in various situations, and it is known
that information requirements are different on each situation. To improve or invent
services of mobile devices, it is necessary to know how the users use their mobile
devices.

For this reason, a number of researches focus on the investigation of mobile users’
behavior [2–6]. Kamvar et al. [4] investigated a large volume of Google search history
data obtained from mobile devices. Bina et al. [3] conducted a questionnaire-based
survey on usage of mobile services. Both of the researches suggest that the usage of
mobile device differs if the usage scene (i.e., situation) differs. The difference between
these two works is how to collect data for investigation. The former collected usage
logs of mobile search. This approach can collect a large volume of data and, thus, can
observe a general trend of users’ behavior accurately. However, it is difficult to know
concrete user’s situations because the data are merely histories of the service usage.
On the other hand, questionnaire-based survey is not suitable for collecting a large
volume of data because it takes a high cost to gather many examinees. Meanwhile,
this approach can know concrete users’ situations such as when, where, and why a
user used his/her device, i.e., high-level contexts.

In recent years, smartphones which are equipped with highly functional operat-
ing systems have been widely spreading. Functions of smartphones are much more
various than feature phones because many developers are providing enormous num-
ber of applications. Thus, investigating users’ activities and information requirements
through mobile devices (smartphones) have been much more attention and become
getting more important. Xu et al. [7] investigated the smartphone usage by observ-
ing the network traffics of smartphone’s applications. Karlson et al. [8] conducted a
diary study using screen shots of the examinees’ smartphones. However, both studies
have the same problems as described above, i.e., the former cannot know high-level
contexts, and the latter cannot collect a large volume of data.

18.2.2 Collecting application usage logs

A difference between smartphone and feature phone is that smartphones are highly
functional enough to install a program to monitor application usage. Many of recent
works collected application usage logs. Girardello et al. [9] and Davidsson et al. [10]
collect application installation logs, while Yan et al. [11] and Costa-Montenegro
et al. [12] collected application usage logs. These four works applied the collected
application usage history to a recommendation system of smartphone applications.
Sun et al. [13] developed a dynamic application launcher which predicts applications
to be used next based on the application usage history. However, these works did not
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take user context into account. Since both applications of smartphones and their usage
situations are significantly diverse, recommendation or prediction of applications
should take user context into account.

18.2.3 Collecting context information

Another difference between smartphone and feature phone is that smartphones are
equipped with various sensors and other devices such as GPS, acceleration sensor,
Bluetooth. Using such sensors and devices, a situation when a smartphone is used
can be predicted. For example, using GPS data, it can be predicted where the user
is. Using acceleration data, the user’s physical state (walking, pausing, etc.) can be
predicted. Falaki et al. [14] and Do et al. [15] used special smartphones where a
logging system is installed to collect logs of application usage and sensor readings,
and collected the logs from the examinees to investigate the usage patterns.

To reveal natural (not biased) behavior of smartphone users, it is more desirable to
investigate users’behavior on devices which the users regularly use. Böhme et al. [16]
have released a log-collection system to an application market and collected a large
amount of application usage logs with sensor data from general smartphone users.

Since raw sensor data represent low-level contexts, they need to be converted to
high-level contexts, whose semantics is intuitively understandable. To convert low-
level contexts to high level ones, some preprocessing or analysis is needed. However,
such processing often fails if the volume of sensor data is not enough or high-level
contexts of interest rarely occur. In addition, it is almost impossible to predict detail
situations and subjective feelings of the user. Therefore, for example, in order to
collect information about people around the user, the user’s current activity, and
whether the user feels good or bad, it is needed to apply some questionnaire-based
method, i.e., directly ask the user.

In our study, we aim to collect a large volume of high-level contexts and
application-usage logs. For this aim, we have adopted a questionnaire-based approach
and implemented an application log-collection system. In our system, users are period-
ically asked to answer questions about contexts. Here, in order to solve the problem of
questionnaire-based approach and collect a large volume of logs from ordinary smart-
phone users, we have adopted a game-based approach [17]; we have implemented the
system as a game application and released it to an application market.

18.3 Log-collection system

In this section, we describe the log-collection system that we have developed [1].
This system requires a user to input information about his/her contexts and monitors
his/her application usage as a background process.

18.3.1 Initialization of the system

When the system starts for the first time, it shows the user a simple explanation of
data to be collected, its purpose, and some tutorials. Next, the system requires a user



Investigation of user contexts and mobile application usage 343

to input some of his/her profile such as gender, age, and living region (individual
cannot be identified only by them) in order to know who the user is roughly. After
these steps, the log-collection procedure starts. In this way, a user can understand the
aim of the system in advance, i.e., users have agreed to provide data.

18.3.2 Questions about contexts

The system collects log data by requiring a user to answer questions about his/her high-
level contexts directly. We set five questions that are expected to have some impact
on application usage. A user can always update his/her answer to each question.
However, it is difficult or burdensome for a user to always keep on updating his/her
own information. For this reason, we set a valid time for each question, and when the
valid time expires, the system notices it and requires the user to update the information
about the corresponding context. Specifically, we set the following questions:

1. Today (valid time: a day):
asks the main activity of today, e.g., work, holiday, school, business trip, travel.

2. Subjective feeling (valid time: 4 h):
asks the degree of subjective feelings, and consists of four questions: (i) health,
(ii) tiredness, (iii) mind, and (iv) busyness, e.g., fine, bad, (for “health”)

3. Place (valid time: 3 h):
asks the user’s current place, e.g., home, work, trip, restaurant.

4. Companion (valid time: 2 h)
asks about the user’s accompany person(s) and consists of the following two
questions.
i. Number of people

asks the number of accompany people (option: 0, 1, 2, 3, 4, 5 and over)
ii. Category of people

asks the category of the accompany people, e.g., friend, family, lover, boss.
The user needs not to answer this question if the user choose 0 for the question
regarding the number of people.

5. Activity (valid time: 2 h)
asks the user’s current activity, e.g., work, rest, meal, read.

A user answers each question by selecting an option from the option list provided
by the system. Here, a user can add a new option to the option list if there is no
appropriate option in the list. In order to reduce user’s burden, options which are
frequently selected by the user appear in the upper part of the list. Figure 18.1(a)
shows an example of a question about high-level context provided to a user.

All answers of a user (which represent the information on high-level contexts)
are stored on the user’s mobile device with the time information (time stamp).

18.3.3 Collection of application usage logs

This system monitors and records the usage of applications which are installed in
the user’s device. Android OS can recognize applications which run at the forefront.
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(a) (b)

Figure 18.1 Examples of user interface: (a) question about context and
(b) breeding a monster

Table 18.1 Examples of collected logs

Time App Place Companion Activity · · ·
12.00 Twitter School Friend Meal · · ·
12.15 Line School Friend, senior Meal · · ·
12.25 Browser School Friend, senior Rest · · ·
13.30 Facebook School (Alone) Rest · · ·

Thus, we have implemented a resident program which records the application ID and
start time of forefront applications (i.e., applications used by the user).

In this study, we aim to investigate relationships between application usage and
high-level contexts. To this end, we do not collect any personal information which
has high privacy such as name and phone number, and any detail information inside
the used applications such as historical data of phone calls and web browsing.

By combining the information on high-level contexts obtained through questions
and that on application usage by time, our system creates application usage logs.
Table 18.1 shows some examples of logs collected in our study. The collected logs
are stored in a database on the user’s device and periodically sent to the server of our
system.
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18.3.4 Game-based approach

It is obvious that a simple log-collection system that just requires a user to input
his/her context information does not work well because it is burdensome for user
to often answer to the questions without any incentives. To solve this problem and
collect a large volume of context information from ordinary users, it is needed to give
some incentives to the users. For such requirements, recently, game-based approach
has been attracting much attention [17]. In this study, we have implemented our log-
collection system as a game application. In this game, a user can breed monsters which
we designed, and the monsters say various things as they grow up. Figure 18.1(b)
shows an example of an interface of our system where a monster speaks. Specifically,
we the functions stated in the following subsections have been implemented.

18.3.4.1 Experience point
To keep a user’s motivation high, a return of the user’s burden should be paid imme-
diately. So, we have adopted a concept of experience point, and regarded inputting
context information as feeding a monster. More specifically, when a user inputs the
information about his/her contexts, a monster which he/she is breeding eats the infor-
mation, and the user gets some experience points. On the top of the main interface of
the game (Figure 18.1(b)), a user can check the progress bar that indicates how many
experience points the user has got so far.

18.3.4.2 Evolution
In order to motivate a user, it is also effective to sometimes give a bulk return to the user
when his/her accomplishment reaches to some degree. For this aim, we have adopted
a concept of evolution. Specifically, when the accomplished experience points reach
to some degree, a monster which the user is breeding evolves to a different species;
changes its appearance and characteristics (i.e., what it says).

As mentioned above, in our implemented log-collection system, users can enjoy
a monster-breeding game, while contributing to the log collection. We have released
this system on Google Play, which is an application market for Android OS [18] since
October 2012.

18.4 Collected logs

Through our implemented system, we have collected approximately 0.7 millions of
application usage logs from about 400 distinct users from October 2012 to January
2017. In these logs, we distinguished individual users by ID number of a smartphone
device. Due to this, some users might be duplicated if they have more than one device
or replace their own device. In the following, we present the results of our preliminary
data analytics on about 0.5 millions logs collected from October 2012 to January 2014
from 203 users. The ratio of male to female of users was approximately 7:3. The age
range was broad; the lowest was teenage, and the highest was fifties, while most of
the users were teens or twenties. The majority of users live in Osaka, Japan.



346 Big data recommender systems, volume 2

500

400

User

300

200

R
un

ni
ng

 d
ay

s

100

0

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Figure 18.2 Persistence of log-collection system

Figure 18.2 shows the persistence rate of the system, which is represented by
running days of the system after its installation. The horizontal axis is sorted by
running days. As shown in this figure, some users continued to use the system for
very long time while some others uninstalled the system within a day. About half of the
users continued to use the system more than 2 weeks which shows the effectiveness
of a game-based approach as an incentive.

18.4.1 High-level contexts

By observing the collected logs, we have examined how many different types of
answers we got for each question. We got 97 types of answers to the question for
today, 144 types for place, 55 types for companion, and 182 types for activity. As
shown, the types of answers were quite diverse. One reason for this is that some users
added too specific options to the option list. For example, in the answers for place, we
found a certain person’s house and a certain station. Another reason is that it sometimes
happened that some users added different options (expressions) for a same thing or
added slightly different options (e.g., “move,” “moving,” “moving by car/train”).

Figures 18.3–18.7, respectively, show the selection frequencies of options for
each of the questions. In these figures, we only show options which were selected by
at least four users. Overall, we can confirm that the frequently selected options are
related to the users’daily routine (e.g., “school” for today, “home” for place, “family,”
and “friend” for companion) while options which were not frequently selected include
unusual contexts such as “travel,” “business trip,” “leisure,” and “sightseeing.”

In this way, we have grasped the overview of contexts. Since we allowed users
to add new options by free words, the types of answers were quite diverse. From the
different selection frequencies by time, we have found some tendency based on the
daily routine of ordinary users.

18.4.2 Application usage frequency

We chose ten representative applications for this observation. Table 18.2 shows
the applications for this observation and the total usage count (during the whole
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Figure 18.7 Selection frequencies for activity

Table 18.2 Applications and usage count

Application name Usage count

LINE 94,592
Twitter 62,377
Browser 48,644
Facebook 17,333
Gmail 11,279
Phone 7,519
Camera 6,741
Puzzle & Dragons 6,375
YouTube 3,717
Map 2,249

experiment period). As for the usage count, Line, Twitter, and Browser were used
especially frequently. This implies that many users regularly use only a few applica-
tions in daily life. A similar fact has been reported by MMD institute [19] in 2012;
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Table 18.3 Applications categories

Category Meaning Examples

Browser General browsing applications Chrome, Firebox, Dolphin Browser
SNS General SNS applications Facebook, Twitter, Google+, mixi
Communication Communication applications, LINE, Phone, Gmail, Hangouts

e.g., voice, E-mail, instant
messenger

Business Practical applications, Calendar, Evernote, Adobe Reader
e.g., scheduling and memo

Information Web applications for Transfer information, 2chmate, weather
information and entertainment

Game Game applications Puzzle & Dragons, LINE POP
Multimedia Image, video, and YouTube, gallery, QuickPic, niconico

music applications
Camera Camera applications Camera, LINE camera
Map Map applications Google Maps, Foursquare

according to a questionnaire survey, 50 per cent of smartphone users regularly use at
most five applications.

18.4.3 Tendency of application usage by time

In this subsection, we present the temporal tendency of application usage frequency.
Here, we discuss based not on individual applications but on categories of applications,
which are shown in Table 18.3.

Figures 18.8–18.11 show the change of usage frequency of each application (cat-
egory) by time. Here, the vertical axis denotes the application usage frequency, i.e.,
usage count of each application normalized by the total usage count of all applica-
tions. Figure 18.8 shows the general tendency of change of usage frequency for all
applications. From this result, the frequency is low from 2 am to 5 am. After 6 am, it
increases gradually, having a local maximum point at 12 pm. As shown in Figure 18.9,
communication, SNS, and browser have a similar tendency.

From Figure 18.10, information, business, and game were frequently used espe-
cially at 12 pm. This is mainly because business and information applications are
strongly needed during free time. From Figure 18.11, camera and map were often used
during daytime, and their frequencies decrease while that of multimedia increasing
after 10 pm. This tendency clearly represents general users’ daily life, i.e., users often
try to find a way using a map application and take a photograph using a camera when
they are away from home during daytime, while they often view multimedia contents
after going back to their home.

In this way, we have grasped the tendency of application usage. In particular,
we have found that only a few applications (communication, SNS, and browser)
were regularly used. We have also found some tendencies regarding the change of
application-usage frequency, which represents the features of applications.
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Figure 18.9 Usage frequency of each application by time I

18.5 Relationships between applications and contexts

Next, we have examined combinations of contexts and applications to know in what
situation users use applications. For this aim, we applied association rule mining [20]
to application usage logs we collected, aiming to find patterns of application usage that
frequently occur, which represent ordinary smartphone users’ behavior. In addition,
we also have focused on finding some interesting patterns which do not frequently
occur, because they might represent unexpected application usage, which have some
important meanings.

Association rule mining is often used for marketing purposes to find some char-
acteristic combinations of products which are often bought together. The expression
of combinations is a form of rule such as {A} ⇒ {B}; A is called the condition part,



Investigation of user contexts and mobile application usage 351

0.09
0.08
0.07
0.06

U
sa

ge
 fr

eq
ue

nc
y

0.05
0.04
0.03
0.02
0.01

0
0 2 4 6 8 10 12

Hour of day

Business Information Game

14 16 18 20 22

Figure 18.10 Usage frequency of each application by time II

0.09
0.08
0.07
0.06

U
sa

ge
 fr

eq
ue

nc
y

0.05
0.04
0.03
0.02
0.01

0
0 2 4 6 8 10 12

Hour of day

Multimedia Camera Map

14 16 18 20 22

Figure 18.11 Usage frequency of each application by time III

and B is called the conclusion part. The rule means that B happens under condition
of A. In case of applying association rule mining to a purchase history, a rule is
expressed like {beer, sausage} ⇒ {diaper}; generally, the condition part consists of
several items and the conclusion part consists of single item.

Each rule has some indicators that are given to evaluate the rule: support,
confidence, and lift. These are defined as follows:

support({A} ⇒ {B}) = N (A ∩ B)

M
(18.1)

confidence({A} ⇒ {B}) = support({A} ⇒ {B})
support(A)

(18.2)

lift({A} ⇒ {B}) = confidence({A} ⇒ {B})
support(B)

(18.3)
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where N (X ) represents the total number of logs which include X , and M represents
the total number of all logs. support is defined as the joint probability of A and B
(if the argument is not a rule but just X , support(X ) just indicates the probability of
X ). confidence is defined as the conditional probability of B under the condition of
A. lift is defined as the scaling factor that indicates what times the probability of
occurrence of B increases under the condition of A compared with the probability
under no condition. Generally, it is said that the rule having high confidence is valuable
because its relation between A and B is strong. However, confidence is sometimes
high if B is a phenomenon that happens very frequently regardless of condition. In
that case, lift is useful to find valuable rules. Therefore, it is important to evaluate
these three indicators depending on characteristics of data.

In this study, we used the log data we collected; a set of high-level contexts and
applications. Before applying the rule extraction, we filtered the log data to use only
options of contexts which were selected by at least four users and types of applications
shown in Table 18.2. As a result, the number of logs for the rule extraction was 61,267.
When applying the rule extraction, we set the following thresholds:

support ≥ 6.0 × 10−5 (18.4)

confidence ≥ 0.001 (18.5)

In order to observe the usage patterns of applications which do not occur frequently, we
set these low thresholds. Here, the minimum support ensures that logs corresponding
to an extracted rule appear at least four times. The condition part of a rule is a
set of options for questions about contexts. The conclusion part consists of single
application which is used in the situation described in condition part. As a result, we
have extracted approximately 1.5 millions of rules.

18.5.1 Characteristic rules

We have firstly observed rules which have high indicators (i.e., support, confidence,
and lift). Through this observation, we have found some characteristic and concrete
usage patterns of smartphones.

18.5.1.1 Most frequent situations
Rules which have high support value describe frequent situations of corresponding
application usage. Table 18.4 shows some example rules having high support value.
From this table, most applications seem to be mainly used while working alone. Gmail
and Facebook are used at school. Camera is used in a business trip, and game is used
in bed. From this, it can be said that situations in which applications are frequently
used are same for most applications, with some exception.

18.5.1.2 Specific usage
Rules which have high confidence value describe specific usage of corresponding
application. On the other hand, if the total frequency of corresponding application
usage is low, the lift value tends to be high. More specifically, if the lift value is high,
the corresponding application is specifically used in that situation. Table 18.5 shows
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Table 18.4 Example rules having high support

Condition part Conclusion Support Confidence Lift
part

Activity = work, companion# = 0, LINE 0.0168 0.379 1.253
place = work, today = work
Companion# = 5 and over, companion = Gmail 0.00346 0.121 2.255
senior, place = school, today = school
Activity = work, companion# = 0, Phone 0.00142 0.0321 0.989
place = work, today = work
Activity = work, companion# = 0, Browser 0.0116 0.262 1.210
place = work, today = work
Activity = work, companion# = 0, Twitter 0.108 0.244 1.082
place = work, today = work
Companion# = 5 and over, companion = Facebook 0.00307 0.108 1.063
senior, place = school, today = school
Activity = work, companion# = 0, YouTube 0.00121 0.0273 1.826
place = work, today = work
Companion# = 5 and over, companion = Camera 0.000539 0.210 10.196
colleague, companion = student,
today = business trip
Activity = work, companion# = 0, Map 0.000473 0.107 1.394
place = work, today = work
Activity = sleep, companion# = 0, Puzzle & 0.00101 0.124 4.978
place = home, today = holiday Dragons

some example rules having high confidence and lift. As for LINE and Gmail, the
representative situation is having a meal with superiors. In such a situation, while it is
not favorable for users to focus on their smartphones, LINE and Gmail are often used
probably because the users received some message. Twitter seems to be used while
having a meal on travel, Facebook seems to be used while having a meal with family
and friend, and Camera seems to be used while dating with a lover. A common point
of them is an extraordinary situation. These applications might be used to record the
experience or share it with someone. As for Map, the lift value is very high. This
indicates that the usage probability of Map increases significantly while driving with
friends. Thus, it can be said that Map is specialized in such a situation.

18.5.2 Effect of single context

Second, we have investigated how retain the intended meaning, and correct if nec-
essary. single context affects application usage. For this aim, we extracted rules that
have the following format:

{Cx} ⇒ {Appx} (18.6)

where Cx is a single context and Appx is an application. In this case, the lift value of
the rule indicates how the usage probability of Appx changes by Cx. For example, the
lift value of {place = home} ⇒ {app = YouTube} is 1.40; it means that the context



354 Big data recommender systems, volume 2

Table 18.5 Example rules having high confidence and lift

Condition part Conclusion Support Confidence Lift
part

Activity = meal, companion# = 2, LINE 0.000294 0.947 3.131
companion = senior, place = restaurant
Activity = meal, companion# = 5 and Gmail 0.0000653 0.800 14.848
over, companion = senior, companion =
boss, today = work
Activity = shopping, companion = Phone 0.000163 0.385 11.847
friend, place = shopping, today = school
Activity = moving, companion# = Browser 0.000604 0.841 3.893
5 and over, companion = stranger,
place = train, today = work
Activity = meal, companion = friend, Twitter 0.000114 0.875 3.878
companion = junior, today = travel
Companion# = 5 and over, Facebook 0.0000816 0.714 7.047
companion = family, companion =
friend, place = restaurant
Activity = sleep, companion# = 3, YouTube 0.0000979 0.429 28.665
companion = pet, companion = family,
today = holiday
Activity = date, companion# = 1, Camera 0.0000816 0.132 6.383
companion = lover, today = holiday
Activity = drive, companion# = 3, Map 0.0000653 0.571 74.489
companion = friend, place = car
Activity = study, companion = friend, Puzzle & 0.000225 0.279 11.211
companion = colleague, today = school Dragons

Table 18.6 Lift value of each place

Place YouTube Camera Map PAD

Home 1.40 0.54 0.45 1.56
School 0.36 0.75 0.49 1.50
Downtown 0.35 1.77 2.21 0.50
Restaurant 0.82 2.35 1.10 0.40
Sightseeing 0.00 5.27 2.57 0.89
Station 0.52 0.98 1.58 0.31
Airport 4.67 2.46 0.00 4.34

(home) increases the usage probability of YouTube by 1.40 times. In other words,
“home” brings a positive impact on “YouTube.”

As a result of observing rules from the above view, we have found that some pairs
of single context and application have clear relationships. Tables 18.6 and 18.7 show
some example rules (PAD is abbreviation of Puzzle & Dragons). From Table 18.6,
YouTube, Camera, Map, and PAD seem to be notably influenced by place. YouTube
and PAD tend to be used at home, while Camera and Map tend to be used when
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Table 18.7 Lift value of each state of mind

Mind Phone Browser Camera PAD

Positive 1.02 0.94 1.09 0.98
Negative 0.75 1.13 0.54 1.48

going out. In particular, the more the place is extraordinary, the more Camera is
used frequently. At an airport, YouTube and PAD are used probably during a long
waiting time. From Table 18.7, we have found some relationships between subjective
feelings and application usage; phone, browser, camera, and PAD seem to be notably
influenced by state of mind. Phone and camera seem not to be used when the user is
feeling down; on the other hand, Browser and PAD seem to be used in such a situation.

18.5.3 Effect of combination of contexts

Third, we have investigated the effect of combination of contexts. We have found that
some combinations of multiple contexts bring different impact on applications from
each single context. For example, the lift values of the following rules

{companion = friend} ⇒ {app = Twitter} (18.7)

{activity = free time} ⇒ {app = Twitter} (18.8)

are 1.29 and 1.33. They both have positive impact on Twitter. However, when the two
contexts are combined,

{
companion = friend

activity = free time

}
⇒ {app = Twitter}, (18.9)

its lift value is 0.77; it turns to have negative impact. If the activity is “study” or “shop-
ping,” the combination with companion = friend remains to have positive impact.
This might be because users want to post to SNS when they do some common activity
with their friends.

To investigate how many such cases occurred, we defined mutuallift as follows:

mutuallift({Ca, Cb} ⇒ {Appx})
= lift({Ca, Cb} ⇒ {Appx})

lift({Ca} ⇒ {Appx}) · lift({Cb} ⇒ {Appx}) .
(18.10)

This measure indicates the impact of combination of two contexts, Ca and Cb. If it is
greater than 1, the combination of Ca and Cb has positive impact on application Appx.
Otherwise, if it is less than 1, the combination of Ca and Cb has negative impact.
We calculated mutuallift of 10,843 rules which have the form of {Ca, Cb} ⇒ {Appx}.
Then we classified them into three groups: rules having value less than 0.9 (negative),
between 0.9 and 1.1 (neutral), and greater than 1.1 (positive). The result is shown in
Table 18.8: 3,180 rules belong to “negative,” 3,238 rules belong to “neutral,” and
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Table 18.8 Classification of the value
mutuallift

mutuallift < 0.9 3,180
0.9 ≤ mutuallift ≤ 1.1 3,238
mutuallift > 1.1 4,425

4,425 rules belong to “positive.” Within the first group, 76 rules meet the following
conditions:

lift({Ca} ⇒ {Appx}) > 1.1, (18.11)

lift({Cb} ⇒ {Appx}) > 1.1, (18.12)

lift({Ca, Cb} ⇒ {Appx}) < 0.9, (18.13)

i.e., combination of two contexts having positive impact turns to negative impact.
Within the third group, 173 rules meet the following conditions:

lift({Ca} ⇒ {Appx}) < 0.9, (18.14)

lift({Cb} ⇒ {Appx}) < 0.9, (18.15)

lift({Ca, Cb} ⇒ {Appx}) > 1.1, (18.16)

i.e., combination of two contexts having negative impact turns to positive impact.
From the above, it can be said that combination of contexts also has impact on
application usage as well as individual single contexts.

18.6 Discussion

18.6.1 Impacts of collecting high-level contexts

We have collected various and concrete answers to questions about high-level contexts.
High-level contexts have a significant potential to describe user’s situation in detail
and intuitively.

As mentioned, because we allowed users to add free word answers, there are
many answers which have a little different expression but represent the same thing
(e.g., “move” and “moving”). To solve this problem, some improvement should be
done on our system.

We have also found that some applications are affected by subjective feelings. In
existing studies, relationships between such contexts and application usage have not
been fully revealed. Therefore, our approach in this study is an effective way to reveal
such relationships.
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Figure 18.12 Lifelog functions

18.6.2 Possible applications of high-level contexts

High-level contexts can be used for various purposes (not only for analysis in this
study), such as user profiling and application recommendation. Here, when applying
high-level contexts to such purposes, some findings obtained in this study might
be useful in designing a concrete methodology, e.g., (i) high-level contexts have
significant impacts on application usage and (ii) a combination of multiple contexts
has different impact from each single context. Currently, based on our findings,
we have been developing a system to predict an application which a user will use
next. Some recent studies applied machine-learning techniques on big data such as
deep neural networks (DNNs) to predict or recognize users’ situations and activities
[21–23]. We have also applied a DNN to our system because a big advantage of our
study is that we have collected a large amount of high-level context data.

In addition, the history of high-level contexts can be regarded as lifelogs and,
thus, can be used for health care. We have developed a lifelog service on our monster-
breeding game, which provides three functions, (i) timeline (showing two types of
user’s contexts which the user selects in timeline), (ii) statistics (showing statistics of
user’s contexts), and (iii) rating (showing the total evaluation of user’s condition with
some comments from a game character), as shown in Figure 18.12, and released it
as a new version of our game application. This lifelog mechanism may have a side
effect to retain users in our system, i.e., they continue to use our system because this
lifelog mechanism is useful for them.

18.7 Conclusion

In this study, we have investigated the relationships between mobile application usage
and high-level contexts. In order to collect data regarding high-level context and
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application usage, we have developed a log-collection system which asks users to
answer questions about contexts. Furthermore, to collect a large amount of logs from
general smartphone users for a long term, we have adopted the game-based approach
in the system.

We have conducted association rule mining on the collected logs. With the
extracted association rules, we have found (i) characteristic and concrete usage pat-
terns of smartphones, (ii) some pairs of single context and application have clear
relationships, and (iii) some combinations of multiple contexts bring different impact
on applications from each single context. Our findings are expected to contribute to
further understanding of behavior of smartphone users.

In this work, the users of our system were skewed in terms of age and region.
It is preferable to gather more users from difficult background. As part of our future
work, in order to get users more broadly, we plan to adopt some other approaches to
motivate users to use our system.
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Chapter 19

Machine learning and stock recommendation
Chulwoo Han1 and Zhaodong He1

In this chapter, we develop a neural network (NN) model for stock classification
using input features derived from widely known momentum factors and apply it to
two problems; long–short strategy construction and stock recommendation. Empirical
findings suggest that our model can create a long–short portfolio generating a sig-
nificant profit and high Sharpe ratio (SR). It is also effective in making buy/hold/sell
recommendation, although the evidence is less strong. Our model seems to be more
powerful for cross-sectional prediction while having a limited ability for time-series
prediction. We also find that economic performance of a model can be very different
from its statistical performance. This signifies the importance of choosing an objec-
tive function that reflects economic performance and evaluating models from both
statistical and economic perspectives.

19.1 Introduction

Recently, there has been a resurgence of interest in machine learning, in large part due
to its spectacular successes in image classification, natural language processing, and
various time-series problems [1–3]. Underlying this progress is the development of a
feature-learning framework known as deep learning [4], whose basic structure is best
described as a multilayer NN, and whose success can be attributed to a combination of
increased computational power, availability of large datasets, and more sophisticated
algorithms [5–9].

With its successful applications in various areas, finance industry’s interest in
machine learning has exploded over the last few years, and the related literature is
proliferating [10–20]. However, the majority of the literature focuses on methodol-
ogy, lacks financial context, and remains in the domain of computer science being
disregarded by finance community.

This chapter demonstrates two case studies that apply machine learning to stock
market prediction and evaluates the results with an emphasis on economic signifi-
cance. By helping the computer science community understand the importance of a

1Finance Department, Durham University, United Kingdom
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financial perspective and showing the finance community the potential of machine
learning as a new toolkit, we hope to contribute to narrowing the gap and enhancing
communication between the two.

Following Han and He [21], our study addresses two classification problems
in the stock market and distinguish itself from most of the existing studies that are
concerned about return prediction. With the various classification algorithms machine
learning offers, we feel that machine learning is particularly well suited to stock
classification problems.

The first case study applies machine learning to long–short portfolio construc-
tion, which has an important role in empirical asset pricing. A typical method to
test the existence of anomaly is to classify stocks into quantiles according to a new
anomaly measure and examine the profitability of the long–short portfolio that buys
the stocks in the first quantile and sells the stocks in the last quantile. Long–short
portfolio strategy is also one of the most popular market-neutral strategy adopted by
hedge funds. We develop a machine-learning-based momentum long–short strategy
and evaluate it using the data taken from the US stock market. Among the hundreds
of factors that are known to have return predictability, we focus on momentum fac-
tors as recent studies have found that they are persistent while most other factors
are no longer effective [22,23]. We show that our strategy outperforms conven-
tional momentum strategies and produces statistically and economically significant
returns.

The second case study employs machine learning for stock recommendation.
Stock recommendations (buy/hold/sell) announced by analysts are an important
guideline for individual investors. Analysts assess the value of a firm using vari-
ous accounting ratios and industry outlook and compare it against its current stock
price to make a recommendation. These recommendations are, however, often biased
and turn out to be a poor predictor of future stock price movement. We examine
whether the role of analysts can be replaced by a machine and find that a machine-
learning-based stock recommendation system can successfully categorize stocks into
buy, hold, and sell.

These case studies suggest that machine learning can help classify stocks by
jointly examining many features and extracting hidden information in them. This
capability cannot be offered by conventional linear approaches. With the rich set of
firm characteristics that are available today, machine learning is expected to help us
get the most of their informational content and play an essential role in the asset
pricing literature.

The remainder of the chapter is organized as follows. Section 19.2 describes
momentum strategies and their profitability, with a brief review of related literature.
Section 19.3 develops the machine-learning-based momentum strategy adopted in
our research. Detailed feature engineering process and training and testing procedure
including sample data construction and portfolio formation are provided in this sec-
tion. Section 19.4 demonstrates empirical results and evaluates our strategy against
conventional momentum strategies. Section 19.5 is devoted to the construction and
evaluation of a stock recommendation system. Concluding remarks with suggestions
for the future research are given in Section 19.6.
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19.2 Momentum and stock-return predictability

19.2.1 Momentum effects

While the efficient market hypothesis is still the dominant theory of market, many
empirical studies show that financial markets are to some extent predictable [24–27].
Past price movements, in particular, have been widely used to imply future price
movements. De Bondt and Thaler [28] find a long-term reversal of stock returns by
formulating portfolios with holding periods of 3–5 years. They show that previously
underperformed stocks gained higher profits after a long holding period than those
with past superior performance and construct a contrarian strategy that buys past losers
and sells short-past winners. Jegadeesh [29] and Lehmann [30] document short-term
reversal of stock returns. They argue the abnormal return of the contrarian strategy
comes from short-term price movement and the lack of liquidity in the market.

Jegadeesh and Titman (JT) [31] utilize return continuation and develop a
momentum strategy that buys high-performance stocks (past winners) and sells poor-
performance stocks (past losers), where past performance is defined by the past
J -month return (price momentum factor). Using the US stock market data over the
sample period from 1965 to 1989, they show that the momentum strategy can realize
significant abnormal returns, e.g. a momentum strategy portfolio based on 6-month
momentum with 6-month holding period realizes an average excess return of 12.01%
per year.

Moskowitz and Grinblatt [32] show that the momentum strategy can be gener-
alized to industries. They find that the stocks belonging to the past winning industry
continue to outperform the stocks in the past losing industry. Interestingly, abnormal
profits disappear when the momentum portfolio is constructed within the same indus-
try. Lewellen [33] extends the idea of Moskowitz and Grinblatt and shows that the
momentum effect can also be found among the size and book-to-market portfolios
and is as strong as that of industry portfolios.

Lee and Swaminathan [34] argue that trading volume is closely related to the
price momentum factor in terms of both magnitude and persistence. After sorting all
firms first by price momentum and then by trading volume, they form a long–short
portfolio by buying high price momentum, low trading volume stocks and selling
low-price momentum, high trading volume stocks, and demonstrate that this strategy
exhibits better performance than the original JT momentum strategy.

Another interesting momentum strategy is based on the 52-week high (WH)
(52WH) momentum factor proposed by George and Hwang [35]. The 52WH momen-
tum factor is defined as the current stock price divided by the highest price during
the previous 52 weeks. The authors argue that the long–short portfolio based on
the 52WH momentum factor yields promising abnormal profits with no short-term
reversal within 12 months.

The glamour of momentum is that its effect is not only discovered in the US equity
market but also found in global stock markets [36], currencies [37], bonds [38], and
even in residential real estate markets [39]. In some cases, the momentum strategy
maintains its predictability for years. Israel and Moskowitz [40] show that the price
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momentum strategy is robust from 1926 to date. Geczy and Samonov [41] conduct
backtesting from 1801 to 2012 in the US equity market and find the momentum
profit is robust over the extended period. Momentum remains to be one of the most
persistent anomalies that cannot be fully explained by other factors.

The momentum strategy, of course, does not always guarantee superior perfor-
mance. In 2009, after the global financial crisis, the momentum strategy crashed
when the loser portfolio dramatically outperformed the winner portfolio. According
to Daniel and Moskowitz [42], if an investor had held a momentum long–short port-
folio from March to May 2009, she would have suffered a great loss as the winner
portfolio gained only 8% while the loser portfolio made a profit of 163%. To avoid
the risk involved in the momentum strategy, they propose a hedge method to adjust
the portfolio dynamically by scaling volatilities. Barroso and Santa-Clara [43] also
present a hedge method to eliminate momentum risks, where they argue systematic
risks have the most influence on the momentum strategy.

19.2.2 Jegadeesh–Titman (JT) momentum strategy

Momentum strategies are built on the belief that firms performing well in the past
would remain in a good state in the future. In the JT momentum strategy, past perfor-
mance is measured by the previous J -month return. The momentum portfolio is then
constructed by classifying stocks into quantiles based on their past performance and
buying the stocks in the first quantile (past winners) and selling the stocks in the last
quantile (past losers). More specifically, suppose we want to build a momentum strat-
egy based on the previous J -month return and K-month holding period. The strategy
can be carried out following the procedure below.

1. At the beginning of month t, compute the J -month cumulative return over the
period from t − J to t − 2:

RJ
i =

t−2∏

j=t−J

(rj
i + 1) − 1 (19.1)

where rj
i denotes the monthly return of stock i in month j. For example, R12

i
is the 11-month cumulative return over the period from t − 12 to t − 2. The
1-month gap between portfolio formation and factor calculation is to avoid the
short-term reversal documented by Jegadeesh [29] and Lehmann [30]. J = 6, 12
are typically used.

2. Sort the stocks in descending order according to RJ
i and split them into quantiles

so that each quantile has the same number of stocks. This study uses deciles.
3. Construct a long–short portfolio by buying the stocks in the first quantile and

selling the stocks in the last quantile. Stocks in each lag are equally weighted.
4. This portfolio is held for K months.
5. Repeat the above steps every month. At month t, the entire portfolio is an

equally weighted portfolio consisting of K long–short portfolios constructed
during months t − K + 1 and t.
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19.2.3 52-Week high (52WH) momentum strategy

The 52WH momentum strategy is constructed in the same way as the JT momentum
strategy except for the measure of past performance. In the 52WH strategy, stocks
are ranked according to the following measure:

H 52
i = Pt−2

i

maximum price during {t − 12, . . . , t − 2} (19.2)

where Pt
i is the price of stock i at the end of month t and the denominator denotes

the highest daily price of the stock during the previous 52 weeks ahead of t with
1 month gap.

19.3 Machine-learning-based momentum strategy

Machine learning offers several multiclass classification algorithms and is therefore
suitable for a long–short portfolio construction problem where stocks need to be
classified into quantiles. As stocks are classified and labelled according to their
future returns, this problem becomes a supervised learning problem. One advantage
of machine learning is that it allows us to classify stocks jointly using the information
from several features. We build an NN momentum strategy and compare it with the
JT and 52WH momentum strategies as well as a random forest momentum strategy.

19.3.1 Feature engineering

As mentioned earlier, our aim is to utilize momentum factors as the input for a
machine-learning-based long–short strategy and examine whether we can obtain a
superior performance compared to the traditional momentum strategies. Therefore,
we restrict the input features only to momentum factors and other variables derived
from them. The input features we use in our model are listed in Table 19.1 and their
definitions are described below. These features are mostly borrowed from Han and
He [21].

We first consider the JT and 52WH momentum factors and their variants. More
specifically, we use J -month price momentum factors (JT J

i ) with J = 2, 3, 6, 9, 12
and W -WH momentum factors (WH W

i ) with W = 26, 52. We also include lagged
momentum factors, JT J

i (L) and WH W
i (L), i.e., the momentum factors calculated L

periods ahead. For example, JT 6
i (2) is the 6-month JT momentum factor calculated

2 months ahead. L in the WH momentum factors is in weeks.
The next features capture time-series characteristics such as seasonality, trend,

and pulse. The difference of a (lagged) momentum factor is defined as the difference
between L- and L + 1-lagged momentum factors, i.e. dJT J

i (L) = T J
i (L) − JT J

i (L + 1)
and dWH J

i (L) = WH J
i (L) − WH J

i (L + 1). The absolute difference of a momentum
factor is the absolute value of the difference.
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Table 19.1 Input features of the deep neural network

Momentum factors

JT J
i J ∈ {2, 3, 6, 9, 12}

WH W
i W ∈ {26, 52}

L-period lagged momentum factors

JT J
i (L) J ∈ {2, 3, 6, 9, 12}, L ∈ {1, 2, . . . , 10} and L + J ≤ 12

WH W
i (L) W ∈ {26, 52}, L ∈ {13, 26} and L + W ≤ 52

Difference of (lagged) momentum factors and their absolute values

dJT J
i (L) = JT J

i (L) − JT J
i (L + 1), |dJT J

i (L)|
dWH W

i (L) = WH W
i (L) − WH W

i (L + 1), |dWH W
i (L)|

Standardized momentum factor ranks

rankJT J
i J ∈ {2, 3, 6, 9, 12}

rankWH W
i W ∈ {26, 52}

Market and relative momentum factors

JT
J = 1

N

N∑
i=1

JT J
i , rJT J

i = JT J
i − JT

J

WH
W = 1

N

N∑
i=1

WH W
i , rWH W

i = WH W
i − WH

W

The rest of the features capture cross-sectional variation. We add the ranks of
the stocks based on each momentum factor. Following Wright [44], we use the
standardized rank defined as

std_ranki =
(

ranki − N + 1

2

)
/

√
(N − 1)(N + 1)

12
, (19.3)

where ranki is the rank of stock i among all available stocks (with total number N )
based on a selected momentum factor. For example, the stock with the highest
12-month momentum factor JT 12

i is ranked 1, and the stock with the lowest factor
value is ranked N , and these values are standardized using (19.3). Every momentum
factor has its corresponding standardized rank, and they are denoted by rankJT J

i for
the JT J

i momentum factors and by rankWH W
i for the WH W

i momentum factors.
We finally include overall market momentum factors and individual stock

momentum factors relative to the market. The market momentum factors, JT
J

and
WH

W
, are defined as the mean of the individual momentum factors at a given month,

and the relative momentum factors, rJT J
i and rWH W

i , are defined as the difference of
the individual momentum factors from the market momentum factors.
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Put together, there are total 109 features for each stock. These features are stan-
dardized so that the mean and the standard deviation of each feature become 0 and 1.
It should be noted that when the features are standardized in the test set, the mean
and standard deviation from the training set are used. This is because the test set
values are unknown until the last month of the test set, and using these values incurs
a look-ahead bias.

19.3.2 Labelling

Stocks are labelled based on their future performance. If the holding period is K
months, stocks are ranked according to their K-month cumulative return in descending
order and classified into deciles so that each decile has the same number of stocks.
In our empirical study, 1-month cumulative return (K = 1) is used.

19.3.3 Training and testing

19.3.3.1 Data sample
We use the US equity market data available from the Center for Research in Security
Prices (CRSP). All stocks with common shares (share code 10 or 11) listed on NYSE,
Amex, or Nasdaq (exchange code 1, 2, or 3) are included. The daily and monthly
data required for factor construction are collected during the sample period from
1964-12-01 to 2014-11-30.

To ensure the stocks are traded and available at the time of portfolio construction,
the following conditions are applied when choosing stocks.1 To be included in a
portfolio for month t, a stock must have a price for the end of month t − 13 and a
good return for t − 2. In addition, any missing returns from t − 12 to t − 2 must be
−99.0, CRSP’s code for missing price. Each included stock also must have market
equity at the end of month t − 1.

Stocks can be delisted during the holding period after they are included in a
portfolio, in which case calculation of the holding period return requires caution.
While excluding these stocks from the sample can be an easy solution, it can cause
a bias when backtesting [45]. If a stock is delisted during the holding period, the
delisted return with dividend from the CRSP delist file is used whenever available. If
a delisted stock has no recorded delisted return in CRSP, it is assumed to be −30%
following Beaver et al. [46].

19.3.3.2 Learning the model
We use the first 10 years of the sample data (1964-12-01 to 1974-11-30) as the
training set and the rest as the test set. A more realistic approach in practice is to
train the machine repeatedly using a rolling window. For example, we can train the
machine using the sample from 1964–12 to 1974–11 to make a prediction and form
a portfolio in 1974–12, train the machine again using the sample from 1965–01 to
1974–12 to form a portfolio in 1975–01, and so on. However, as our objective is to

1These conditions are adopted from the K. French website: http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/Data_Library/det_10_port_form_pr_12_2.html.
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Table 19.2 List of hyperparameters

Neural networka Candidates Selected value

Number of hidden layers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 1
Number of neurons {2, 4, 8, 12, 16, 24, 48, 96, 128} 12
Activation function {ReLU, Sigmoid, Tanh} Sigmoid
Optimization {SGD, Adam, RMSprop} Adam
Dropout rate {0, 0.1, 0.2, 0.3, 0.4, 0.5} 0
L1 regularization {0, 0.01, 0.1, 0.2} 0

Random forestb Candidates Selected value

Number of estimators {30, 60, 100, 150, 200} 100
Max depth {30, 60, 100, 150} 60
Min samples split {0.05, 0.1, 0.2} 0.05
Max leaf nodes {30, 50, 100, 150} 150
Min samples leaf {0.01, 0.05, 0.1} 0.01

aFor the details of the parameters, refer to the Keras document at https://keras.io/.
bFor the details of the parameters, refer to the scikit-learn library at https://scikit-learn.org/.

demonstrate how machine learning can help stock market prediction and the rolling
window approach is computationally demanding, we train the machine only once and
hold the parameters fixed throughout the test period.

We choose a fully connected multilayer NN as our primary machine-learning
algorithm and random forest for comparison. As our problem is a multi-classification
problem, the softmax function is chosen for the output layer activation and the cross-
entropy function as the cost function. The hyperparameters listed in Table 19.2
are tuned using the last 2 years of the training set. We use the last 2 years rather
than a random validation set or a cross-validation method to consider any potential
autocorrelation in stock returns.

The NN models are implemented using Keras withTensorflow backend in Python
3.6. The scikit-learn library is employed for random forest models. The models
are trained on a desktop with CPU i7-7700HQ at 2.81 GHz and NVIDIA Geforce
1050Ti GPU.

19.3.4 Portfolio formation

Once the models are trained, stocks are classified into deciles at each month through-
out the test period, and a long–short portfolio is formed by buying the stocks in the
first decile and selling the stocks in the last. Unlike the JT and 52WH momentum
strategies, where the number of stocks is guaranteed to be equal across deciles, the
number of stocks in each decile predicted by a machine-learning model will be dif-
ferent. This can cause a problem if the number of stocks varies considerably across
deciles, which is indeed the case. To ensure that the stocks are evenly distributed,
following two redistribution methods are adopted. Let N , NDk , PDk

i , k = 1, . . . , 10,
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respectively, denote the total number of available stocks in a given month, the pre-
dicted number of stocks in the kth decile (Dk), and the probability of stock i being in
Dk , given by the softmax function.

Redistribution method a
1. If ND1 ≥ 0.1N , choose 0.1N stocks from D1 with the highest PD1

i . Use the rest
of the stocks in D1 to fill D2.

2. If ND1 < 0.1N , use the stocks in D2 to fill D1, starting from the stocks with the
highest PD2

i .
3. Apply the same principle moving down the deciles until D5 is filled.
4. Repeat the above steps starting from D10 and moving backwards until the rest

deciles are filled.

Redistribution method b
1. Sort the stocks by PD1

i , . . . , PD10
i .

2. For D1, choose the top 10% of all stocks in terms of PD1
i .

3. Apply the same rule for D2, . . . , D10.

The second method can allocate some stocks to multiple classes and others to none.
However, it should not cause any serious problem as our strategy only uses the stocks
in D1 and D10.

19.4 Empirical results

In this section, we evaluate the performance of our model against benchmark models.
NNa, NNb, random forest (RF), JT, and 52WH, respectively, refer to the NN momen-
tum strategy with the two redistribution methods, random forest, JT, and 52WH
momentum strategies.

19.4.1 Classification accuracy

Tables 19.3–19.6 report the classification performance of the models. Based on the
per-class performance measures, the NN model appears to have predictability for the
extreme deciles (1 and 10): it has a high precision for the tenth decile, in particular.
However, it should be noted that the recall value of the tenth decile is also very
high, which implies that NN tends to classify stocks into the tenth decile. In contrast,
NN shows weak predictability for the in-between classes where precision is only
marginally higher than 10%, the precision of random prediction. Nevertheless, the
overall accuracy (13.98% in the training set and 14.55% in the test set) indicates
that our model has some degree of predictability. It is interesting to note that NN
performs as well in the test set as in the training set: the overall accuracy and the
average precision and recall values are indeed higher in the test set. This is possible
because the test set has a different distribution from the training set. While it is ideal
to choose a training set that is representative of the test set, this is often not an option
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Table 19.3 Classification performance: NN

Decile Precision Recall F1 Support Predicted

(a) Training set
1 14.02 21.32 16.92 27,923 42,459
2 12.40 3.71 5.71 27,923 8,345
3 11.55 1.21 2.20 27,923 2,936
4 13.15 17.09 14.86 27,923 36,272
5 14.47 5.19 7.64 27,923 10,006
6 12.75 9.26 10.73 27,923 20,272
7 11.90 19.94 14.91 27,923 46,779
8 11.11 2.84 4.53 27,923 7,146
9 11.19 10.92 11.06 28,043 27,364
10 17.32 47.71 25.41 28,395 78,243

All 12.99 13.98 11.42 279,822 279,822
Accuracy 13.98

(b) Test set
1 12.63 19.19 15.23 235,298 357,597
2 11.93 3.64 5.57 235,298 71,696
3 12.05 1.26 2.29 235,298 24,698
4 13.65 14.43 14.03 235,298 248,828
5 16.30 7.80 10.55 235,298 112,648
6 13.08 8.24 10.11 235,298 148,137
7 12.12 18.14 14.53 235,298 352,271
8 11.12 2.30 3.82 235,298 48,759
9 10.81 9.71 10.23 235,778 211,733
10 18.39 60.43 28.20 237,031 778,826

All 13.21 14.55 11.47 2,355,193 2,355,193
Accuracy 14.55

in financial applications where the training set needs to be drawn strictly from the
past and the test set from the future to prevent a look-ahead bias.

The overall performance of RF is comparable to that of NN. It has a slightly
higher overall accuracy but lower average F1 score. Focusing on the extreme deciles,
RF tends to predict fewer stocks to be in the first decile and more stocks in the last
one and produces a lower F1 score for the first decile and a similar score for the last
decile, compared with NN. Although RF appears to perform comparably to NN, it
performs much poorer economically as will be shown later.

JT and 52WH both underperform NN. JT outperforms 52WH in all aspects
and exhibits reasonable predictability for extreme deciles. Meanwhile, 52WH per-
forms hardly better than random prediction and is especially poor in selecting the
stocks in the first decile. Classification performance reflects economic performance
to an extent, but they often disagree with each other, as illustrated in the next
section.
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Table 19.4 Classification performance: RF

Decile Precision Recall F1 Support Predicted

(a) Training set
1 13.83 12.99 13.40 27,923 26,212
2 12.12 5.57 7.63 27,923 12,819
3 13.19 0.57 1.10 27,923 1,213
4 13.06 13.95 13.49 27,923 29,831
5 13.52 28.32 18.30 27,923 58,496
6 12.67 11.32 11.96 27,923 24,940
7 11.27 1.67 2.91 27,923 4,136
8 12.04 2.67 4.37 27,923 6,194
9 11.27 4.55 6.48 28,043 11,316
10 16.15 59.52 25.40 28,395 104,665

All 12.92 14.18 10.53 279,822 279,822
Accuracy 14.18

(b) Test set
1 11.47 13.35 12.34 235,298 273,892
2 11.33 5.77 7.64 235,298 119,731
3 12.56 0.71 1.34 235,298 13,212
4 12.64 10.84 11.67 235,298 201,759
5 14.75 29.78 19.73 235,298 474,981
6 12.23 8.08 9.73 235,298 155,516
7 11.24 1.34 2.39 235,298 28,002
8 11.14 1.76 3.05 235,298 37,262
9 10.87 3.33 5.10 235,778 72,263
10 17.45 72.03 28.09 237,031 978,575

All 12.57 14.74 10.12 2,355,193 2,355,193
Accuracy 14.74

19.4.2 Portfolio performance

Good classification performance does not necessarily lead to a good economic per-
formance of the long–short portfolio as the portfolio return is affected not only by
the returns of true positives but also by those of false positives, whose true class can
be either close or far from the class at hand.

Table 19.7 reports the mean returns of the decile portfolios in excess of the
risk-free rate. All classifiers classify the stocks reasonably well as evidenced by the
decreasing mean returns along the deciles. NNa and JT perform superior with respect
to the mean return of the long–short portfolio in both training and test sets. RF does
not perform well in the training set but performs comparably to NNa and JT in the
test set. 52WH, as opposed to the superior performance documented in the original
paper [35], performs poorly in both datasets. Despite not relying on any statistical
method, JT yields a remarkably high mean return. However, as evidenced by the
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Table 19.5 Classification performance: JT

Decile Precision Recall F1 Support Predicted

(a) Training set
1 13.55 13.55 13.55 27,923 27,923
2 10.86 10.86 10.86 27,923 27,923
3 11.02 11.02 11.02 27,923 27,923
4 11.20 11.20 11.20 27,923 27,923
5 11.13 11.13 11.13 27,923 27,923
6 11.16 11.16 11.16 27,923 27,923
7 10.73 10.73 10.73 27,923 27,923
8 10.86 10.86 10.86 27,923 27,923
9 11.76 11.76 11.76 28,043 28,043
10 18.62 18.62 18.62 28,395 28,395

All 12.10 12.10 12.10 279,822 279,822
Accuracy 12.10

(b) Test set
1 13.68 13.68 13.68 235,298 235,298
2 11.03 11.03 11.03 235,298 235,298
3 11.36 11.36 11.36 235,298 235,298
4 12.18 12.18 12.18 235,298 235,298
5 12.40 12.40 12.40 235,298 235,298
6 11.62 11.62 11.62 235,298 235,298
7 10.84 10.84 10.84 235,298 235,298
8 10.61 10.61 10.61 235,298 235,298
9 12.32 12.32 12.32 235,778 235,778
10 24.60 24.60 24.60 237,031 237,031

All 13.07 13.07 13.07 2,355,193 2,355,193
Accuracy 13.07

t-statistics, it is NNa and NNb that has the most significant return. The returns of
RF and JT, while significant, have lower t-statistics in the test set compared to NNa
and NNb, and the return of 52WH is marginally significant in the training set and
becomes insignificant in the test set.

Table 19.8 examines the economic significance of the long–short portfolio returns
obtained from different models. When risk is taken into account, the advantage of the
NN-based models becomes manifest. Although JT has the highest mean return, it is
also characterized by high volatility and produces a small SR; 0.3 in the training set
and 0.11 in the test set. In contrast, NNb has a remarkably low volatility and, despite its
low return level, achieves impressive SRs in both datasets; 0.62 and 0.25, respectively.
NNa also achieves a comparably high SR in both datasets; 0.70 and 0.21, respectively.
The high risk-adjusted returns of NNa and NNb are evident in Figure 19.1, where
their cumulative returns grow distinctively smoothly compared to the other models.
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Table 19.6 Classification performance: 52WH

Decile Precision Recall F1 Support Predicted

(a) Training set
1 8.58 8.58 8.58 27,923 27,923
2 10.67 10.67 10.67 27,923 27,923
3 11.38 11.38 11.38 27,923 27,923
4 11.12 11.12 11.12 27,923 27,923
5 10.21 10.21 10.21 27,923 27,923
6 10.31 10.31 10.31 27,923 27,923
7 10.07 10.07 10.07 27,923 27,923
8 10.35 10.35 10.35 27,923 27,923
9 11.90 11.90 11.90 28,043 28,043
10 18.23 18.23 18.23 28,395 28,395

All 11.29 11.29 11.29 279,822 279,822
Accuracy 11.29

(b) Test set
1 7.16 7.16 7.16 235,298 235,298
2 9.94 9.94 9.94 235,298 235,298
3 11.52 11.52 11.52 235,298 235,298
4 11.67 11.67 11.67 235,298 235,298
5 10.84 10.84 10.84 235,298 235,298
6 9.84 9.84 9.84 235,298 235,298
7 9.64 9.64 9.64 235,298 235,298
8 10.26 10.26 10.26 235,298 235,298
9 12.34 12.34 12.34 235,778 235,778
10 24.39 24.39 24.39 237,031 237,031

All 11.77 11.77 11.77 2,355,193 2,355,193
Accuracy 11.76

NNb, in particular, shows a remarkably stable growth of profit throughout the entire
sample period that includes the momentum crash (2009.03-2009.05), where all other
strategies suffer a huge loss. NNa also performs robustly during the momentum crash
compared to other models.

To see whether the returns of the long–short portfolios can be explained by
risk factors, we regress the returns using three-factor models, capital asset pricing
model (CAPM) and Fama-French three-factor model [47], and Carhart four-factor
model [48] and present the abnormal returns (α) and their t-statistics in Table 19.8.
The abnormal returns from the CAPM and Fama-French three-factor model are com-
parable to the mean returns and mostly significant across all portfolios. This implies
that these models have little explanatory power for the profits of the strategies.
When the Carhart four-factor model is employed, abnormal returns of some strate-
gies become no longer significant: the abnormal returns of RF, JT, and 52WH are



374 Big data recommender systems, volume 2

Table 19.7 Mean excess returns of decile portfolios

Decile NNa NNb RF JT 52WH

(a) Training set
1 1.29 0.40 0.88 0.93 0.37
2 1.32 1.52 0.52 0.60 0.21
3 0.64 0.52 0.29 0.34 0.23
4 0.43 0.18 0.00 0.15 0.23
5 0.08 −0.03 0.00 0.03 0.19
6 −0.47 −0.09 −0.21 −0.08 0.11
7 −0.61 −0.33 −0.36 −0.09 −0.04
8 −0.91 −0.89 −0.14 −0.39 −0.05
9 −0.91 −0.89 −0.14 −0.38 −0.33
10 −0.75 −0.43 −0.46 −0.91 −0.70

1–10 2.04 0.83 1.34 1.84 1.07
t-Stat 7.64 6.71 2.59 3.25 1.94

(b) Test set
1 1.46 1.25 1.53 1.50 1.19
2 1.33 1.49 1.27 1.36 1.23
3 1.23 1.11 1.04 1.24 1.19
4 1.02 1.02 0.99 1.15 1.14
5 0.97 0.96 0.96 1.00 1.09
6 0.89 0.90 0.98 0.90 1.02
7 0.82 0.78 0.94 0.88 0.86
8 0.82 0.73 0.90 0.74 0.69
9 0.82 0.73 0.90 0.61 0.69
10 0.68 0.70 0.74 0.65 0.93

1–10 0.78 0.55 0.79 0.85 0.26
t-Stat 4.69 5.39 2.13 2.36 0.64

considerably smaller than their mean returns in the training set and become insignifi-
cant in the test set. This is somewhat expected as the fourth factor of the Carhart model
is the price momentum factor. To our surprise, however, the abnormal returns of NNa
and NNb are not smaller than their mean returns and remain strongly significant. This
implies that the NN models, even though their input features are based on momentum
factors, successfully draw hidden information that is not revealed by plain momentum
strategies. The information ratio (IR) also strongly supports the NN models.

19.5 Machine-learning-based stock recommendation

In the previous sections, stocks are classified into quantiles, and a long–short portfo-
lio is formed by buying past winners and selling past losers. In this strategy, only the
cross-sectional difference is important: as long as the past winners continue to
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Table 19.8 Performance of long–short portfolios

NNa NNb RF JT 52WH Market

(a) Training set
r 2.04 0.83 1.34 1.84 1.07 −0.25
t-Stat 7.64 6.71 2.59 3.25 1.94 −0.60
σ 2.91 1.36 5.66 6.18 6.02 4.50
SR 0.70 0.62 0.24 0.30 0.18 −0.06

CAPM α 2.03 0.85 1.25 1.79 0.94
t-Stat 7.58 7.02 2.50 3.18 1.85
IR 0.70 0.65 0.23 0.29 0.17

FF α 2.22 0.89 1.65 2.13 1.32
t-Stat 9.86 7.29 4.16 4.06 3.43
IR 0.93 0.69 0.39 0.38 0.32

Carhart α 2.01 0.84 0.77 0.81 0.40
t-Stat 9.01 6.67 2.78 2.75 1.67
IR 0.89 0.66 0.27 0.27 0.16

(b) Test set
r 0.78 0.55 0.79 0.85 0.26 0.68
t-Stat 4.69 5.39 2.13 2.36 0.64 3.30
σ 3.65 2.23 8.16 7.88 8.98 4.49
SR 0.21 0.25 0.10 0.11 0.03 0.15

CAPM α 0.85 0.49 1.10 0.97 0.77
t-Stat 5.07 4.83 2.99 2.68 2.00
IR 0.24 0.22 0.14 0.12 0.09

FF α 0.91 0.54 1.19 1.16 0.85
t-Stat 5.72 5.28 3.28 3.18 2.27
IR 0.27 0.25 0.15 0.15 0.11

Carhart α 0.78 0.59 0.18 −0.06 −0.18
t-Stat 4.92 5.70 0.64 −0.25 −0.62
IR 0.24 0.27 0.03 −0.01 −0.03

outperform the past losers, the overall market performance does not matter. On the
other hand, stock recommendation (buy, hold, or sell) issued by analysts is concerned
about the absolute performance of individual stocks. Buy recommendation implies
the price of the stock is expected to rise, whereas sell implies it is expected to fall.
Hold means the price is expected to remain around the current value.

While analysts incorporate various information, e.g. accounting ratios and indus-
try prospects, into their forecast, their predictability is known to be rather limited. In
this section, we examine whether machine learning can effectively classify stocks into
the three recommendation categories using only the momentum-related features. This
will reveal the time-series predictability of our model, unlike the long–short strategy
where only the cross-sectional difference matters.



376 Big data recommender systems, volume 2

250

200

150

100

50

0

–50
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

C
um

ul
at

iv
e 

re
tu

rn
NNa
NNb
RF
JT
52WH
Market

NNa
NNb
RF
JT
52WH
Market

500

400

300

C
um

ul
at

iv
e 

re
tu

rn

200

100

0

–100
1974 1979 1984 1989 1994 1999 2004 2009 2014

(b)

(a)

Figure 19.1 Cumulative returns of long–short portfolios: (a) training set and (b)
test set

19.5.1 Design of the model

As before, we choose an NN with the same features defined in Table 19.1 as our
model. At month t, all available stocks are labelled as buy, hold, or sell using the
following criteria:

Buy, if rt
i > m + τ ;

Sell, if rt
i < m − τ ;

Hold, otherwise.

(19.4)
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Considering that the monthly market volatility is about 4.5%, we set τ = 4%. For
the value of m, we test two values, m = 0% and m = 1%.2 An alternative method
would be to set different thresholds for different stocks using their characteristics. For
instance, the mean and standard deviation of each stock returns could be employed
to determine m and τ for the stock. One difficulty, however, is that the thresholds
of the stocks that are not included in the training set cannot be determined until the
stocks accumulate a sufficient return history to compute mean and standard deviation.
Therefore, we apply the common thresholds as defined above to all stocks.

19.5.2 Empirical results

Table 19.9 reports the performance of our model. In the training set, we obtain the
overall accuracy of 46.52% when m = 0 and 46.61% when m = 1. These values are
significantly higher than the accuracy of random classification, 33.3%. Accuracy
drops in the test set, but the values are still above 40% for both cases. The per-class
precision and recall values indicate that the predictability of the model is comparable
across all classes but slightly worse for the buy class and better for the sell class,
especially when m = 1. The value of m does not appear to make a noticeable difference
in the results.

In terms of economic significance, the stocks in the buy class have a higher mean
return than those in hold, which subsequently have a higher mean return than those in
sell. Furthermore, the return of the buy-minus-sell (B − S) portfolio is significantly
greater than 0 in both training and test sets. These indicate that the mean return of
the buy stocks is significantly higher than that of the sell stocks, and our model can
classify stocks as intended.

However, the predictability of our model appears to be rather weak when the
returns are compared to the thresholds. The mean return of the buy stocks are sig-
nificantly lower than the threshold; 0.4% (training set) and 1.11% (test set) vs. 4%
when m = 0, whereas that of the sell stocks are significantly higher than the thresh-
old; −0.13% (training set) and 0.79% (test set) vs. −4% when m = 0. In addition,
although the model works fairly on average, Figures 19.2 and 19.3 reveal a reversal
of returns between hold and sell for an extended period. Interestingly, the buy and
sell stocks are volatile and highly correlated with each other, whereas the hold stocks
are less volatile and show a very different behaviour. The return of the B − S portfo-
lio cannot be explained by any of the factor models as evidenced by the significant
abnormal returns.

The lower mean return of the B − S portfolio compared to the long–short port-
folio in the previous section can be to some extent attributed to its smaller number of
classes: the previous long–short portfolio consists of the stocks in the two extreme
deciles, whereas the B − S portfolio consists of the stocks in the two extremely ter-
ciles. Overall, the empirical results suggest that our NN-based stock recommendation
system can distinguish good stocks from bad ones.

2We could use the mean return of the market, but it is negative during the training sample period.
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Table 19.9 Stock recommendation performance

(a) Training set

m = 0 m = 1

Buy Hold Sell B − S Buy Hold Sell B − S

r − rf 0.40 0.07 −0.13 0.53 0.53 0.30 −0.02 0.55
t-Stat 0.57 0.19 −0.18 2.41 1.05 1.57 0.34 3.78
σ 7.74 4.00 7.62 2.41 8.06 3.78 7.17 2.31
SR 0.05 0.02 −0.02 0.22 0.07 0.08 0.00 0.24

CAPM α 0.77 0.27 0.20 0.57 0.91 0.48 0.30 0.61
t-Stat 2.17 1.78 0.47 2.68 2.32 3.05 0.81 3.12
IR 0.20 0.16 0.04 0.25 0.22 0.28 0.07 0.29

FF3 α 0.38 0.04 −0.32 0.70 0.49 0.26 −0.17 0.65
t-Stat 2.31 0.49 −2.01 3.51 2.55 2.48 −1.52 3.30
IR 0.22 0.04 −0.19 0.33 0.24 0.24 −0.15 0.31

Cahart α 0.21 0.00 −0.30 0.51 0.31 0.22 −0.16 0.48
t-Stat 1.29 −0.02 −1.85 2.60 1.65 2.05 −1.43 2.42
IR 0.13 0.00 −0.18 0.26 0.16 0.20 −0.14 0.24

Precision 41.39 48.00 49.75 39.06 46.67 49.95
Recall 44.28 40.75 53.65 31.44 40.73 61.58
F1-score 42.79 44.08 51.62 34.84 43.50 55.16
Accuracy 46.52 46.61

(b) Test set

r − rf 1.11 0.89 0.79 0.31 1.09 0.92 0.85 0.24
t-Stat 3.72 5.56 2.45 3.33 4.08 7.52 3.68 4.75
σ 6.51 3.51 7.11 2.06 7.19 3.41 6.53 2.26
SR 0.17 0.25 0.11 0.15 0.15 0.27 0.13 0.11

CAPM α 0.29 0.45 −0.05 0.35 0.23 0.49 0.05 0.18
t-Stat 1.74 5.10 −0.27 3.68 1.14 5.76 0.28 1.77
IR 0.08 0.24 −0.01 0.17 0.05 0.26 0.01 0.08

FF3 α 0.08 0.25 −0.35 0.43 0.02 0.31 −0.23 0.25
t-Stat 0.80 3.71 −2.56 4.57 0.12 4.54 −2.11 2.47
IR 0.04 0.17 −0.12 0.22 0.01 0.22 −0.10 0.12

Carhart α 0.18 0.20 −0.11 0.29 0.21 0.25 −0.05 0.26
t-Stat 1.83 2.93 −0.84 3.23 1.63 3.67 −0.49 2.56
IR 0.09 0.14 −0.04 0.16 0.08 0.18 −0.02 0.12

Precision 36.64 47.72 38.10 34.87 48.01 40.13
Recall 34.07 41.94 45.79 24.28 41.79 55.74
F1-score 35.31 44.64 41.59 28.63 44.68 46.66
Accuracy 40.45 41.23
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Figure 19.2 Cumulative returns of buy/hold/sell portfolios: m = 0. (a) Training set
and (b) test set

19.6 Conclusion

In this chapter, we develop an NN model for stock classification that uses input
features primarily derived from momentum factors. We apply the model to two
important stock prediction problems, long–short strategy construction and stock
recommendation, and evaluate it from both statistical and economic perspectives.

When applied to long–short strategy construction, our model generates a sig-
nificant profit and outperforms conventional momentum strategies as well as a
random forest model. In spite of using only momentum-based features, the long–short
portfolio from our model behaves distinctively from other momentum-based portfo-
lios and is characterized by remarkably low volatility. This suggests that our model
exploits hidden information in the input features. This claim is further supported by
the highly significant abnormal return from the Carhart four-factor model.
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Figure 19.3 Cumulative returns of buy/hold/sell portfolios: m = 1. (a) Training set
and (b) test set

Empirical findings from the second case study suggest that our model can dis-
tinguish good stocks from bad ones. However, the evidence is not as convincing as
in the first case. Our model appears to be better suited to cross-sectional prediction
while having a limited ability for time-series prediction.

Good classification performance does not always reflect good economic perfor-
mance. Our NN model and the random forest model show a similar classification
performance, but our model generates a substantially higher SR. This throws two
important implications: (1) it is critical to define an objective function for machine
learning that is well aligned with economic performance; (2) models should be eval-
uated not only from a statistical perspective but also from an economic perspective.

This study does not elaborate on feature selection. A sensitivity analysis can
help identify input features important for cross-sectional prediction and those for
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time-series prediction and provides a further insight to discover new features that can
enhance the performance.
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Chapter 20

The role of smartphone in recommender systems:
opportunities and challenges

Peifeng Yin∗

The popularity of smartphones in people’s daily life brings new opportunities as well
as challenges in recommender system. New opportunities include new available con-
text data, e.g., user interaction time (usually from native mobile app) and geo-location
data (from equipped GPS sensors). These metainformation provides different ways
of inferring user preference, which ultimately improves the recommendation perfor-
mance. For instance, with record of tap-in and tap-out timestamp, the dwell time can
be estimated. It thus provides an opportunity to address the “silent viewing” issue
by inferring people’s implicit rating, which will benefit conventional recommender
systems that suffer from rating-sparsity. At the meantime, new challenges are mainly
in two-fold. First, such side information is not included in conventional recommenda-
tion model, and thus it is not easy for integration. Also, recommendation services via
smartphones is itself a scenario different from traditional PC-based one, which leads
to “pitfalls” where existing techniques may fail. Particularly, we focus on two rep-
resentative recommendation scenarios in smartphones, i.e., app and point-of-interest
(POI) recommendation. For the former one, conventional model may recommend apps
that users would never download due to the ignorance of potential conflict between
candidate apps and installed ones. To recommend POI, failure of modeling physical
location may lead to candidates that are too far away. In this chapter, we reveal these
issues and describe corresponding solutions.

20.1 Introduction

The past decades have seen the popularity of smartphones. As survey shows, online
time spent on desktops and laptops decrease year by year, while the mobile internet
usage grows rapidly.1 Such growth of mobile usage leads to the popup of planted
and new services, e.g., mobile news, geo-located messages, location-based social

*Center for Social Data Analytics, IBM Almaden Research Center, San Jose, United States
1http://www.businessinsider.com/people-now-spend-more-internet-time-on-mobile-than-desktops-or-
laptops-2016-4
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networks (LBSNs) and mobile app stores. With appearance of these new scenarios,
requirement of recommendation also arises. For instance, on mobile news, recom-
mending new articles to people is needed to increase the user engagement in the news
feed service. Also, the mobile app recommender system frees the burden of searching
desired apps among tons of candidates in the store. Finally in LBSN, recommendation
of new POIs not only help people explore the physical environment but also enhance
the social interactions among friends in the real world.

Recommendation on smartphone is different from conventional recommender
scenarios in three-fold. First, besides explicit rating, the record of user behaviors such
as tap-in, tap-out enriches the side information for preference modeling. Second, in
app recommendation, installed apps may have conflict with candidate ones. In this
case, recommending apps similar to installed ones may fail since user may refuse to
replace existing ones. Third, in POI recommendation, vising a location recurs cost
that cannot be neglected. Therefore, the success of recommended POI depends not
only the user preference but also the physic distance. In the rest of the section, we
discuss each one in details.

The task of recommendation is modeled as the prediction of missing rating.
Imagine a big matrix, where each row represents a user while each column represents
an item. The element value of this matrix is the rating of the corresponding user to that
particular item. The recommendation thus aims to find those items that have not been
rated by the user but would get high value. In summary, the essence of conventional
recommendation is to infer user preference according to his/her historical ratings. For
users who do not have many ratings, the effectiveness of interest inference would be
discounted. Similarly, to recommend an item, its historical ratings are also important
to infer its quality. And if the rating data is sparse, recommendation performance
would be affected. This is an issue known as cold-start problem.

To address the cold-start problem, many works proposed methods to rely on
other information besides rating history, e.g., user profile similarity [1,2], item profile
similarity [3,4] and social recommendation [5,6]. Work [7] provides a different angle.
Based on an analysis on records of a mobile joke-reading app, the authors found that
there are a large number of users who do not give rating while actively using the app
to read jokes. This scenario is denoted as silent viewing behavior. The existence of
silent users reveals such a concern that even as time passes, the rating history will not
increase, and thus the cold-start problem is not limited to new users.

Although people may incline not to give explicit ratings, they do spend some
time on viewing the item. And the time spent is a useful indicator of his/her altitude.
To give an example, consider a customer walking into a shop to buy a handbag. For
a handbag of style A, the customer simply gave a glance and walked away. For style
B, she spent quite a few minutes, picking it up and carefully checking its details of
variant angles. In the end, the customer may buy neither one. But a wise salesman
would recommend more candidate handbags whose styles are closer to B rather than
A. The smartphone in this scenario facilitates the use of dwell time. Internet usage via
smartphones usually happens in the native mobile apps, where recording of people
behavior is much more convenient than that via either desktop or laptop. Logs of
user actions, such as tap-in and tap-out, together with time-stamps can be easily
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transformed to dwell time. With this data and sparse explicit ratings, researchers are
able to develop models interpreting such implicit feedback. Such extra information
finally would help improve the recommendation effectiveness. In Section 20.2, we
describe one of these trials.

The popularity of smart phone comes together with the popularity of app stores,
where developers publish their developed apps for people to download and use. A
statistic report from 2107 indicates that there are about 28 and 22 million apps in
Google play and Apple app store, respectively.2 And the total number of annual app
downloads is estimated to be 352.9 billion by 2021.3 Such large volume generates the
need of app recommendation service. Compared to conventional recommendation,
app recommendation may rely on the smart phone to collect extra information to
improve accuracy. For example, the app usage data could be analyzed to identify useful
patterns [8]. Also, this usage data could be further used to adjust the explicit ratings
that are shown in the app store [9,10]. Finally, the GPS data may also be exploited as
contextual information to help recommend geographical-sensitive apps [11].

Conventional recommendation task aims at recommending candidate items that
are predicted to be highly correlated to target user’s interest, based on his/her historical
ratings. Take the movie recommendation as an example. If the recommender system
observed that the user gave high ratings to movies Star War, Guardians of Galaxy,
it would recommend Spider Man, Star Trek, etc., as they are similar (e.g., all of
them belong to the genre of science fiction). This rationale may fail when it comes to
recommend mobile apps in app store. Consider the following scenario. Suppose a user
installs a weather forecast app in her smartphone and gives a high rating. A content-
based recommender system may keep recommending apps of similar functions, i.e.,
weather forecast in this case. It is highly likely that the user would not install the
recommended app since she has already owned the one that works pretty well. On
the other hand, with the same scenario, if the app is not weather forecast, but some
game, the result would be different.

The above example reveals that the history may not always help but block the
future recommendation. In the context of the app recommendation, it means the
installment of one app may affect users’ future adoption of similar apps [12]. One
intuition is that for one-shot consumption item such as movies and books, people
would usually accept similar items. For continuous consumption item such as weather
forecast, calculate and phone flashlight, apps of similar functions may not be rejected.
However, an analysis reveals that some users did install multiple apps of similar
functions [12]. Therefore, in app recommendation, the major challenge is when the
user would accept/reject recommended similar apps. We cover details of the solution
in Section 20.3

One notable feature of smart phone is its equipment of GPS sensor, which can
record the current geographical location. This technology leads to the popularity
of diversified LBSN services. In LBSN, people can choose to publish the visited

2https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
3https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
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location, also known as POI and share it with his/her online friends. It provides a
new way of social interaction. On the other hand, the POI recommendation service is
needed to help people explore their nearby environment and facilitate location-based
marketing. For conventional recommendation, accessing the recommended item is
out of the scope since recommended items, e.g., movies, books and mobile apps,
usually brings tiny, if not negligible, cost. For POI recommendation, however, people
need to be physically visiting the location in the real world. This is a quite different
accessing pattern as the cost can no longer be ignored. Particularly, there are three
main factors, i.e., (i) geographical, (ii) social and (iii) temporal.

Geographical factor considers the distance between target user’s current location
and the recommended POI. In [13], it is found that the check-in pattern satisfies a
power-law distribution. That means, the probability of check-in a location exponen-
tially decreases as the distance increases. To put it another way, in reality, people
usually do not go far away to visit a location. For conventional recommender sys-
tem that solely focuses on user preference, it may recommend a New York Chinese
restaurant to a Chinese food lover located in San Francisco. This case is definitely
insensible.

Social factors consider the influence of social friends on a user to check-in a
location. For online recommendation, the item accessing is mainly determined by
individual interest. For offline POI check-in, on the other hand, the purpose is not to
satisfy personal interest. Sometimes, people visit a location for meeting their friends
and may check-in POI that does not match their preference. In POI recommenda-
tion, such social influence needs to be considered. Particularly, consider a scenario
of recommending a location for group meeting, where individual interests are too
diversified to unify, social influence is especially important. In Section 20.4.2, we
pick two representative works [14,15] to describe methods of integrating this factor.

The final factor relates to temporal patterns of people’s daily life. A few
works [16–19] have reported significant temporal patterns, particularly hours of the
day, in people’s daily location check-in behavior. For example, a person may go to
work at 9:00 am and visit restaurant for lunch and dinner at 12:00 pm and 6:00 pm,
respectively. On a weekday evening, he may check-in Gym for workout while going
to theatre or bars on weekend night. Considering this pattern, a recommender sys-
tem may avoid recommending POIs that conflict with it, e.g., recommending bars on
weekday or dinner restaurant in the morning. Particular, the temporal pattern can be
summarized as two properties, namely, nonuniformness and consecutiveness [20,21].
The former one captures people’s preference to particular locations at specific hours,
while the latter one indicates the sequential preference consistency over short time. In
Section 20.4.3, we describe details of modeling these two properties and integrating
temporal pattern into recommendation.

The rest of this chapter is organized as follows. In Section 20.2, we describe
details of modeling user dwell time and show how the inferred “pseudo rating” helps
conventional recommendation techniques. In Section 20.3, we introduce models of
contest between installed mobile apps and candidates. In Section 20.4, we cover
the geographical, social and temporal influence in POI recommendation. Finally we
conclude this chapter in Section 20.5.
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20.2 Silence is also evidence: interpret dwell time

In [7], an analysis was conducted on 108,743 users’ behaviors on a mobile app for
joke sharing and it revealed that 95.93% of people never gave a rating. This is a bad
news for rating-based recommendation techniques. The issue is thus how to exploit
these active viewer’s silent patterns to facilitate recommendation.

20.2.1 Modeling the silence behavior

While there is no way to ask the silent users why they do not rate after viewing
the item, we may get some insight from psychologic work. In [22], an experiment
was conducted to simulate people’s process of decision-making. Particularly in the
experiment, participants were asked to make a series of two alternative-forced choices,
and their spent time was measured. Researchers argue that the time lag between being
offered a question and giving an answer represents the process of evidence collection,
or exactly information accumulation. People would not make a choice until collected
evidence (information) accesses some threshold.

Similarly, we may assume the existence of a rating threshold for each person,
and the silence behavior suggests the item’s quality is lower than her/his threshold. A
further analysis demonstrates the potential existence of such action bar. In [7], authors
collected all accessed items for each user and grouped them to two categories: positive
vote and neutral. The former one means the user gives positive rate to the item after
viewing it while the latter one suggests the user kept silent. Then for each category,
the average number of total positive votes is calculated. As comparison, it is shown
that items of the first category on average have a higher number of total positive votes,
suggesting its better quality than that of the other category. This observation reflected
that silence is due to the item’s quality lower than action bar.

Formally, let b and q denote the action bound of a person and the quality of an
item, respectively. The probability that the person would give a positive vote after
viewing the item is modeled as a random variable generated by the beta process.

Beta(p; b, q) = �(q + b)

�(q)�(b)
pq−1(1 − p)b−1 (20.1)

where �(x) = (x − 1)! refers to a gamma function. We can see the insight of (20.1)
by computing the expected value of silence probability as below.

P(v = 0|b, q) = 1 − P(v = 1|b, q) = 1 −
∫ 1

0
p · Beta(p; q, b) = b

q + b

(20.2)

where v is a binary variable indicating whether the user votes (v = 1) or not (v = 0).
As can be seen in (20.2), the silence behavior is determined by two factors: item quality
and personal action bound. Specifically, the expected probability is correlated with
the proportion of action bound b in the sum of action bound b and the quality q. The
higher the proportion is, the higher the probability of keeping silence. It captures our
earlier assumption that if the user’s voting threshold is high, she/he is likely to keep
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silent unless viewing an excellent item. In the experiment, the action bound b is a
personalized parameter that needs to be learned from the data while the item quality
q can be approximated by the total number of positive vote it has received.

20.2.2 Modeling the dwell time

With the model of silence behavior with the beta process, we may think about people’s
dwell time with regard to diversified scenarios. Particularly, given a quality q and
action bound b, we categorize different combinations in the following three cases:

● q � b. The quality largely exceeds the bound and the user would definitely give
a vote. In reality, it means the item is far beyond one’s expectation, and a person
may view it multiple times before switching to others, leading to an extra long
dwell time.

● q ≈ b. The item’s quality is approximate to one’s action bound, suggesting its
falling within one’s expectation. A person may view the item but hesitate whether
to vote or not. This is a rather ambiguous area and the voing/silence is purely
random. And the length of the dwell time would be as expected.

● q � b. The item is far lower than threshold. The user would not like it and may
even quit before finishing viewing this item. This behavior therefore results in an
extremely short dwell time.

The three scenarios give a rough concept of how the dwell time could be
interpreted to a person’s attitude. However, the challenge lies in the mathematical
quantification of dwell time in terms of “extra long,” “as expected” and “extremely
short,” as described above.

Normally, we can categorize factors impacting the dwell time into two types:
common and personal. The first one represents the expected time required viewing
the item. It largely depends on the item format, e.g., picture, texts, video, audio. The
second factor captures the person’s factor due to the difference between the item’s
quality and the user’s expectation (i.e., action bound in our case). Formally, we may
use the following equation to model dwell time t:

t = α + β + ξ (20.3)

where α and β are the common factor and the personal factor, respectively, and ξ is
a random noise. For textual data, the common factor is correlated to the length of
the item and the average reading speed. Formally, let l and r represent the length and
reading speed, we may model the common factor as log (l/r). For personal factor,
we use the difference of quality and action bound to model, i.e., γ · (q − b). In
general, this form captures the three scenarios mentioned above. When quality is
beyond expectation, q − b adds extra dwell time to common one and when quality is
smaller than action bound, the q − b is a negative value and thus reduces the dwell
time. Particularly, the variable γ is a positive parameter adjusting the contribution of
quality-bound difference into the dwell time. Semantically, it represents a person’s
sensitivity. For instance, big value of γ means the person is really “picky,” spending
extremely long time on items of good quality and little time on low ones. If α is
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small, the impact of quality difference is tiny on the dwell time, suggesting the user
is quite tolerant to low-quality items. Finally the random noise ξ may be modeled
as a Gaussian white noise. In summary, the dwell time distribution can be written as
below.

P(t|l, q, b, r, γ ) = N ( log t; μ(r, l, γ , q, b), σ 2) = 1√
2πσ 2

· e−(( log t−μ)/2σ 2)

where μ(r, l, γ , q, b) = log (l/r) + γ · (q − b) (20.4)

Note that the random noise ξ is modeled as the Gaussian distribution with variance
σ 2 and thus does not appear in the probability density function. Also, the time is used
in logarithmic form. This setting comes from the data analysis that the distribution of
dwell time satisfies a log-normal distribution [7]. It is worth noting that the choice of
distribution is rather data-driven and may depend on the specific task. In this work,
the time of reading jokes fits the log-normal while the viewing of web pages fits better
on Weibull distribution [23].

20.2.3 Model inference and application

In earlier sections we assume each user has a single personalized action bound. One
issue is a single value may be insufficient. In reality, people could have different
action bounds to different items. One factor may be the category. For instance, a
movie reviewer may be highly picky (high action bound) for action genre, while
rather tolerant (low action bound) for animation. The study of such correlation is out
of this chapter’s scope. With no extra information, we may assume there is a set of
global action bounds shared by all people and each person differs from others by the
probability distribution over these bounds. This idea comes from latent topic model,
where all documents share the same latent topics and have individual topic-distribution
vector.

In summary, each user has personalized distribution vector of action bound πi,
dwell time variance σi, reading speed ri, quality sensitivity γi. And all users share
a set of K action bounds 〈b1, . . . , bK 〉. Given the data of items quality qj, length lj,
dwell time tij and voting behavior vij, the log-likelihood function can be represented
as follows:

L (	) =
∑

i,j,k

τ k
ij ( log P(vij|qj, bk ) + log P(tij|lj, qj, bk , ri, γi) + log πik)

+
∑

i

λi

(
∑

k

πik − 1

)
(20.5)

where 	 denotes all parameters and τ k
ij is a binary variable denoting whether the ith

person used kth action bound when viewing and rating jth item.

τ k
ij =

{
1 if bk is used
0 otherwise

(20.6)

The probability of voting behavior P(vij|qj, bk ) can be computed using (20.2),
and the probability of dwell time P(tij|lj, qj, bk , ri, γi) can be referred to (20.4).
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The final term is a constraint that the sum of each person’s distribution vector should
be equal to 1, and the λi is a Lagrange multiplier that can be solved during training.
With learned parameters, we can now apply the model to interpret silence behavior
and facilitate recommendation. Particularly, there are three steps:

Step I
Firstly, given a user’s dwell time on a particular item, we estimate the action bound
that is most likely used. Formally, given an item’s quality q and length l, the estimation
of action bound b∗ based on ith user’s dwell time t is shown as below.

b∗ = bk∗ where k∗ = arg max
k

P(t|l, q, bk , ri, γi) · πik (20.7)

Step II
Next, the expected rating is then computed, referred to as pseudo vote. With an
estimated action bound, we can map the user’s dwell time to a most likely rate,
computed by the expected value of voting, as shown in the following equation:

E(v|q, b∗) = 1 · q

q + b∗ + 0 · b∗

q + b∗ = q

q + b∗ (20.8)

Step III
Finally, all inferred pseudo votes and real votes are combined together and exploit
existing rating-based recommendation techniques to model user preference and make
recommendation.

20.3 App recommendation: contest between temptation and
satisfaction

As mentioned in Introduction, the app recommendation is different from common
recommendation scenario due to potential contest between installed apps and can-
didates. Ignorance of such factor may result in failure in recommendation. In this
section, we give a deep review and analysis about how conventional recommender
system may fail and propose solution to address such issue.

20.3.1 Failure of recommendation

App recommendation can be modeled as conventional task where the install/download
of an app is treated as a positive rating and the task is to recommend candidate ones
the target user may likely install based on the download history. Now we demonstrate
scenarios where recommendation fails. Particularly, we focus on three wide-used
methods, i.e., user-based collaborative filtering (UCF), item-based collaborative
filtering (ICF) and content-based recommendation (CBR).

The key idea of UCF is to find users who have accessed the same items. This set
of users is thought to have similar interests. Then when one of them has given a high
rating on a new item, it can thus be recommended to other similar users. Consider
the scenario in Figure 20.1(a), where user 1 and 2 have installed a large number of
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(a)

App1 App2

App group

User 1 User 2

(b) (c)

App1 App2 App1 App2 App3

User User

User
group

Figure 20.1 Three scenarios of recommendation failure. The solid arrow
represents the downloading behavior and the dashed one indicates
recommendation: (a) UCF, (b) ICF and (c) CBR

the same apps. Now they, respectively, install app I and app II. Based on the UCF
algorithm, app 1 would be recommended to user 2 while app 2 to user 1. Suppose the
two apps are of the similar function, e.g., weather forecast, and work pretty well. Then
neither of the users would install the recommended apps as there is no motivation to
switch.

Similar to UCF, ICF measures similarity of two items based on the set of people
who have accessed both. If a user who has not viewed either one gave high rating
to one of them, then the other one would be recommended. Consider a scenario
where a large number of people who download app 1 also download app 2 in near
future. The recommender system would thus recognize app 1 and app 2 are similar
items, as shown in Figure 20.1(b). Now a user who does not install either one has
downloaded app 2, the system would recommend app 1 based on ICF algorithm. This
recommended item may be rejected. The fact that people who have app 1 switch to
app 2 suggests the latter one has a better quality. Therefore, if the user has already
downloaded the better one, there is no reason to switch to the other app.

Finally, the rationale of CBF is to recommend similar items based on target user’s
rating history. To differ from ICF, CBF usually measures similarity of two items based
on their content, e.g., textual description, tags and categories. Figure 20.1(c) shows
an example where the target user receives a list recommended weather forecast apps
after downloading one. Again recommendation would fail for the same reason as in
first example (Figure 20.1(a)), the user has no motivation to install multiple apps
serving the same functionality.

20.3.2 Modeling the contest—actual-tempting model

The above examples demonstrate the potential failure of existing recommender sys-
tems. The reason lies in the ignorance of contest between existing apps and the
candidate ones. When a user views a candidate app, the final decision of install-
ment depends on his/her estimation that whether this app would bring better user
satisfaction compared to similar one(s) he/she is using.

To model such contest, we define two concepts, i.e., actual value and tempting
value. The former one represents a user’s rating of an app’s quality after installing and
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using it, while the latter one stands for the user’s estimation of the candidate app’s
quality when viewing it in the list. Given two apps, one of which is installed one and
the other is a candidate with similar functionality. The process of decision-making is
the contest between the first app’s actual value and the second one’s tempting value.
Formally, let ai represents ith app’s actual value and tj the jth candidate app’s tempting
value, the contest result can be modeled by a Bernoulli process where the parameter
pij is generated by a beta process with (ai, tj).

P(vi,j|ai, tj) =
∫ 1

0
P(vij|pij)P(pij|ai, tj)dpij (20.9)

The vij ∈ {−1, 1} is a binary variable denoting the contest result, where −1 means
the user does not download the appj (candidate loses the contest), while 1 means
the install of appj (candidate wins the contest with existing appi). With no loss of
generality, the Bernoulli process of P(vij|pij) can be written in the following form:

P(vij|pij) =
{

pij if vij = 1
1 − pij otherwise

= vij · pij + 1 − vij

2
(20.10)

With (20.10), the probability of contest P(vij|ai, tj) can be rewritten as

P(vij|ai, tj) = vij

∫ 1

0
pijBe(pij; ai, tj)dpij + 1 − vij

2
= tj

tj + ai
· vij + 1 − vij

2

=
{ tj

ai+tj
if vij = 1

ai
ai+tj

otherwise
(20.11)

As shown in the (20.11), the probability of download vij = 1 is associated with the
proportional tempting value over actual value. The larger the tempting value is, the
higher the probability would be. This equation is the core model for contest. We name
it as actual-tempting model.

Now we extend the two-app contest to a general case. Suppose the user is viewing
a candidate appj and she has already installed n apps of similar functions. Formally,
let wij ∈ [0, 1] denote the function similarity between the ith installed app and the
target one. That means, wij = 0 suggests the two apps are totally different while
wij = 1 indicates the two apps are exactly the same. The similarity thus represents the
probability that the installed app would be used to compare with the candidate when
the user is making decision. Let Su,j denote the set of installed apps by user u when
she is viewing the appj, we can compute the contest probability as

P(vij|Au,j, tj) =
∏

i∈Su,j

(
P(vij|ai, tj)

)τ

u,i,j
(20.12)

where the τu,i,j ∈ {0, 1} is binary variable indicating whether the user selects appi

for comparison when viewing appj. Specifically we constrain that the probability is
proportional to the function similarity, i.e., P(τu,i,j) ∝ wij.
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Given the observed user-app interaction (view/download) data D, the log-
likelihood can be computed as

log P(D|A, T) =
∑

u,j

Iu,j

∑

i∈Su,j

τu,i,j log P(vi,j|ai, tj) (20.13)

where the Iu,j is an indicator variable showing whether the user u has interacted with
appj in the data.

One can see that the log-likelihood objective function cannot be directly solved
due to the unknown variable τu,i,j. To address this issue, we can obtain parameters by
maximizing the expected log-likelihood, as shown in the following equation:

E (log P(D|A, T)) =
∑

u,j

Iu,j

∑

i∈Su,j

E(τu,i,j) log P(vij|ai, tj)

∝
∑

u,j

Iu,j

∑

i∈Su,j

wi,j log P(vij|ai, tj) (20.14)

So far we have assumed there exists a similarity wij for each pair of apps since our
focus is to model the contest. In practice, there are multiple ways to implement such
function. For example, a straightforward way is to use CBR to compute the content
similarity based on textual description, tag, category, etc. A more advanced method
would use latent topic models, e.g., PLSA [24], LDA [25], to compute the similarity
on latent space.

20.3.3 Insights of the model

Although aiming at recommending apps, the trained actual-tempting model defined
in (20.11) can provide insights of apps’ characteristics such as quality, download
volume and category. This “side-product” indirectly demonstrate the effectiveness of
the model. By design, the actual value represents the satisfaction of the app brought to
users after it is downloaded and used. On the other hand, the tempting value is the user’s
expectation of the satisfaction that the app will bring. In other words, actual value
reflects the user’s rating of the app while the tempting value suggests the capability of
attracting people. The analysis conducted by [12] demonstrates that there is a linear
correlation between actual value and the app’s average rating on app store. Also, it
shows that larger tempting value also has higher probability of app install.

Another interesting observation comes from the average difference between
actual value and tempting value for each app category. Table 20.1 lists app categories

Table 20.1 Example categories of actual-tempting value difference

Actual > Tempting Actual < Tempting Actual ≈ Tempting

Photo and video Reference Medical
Music Travel Education
Social network – Books
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whose actual value is (i) larger than, (ii) close to, or (iii) smaller than their tempting
value. For the first category, the actual value is usually larger than tempting value.
This suggests existing apps would block future install of similar apps. Representative
examples are photo and video, music and social network. The first one is usually tools
to beautify photos or produce short videos, and the second one is usually online music
players. Users are unlikely to switch other tools of similar functions if the current one
works well. Also, the social network leads to “user engagement.” That means once
user is active in one type of social network, she is unwilling to switch to a different
one with no social friends.

For categories whose actual value are close to tempting value, people usually can
accurately estimate its function and clearly know what it provides match their expec-
tations. The examples are reference and education. Apps falling in these categories
generally provide guidance or instructions.

Finally, if actual value is smaller than tempting value, people would continuously
download similar apps. Examples are education and books, whose apps are usually
one or multiple e-books or e-training classes. Once people complete one, they are
very likely to continue reading/learning similar ones. This category matches the con-
ventional recommended items and existing recommendation techniques (UCF, ICF,
CBR) are supposed to work well.

20.4 POI recommendation: geographical, social and temporal

The goal of POI recommendation in LBSN is to recommend a proper location to check-
in at proper time. Besides user interest as common recommender system, there are
three additional factors to be considered. First, different from online recommendation
where the cost of item access is negligible, POI recommendation needs to consider
the cost of physical check-in, i.e., the time and energy of travel from current point to
a target one. This factor can be simplified as distance. In [13], the factor is named as
Geographical influence. Second, the platform of this recommender system is a social
network, where people have online social friends. Therefore, people’s behavior may
be affected by their friends. In context of LBSN, one example is to find a good place
for hanging out. This factor is named as social influence. Finally, time is an important
factor as people’s daily life shows a regular pattern. Integrating this factor, temporal
influence, would definitely improve the acceptance rate of recommendation.

20.4.1 Geographical influence

In general, most of, if not all, humans reside in a limited area for daily activity. Here
such limited area could be as small as a town or as big as a city. In data analysis, this
phenomenon demonstrates two mobility tendencies: (i) people tend to visit nearby
locations compared to distant ones, (ii) if one location is visited by a person, its nearby
locations would also be visited by the same person in the near future. In [13], analysis
on two LBSN data sets revealed that the check-in behavior satisfies a power-law
distribution.
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Formally, let y denote the check-in probability and x represent the distance
between the target user’s current location and a candidate one, the power-law
distribution correlates the two variables in the following form:

y = a × xb (20.15)

where a and b are distribution parameters.
We can transform the (20.15) to a linear form by applying logarithmic to both

sides:

log y = w0 + w1 log x (20.16)

where w0 = log a and w1 = log b.
Equation (20.16) is known as log–log form. In data analysis, the plot forms a

straight line if two variables satisfying a power-law distribution are drawn in log–log
format. Generally, the dependent variable (i.e., probability y) decreases exponentially
as the independent variable (i.e., the distance x) grows.

Given a data set of historical check-in records, we can sample a pair of POIs that
are checked-in by the same user and then compute its distance. Among all sampled
pairs, the empirical probability can be approximated by the proportion of location
pairs whose distance falls in the corresponding distance bin. To learn the power-law
distribution parameters, we can minimize the following objective function:

L (w0, w1) = 1

2

N∑

n=1

(
w0 + w1 · xn − tn

)2 + λ

2
w2

1 (20.17)

where N is the sample size, xn represents the logarithmic distance of sampled location
pairs and tn is the corresponding empirical check-in probability. Finally, the λ is the
regularization term penalizing large parameter values.

With learned parameters, we can apply naive Bayesian framework to recommend
POI purely based on geographical influence. For ith target user and her visited loca-
tions Li, we can compute the probability that the user has visited these locations via
the product of power-law probability considering all POIs’ pair-wise distance.

P(Li) =
∏

lm,ln∈Li∧lm �=ln

P(d(lm, ln)) =
∏

lm,ln∈Li∧lm �=ln

(w0 + w1 · logd(lm, ln))

(20.18)

where the function d(lm, ln) calculates the distance between two POIs.
For a particular POI candidate lj, its ranking score with regarding to the target

user’s visited locations Li can be measured by the likelihood of this user checking-in
the location, computed as follows:

P(li|Li) = P(li ∪ Li)

P(Li)
= P(Li)

∏
lm∈Li

P
(
d(lj, lm)

)

P(Li)
=

∏

lm∈Li

P
(
d(lj, lm)

)
(20.19)

Recommendation can be obtained by computing the ranking score as (20.19) for
each candidate and returning those with top-k highest scores.
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20.4.2 Social influence

The popularity of online social network facilitates the social recommendation. The
rationale behind is that online social friends share similar interests [5,26,27], and thus
items accessed by one’s online friend can be recommended to the target user. In [28],
on the other hand, it is found that online social friends do not share many offline POIs
in LBSN compared to online platform. However, social influence is also an important
factor in POI recommendation due to two reasons. First, there is a small portion of
online friends who also hang out together offline. Second, social influence needs to
be considered when recommending a location for group meeting.

To model social influence, one issue is to find the small portion of friends who
actually share offline POIs with the target user. Formally, let fi ∈ Rm denote the check-
in vector of user ui, where m is the total number of locations and the value of each
element of fi is equal to the number of check-in times in the corresponding locations.
Given two users’ location check-in vector, cosine similarity function can be applied
to measure their offline similarity.

sim(ui, uj) = fi · fj

|fi|2 × |fj|2 (20.20)

where | · | denotes the two norms of a vector.
For a target user ui, the social influence of a candidate location l can be modeled

as the weighted sum of the probability that her social friend would check-in this
location.

Ps(l|ui) =
∑

uj∈Ni

sim(ui, uj)P(l|Lj) (20.21)

where the Ni is a set of user ui’s social friends and Lj is the set of visited POIs by
user uj. The P(l|Lj) can use any form of recommendation model (e.g., ICF, CBR)
or the geographical influence as defined in (20.19). Particularly in [15], Pitman-Yor
process [29,30] is used to model the continuously check-in behavior.

Noting that the similarity function can measure check-in behaviors of any user
pairs, one may argue to extend the (20.21) from target user’s social friends Ni to all
other users in the data set. Theoretically this is a valid and most accurate solution.
However, it faces the issue of low efficiency given the large number of user base.
Furthermore, statistical test has shown that on average, users with social link has a
significantly higher common check-ins than two random strangers [15]. Narrowing
down to one’s social friends is thus a practical solution.

The above method introduces a heuristic way of modeling social influence. Alter-
natively, we may model it as a parameter that can be learned from the data. Particularly,
the social influence does not mean online friends share common interest. It means a
user adopts a suggestion from friends, which may or may not reflect her own inter-
est [14]. This interpretation is meaningful in context of LBSN since people may visit
a place in purpose of meeting their friends rather than enjoying the place themselves.

Figure 20.2 shows the general process of how social influence impacts decision-
making when a target user goes to visit some offline POI. Essentially, the POI visiting
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User Friends Interests POIs

Figure 20.2 Social influence on POI check-in

is determined by user interests, which may come from either the user herself or one
of her online friends. In one case, the user herself would determine which location to
visit based on her own interest. In another case, one of her friends may be selected
and thus that friend’s interest would be activated to choose locations. In this case, the
location check-in behavior may be quite different from the user’s. Therefore, modeling
of social influence is transformed to find the mathematical probability that the user
may select a particular friend when visiting some location.

Formally, let u and i, respectively, denote a user and POI; the probability of user
u visiting POI i can be represented as follows:

P(i|u) = P(u, i)

P(u)
∝ P(u, i) =

∑

f ∈Nu∪{u}

∑

z

P(u, f , z, i)

∝
∑

f ∈Nu∪{u}

∑

z

P(f |u)P(z|f )P(i|z) (20.22)

where Nu is the set of user u’s social friends and f is the person selected to determine
check-in behavior. As can be seen, it is either one of friends or the target user u. The
variable z is a latent interest that has preference distribution over all locations.

There are three terms consisting the model in (20.22). The P(f |u) is the social
influence of friend f over target user u. Note that we play a trick viewing the user
herself as one of her “pseudo” friend. The semantic of self-social influence demon-
strates how independent the user is when conducting offline activities. The second
term P(z|f ) measures a person’s distribution over latent interests, which can be viewed
as the learning of user preferences. Finally, the P(i|z) is the process of location clus-
tering, where similar locations would be “clustered” together. It is worth noting that
here the “cluster” means similar locations would have close appearance probability
on the same latent interest z.

Given a data set of user check-in records D, the learning is to maximize the
log-likelihood of the data.

L (θ ) =
∑

(u,i)∈D

log P(u, i|θ )

=
∑

(u,i)∈D

∑

f ∈Nu∪{u}

∑

z

(
log P(f |u) + log P(z|f ) + log P(i|z)

)
(20.23)

where θ is a summary of all model parameters.
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20.4.3 Temporal influence

There are many regular patterns in people’s daily life. It improves the success rate
of recommendation when such temporal pattern is integrated. In this subsection, we
introduce the method that extends the most widely used matrix factorization (MF) to
time-sensitive one. This method was originally developed in [21].

MF [31] is a very popular recommendation framework and has been demonstrated
to be highly effective in the Netflix Competition. Formally, let R denote the rating
matrix where each row represents a user, each column stands for an item and the
element value is the rating given by the user to the corresponding item. In POI
recommendation, the item is location and the element value is the number of check-
ins. The MF model assumes there exists k latent factors and each user and item
can be represented as a k-dimension feature vector. The rating is modeled as the
multiplication of these two vectors. Formally, let rij denote the frequency that user
ui visits location lj. The learning of these latent feature vectors is to minimize the
following loss function:

L (U , L) =
∑

i,j

yi,j(ui · lj − rij)2 + α
∑

i

||ui||2F + β
∑

j

||lj||2F (20.24)

where yij ∈ {0, 1} is an indicator variable denoting whether user ui has visited location
lj in the data set. The U , L are set of all users and locations and α, β are nonnegative
regularizer weight to avoid over-fit. Finally, the || · ||2F denotes the Frobenius norm of
a vector.

In [21], temporal influence are summarized into two patterns, i.e., nonuni-
formness and consecutiveness. The first one suggests a user has different check-in
behaviors at different time, while the second one indicates such difference is propor-
tional to the time interval. In the following, we extend the basic MF framework to
integrate these two patterns.

The nonuniformness indicates a user should have time-sensitive latent fea-
ture vectors. To model this property, we assume there exists discrete time frames
{1, 2, . . . , T }. Here, the unit of time is quite flexible and largely depends on the appli-
cation. For example, if the goal is to model daily temporal pattern, the time frame can
represent the hour. Moreover, if the temporal pattern is weekday/weekend, the time
frame can represent a single day. Under such discrete time frames, each user now has
T feature vectors, represented as ui,t , where t ∈ {1, 2, . . . , T }. The objective function
can thus be rewritten as follows:

LT (U , L) =
∑

i,j,t

yi,j,t(ui,t · lj − rij,t)2 + α
∑

i,t

||ui,t||2F + β
∑

j

||lj||2F (20.25)

where yi,j,t indicates whether user ui has visited POI lj at time t, and rij,t represents the
number of visits at time t. Note that the location feature vector lj is still time-insensitive
as the temporal pattern is only associated with human behaviors.

The consecutiveness suggests the user’s preference do not change much when
the time interval is small. This is reasonable due to small variations of people’s daily
life. For example, a person may check-in a restaurant for dinner in the evening from
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6:00 pm to 7:00 pm. The particular check-in time point is quite random during some
range since humans are not as accurate as machines. There are always unknown
random factors impacting the check-in time. On the other hand, it is rare that the user
would have dinner before 5:00 pm or after 9:00 pm. As a result, the user feature vector
at 6:00 pm would be close to 7:00 pm.

Furthermore, different people have different concepts of time. Some people are
really strict and tightly stick to schedule while others may be quite flexible, and thus
the time span of similar check-in behaviors is relatively longer. In modeling, this
scenario is transformed to such a mathematic problem that how much weight we need
to add to constrain the similarity of two user feature vectors at consecutive time. To
address this issue, we define a temporal coefficient ϕi(t, t − 1) to measure user ui’s
deviations on schedule.

ϕi(t, t − 1) = ri,:,t · ri,:,t−1√||ri,:,t||2F × ||ri,:,t−1||2F
(20.26)

As shown in (20.26), the metric is the cosine similarity of check-in vectors at two
consecutive time. Here, the ri,:,t denotes the row of user ui’s check-in data at time t.
One can see that if a person has similar check-in behaviors between consecutive time
frames, the coefficient would be close to 1. Otherwise, the value would be close to
0. Note that since the element value are all nonnegative, this metric is thus always no
smaller than 0. Also, when t = 1, we treat the “0” time frame as the same as T . This
is because the circulating timing mechanism. For instance, if the time frame is hour,
t = T = 24 means the beginning of the next day and thus is the neighbor of t = 1. If
the time frame is day, t = T = 7 means Sunday, and thus the next neighboring day is
Monday (t = 1).

With defined temporal coefficient, we add it as a penalty to difference between
user feature vectors at consecutive time frame, as shown below.

L ϕ
t =

∑

i,j,t

yi,j,t(ui,t · lj − rij,t)2 + α
∑

i,t

||ui,t||2F + β
∑

j

||lj||2F

+ λ
∑

i,t

ϕi(t, t − 1)||ui,:,t − ui,:,t−1||2F (20.27)

where λ is another nonnegative balance weight controlling global degree of constraint
for consecutiveness

In this section, we focus on modeling single influence while do not discuss
methods of merging them. The combination of different factors into an integrated
recommendation framework is quite complex and may depend on data. With no
domain knowledge, the linear fusion is usually the first choice due to its simplicity,
generality and robustness.

Besides single POI recommendation, one continuous research extends to rec-
ommend a series of POIs, which becomes a new topic known as travel routes, or
itinerary recommendation. Emphasizing more on tourism, travel route recommenda-
tion involves different impacting factors. First, the geographical influence considers
not only the distance between the user and the POI, but also distances between con-
sequential venues. In [32], Rakesh et al. proposed SSTREC model to infer user’s
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POI vising behavior pattern and the route was generated by sequentially picking next
POI that can be visited within a given time window. Second, instead of individual
temporal pattern, itinerary recommendation considers the global temporal pattern,
i.e., travel season [33] for target tour regions. Finally, besides geographical, social
and temporal influence, the quality of scene-viewing becomes an important factor.
Kurashima et al. [34] addressed this issue by making use of high-quality geo-tagged
pictures in photo-sharing websites. Specifically, they clustered pictures with mean-
shift procedure [35] to identify landmarks of good scene-view. Most recently, Wang
et al. [36] exploited convolutionary neural net, or exactly, the VGG16 model [37] to
directly extract features from pictures shared in LBSN and used them as input of pro-
posed probabilistic model. They demonstrated that the integration of visual contents
enhanced the POI recommendation performance.

20.5 Conclusion

In this chapter, we discussed new opportunities and challenges brought by smart
phones to recommender system. Specifically, we covered three recommendation
scenarios, i.e., common recommendation, app recommendation and POI recom-
mendation. For first one, the convenience of dwell time recording in native smart
phone provides opportunity to alleviate the rating sparsity problem. We then intro-
duce methods to model and interpret the dwell time to pseudo user rating. For app
recommendation, we illustrate examples where conventional UCF, ICF and CBR
techniques may fail due to the existence of contest between installed apps and can-
didates. Moreover we introduce probabilistic model that can learn such contest from
the temporal sequence of user-app interactions. Finally, we introduce the model of
geographical, social and temporal influence in POI recommendation on LBSN.

Thanks to the increasing power and diversified apps, smartphones are able to
provide more and more context information. For instance, the continuous sampling of
GPS data results in a user mobility trajectory, which the user can choose to share with
others in trajectory social network. This new format of data brings new challenges
in recommendation, i.e., how to extract meaningful features for recommendation
or other purpose. Readers can refer to some preliminary trials [38–40]. Another
context data comes from the built-in sensors of smartphones, producing novel context-
aware recommendation [41–43]. In the future, more functionalities will emerge in
smartphones, as new recommendation scenarios and challenges.
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Chapter 21

Graph-based recommendations: from data
representation to feature extraction and

application
Amit Tiroshi1, Tsvi Kuflik2, Shlomo Berkovsky3, and

Mohamed Ali (Dali) Kaafar4

Modeling users for the purpose of identifying their preferences and then personalizing
services on the basis of these models is a complex task, primarily due to the need
to take into consideration various explicit and implicit signals, missing or uncertain
information, contextual aspects, and more. In this study, a novel generic approach
for uncovering latent preference patterns from user data is proposed and evaluated.
The approach relies on representing the data using graphs, and then systematically
extracting graph-based features and using them to enrich the original user models.
The extracted features encapsulate complex relationships between users, items, and
metadata. The enhanced user models can then serve as an input to any recommendation
algorithm. The proposed approach is domain-independent (demonstrated on data
from movies, music, and business systems) and is evaluated using several state-of-
the-art machine-learning methods, on different recommendation tasks, and using
different evaluation metrics. Overall, the results show an unanimous improvement in
the recommendation accuracy across tasks and domains.

21.1 Introduction

Recommender systems aim at helping users find relevant items among a large vari-
ety of possibilities, based on their preferences [1]. In many cases, these personal
preferences are inferred from patterns that emerge from data about the users’ past
interactions with the system and with other users, as well as additional personal
characteristics available from different sources. These patterns are typically user-
specific and are based on the metadata of both the users and items, as well as on
the interpretation of the observed user interactions [2,3]. Eliciting user preferences
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3Australian Institute of Health Innovation, Macquarie University, Australia
4Department of Computing, Macquarie University, Australia
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is a challenging task because of issues such as changes in user preferences, con-
textual dependencies, privacy constraints, and practical data collection difficulties
[4,5]. Moreover, the collected data may be incomplete, outdated, imprecise, or even
completely inapplicable to the recommendation task at hand. In order to address these
issues, modern recommender systems attempt to capture as much data as possible and
elicit from this data the desired preferences.

Regardless of the technique exploited by a recommender system, it is inherently
bound by the available user data and the features extracted/elicited from it. One
major question that arises in this context is how to engineer1 meaningful features
from often noisy user data? Features may be manually engineered by domain experts.
This approach is considered expensive and non-scalable because of the deep domain
knowledge that is necessary, the creativity required to conceive new features, and
the time needed to populate and evaluate the contribution of the features. A notable
example of this challenge is provided by the Netflix Prize winning team, in their
recap: “while major breakthroughs in the competition were achieved by uncovering
new features underlying the data, those became rare and very hard to get” [6].

An alternative to manual feature engineering is automatic feature engineering,
which is a major area of research in machine learning [7–9]. So far, automatic feature
engineering has mainly focused on either algebraic combinations of existing features,
e.g., summation or averaging of existing features [10] or elicitation of latent fea-
tures [11,12]. The algebraic approaches for automatic feature engineering manage
to produce large quantities of features; however, the relationships between the engi-
neered features and the underlying patterns in the data are often not interpretable [13].
Similarly, the latent feature techniques do not provide sufficient insight regarding the
meaning of the features [14].

In this work, a novel framework is proposed that uses graph-based represen-
tation properties to generate additional features from recommender systems data.
The proposed framework is underpinned by the idea of examining the data from the
graph theory-based perspective, which represents entities and their relationships as
a graph and allows the extraction of a suite of new features computed using estab-
lished graph-based techniques. The extracted features encapsulate information about
the relationships between entities in the graph and lead to new patterns uncovered
in the data. In most cases, they are also interpretable, for example, a node’s degree
represents the importance of the node in the graph, while the path length between two
nodes communicates their relatedness.

The proposed framework offers several benefits for automatic feature extraction.
Given a new dataset, it is usually impossible to determine a-priori which graph rep-
resentations will yield the most informative set of features for the recommendation
generation. Thus, the proposed framework provides a systematic method for gen-
erating and assessing various graph representations, their contribution to the newly
extracted features, and, in turn, to the accuracy of the generated recommendations.
Additionally, since the number of nodes and relationship types in each graph repre-
sentation is different, an exhaustive method of distilling the possible graph metrics
from each representation is proposed.

1Feature engineering is also referred to in the literature as feature extraction, generation, and discovery.
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Two large-scale case studies are conducted to gather extensive empirical evidence
and demonstrate how graph features supplement existing feature sets, improve the
accuracy of the recommendations, and perform adequately as stand-alone out-of-the-
box features. The case studies answer the following questions:

● How does the use of graph features affect the performance of rating predictions
and recommendation generation in different domains and tasks?

● How are the recommendations affected by the subgraphs and their representations
used to generate the graph features?

Multiple datasets, machine-learning mechanisms, and evaluation metrics are
used across the case studies, in order to demonstrate the effectiveness of the approach.
Overall, the results show that graph-based representation and feature extraction allow
for the generation of more accurate recommendations. A comparison across various
graph schemes is conducted, and the justification for systematic feature extraction is
established. Hence, this work concludes the line of research presented in [15–17] and
provides a complete picture that validates the applicability of the graph-based feature
generation approach to recommender systems.

The rest of the chapter is structured as follows. Next, the necessary background is
provided, and the related work is described. Then, the graph representation and graph-
based feature extraction process is formalized, and its advantages and disadvantages
are discussed. Two case studies demonstrating the contribution of the graph-based fea-
tures to the recommendation process are then presented. Through these, the overall
performance of the framework, as well as the performance of certain graph represen-
tations and feature subsets, is evaluated. Finally, the implications of the findings are
discussed, together with the suggested future work.

21.2 Background and related work

Graphs have been exploited in recommender system for many tasks, mainly due to
their ability to represent many entities of different types and their relationships in a
simple data structure that offers a broad variety of metrics and reasoning techniques.
In this section, we provide a general background on the use of graphs in recom-
mender systems, followed by specific aspects of graph representation in recommender
systems and feature engineering.

21.2.1 Graph-based recommender systems

Since social networks were identified as a major source for freely available personal
information, graphs and networks data structures have been used as tools for user
modeling, especially since they combine different entities and links into one simple
structure capturing the links between the entities. This section aims at giving the
readers an idea about how graph techniques are used in graph-based user modeling
and recommender systems. Given the vast amount of prior work, this is only a brief
presentation of recent studies and not an in-depth survey.

What was clearly noticeable was that most of the graph-based representations
were defined for a specific problem, in specific domains, and in many cases they
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applied variants of random walk as the only graph feature used for recommendations.
Pham et al. [18] suggested to use a simple graph representation for recommending
groups to users, tags to groups, and events to users, using a general graph-based model
called HeteRS, while considering the recommendation problem as a query-dependent
node proximity problem. Wu et al. [19] suggested the use of a heterogeneous graph
for representing contextual aspects in addition to items and users, and used random
walk for context-aware recommendation. Lee et al. [20] used an enhanced version of
personalized PageRank algorithm to recommend items to target users and proposed
to reduce the size of the graph by clustering nodes and edges. Shams and Haratizadeh
[21] also applied personalized PageRank over the user/item graph augmented with
pairwise ranking for items recommendation.

In addition to the wide use of random-walk-based algorithms, there is a variety
of task-specific representations and metrics. It is interesting to note that even for
a specific task, a variety of approaches was suggested. For instance, Ostuni et al.
[22] suggested to use tags and sound description represented as a knowledge graph,
from which similarity of nodes was extracted using a specific metric they defined.
In contrast, Mao et al. [23] suggested using graph representation for music tracks
recommendations, where they represented by graphs the relative preferences of users,
e.g., pair-wise preference of tracks. They used the graph as a representation for user
preferences for tracks and calculated the probability of a user liking a track based on
the probability that s/he likes the in-linked tracks.

Some works suggested to use graph representations as an alternative to the clas-
sical collaborative and hybrid recommenders. Moradi et al. [24] used clustering of
graph representation of users and items for generating a model for item- and user-based
collaborative filtering. Bae et al. [25] used graphs for representing co-occurrence of
mobile apps, as logged from users mobile devices, and the similarity of user graphs
was used for finding a neighborhood and generation recommendations. Cordobés
et al. [26] also addressed the app-recommendation problem and explored the potential
of graph representation for several variants of recommendation strategies for recom-
mending apps. Park et al. [27] proposed a graph representation for linking items
based on their similarity, where users were linked to items they rated, such that items
most similar to the items rated by the users could be recommended. Lee and Lee [28]
suggested an approach for graph-based representation of the user–item matrix, where
links among items represent positive ratings, and use entropy to find the items to
recommend to users, thus introducing serendipity into the recommendation process.

A highly relevant line of work focuses on enriching recommender systems dataset
with information extracted from graph representation of the data [29]. The authors
suggested to enrich a dataset of research papers with what the so-called metapath data
links extracted from citations network. They added this information to the existing set
of features, then applied classical matrix factorization, and showed an improvement
to the results using only the original data. Our framework can be considered as a gen-
eralized variant of [29], where a specific set of metrics was extracted from the graph
representation of the data and matrix factorization was applied for recommendation
generation. The studies presented in this work used a variety of metrics, datasets, and
recommendation methods.
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Additional applications of graphs for recommendations include cultural heritage,
tourism, social networks, and more. Chianese and Piccialli [30] used graphs for
representing context evolution in cultural heritage: node-modeled states and transi-
tions between the nodes were based on observation of user behavior. Shen et al. [31]
used graphs for representing tourist attractions and their similarity, where different
graphs could represent content-based, collaborative, and social relationships. Godoy
and Corbellini [32] reviewed the use of folksonomies, which can be naturally seen
as user–item-tag graphs, in recommender systems. Graph-based approaches in user
modeling and recommender systems have become popular, and there exists a number
of tools for analysis of large graphs. We refer interested readers to [33] and [34] for
encompassing reviews of the area.

21.2.1.1 Similarity measurement using graphs and their application
Previous research on graph-based recommender systems focused on measuring the
similarity of two entities in the data (user–item, user–user, or item–item) and asso-
ciated this with a score or rating [35]. Graph-based similarity measurement is based
on metrics extracted from a graph-based representation [36]. Two key approaches for
measuring similarity using graphs are based on paths and random walks.

In the path-based similarity, the distance between graph nodes can be measured
using the shortest path and/or the total number of paths. The definition of the shortest
path may include a combination of the number of edges connecting the two nodes and
the weights of these edges. Shortest path can be computed for a user node and an item
node, in order to quantify the extent to which the user prefers the item. The “number
of paths” approach works similarly, by calculating the number of paths between the
two nodes as a proxy for their relatedness (the more paths, the more related they are).
However, this approach is more computationally intensive.

Random walks can be used to compute similarity by estimating the probability
of one node being reached from another node, given the available graph paths. The
more probable it is that the target node can be reached from the source node, the
higher is the relatedness of the two nodes. Random walks can be either unweighted
(equal probability of edges) or weighted (edges having different probabilities based
on their label, e.g., rating) [36].

Examples of recommendation studies in which the approaches detailed above
were applied can be found in [37–39]. Li and Chen [37] reduced the recommendation
problem to a link prediction problem. That is, the problem of finding whether a user
would like an item was cast as a problem of finding whether a link exists between
the user and item in the graph. A similarity measure between user and item nodes
was computed using random walks. Items were then ranked based on their similarity
scores, such that top scoring items were recommended to users. Using classification
accuracy metrics, this approach was shown to be superior to other non-graph based
similarity ranking methods.

A similar walking distance metric was used in [38], complemented by graph
structure metrics such as the number of sub trees. These metrics were used for the
purpose of link prediction and property value prediction in RDF semantic graphs,
using a learning technique based on an support vector machine (SVM). Experimental
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results showed that the graph features varied in their performance based on the graph
structure on which they operated, for example, full versus partial subtrees. It was also
noted that the newly defined features were not dataset-specific, but could be applied
to any RDF graph. The graph structures in the context of RDF are less applicable
to those used in the approach proposed in this work, because the recommendation
dataset graphs do not follow a hierarchical model of RDFs.

Finally, Konstas et al. [39] developed a graph-based approach for generating
recommendations in social datasets like Last.fm. The work focused on optimizing a
random walk with restarts algorithm. The reported results show an improvement in
recommendations using the random walk approach, compared to the baseline collab-
orative filtering. In the presented work, random walks on a graph, although with static
parameters, are represented by the PageRank score feature. The above studies are also
extended here by generalizing the adoption of graph metrics beyond random walks
and their use for similarity measurements, not bound to any specific graph structure.

21.2.1.2 Representing social data and trust using graphs
Other studies involving graph approaches in recommender systems primarily
addressed the context of representing social, semantic, and trust data. In some studies,
only the graph representation was used as the means to query the data, e.g., neighbor-
ing nodes and the weights of edges connecting to them [40,41], while others utilize
both the graph representation and graph-based reasoning methods [42,43].

A survey of connection-centric approaches in recommender systems [44] exem-
plifies how the data of an email network [45] and of a co-occurrence in web documents
[46] can be represented in graphs. The graph representation of the email interactions
between users defines each user as a node and edges connect users, who corresponded
via email. In the case of web documents, people are again represented as nodes and
edges, connecting people who are mentioned in the same document. When these
graphs are established, they can be used to answer recommendation-related queries.
In the email graph, a query regarding the closeness of users can be answered using a
similarity or distance metric, such as those mentioned in the previous section. In the
web co-occurrence graph, a query regarding people sharing interests can be answered
by counting their common neighbors.

Other graph representation variants are hypergraphs [47]. They differ from graphs
by allowing an edge, denoted by a hyperedge, to connect with multiple nodes. Hyper-
graphs have been proposed in the context of recommendation generation, for the
purpose of representing complex associations, such as social tagging [48–50], where
a tag is attached to an item by a user. If the tag, user, and item are represented by nodes,
at least two edges are required to represent the association between the three entities.
This association can be represented by a hyperedge connecting the three nodes. In
these studies, similarity metrics are composed based on this structure and used for
the recommendation generation. Results presented in [48] show that the similarity
metrics from hypergraphs lead to better recommendations.

Prior works focusing on the means of incorporating trust between users for
the sake of improving the recommendations were surveyed in [51]. For example,
Ma et al. [40] proposed a graph representation encapsulating trust between users.
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The representation modeled users as the graph nodes, and the trust relationships
between them were reflected by the weights on the edges. Data extracted from the
graph, e.g., who trusts whom and to what extent, was used in the recommendation
process, and it was shown to improve the generated recommendations. However, the
graph was used only to represent the data and propagate the trust scores.

Another usage of graphs for recommendation purposes is in the case of geospa-
tial recommendations. Quercia et al. used graphs to find the shortest path between
geographical locations, while also maximizing the enjoyment of the path for the
user [43]. Locations were represented as nodes and connected to each other based on
geographical proximity. Nodes were also ranked based on how pleasant (beautiful,
quiet, happy) the locations were. Finally, a route that optimizes the shortness and
pleasantness was computed based on a graph method and recommended to the user.
In this work, both graph-based representation and graph-theory methods are used for
recommendation generation.

21.2.2 Feature engineering for recommendations

As mentioned at the beginning of the section, another group of related works
covers automatic feature engineering. According to Guyon et al., “feature extraction
addresses the problem of finding the most compact and informative set of features, to
improve the efficiency or data storage and processing” [7]. Basic features are a result
of quantitative and qualitative measurements, while new features can be engineered
by combining these or finding new means to generate additional measurements. In
the big data era, the possibilities of engineering additional features, as well as their
potential importance, have risen dramatically.

Feature engineering can be performed either manually or automatically. In the
manual method, domain experts analyze the task for which the features are required,
e.g., online movie recommendation versus customer churn prediction, and conceive
features that may potentially inform the task. The engineering process involves aggre-
gating and combining features already present in the data, in order to form new, more
informative features. This approach, however, does not scale well because of the need
for a human expert, the time it takes to compose features, and the sheer number of
possibilities for the new features [52]. Conversely, automatic feature extraction, the
process of algorithmically extracting new features from a dataset, does scale up well.

A basic approach for engineering new features from the existing ones is to com-
bine them using arithmetic functions. In one study that evaluated this approach,
arithmetic functions, such as min, max, average, and others, were used [10]. The
study also presented a specific language for defining features, where the features
were described by a set of inputs, their types, construction blocks, and the produced
output. A framework for generating a feature space using the feature language as
input was evaluated. The evaluation showed that the framework outperformed legacy
feature generation algorithms in terms of accuracy. The main difference between the
framework presented at [10] and its predecessors was that the framework was generic
and applicable to multiple tasks and machine-learning approaches.
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Additional automatic feature-engineering methods that are domain-specific were
surveyed in [8,9] for image recognition and in [53] for text classification purposes.
An example of a feature engineering method for image recognition is quantifying the
amount of skin color in an image in order to classify whether it contains a human face
or not [54], whereas for text classification a bag-of-words can be generated for every
document and used to describe it.

A different suite of methods for eliciting new features, which is also applicable
to recommender systems, is latent features computation. Methods such as SVD [11]
and PCA [12] can be used to compute new features and support the generation of
recommendations by decomposing the available data into components and match-
ing composing factors, i.e., the latent features. When the data is decomposed and
there exists a set of latent features that can recompose it with a certain error rate,
missing features and ratings can be estimated [35]. Although it has been shown that
this approach successfully improves the accuracy of the recommendations [55], it is
limited in the interpretability of the latent features found [14].

Unlike previous works, the current work defines an automatic feature-
engineering process based on graph-based representation of a recommender system
data. The details of this process are provided in the following section.

21.3 Graph-based data modeling for recommendation systems

In this section, an approach for enhancing recommendations based on representing
the data as a graph is presented. This representation allows a set of graph algorithms
to be applied and a set of graph-related metrics, which offer a new perspective on
the data and allow the extraction of new features, to be deduced. Following a brief
overview of the approach, the structure of recommender system datasets is formal-
ized (Section 21.3.1). Then a detailed description of porting data from a classical
tabular representation to a graph-based representation is given (Section 21.3.2). An
elaboration of methods for generating multiple graph representations follows (Section
21.3.2.2), and finally the process of exhaustively distilling graph features from these
representations is outlined (Section 21.3.3).2

The input to the process (illustrated in Figure 21.1) is a tabular recommender sys-
tem dataset and the output is a set of graph-based features capturing the relationships
between the dataset entities from the graph perspective. The first step deals with the
generation of a complete graph representation of the data: the tabular data is converted
into a representation where the dataset entities are nodes, connected based on their
co-occurrence in the data. Next, a set of partial representations is derived from the
complete graph: first the basic representation containing only user and item nodes
and then additional alternative representations, each with a unique combination of
relationships filtered from the complete graph. The partial representations are passed
to the next step, where the extraction of the graph features is performed. Finally, the
newly generated graph-based features are used to supplement the original features

2An open source package implementing the approach is released at http://amitti.github.io/GraphRecSys/.
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Figure 21.1 Graph modeling and feature extraction flow chart

available in the dataset, and this extended data is fed into the recommender system
for the generation of predictions or recommendations. In the following subsections,
the above steps of the feature extraction process are elaborated.

21.3.1 The structure of a recommender system dataset

In [4,56], classical recommendation approaches are categorized into several groups:
collaborative filtering, content-based filtering, knowledge-based, community-based,
and hybrid approaches. We first consider the representation of the data used by these
approaches, which can be converted into a tabular form as follows:

● In collaborative filtering, the data is represented as a matrix of user feedback on
items (matrix dimensions are users×items), where both the users and the items
are denoted by their identifiers, and the content of the matrix reflects the user
feedback for the items, e.g., numeric ratings or binary consumption logs.

● In content-based filtering, the items are modeled using a set of features, e.g.,
terms or domain features. Here, the matrix dimensions include the identifiers of
the users, as well as the identifiers of the content features, and the values represent
the preferences of the users for the features. The model also contains a second
matrix with item identifiers and the same content features. The values in this
matrix represent the weights of the features in each item.
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● Two variants of knowledge-based recommenders—case-based and constraint-
based—break the items into weighted features, e.g., the price of a product and
the importance of the price for the user. This model can be represented by two
matrices, one contains the items’ weighted features and the second contains the
users’ ranking of the features’ importance. In the items matrix, each column rep-
resents a feature, each row represents an item, and the values are the strength, or
how representative the feature is of the item. Similarly, in the users’ matrix, each
column represents a feature, each row represents a user, and the values represent
the importance of the feature for the given user.

● Community-based recommenders combine information regarding users’ social
relations with their ratings. Therefore, ratings of a socially close user are weighted
heavier than of others. The items’ rating information can be represented in a
matrix identically to the one described in the collaborative filtering approach.
The weights of social relations between users can be represented by a second
matrix, where the rows and columns represent users and the values quantify the
degree of the relationship between them.

● Finally, hybrid approaches combine some of the above stand-alone recommen-
dation models and, therefore, can be represented using the matrix representation.

The datasets used by the above approaches, which we denote by D, contain two
key types of entities. The first refers to the entity for which the recommendations
are generated, i.e., the user; it is referred to as the source entity and denoted by
DS . The second refers to the entity that is being recommended, e.g., item, content,
product, service, or even another user. This entity is referred to as the target entity
and denoted by DT . This notation follows the primary goal of a recommender system:
to recommend a target item to the source of the recommendation request. Additional
data available in the datasets typically represents the features of the source and/or the
target entity, or the relationships between the two. The feature set is denoted by DF .

For example, in a movie recommendation dataset, DS refers to the system users
and DT to the recommendable movies. Any available features describing either the
users or the movies are denoted by DF . User features can be the user’s age, gen-
der, and location, while movie features can be genre, director, language, and length.
A practical assumption is made that in a tabular recommender dataset, all the fea-
tures associated with an entity are stored in the same table as the entity itself. That
is, the gender of a user is stored in the user table rather than in the movie table.
A formal representation of the entities and their features in the above example is
D = {DS , DT , DF}, where DS = userid , DT = movieid , and the features DF are split
into DF = {DFS , DFT } as follows: DFS = {fs1 = age, fs2 = gender, fs3 = location} and
DFT = {ft1 = genre, ft2 = director, ft3 = language, ft3 = length}.

It should be noted that the source and target entities can have common fea-
tures [57]. For example, in the case of a restaurant recommendation task, the source
entity (user) and target entity (business) can both have the “location” feature. The role
of the source/target entities and features can also change according to the recommen-
dation task at hand. In the restaurant recommendation example, when the task is to
recommend restaurants to users, the users are the source entity, the restaurants are the
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target entity, and location is a feature of both. However, if the task was to recommend
a location, e.g., tourist destinations, for a user to visit based on the restaurants in that
location, then the source entity would still be the users, the target entity would be the
locations, and the restaurants would be the features of the locations.

An important aspect that needs to be considered is the relationship between
the entities, e.g., the fact that a user watched, rated, tagged, or favored a movie.
Relationships can be established not only between a source and a target entity, but
also between two source/target entities. Examples of relationships between two users
are the directional followee–follower relationship or the nondirectional friendship.
Relationships between two movies can be established because they are directed by
the same director, are in the same language, and so forth. Relationships between
entities are defined using the tuple (source ∈ DS , {features} ∈ DF , target ∈ DT ). For
example, user rating for a movie is defined by relrating = (user, value, movie) and
friendship between two users is defined by relfriend = (user, {∅}, user).3 The set of all
possible relationships in a dataset is denoted by DR = {reli}, such as in the movies
example DR = {rel1 = rating, rel2 = friendship}.

Given the above formalization of entities, features, and relationships, a recom-
mendation task implies the prediction of a relationship between entities. For example,
the task of a movie recommender can be considered as the prediction of the relrating

relationship. This relationship can be numeric (star rating) or binary (interested or
not interested), but the recommendations delivered to the users are guided by the
predicted values of relrating . If, on the contrary, the system is a social recommender
that recommends online friends, then the relationship in question is relfriend and its
task is to recommend a set of candidate friends.

In addition to the original data that is available to the recommender, more features
can be generated and distilled, thus enriching the dataset. For example, two popular
features frequently computed in rating-based recommendation datasets are the average
rating of a user and the average rating for an item. These features are associated with
the users and items, stored in the relevant tables, and they are used to refine, e.g.,
normalize, the predicted ratings and improve the quality of the recommendations
[58]. The question addressed in this work is whether the availability of additional,
supposedly more complex, features that encompass more information and stem from
graph representation of the data can contribute to the accuracy of the predictions
and the quality of the recommendations. In the following subsections, the details of
extracting and populating features are provided.

21.3.2 Transforming tabular into graph-based representation

21.3.2.1 Basic graph representation for recommender systems data
When moving from the tabular to the graph-based representation of a recommender
system data, three key graph design considerations are as follows:

1. Should the graph encompass all the available data? What parts of the dataset are
important and need to be represented by the graph?

3Additional friendship features, such as duration or strength, can also be included.
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2. Which entities from the selected data should be represented by graph vertices
and which entities by graph edges?

3. How should the edges be defined? Should they be directed or undirected? Should
they be labeled? What should the labels be?

Regarding the first question, it is probable that the decision regarding the data to
be represented in the graph is data-dependent. For some domains, datasets, and recom-
mendation tasks, certain parts of the data may be more informative than others. Since
the space of possible graph-based data representations is too large for determining
a-priori the most suitable scheme, a possible alternative is to start with a graph model
based on the entire data, and then to systematically extract all subgraph representa-
tions and their features. This leads to automatic coverage of the entire search space,
inherently uncovering the representations that produce the most effective features.
Then, the most informative feature set can be selected.

To answer the second and third questions, an intuitive modeling approach is
used. Namely, the graph model considers all the source, target, and feature entities as
vertices, while their links and relationships between features (including user feedback
on items) are the edges. If the information about the relationship is binary, e.g., the item
is viewed or not, the edges are not labeled. Otherwise, the edges’ labels communicate
the information about the relationship, e.g., rating or type of association. In most
cases, the edges are not directed, as information about a feature connected to an
entity or about an entity connected to a feature is equivalent. Although this work does
not consider directed edges, the proposed approach can be extended to support this
(outlined in Section 21.6.2).

Based on the above abstraction of recommender systems datasets, the following
basic graph representation emerges. User and item entities are represented by the
graph vertices, and edges connect a user and an item vertex when an association
between the two is available. This association can be explicit (ratings or likes) or
implicit (content or user view). This graph is called a bipartite graph [59], because it
can be split into two partitions consisting of the source and target entity vertices, i.e.,
the users and items, respectively (Figure 21.2(a)).

The basic representation can be extended by adding additional features as new
graph vertices and linking them to the existing vertices. For example, if user’s locations
are provided, each location can be represented by a vertex and the users associated
with the locations are linked to their vertices. A similar situation may occur in the
target partition of the graph, e.g., the target entity of movies and a variety of their
content features: genre, actors, keywords, and more (Figure 21.2(b)). Adding the
feature vertices still preserves the bipartite nature of the graph, but the partition
with the added features gets virtually split into two groups of vertices: the entities
themselves and their features.

The situation changes, however, when adding information within the source
or target partitions, e.g., user-to-user social links or item-to-item domain links. This
information introduces new links within the partitions, which break the bipartite struc-
ture (Figure 21.2(c)). Additional information that may break the bipartite structure is
the common features shared between the source and target partitions. For example,
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Figure 21.2 Examples of two types of graph schemes representing a recommender
system dataset: bipartite ((a) and (b)) and non-bipartite ((c) and (d)).
In (b), the grey block confines the multipart bipartite graph
component. In (c) and (d), the grey edges break the bipartite structure

in the movie domain, the items may be linked to their genres, while the users may
also express their preferences toward the genres. Thus, links to the genre vertices are
established from both the user and item partitions (Figure 21.2(d)), and the graph is
no longer bipartite. Note that each of the four schemes shown in Figure 21.2 generates
different sets of features and the values of the features also vary.

Following is an outline4 of a high-level approach for generating the complete
graph, which includes all the data and relationships of a recommender dataset. The
algorithm scans all the tables in the dataset, and for each column that is not a source
entity column, target entity column, or feedback column, it generates a graph node for
every unique value appearing in the column. Thus, every unique userid and movieid

is assigned to a graph vertex, as well as every actor, director, movie genre, keyword,
and so forth. Non-categorical features, e.g., movie budget, can be discretized using
binning, e.g., under $10M, $10M-$20M, $20M-$30M, or based on the observed
distribution, e.g., four equal-sized quarters, each containing 25% of the data. Upon
discretizing the values in the columns and creating the nodes, all the nodes matching
the values that appear in the same row are connected by edges to the source and target
nodes of the same row, if available. The result is a graph that contains all the values of
the features as the graph nodes, which are connected to the source and target entities
based on their co-occurrence in the data.

21.3.2.2 Multiple subgraph representations
Despite being included in a dataset, not all the features are necessarily informative and
contribute to the accuracy of the recommendations. Certain features may be noisy or
bear little information, thus hindering the recommendation process. For example, if a
feature is sparsely populated, its values are identical across users, or it is populated only

4The pseudo codes omit several technical details that can be found in the accompanying library.
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across a certain subset of users, then this feature is unlikely to help the recommender
and may not be included in the graph representation. However, it is hard to assess the
contribution of the features in advance with a high degree of certainty. This leads to the
idea of automatically deriving multiple subgraph representations from the complete
graph and extracting the graph features for each subgraph first, and selecting the
most informative ones in a later stage. Specifically, all the possible subgraphs are
exhaustively generated and their features are extracted. Each subgraph represents a
combination of features influenced by the entities and relationships included in the
graph. The process is detailed in Algorithm 1.

Algorithm 1: Generate subgraphs and extract features

input : CompleteGraph - complete graph representation of the dataset
PredEdge - edge type of the relationship being predicted

output: ExtractedGraphFeatures - set of features extracted from sub-graph
representations

1 GraphEdgeTypeCombinations ← GenerateEdgeCombinations({EdgeTypes},
PredEdge)

2 ExtractedGraphFeatures ← ∅
3 foreach EdgeCombination ∈ GraphEdgeTypeCombinations do
4 SubGraph ← RemoveEdgesFromGraph(CompleteGraph, EdgeCombination)
5 SubGraphFeatures ← ExtractGraphFeatures(SubGraph, PredEdge)
6 ExtractedGraphFeatures ← (ExtractedGraphFeatures ∪ SubGraphFeatures)
7 end

8 return ExtractedGraphFeatures

The input to the algorithm is the complete graph representation CompleteGraph,
which was discussed at the end of Section 21.3.2.1, and the edge PredEdge
representing the relationship reli being predicted. The function Generate
EdgeCombinations invoked in line 1 returns all the possible combinations of
different types of graph edges. Note that this function receives also the type of the
predicted edges PredEdge. This is done in order to preserve the PredEdge edges in
all the subgraphs. Namely, this type of edges will not be included in the combinations
that are removed from the complete graph and, therefore, will be present in all the
subgraphs.

Upon generating all the possible edge type combinations, the set is iterated
over and the function RemoveEdgesFromGraph is invoked to create a subgraph
SubGraph by removing the combination EdgeCombination from CompleteGraph
(line 4). Then, the function ExtractGraphFeatures is invoked to extract from
SubGraph the set of possible graph features referred to as SubGraphFeatures (line
5, to be elaborated in Section 21.3.3) and append SubGraphFeatures to the set of
features ExtractedGraphFeatures (line 6). Finally, in line 8, the algorithm returns
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ExtractedGraphFeatures—the set of all the possible graph features from all the
possible subgraphs.

The execution ofAlgorithm 1 is illustrated by an example in Figure 21.3. Consider
a graph G = (V , E), where V = {VS ∪ VT ∪ VF} is the set of vertices of the source
entities VS = {VS1, . . . , VSm}, target entities VT = {VT1, . . . , VTn}, and domain fea-
ture values VF = {VF1, . . . , VSk}. In addition, E = {rel1, rel2, rel3} is the set of graph
edges, reflecting three relationship types: rel1 is the source-target relationship being
predicted; rel2 is the relationship between the target entities and domain features; and
rel3 is the relationship between the source vertices. In graph terminology, the recom-
mendation task is to predict the label (or the existence) of an edge rel1(i, j) between
a source vertex VSi and a target vertex VTj.

For this graph, the set GraphEdgeCombinations created by GenerateEdge
Combinations includes GraphEdgeCombinations={{∅}, {rel2},{rel3},{rel2, rel3}}.
These are the combinations of edges that are removed from the graph while creating
subgraphs, whereas the predicted relationship rel1 is preserved in all the subgraphs.
Removing these combinations of edges, function RemoveEdgesFromGraph gen-
erates four variants of SubGraph shown in Figure 21.3: G1 ← CompleteGraph −
{∅}, G2 ← CompleteGraph − {rel2}, G3 ← CompleteGraph − {rel3}, and G4 ←
CompleteGraph − {rel2, rel3}. Note that G1 is the complete graph, whereas other
subgraphs have either rel2 or rel3, or both removed. For each SubGraph,
function ExtractGraphFeatures is invoked to extract the respective fea-
ture set SubGraphFeatures and all the extracted feature sets are appended to
ExtractedGraphFeatures.

21.3.3 Distilling graph features

The function ExtractGraphFeatures in line 5 of Algorithm 1 received a sub-
graph derived from the complete representation and was invoked to extract a set
of graph-based features. Moreover, this function was invoked for all the possible
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subgraphs, to ensure that all the possible graph features are extracted. The graph-based
features are extracted using a number of functions, each calculating a different graph
metric. These functions, referred as generators, are divided into several, families
according to the number of graph vertices they process.

The main steps of ExtractGraphFeatures are detailed in Algorithm 2,
which uses three types of generators:

● 1-VertexGenerators are applied to a single vertex, either the source or the
target entity, and compute features of this vertex, e.g., PageRank (Figure 21.4(a)).

● 2-VertexGenerators are applied to a pair of vertices, the source and the
target entities, and compute graph-based relationships between the two, e.g., the
shortest path (Figure 21.4(b)).

● N-VertexGenerators are applied to N > 2 vertices, two of which are the
source and target entities and the rest are not, e.g., “number of vertices common
neighbors of the source and target vertices” (Figure 21.4(c)).

Section 21.3.3.1 lists the functions from each generator family that were used. Note
that these are executed iteratively, in order to generate all the possible graph features.
By no means this list of functions is exhaustive; it exemplifies a number of popular
functions that were used, but more functions can be conceived and added.

At the initial stage of Algorithm 2, edges belonging to the predicted relation-
ship are copied to the SubGraphPredictedEdges set (line 2). For each Edge in this
set, the generators are invoked as follows. The 1-VertexGenerators functions
are invoked in lines 5 and 6, respectively, on the SourceEntity and TargetEntity
vertices of Edge. Applying these functions to other vertices is unlikely to produce
features that can contribute to the prediction of the desired relationship, while lead-
ing to significant computational overheads. Hence, 1-VertexGenerators are
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Algorithm 2: Extract graph features from a subgraph

input : SubGraph - sub-graph derived from the complete graph representation
PredEdge - edge type of the relationship being predicted

output: ExtractedSubGraphFeatures - set of features extracted from SubGraph

1 ExtractedSubGraphFeatures ← ∅
2 SubGraphPredictedEdges ← ExtractPredictedEdges(SubGraph,PredEdge)

3 foreach (SourceEntity,TargetEntity) of Edge ∈ SubGraphPredictedEdges do
4 foreach 1-Function in 1-VertexGenerators do
5 SourceFeatures ← 1-Function(SourceEntity)
6 TargetFeatures ← 1-Function(TargetEntity)
7 ExtractedSubGraphFeatures ← (ExtractedSubGraphFeatures ∪ SourceFeatures

∪ TargetFeatures)
8 end

9 foreach 2-Function in 2-VertexGenerators do
10 SourceTargetFeatures ← 2-Function(SourceEntity,TargetEntity)
11 ExtractedSubGraphFeatures ← (ExtractedSubGraphFeatures ∪

SourceTargetFeatures)
12 end

13 MultipleEntityCombinations ←
ExtractEntityCombinations({VertexTypes})

14 foreach EntityCombination ∈ MultipleEntityCombinations do
15 N ← |EntityCombination|
16 foreach N-Function in N-VertexGenerators do
17 MultipleEntityFeatures ← N-Function(SourceEntity, TargetEntity,

EntityCombination)
18 ExtractedSubGraphFeatures ← (ExtractedSubGraphFeatures ∪

MultipleEntityFeatures)
19 end
20 end

21 return ExtractedSubGraphFeatures
22 end

restricted to these two vertices only. The 2-VertexGenerators are applied
in line 10 to the pairs of vertices SourceEntity and TargetEntity. Then, the
ExtractEntityCombinations function is invoked in line 13, in order to create
a set of all the possible entity combinations of vertices, MultipleEntityCombinations.
These combinations necessarily involve SourceEntity and TargetEntity, and in addi-
tion any other type of graph vertices. For each combination EntityCombination of size
N (line 15), the relevant N-VertexGenerators generators are invoked in line 17.
Features extracted by 1-VertexGenerators, 2-VertexGenerators, and
N-VertexGenerators are all appended to ExtractedSubGraphFeatures.
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Note that the value of N determines the N-VertexGenerators functions
that are invoked and the relationships they uncover. Again, two of the N vertices are
necessarily SourceEntity and TargetEntity, whereas the third vertex can be of any other
entity linked to either of them. For instance, for N = 3 in the movie recommendation
task and entities of user, item, and location, the relationship can be “the number
of cinema locations that the user has visited and where the movie is screened.” The
generator considers the user and movie vertices, and then scans all the location vertices
and identifies those, with edges connected to both. More complex relationships with a
higher value of N can be considered. As such, the N-VertexGenerators extract
a number of features that surpasses by far the set of features that can be engineered
manually.

21.3.3.1 Distilled graph features
The set of metrics selected for implementation in this work and used for the evaluation
of the approach is now given in detail. The metrics are those that are commonly
implemented in widely used graph analysis libraries—NetworkX [60], igraph [61],
and Gephi [62]—and used in social network analysis and measurement works [63,64].
It is important to stress that this set of metrics is only a portion of those that could be
used and serves only as an example. The space of all graph metrics is large, as can
be seen in [65–67], and, thus, could not be exhaustively evaluated within the scope
of this work.

The set of 1-VertexGenerators functions were implemented and used for
evaluation are degree centrality [68], average neighbor degree [69], PageRank score
[70], clustering coefficient [71], and node redundancy [71]. These metrics are referred
to as the basic graph features.

● Degree centrality [68] (or, simply, node degree) quantifies the importance of a
vertex through the number of other vertices to which it is connected. Hence, in the
bipartite graph, the degree centrality of a user vertex Si is the activity of i, i.e., the
number of items with which Si is associated, and, vice versa, for an item vertex
Tj it is the popularity of j, i.e., the number of users who are associated with Tj. In
a graph that includes metadata, the number of metadata vertices associated with
either the user or the item vertex are added to the degree centrality score. The
degree of centrality of a vertex v is denoted by Deg(v).

● Average neighbor degree [69] measures the average degree of vertices to which a
vertex is connected. In the bipartite graph, this metric conveys for Si—the average
popularity of items with which Si is associated, and for Tj—the average activity
of users who are associated with Tj. Formally, if N (v) denotes the set of neighbors
of a vertex v, then the average neighbor degree is

AvgNghDeg(v) = 1

|N (v)|
∑

u∈N (v)

Deg(v) (21.1)

In a graph with metadata, the average neighbor degree of a user/item vertex also
incorporates the popularity of the metadata features with which it is associated.
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● PageRank [70] is a widely used recursive metric that quantifies the importance
of graph vertices. For a user vertex Si, the PageRank score is computed through
PageRank scores of a set of item vertices {Tj} with which Si is associated and
vice versa. Thus, the PageRank score of a user vertex Si can be expressed as

PageRank(Si) =
∑

Tj∈N (Si)

PageRank(Tj)

Deg(Tj)
, (21.2)

i.e., the PageRank score of Si depends on the PageRanks of each item vertex
Tj connected to Si, divided by the degree of Tj. In a graph with metadata, the
PageRank scores of user/item vertices are also affected by the PageRank of the
metadata vertices to which they are connected.

● Clustering coefficient [71] measures the density of the immediate subgraph of a
vertex as the ratio between the observed and possible number of cliques of which
the vertex may be a part. Since cliques of a size greater than two are impossible
in the bipartite graph, ClustCoef measures the density of shared neighbors with
respect to the total number of neighbors of the vertex:

ClustCoef (v) =
∑

u∈N (N (v)) (|N (v) ∩ N (u)|/|N (v) ∪ N (u)|)
|N (N (v))| (21.3)

● Node redundancy [71] is applicable only to bipartite graphs and shows the fraction
of pairs of neighbors of a vertex that is linked to the same other vertices. This
metric quantifies for user vertex Sa—the portion of pairs of items with which
a is associated that are also both associated with another user b. Likewise, for
item vertex Tx, it quantifies the portion of pairs of users associated with x and
also both associated with another item y. If the vertex is removed from the graph,
node redundancy reflects the fraction of its neighbors that will still be connected
to each other through other vertices.

Next, multiple-vertex generator functions are detailed. Specifically, the follow-
ing functions from the 2-VertexGenerators and N-VertexGenerators
families were implemented:

● Shortest path [72]. Unlike the above feature generators that operate on a single
vertex, shortest path receives a pair of graph vertices: a source entity and a target
entity. It evaluates the distance, i.e., the lowest number of edges, between the two
vertices. The distance communicates the proximity of the vertices in the graph,
as is a proxy for their similarity or relatedness. A short distance indicates high
relatedness, e.g., more items shared between users or more features for items,
while a longer distance indicates low relatedness.

● Shared neighbors of type X . This is one of the N-VertexGenerators func-
tions, which receives three parameters: source entity vertex, target entity vertex,
and entity type X . It returns the fraction of neighbors shared between the source
and target vertices that are of the desired type X . The fraction is computed rela-
tively to the union of the source vertex neighbors with the target vertex neighbors.
Note that this feature cannot be populated for graphs that do not have a sufficient
variety of entities connected to the source and target vertices.
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● Complex relationships across entities.Apart from the abovementioned generators,
system designers may define other N-VertexGenerators functions, which
could extract valuable features. For example, it may be beneficial for a movie
recommender to extract the portion of users, who watched movies from genres
g1, g2 directed by person p, and released between years t1 and t2. It is clear that
it is impossible to exhaustively list all the combinations of such features: this is
domain- and application-dependent. Hence, the task of defining these complex
generators is left open-ended and invites system designers to use the provided
library and develop their own feature generators.

To recap, each of the above 1-VertexGenerators and 2-Vertex
Generators is applied to every source and target vertex and generates features
associated with the vertex or a pair of vertices. In addition, N-VertexGenerators
is applied to the source and target vertices and all the possible combinations of other
entity types. Recall that this is done for every subgraph extracted from the complete
graph and the complexity of the feature generation task becomes clear.

21.4 Experimental setting and datasets

It is important to highlight that the product of the presented approach is graph-based
features that help to generate recommendations using existing recommendation meth-
ods. These features can either be used as stand-alone features, i.e., the only source
of information for the recommendation generation, or be combined with other fea-
tures. Hence, the baseline for comparison in the evaluation part is the performance
of common recommendation methods when applied without the newly generated
features.

To present solid empirical evidence, the contribution of the graph feature
extraction to the accuracy of the recommendations was evaluated using three machine-
learning methods: random forest [73], gradient boosting [74], and SVM [75]. Both
random forest and gradient boosting are popular ensemble methods that have been
shown to be accurate and won recommendation [6] and general prediction [76]
competitions. The methods are also implemented in widely used machine-learning
libraries [77,78] and were shown to perform well in prior recommender systems
works [79–81].

In the next section, two case studies showing the contribution of graph-based
features are presented. These case studies demonstrate the value of the proposed
graph-based approach applied to a range of recommendation tasks and domains.
Case study I evaluates the performance of the graph-based approach, evaluating its
contribution in different domains and tasks. Case study II focuses on the impact of
representing data using different graph schemes on the recommendations.

21.4.1 Dataset I—Last.fm

The first dataset is of users’ relevance feedback provided for music performers via
the Last.fm online service, which was obtained in [82]. The dataset consists of 1,892
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users and 17,632 artists whom the users tagged and/or listened to. More than 95% of
users in the dataset have 50 artists listed in their profiles as a result of the method used
to collect the data. There are 11,946 unique tags in the dataset, which were assigned
by users to artists 186,479 times. Each user assigned on average 98.56 tags, 18.93 of
which are distinct. Each artist was assigned 14.89 tags on average, of which 8.76 are
distinct. The dataset also contains social information regarding 12,717 bidirectional
friendship links established between Last.fm users, based on common music interests
or real life friendship.

We briefly characterize the dataset. Initially, we consider the distribution of the
number of friends per user. The average number of user-to-user edges is low, where the
vast majority of users have less than ten friends and about half of the users have less
than four friends. Intuitively, a friendship edge between two users can be an indicator
of similar tastes, and as such, friendship-based features are expected to affect the
recommendations. Then, we consider the distributions of the number of listens per
artist, user, and in total. It can be observed that the overall and per artist distribution
are highly similar. The user-based distribution resembles the same behavior but drops
faster. This aligns with the intuition that the number of users who listen to hundreds of
artists is smaller than the number of artists who are listened by hundreds of users [83].

There are four relationships in the Last.fm dataset: [user, listens, artist], [user,
uses, tag], [tag, used, artist], and [user, friend, user]. The task defined for this dataset
was to predict the artists to whom the users will listen the most, i.e., the predicted
relationship was [user, listens, artist]. This task requires first predicting the number
of times each user will listen to each artist, then ranking the artists, and choosing the
top K artists. Based on the subgraph generation process detailed in Algorithm 1 and
the relationship being predicted, the data can be represented via eight graph schemes
in general. Four graph schemas that incorporate the source and target entities were
evaluated:

● Bipartite graph that includes users and artists only, denoted as the baseline (BL).
● Non-bipartite graph that includes users, social links, and artists (BL+F).
● Non-bipartite graph that includes users, artists, and tags assigned by users to

artists (BL+T).
● Graph that includes all the entities and relationships: users, tags, artists, and social

links (BL+T+F).

The four graphs are illustrated in Figure 21.5. For each of the graphs, two sets of
features were generated: basic features as well as a set of extended features associated
with the auxiliary data being included. The generated features are used as the input
for a Gradient Boosting Decision Tree regressor [74], trained to predict the number
of listens for a given user–artist pair.

A five-fold cross-validation was performed. Users with fewer than five ratings
were pruned, to ensure that every user has at least one rating in the test set and four
in the training set. For each training fold, a graph was created for each graph model
shown in Figure 21.5. For each user, in the test set, a candidate set of artists was
created by selecting artists out of the set of the artists listened to by the user and
complementing these by randomly selected artists. For example, a candidate set of
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Figure 21.5 Graph representations for dataset I (Last.fm)

100 artists included 10 artists listened to by the user and 90 random artists. Three
different candidate sizes were evaluated: 50, 100, and 150.

Then, a regressor was used to predict the number of listens for each artist in the
candidate set, rank the set, and compute precision at 10 (P@10) as the performance
metric [84]. If candidate set CS consists of the artists selected from a user’s artist
set denoted by UA and the randomly selected artists set RA, then P@10 is computed
by P@10 = (UA ∩ top_10_artists(UA ∪ RA))/10, where top_K_artists is the list of
top-K artists in CS ranked according to the predicted number of listens. Finally, an
average of the P@10 scores across all the users in the test set is computed. In order
to evaluate the significance in the performance of the various graph schemes feature
sets, a two-sided t-test was applied on the results.

21.4.2 Dataset II—Yelp (from RecSys-2013)

The second dataset is of users’ relevance feedback given for businesses, such as
restaurants, shops, and services. The dataset was released by Yelp for the RecSys-
2013 Challenge [85]. For the analysis, users with less than five reviews were filtered
out, which resulted in 9,464 users providing 171,003 reviews and the corresponding
ratings for 11,197 businesses. The average number of reviews per user is 18.07 and
the average number of reviews per business is 15.27. A key observation regarding
this dataset is the distribution of ratings, which were almost all positive (more than
60% of ratings were at least 4 stars on a 5-star scale), and the low variance of ratings
across businesses and users. This phenomenon is common in star rating datasets,
where users tend to review fewer items that they did not like.

We discuss the basic statistics of users and businesses in theYelp dataset. Initially,
we consider the distribution of the number of reviews and ratings per user. A long
tail distribution of the number of businesses a user reviewed can be observed, with
more than 75% of the users providing less than 10 reviews. Then, we consider the
distribution of the number of reviews a business received. Only 24% of businesses
attract more than 10 reviews, while only a few businesses (less than 2%) have more
than 100 reviews. Despite the high number of categories in the data, the average
number of categories with which a business is associated is only 2.68. Every business
is also associated with a single location.

The task defined for this dataset is the one originally defined for the RecSys-
2013 challenge, i.e., to predict the ratings a user will assign to businesses. Two graph
models were implemented and evaluated based on this dataset: a bipartite model with
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Figure 21.6 Graph representations for dataset II (Yelp – RecSys-2013 Challenge)

sets of vertices U and B representing users and businesses and a tripartite5 model
with sets of vertices U, B, and M representing users, businesses, and metadata items,
respectively. The high-level graph representation models are illustrated in Figure 21.6,
while the detailed presentation of the subgraphs will be given in Section 21.4.3, in
which the follow-up dataset is presented.

The features generated for this dataset were aggregated into three groups:

● Basic features that include only the unique identifiers of users {ui} ∈ U and
businesses {bj} ∈ B.

● Manual features that include the number of reviews by ui, average rating of ui,
number of reviews for bj, number of categories |{m}| with which bj is associated,
average number of businesses in {m}, average rating of businesses in {m}, the
main category6 of bj, average degree of businesses associated with the main
category of bj, average degree of businesses in {m}, and the location of bj.

● Graph features that include the degree centrality, average neighbor degree, PageR-
ank score, clustering coefficient, and node redundancy. These features were
generated for both user nodes ui and business nodes bj, whereas an additional
shortest path feature was computed for the pairs of (ui, bj).

In this case, a Random Forest regression model [73] was applied for the generation
of the predictions of users’ ratings for businesses. At the classification stage, the
test data items were run through all the trees in the trained forest. The value of the
predicted rating was computed as a linear combination of the scores of the terminal
nodes reached when traversing the trees. It should be noted that the ensemble of
trees in Random Forest and the selection of the best performing feature in each node
inherently eliminate the need for feature selection. Since every node uses a single top
performing feature for decision-making, the most predictive features are naturally

5The use of “tripartite” is somewhat misleading, as the “bipartite graph with metadata nodes” notation
would be more appropriate. For the sake of brevity, the bipartite and tripartite terminologies are used.
6Each business in theYelp dataset is associated with multiple categories, some having an internal hierarchy.
The main category is the most frequent root category a business was associated with.
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Figure 21.7 Yelp II dataset characteristics—distribution of social links

selected in many nodes and the ensemble of multiple trees virtually replaces the
feature selection process.

A five-fold cross-validation was performed. For each fold, the predictive model
was trained using both the original features encapsulated in the dataset and the new
graph features. The basic and manual groups of features were populated directly from
the reviews, whereas the graph features were populated from the bipartite and tripar-
tite graph representations and augmented the former groups of features. Predictive
accuracy of various combinations of features was measured using the widely used
RMSE metric [84], computed as RMSE = √

(
∑

n (ŷt − yt)2/n), where n is the num-
ber of predictions, ŷt are the predicted values, and yt are the actual user ratings. A
two-sided t-test was applied to validate the statistical significance of the results.

21.4.3 Dataset III—Yelp II (with social links)

The third dataset is an extension to the previous dataset released byYelp. The new data
contains more users, businesses and reviews, and, more importantly, new information
regarding users’ social links. The distribution of the social links among users is illus-
trated in Figure 21.7. It can be seen that the social links follow a long tail distribution,
where most users have a small number of links: 29% with no links, 57% with less
than 20 links, and only a few users with more than 20 links. The social links break
the bipartite structure of the first Yelp dataset, which influences the generated graph
features.

The task here is identical to that of the first Yelp dataset, i.e., predicting users’
ratings for businesses. Eight graph models were generated and evaluated based on this
dataset. The models are illustrated in Figure 21.8 and, depending on the availability
of the user-to-user friendship edges, categorized as bipartite or non-bipartite. The
complete graph is shown in the top-left schema. In the following three schemes, one
type of edges is missing: either social links, user names, or categories. In the next
three, two types of edges are missing: social and categories, social and names, and
names and categories. Finally, in the bottom-right graph all three are missing.

The generated features presented in Section 21.3.3.1 are referred to in the evalu-
ation of this dataset as the basic features. These features are aggregated into groups,
based on the graph scheme from which they were extracted. For example, all the
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features extracted from the graph named “without category links” in Figure 21.8 were
grouped into a combination having the same name. Another evaluated combination
includes the union of all the features generated from all the graph schemes, and this is
named “all graph features.” Finally, the union of “all graph features” with the “basic
features” is referred to as “all features.”

A five-fold cross-validation was performed. For each fold, the predictive models
were trained using graph features extracted from each of the above feature sets. The
evaluation used different methods (random forests, gradient boosting, and SVM) to
evaluate how the choice of method impacts the results. Predictive accuracy of various
feature combinations was measured using the RMSE metric [84], and a two-sided
t-test was applied to validate statistical significance.

21.4.4 Dataset IV—Movielens

Movielens [86] is a classical recommender system’s dataset studied in numerous
prior works. In this work, it is used to show that the graph-based approach is as
effective on legacy datasets as on more recent datasets including social data. The
1M Ratings Movielens dataset consists of 1,000,209 ratings assigned by 6,040 users
for 3,883 movies, on a discrete scale of 1–5 stars. Each user in the dataset rated at
least 20 movies. The distribution of ratings across users and movies is illustrated in
Figures 21.9(a) and (b), respectively. The dataset contains metadata of both users and
movies. The user metadata includes the gender, occupation, zip code area, and age
group, while the movie metadata contains the genre(s) of the movies.

The task defined for this dataset was to predict user ratings for movies. Based on
the above description of the dataset, 32 graph schemes were generated and evaluated
(see Figure 21.10). The schemes are categorized based on the number of relationships
removed from the complete graph. As can be seen, there are four categories: schemes
with a single node type removed, containing five subgraphs, schemes with two node
types removed containing ten subgraphs, schemes with three node types removed
containing ten more subgraphs, and finally, schemes with four node types removed
containing five graphs. The minimal graph scheme is the one from which all the
entities and relationships were removed, except for the source and target entities and
the predicted “rating” relationships.

Five-fold cross-validation was performed. For each fold, the predictive models
were trained using graph features extracted from each of the above graph schemes.
The evaluations used the random forest and gradient boosting approaches, in order
to evaluate how the choice of the learning method impacts the results. The predictive
accuracy of various combinations of the above feature sets was measured again using
the RMSE and MAE predictive accuracy metrics [84], and a two-sided t-test was
applied to validate statistical significance.

21.4.5 Summary of the datasets, features, and metrics

Table 21.1 summarizes this section and presents the experimental datasets, num-
ber of source and target entities, various subgraph schemes investigated, number
of extracted feature sets, groups of features, and evaluation metrics exploited. The
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Figure 21.9 Movielens dataset characteristics: (a) distribution of ratings across
users and (b) distribution of ratings across movies

datasets contain large numbers of users and items and cover a broad range of data
types, application domains, and recommendation tasks. The datasets also contain
both legacy and recently collected datasets, such that the evaluation presented in the
following section offers solid empirical validity.

21.5 Results and analysis

21.5.1 Case study I: overall contribution of the graph-based
approach

This case study answers the broad question: How does the use of graph features
affect the performance of rating predictions and recommendation generation in dif-
ferent domains and tasks? Each of the above datasets was represented by graphs, and
graph-based features were extracted from the graphs using the approach detailed
in Section 21.3. For each dataset, a matching recommendation task was defined as
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follows: for the Last.fm dataset, the task was to predict the artists to which users
will listen; for the two Yelp datasets, the task was to predict user ratings for business;
and, for the Movielens dataset, to predict user ratings for movies. The tasks were
performed and evaluated under three conditions:

● Prediction with versus without the newly extracted graph features.
● Prediction with user-related versus item-related graph features.
● Prediction using features of a bipartite graph versus extended graph schemes.

The evaluations were conducted using the N -fold cross-validation [87], with
N = 5. For each fold, the complete graph representation was generated based on the
entities from both the training and test sets, except for the relationships being predicted
in the test set. A two-sided t-test was conducted with the null hypothesis of having
identical expected values across the compared prediction sets. The tests assumed that
the ratings using feature sets A and B were taken from the same population. The
threshold used for a statistically significant difference was p = 0.05.

21.5.1.1 Dataset I—Last.fm results
Four graph schemes were generated for the Last.fm dataset, as per the structure in
Table 21.2. For each graph scheme, the set of basic graph features listed in Section
21.3.3.1 was extracted and populated. The basic features encapsulate only the user-
artist listening data and denoted by F̂ . In addition, when the social and tagging data is
available, namely, in the BL+T, BL+F, BL+T+F schemes, the set of extended features
can be extracted. These features are denoted by F , e.g., FBL+T denotes the set of
extended features extracted from the graph with the tagging data. Note that for the



Table 21.1 Summary of datasets characteristics

Dataset Source and Graph schemes Graphs Feature Extracted Learning Metric
target entities sets features method

Last.fm 1,892 (users) Bipartite + non-bipartite 4 7 Basic graph features, Gradient Boosting P@K
17,632 (artists) (w/ social links, w/ tags, extended graph features

w/ social links + tags)

Yelp 9,464 (users) Bipartite + 2 13 Basic graph features, Random Forest RMSE
11,197 (businesses) Bipartite with metadata manually engineered

Yelp II 13,366 (users) Bipartite + 8 13 Basic graph features Random forest, RMSE
14,853 (businesses) Non-bipartite (w/ social links), gradient boosting,

with and without metadata support vector machine

Movielens 6,040 (users) Bipartite + 32 36 Basic graph features Random forest, RMSE,
3,883 (movies) Bipartite with metadata gradient boosting MAE
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Table 21.2 Precision of feature combinations using the
four graphs—Last.fm dataset

Feature set Precision@10

Baseline 0.336
Baseline +Tags 0.548
Baseline + Friends 0.555
Baseline +Tags + Friends 0.571

BL schema in Figure 21.5, having neither social nor tagging data, the basic and
extended feature sets are identical, i.e., FBL = F̂BL.

The average P@10 results obtained for the extended feature sets extracted from
the four schemes are summarized in Table 21.2. The baseline for comparison in this
case is the performance of the graph features extracted from the bipartite scheme
FBL, which scored P@10 = 0.336. A notable improvement, between 63% and 70%,
was observed when the extended feature sets were extracted. For instance, FBL+F ,
scored P@10 = 0.555, which is an improvement of more than 65%. A combination
of the extended features using the graph that includes both social tags and friendships,
FBL+T+F is the best performing feature. This scored the highest P@10 = 0.571 and
improved the baseline P@10 by as much as almost 70%.

In order to evaluate the significance of the results, a paired t-test was performed
with each group of features, using the P@10 values obtained for each of the four
graphs. The results show that among the extended feature sets, all the differences
were significant, p < 0.05. Thus, the inclusion of auxiliary tagging and friendship
data improved the accuracy of the predictions, while their combination led to the most
accurate predictions. More importantly, the extraction of graph-based features was
shown to consistently and significantly boost the performance of the recommender,
in comparison to the variant not using the extracted features.

21.5.1.2 Dataset II—Yelp results
Improvements due to the use of the graph-based approach were also evident in exper-
iments using the second dataset (Yelp). As per the description in Section 21.4.2, basic
(user and business identifiers), manual (number of reviews, average rating, business
category, and location), and graph-based features were extracted and populated. The
latter were broken down into the bipartite and tripartite features. In this dataset, the
performance of the basic features related to the user-to-business associations was
the baseline. Table 21.3 presents the full results for all the feature combinations.

The largest improvement in the RMSE of business ratings prediction was an
8.82% decrease obtained for the combination of graph features with basic and man-
ually engineered ones (row 1). The similarity of the RMSE scores obtained by the
various combinations is explained primarily by the low variance of user ratings in
the dataset. Since most ratings are similar, they are highly predictable using simple
methods and there is only a limited space for improvement. A combination containing
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Table 21.3 RMSE of selected feature combinations—Yelp dataset (baseline
combination in light gray

Features combination Features RMSE Improvement (%)

1 All_Features Basic∪Manual∪Graph 1.0766 8.82
2 AllExcept_Tripartite Basic∪Manual∪Bipartite 1.0775 8.75
3 AllExcept_Basic Manual∪Graph 1.0822 8.35
4 Manual_and_Bipartite Manual∪Bipartite 1.0850 8.11
5 AllExcept_Bipartite Basic∪Manual∪Tripartite 1.0896 7.72
6 Manual_and_tripartite Manual∪Tripartite 1.1073 6.22
7 AllExcept_Manual Basic∪Graph 1.1095 6.04
8 All_Graph Bipartite∪Tripartite 1.1148 5.59
9 AllExcept_Graph Basic∪Manual 1.1175 5.36
10 Bipartite 1.1188 5.25
11 Tripartite 1.1326 4.09
12 Basic 1.1809 N/A
13 Manual 1.1853 −0.37

only the graph features (row 5) outperformed the baseline performance by 5.59%. On
the contrary, the use of manual features (row 13) slightly deteriorated the accuracy
of the predictions. This demonstrates the full benefit of the graph-based approach:
extracting the graph features took less time than crafting the manual ones, and the
graph features also outperformed the manual ones.

An examination of the differences in the accuracy of the results obtained when
combining various groups of features revealed a number of findings. An analysis
of the performance of each group of features shows that the bipartite and tripartite
features performed noticeably better than the basic and manual feature sets (rows
10 and 11 versus rows 12 and 13). A combination of graph features (row 8) still
outperforms slightly, although significantly, the combination of the basic and man-
ually engineered features (row 9). To analyze the impact of the feature groups, each
group was excluded from the overall set of features and the change with respect to
the All_Features combination (row 1) was measured. When the graph features were
excluded (row 9), the predictions were less accurate than when the basic (row 3) or
manual features (row 7) were excluded. This indicates that the graph features provide
the most valuable information, not covered by the basic and manual features.

21.5.1.3 Dataset III—Yelp II (with social links) results
The results of the evaluation using the extended Yelp II dataset that includes social
links between users are in line with the results of the original Yelp dataset. Table 21.4
lists the results of this evaluation for a selected set of feature combinations: basic user
and business features, feature of the complete graph, features of all the subgraphs,
and the union of all the available features.

The results show that the combinations including graph features generally outper-
form the basic feature sets. The best performing combination of graph-based features
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Table 21.4 RMSE of selected feature combinations—Yelp II dataset (baseline
combination in light gray

Features subset RMSE Improvement (%)

1 All features 1.1416 1.73
2 All graph features 1.1417 1.73
3 Complete graph 1.1450 1.45
4 Business features 1.1465 1.32
5 User features 1.1580 0.33
6 Basic features 1.1619 N/A

only, using all the features from all the subgraph schemes (row 2, RMSE = 1.1417),
achieves a 1.73% improvement over the baselines. When adding the basic features
to all the graph-based features, a slightly lower RMSE = 1.1416 (row 1) is obtained.
Another noticeable difference is between the business-related features, which achieve
RMSE=1.1465 and the user-related features, which achieve RMSE=1.158 (rows 4
and 5, respectively). This intuitively indicates that the predicted ratings assigned to
the businesses being predicted are more informative than the ratings of the target
user. Again, the achieved improvements are generally modest, primarily due to the
low variance of ratings in the Yelp II dataset.

The performance differences between the evaluated combinations are mostly
significant, p < 0.01, except for two pairs of feature sets. The difference between
business-related features and complete graph features is borderline, with p = 0.07.
Also the difference between “all features” and “all graph features” is expectedly
insignificant. This shows that the most important contribution to the predictive accu-
racy comes from the graph features, while the addition of the basic features improves
the prediction only a little.

21.5.1.4 Dataset IV—Movielens results
Finally, the experimentation with the Movielens dataset reaffirms the contribution
of graph-based feature extraction to the recommendation generation. The task in this
dataset was to predict movie ratings, whereas the predictions were evaluated using the
MAE and RMSE predictive accuracy metrics. Table 21.5 summarizes the performance
of a selected group of features. The basic user–item pairs are compared here with the
user and item features used individually, all the extracted graph-based features, and
the union of all of them, denoted by “all features” (row 1).

The already discussed superiority of item features over user features (row 3 versus
row 5) can be clearly seen again. In this case, the former improve the accuracy
of the predictions by 3%–5%, while the latter only deteriorate it. The extraction
of the graph-based features (row 2) also leads to an improvement of 3.36% and
5.53% relative to the baseline, using the RMSE and MAE metrics, respectively.
When combined with other features, the graph features achieve the best result, which
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Table 21.5 Performance of selected features combinations—Movielens dataset
(baseline combination in light gray, rows are sorted by RMSE)

Features subset RMSE Improvement MAE Improvement (%)

1 All features 1.0272 4.20% 0.8303 6.06
2 All graph features 1.0362 3.36% 0.8349 5.53
3 Movie features 1.0400 3.01% 0.8380 5.18
4 Basic features 1.0722 N/A 0.8838 N/A
5 User features 1.0895 −1.61% 0.8967 −1.46

Table 21.6 Summary of experiments and results for case study I

Results

Dataset Metric Method Baseline Graph features Improvement
(%)

1 Yelp I RMSE Random forest 1.1809 1.1148 5.59
2 Yelp II RMSE Random forest 1.1619 1.1417 1.74
3 Yelp II RMSE Gradient boosting 1.2480 1.1715 6.13
4 Yelp II RMSE SVM 1.1818 1.1783 0.30
5 Movielens RMSE Random forest 1.1667 1.0268 11.90
6 Movielens RMSE Gradient boosting 1.0722 1.0362 3.36
7 Movielens MAE Random forest 0.9144 0.8157 10.79
8 Movielens MAE Gradient boosting 0.8838 0.8349 5.53

is RMSE = 1.0272, or a 4.20% improvement over the baseline. Those performance
differences were statistically evaluated and found significant.

21.5.1.5 Performance across learning methods, datasets, and metrics
This case investigated the impact of the graph-based features’ effect on the accuracy
of the recommendations. Although all the evaluations reported so far show that using
the graph-based features improves the accuracy of the recommendations, the results
cannot be fully corroborated yet, as the conducted experiments use different learning
methods, datasets, and evaluation metrics (see Table 21.1). To confidently address
the research question, the design of the evaluation has overlaps in these factors, so
that the contribution of the graph features can be singled out.

The analysis below aims to establish whether the observed improvements should
be attributed to the information contributed by the graph features or to the differences
in the experimental settings, i.e., learning method, dataset, and metric. The results of
all the experiments are summarized in Table 21.6. In all the cases, the performance of
the baseline approaches not using the graph features, which were highlighted in light



440 Big data recommender systems, volume 2

gray in all the tables, is compared to the performance of all the graph-based features,
i.e., row 8 in Table 21.3, row 2 in Table 21.4, and row 2 in Table 21.5.

Included are the results of experiments using the Yelp, Yelp II, and Movielens
datasets, which were discussed in Sections 21.5.1.2, 21.5.1.3, and 21.5.1.4. That
said, results in rows 3, 4, 5, and 7 of Table 21.6 are presented here for the first
time. This is due to the fact that previously reported Yelp experiments (both datasets)
used random forest as their learning method, while the Movielens experiments used
graduate boosting. Here, new Yelp II results with gradient boosting and SVM, and
new Movielens results with random forest are also presented. Experiments using the
Last.fm dataset are excluded from the analysis, since they use classification accuracy
metrics and differ both in the dataset and evaluation metric.

In order to demonstrate that the improvement is not due to the selected dataset, the
metric and learning method were fixed, while the approaches using different datasets
were compared. Two evaluations sets are applicable to this scenario: (1) random forest
predictions evaluated with the RMSE metric, using the Yelp, Yelp II, and Movielens
datasets (rows 1, 2, and 5), and (2) gradient boosting predictions also evaluated with
RMSE, but using the Yelp II and Movielens datasets (rows 3 and 6). The results of
these experiments show an improvement of 1.74%–11.90%, which allows to eliminate
the selected dataset as a possible reason for improvement.

To demonstrate that the improvement is also not due to the selected machine-
learning method, the dataset and metric were fixed, while the approaches using
different learning methods were compared. Three evaluation sets are applicable to
this scenario: (1) RMSE of business predictions using the Yelp II dataset, where the
learning methods are random forest, gradient boosting, and SVM (rows 2, 3, and
4), (2) RMSE of movie rating predictions using the Movielens dataset, where the
methods are random forest and gradient boosting (rows 5 and 6), and (3) MAE of
movie rating predictions using the Movielens dataset, where the methods are random
forest and gradient boosting (rows 7 and 8). The results of these experiments show
an improvement across all experiments, ranging from 0.30% to 6.13% for the Yelp II
dataset, and from 3.36% to 11.90% for the Movielens dataset. The low variance of
ratings in theYelp datasets, which was discussed earlier, is the main reason for the low
improvement observed. This is particularly noticeable with the SVM method, which
struggles to linearly separate businesses with moderate ratings. Thus, the learning
method cannot be the reason for the accuracy improvement.

Finally, to demonstrate that the improvement is not due to the selected evaluation
metric, the dataset and method were fixed, while the performance of approaches using
different metrics was compared. Two evaluation sets are applicable to this scenario: (1)
random forest movie rating predictions using the Movielens dataset, evaluated using
RMSE and MAE (rows 5 and 7), and (2) gradient boosting movie rating predictions
also using the Movielens dataset, and also evaluated using the RMSE and MAE
metrics (rows 6 and 8). The results of these experiments show a clear improvement
across, ranging from 3.36% to 11.90%, allowing to eliminate the selected evaluation
metric as a possible reason for improvement.

Summing up this causal analysis, all three hypotheses that the improved per-
formance is driven by the differences in the experimental settings (dataset, learning
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method, and evaluation metric) were rejected. Thus, it can be concluded that the
reason for the observed improvement lies in the inclusion of graph-based features,
contributing new information to the recommendation process.

21.5.2 Case study II: different graph schemes and their impact on
recommendations

As mentioned in the Section 21.3, various subgraphs and graph schemes can be
generated for each dataset. The feature extraction process will, thus, yield a number
of graph schemes, corresponding feature sets, and even the values of the same graph
features. This leads to the second research question: How are the recommendations
affected by the subgraph and its representation used to generate the graph features?
In order to answer this question, another set of experiments was conducted.

In these experiments, the accuracy of recommendations when using various graph
schemes was evaluated using four datasets: Last.fm, both Yelp datasets, and Movie-
lens. The recommendation tasks were identical to the previous experiments, i.e., to
predict listened artists in the Last.fm dataset, user ratings for businesses in the two
Yelp datasets and user ratings for movies in the Movielens dataset. An N -fold cross-
validation methodology similar to the one reported in Section 21.5.1 was followed.
Also, two-sided t-test statistical significance testing was carried out.

21.5.2.1 Dataset I—Last.fm results
The evaluations using the Last.fm dataset focused on the influence of the social
elements, i.e., friendship links and tags, on the obtained recommendation accuracy.
In this dataset, the results of recommendations based on the bipartite user–artist graph
representation (BL in Figure 21.5) were compared with those of three non-bipartite
schemes, BL +T, BL + F, and BL +T + F, including, respectively, the tags assigned
by the users to the artists, social friendship links between the users, and tags and
friendship links alike. As mentioned in Section 21.5.1.1, two sets of graph features
were extracted for each schema: a set of basic features F̂ and a set of extended
features F . Although the basic feature set F̂ is shared across all the schemes, their
values may change due to the presence of additional graph nodes. The extended feature
set F is composed of the basic features along with new features that were extracted
from the social links and tags available in each schema.

Table 21.7 shows the obtained P@10 scores averaged over all the users in the
test set, when using both the basic and extended feature sets. First, it can clearly be
observed that the inclusion of the social auxiliary data of either the assigned tags or
friendships links substantially improves P@10. When both the tags and friendship
links are included in the BL +T + F model, the highest average P@10 is observed.
Both in the basic and the extended feature sets, the BL+T and BL+F models obtain
comparable P@10 scores, showing the effect of the inclusion of auxiliary data in
the graph schemes. However, as noted in Section 21.4.1, the tag data includes more
than 186K tag assignments, whereas the friendship data consists of only 12K user-
to-user links. Since the obtained precision scores are comparable, a single friendship
link is more influential than a single artist tag and yields a greater improvement in
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Table 21.7 Precision of feature combinations using the four graphs—Last.fm
dataset

Feature set Basic P@10 Extended P@10

Baseline 0.336 N/A
Baseline +Tags 0.548 0.498
Baseline + Friends 0.555 0.497
Baseline +Tags + Friends 0.571 0.444

the recommendation accuracy. Looking at the significance tests conducted within
the basic and extended feature sets, significant differences, p < 0.05, were observed
between all the pairs of extended features and all the pairs of basic features except
for the F̂BL+T and F̂BL+F pair.

When comparing the performance of the extended graph features to the per-
formance of the corresponding basic features (basic versus extended columns in
Table 21.7) it can be seen that the extended sets consistently outperformed the basic
sets across all the four graph schemes, and the difference within the pairs was sta-
tistically significant, p < 0.05. In the BL +T scheme, the extended graph features
from improved on the basic features extracted from it by 10%, P@10 = 0.548 ver-
sus P@10 = 0.498, while in the BL + F scheme, the improvement was by 11.6%,
P@10 = 0.555 versus P@10 = 0.497. The largest improvement was noted in the
BL +T + F scheme, where the extended graph features outperformed the basic fea-
tures by as much as 28.6%, P@10 = 0.571 versus P@10 = 0.444. Surprisingly, the
basic feature set, F̂BL+T+F , was found achieve a lower P@10 than F̂BL+T and F̂BL+F .
A possible explanation for this can be that including both types of social data but not
extracting and populating the extended features leads to redundancy in the graph and
degrades the performance of the recommender.

21.5.2.2 Dataset II—Yelp results
For the Yelp dataset and the task of business rating prediction, two graph schemes
were compared: a pure bipartite graph that contained only the users and businesses,
and a tripartite graph that, on top of user and business nodes, also contained metadata
nodes describing the businesses. The two-graph schemes are illustrated in Figure 21.6.
The reason these were the only graph schemes created is that sparse features having a
small number of unique features, were filtered from the dataset. These features would
have resulted in most nodes of a group, e.g., users, being connected to a single node,
which would render it meaningless. For example, adding three “gender” nodes, male,
female, and unspecified, would have resulted in all users being connected to either
one of the three, essentially creating three large clusters in the graph.

The complete set of graph features was generated for both the bipartite and
tripartite representations. The results inTable 21.8 show the RMSE scores obtained for
these feature sets, as extracted from Table 21.3 (original row numbers are preserved).
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Table 21.8 Yelp results: RMSE of the bipartite versus the tripartite feature sets

Features combination Features RMSE Improvement (%)

8 All_Graph Bipartite∪Tripartite 1.1148 5.59
10 Bipartite 1.1188 5.25
11 Tripartite 1.1326 4.09
12 Basic 1.1809 N/A

Table 21.9 Yelp II results: RMSE of various subgraph feature sets

Features subset RMSE Improvement (%)

2 All graph features 1.1417 1.73

7 Without name links 1.1450 1.45
3 Complete graph 1.1450 1.45
8 Without social links 1.1463 1.33
9 Without social and name links 1.1465 1.32

10 Without category links 1.1508 0.95
11 Without metadata 1.1508 0.94
12 Without social and category links 1.1519 0.85
13 Without metadata and social links 1.1523 0.82
6 Basic features 1.1619 N/A

The experiments showed that the bipartite schema, not including the metadata nodes,
performed slightly but significantly better than the tripartite schema with metadata,
RMSE = 1.1188 versus RMSE = 1.1326. The relative improvement with respect to
the baseline recommendations was 1.16% higher. This difference in the performance
of the schemas led to their unified feature set, which is the All_Graph, to outperform
the two feature sets individually.

21.5.2.3 Dataset III—Yelp II (with social links) results
The richer information provided by the Yelp II datasets allowed for the creation of
a larger set of subgraphs. These are illustrated in Figure 21.8, where various com-
binations of entities are removed from the complete graph. Thus, in addition to the
complete graph, seven subgraph representations can be created and the performance
of the feature sets extracted from these can be compared. The results of this exper-
iment are presented in Table 21.9. The complete graph and the seven subgraphs are
compared to the basic feature set and the union of all the graph features, which were,
respectively, the baseline and best performing combination in Table 21.4. The num-
bering of rows already presented in Table 21.4 is preserved (rows 2, 3, and 6), while
the rows of all the subgraphs from Figure 21.8 are numbered 7–13.
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21.5.2.4 Dataset IV—Movielens results
The Movielens dataset offered an even richer information about users and items and
allowed for the extraction of 32 subgraph schemes. Only a small sample of these is
illustrated in Figure 21.10. The MAE and RMSE scores obtained for the 32 subgraphs
are listed in Table 21.10. The subgraphs are compared to the basic feature set and the
union of all the graph features, which were presented in Table 21.5 (rows 2 and 4).

Table 21.10 Performance of selected features combinations—Movielens dataset
(baseline combination in light gray, rows are sorted by RMSE)

Features set RMSE Improvement MAE Improvement
(%) (%)

2 All graph features 1.0362 3.36 0.8349 5.53
6 graph w/[Age, Gender, Genre, Zip] 1.0369 3.29 0.8353 5.48
7 graph w/[Age, Gender, Occupation, Zip] 1.0373 3.25 0.8357 5.44
8 graph w/[Gender, Genre, Occupation, Zip] 1.0384 3.16 0.8365 5.35
9 graph w/[Genre, Occupation] 1.0410 2.91 0.8391 5.06
10 graph w/[Age, Genre, Zip] 1.0411 2.90 0.8386 5.12
11 graph w/[Genre, Occupation, Zip] 1.0411 2.90 0.8385 5.12
12 graph w/[Age, Genre, Occupation] 1.0412 2.90 0.8390 5.07
13 graph w/[Age, Gender, Genre] 1.0412 2.89 0.8392 5.05
14 graph w/[Age, Gender, Genre, Occupation] 1.0413 2.89 0.8390 5.07
15 graph w/[Age, Genre, Occupation, Zip] 1.0413 2.89 0.8388 5.10
16 graph w/[Genre] 1.0413 2.89 0.8393 5.04
17 graph w/[Gender, Genre, Occupation] 1.0413 2.88 0.8392 5.04
18 graph w/[Age, Genre] 1.0414 2.88 0.8395 5.02
19 graph w/[Age, Gender, Genre, 1.0414 2.88 0.8390 5.08

Occupation, Zip]
20 graph w/[Genre, Zip] 1.0415 2.87 0.8388 5.09
21 graph w/[Gender, Genre] 1.0416 2.86 0.8396 5.00
22 graph w/[Gender, Genre, Zip] 1.0416 2.85 0.8391 5.06
23 graph w/[Age] 1.0425 2.77 0.8413 4.81
24 graph w/[Zip] 1.0426 2.77 0.8407 4.88
25 graph w/[Age, Zip] 1.0426 2.76 0.8409 4.86
26 graph w/[Age, Occupation] 1.0426 2.76 0.8412 4.82
27 graph w/[Age, Gender] 1.0427 2.76 0.8413 4.81
28 graph w/[Age, Gender, Zip] 1.0427 2.75 0.8408 4.87
29 graph w/[Age, Occupation, Zip] 1.0427 2.75 0.8408 4.86
30 graph w/[Occupation, Zip] 1.0427 2.75 0.8410 4.84
31 graph w/[Occupation] 1.0428 2.75 0.8414 4.80
32 graph w/[Gender, Occupation, Zip] 1.0428 2.74 0.8409 4.85
33 graph w/[Gender, Zip] 1.0431 2.72 0.8411 4.83
34 graph w/[Gender] 1.0431 2.71 0.8418 4.75
35 graph w/[Gender, Occupation] 1.0432 2.70 0.8417 4.77
36 graph w/[Age, Gender, Occupation] 1.0433 2.70 0.8417 4.77
4 Basic features 1.0722 N/A 0.8838 N/A
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The rows corresponding to the various subgraph representations are numbered 6–36.
For the sake of clarity, the subgraphs are denoted by the entity types included rather
than excluded. For example, “graph w/[Age, Genre, Zip]” denotes the subgraph with
the “Age,” “Genre,” and “Zip” entities, which is identical to the complete graph with
the “Occupation” and “Gender” entities excluded.

As can be seen, the “genre” relationship in Movielens subgraphs plays a similar
role to the “category” relationship in Yelp. Subgraphs containing this relationship
(rows 6–22) outperformed those, where it was excluded (rows 23–36). A common
link between the “category” relationship in Yelp II and the “genre” relationship in
MovieLens is that they both divide the item space—be it businesses or movies—into
connected groups, which affects values of the item features. In agreement with pre-
vious results, the feature set that unifies all the graph features from all the subgraph
schemes (“all graph features,” row 2) achieves the highest accuracy and outper-
forms any other feature set. Again, this is attributed to the broad coverage of the
proposed feature extraction mechanism, which produces and aggregates promising
feature combinations.

21.5.2.5 Summary
The purpose of this analysis was to analyze the differences driven by the subgraphs
that are used for the feature extraction. To recap the results obtained using the four
datasets, the following was established:

● Features extracted from different graph schemes performed differently, not fol-
lowing a certain pattern tied to the entities or relationships included in the
subgraph. This means that it was not possible to conclude which relationships
lead to better results if included in the graph. We posit that this is dataset-specific
and may be affected by additional factors, such as density of a specific feature,
distribution of its values, domain-specific considerations, and so forth. This find-
ing comes through in the “category” and “genre” relationships in the Yelp II and
Movielens datasets, but not in the Yelp I dataset. Notably, the social links had a
major contribution in the Last.fm dataset, but not in the Yelp II dataset, possibly
due to the sparsity of the latter.

● Features extracted from the complete graph representations, i.e., those containing
all the relationships and entities in the dataset, were not necessarily the best
performing feature sets. A negative example can be seen in the basic features of
the BL+F+T schema inTable 21.7 that are dominated by the basic feature of BL+F
and BL+T alike. Having said that, the feature set that aggregated (i.e., unified)
all the graph features from all the subgraph schemes performed the best in the
other three scenarios in which it was evaluated: Yelp, Yelp II, and Movielens. We
consider this to be a strong argument in favor of using the proposed approach, as
its exhaustive nature allows to cover a range of features and determine the most
informative ones, as well as their best combination.

The differences across the obtained results do not allow to generalize and deter-
mine a priori the best performing subgraph and feature set. Due to this, the suggested
approach of generating subgraphs, populating features from each of them, and then
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aggregating the features in the feature sets is more likely to uncover the best perform-
ing feature combination. We believe that future research may unveil rating patterns
or characteristics of datasets, which may predict the contribution of certain subgraph,
data entities, or even types of features.

21.6 Discussion and conclusions

21.6.1 Discussion

This work demonstrated the effectiveness of the graph-based approach for improv-
ing recommendations. It has been shown that precision and accuracy gains can be
achieved by representing tabular data by graphs and extracting new features from
them. This contrasts and complements prior approaches that improved recommenda-
tions by enhancing the recommendation techniques themselves. Also established are
the benefits of the graph-based approach across recommendation domains, tasks,
and metrics. These findings show that the graph representation exploits indirect
latent links in the data, which lead to an improved recommendation accuracy.
Finally, the approach is generic and can be applied to many recommender system
datasets.

The process is automatic and can be run end-to-end without human interven-
tion, unlike manual feature extraction methods, which are often time-consuming and
require domain expertise. Using the proposed approach, rich features, based on intri-
cate relationships between various data entities and subgraph scheme variations, can
be systematically extracted from a dataset. This allows for a better coverage of the
features space with a considerable lower effort, as discussed in Section 21.3. Next,
we discuss some limitations of our work.

21.6.1.1 Overfitting
Regarding concerns referring to possible overfitting due to the newly generated fea-
tures, as long as the volume of available data greatly exceeds the number of extracted
features, there is little risk that the features will be the cause of overfitting. The high
diversity of unique data characteristics can hardly be captured in full by a smaller
subset of features. Recommender system datasets tend to be in the medium to large
scale (tens of thousands to millions of data points), while the number of features
generated by the current approach is still in the scale of tens to hundreds.

Additionally, machine-learning methods such as random forests have internal
mechanisms for feature selection and can filter out features that overfit. They do
so by training on a sample of the dataset and evaluating the performance of the
features on the rest of the data. A feature that performs well on the sample but
underperforms on the test data is ranked low. In the evaluations, cross-validation was
used with at least N = 5 folds, showing that the models and features on which they
are built are generalizable. Moreover, it was shown that in cases of sparse data, which
require a higher degree of generalization, the graph features still outperformed other
features.
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21.6.1.2 Scalability
A possible disadvantage of the proposed approach is that some graph-based computa-
tions, e.g., PageRank, are iterative and may take a long time to converge. In the age of
big data, recommender system datasets are getting larger and so is their graph repre-
sentation, which may lead to a computational issue. A general approach for handling
this in a deployed system would be to extract the graph-based features offline and use
the precomputed values for real-time predictions. This may resolve the problem under
the reasonable assumption that the values do not change substantially. Another means
to overcome the computational latency is through using a graph feature computation
library, e.g., Okapi, which can use distributed tools in order extract the graph features.

Another factor that adds to the computational complexity of the approach is the
exhaustive search for new features. It should be noted that the complexity of the
process of generating every possible subgraph and populating the matching feature
combinations is exponential. The number of relationships in current recommendation
datasets (as surveyed in Section 21.3.1) is still manageable and can be accommodated
by the proposed approach. However in the future, with additional data sources being
integrated for recommendation purposes, this might become unsustainable and will
require a long-term solution. Two possible approaches for handling this issue are
parallelization, e.g., each subgraph being processed by a different machine, and
heuristics for pruning less-relevant subgraph representations.

21.6.1.3 Initial transition to the graph model
Another possible disadvantage of graph-based features is the possible need for human
intervention when generating the initial complete graph. Non-categorical feature val-
ues, e.g., income or price, may generate a large number of vertices, which would
lead to a low connectivity of the graph, since not many users or items would share
the exact value of the feature. This would lead to a very sparse graph and will need
to be addressed by a manual intervention by a domain expert, who can determine
how the non-categorical values can be grouped and categorized, e.g., by creating
appropriate income or price buckets. A naive solution for this might be to attempt to
auto-categorize such features based on the observed distribution of their values, e.g.,
first quarter and second quarter. This may, however, mask the differences between
fine-grained groups and cause information loss.

Also to be acknowledged in this context is the historic human contribution that
was required in order to conceive the graph methods exploited in this work for the
generation of the various basic graph features: shortest path, degree, PageRank, etc.
Indeed, these methods took a considerable amount of time and effort to evolve; how-
ever, they are reusable for generations and the overheads related to their development
have been shared across many subsequent applications, while manually engineered
features would usually not be highly reusable. Overall, when weighting the ease,
quantity, and the possible contribution of the graph-based features to the accuracy of
the generated recommendations against the abovementioned disadvantages, it can be
concluded that it is worth to generate and populate such features, when designing a
recommendation engine.
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21.6.2 Conclusions and future work

In this work, a new approach for improving recommendations was presented and
evaluated. Unlike many previous works, which focused on addressing the recom-
mendation problem by making improvements to the recommendation algorithms, the
presented approach does so by suggesting a different way of looking at the dataset
used for recommendation. It proposed representing the datasets using graphs and then
to extract and populate new features from those graphs, all in a systematic fashion,
and feed the new features into existing recommendation algorithms. New features and
relationships that were not visible in the original tabular form can be thus uncovered.
In this manner, applying this approach may compliment classical recommendation
approaches and further enhance them.

The methodology, implementation, and analysis of the approach were described
in detail and the approach was evaluated from two main perspectives: the overall con-
tribution to recommendations and the impact of various graph representations. The
evaluation encompassed a number of datasets, recommendation tasks, and evaluation
metrics. Furthermore, the datasets belonged to four application domains (movies,
music, businesses, and personal interests) that in part included metadata and in part
included social links. The recommendation tasks varied from binary link predictions
to star rating predictions. A number of state-of-the-art classifiers and regressors were
used for the generation of the predictions. All in all, the presented evaluations exam-
ined the impact of the graph representations and showed that the approach had a
profound effect on the accuracy of the recommendations.

The graph-based representation and features were shown to lead to the genera-
tion of more accurate recommendations. The variations in performance across various
graph schemes and the justification for systematically extracting them, due to that,
was established. The approach presented was implemented in a library and is being
provided as open-source software for the community to use and build on-top. Given
such a library, the cost of generating additional features that can improve recommen-
dations becomes substantially lower, in terms of computation time and effort. It can
be adopted as a natural first resort, when given a dataset and recommendation task,
or as a complementary aid to enhance the standard manual feature engineering.

The conducted evaluations demonstrated the potential of the proposed approach
in improving the recommendations by exploiting the benefits of links between entities
and characteristics of entities extracted from the graph representations. Therefore, this
work lays the foundations for further exploring how graph-based features can enhance
recommender systems and automatic feature engineering in the more general context.
Several variables were investigated in this work but many more require additional
attention. The following paragraphs identify several directions of exploration, which
were identified as possible research directions in future works.

● Temporal aspects. Given a dataset that includes dated actions that are not sparse,
the time aspect can be used to build a different type of graphs. Each graph will
represent a snapshot in time and will either contain or exclude a link between
vertices based on whether it was available in the dataset at that time. A combination
of two temporally adjacent graphs will reflect the evolution of the data over that
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period of time. The main question in this setting is how such temporal graphs
will affect the values of features extracted from them and how a recommender
systems that use these features will perform in their respective recommendation
tasks.

● Weighted and labeled graphs. Several features in a dataset can be used to populate
the edge labels when constructing the graph-based representation. The labels,
once set, can be taken into consideration in some graph features being extracted.
One example would be to calculate a weighted PageRank score that will have
jumps from a vertex to its neighbors based on a skewed probability correlated
with the weight on the edge linking to the neighbor. This could lead to further
improvement in the recommendations; however, this requires fine-tuning of initial
weights on edges that do not naturally have them, e.g., social relationship edges
in the Last.fm dataset.

● Directed graphs. Similarly, in cases where the direction of the edges can be
important, the process can be extended to include this aspect by generating addi-
tional graph representations, with various combinations of the edge directions.
For example, in one variant, edges will be directed from the source vertex to the
target vertex, in another, in the opposite direction, and in a third one there will
be no direction. This will guarantee coverage in terms of expressing the direction
of the edges, and the performance of the features in the various scenarios can be
evaluated.

The effects of these modifications on the scalability of the approach can be han-
dled using the previously suggested methods, either by scaling the computations (e.g.,
computing the features of each subgraph in a separate process), or using distributed
graph computation libraries, or identifying heuristics for pruning the feature and
subgraph space.
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Chapter 22

AmritaDGA: a comprehensive data set for
domain generation algorithms (DGAs) based

domain name detection systems and application
of deep learning

R. Vinayakumar1, K.P. Soman1, Prabaharan
Poornachandran2, Mamoun Alazab3, and Sabu M. Thampi4

In recent days, botnet plays an important role in malware distribution. This has been
used as a primary approach for the proliferation of the malicious activities via the
internet by attackers. To evade blacklisting, recent botnets make use of domain flux
or internet protocol (IP) flux. This work focuses on domain flux. Domain flux uses
domain generation algorithms (DGAs) to generate a list of domain names based on a
seed and these domain names contacts command and control (C&C) server till it gets
access permission to the system. This work presents the fully labeled domain name
data set entitled as AmritaDGA which can be used for doing research in the field of
detecting domain names which are generated using DGAs. We evaluate the efficacy
of deep learning architectures with Keras embedding as domain name representation
method on AmritaDGA. AmritaDGA is composed of two data sets. The first data
set is collected from the publicly available sources. The second data set is collected
from an internal real-time network. The performance of the trained model on public
data set is evaluated on unseen samples of a public data set and private corpora. Deep
learning architectures performed well in most of the cases of test experiments. The
baseline system has been made publicly available and the data set is distributed for
Detecting Malicious Domain names (DMD 2018) shared task.1

22.1 Introduction

In initial days, the malicious authors embed the malware with the fixed domain name
or the internet protocol (IP) address to reach out to the command and control (C&C)
server, to get benefits, by conducting the malicious activities.

1Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita
Vishwa Vidyapeetham, India
2Center for Cybersecurity Systems and Networks, Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, India
3College of Engineering, IT & Environment, Charles Darwin University, NT 0810, Australia.
4Indian Institute of Information Technology and Management-Kerala, India
1http://nlp.amrita.edu/DMD2018/
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In initial days, the malicious authors embed the malware with the domain name or
the fixed IP address to reach out to the C&C server, to get benefits, by conducting. This
can be easily detected using blacklisting method [1]. To evade blacklisting, malicious
authors use domain flux and IP flux methods. Domain generation algorithms (DGAs)
is a domain flux technique which facilitates to generate a large number of malicious
domain names based on a seed, and a subset of malicious domain names is used
constantly to get access to C&C server [2]. A seed is a number which helps to reverse
engineer the particular malware. According to DGArchive2, to date, more than 72
different DGAs are known, and the number is expected to further increase [3] as DGAs
significantly improve botnets resistance to take down. The domain names which are
not present receive nonexistent (NX)-Domain response message which means the
corresponding domain name or IP address does not exist [4]. The amount of domains
generated per day varies between 1 and 10,000 depending on the DGA [3]. Due to
these reasons, detecting malicious domain names (DMD) and categorizing them into
their family is considered as one of the significant tasks.

Earlier most commonly used methods for detecting malicious domain names are
based on blacklisting. These methods are robust for detecting the malicious domain
names which already exist in the dictionary. It completely fails to detect new mali-
cious domain names. This approach contained two types, one is public and other is
vendor-provided blacklist. The performance of vendor provided blacklist was good
in comparison to the public blacklist. The detailed analysis of blacklisting was done
by [1]. Blacklisting relies on domain experts as they reverse engineer the new mal-
ware and generate a signature to them. Pleiades was the first automated system which
facilitated detecting DGA-based domains without reverse engineering the bot [2].
The detailed analysis of DGA detection methods was done by [5]. Most commonly
used methods for DGA detection are based on machine learning with various feature
engineering techniques [6–9]. Largely used feature engineering technique is n-gram
text representation. In recent days, the application of deep learning architectures
have performed well in comparison to the conventional machine learning algorithms
in various tasks which are related to natural language processing (NLP), computer
vision and speech processing [10]. This has been applied to DGA detection and
categorization [9]. Most of the methods have used Keras embedding as their DGA
representation method. This facilitates to learn the syntactic and semantic similarity
among the characters in a domain name. The Keras embedding matrix is passed into
several deep learning layers such as a convolutional neural network (CNN), recurrent
neural network (RNN), long short-term memory (LSTM) and CNN-LSTM. In most
of the cases, the deep learning architectures performed well. Moreover, deep learning-
based method is more effective in an adversarial environment in comparison to the
conventional machine learning. In this work, the application of deep learning with
Keras embedding is applied toward DGA detection and categorization. The major
contributions of the current research work are as follows:

1. This work proposes cyber threat situational awareness framework. It is a robust,
distributed and scalable framework that can collect and process trillions of events

2https://dgarchive.caad.fkie.fraunhofer.de/
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data generated from domain name system (DNS) queries by the Ethernet LAN
connected hosts.

2. This work creates AmritaDGA, a comprehensive data set for DGAs.
3. The performance of various deep learning architectures is evaluated for Amri-

taDGA. The source code and the data set are publicly available for further
research.

4. AmritaDGA has been used in DMD 2018 shared task. The overall summary of
each submitted system details is discussed in detail.

The rest of the sections are organized as follows. Section 22.2 includes related
work of deep learning-based DGA detection and categorization. Summary of submit-
ted systems of DMD 2018 is given in Section 22.3. Section 22.4 provides background
information about DNS protocol. Section 22.5 contains information on domain flux-
ing. Section 22.6 provides details of the scalable framework. Section 22.7 contains
information of real-time DNS data collection inside an Ethernet LAN.The description
of the data set is provided in Section 22.8. Section 22.9 provides background details
of deep learning architectures. Section 22.10 discusses the details of AmritaDGANet.
The experiments, results and observations forAmritaDGA are placed in Section 22.11.
At last, conclusion and future work are placed in Section 22.12.

22.2 Related methods toward deep learning-based DGA
detection and categorization

In order to classify DGA and Non-DGA domains, five highly efficient deep learning-
based models including AlexNet, VGGNet, SqueezeNet, Inception and ResNet is
proposed [11]. Unlike the conventional models which make use of hand crated fea-
tures, the process of feature extraction from the raw input is automated by utilizing
pretrained deep learning models and adopting transfer learning. The model achieved
the best evaluation result of 99.86% true positive rates (TPRs) with a 0.011 false posi-
tive rate (FPR).The model also achieved better inference speed, performance accuracy
and scalability compared to the already existing models. Modern botnets are based
on DGAs which builds a resilient communication between bots and C&C servers.
The basic aim is to avoid blacklisting and evade the intrusion prevention system.
A thorough investigation of methods like Hidden Markov Model, C4.5 decision tree,
extreme learning machine, LSTM, support vector machine (SVM), recurrent SVM,
CNN-LSTM, bidirectional LSTM is done in which recurrent SVM and bidirectional
LSTM achieved highest detection rate on both binary and multiclass classification
problem. In [12], a comparative study of five different deep learning architectures for
DGA detection problem is put forward. All the models had character level embed-
ding and belonged to either RNN, CNN or hybrid deep learning architectures. The
chosen models were able to detect 97%–98% of malicious domain names against an
FPR of 0.001. On evaluation and training, the results confirmed that these CNN and
RNN-based architectures displayed similar accuracy, adding to the favor of simpler
architectures which requires comparatively shorter training and also faces less over-
fitting problems. In [13], a scalable distributed framework using Apache spark for the
analysis of the huge volume of DNS logs in Ethernet local area network (LAN) and
to trace the attack patterns in order to prevent further attacks is introduced. For the
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detection of malicious domain names, both conventional machine learning classifiers
and deep learning models such as RNN and LSTM were employed and the results
were evaluated. Deep learning-based approaches achieved results better since they
are capable of figuring out the correct features implicitly. In [14], a relevant machine
learning approach for DGA detection using RNN network is introduced. The model
achieved a high precision on a huge data set and was able to automatically detect 93%
of malware-generated domain names for an FPR of 1:100. The fact that the model does
not require any handcrafted feature and can be easily retrained to detect new malware
contributes to its relevance. And also, the model works using the raw domain names
and does not require any additional contextual information. In [15], a DGA classifier
using LSTM is developed. The model obtained high accuracy for multiclass classifi-
cation giving the ability to attribute a DGA generated domain to a specific malware
family. The LSTM-based technique is easy to implement and it also outperformed all
the state-of-the-art models by attaining a 90% detection rate with a 1:10,000 FPR.
In [16], leveraged the embedding concepts from NLP into cybersecurity uses cases to
propose a new in-house model christened S.P.O.O.F Net, which is a combination of
CNN and LSTM Networks when incorporated. On evaluation, S.P.O.O.F Net achieved
an accuracy of 98.3% for DGA detection and 99% for malicious URL detection and
hence outperformed current state-of-the-art techniques. S.P.O.O.F Net does not suf-
fer from the drawbacks of conventional threat-detection strategies like the need of
domain expert for training database maintenance, blacklisting and sinkholing. Since
deep learning architectures can obtain optimal feature representations themselves,
they are regarded as having a black box view which makes them less vulnerable to
malicious adversaries. In [17], a deep learning-based-method to classify huge amount
of real traffic data into DGA and non-DGA is proposed. Since the model can deal with
the massive amount of real data, it ensures better performance also. The methodol-
ogy involves simple filtering steps to attain more representative DNS traffic samples,
automatic feature extraction as well as online learning to adapt to new DGA domain
patterns. This deep learning model resulted to be better DGA detector in comparison
to conventional methods. Along with this evaluation, it was also discovered that our
model was tuned and set in such a way that it can get a low FPR such as 0.01%.
Detection and classification of the pseudorandom domain names without relying on
the feature engineering or any other linguistic, contextual or semantics and statistical
information is evaluated by adopting deep learning approaches. The family of the
RNN and its hybrid network (formed using CNN) has significantly performed well
in comparison to the methods of handcrafted features and bigrams in both binary and
multiclass classification settings.

For deep learning approaches in DGA-generated domain name analysis and its
classification, [18] stays as a standard framework to comprehend their viability. To
address the cybersecurity attacks and malicious activities in the digital world, numer-
ous security solutions have been proposed. The reasons which lead to inefficiency in
attack detection on the devices are (1) the absence of computational power for detect-
ing attacks, (2) the absence of interfaces that could possibly show a compromise on
these devices and (3) the absence of the capacity to cooperate with the framework
to execute diagnostic tools. A study has been carried out in cyber threat situational
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awareness on cybersecurity events and a framework with high scalability is created
which is the first of its kind to employ deep learning techniques for dealing with
extensive scale information handled in real time. This is the main structure that works
over several Internet service providers, this works as the main structure which acts
as a single unified system providing cyber threat situational awareness at an internet
service provider (ISP) level [19].

22.3 Summary of submitted systems of DMD 2018 shared task

In recent years, a lot of research is being carried out in DMD using various techniques
such as domain name based, network traffic based and the combination of these
methods. Malware domains generated by domain generation algorithms (DGA) are
highly dynamic in nature. The conventional approach of blacklisting the malicious
domains is a time-consuming approach and is not effective, as the DGA randomly
generate the domain names for the malware. For real-time applications, malware
detection is to be performed on the fly, and hence sophisticated techniques are in
demand to address this issue. Even though various machine learning techniques are
employed for this purpose, the performance of such algorithms depends on how good
the features are designed. The data set for all the related works mentioned here is
provided by the shared task on DMD 2018.

Researcher’s analyzed the possibility of detection of malicious domain names
using deep neural network based models. In a study, Bidirectional LSTM network
has been developed and trained on the DMD 2018 data set [20]. Two tasks were given.
The first task was to identify the malicious domain name, and the second task was
to identify the class of domain name. In this study, the researchers were able to pro-
duce an accuracy of 98.9% in task 1 and 69.7% in task 2. Another study compares
the performance of various machine learning-based approaches such as featureful
(Random Forest (RF)) and featureless (Deep Neural Network)-based classifiers for
DGA detection, trained with various sources of publicly available and DMD 2018
provided data [21]. For the binary classification task of determining whether a domain
name is benign or malicious, researchers obtained the best results with a deep learn-
ing approach where the features are learned automatically from the data during the
training process. For the multiclass classification task of determining which malware
family a DGA domain name belongs to, they obtained the best results with a one ver-
sus rest RF model trained on 28 features extracted from the domain names. Real-time
prediction of malicious domains generated using the domain generation algorithms
(DGAs) is a demanding as well as difficult tasks in cybersecurity where deep learning
architectures are able to achieve promising results. A study uses LSTM architecture
for prediction of the malicious domains that are generated using the DGAs [22]. For
the binary class classification, the LSTM model gave 98.7% and 71.3% accuracy and
for the multi-class classification 68.3% and 67.0% accuracy on two different data sets.
Two diversified data sets were used to analyze the robustness of the LSTM architecture.
Researchers were able to achieve an overall second position in the shared task of DMD
2018. Researchers built a system based on a deep learning architecture using character
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embeddings and bidirectional LSTM [23]. In task 1, an accuracy of 98.1% and 71.4%
was achieved for the testing collected publicly and via real-time system, respectively.
The results for the multiclass task produced 65.5% and 67.1% in respective testing
sets. Another study uses a transfer learning technique by combining the best perform-
ing CNN with the machine learning algorithms such as Naive Bayes classifier for
detection and classification of DGA-generated domains [24]. Researchers conducted
baseline experiments with CNN alone by varying the number of convolution layers
and optimizers. Using the data set released by DMD 2018 shared task for both binary
classification and multiclass classification scenario, this study using methods such as
CNN with NB for binary classification has been awarded the first rank in this DMD
2018 shared task. Reference [25] shows a string of characters given as input from
the domain name and classifying them as either benign or malicious domain name
using deep learning architectures such as LSTM and bidirectional LSTM. Using this
method, researchers have observed that this model for binary classification performed
better than multiclass classification. From this study, it can be inferred that the true
negative metric is better than true positive. The performance of this study can be
further improved by employing character to vector representation algorithm. A study
uses the DNN along with 3-gram representation to transform the domain names into
numeric representation [26]. Deep neural networks have a certain level of complexity
since it uses sophisticated mathematical modeling to process data. The network param-
eters and network 3-g representation are used to transform the domain names into
a numeric representation. The network parameters and network structures for DNN
are selected by hyper-parameter selection method. All experiments are run until 100
times with learning rate inside the range 0.01–0.5. In this study, the researchers have
obtained an accuracy of 97.6% and 78.2% in binary class classification task and an
accuracy of 60.1% and 53.1% in the multi-classification task.

22.4 Domain name system (DNS)

Internet the crucial part of the current global communication scenario and infras-
tructure since it connects billions of nodes facilitating communication. The most
important protocol that the Internet uses, also known as the core domain, is the
domain name system (DNS). Figure 22.1 illustrates the hierarchical level in a DNS.
Since the Internet addresses comprise a long sequence of a number, they become
difficult for people to memorize. This is where the DNS protocol comes to play. It
provides human-readable IP names that correspond to this Internet addresses.

Usually, the access to the Internet is through the use of a web browser such that
the domain name is typed in the address bar of the browser and the end user can
exchange information and transactions through the web pages and portals. There are
two different types of classification available for the DNS server: non-recursive/ iter-
ative servers and recursive servers. Iterative DNS servers are those in which queries
returns an answer without querying other DNS server, even if they cannot provide a
definitive answer. Therefore, it acts as the State of Authority. Unlike non-recursive
servers, recursive servers respond to the client request from the DNS server that is
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set to query subsequent DNS server until a definitive answer is returned as shown in
Figure 22.2. Figure 22.3 shows an example for recursive DNS servers. Some of the
popular cyberattack that compromises the computer security is the distributed denial
of service (DDoS) attacks, DNS cache poisoning, unauthorized use of resources,
root name server performance degradation, etc. Among malware, botnets are highly
advanced malware which when infecting a system or a host can be automated to do
various malicious works such as stealing personal and sensitive data, keystroke log-
ging, sending malware, participation in C&C-based DDoS attacks. Other than these
attacks, it can affect local systems with various malware such as Adware’s, Spyware
and Click fraud. Click fraud feeds on the pay-per-click online advertising scheme by
automating fraud computer program which will click an advertisement without the
knowledge of the end user with an intent to make financial gain illegitimately. One
of the malicious activities performed by botnets is Fast flux. There are two types of
fast flux, they are domain flux and IP flux. This work is mainly studies domain flux.
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22.5 Domain fluxing

Domain fluxing is a technique in which domain names linked with the IP address
of C&C servers are frequently changed to keep the botnets in operation. To carry
out this operation, bot master makes use of domain generation algorithm (DGA) to
generate domain names on a large scale which can bypass blacklisting and heuristics
methods for DMD. There are different types of DGAs such as Conflicker, Torpig,
Kraken, Murofet. Kwyjibo is harder to detect since its uses advanced DGA which
generates domain names that are very similar to English dictionary words. In the
process of domain fluxing, randomly generated domain names are used by botnets to
communicate with their C&C server. Botnets try to connect with these C&C servers
using hit and trial method. As a result, the majority of trials create domain queries for
which there exists no record or IP address. Such queries are known as NX-domain
response queries which are illustrated in Figure 22.4.

22.6 Scalable framework

To meet the requirements such as collecting and processing the data in real time, a
highly scalable framework has been developed to handle several billions of data events
per minute which are produced by DNS. In this framework, the data is collected in
a distributed manner using DNS sensors. The configuration details of the framework
cannot be revealed due to the confidential nature of the research. Each system has
configuration of (32 GB RAM, 2 TB hard disk, Intel(R) Xeon(R) CPU E3-1220 v3
@ 3.10 GHz) running over 1 Gbps Ethernet network. Apache Spark [27] cluster set
up is developed on top of Apache Hadoop [28].

22.7 Real-time DNS data collection in an Ethernet LAN

To capture the DNS event traffic, four different classifications are (1) using hub, (2)
port mirroring, (3) bridge mode, (4) ARP spoof and (5) remote packet capture. Port
mirroring is used in our experimental setup.
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Figure 22.5 shows the process of port mirroring in which the user can duplicate
the traffic and mirror it to a port when they want to. A protocol analyzer can be
used to receive the mirrored data. With the use of a protocol analyzer on the port, the
administrator can analyze the switch performance. Depending on manufacturers, port
mirroring is known by different names such as switched port analyzer is the name for
port mirroring by CISCO.

At first, the port mirroring is configured by means of assigning a port from
which we copy all packets and assign every other port to which one’s packet might
be dispatched. At the point when packets are received for quite a while, in some
cases, packets are exchanged to some different ports. This issue is comprehended
with the use of a protocol analyzer on the receiver’s port. Every single section of
the mirrored data is being monitored by the protocol analyzer one by one. Such a
protocol analyzer is known as the packet sniffer. Intrusion detection systems (IDS)
and other analyzing tools are installed using port mirroring. Network traffic is sent
to network analyzer tools by port mirroring. Screen events such as IDS, network
anomaly detection, monitoring and forecasting network trends are analyzed with the
help of network analyzer tools.

Using default mode, the network traffic of every connected host is not available
in our experimental LAN. Network adapters ensure that the packets ought to be
received by the predetermined receiver. With the assistance of Ethernet LAN, the
issue is solved where it can acknowledge packets in spite of the fact that those are not
routed to them. In this approach, the network adapter grants permission to receive
every packet which is streaming inside the network. We experimented with the hub-
based network so as to receive all the network traffic within the LAN. To achieve
this, we switched the network adapter to the promiscuous mode which gave an added
advantage as there is no compelling reason for not using network analyzers on various
ports. The hub transmits the received packets to every single other port. In this way,
connecting with any of the port and the network traffic is observed.

We have a switch-based LAN in our experimental setup which transmits packets
to just a single port and keeps records of all connected host-media access control
(MAC) addresses and the related port address. This recognizes connected hosts with
the predetermined port. At the point when a switch gets a packet, it scans for the MAC
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address in the record and picks the correct port to forward the packet. This enables the
adapter to acknowledge only those packets which are routed to corresponding host.
It limits the network load without limiting its bandwidth. As shown in Figure 22.6,
we have connected with a particular switch port and utilized the promiscuous mode.
A LAN cable is connected from the port mirroring enabled port on the switch which is
connected to a computer with its network interface card (NIC) in promiscuous mode.
This enables the NIC to gather every packet from the network.

The storage of DNS logs is in unstructured text format. To stay away from memory
issues every day, the gathered DNS information is compacted and changed to slave
nodes in a distributed computing platform. The extracted DNS log contains much data
and looks more mind boggling. In any case, we apply to preprocessing for extracting
the time, date, IP and domain field information. With a specific end goal to keep
the required data for some time later, the preprocessed DNS logs are independently
stored in Apache Cassandra [29] database, appeared in Figure 22.7. An example DNS
log is illustrated using Figure 22.8.

22.8 Description of data set

AmritaDGA data was collected from both the public and private sources. It contains
a very large number of domain names, categorized into two categories. One is just
classifying domain names as either benign or malicious and another one is categoriz-
ing malicious domain names to their corresponding DGA malware family. To make a
comprehensive data set addressing ongoing challenges that exist in DMD, the domain
names are collected from both the public sources and private real-time DNS events. To
meet the zero-day malware detection, the significance of the time-split strategy was
used in the data-collection process. The malicious domain names for the first data set
were collected using the publicly available DGAs [30], OSINT DGA feeds [31] and
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netlab-360 [32]. The legitimate domain names for the first data set were collected
from the Alexa [33] and OpenDNS [34]. There are 20 DGAs that were considered.
The second data set is collected privately within a lab using port mirroring approach,
as already discussed. The detailed statistics of the data set is shown in Tables 22.1
and 22.2. Training and Testing 1 are collected from a public source and Testing 2
is collected privately. Recently, the data set was used as part of the shared task on
DMD 20183, a workshop colocated with ICACCI’184 and SSCC’18.5 The data anal-
ysis of AmritaDGA features problem statements in the field of conventional machine
learning, deep learning and text analysis in cybersecurity. This data set was made
publically available to the research community without any costs.6 It can be used for
further research in the field of DMD. The specification details of AmritaDGA and its
statistics are summarized in Tables 22.3 and 22.4, respectively.

3http://nlp.amrita.edu/DMD2018/
4http://icacci-conference.org/2018/
5http://www.acn-conference.org/sscc2018/
6https://github.com/vinayakumarr/DMD2018
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Table 22.1 Data statistics for classifying domain name into
either benign or DGA

Type Benign Malicious Total

Training 655,683 135,056 790,739
Testing 1 2,349,331 108,076 2,457,407
Testing 2 182 2,740 2,922

Table 22.2 Data statistics for classifying domain name into
either benign or DGA and categorizing DGA
generated domain named to DGA family

Class Training Testing 1 Testing 2

Benign 100,000 120,000 40,000
Banjori 15,000 25,000 10,000
Corebot 15,000 25,000 10,000
Dircrypt 15,000 25,000 300
Dnschanger 15,000 25,000 10,000
Fobber 15,000 25,000 800
Murofet 15,000 16,667 5,000
Necurs 12,777 20,445 6,200
Newgoz 15,000 20,000 3,000
Padcrypt 15,000 20,000 3,000
Proslikefan 15,000 20,000 3,000
Pykspa 15,000 25,000 2,000
Qadars 15,000 25,000 2,300
Qakbot 15,000 25,000 1,000
Ramdo 15,000 25,000 800
Ranbyus 15,000 25,000 500
Simda 15,000 25,000 3,000
Suppobox 15,000 20,000 1,000
Symmi 15,000 25,000 500
Tempedreve 15,000 25,000 100
Tinba 15,000 25,000 700

Total 397,777 587,112 103,200

To understand the characteristics of train and test data sets of DMD 2018, various
visualization are provided. Train data set visualization is shown in Figures 22.9–22.13.
Test data set 1 visualization is shown in Figures 22.14–22.18. Test data set 2 visual-
ization is shown in Figures 22.19–22.23. The detailed description for visualization
used for generating Figures 22.9–22.13 are given below:

1. Box plot grouped by class character length for AmritaDGA train data set: The
character length distribution for both the DGA generated domain names and
legitimate domain names is plotted using the box plot for comparison. Box plot is
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Table 22.3 Specification of AmritaDGA data set

Subject area Machine learning, deep learning, cybersecurity, natural-language
processing, machine intelligence

More specific Detection of malicious and DGA generated domain name, Character level
subject area text classification

How data was • Public data set (Training and Testing 1): The malicious domain names
acquired for the first data set were collected using the publicly

available DGAs [30], OSINT DGA feeds [31] and netlab-360 [32].
The legitimate domain names for the first data set were collected from
the Alexa [33] and OpenDNS [34]

• Private data set (Testing 2): The second data set is collected privately
within a lab using port mirroring approach

Data format Preprocessed domain name is available in text format

Data source • Public data set (Training and Testing 1): Publicly available DGAs [30],
location OSINT DGA feeds [31] and netlab-360 [32]. The legitimate domain names

for the first data set were collected from the Alexa [33] and OpenDNS [34]
• Private data set (Testing 2): CEN Lab, Amrita Vishwa Vidyapeetham

Data The data set is available at [35]. This is publicly available for
accessibility further research toward research purpose

Table 22.4 Value of the data

• In recent days, attackers use malicious domain names to run attacks over the Internet.
Thus, detecting malicious domain names has been considered as a vivid area of research.
The AmritaDGA is a resource that can be used to learn the patterns to differentiate
the malicious domain and benign domain names and to categorize malicious domain
names to their DGA family. This requires the techniques of natural language processing
and machine learning. The improvement in detection of malicious domain names of
AmritaDGA remains as a research area for the research community.

• The AmritaDGA data set has unique domain names in both the training and testing. Two
types of data sets are collected. This is due to show the performance of the machine
learning model on the testing data set of public and private sources.

• The meet zero-day malware detection, the data set collection carefully followed the
time-related information.

• This is the only potential data set publicly available for research. This data set is used
for DMD 2018. This was the second shared task in the cybersecurity domain.

used for depicting and comparing the class data graphically interpreting through
the quartiles. Box plot consists of box and whisker. The line on the box represents
the median. It gives the dispersion of the data, and distribution of data can
be visualized. It infers the dispersion and skewness of the data. Box plot is
nonparametric, i.e., it is plotted without requiring the prior knowledge of the
underlying statistical distribution of the data set. The statistics for train data
set were shown in Figure 22.9. Box plot displays the distribution of the data by
dividing it into mainly five quartiles (minimum, Q1, median, Q3, and maximum).
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Figure 22.9 Box plot grouped by class length for AmritaDGA train data set
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Figure 22.10 Box plot grouped by class entropy for AmritaDGA train data set
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Figure 22.14 Box plot grouped by class length for AmritaDGA test 1 data set
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Figure 22.15 Box plot grouped by class entropy for AmritaDGA test 1 data set
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Figure 22.16 DGA domains do tend to have higher entropy than legitimate on
average
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Figure 22.19 Box plot grouped by class length for AmritaDGA test 1 data set
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Figure 22.20 Box plot grouped by class entropy for AmritaDGA test 1 data set
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Figure 22.21 DGA domains do tend to have higher entropy than legitimate on
average
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The box is around the 25th and 75th percentiles that captures the middle 50 percent
of observations. Median is the center line drawn at the 50th percentile. The
legitimate domain has more negative skewness compared to the DGA-generated
domains. The data is distributed uniformly along the whisker for the legitimate
domains, but for DGA domains, it is concentrated densely at some fixed points.

2. Box plot grouped by class entropy for AmritaDGA train data set: The box plot
using the class entropy is shown in Figure 22.10 for train data set. Entropy-based
feature selection is frequently used for NLP applications. Entropy attribute indi-
cates the average uncertainty of a single random variable. Entropy is the amount
of the uncertainty in a random variable. The entropy for the DGA-generated
domains and the legitimate domains can help in distinguishing the respective
classes. In DGA botnet detection, it is the information that is produced on the
average for each 1-gram of the domain.

3. Figure 22.11 shows the scatter plot that is plotted using the domain name length
versus the domain name entropy for train data set. The Figure 22.11 shows that
the DGA domains do tend to have higher entropy than legitimate on average. We
can clearly distinguish the DGA domains and the legitimate domains because of
the differences in the entropy. The DGA domains will have high entropy when
compared to the legitimate domains because the DGA generate the domains using
a random distribution.

4. Legitimate n-gram feature can help us differentiate between legitimate and DGA:
n-gram is the widely used technique for the detection of DGA generated domains.
n-gram can be character level and word level but here character level n-gram with
length 3, 4 and 5 are used. The minimum document frequency is 0.1% which
signifies that n-gram should occur in at least 0.1% of the total domain names.
A dictionary of legitimate n-gram is created. n-gram matching is performed for
DGA domains and legitimate domains and shown in Figure 22.12. The difference
for the DGA domains and legitimate domains is clearly inferred from the figures.

5. Domain name entropy versus legitimate n-gram matches: A dictionary of legit-
imate n-gram is created and matching is performed. Entropy for all the domain
names is calculated. Domain name entropy versus legitimate n-gram matches is
shown in Figure 22.13. The domain entropy for DGA generated domains have a
higher variance and lower mean when compared to the legitimate domains. This
can be used as a feature for detecting the DGA domains.

The above-discussed methodology is used for generating images. Test data set 1
visualization is shown in Figures 22.14–22.18. Test data set 2 visualization is shown
in Figures 22.19–22.23. The detailed description for visualization used for generating
Figures 22.9–22.13. Interpretability is crucial for the classical machine learning and
deep learning architectures because a single wrong decision of domain name can be
extremely cause many damages. To identify the reason behind an accurate and as well
as wrong decision by both the machine learning and deep learning model, the above
discussed visualization methods can be employed. These visualization methods help
to understand the characteristics of domain name and most importantly the distribution
of domain name samples.
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22.9 Deep learning

22.9.1 Recurrent structures

The most commonly used recurrent-based sequence models are RNN, LSTM and
gated recurrent unit (GRU). These networks are referred to as recurrent since units
in RNN have a self-loop. This loop stores detail of all the previous calculations
computed [36]. RNN can generally refer back only to few time steps, and it faces a
problem of vanishing gradient, which made to compare the results with the improved
versions of it. LSTM [37] and GRU [38] do not face a problem of vanishing gradient
in comparison to RNN, and they are efficient in handling long-term dependencies.
LSTM has memory block instead of simple units in RNN. This helps to store the
previous information, and this information is controlled by gating functions. GRU is
a variant of LSTM which has the capability to reduce the computational complexity
of the LSTM network. Given an input sequence X = (x1, x2, . . . , xT ), the transition
function for RNN is mathematically represented as follows:

h = σ (wxhx + whhh + bh) (22.1)

ot = A(wohht + bo) (22.2)

The transition function for LSTM is mathematically represented as follows:

it = σ (wxixt + whiht−1 + wmimt−1 + bi) (22.3)

ft = σ (wxf xt + whf ht−1 + wmf mt−1 + bf ) (22.4)

mt = ft � mt−1 + it � tanh (wxmxt + whmht−1 + bm) (22.5)

ot = σ (wxoxt + whoht−1 + wmomt + bo) (22.6)

ht = ot � tanh (mt). (22.7)

The transition function for GRU is mathematically represented as follows:

i_ft = σ (wxi_f xt + whi_f ht−1 + bi_f ) (22.8)

ft = σ (wxf xt + whf ht−1 + bf ) (22.9)

mt = tanh (wxmxt + whm(f � ht−1) + bm) (22.10)

ht = f � ht−1 + (1 − f ) � m (22.11)

where h denoted hidden state, A is nonlinear activation function, i, f , o and m denotes
input gate, forget gate, output gate and memory cell, respectively, i_f is a combination
of input and forget gate typically called as update gate.

22.9.2 Convolutional neural network

CNN is the most commonly used method in image processing [32]. This is primarily
composed of convolution, pooling and fully connected layer. A convolution layer has
a number of filters or kernels which it learns to extract specific types of features from
the data. The kernel is a 1D window normally in texts and signals which is slid over
the input data performing the convolution operation. Convolutional layer follows the
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Figure 22.24 AmritaDGANet

pooling layer which contains max-pooling or min-pooling operation. Pooling layer
is a downsampling operation and it reduces the CNN layer features. This reduced
feature representation is, in turn, passed into one or more fully connected layers for
classification. Otherwise, the reduced feature representation is passed into any other
recurrent structures to capture the sequence information among the character in the
domain name.

22.10 AmritaDGANet

The proposed architecture for detection and classification of DGA-generated domain
name is typically called as AmritaDGANet. An overview of a new in-house model
christened AmritaDGANet (see Figure 22.24) which is a combination of specialized
deep learning architectures like CNN and LSTM. AmritaDGANet is composed of
three main important sections. In the input section, it takes domain names, applies to
preprocess, created a dictionary and generates embedding vector by following Keras
embedding. The embedding vectors are passed into different deep learning architec-
tures such as RNN, LSTM, GRU, CNN and CNN-LSTM to learn optimal feature
representation. Deep learning layers follow a fully connected layer for classification.
The best performed model is a combination of a CNN and LSTM is employed inAmri-
taDGANet. All architectures have used learning rate 0.01, the batch size of 64 and
adam as an optimizer. A dictionary size is 39 and the Keras embedding size is set to
128. To give freedom in learning domain name representation, the Keras embedding
size is set to 128. All recurrent structures contain 128 units/memory blocks. Followed
by a full connected layer for classification, CNN layer contains 64 filters with fil-
ter length 3 and followed by a max-pooling layer with pooling size 2. Max-pooling
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layer follows two fully connected layers. First, fully connected layer contains 128
units followed by dropout 0.4. Dropout randomly removes the neurons and its con-
nections randomly to avoid overfitting. The second fully connected layer is used for
classification. The pooling layer outputs are passed into LSTM to learn the sequence
information among characters in the domain name. This layer contains memory blocks
of size 70. For binary classification, the fully connected layer contains sigmoid acti-
vation function and for multi-class classification softmax is used. The loss function
for sigmoid and softmax activation function are defined as binary cross entropy and
categorical cross entropy. These are mathematically defined as follows.

loss (pd, ed) = − 1

N

N∑

i=1

[edi log pdi + (1 − edi) log (1 − pdi)] (22.12)

loss (pd, ed) = −
∑

x

pd(x) log (ed(x)) (22.13)

where ed is true probability distribution and pd is predicted probability distribution.
We have used adam as an optimizer to minimize the loss of binary cross entropy and
categorical cross entropy.

22.11 AmritaDGA data analysis, results and observations

All deep learning architectures are implemented using TensorFlow7 with Keras8 as a
higher level framework. Machine learning algorithms are implemented using Scikit-
learn.9 All experiments are run on GPU-enabled computers. The parameters of deep
learning and machine learning algorithms are set based on following hyperparameter
selection method. Initially, all models are trained using the training data set and eval-
uated its performance on the testing data set. All deep learning architectures are run
till 100 epochs during training. The performance of all deep learning architectures in
terms of accuracy is shown in Figure 22.25. All deep learning architectures obtained
the highest training accuracy within 10 epochs. After 10 epochs, the performance
of RNN started to decrease due to overfitting. Once GRU reaches 40 epochs, the
performance started to decrease, and after 90 epochs, the GRU has seen the sudden
increase in accuracy. But the performance of LSTM, CNN-LSTM and CNN main-
tained consistent accuracy till 100 epochs. Among all, LSTM performed well. The
combination of hybrid pipeline CNN-LSTM performance is good in comparison to
CNN. To evaluate the trained model on completely unseen samples, the trained model
on public data set is evaluated on the private data set. In all the cases, deep learn-
ing architectures performed well in comparison to the machine learning algorithm.
Moreover, the performance of CNN-LSTM pipeline is good in comparison to the
other deep learning architectures. The detailed results of both binary and multi-class

7https://www.tensorflow.org/
8https://keras.io/
9http://scikit-learn.org/stable/
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classification are reported in Table 22.5. In binary class classification, the first row
results of each deep learning model are for Testing 1 and second row results of each
deep learning model are for Testing 2. In multi-class classification, the first row
results of each deep learning model are for data set 2 and second row results of each
deep learning model are for data set 1. The receiver-operating characteristic (ROC)
curve for Testing data sets 1 and 2 is shown in Figures 22.26 and 22.27. The detailed
results in terms of TPR and FPR of each class for Testings 1 and 2 are reported in
Tables 22.6 and 22.7, respectively.

AmritaDGA data set is used for the Shared task on DMD 2018 [35]. Totally, 19
teams registered, the baseline system and the data set are shared with the participants
[39]. Out of 19, 8 teams submitted models. The detailed results are reported in Tables
22.8–22.11 for binary and multi-class classification, respectively [35].

22.12 Conclusion and future work

This work proposes AmritaDGA which can be used for research in the field of DMD.
Additionally, the performances of various deep learning architectures are evaluated on
AmritaDGA to detect and categorize malicious domain names to corresponding DGA
family. The experiments of deep learning performed well, and the results of most of
the deep learning architectures are closer. The performance of these models can be
enhanced by following hyperparameter-selection methods. Thus, this has remained
as one of the significant direction toward future work. To find the best model and its
performance, the DGA data set is used as part of DMD 2018 shared task. We have
made both the data set, and the baseline system is available for further research.
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Table 22.5 Detailed results of binary and multi-class
classification

Model Accuracy Precision Recall F1-score

Binary classification

RNN 0.979 0.688 0.944 0.796
0.767 1.000 0.752 0.858

LSTM 0.988 0.797 0.960 0.871
0.700 0.999 0.680 0.809

GRU 0.987 0.791 0.946 0.861
0.718 0.999 0.700 0.823

CNN 0.978 0.673 0.965 0.793
0.759 0.999 0.744 0.853

CNN-LSTM 0.985 0.772 0.938 0.847
0.727 0.999 0.709 0.829

Multi-class classification

RNN 0.662 0.627 0.662 0.609
0.658 0.636 0.658 0.626

LSTM 0.669 0.695 0.669 0.627
0.672 0.663 0.672 0.622

GRU 0.665 0.718 0.665 0.637
0.649 0.655 0.649 0.601

CNN 0.643 0.691 0.643 0.596
0.604 0.629 0.604 0.568

CNN-LSTM 0.658 0.676 0.658 0.625
0.599 0.615 0.599 0.556

1.0

0.8

0.6

0.4

Tr
ue

 p
os

iti
ve

 ra
te

0.2

0.0
0.0 0.2 0.4 0.6

False positive rate

0.8

cnn (AUC = 0.9960)

ROC - Binary classification

cnn-Istm (AUC = 0.9958)
Istm (AUC = 0.9976)
gru (AUC = 0.9942)
rnn (AUC = 0.9941)

1.0

Figure 22.26 ROC curve for Testing 1 data set



480 Big data recommender systems, volume 2

1.0

0.8

0.6

0.4

Tr
ue

 p
os

iti
ve

 ra
te

0.2

0.0
0.0 0.2 0.4 0.6

False positive rate
0.8

cnn (AUC = 0.9516)

ROC - Binary classification

cnn-Istm (AUC = 0.9532)
Istm (AUC = 0.9639)
gru (AUC = 0.9633)
rnn (AUC = 0.9672)

1.0

Figure 22.27 ROC curve for Testing 2 data set

Table 22.6 Detailed test results for Testing 1 data set

Classes LSTM RNN GRU CNN CNN-LSTM

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Benign 0.92 0.06 0.90 0.05 0.89 0.06 0.88 0.05 0.90 0.11
Banjori 0.0 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.0 0.00
Corebot 1.0 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.0
Dircrypt 0.77 0.03 0.71 0.03 0.78 0.04 0.62 0.06 0.48 0.04
Dnschanger 0.99 0.05 0.98 0.05 0.95 0.05 0.91 0.09 0.98 0.06
Fobber 0.0 0.00 0.0 0.00 0.0 0.01 0.0 0.0 0.0 0.01
Murofet 0.0 0.01 0.0 0.07 0.00 0.02 0.01 0.00 0.0 0.00
Necurs 0.86 0.01 0.84 0.00 0.85 0.01 0.76 0.02 0.66 0.01
Newgoz 1.0 0.00 0.99 0.00 1.0 0.00 1.0 0.01 0.99 0.00
Padcrypt 0.99 0.0 0.99 0.0 1.0 0.0 1.0 0.00 1.0 0.0
Proslikefan 0.71 0.02 0.67 0.01 0.71 0.02 0.62 0.01 0.56 0.03
Pykspa 0.84 0.02 0.73 0.03 0.84 0.03 0.65 0.03 0.62 0.02
Qadars 0.12 0.0 0.75 0.00 0.05 0.0 0.43 0.0 0.00 0.0
Qakbot 0.65 0.08 0.43 0.03 0.57 0.07 0.46 0.03 0.37 0.08
Ramdo 1.0 0.0 0.99 0.0 1.0 0.0 0.99 0.00 1.0 0.0
Ranbyus 0.87 0.00 0.85 0.00 0.85 0.00 0.73 0.01 0.78 0.00
Simda 0.01 0.0 0.00 0.00 0.01 0.0 0.08 0.0 0.25 0.00
Suppobox 0.7 0.00 0.74 0.00 0.77 0.00 0.86 0.00 0.42 0.00
Symmi 0.50 0.0 0.18 0.0 0.29 0.0 0.12 0.0 0.21 0.0
Tempedreve 0.14 0.02 0.12 0.01 0.15 0.02 0.19 0.02 0.12 0.02
Tinba 0.92 0.00 0.92 0.00 0.94 0.00 0.29 0.01 0.95 0.00

Accuracy 67.2 65.8 64.9 60.4 59.9
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Table 22.7 Detailed test results for Testing 2 data set

Classes LSTM RNN GRU CNN CNN-LSTM

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Benign 0.97 0.10 0.95 0.19 0.96 0.06 0.94 0.11 0.97 0.10
Banjori 0.0 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.0
Corebot 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.00 0.22 0.0
Dircrypt 0.77 0.08 0.7 0.05 0.79 0.1 0.6 0.05 0.44 0.07
Dnschanger 0.99 0.01 0.98 0.01 0.96 0.01 0.91 0.07 0.98 0.01
Fobber 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00
Murofet 0.0 0.0 0.0 0.00 0.01 0.00 0.01 0.00 0.0 0.00
Necurs 0.86 0.02 0.83 0.02 0.85 0.02 0.77 0.02 0.64 0.01
Newgoz 1.0 0.05 0.99 0.00 0.99 0.05 0.99 0.02 0.99 0.05
Padcrypt 0.99 0.0 0.99 0.01 1.0 0.0 1.0 0.00 0.99 0.0
Proslikefan 0.33 0.00 0.33 0.00 0.36 0.00 0.32 0.00 0.62 0.01
Pykspa 0.85 0.02 0.73 0.03 0.83 0.02 0.64 0.03 0.61 0.02
Qadars 0.01 0.0 0.49 0.00 0.04 0.0 0.32 0.0 0.00 0.00
Qakbot 0.64 0.03 0.39 0.03 0.57 0.02 0.43 0.01 0.39 0.05
Ramdo 1.0 0.0 0.99 0.0 1.0 0.0 0.99 0.00 1.0 0.0
Ranbyus 0.86 0.00 0.84 0.00 0.85 0.00 0.73 0.00 0.78 0.00
Simda 0.04 0.00 0.00 0.00 0.09 0.00 0.0 0.0 0.19 0.0
Suppobox 0.83 0.00 0.78 0.00 0.82 0.00 0.89 0.00 0.54 0.00
Symmi 0.97 0.00 0.95 0.00 0.99 0.0 0.71 0.00 0.97 0.00
Tempedreve 0.18 0.02 0.17 0.01 0.17 0.03 0.25 0.01 0.16 0.02
Tinba 0.19 0.00 0.12 0.00 0.34 0.00 0.25 0.00 0.66 0.00

Accuracy 66.9 66.2 64.9 66.5 65.8

Table 22.8 Results for binary class classification in Testing 1 data set

Testing 1

Team Accuracy Recall Precision F1-score

UWT 0.99 0.828 0.966 0.89
Deep_Dragons 0.987 0.787 0.955 0.86
CHNMLRG 0.988 0.819 0.944 0.88
BENHA 0.963 0.795 0.199 0.32
BharathibSSNCSE 0.615 0.037 0.311 0.07
UniPI 0.981 0.724 0.919 0.81
Josan 0.989 0.822 0.947 0.88
DeepDGANet 0.976 0.658 0.938 0.77
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Table 22.9 Results for binary class classification in Testing 2 data set

Testing 2

Team Accuracy Recall Precision F1-score

UWT 0.766 0.999 0.751 0.86
Deep_Dragons 0.987 0.787 0.955 0.86
CHNMLRG 0.787 0.999 0.774 0.87
BENHA 0.564 0.974 0.55 0.7
BharathibSSNCSE 0.562 0.956 0.559 0.71
UniPI 0.714 0.999 0.696 0.82
Josan 0.711 0.999 0.692 0.82
DeepDGANet 0.782 0.997 0.769 0.87

Table 22.10 Results for multi-class classification Testing 1 data set

Testing 1

Team Accuracy Recall Precision F1-score

UWT 0.633 0.633 0.618 0.602
Deep_Dragons 0.987 0.787 0.955 0.86
CHNMLRG 0.648 0.648 0.662 0.6
BENHA 0.272 0.272 0.194 0.168
BharathibSSNCSE 0.18 0.18 0.092 0.102
UniPI 0.655 0.655 0.647 0.615
Josan 0.697 0.697 0.689 0.658
DeepDGANet 0.601 0.601 0.623 0.576

Table 22.11 Results for multi-class classification Testing 2 data set

Testing 2

Team Accuracy Recall Precision F1-score

UWT 0.887 0.887 0.924 0.901
Deep_Dragons 0.67 0.67 0.678 0.622
CHNMLRG 0.674 0.674 0.683 0.648
BENHA 0.429 0.429 0.34 0.272
BharathibSSNCSE 0.335 0.335 0.229 0.223
UniPI 0.671 0.671 0.641 0.619
Josan 0.679 0.679 0.694 0.636
DeepDGANet 0.531 0.531 0.653 0.541
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