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Editorial

Mathematical Models and Simulations

Giovanni Nastasi

Department of Mathematics and Computer Science, University of Catania, Viale Andrea Doria 6,
95125 Catania, Italy; giovanni.nastasi@unict.it

1. Introduction

In this editorial, we present the Special Issue of the scientific journal Axioms entitled
“Mathematical Models and Simulations”. Mathematical models constitute a fundamental
tool for understanding physical phenomena, biological systems, and finance and engineer-
ing. In addition to theoretical aspects, simulations play a primary role in applications,
because they allow for the prediction of the behavior of quantities of interest. We collected
papers in the field of mathematical physics, where different categories of mathematical
models are presented, both deterministic, i.e., based on ordinary or partial differential equa-
tions, and stochastic, i.e., defined by stochastic processes or based on stochastic differential
equations. The study of mathematical aspects of the presented models has been tackled.
To provide realistic applications, numerical simulations play an important role. Several
numerical methods suited to the specific problem have been adopted. Moreover, in some
cases, simulations have been performed by adopting real data for the parameters, and
optimization procedures have been carried out.

2. Overview of the Published Papers

This Special Issue contains 13 papers that were accepted for publication after a rigorous
review process.

In contribution 1, the authors E. El-Zahar and A. Ebaid study the pantograph delay
differential equation. They determine the analytic solution of such an equation in a closed
series form regarding exponential functions. The convergence of such a series is analyzed.

In contribution 2, B. Telli, M. Souid, and I Stamova present a paper devoted to
boundary-value problems for Riemann–Liouville-type fractional differential equations
of variable order involving finite delays. The existence of solutions is first studied using
Darbo’s fixed-point theorem and the Kuratowski measure of noncompactness. Second, the
Ulam–Hyers stability criteria are examined.

In contribution 3, S. Bagchi proposes a generalized finite-dimensional algebraic analy-
sis of the solution spaces of second-order ODEs equipped with periodic Dirac delta forcing.
The proposed algebraic analysis establishes the conditions for the convergence of responses
within the solution spaces without requiring the relative smoothness of the forcing func-
tions. The analysis shows that smooth and locally finite responses can be admitted in an
exponentially stable solution space.

In contribution 4, A. Elaiw, R. Alsulami, and A. Hobiny present a COVID-19 and
Influenza Co-Infection Model with Time Delays and Humoral Immunity. The model
considers the interactions among uninfected epithelial cells (ECs), SARS-CoV-2-infected
ECs, IAV-infected ECs, SARS-CoV-2 particles, IAV particles, SARS-CoV-2 antibodies, and
IAV antibodies. The model is constructed using a system of delayed ordinary differential
equations (DODEs), which includes four time delays. They establish the non-negativity
and boundedness of the solutions, examine the existence and stability of all equilibria, and
perform numerical simulations to support the theoretical results.

In contribution 5, O. Muscato focuses on electron transport and heat generation in
a Resonant Tunneling Diode semiconductor device. A new electrothermal Monte Carlo
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method is introduced. The method couples a Monte Carlo solver of the Boltzmann–Wigner
transport equation with a steady-state solution of the heat diffusion equation. This method-
ology provides an accurate microscopic description of the spatial distribution of self-heating
and its effect on the detailed nonequilibrium carrier dynamics.

In contribution 6, B. K. Singh, H. M. Baskonus, N. Singh, M. Gupta, and D. G. Prakasha
analyze the dynamical behavior of two space-dimensional nonlinear time-fractional models
governing the unsteady flow of polytropic gas that occurs in cosmology and astronomy.
They adopt two efficient hybrid methods, the so-called optimal homotopy analysis -
transform method and the -variational iteration transform method. The convergence of
these methods is proven, and the numerical results demonstrate that both of the developed
techniques perform better for the considered time-fractional model governing the unsteady
flow of polytropic gas.

In contribution 7, F. M. Al-Askar, C. Cesarano, and W. W. Mohammed consider the
stochastic Kadomtsev–Petviashvili equation with fractional beta-derivative. They find
exact solutions employing the Riccati equation method and the Jacobi elliptic function
method. The obtained solutions can also be used in practical applications, such as designing
improved tsunami warning systems or optimizing wave energy converters. They inves-
tigate the effect of beta-derivatives and noise on the analytical solutions of the equation
using graphs.

In contribution 8, A. Shehata, G. S. Khammash, and C. Cattani derive some classical
and fractional properties of the rRs matrix function using the Hilfer fractional operator. The
theory of special matrix functions is the theory of those matrices that correspond to special
matrix functions such as the gamma, beta, and Gauss hypergeometric matrix functions.
They also show the relationship with other generalized special matrix functions in the
context of the Konhauser and Laguerre matrix polynomials.

In contribution 9, V. Sobchuk, O. Barabash, A. Musienko, I. Tsyganivska, and O.
Kurylko propose a mathematical model of the process of cyber risk management in an
enterprise, which is based on the distribution of piecewise continuous analytical approx-
imating functions of cyberattacks in the Fourier series. This model makes it possible to
move the system of the regulatory control of cyber threats of the enterprise from a discrete
to a continuous automated process of regulatory control.

In contribution 10, L. Sánchez, G. Ibacache-Pulgar, C. Marchant, and M. Riquelme de-
velop varying-coefficients quantile regression models based on the family of log-symmetric
distributions. Moreover, they estimate the parameters of the model using the maximum
penalized likelihood technique and a back-fitting algorithm. They incorporate the non-
parametric structure through natural cubic smoothing splines and calculate local influence
techniques for model diagnostics by assessing the normal curvatures under different pertur-
bation scenarios. Further, they implement the obtained outcomes computationally within
the R programming environment and apply these results to real data related to atmospheric
pollutants in Padre Las Casas (Chile), recognized as one of the most contaminated cities in
Latin America and the Caribbean.

In contribution 11, Y. Chong, A. J. Kashyap, S. Chen, and F. Chen study a class of
discrete-time commensalism systems with additive Allee effects on the host species. First,
the single species with additive Allee effects is analyzed for existence and stability; then,
the existence of fixed points of discrete systems is given, and the local stability of fixed
points is given by characteristic root analysis. Second, the bifurcation of a codimension
of one of the systems at non-hyperbolic fixed points is examined. Furthermore, this work
uses the hybrid chaos method to control the chaos that occurs in the flip bifurcation of the
system. Finally, the analysis conclusions were verified by numerical simulations.

In contribution 12, J. F. Sánchez-Pérez, J. Solano-Ramírez, E. Castro, M. Conesa, F.
Marín-García, and G. García-Ros apply the non-dimensionalization methodology to the
Burgers–Huxley equation to obtain a universal solution to the problem posed. In this case,
the symmetry condition is applied to one of the boundary conditions, and a constant value
of the variable is applied to the other boundary condition (Dirichlet condition). Another
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objective is to study the weight of the variables in the problem. For the construction of the
universal curves, the Network Simulation Method was used, which has demonstrated its
effectiveness in solving this problem, as well as other engineering problems.

In contribution 13, C. Feng considers the oscillatory behavior of the solutions for a
Parkinson’s disease model with discrete and distributed delays. The distributed delay
terms can be changed to new functions such that the original model is equivalent to a
system in which it only has discrete delays. The stability analysis is performed employing
the linearization technique. By analyzing the linearized system at the smallest delay,
some sufficient conditions to guarantee the existence of oscillatory solutions for a delayed
Parkinson’s disease system can be obtained. It is found that under suitable conditions of
the parameters, a time delay affects the stability of the system. Some numerical simulations
are provided to illustrate the theoretical result.
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Article

Oscillatory Behavior of the Solutions for a Parkinson’s Disease
Model with Discrete and Distributed Delays

Chunhua Feng

Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36104, USA;
cfeng@alasu.edu

Abstract: In this paper, the oscillatory behavior of the solutions for a Parkinson’s disease model
with discrete and distributed delays is discussed. The distributed delay terms can be changed to
new functions such that the original model is equivalent to a system in which it only has discrete
delays. Using Taylor’s expansion, the system can be linearized at the equilibrium to obtain both the
linearized part and the nonlinearized part. One can see that the nonlinearized part is a disturbed
term of the system. Therefore, the instability of the linearized system implies the instability of the
whole system. If a system is unstable for a small delay, then the instability of this system will be
maintained as the delay increased. By analyzing the linearized system at the smallest delay, some
sufficient conditions to guarantee the existence of oscillatory solutions for a delayed Parkinson’s
disease system can be obtained. It is found that under suitable conditions on the parameters, time
delay affects the stability of the system. The present method does not need to consider a bifurcating
equation. Some numerical simulations are provided to illustrate the theoretical result.

Keywords: Parkinson’s disease model; delay; instability; oscillatory solution

MSC: 34K13

1. Introduction

It is known that Parkinson’s disease (PD) is a common progressive neurodegenerative
disease. Parkinson’s disease is characterized by tremors and stiffness. Mathematical
modeling can help understand such complex multifactorial neurological diseases and help
diagnose and treat them. Many mathematical models have been established to discuss
Parkinson’s disease mathematically and biologically using the experimental method or
analysis method. For example, Tuwairqi and Badrah provided the following model [1]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N′(t) = σ− βN(t)αS(t)− a1N(t)− a2N(t)− μ1N(t),
I′(t) = βN(t)αS(t)− d1 I(t)− a1T(t)− a2 I(t),

αS′(t) = ed1 I(t)− a1αS(t)− a2αS(t)− ε1α
∼
S(t, τ),

M′(t) = a1 I(t) + a1αS(t)− ε2
∼
M(t, τ)− μ2M(t),

T′(t) = a1T(t) + (a1 + a2)αS(t)− ε3
∼
T(t, τ)− μ3T(t),

(1)

where N(t), I(t), and αS(t) represent the density of healthy neurons in the brain, the
density of infected neurons in the brain, and the density of extracellular α-syn in the
brain, respectively, M(t) represents the density of activated microglia, and T(t) presents
the density of the activated T cell; a1, a2, ε1, ε2, ε3, μ1, μ2, μ3, σ, and β are parameters
which belong to [0, 1]. The local stability of the free and endemic equilibrium points
was established depending on the basic reproduction number. The authors pointed out
that the administering time of immunotherapies plays a significant role in hindering the
advancement of Parkinson’s disease. Different from traditional viewpoints, Wang et al.
provided a delayed model which contains a cortex inhibitory nucleus (INN), a direct

Axioms 2024, 13, 75. https://doi.org/10.3390/axioms13020075 https://www.mdpi.com/journal/axioms
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inhibitory projection from the subthalamic nucleus (STN), a cortex excitatory nucleus
(EXN), and globus pallidus external (GPe). A simplified INN-EXN-STN-GPe resonance
mathematical model is the following [2]:⎧⎪⎪⎨⎪⎪⎩

τSS′(t) = FS(−WGS G(t− TGS) + WCS E(t− TCS))− S(t),
τGG′(t) = FG(WSG S(t− TSG)− Str)− G(t),

τEE′(t) = FE(−WCC I(t− TCC)−WSC S(t− TSC) + C)− E(t),
τI I′(t) = FI(−WCC E(t− TCC))− I(t),

(2)

where S(t) and G(t) represent the subthalamic nucleus (STN) and the external segment
of the globus pallidus (GPe), E(t) represents the firing rate of cortical excitatory pyra-
midal neurons (EXN) and I(t) represents the firing rate of inhibitory nuclei (INN). T(t)
and W(t) represent the delay and connection weight in different projections. CIN is a
constant excitatory input to the cortex, and Str represents the projection from the striatum.
FY(x) = MY

1+
(

MY−BY
BY

)
exp(−4x/MY)

(Y = S, G, E, I) are activation functions.

It can be assumed that τS = τG = τE = τI , TSG = TGS = TCC = TSC = T, the Hopf
bifurcation of system (2) is considered. A modified model of the system (2) is as follows:⎧⎪⎪⎨⎪⎪⎩

τSS′(t) = FS(−WGS G(t− TGS) + WCS E(t− TCS))− S(t),
τGG′(t) = FG(WSG S(t− TSG)− Str)− G(t),

τEE′(t) = FE(−WCC I(t− TCC) + WEE E(t− TEE) + C)− E(t),
τI I′(t) = FI(WCC E(t− TCC)−WII E(t− TII))− I(t).

(3)

Assume that

τS = τG = τE = τI = 10, TSG = TGS = T1, TCC = TII = TCS = T2. (4)

The Hopf bifurcation critical condition of the system (3) was provided in [3]. However,
in models (1) to (3), the delays are discrete, and distributed delays are rarely introduced into
neuron models with biological backgrounds. Recently, Kaslik et al. applied the bifurcation
and stability theory of distributed delays to the interaction of the Wilson–Cowan model
of excitatory and inhibitory mean–field interactions in neuronal populations [4]. Indeed,
distributed delays can more truly describe the delay effects of signal transmissions between
different neurons. Wang et al. also considered a Parkinson’s model with distributed
delays [5]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

τSS′(t) = FS

(
−WGS G(t− TGS) + WCS

∫ t
−∞ K1(t− s)E(s)ds

)
− S(t),

τGG′(t) = FG

(
WSG S(t− TSG)−WGG

∫ t
−∞ K2(t− s)E(s)ds− Str

)
− G(t),

τEE′(t) = FE

(
−WSC

∫ t
−∞ K3(t− s)S(s)ds− INN + C

)
− E(t),

(5)

where K1, K2, and K3 represent the weak or strong gamma functions. The authors studied
the stable, conditional stable, conditional oscillation, and absolute oscillation for model (5),
which can explain different mechanisms of oscillation origin. Agiza et al. used the Taylor
series transform to discuss two-delay differential equations for the Parkinson’s disease
models in [6]. The dynamic behavior of innate immune response to Parkinson’s disease
with a therapeutic approach was modeled in [7]. Some authors investigate Parkinson’s
disease models via electrical activity rhythms [8], activity patterns [9], the emergence of beta
oscillations [10], the intra-operative characterization of subthalamic oscillations [11], the
Bayesian adaptive dual control of deep brain stimulation [12]. Hu et al. investigated a
bidirectional Hopf bifurcation of Parkinson’s oscillation in a simplified basal ganglia model
in [13]. Darcy et al. considered the spectral and spatial distribution of subthalamic beta peak
activity [14]. Lang and Espay summarized the current approaches, challenges, and future
considerations in Parkinson’s disease in [15]. For other research results on Parkinson’s
disease, one can see [16–30].
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In this paper, we extend the model (3) to the following system which includes not only
discrete delays but also distributed delays:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τSS′(t) = FS

(
−WGS G(t− TGS) + WCS

∫ t
−∞ K1(t− s)E(s)ds

)
− S(t),

τGG′(t) = FG

(
WSG S(t− TSG)−WGG

∫ t
−∞ K2(t− s)G(s)ds− Str

)
− G(t)

τEE′(t) = FE

(
−WSC I(t− TES) + WEE

∫ t
−∞ K3(t− s)S(s)ds− INN + C

)
− E(t).

τI I′(t) = FI

(
WCC E(t− TCC)−WII

∫ t
−∞ K4(t− s)I(s)ds

)
− I(t).

(6)

According to the simulation result in [3], the parameters are τS = 12.80 ms, τG = 20 ms,
τE = 10–20 ms, and τI = 10–20 ms. Therefore, the results in [3] are only for special
parameters. Note that model (6) has four discrete delays. If the four delays are different
real numbers, then the bifurcation method is hard to deal with in model (6) due to the
complexity of the bifurcating equation. In this paper, using the method of mathematical
analysis, the oscillatory behavior of the solutions for model (6) could be obtained. Our
result indicated that the four discrete delays can be different real numbers, and condition (4)
has been extended.

For convenience, we considered Ki (i = 1, 2, 3, 4) as the weak gamma functions, setting
Ki(t− s) = αi exp(αi(t− s)) (αi > 0, i = 1, 2, 3, 4), and let

Y1(t) =
∫ t

−∞
K1(t− s)E(s)ds =

∫ t

−∞
α1 exp(α1(t− s))E(s)ds,

Y2(t) =
∫ t

−∞
K2(t− s)G(s)ds =

∫ t

−∞
α2 exp(α2(t− s))G(s)ds,

Y3(t) =
∫ t

−∞
K3(t− s)S(s)ds =

∫ t

−∞
α3 exp(α3(t− s))S(s)ds,

and Y4(t) =
∫ t

−∞
K4(t− s)I(s)ds =

∫ t

−∞
α4 exp(α4(t− s))I(s)ds.

Then, using the fundamental theorem of calculus, we obtained

Y′1(t) = −α1

∫ t

−∞
α1 exp(α1(t− s))E(s)ds + α1E(t) = −α1Y1(t) + α1E(t),

Y′2(t) = −α2

∫ t

−∞
α2 exp(α2(t− s))G(s)ds + α2G(t) = −α2Y2(t) + α2G(t),

Y′3(t) = −α3

∫ t

−∞
α3 exp(α3(t− s))S(s)ds + α3S(t) = −α3Y3(t) + α3S(t),

Y′4(t) = −α4

∫ t

−∞
α4 exp(α4(t− s))I(s)ds + α4 I(t) = −α4Y4(t) + α4 I(t).

Thus, we can rewrite model (6) as the following equivalent system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −r1S(t) + r1FS(−WGS G(t− TGS) + WCS Y1(t)),
G′(t) = −r2G(t) + r2FG(WSG S(t− TSG)−WGGY2(t)− Str),

E′(t) = −r3E(t) + r3FE(−WSC I(t− TES) + WEE Y3(t)− INN + C),
I′(t) = −r4 I(t) + r4FI(WCC E(t− TCC)−WII Y4(t)),

Y′1(t) = −α1Y1(t) + α1E(t),
Y′2(t) = −α2Y2(t) + α2G(t),
Y′3(t) = −α3Y3(t) + α3S(t),
Y′4(t) = −α4Y4(t) + α4 I(t),

(7)

6
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where r1 = 1
τS

, r2 = 1
τG

, r3 = 1
τE

, r4 = 1
τI

. From FY(x) = MY

1+
(

MY−BY
BY

)
exp(−4x/MY)

(Y = S, G, E, I)

we know that FS < MS, FG < MG, FE < ME, and FI < MI, so we can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) < −r1S(t) + r1MS,
G′(t) < −r2G(t) + r2MG,
E′(t) < −r3E(t) + r3ME,
I′(t) < −r4 I(t) + r4MI ,

Y′1(t) = −α1Y1(t) + α1E(t),
Y′2(t) = −α2Y2(t) + α2G(t),
Y′3(t) = −α3Y3(t) + α3S(t),
Y′4(t) = −α4Y4(t) + α4 I(t).

(8)

System (8) implies that S(t) < r1
r1

MS = MS, G(t) < r2
r2

MG = MG, E(t) < r3
r3

ME = ME,
I(t) < r4

r4
MI = MI , Y1(t) < ME, Y2(t) < MG, Y3(t) < MS, and Y4(t) < MI . In

other words, all of the solutions of system (7) are boundedness. According to the param-
eter values in [3]: MS = 300 spk/s, BS = 17 spk/s, MG = 400 spk/s, BG = 75 spk/s,
ME = 71.77 spk/s, BE = 3.62 spk/s, MI = 276 spk/s, BI = 7.18 spk/s, we know that FY(x)
are monotone increasing functions for Y = S, G, E, and I. Therefore, system (6) has a unique
equilibrium point (S∗, G∗, E∗, I∗)T . Equivalently, system (7) has a unique equilibrium point(
S∗, G∗, E∗, I∗, Y∗1 , Y∗2 , Y∗3 , Y∗4

)T , where Y∗1 = E∗, Y∗2 = G∗, Y∗3 = S∗, and Y∗4 = I∗. If we
make the change in variables S(t)→ S(t) − S∗, G(t)→ G(t)− G∗, E(t)→ E(t) − E∗, I(t)
→ I(t) − I∗, Yi(t)→ Yi(t)−Y∗i (i = 1, 2, 3, 4), the Taylor expansion of system (7) at the
equilibrium point is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −r1S(t) + a12G(t− TGS) + a15Y1(t)

+ ∑
i+j≥2

[G(t−TGS)]
i

i!
[Y1(t)]

j

j ! · ∂i+j FS
∂ Gi∂Y1

j

∣∣∣
(G∗ , Y∗1 )

,

G′(t) = −r2G(t) + a21S(t− TSG) + a26Y2(t)

+ ∑
i+j≥2

[S(t−TSG)]
i

i!
[Y2(t)]

j

j ! · ∂i+j FG
∂ Si∂Y2

j

∣∣∣
(S∗ , Y∗2 )

,

E′(t) = −r3E(t) + a34 I(t− TES) + a37Y3(t)

+ ∑
i+j≥2

[I(t−TCC)]
i

i!
[Y3(t)]

j

j ! · ∂i+j FE
∂ Ii∂Y3

j

∣∣∣
(I∗ , Y∗3 )

,

I′(t) = −r4 I(t) + a43E(t− TCC) + a48Y4(t)

+ ∑
i+j≥2

[E(t−TCC)]
i

i!
[Y4(t)]

j

j ! · ∂i+j FI
∂ Ei∂Y4

j

∣∣∣
(E∗ , Y∗4 )

Y′1(t) = −α1Y1(t) + α1E(t),
Y′2(t) = −α2Y2(t) + α2G(t),
Y′3(t) = −α3Y3(t) + α3S(t),
Y′4(t) = −α4Y4(t) + α4 I(t),

(9)

where a12 = r1
∂FS
∂G

∣∣∣
(G∗ ,Y∗1 )

′ a15 = r1
∂FS
∂Y1

∣∣∣
(G∗ ,Y∗1 )

′ a21 = r2
∂FG
∂S

∣∣∣
(S∗ ,Y∗2 )

′ a26 = r2
∂FS
∂Y2

∣∣∣
(S∗ ,Y∗2 )

′

a34 = r3
∂FE
∂I

∣∣∣
(I∗ ,Y∗3 )

a37 = r3
∂FE
∂Y3

∣∣∣
(I∗ ,Y∗3 )

a43 = r4
∂FI
∂E

∣∣∣
(E∗ ,Y∗4 )

, a48 = r4
∂FI
∂Y4

∣∣∣
(E∗ ,Y∗4 )

. The lin-

earized system of (9) is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −r1S(t) + a12G(t− TGS) + a15Y1(t),
G′(t) = −r2G(t) + a21S(t− TSG) + a26Y2(t),
E′(t) = −r3E(t) + a34 I(t− TES) + a37Y3(t),
I′(t) = −r4 I(t) + a43E(t− TCC) + a48Y4(t),

Y′1(t) = −α1Y1(t) + α1E(t),
Y′2(t) = −α2Y2(t) + α2G(t),
Y′3(t) = −α3Y3(t) + α3S(t),
Y′4(t) = −α4Y4(t) + α4 I(t).

(10)

7
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Let s = min{TGS, TSG, TES, TCC}. We consider a special case of the system (10):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = −r1S(t) + a12G(t− s) + a15Y1(t),
G′(t) = −r2G(t) + a21S(t− s) + a26Y2(t),
E′(t) = −r3E(t) + a34 I(t− s) + a37Y3(t),
I′(t) = −r4 I(t) + a43E(t− s) + a48Y4(t),

Y′1(t) = −α1Y1(t) + α1E(t),
Y′2(t) = −α2Y2(t) + α2G(t),
Y′3(t) = −α3Y3(t) + α3S(t),
Y′4(t) = −α4Y4(t) + α4 I(t).

(11)

The matrix form of the system (11) is as follows:

u′(t) = Cu(t) + Au(t− s) (12)

where u(t) = [S(t), G(t), E(t), I(t), Y1(t), Y2(t), Y3(t), Y4(t)]
T , u(t − s) = [S(t − s), G(t −

s), E(t− s), I(t− s), 0, 0, 0, 0]T

A =
(
aij

)
8×8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a12 0 0 0 0 0 0
a21 0 0 0 0 0 0 0
0 0 0 a34 0 0 0 0
0 0 a43 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

C =
(
cij

)
8×8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1 0 0 0 a15 0 0 0
0 −r2 0 0 0 a26 0 0
0 0 −r3 0 0 0 a37 0
0 0 0 −r4 0 0 0 a48
0 0 α1 0 −α1 0 0 0
0 α2 0 0 0 −α2 0 0
α3 0 0 0 0 0 −α3 0
0 0 0 α4 0 0 0 −α4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2. The Existence of Oscillatory Solutions

To discuss the existence of oscillatory solutions for system (7) including four-time
delays, we first provide the following lemma.

Lemma 1. Consider the following delayed differential equations:

x′(t) = f (x(t− τ∗)), (13)

x′(t) = f (x(t− τ∗)), (14)

where τ∗ > τ∗ > 0, x ∈ Rn, f = ( f1, f2, · · · , fn)
T , f (0) = 0. Assume that the trivial solution

of system (13) is unstable, then the trivial solution of system (14) is also unstable.

Proof of Lemma 1. Since the trivial solution of system (13) is unstable, this means that for
arbitrary ε > 0, there exists an infinite sequence {tk}, where τ∗ < t1 < t2 < t3 < · · · , such
that the trivial solution x(t) of system (13) satisfies |x(tk − τ∗)| > ε. Noting that {tk}∞

k=1 is

8
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an infinite sequence, one can select a subsequence {tki
} ⊂ {tk}, such that tki

= tk + (τ∗ − τ∗).
Thus, for the trivial solution of system (14), we obtained the following:∣∣x(tki

− τ∗
)∣∣ =|x(tk + (τ∗ − τ∗)− τ∗)| = |x(tk − τ∗)| > ε. (15)

Inequivalent (15) indicates that the trivial solution of system (14) is also unstable. �

Since the system (10) is a linearized system of (9), we can see that system (9) is a
disturbed system of (10). If the trivial solution of system (11) is unstable, then the trivial
solution of system (10) is also unstable according to the Lemma 1. In what follows, we first
consider the instability of the zero equilibrium point of the system (11) (or (12)). Therefore,
we considered the following theorems.

Theorem 1. Assume that the system (11) has a unique trivial solution and γ1, γ2, · · · , γ8 are
characteristic values of matrix C. ρ1, ρ2, ρ3, ρ4, 0, 0, 0, 0, are characteristic values of matrix A.

If there is a characteristic value, say γk, satisfying the following:

(i) Re (γk) = 0, Im(γk) 	= 0, and γk = ωi; or
(ii) Re (γk) > 0, and Re (γk) > max {|ρ1|, |ρ2|, |ρ3|, |ρ4|}, or
(iii) Im (γk) = 0, γk > 0.

Then, the trivial solution of system (11) (thus system (9)) is unstable, implying that there
exists a limit cycle in the system (7); namely, system (7) has a periodic solution.

Proof of Theorem 1. We show that the trivial solution of the system (11) is unstable.
Since γ1, γ2, · · · , γ8 are characteristic values of matrix C and ρ1, ρ2, ρ3, ρ4, 0, 0, 0, 0 are
characteristic values of matrix A, then the characteristic equation of (11) is the following:

∏8
i=1 λ− γi − ρie−λs = 0. (16)

When there is a characteristic value γk such that Re (γk) = 0, Im (γk) 	= 0, and γk = ωi,
then

eiωt= cos ωt + i sin ωt. (17)

We know that cos ωt is a periodic function; therefore, the trivial solution of system
(11) is unstable. Noting that all characteristic values of matrix A are ρi or 0, there is a
characteristic equation from the system (16) as follows:

λ− γk−ρk e−λs = 0. (18)

or
λ− γk = 0. (19)

If Re (γk) > 0 and Re (γk) > max{|ρ1|, |ρ2|, |ρ3|, |ρ4|}, this means that Equation (18)
has a positive real part characteristic value. If Im (γk) = 0, γk > 0, it suggests that there is a
positive characteristic value from (19). Thus, the trivial solution of system (11) is unstable.
Based on Lemma 1, the trivial solution of system (10) is unstable. This implies that the
equilibrium point

(
S∗, G∗, E∗, I∗, Y∗1 , Y∗2 , Y∗3 , Y∗4

)T of system (9) is unstable.
Equivalently, the unique equilibrium point of the system (7) is unstable. This instability

of the unique equilibrium point, together with the boundedness of the solutions, forces
system (7) to generate a limit cycle, namely, a periodic solution according to the extended
Chafee’s criterion [31,32]. The proof is complete. �

Let σ = max{α3− r1, α2− r2, α1− r3, α4− r4, |a15| − α1, |a26| − α2, |a37| − α3, |a48| − α4},
then we have Theorem 2.

9
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Theorem 2. Assume that system (11) has a unique trivial solution. If the following condition holds

r + σ > 0, (20)

where r = max {|a12|, |a21|, | a34||, |a43|}. Then, the trivial solution of system (11) is unstable,
implying that there exists a limit cycle of system (9); namely, system (7) has a periodic solution.

Proof of Theorem 2. To prove the instability of the trivial solution of the system (11), let
z(t) = S(t) + G(t) + E(t) + I(t) + ∑4

i=1 Yi(t), then we have the following:

z(t) ≤ σ z(t) + r z(t− s). (21)

Specifically, consider the following scalar equation:

v(t) = σ v(t) + r v(t− s). (22)

According to the comparison theory of the differential equation, we have z(t) ≤ v(t).
We claim that the trivial solution of Equation (22) is unstable. Indeed, the characteristic
Equation (22) is as follows:

λ = σ + re−λs. (23)

Consider a function φ(λ) = λ− σ − re−λs. Then, φ(λ) is a continuous function of
λ. Noting that φ(0) = −σ − r = −(σ + r) < 0. Clearly, there exists a real number L > 0
such that φ(L) = L− σ− re−Ls > 0. Using the Intermediate Value Theorem, there exists
λ0 ∈ (0, L) such that φ( λ0) = 0. In other words, there exists a positive characteristic
root of Equation (22), which means that the trivial solution of Equation (22) is unstable,
implying that the trivial solution of Equation (11) is unstable and that the trivial solution of
system (11), thus (9), is unstable. Similar to Theorem 1, system (7) has a periodic solution.
The proof is complete. �

3. Computer Simulation Result

This simulation is based on model (7). In model (7), according to the parameters
in [3], we set MS = 300, BS = 17, MG = 400, BG = 75, ME = 71.77, BE = 3.62, MI = 276,
BI = 7.18, WGS = 3, WSG = 2.5, WSC = 6, WCC = 3, WEE = WGG = 1, WII = 0.1,
C = 277, Str = 40. When we select α1 = 0.8, α2 = 0.85, α3 = 0.5, α4 = 0.55, time delay
TGS = 15.5, TSG = 18, TES = 16.5, TCC = 17, τS = 12.5, τG = 20, τE = 10, τI = 15, so
r1 = 0.08, r2 = 0.05, r3 = 0.1, r4 = 0.067, then the unique positive equilibrium point(
S∗, G∗, E∗, I∗, Y∗1 , Y∗2 , Y∗3 , Y∗4

)T
= (98.4164, 163.4268, 44.8525, 60.5816, 44.8525, 163.4268,

98.4164, 60.5816)T . Thus,

a12 = r1
∂FS
∂G

∣∣∣∣
(G∗ , Y∗1 )

= −0.2372, a15 = r1
∂FS
∂Y1

∣∣∣∣
(G∗ , Y∗1 )

= 0.4744,

a21 = r2
∂FG
∂S

∣∣∣∣
(S∗ , Y∗2 )

= 0.2256,a26 = r2
∂FS
∂Y2

∣∣∣∣
(S∗ , Y∗2 )

= −0.0923,

a34 = r3
∂FE
∂I

∣∣∣∣
(I∗ , Y∗3 )

= −0.0092, a37 = r3
∂FE
∂Y3

∣∣∣∣
(I∗ , Y∗3 )

= 0.0031,

a43 = r4
∂FI
∂E

∣∣∣∣
(E∗ , Y∗4 )

= 0.1496, a48 = r4
∂FI
∂Y4

∣∣∣∣
(E∗ , Y∗4 )

= −0.0053.

The characteristic values of the matrix C are 0.0257, −0.0863, −0.5437, −0.5734,
−0.2661± 0.1496 i, and− 0.2750± 0.0994 i. Since there exists a positive characteristic value
of 0.0257, the conditions of Theorem 1 are satisfied. There exists a periodic oscillatory solu-

10
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tion (see Figure 1). Figure 2 indicates a case for all parameters are the same as in Figure 1, but
time delays are changed. When we select α1 = 0.8, α2 = 0.85, α3 = 0.75, α4 = 0.78, time
delay is TGS = 12.5, TSG = 14, TES = 13.5, TCC = 13, τS = 10, τG = 20, τE = 16, τI = 12,
so r1 = 0.1, r2 = 0.05, r3 = 0.063, r4 = 0.083, then the unique positive equilib-
rium point

(
S∗, G∗, E∗, I∗, Y∗1 , Y∗2 , Y∗3 , Y∗4

)T
= (75.4916, 127.1502, 55.3846, 64.9912,

55.3846, 127.1502, 75.4916, 64.9912)T . Thus,

a12 = r1
∂FS
∂G

∣∣∣∣
(G∗ , Y∗1 )

= −0.0349, a15 = r1
∂FS
∂Y1

∣∣∣∣
(G∗ , Y∗1 )

= 0.0698,

a21 = r2
∂FG
∂S

∣∣∣∣
(S∗ , Y∗2 )

= 0.1042, a26 = r2
∂FS
∂Y2

∣∣∣∣
(S∗ , Y∗2 )

= −0.0417,

a34 = r3
∂FE
∂I

∣∣∣∣
(I∗ , Y∗3 )

= −0.0051, a37 = r3
∂FE
∂Y3

∣∣∣∣
(I∗ , Y∗3 )

= 0.0017,

a43 = r4
∂FI
∂E

∣∣∣∣
(E∗ , Y∗4 )

= 0.2025, a48 = r4
∂FI
∂Y4

∣∣∣∣
(E∗ , Y∗4 )

= −0.0067.

Figure 1. Oscillation of the solutions, τS = 12.5, τG = 10, τE = 10, τI = 15, and time delay
TGS = 15.5, TSG = 18, TES = 16.5, TCC = 17, α1 = 0.4, α2 = 0.45, α3 = 0.5, α4 = 0.55.

Thus, σ = max{α3 − r1, α2 − r2, α1 − r3, α4 − r4, |a15| − α1, |a26| − α2, |a37| − α3,
|a48| − α4} = 0.8, r = max{|a12|, |a21|, |a34|, |a43|} = 0.1042, and σ + r = 0.9042 > 0.
The condition of Theorem 2 is satisfied. The system (7) has an oscillatory solution (see
Figure 3). In Figure 4, we changed the time delays and kept all parameters the same as
in Figure 3. When we selected α1 = 1.5, α2 = 1.6, α3 = 1.8, α4 = 1.75, time delay is
TGS = 18.5, TSG = 17.5, TES = 18, TCC = 17, τS = 12.8, τG = 16, τE = 20, τI = 14,
so r1 = 0.078, r2 = 0.063, r3 = 0.05, r4 = 0.07, then the unique positive equilibrium
point

(
S∗, G∗, E∗, I∗, Y∗1 , Y∗2 , Y∗3 , Y∗4

)T
= (98.5443, 151.1364, 52.1243, 63.4582, 52.1243

151.1364, 98.5443, 63.4582)T .

11
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Figure 2. Oscillation of the solutions, τS = 12.5, τG = 10, τE = 10, τI = 10, and time delay
TGS = 12.5, TSG = 14, TES = 13.5, TCC = 13, α1 = 0.4, α2 = 0.45, α3 = 0.5, α4 = 0.55.

Figure 3. Oscillation of the solutions, τS = 10, τG = 20, τE = 16, τI = 12, and time delay
TGS = 12.5, TSG = 14, TES = 13.5, TCC = 13, α1 = 0.8, α2 = 0.85, α3 = 0.75, α4 = 0.78.

Therefore, we can obtain the following:

a12 = r1
∂FS
∂G

∣∣∣∣
(G∗ , Y∗1 )

= −0.0108, a15 = r1
∂FS
∂Y1

∣∣∣∣
(G∗ , Y∗1 )

= 0.0216,

a21 = r2
∂FG
∂S

∣∣∣∣
(S∗ , Y∗2 )

= 0.1471, a26 = r2
∂FS
∂Y2

∣∣∣∣
(S∗ , Y∗2 )

= −0.0588,

a34 = r3
∂FE
∂I

∣∣∣∣
(I∗ , Y∗3 )

= −0.0062, a37 = r3
∂FE
∂Y3

∣∣∣∣
(I∗ , Y∗3 )

= 0.0021,

12
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a43 = r4
∂FI
∂E

∣∣∣∣
(E∗ , Y∗4 )

= 0.1904, a48 = r4
∂FI
∂Y4

∣∣∣∣
(E∗ , Y∗4 )

= −0.0063.

It is easy to see that the condition of Theorem 2 holds. Therefore, system (7) has an
oscillatory solution (see Figure 5). In Figure 6, we reduced the time delays. It can be seen
that both the oscillatory frequency and amplitude were changed.

Figure 4. Oscillation of the solutions, τS = 12.8, τG = 16, τE = 20, τI = 14, and time delay
TGS = 9.5, TSG = 10, TES = 8.5, TCC = 9, α1 = 0.8, α2 = 0.85, α3 = 0.75, α4 = 0.78.

Figure 5. Oscillation of the solutions, τS = 12.8, τG = 16, τE = 20, τI = 14, and time delay
TGS = 18.5, TSG = 17.5, TES = 18, TCC = 17, α1 = 1.5, α2 = 1.6, α3 = 1.8, α4 = 1.75.
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Figure 6. Oscillation of the solutions, τS = 12.8, τG = 16, τE = 20, τI = 14, and time delay
TGS = 13.5, TSG = 12.5, TES = 14, TCC = 13, α1 = 1.5, α2 = 1.6, α3 = 1.8, α4 = 1.75.

4. Discussion

Our result provides a criterion to determine whether or not there exists an oscillatory
solution for model (6), which includes discrete and distributed delays. The oscillatory
solution of the model (6) corresponds to the tremor of Parkinson’s disease. Therefore, our
main result is very significant. We also point out that the bifurcation method is hard to deal
with in the present model. Because the bifurcation equation about model (10) is as follows:

p1(λ) exp(−λTGS) + p2(λ) exp(−λTSG)
+p3(λ) exp(−λTES) + p4(λ) exp(−λTCC) + p5(λ) = 0.

(24)

It can be noted that if TGS, TSG, TES, TCC are different positive numbers, Equation (24)
is a transcendental equation with four variables. Solving Equation (24) and finding the
bifurcating points are hard work.

5. Conclusions

In this paper, we discussed the oscillatory behavior of the solutions for a Parkinson’s
disease model with discrete and distributed delays. Two theorems were provided to determine
the existence of oscillatory solutions, which were easy to inspect to compare the method of
bifurcation. We made the change in distributed delay terms as new functions such that the
original system became only a discrete system. This method can be used to deal with all
distributed systems. We point out that the present criteria are only sufficient conditions.
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Abstract: The Burgers–Huxley equation is important because it involves the phenomena of accumula-
tion, drag, diffusion, and the generation or decay of species, which are common in various problems
in science and engineering, such as heat transmission, the diffusion of atmospheric contaminants,
etc. On the other hand, the mathematical technique of nondimensionalisation has proven to be very
useful in the appropriate grouping of the variables involved in a physical–chemical phenomenon
and in obtaining universal solutions to different complex engineering problems. Therefore, a deep
analysis using this technique of the Burgers–Huxley equation and its possible boundary conditions
can facilitate a common understanding of these problems through the appropriate grouping of
variables and propose common universal solutions. Thus, in this case, the technique is applied to
obtain a universal solution for Dirichlet and symmetric boundary conditions. The validation of
the methodology is carried out by comparing different cases, where the coefficients or the value
of the boundary condition are varied, with the results obtained through a numerical simulation.
Furthermore, one of the cases presented presents a boundary condition that changes at a certain time.
Finally, after applying the technique, it is studied which phenomenon is predominant, concluding
that from a certain value diffusion predominates, with the rest being practically negligible.

Keywords: nondimensionalisation; universal solution; mathematical modelling; numerical simulation;
engineering science; ordinary differential equations

MSC: 00A73; 00A69; 00A79

1. Introduction

Many engineering problems, such as heat transmission, fluid mechanics, contaminant
emission, chloride diffusion in concrete, etc., involve the phenomena of diffusion, accu-
mulation, generation, or the decay of species, and drag. In this sense, the Burgers–Huxley
equation is a general equation that encompasses all these phenomena [1–28].

Thus, it is necessary, on the one hand, to obtain a universal solution that allows this
equation to be easily solved, and on the other, to study the influence of the variables in-
volved. In this way, the nondimensionalisation technique allows us to both obtain universal
solutions and study the variables that have been grouped to form monomials [29–31].

The application of the nondimensionalisation technique to engineering problems
formulated in ordinary differential equations is well known because it allows one to obtain

Axioms 2023, 12, 1113. https://doi.org/10.3390/axioms12121113 https://www.mdpi.com/journal/axioms
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dimensionless groups by grouping the variables, allowing us to know both the universal
solution of the problem and the influence of each variable [31]. This procedure has recently
been applied to different engineering problems, such as the diffusion of chlorides in concrete
or soil consolidation, and the basis of the methodology has been explained in detail [29,31].

The objective of this study is to apply the nondimensionalisation methodology to
the Burgers–Huxley equation to obtain, on the one hand, a universal solution to the
problem posed. In this case, the symmetry condition will be applied to one of the boundary
conditions, and to the other boundary condition, a constant value of the variable will be
applied (Dirichlet condition). On the other hand, another objective is to study the weight
of the variables in the problem. For the construction of the universal curves, the Network
Simulation Method was used, which has demonstrated its effectiveness in solving this
problem, as well as other engineering problems [32–35].

Thus, the Burgers–Huxley equation is an ordinary differential equation that is widely
used in physics, biology, economics, etc., and includes terms such as drag, accumulation,
generation or decay, and diffusion. This equation has the following form [2,3,32]:

du
dt

+ αuδ du
dx
− ζ

d2u
dx2 − βu

(
1− uδ

)(
εuδ − γ

)
= 0 t ≥ 0 (1)

where u is the variable, such as concentration, temperature, etc.; x is the distance; t is the
time; and, finally, α, β, γ, δ, ε, and ζ are coefficients. Thus, the first addend of the equation
is associated with accumulation, the second with drag (coefficients α and δ), the third with
diffusion phenomena (coefficient ζ), and, finally, the fourth with the generation or decay of
species (coefficients β, γ, δ, and ε).

This article is structured as follows: the introduction and the Burgers–Huxley equation
are presented in Section 1. In the next section, the procedure for the nondimensionalisation
technique is detailed so that it can be applied to the Burgers–Huxley equation in the same
section. The results used to validate the proposed methodology after the application of the
nondimensionalisation technique are presented in Section 3. Finally, Section 4 presents the
conclusions of this study.

2. Nondimensionalisation Technique and Its Application to the Burgers–Huxley Equation

The correct steps for applying the nondimensionalisation technique have been de-
scribed in the literature, which have recently included those necessary to obtain universal
solutions. Furthermore, several articles have focused on defining the behaviour of monomi-
als based on the values obtained, establishing criteria in which some monomials can have
little influence on the problem compared with others that govern it. Thus, as a summary,
the following steps must be applied [30,31]:

(i) Choice of references

For the correct choice of references, a deep understanding of the problem is necessary
because they may appear explicitly in the problem or may be hidden. Furthermore, the
values selected for the references are related to each other through a physical interval
(temporal or spatial) of the independent variable, limiting the dimensionless variables to
the interval of values [0–1]. When the solution to the problem is asymptotic, references close
to the limit are taken as the dependent variable, for example, 99% or 90% of the maximum
value of the variable. Thus, there was no significant modification in the range [0–1] of the
dimensionless variables.

(ii) Dimensionless variables and dimensionless governing equations

The divisions between the dimensional variables and their references are the dimen-
sionless variables, e.g., x′ = x

L , where x’ is the dimensionless variable of the distance, x is
the distance variable, and L is the reference, which in this case is the total length of the
medium. Thus, these dimensionless variables are introduced into the governing equations
of the problem and transform them into dimensionless equations. Each addend of these
equations is formed by two factors: one that involves the grouping of boundary conditions,
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problem parameters, and/or references, and another with dimensionless variables and their
changes, which can be assumed to be of the order of unity. Thus, based on this hypothesis,
the first factor, known as the coefficient, must also be of the same order of magnitude.

(iii) Dimensionless groups

The dimensionless groups, or monomials, are the relation between the coefficients
mentioned in the previous step, which will be at most as many addends as the dimension-
less equation has minus one. Because some groups may be expressed as a combination
of other groups with multiplications or divisions, or the same group may appear in more
than one equation when the problem is a system of coupled equations, the final number
of groups may be reduced. Additionally, the groups can be manipulated such that each
unknown appears in a single group.

(iv) The existence of m groups with a different unknown each one (πu) and n groups
without unknowns (πw)

The solution for each unknown is explicitly expressed as a function of groups that do
not contain unknowns. That is, in the form

πu,i = Ψi(πw,1, πw,2, . . . , πw,n ) where 1 ≤ i ≤ m (2)

where Ψi is an arbitrary function of the n πw groups. When the groups are of unit order of
magnitude, the arbitrary function will also be of this order of magnitude.

(v) Functionals

The Ψi functionals presented in the previous step were obtained by adjusting two
monomials or dimensionless groups, keeping the rest at a constant value, as will be shown
in the resolution of the problem posed in this article.

(vi) Universal solutions

The universal solution is obtained by representing the dimensionless variables defined
above, which, as indicated by their own definition, are in the range of values [0–1].

The information provided above is very important because it allows us to both obtain
universal solutions to the problem posed and know the influence of the variables on it.
Thus, if we apply this methodology to the Burgers–Huxley equation, we can obtain its
universal solution and study the influence of its variables.

The study problem must be defined before applying the nondimensionalisation
methodology. In this case, we have a variable u that is found in a medium of length
L and is subject to the accumulation, drag, generation or decay, and diffusion phenomena.
Regarding the boundary conditions, on the left side, a Dirichlet condition is applied with a
constant value of u, uext, and on the right side, there is a Neumann condition to apply with
a symmetry condition [32]. Finally, the variable u can present initial values in the medium,
uini, as shown in Figure 1.

Figure 1. Description of the study problem. Geometry, boundary, and initial conditions.
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To apply the steps specified above for correct nondimensionalisation to Equation (1),
the references must first be defined, and the dimensionless variables must be established
(steps i and ii). Thus, dimensionless variables are the division of the variable with its reference.

u′ =
u− uini

uext − uini
x′ =

x
L

t′ =
t
τ

(3)

The reference chosen for the dimensionless variable u’ is the difference between the
final value it can reach, that is, the value in the boundary condition, uext, and its initial
value, uini. For the dimensionless variable x’, the total length of the medium, L, was chosen.
Finally, because the problem has an asymptotic tendency, for the dimensionless time
variable t’, the time at which 99% of the maximum value of u is reached, that is, 99% of uext,
was chosen. The dimensionless variables were then introduced into the governing equation
and the following dimensionless form was obtained:[

uext−uini
τ

]
du′
dt′ + α((uext − uini)u′ + uini)

δ uext−uini
L

du′
dx′ −

[
ζ uext−uini

L2

]
d2u′

dx′2
− βε((uext − uini)u′ + uini)

δ+1+

βγ((uext − uini)u′ + uini) + βε((uext − uini)u′ + uini)
2δ+1 − βγ((uext − uini)u′ + uini)

δ+1 = 0.
(4)

The dimensionless equation gives us seven coefficients:

uext − uini
τ

,
αuδ

ext(uext − uini)

L
, ζ

uext − uini
L2 , βεuδ+1

ext , βγuext, βεu2δ+1
ext , βγuδ+1

ext .

As some coefficients of species generation or decay phenomena are contained in the
others, there are finally five coefficients:

uext − uini

τ
,
αuδ

ext(uext − uini)

L
, ζ

uext − uini

L2 ,βεu2δ+1
ext ,βγuδ+1

ext .

These give rise to four dimensionless monomials:

π1 =
ζτ

L2 , π2 =
ζ

αLuδ
ext

, π3 =
βγLuext

α(uext − uini)
, π4 =

ε

γ
uδ

ext.

The first monomial, π1, is typical of problems involving diffusion phenomena, relating
time to the distance squared and the diffusion coefficient, in this case, coefficient ζ. This
monomial is found in the literature on heat transmission problems, known as the Fourier
number [9], chloride diffusion [29], etc. The second monomial, π2, indicates the relationship
between diffusion and drag phenomena. The third, π3, relates to the drag phenomena and
the generation or decay of species. Finally, π4 relates the coefficients of generation and
decay of the species. It should be noted that when β is zero, the monomial π3 is zero, and
the fourth monomial π4 has no influence, since there would be no generation or decay of
the species.

Applying the π theorem, π1 = Ψ(π2, π3, π4 ), the same characteristic time can be
expressed from each of the equations in the form

τ =
L2

ζ
Ψ

(
ζ

αLuδ
ext

,
βγLuext

α(uext − uini)
,

ε

γ
uδ

ext

)
. (5)

where Ψ is an unknown function of the arguments.
If we apply step (v) of the nondimensionalisation technique, the value of the functional

can be obtained. In this case, because we depend on three monomials, we adjust the
monomials π1 and π2, keeping the rest, π3 and π4, with constant values. To perform
the adjustment, the problem was simulated using the Network Simulation Method to
determine the time necessary for the concentration at the right-hand end, x = L, to be
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99% of the uext value, as defined above. Thus, Equations (6)–(10) show the fits for different
values of π3 and π4.

π3 = 0 ∀ π4 π1 = 1.974 + 0.8186π2
−1.105 R2 = 0.9987 τ =

L2

ζ

⎛⎝1.974 + 0.8186

(
ζ

αLuδ
ext

)−1.105
⎞⎠ (6)

π3 = 1 π4 = 1 π1 = 1.974 + 0.6781π2
−1.13 R2 = 0.9978 τ =

L2

ζ

⎛⎝1.974 + 0.6781

(
ζ

αLuδ
ext

)−1.13
⎞⎠ (7)

π3 = 1 π4 = 2 π1 = 2.284 + 9708π2
−13.33 R2 = 1.0000 τ =

L2

ζ

⎛⎝2.284 + 9708

(
ζ

αLuδ
ext

)−13.33
⎞⎠ (8)

π3 = 2 π4 = 1 π1 = 1.978 + 0.562π2
−1.102 R2 = 0.9990 τ =

L2

ζ

⎛⎝1.978 + 0.562

(
ζ

αLuδ
ext

)−1.102
⎞⎠ (9)

π3 = 2 π4 = 2 π1 = 2.290 + 4674π2
−12.32 R2 = 1.0000 τ =

L2

ζ

⎛⎝2.290 + 4674

(
ζ

αLuδ
ext

)−12.32
⎞⎠ (10)

As can be seen, in Equations (6)–(10), the R2 fits are very close to unity. It should be
noted that for Equation (6) β takes zero and, therefore, the monomial π4 has no influence.
Finally, Figure 2 shows the fit of Equations (6)–(10).
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(a) 

 
(b) 

Figure 2. Cont.
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(c) 

 
(d) 

(e) 

Figure 2. Representation of π1 versus π2 (a) with π3 = 0 and independent of π4, (b) with π3 = 1 and
π4 = 1, (c) with π3 = 1 and π4 = 2, (d) with π3 = 2 and π4 = 1, and (e) with π3 = 2 and π4 = 2.

If the expressions obtained and Figure 2 are analysed, it can be seen that for very low
values of π2, very high values of π1 are required, showing a tendency towards infinity.
This indicates that the diffusion phenomenon is practically negligible, and with the drag
phenomenon, it would be very difficult to reach a value of 99% of uext. This trend increased
with increasing π4, as shown in Figure 2. Owing to this tendency, the values provided by
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the fits for π2 values lower than unity may have a higher error. On the other hand, for all
the cases studied, from when π2 takes a value between two and five, π1 tends to be a value
close to two, becoming practically independent of π2, π3, and π4; therefore, the diffusion
phenomenon governs the problem, as shown in Figure 2.

Finally, if step (vi) is applied by simulating the problem using the Network Simulation
Method [32], and presenting u’ versus x’ for different values of t’, the universal solution to
the problem is obtained, as shown in Figure 3.

Figure 3. Universal curve for Burgers–Huxley equation with Dirichlet and symmetry (Neumann)
boundary conditions.

The methodology for using the universal solution to obtain the value of u at a given
position and time is as follows.

1. The values of position x and time t at which the u value is to be determined are
known. In addition, the value of u at the boundary condition, uext, the initial value
of u at position x, uini, and the length of the medium, L, are known. In addition, the
coefficients α, β, γ, δ, ε, and ζ are known.

2. The monomials π2, π3, and π4 are calculated.
3. The value of τ is determined using Equations (6)–(10). If the values of π3 and π4 are

not those given in Equations (6)–(10), one can interpolate.
4. Calculate t’ and x’ with t′ = t

τ and x′ = x
L

5. The value of the curve t’ is taken for position x’ in Figure 3, and the value of u is
obtained from the expression given for u’, u = u′(uext − uini) + uini. If the value of t’
lies between two curves, it is necessary to interpolate.

Similarly, the methodology can be used to obtain the time at which a given value
of u is reached at a given position, the position at which a value of u is reached for a
given time, etc.

3. Result and Validation

In the following, two types of studies are carried out to validate the methodology.
In the first study, cases 1 to 3 (Table 1), we analyse different cases where the parameters
of the problem change, and therefore the values of the monomials change. The results
obtained using the universal solution were compared with those obtained by simulation
using the Network Simulation Method [32]. In case 1, it is a problem where the variable
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u is raised to one, since δ takes unit value. Moreover, the variable does not have initial
values. In this case, all phenomena are present, that is, accumulation, drag, diffusion, and
the generation and decay of species. If we compare the results obtained, following the
methodology specified in the previous section, for the value of u at the 0.8 m position
at a time of 0.458 s with those obtained by the simulation (Figure 4), we can see that the
values obtained with both the universal solution and simulation are very similar. In the
second case, where all the phenomena described above are involved again, the variable u is
squared (δ = 2), affecting the phenomena of drag, generation, and the decay of species, and
it also has initial values. Because these initial values influence the monomial π3, it has a
value of 0.667. Therefore, to obtain the value of τ, it is necessary to interpolate between
Equations (5) and (6). Once again, the results obtained by the simulation (Figure 5) and
those obtained with the universal solution have practically the same value; the difference
is due to the carryover of errors in the application of the methodology. Finally, in case 3,
where the phenomena of species generation and decay are not present, the variable u is
raised to 0.5 (δ = 0.5) for the drag phenomena. Furthermore, the variable does not have
initial values. In this case, it is necessary to interpolate between the curves of the universal
solution, Figure 3, because t′ takes a value of 0.45. If we compare the results with those
obtained through the simulation (Figure 6), again, they are practically the same.

Table 1. Comparison between simulated values and those calculated with the universal curve.

Case α β γ δ ε ζ L (m) uext uini x (m) t (s)

1 0.5 0.5 0.5 1 0.5 6 2 2 0 0.8 0.458

2 2 1 1 2 0.25 16 1 2 0.5 0.3 0.0865

3 1 0 1 0.5 0 4 0.25 4 0 0.1 0.0145

Universal Solution Simulation

Case π3 π4 π2 π1 τ t′ x′ u u

1 1 2 3 2.288 1.525 0.3 0.4 1.688 1.698

2 0.667 1 2 2.307 0.144 0.6 0.3 1.927 1.943

3 0 0 8 2.056 0.0321 0.45 0.4 3.673 3.667

Figure 4. Simulation of case 1 for a time of 0.458 s.
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Figure 5. Simulation of case 2 for a time of 0.0865 s.

 

Figure 6. Simulation of case 3 for a time of 0.0145 s.

In the second study, the proposed methodology was applied to a case where the
boundary condition changed value (case 4). Thus, for a time between 0 and 0.0269 s, the
value of uext is unity, and then doubles for a time between 0.0269 and 0.3212 s, as shown in
Table 2. To solve this case, it must be divided into two parts, cases 4a and 4b, by applying
the indicated procedure twice. For case 4a, a time of 0.0269 s was used, and there were no
initial values for the study variable. Once case 4a was solved, the procedure was applied,
taking as initial values for case 4b the results obtained in case 4a. On the other hand,
the time used for case 4b was 0.2943 s, the difference between 0.3212 s and 0.0269 s. For
both cases 4a and 4b, three positions were taken, and their results were compared with
those obtained by the simulation (Figure 7). As can be seen, for case 4a there are greater
differences than in case 4b with respect to the values obtained by the simulation because
the methodology is more sensitive to small times due to the possible accumulated errors
when applying the procedure. However, for case 4b, the results were practically the same.
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On the other hand, if we were in a case where the boundary condition will change more
over time, we would have to apply the methodology explained in case 4 as many times as
these changes occur.

Table 2. Comparison between simulated values and those calculated with the universal curve for a
case with changing boundary conditions.

Case α β γ δ ε ζ L (m) uext t (s) Time Range (s)

4a 1 0 1 1 0 4 1 1 0.0269 0 ≤ t ≤ 0.0269

4b 1 0 1 1 0 4 1 2 0.2943 0.0269 ≤ t ≤ 0.3212

Universal
Solution

Simulation

Case x uini π3 π4 π2 π1 τ t′ x′ u u

4a

0.3 0

0 0 4 2.151 0.5378 0.05

0.3 0.54 0.52

0.6 0 0.6 0.24 0.20

0.9 0 0.9 0.11 0.07

Universal
Solution

Simulation

Case x uini π3 π4 π2 π1 τ t′ x′ u u

4b

0.3 0.54

0 0 2 2.355 0.5888 0.5

0.3 1.92 1.91

0.6 0.24 0.6 1.85 1.85

0.9 0.11 0.9 1.82 1.82

(a) 

(b) 

Figure 7. Simulation of case 4. (a) Case 4a: t = 0.0269 s and uext = 1, and (b) case 4b: t = 0.3212 s and
uext = 2.
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Finally, the proposed methodology allows us to obtain, by means of a relatively fast
procedure, the same results as those obtained by means of a numerical simulation, which
means a considerable saving of time, since, in some cases, depending on the discretisation
of the problem used for the simulation and the time at which the solution is to be obtained,
the calculation time can be large. On the other hand, the nondimensionalisation technique
can be compared with other techniques used to obtain analytical solutions of linear and
nonlinear differential equations such as the differential transformation method (DTM) [36].
This method is based on obtaining the analytical solution through the Taylor series ex-
pansion. One of the main differences between both methods is that when applying the
DTM, the information provided by the nondimensionalisation technique is lost, since by
grouping the variables into monomials with physical meaning, it is possible to determine
the importance of each of the variables or to know which phenomenon predominates over
the rest.

4. Conclusions

In this paper, the nondimensionalisation technique was applied to the problem of the
Burgers–Huxley equation with Dirichlet and Neumann boundary conditions to obtain a
universal solution and study the behaviour of the variables of the problem.

First, after applying the nondimensionalisation technique, it can be observed that for
low values of the monomial π2, the relationship between the diffusion and drag phenomena,
very high values of π1 are needed, the relationship between the time to reach a certain value
in the medium and the diffusion phenomena. Thus, in this case, as the drag phenomenon
predominates over the diffusion phenomenon, it becomes difficult to reach the required
value in the medium because very large time values are required. This behaviour occurs
for all the studied cases of π3 and π4, the relationship between the drag phenomenon
and the generation or decay of species, and the relationship between the generation and
decay coefficients of species, respectively. On the other hand, also for all cases of π3 and π4,
from when π2 takes a value between two and five, π1 tends to take a value close to two;
thus, from then on, the diffusion phenomenon predominates over the rest, which are
practically negligible.

Regarding the validation of the proposed procedure for a universal solution to the pro-
posed problem, several cases have been studied by comparing the results of this procedure
with those obtained through simulation, observing that they are practically the same, and
the difference may be due to errors in the application of the procedure. On the other hand,
the methodology has been applied to a problem where the value of the boundary changes
at a certain time, observing that the results are very similar.

Finally, as a strength of the work presented, it is worth highlighting that a simple
methodology is presented that allows for universal solutions to various problems in science
and engineering to be obtained. As a weakness, it is highlighted that for low values of
the monomial π2 the error in the proposed equations increases, because in these cases, the
monomial π1 tends to reach infinity.
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Abstract: We propose and study a class of discrete-time commensalism systems with additive
Allee effects on the host species. First, the single species with additive Allee effects is analyzed
for existence and stability, then the existence of fixed points of discrete systems is given, and the
local stability of fixed points is given by characteristic root analysis. Second, we used the center
manifold theorem and bifurcation theory to study the bifurcation of a codimension of one of the
system at non-hyperbolic fixed points, including flip, transcritical, pitchfork, and fold bifurcations.
Furthermore, this paper used the hybrid chaos method to control the chaos that occurs in the flip
bifurcation of the system. Finally, the analysis conclusions were verified by numerical simulations.
Compared with the continuous system, the similarities are that both species’ densities decrease with
increasing Allee values under the weak Allee effect and that the host species hastens extinction under
the strong Allee effect. Further, when the birth rate of the benefited species is low and the time is
large enough, the benefited species will be locally asymptotically stabilized. Thus, our new finding
is that both strong and weak Allee effects contribute to the stability of the benefited species under
certain conditions.

Keywords: commensalism model; additive Allee; flip bifurcation; transcritical bifurcation; pitchfork
bifurcation; fold bifurcation; chaos control

MSC: 92D25; 34D20

1. Introduction

Interactions between different species play a crucial role in shaping and maintaining
balance within ecosystems. Interspecies interactions hold the potential to deliver mutual
advantages, inflict harm, or yield no discernible impact on each of the participating species.
These interactions are categorized by paired outcomes, symbolized as a positive, negative,
or neutral result [1]. Commensal relationships, where one species gains a benefit while the
other is unaffected, are often cited in the ecological literature, yet they receive surprisingly
limited attention in research. In ecosystems, both commensalism and mutualism models
involve positive interactions between populations. There is no harm in commensalism, in
which one side is beneficial, while the other side is not beneficial and harmless.

A Belgian zoologist named Pierre-Joseph van Beneden was the pioneer in situating
commensalism within a biological context. He contrasted commensalism with two other
types of interactions: parasitism and mutualism [1]. In mutualism, species are interdepen-
dent and both benefit, while in commensalism, one species gains advantages without strong
dependency or notable harm to the other. Despite its milder impact, commensalism adds
complexity to ecological relationships and community organization. According to [2,3],
depending on the population density, in some cases, the mutualism relationship shifts
to a resemblance closer to commensalism, e.g., the relation among the carnivorous plant
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Roridula dentata and hemipteran Pameridae marlothii. The larvae of midges and mosquitoes
that live on pitcher plants exhibit a commensalism relationship. Midges, as upstream
resource consumers, produce large quantities of bacteria and particles that contribute to
the growth of mosquitoes. However, the experiments in [4] showed that mosquitoes do not
affect midges. There is a symbiotic relationship between the two. Hari Prasad [5] pointed
out that small green epiphytes that grow on other plants prepare themselves for survival by
occupying the space of other plants to absorb the water and minerals that the roots obtain
from the air. In turn, plants are unaffected. Squirrels burrow intooak trees for living space
and food storage. Yet, the oak is neither beneficial nor harmful. To avoid it enemies, the
clownfish will choose to hide in the tentacles of the sea anemone, and the tentacles are not
affected by the clownfish, and so on.

From the standpoint of mathematical modeling, the investigation of the commensalism
system was pioneered by Sun and Wei [6] in 2003. They were the first to explore this area
using a two-species model. Over the past few years, an increasing number of researchers
have directed their focus towards utilizing mathematical modeling methods to explore
the commensalism model among populations (see [7–17] and the references therein). Af-
terwards, Han et al. [18] proposed a continuous time Lotka–Volterra-type commensalism
system as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx
dt

= x(b1 − a11x) + a12xy,

dy
dt

= y(b2 − a22y),

(1)

where x(0) > 0, y(0) > 0 and t ∈ [0, ∞). x(t) and y(t) denote the population densities
of the commensal and host, respectively, at time t; b1 and b2 denote the intrinsic growth
rates of the two species, respectively; a11 and a22 denote the intraspecific competition
coefficient of the commensal and host; a12 > 0 denotes the coefficient of influence that
the host produces in the commensal. We should notice that b1, a11, a12, b2, a22 are positive
constants. The authors’ study showed that Model (1) has a globally stable coexistence
fixed point. Next, feedback control is considered by adding control variables. The results
showed that the position of the coexistence fixed point is altered without affecting its global
steady-state properties.

After that, many scholars began to consider the effects of various factors based on the
system (1) and analyze the dynamic behaviors of the corresponding systems, for example
periodic solutions [19,20], harvesting [21–25], the Allee effect [26–28], and delay [29,30].
In [19], the authors investigated a modified commensal symbiosis model with Michaelis–
Menten-type harvesting and observed positive periodic solutions. In [20], Chen et al.
presented another discrete commensal symbiosis model with a Hassell–Varley-type func-
tional response. Their study revealed a positive periodic solution of the system, which is
both locally and globally stable. Considering a Lotka–Volterra-type commensal model sub-
ject to the Allee effect on the unaffected species, which occurs at a low population density,
Xinyu Guan [27] observed that the Allee effect has no influence on the final densities of the
unaffected species and the benefited species. The study involved numerical simulations
that demonstrated a considerable elongation in the time required for the system subjected to
an Allee effect to attain its stable steady-state solution, implying that the Allee effect has an
unstable effect on the system. In [28], the authors explored a discrete-time commensal sym-
biosis model and observed period-doubling bifurcation phenomenon around the interior
equilibrium state.

According to previous studies by W.C. Allee, population density has a positive impact
on reproduction in a wide range of terrestrial and aquatic species. It could potentially
contribute to the prolonged survival of the species in unfavorable environments and
provide increased protection against harmful substances [31,32]. When the population
density drops below a specific threshold or when the population is too diminutive, the
task of finding a mate can become more challenging. Similarly, in species where group
activities such as fending off predators or searching for sustenance are impeded due to
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low population densities, these activities become less proficient. This positive correlation
between population size and individual fitness is termed the Allee effect. In the past few
years, populations from various ecosystems have become low or even at risk of becoming
endangered due to escalating human predation, heightened occurrences of natural disasters,
and rising global temperatures. In such situations, the populations may have trouble
mating, foraging, and fending off natural enemies. Previous mathematical studies have
shown that Allees add more complexity to the system’s dynamic behavior [33,34]. In 2022,
He et al. [11] proposed the following continuous-time commensalism system incorporating
an additive Allee to the host: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx
dt

= x(r− bx) + cxy,

dy
dt

= y
(

d− ey− m
y + a

)
,

(2)

where all of the parameters are positive constants and initial values are x(0) > 0, y(0) > 0,
and t ∈ [0, ∞), the same as the previous definition in [11]. He et al. [11] gave the existence
and local stability of equilibrium points, then proved that, under suitable conditions,
Er(

r
b , 0) and E∗1 (x∗1, y1) are globally asymptotically stable, respectively. There are saddle-

node bifurcation at E∗3 (x∗3, y3), E3(0, y3) and transcritical bifurcation at E0(0, 0), Er(
r
b , 0),

respectively.
In recent years, discrete-time systems have also been one of the hotspots of scholars’

research. The reason is that populations with non-overlapping generations are better de-
scribed by difference equations, which are also easier to simulate numerically. Discrete-time
systems also have more topological classifications and bifurcations at fixed points than
corresponding continuous-time systems, with a codimension of one, such as flip, transcriti-
cal, pitchfork, fold, and Neimark–Sacker bifurcations, and a codimension of two, such as
1:1 and 1:2, and fold–flip bifurcations, e.g., [35–41]. To the best of the authors’ knowledge,
limited research has been conducted on discrete models incorporating additive Allee ef-
fects, highlighting an ongoing need for such investigations. In this work, we explored the
qualitative behavior of the continuous-time commensal model (2) by converting it into a
discrete-time model.

Transformation is the first step in reducing the parameters, and it uses x = d
b x̄, y = d

e ȳ,
t = τ

d . Then, the bars are removed, and System (2) can be transformed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx
dτ

= x(α− x + βy),

dy
dτ

= y
(

1− y− M
y + A

)
,

(3)

where α = r
d , β = c

e , M = me
d2 , and A = ae

d . The initial value is x(0) > 0, y(0) > 0
and τ ∈ [0, ∞). By using the piecewise constant parameter method [42] to discretize the
system (3), we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
x(τ)

dx
dτ

= α− x([τ]) + βy([τ]),

1
y(τ)

dy
dτ

= 1− y([τ])− M
y([τ]) + A

,

(4)

where 0 ≤ n ≤ τ < n + 1 and [τ] is the round-down function. First, the simple rounding
function operation can be used to determine that the right-hand side of the ordinary
differential Equation (4) is a constant value, when other parameters are fixed. Secondly, the

33



Axioms 2023, 12, 1031

integral of the interval n to τ is performed on both sides of the equation at the same time,
and when τ tends to n + 1, the following is acquired:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ln
x(n + 1)

x(n)
= α− x(n) + βy(n),

ln
y(n + 1)

y(n)
= 1− y(n)− M

y(n) + A
,

for n = {0, 1, 2, ...}, so we obtain the following a discrete-time commensalism mode with
the additive Allee effect for the host species:⎧⎪⎨⎪⎩

xn+1 = xn exp
(
α− xn + βyn

)
,

yn+1 = yn exp
(
1− yn −

M
yn + A

)
,

where x(n): = xn and y(n): = yn, n = {0, 1, 2, ...}.
The discrete-time commensalism system is now defined by mapping

F :
(

x
y

)
→

(
x exp

(
α− x + βy

)
y exp

(
1− y− M

y+A
)). (5)

Then, the discrete-time single-species mode with the additive Allee is expressed as

f : y → y exp
(

1− y− M
y + A

)
, (6)

where M
y+A represents the additive Allee. The Allee effect in the map (5) and the map (6) is

weak when 0 < M < A. The Allee effect in the map (5) and the map (6) is strong when
M > A.

In this paper, Section 2 provides the existence and local stability of the map (6) at fixed
points. Then, Section 3 provides the existence and local stability of the map (5) at fixed
points. Section 3.3 gives the bifurcation of different types of a codimension of one under
certain conditionals including flip, fold, transcritical, and pitchfork bifurcations. Moreover,
Section 3.4 provides a chaos-control system for the occurrence of chaos due to bifurcation.
Finally, the correctness of the numerical simulations verifies the conclusions.

2. Dynamics Analysis of Map (6)

2.1. The Existence of Fixed Point

The fixed points of the map (6) satisfy the equations as follows:

y = y exp
(

1− y− M
y + A

)
.

Obviously, 0 is a trivial fixed point of the map (6). Further, the positive fixed point of
the map (6) needs to solve 1− y− M

y+A = 0, and we can obtain the following equation with
the same solution through simplification:

G(y) = y2 + (A− 1)y + M− A = 0. (7)

Let�(M) be the discriminant function of G(y), then, according to the discriminant formula
of the quadratic function, we have

� (M) = (A− 1)2 − 4(M− A) = (A + 1)2 − 4M.
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Let M∗ be the zero point of�(M), then

M∗ =
(A + 1)2

4
≥ A.

Thus, if 0 < M < M∗, � (M) > 0, then (7) has two roots of y1 = 1−A−√�
2 and

y2 = 1−A+
√�

2 ; if M = M∗, � (M) = 0, then (7) has a double-root denoted by y3 = 1−A
2 ;

when M > M∗, � (M) < 0, then (7) has no root. Then, we obtain the following result.

Theorem 1. The map always has a fixed point 0, regardless of how the parameters are altered in the
map (6). The parameter requirements for the existence of positive fixed points are then stated:

(1) (Case 1 : 0 < M < A, i.e., weak Allee) Existence of a positive fixed point y2 in the map (6).
(2) (Case 2 : M = A).

(i) Map (6) has a positive fixed point y2 if 0 < A < 1.
(ii) Map (6) has no other fixed point if A ≥ 1.

(3) (Case 3 : M > A, i.e., strong Allee).

(i) Map (6) has two positive fixed points y1 and y2 if and only if 0 < A < 1 and M < M∗.
(ii) Map (6) has a positive fixed point y3 if and only if 0 < A < 1 and M = M∗.
(iii) Map (6) has no other fixed point if either (0 < A < 1 and M > M∗) or A ≥ 1.

2.2. The Stability of Fixed Points 0, y1, y2, and y3

Firstly, it is easy to see that the map (6) at a fixed point y satisfies

d f
dy

=

(
1 + y

(
−1 +

M

(y + A)2

))
exp

(
1− y− M

y + A

)
.

Then, by a simple computation, we have

d f
dy

(0) = exp
(

1− M
A

)
,

d f
dy

(yi) = 1 + yi

(
−1 +

M

(yi + A)2

)
i = 1, 2, 3.

So, when 0 < M < A, d f
dy (0) > 1, the trivial fixed point 0 is a source; when M > A,

d f
dy (0) ∈ (0, 1), the trivial fixed point 0 is a sink that is locally asymptotically stable; when

M = A, d f
dy (0) = 1, the trivial fixed point 0 is non-hyperbolic.

Secondly, according to Theorem 1, if the positive fixed point yi, i = 1, 2, 3 exists, we
can obtain

d f
dy

(yi) = 1 + yi

(
−1 +

M

(yi + A)2

)

= 1−
(

1− M
yi + A

)
+

Myi
(yi + A)2

=
M(A + 2yi)

(yi + A)2 ,

and then,

d
dyi

(
d f
dy

(yi)

)
= − 2Myi

(yi + A)3 < 0.
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Thus, it follows that yi is a rigorously decreasing function of d f
dy (yi). From Theorem 1, when

M = M∗ and A ∈ (0, 1), there is a positive fixed point y3. By a direct computation, we have

d f
dy

(y3) =
M∗(A + 2y3)

(y3 + A)2 = 1.

Furthermore, it is possible to verify y1 < y3 < y2. Namely, d f
dy (y1) > 1 > d f

dy (y2).
Hence, the positive fixed point y1 is always the source; the positive fixed point y3 is always
non-hyperbolic.

Now, in order to compare d f
dy (y2) to −1, we have

d f
dy

(y2)− (−1) = 2 + y2

(
−1 +

M

(y2 + A)2

)

=
M(A + 2y2)

(y2 + A)2 + 1 > 0.

So, by the above analysis, the positive fixed point y2 is a sink. Thus, we have the
following result.

Theorem 2. When M < A, i.e., a weak Allee, or (M = A and 0 < A < 1), the map (6) has a
unique positive fixed point y2 that is globally asymptotically stable.

Proof. From Theorem 1(1) and (2)(i), the map (6) has a unique positive fixed point y2.
Firstly, let f (y) = y exp

(
1− y− M

y+A

)
. Then, let us construct a Lyapunov function as

V(y) =
1
2

(
y2 − y2

2

)
− y2

2 ln
y
y2

.

Then, find the first derivative of V(y). We can obtain

d(V(y))
dy

= y− y2
2

y

=
(y + y2)(y− y2)

y
,

then, if 0 < y < y2, d(V(y))
dy < 0, then V(y) is strictly monotonically decreasing with respect

to y; if y > y2, d(V(y))
dy > 0, then V(y) is an increasing function with respect to y. Thus,

V(y) has a minimum value V(y2) = 0. Obviously, V(y) is positive definite for any y > 0
and for y 	= y2.

V(y) derives the solution of the map (6), and we have:

ΔV(y) = V( f (y))−V(y)

=
1
2

(
f 2(y)− y2

2

)
− y2

2 ln
f (y)
y2

−
[

1
2

(
y2 − y2

2

)
− y2

2 ln
y
y2

]

=
1
2

{[
y exp

(
1− y− M

y + A

)]2
− y2

2

}
− y2

2 ln
y exp

(
1− y− M

y+A

)
y2

−
[

1
2

(
y2 − y2

2

)
− y2

2 ln
y
y2

]
=

1
2

y2
{

exp
[

2
(

1− y− M
A + y

)]
− 1

}
− y2

2

(
1− y− M

A + y

)
.
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To prove that the map (6) is globally stable is to prove that ΔV(y) is negative definite
for all y > 0 and for y 	= y2. To test this condition, we require that ΔV(y) has a unique
global maximum at y = y2, which is difficult to prove using pure analysis. For the specific
parameter, this can often be performed computationally; first, we consider whether y = y2
is the local maximum of ΔV(y), and we calculate:

d(ΔV(y))
dy

= y
{

exp
[

2
(

1− y− M
A + y

)]
− 1

}
− y2

2

(
−1 +

M
(A + y)2

)
+ y2 exp

[
2
(

1− y− M
A + y

)](
−1 +

M
(A + y)2

)
= 0, i f y = y2,

d2(ΔV(y))
dy2 = exp

[
2
(

1− y− M
A + y

)]
− 1− 2y2M

(A + y)3 exp
[

2
(

1− y− M
A + y

)]
+ 2y2 exp

[
2
(

1− y− M
A + y

)](
−1 +

M
(A + y)2

)2

+ 4y exp
[

2
(

1− y− M
A + y

)](
−1 +

M
(A + y)2

)
+

2y2
2M

(A + y)3

= 2y2

(
−1 +

M
(A + y2)2

)[
2 + y2

(
−1 +

M
(A + y2)2

)]
i f y = y2,

= 2
(

d f
dy

(y2)− 1
)(

d f
dy

(y2) + 1
)

i f y = y2,

< 0 i f y = y2.

Hence, if M < A or M = A and 0 < A < 1, there is a unique positive fixed point y2,
and ΔV(y) has global maximum at y = y2. Then, Theorem 2 is proven.

Moreover, when M = 1, A = 4 and y ∈ (0, 2.5), then V and ΔV(y) are drawn by
calculation in Figure 1. Obviously, ΔV(y) is negative definite.

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y

  V

 Δ V

 

 

Figure 1. V and ΔV(y) function with M = 1, A = 4 and y ∈ [0, 2.5].

Theorem 3. (The case of a strong Allee, i.e., M > A) Let y be a solution of the map (6) and the
initial value y(0) > 0. Then, we have:

(1) When M < M∗ and 0 < A < 1, the map (6) has two positive fixed points y1 and y2:

(i) If 0 < y(0) < y1, then lim
n→∞

y(n) = 0.

(ii) If y1 < y(0), then lim
n→∞

y(n) = y2.

(2) Moreover, when M = M∗ and 0 < A < 1:

(i) If 0 < y(0) < y3, then lim
n→∞

y(n) = 0.

(ii) If y3 < y(0), then lim
n→∞

y(n) = y3.

(3) When M∗ < M and 0 < A < 1 or A ≥ 1, then lim
n→∞

y(n) = 0.
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Proof. Map (6) can be simplified as follows:

y → y exp
(

1− y− M
y + A

)
→ y exp

[
1

y + A

(
−y2 − (A− 1)y + A−M

)]
→ y exp

(
Q(y)
y + A

)
,

where Q(y) := −y2 − (A− 1)y + A− M. Further, when A < M < M∗ and 0 < A < 1,
if y2 > y(0) > y1, we have Q(y) > 0, then y2 > f (y) > y (in Figure 2b,d); if y(0) > y2,
i.e., Q(y) < 0, then y > f (y) > y2 (in Figure 2a,b,d). Thus, if y(0) > y1, the fixed point
y2 is globally asymptotically stable. In other cases, if A < M < M∗, 0 < A < 1, and
0 < y(0) < y1, i.e., Q(y) < 0, then 0 < f (y) < y (in Figure 2c). When M = M∗ and
0 < A < 1, i.e., Q(y) ≤ 0, then, if 0 < y(0) < y3, 0 < f (y) < y (in Figure 2f); if y3 < y(0),
then y3 < f (y) < y (in Figure 2e). When M > M∗ and 0 < A < 1 or M > A and A ≥ 1,
i.e., Q(y) < 0, then 0 < f (y) < y (in Figure 2g,h). Then, the result follows.
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Figure 2. Positive fixed point existence diagram for map (6). (a) If M = 0.54, A = 0.5, the map (6) has
two positive fixed points y1 = 0.1, y2 = 0.4. (b–d) Local diagrams with y ∈ [0, 0.5], y ∈ [0, 0.1] and
y ∈ [0.1, 0.5] corresponding to (a), respectively. (e) If M = 0.5625, A = 0.5, the map (6) has a unique
positive fixed point y3 = 0.25. (f) Local diagrams with y ∈ [0, 0.25] corresponding to (e), respectively.
(g) If M = 1, A = 0.5, the map (6) has no positive fixed point. (h) If M = 3, A = 2, the map (6) also
has no positive fixed point.
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Table 1 gives the above analysis.

Table 1. Fixed point of the map (6).

Parameter Conditions Existence Stability

0 < M < A 0, y2 0 source, y2 sink

M = A
0 < A < 1 0, y2 0 non-hyperbolic, y2 sink

A ≥ 1 0 0 non-hyperbolic

A < M < M∗
0 < A < 1 0, y1, y2 0 sink, y1 source, y2 sink

A ≥ 1 0 0 sink

M = M∗
0 < A < 1 y3 0 sink, y3 non-hyperbolic

A ≥ 1 0 0 sink

M > M∗ 0 0 sink

3. Dynamics Analysis of Map (5)

3.1. Existence and Local Stability of Fixed Points

The fixed points of the map (5) satisfy the equations as follows:{
x = x exp

(
α− x + βy

)
,

y = y exp
(
1− y− M

y+A
)
.

Obviously, E0(0, 0) and E1(α, 0) are two boundary fixed points of the map (5). Further,
the other fixed points of the map (5) are summed up in Table 2. Let E2i(0, yi), i = 1, 2, 3 be
the boundary fixed point of the extinction of the commensal species and E∗3i(x∗i , yi), i = 1, 2,
3 be the fixed points of the coexistence of the two populations, where x∗i = α + βyi.

Table 2. Boundary and positive fixed point of the map (5)’s existence.

Parameter Conditions Existence

0 < M < A E22, E∗32

M = A
0 < A < 1 E22, E∗32

A ≥ 1 no other fixed points

A < M < M∗
0 < A < 1 E21, E22, E∗31, E∗32

A ≥ 1 no other fixed points

M = M∗
0 < A < 1 E23, E∗33

A ≥ 1 no other fixed points

M > M∗ no other fixed points

Remark 1. To prepare for the prospect of bifurcations, we offer the following observations:

(1) If M = M∗ and 0 < A < 1, then y1 = 0, y2 = 1− A > 0;
(2) If A = 1 and 0 < M < M∗ = A, then y1 < 0, y2 =

√
1−M > 0;

(3) If A = 1 and M = M∗ = A, then y1 = y2 = y3 = 0.

At any fixed point E(x, y), the Jacobian matrix of the map (5) is given as

J(E) =
(

(1− x)Γ1 βxΓ1
0 Γ2

)
,
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where Γ1 = exp(α− x− βy), Γ2 =

(
1 + y(−1 + M

(y+A)2 )

)
exp

(
1− y− M

y+A

)
. Let the

eigenvalues of the matrix J(E) be λ1 and λ2.
We classify fixed points topologically and examine their local stability by [43].

Definition 1. A fixed point E(x, y) of the map (5) is called:

(1) A sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable;
(2) A source if |λ1| > 1 and |λ2| > 1, and it is unstable;
(3) A saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1);
(4) Non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Now, using Definition 1, we topologically categorize fixed points and discuss their
local stability.

Note that, when M = 0,

J(E0) =

(
eα 0
0 e

)
, J(E1) =

(
1− α αβ

0 e

)
,

and for the case M > 0,

J(E0) =

(
eα 0
0 e1−M

A

)
, J(E1) =

(
1− α αβ

0 e1−M
A

)
.

Thus, the following conclusion can be drawn.

Theorem 4. Assume that M = 0, and we have the following description:

(1) E0(0, 0) is always a source since two eigenvalues are eα > 1 and e > 1.
(2) Two eigenvalues of E1(α, 0) are 1− α < 1 and e > 1. Then, E1(α, 0) is:

(i) A saddle when 0 < α < 2;
(ii) A source when α > 2;
(iii) Non-hyperbolic when α = 2.

By Theorem 4(iii), the two eigenvalues of J(E1) are λ1 = −1, λ2 = e; hence, E1 is
non-hyperbolic. The conditions that satisfy Theorem 4(iii) for the set ΩEf are written
as follows:

ΩEf = {(α, β) ∈ R2 : α = 2, β > 0}.

Choose the bifurcation parameter α, and set it to α = 2+ ρ. A suitably tiny perturbation
term is ρ. According to a quick calculation, the center manifold of the map (5) in ΩEf is

y = 0. In this instance, the map (5) may be expressed as x → −x − ρx + 1
6 x3 + 1

2 ρx2 +
O
(
(|x|+ |ρ|)3). As a result, at E1, a flip bifurcation is formed.

Figure 3 depicts the bifurcation diagram of the numerical simulation for β = 0,
α ∈ [0, 4], and x ∈ [0, 20]. Figure 3 shows that, when 0 < α < 2, the shape of the map (5) is
stable; when α > 2, the map (5) turns over due to instability and provides stable biperiodic
solutions. A chaotic set is produced as α rises.

Theorem 5. Assume that M > 0; in this case, the two eigenvalues of the map (5) at fixed point
E0(0, 0) are eα and e1− A

M , then E0(0, 0) is:

(1) A source if 0 < M < A;
(2) A saddle if M > A;
(3) Non-hyperbolic if M = A.

Theorem 6. The two eigenvalues of the map (5) at the fixed point E1(α, 0) are 1− α and e1− A
M ;

consequently, E1(α, 0) is:
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(1) A sink if and only if 0 < α < 2 and M > A;
(2) A source if and only if α > 2 and 0 < M < A;
(3) A saddle if and only if 0 < α < 2 and 0 < M < A or α > 2 and M > A;
(4) Non-hyperbolic if M = A or α = 2.

Figure 3. Flip bifurcation diagrams of commensal species at initial value (x0, y0) = (0.5, 0.3) with
M = 0 and α ∈ [0, 4].

Proof. At the boundary fixed point E1(α, 0), whose eigenvalues are 1− α < 1 and e1− A
M > 0,

it is simple to see that

1− α

⎧⎪⎨⎪⎩
> −1 if 0 < α < 2,
= −1 if α = 2,
< −1 if α > 2.

and

e1− A
M

⎧⎪⎨⎪⎩
> 1 if 0 < M < A,
= 1 if M = A,
∈ (0, 1) if M > A.

Then, the result follows.

Figure 4 displays the topological classification of the map (5) at boundary fixed point
E1(α, 0) when β = 1, A = 1.5, α ∈ [0, 4], and M ∈ [0, 3].
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Figure 4. Topological classification at E1(α, 0) with β = 1, A = 1.5, α ∈ [0, 4], and M ∈ [0, 3].

Now, we give the Jacobian matrix of the map (5) at the boundary fixed points E2i
(
0, yi

)
(i = 1, 2, 3) as follows:

J(E2i) =

(
eα+βyi 0

0 Ji

)
,

where Ji = 1 + yi

(
−1 + M

(yi+A)2

)
. Clearly, the two eigenvalues of J(E2i) are eα+βyi > 1 and

Ji. Note that Ji was analyzed in Section 2.2. Then, we have J1 > 1, J2 ∈ (−1, 1) and J3 = 1.
Thus, we obtain the following conclusions:
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Theorem 7. (1) When A < M < M∗ and 0 < A < 1, the boundary fixed point E21 exists in
the map (5), and the eigenvalues of J(E21) are eα+βy1 > 1 and J1 > 1. So, the fixed point E21
is always a source.

(2) When the boundary fixed point E22 exists, the eigenvalues of J(E22) are eα+βy2 > 1 and
|J2| < 1. So, the fixed point E22 is always a saddle.

(3) When M = M∗ and 0 < A < 1, the boundary fixed point E23 exists in the map (5), and the
eigenvalues of J(E23) are eα+βy3 > 1 and J3 = 1. Consequently, E23 is always non-hyperbolic.

Next, the Jacobian matrix at positive points E∗3i
(
x∗i , yi

)
(i = 1, 2, 3) is obtained as

J(E∗3i) =

(
1− x∗i βx∗i

0 Ji

)
,

where x∗i = α + βyi, whose eigenvalues are 1− x∗i < 1, and Ji was analyzed above. Then,
we obtain

1− x∗i

⎧⎪⎨⎪⎩
> −1 if 0 < x∗i < 2,
= −1 if x∗i = 2,
< −1 if x∗i > 2.

This is equivalent to the following two situations.

(1) If 0 < α < 2, we have

x∗i

⎧⎪⎨⎪⎩
< 2 if 0 < β < β∗i ,
= 2 if β = β∗i ,
> 2 if β > β∗i .

where β∗i = 2−α
yi

, (i = 1, 2, 3).

(2) If α ≥ 2, we have 1− x∗i < −1, which is equivalent to x∗i > 2.

As a consequence of the above analysis, we have:

Theorem 8. (1) When E∗31(x∗31, y1) exists, it is:

(i) A saddle if and only if 0 < α < 2 and 0 < β < β∗1;
(ii) A source if and only if 0 < α < 2 and β > β∗1 or α > 2;
(iii) Non-hyperbolic if and only if 0 < α < 2 and β = β∗1, where β∗1 = 2−α

y1
.

(2) When E∗32(x∗32, y2) exists, it is:

(i) A sink if and only if 0 < α < 2 and 0 < β < β∗2;
(ii) A saddle if and only if 0 < α < 2 and β > β∗2 or α > 2;
(iii) Non-hyperbolic if and only if 0 < α < 2 and β = β∗2, where β∗2 = 2−α

y2
.

(3) When E∗33(x∗33, y3) exists and 0 < α < 2, it is always non-hyperbolic, where β∗3 = 2−α
y3

.

When M = 0.52, A = 0.45, α ∈ [0, 4] and β∗i ∈ [0, 10], Figure 5 shows the topological
classification of the map (5) at positive fixed points E3i(x∗i , yi)(i = 1, 2).

3.2. Global Stability of Positive Fixed Point E∗32

Firstly, we give two lemmas in [37].

Lemma 1. Suppose that the sequences x(n) satisfy x(n) > 0 and

x(n + 1) ≤ x(n) exp
(
a− bx(n)

)
, n ∈ N,

where a and b are positive constants. Then,

lim sup
n→+∞

x(n) ≤ exp(a− 1)
b

:= M.
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Figure 5. Topological classification of the α − β∗i plane at E3i(x∗i , yi) with M = 0.52, A = 0.45,
α ∈ [0, 4], and β∗i ∈ [0, 10], (i = 1, 2).

Lemma 2. Suppose that the sequences x(n) satisfy x(n) > 0 and

x(n + 1) ≥ x(n) exp
(
a− bx(n)

)
, n ∈ N,

where a and b are positive constants. Then,

lim inf
n→+∞

x(n) ≥ a
b

exp
(
a− bM

)
,

where M was given by Lemma 2.

Secondly, from Theorem 2, we obtain that, if 0 < M < A or M = A, 0 < A < 1 holds,
y(n) is any positive solution of the map (6), then

lim
n→∞

y(n) = y2. (8)

Now, we consider a system as follows:

x1(n + 1) = x1(n) exp(α + βy2 − x1(n)), (9)

where x1(n) = α+ βy2 is any positive solution of System (9). We obtain the following result.

Theorem 9. If

0 < M < A, or (M = A, 0 < A < 1) and 0 < α + βy2 < ln 2 + 1 (10)

holds, the positive fixed point E∗32(x∗2 , y2) of the map (5) is globally attractive. In other words,

lim
n→+∞

[x(n)− x1(n)] = 0,

where x1(n) is any positive solution of System (9).

Proof. From (8), for any sufficiently small ε > 0, there is an integer N1 such that, if
n > N1, then

y2 − ε < yn < y2 + ε. (11)

In order to prove limn→+∞[x(n)− x1(n)] = 0, let

x(n) = x1(n) exp[k(n)].
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Then, by using the differential mean value theorem, the first equation of (5) can be
expressed as

k(n + 1) = ln x(n) + α− x(n) + βy(n)− ln x1(n + 1)
= k(n)

(
1− x1(n) exp[θ(n)k(n)]

)
+β(yn − y2),

(12)

where θ(n) ∈ [0, 1], and x1(n) exp
[
θ1(n)k(n)

]
lies in the range of x1(n) to x(n). Now, our

primary purpose is to prove
lim

n→+∞
k1(n) = 0.

because of x(n) exp
[
α + β(y2 − ε)− x(n)

]
≤ x(n + 1) ≤ x(n) exp

[
α + β(y2 + ε)− x(n)

]
,

then with the help of Lemmas 1 and 2, we obtain

lim sup
n→+∞

x(n) ≤ exp
(
α + β(y2 + ε)− 1

)
:= U1,

lim inf
n→+∞

x(n) ≥ (α + β(y2 + ε)) exp
[
α + β(y2 + ε)−U1

]
≥ (α + β(y2 − ε)) exp

[
α + β(y2 − ε)−U1

]
:= V1.

In addition, from (9), Lemmas 1 and 2, we obtain

lim sup
n→+∞

x1(n) ≤ exp
[
α + βy2 − 1] := U2 ≤ U1,

lim inf
n→+∞

x1(n) ≥ (α + βy2) exp
[
α + βy2 −U2

]
≥ (α + βy2) exp

[
α + βy2 −U1

]
≥ (α + β(y2 − ε) exp

[
α + β(y2 − ε)−U1

]
:= V1.

Thus, for any sufficiently small ε > 0, there is an integer N2 > N1 such that,
if n ≥ N2, then

V1 − ε ≤ x(n), x1(n) ≤ U1 + ε, n ≥ N2. (13)

Suppose that
λ = max

{
|1−V1|, |1−U1|

}
.

Then, for any sufficiently small ε > 0, we suppose

λε = max
{
|1− (V1 − ε)|, |1− (U1 + ε)|

}
. (14)

From (11)–(14), we obtain

|k(n + 1)| ≤ max
{
|1− (V1 − ε)|, |1− (U1 + ε)|

}
|k(n)|+ βε

= λε + βε, n ≥ N2.

Then, we obtain the following inequality:

|k(n)| ≤ λn−N2
ε |k(N2)|+

1− λn−N2
ε

1− λε
βε, n ≥ N2. (15)

Since λε < 1 and ε is sufficiently small, we can have limn→+∞ k(n) = 0, i.e.,
limn→+∞

[
x(n)− x1(n)

]
= 0 holds when λ1 < 1. Notice that

1−U1 < 1−V1 < 1,

then λ1 < 1 is equivalent to
1−U1 > −1,
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i.e.,
0 < α + β(y2 + ε) < 1 + ln 2. (16)

Since ε is sufficiently small when (10) holds, we obtain (16), so limn→+∞
[
x(n)− x1(n)

]
= 0.

Thus, this completes the proof of Theorem 9.

3.3. Bifurcation Analysis of a Codimension of One

According to the prior analysis of the map (5) at fixed points, in this section, the
center manifold theorem is used to reduce dimensionality, and then, bifurcation theory is
employed to investigate the bifurcations of a codimension of one at non-hyperbolic fixed
points by [44,45].

3.3.1. Bifurcation at the Fixed Point E0(0, 0)

Theorem 10. When parameters (α, β, M, A) ∈ ΩE0 = {(α, β, M, A) ∈ R4 : α > 0, β > 0,
M = A, A > 0}, E0 is a non-hyperbolic fixed point. Furthermore, we find that the map (5)
will undergo:

(1) A transcritical bifurcation when parameters (α, β, M, A) ∈ ΩE0TR = {(α, β, M, A) ∈ R4 :
α > 0, β > 0, M = A, A 	= 1} hold;

(2) A pitchfork bifurcation when (α, β, M, A) ∈ ΩE0PF = {(α, β, M, A) ∈ R4 : α > 0, β > 0,
M = A = 1} holds.

Proof. By Theorem 5, the two eigenvalues of J(E0) are λ1 = eα > 1, λ2 = 1, and the
fixed point E0 is called non-hyperbolic if (α, β, M, A) ∈ ΩE0. We choose M as the bi-
furcation parameter, and ρ is the perturbation parameter near A, satisfying M = A + ρ.
Then, through an iterative operation, we can easily calculate that the center manifold
of the map (5) is given as x = 0 and that the constrained map (5) can be represented as

y → y− (A−1)
A y2− 1

A yρ+ (A2−2A−1)
2A2 y3 + 1

A y2ρ+ 1
2A2 yρ2 +O

(
(|y|+ |ρ|)3). If (α, β, M, A) ∈

ΩE0TR = {(α, β, M, A) ∈ R4 : α > 0, β > 0, M = A, A 	= 1} holds, thus the map (5) un-
dergoes a transcritical bifurcation at E0(0, 0); if (α, β, M, A) ∈ ΩE0PF = {(α, β, M, A) ∈
R4 : α > 0, β > 0, M = A = 1}, then the map (5) undergoes a pitchfork bifurcation at
E0(0, 0).

3.3.2. Bifurcation around Boundary Fixed Point E1(α, 0)

Theorem 11. The map (5) at E1(α, 0) has:

(i) A transcritical bifurcation or a pitchfork bifurcation, whose boundary fixed point E1(α, 0) is
non-hyperbolic, if parameter (α, β, M, A) ∈ ΩE1TR = {(α, β, M, A) ∈ R4 : α 	= 2, β > 0,
M = A, A 	= 1} or ΩE1PF = {(α, β, M, A) ∈ R4 : α 	= 2, β > 0, M = A = 1}, respectively;

(ii) A flip bifurcation if (α, β, M, A) ∈ ΩE1FB = {(α, β, M, A) ∈ R4 : α = 2, β > 0, M 	= A,
A > 0}.

Proof. (i) According to Theorem 6(4), when the parameters satisfy the conditions
(α, β, M, A) ∈ ΩE1TR = {(α, β, M, A) ∈ R4 : α 	= 2, β > 0, M = A, A 	= 1}, one eigenvalue
of the Jacobian matrix J(E1) is 1− α and the other is 1. First, we choose M as the bifurcation
parameter. Set μ = M− A, where |μ| � 1, and it is a new variable. Next, we translate
System (5) to the originwith u = x − α, v = y − 0 and perform the Taylor expansion,
leading to ⎛⎝ u

v

⎞⎠→
(

1− α αβ
0 1

)⎛⎝ u

v

⎞⎠+

(
f1(u, v, μ)
f2(u, v, μ)

)
; (17)
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here,

f1(u, v, μ) = z11uv + z20u2 + z02v2 + z21u2v + z12uv2 + z30u3

+ z03v3 + O
(
(|u|+ |v|+ |μ|)3),

f2(u, v, μ) = b20v2 + b11vμ + b30v3 + b21v2μ + b12vμ2

+ O
(
(|u|+ |v|+ |μ|)3),

and

z11 = −(α− 1)β, z20 =
(α− 2)

2
, z02 =

αβ2

2
,

z21 =
(α− 2)β

2
, z12 = − (α− 1)β2

2
, z30 = − (α− 3)

6
,

z03 = −αβ3

6
, b20 = − (A− 1)

A
, b11 = − 1

A
,

b30 =
(A2 − 2A− 1)

2A2 , b21 =
1
A

, b12 =
1

2A2 .

The matrix of the linear part of the map (17) can be expressed as:

J(E1) =

(
1− α αβ

0 1

)
.

Choose invertible matrix T:

T =

(
1 β
0 1

)
.

Apply the following matrix transformation to the map (17):⎛⎝ u

v

⎞⎠ = T

⎛⎝ U

V

⎞⎠. (18)

Therefore, the map (17) becomes⎛⎝ U

V

⎞⎠→
(

1− α 0
0 1

)⎛⎝ U

V

⎞⎠+

⎛⎝ G1(U, V, μ)

G2(U, V, μ)

⎞⎠, (19)

where

G1(U, V, μ) = z20U2 + (2βz20 + z11)UV +
(

z20β2 − b20β + z11β + z02

)
V2

− βb11Vμ + (3βz30 + z21)U2V + (3β2z30 + 2βz21 + z12)UV2

+ z30U3 +
(

z30β3 + z21β2 − b30β + z12β + z03

)
V3 − b12βVμ2

− b21βV2μ + O
(
(|U|+ |V|+ |μ|)3

)
,

G2(U, V, μ) = b20V2 + b11Vμ + b30V3 + b21V2μ + b12Vμ2 + O
(
(|U|+ |V|+ |μ|)3

)
.
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Then, to study the stability of (U, V) = (0, 0) near μ = 0, we can indirectly study
a system of one-parameter equations limited to a center manifold. It can be defined
as follows:

Wc(0, 0, 0) =
{
(U, V, μ) ∈ R3 : U = g(V, μ), g(0, 0) = 0, Dg(0, 0) = 0

}
with V and μ small. Take

g(V, μ) = g1μ2 + g2Vμ + g3V2 + O
(
(|V|+ |μ|)3). (20)

Then, we have

N(g(V, μ)) = g(V + G2(g(V, μ), V, μ), μ)− (1− α)g(V, μ)− G1(g(V, μ), V, μ)) = 0. (21)

Substituting (20) into (21) and comparing the coefficients of μ2, Vμ and V2 of (21),
we obtain

g1 = 0, g2 =
β

αA
, g3 =

β(A− 1)
Aα

.

Thus, the map restricted to the center manifold Wc(0, 0, 0) is written as

F1 : V → V + b20V2 + b11Vμ + b30V3 + b21V2μ + b12Vμ2 + O
(
(|V|+ |μ|)3).

We can see that

F1(0, 0) = 0,
∂F1

∂V
(0, 0) = 1,

∂F1

∂μ
(0, 0) = 0,

∂2F1

∂V∂μ
(0, 0) = b11 = − 1

A
	= 0,

∂2F1

∂V2 (0, 0) = 2b20 = −2(A− 1)
A

.

Hence, the map (5) undergoes a transcritical bifurcation at E1 because of ∂2F1
∂V2 (0, 0) 	= 0

if (α, β, M, A) ∈ ΩE1TR . Moreover, when (α, β, M, A) ∈ ΩE1PF = {(α, β, M, A) ∈ R4 : α 	= 2,

β > 0, M = A = 1}, a direct calculation leads to ∂2F1
∂V2 (0, 0) = 0 and ∂3F1

∂V3 (0, 0) = −6; from
[45] the map (5) will pass through a pitchfork bifurcation at E1.

(ii) From Theorem 6(4), when (α, β, M, A) ∈ ΩE1FB = {(α, β, M, A) ∈ R4 : α = 2,
β > 0, M 	= A, A > 0} holds, it is evident that, for the non-hyperbolic E1(α, 0), λ1 = −1
and λ2 = exp(1 − M

A ) 	= 1. Taking α as a bifurcation parameter and assuming ε that
is a sufficiently small perturbation parameter, namely ‖ε‖ � 1, then, the perturbations
corresponding to System (5) are mapped as follows:⎛⎝ x

y

⎞⎠→

⎛⎝ xe2+ε−x+βy

ye1−y− M
y+A

⎞⎠. (22)

Then, we shift E1 in the map (12) to (0,0) using a transformation u = x − (2 + ε),
v = y− 0, which leads to⎛⎝ u

v

⎞⎠→

⎛⎝ −1 2β

0 λ2

⎞⎠⎛⎝ u

v

⎞⎠+

⎛⎝ f3(u, v, ε)

f4(u, v, ε)

⎞⎠; (23)

here,
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f3(u, v, ε) = β2v2 − βuv + βvε− uε +
1
6

u3 +
1
2

u2ε− βuvε− 1
2

β2uv2

+
1
3

β3v3 +
1
2

β2v2ε + O
(
(|u|+ |v|+ |ε|)3

)
,

f4(u, v, ε) = − (A2 −M)λ2

A2 v2 +
(A4 − 2M A2 − 2MA + M2)λ2

2A4 v3

+ O
(
(|u|+ |v|+ |ε|)3

)
.

Taking the map (23) at origin (0, 0), the Jacobian matrix is

J(E1) =

⎛⎝ −1 2β

0 λ2

⎞⎠.

Invertible matrices T are constructed as follows:

T =

(
1 2β

1+λ2
0 1

)
.

With the transformation ⎛⎝ u

v

⎞⎠ = T

⎛⎝ X

Y

⎞⎠, (24)

the map (23) becomes⎛⎝ X

Y

⎞⎠→
( −1 0

0 λ2

)⎛⎝ X

Y

⎞⎠+

⎛⎝ G3(X, Y, ε)

G4(X, Y, ε)

⎞⎠, (25)

where

G3(X, Y, ε) = −βXY− Xε +

(
β2 − 2β2

1 + λ2
+

2βλ2(A2 −M)

A2(1 + λ2)

)
Y2 +

(
β− 2β

1 + λ2

)
Yε

+
1
6

X3 +
β

1 + λ2
X2Y +

(
2β2

(1 + λ2)2 −
β2

2

)
XY2 +

(
2β

1 + λ2
− β

)
XYε

+

(
4β3

3(1 + λ2)3 −
β3

1 + λ2
+

β3

3
− βλ2(A4 − 2A2M− 2AM + M2)

A4(1 + λ2)

)
Y3

+
1
2

X2ε +

(
2β2

(1 + λ2)2 −
2β2

1 + λ2
+

β2

2

)
Y2ε + O

(
(|X|+ |Y|+ |ε|)3

)
,

G4(X, Y, ε) = − (A2 −M)λ2

A2 V2 +
(A4 − 2A2M− 2AM + M2)λ2

2A4 V3

+ O
(
(|X|+ |Y|+ |ε|)3

)
.

According to the center manifold theory, (X, Y) = (0, 0) is stable for ε = 0 and can be
determined as follows:

Wc(0, 0, 0) =
{
(X, Y, ε) ∈ R3 : Y = g(X, ε), g(0, 0) = 0, Dg(0, 0) = 0

}
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with small ε and X. Assuming that

g(X, ε) = g1ε2 + g2Xε + g3X2 + O
(
(|X|+ |ε|)3), (26)

g(X, ε) must satisfy the following relation:

N(g(X, ε)) = g(−X + G3(X, g(X, ε), ε), ε)− λ2g(X, ε)− G4(X, g(X, ε), ε) = 0. (27)

Substituting (26) into (27) and comparing the coefficients of ε2, Xε and X2 in (27),
we obtain

g1 = g2 = g3 = 0.

Consequently, the map restricted to the center manifold Wc(0, 0, 0) is expressed as

F2 : X → −X− Xε +
1
6

X3 +
1
2

X2ε + O
(
(|X|+ |ε|)3

)
.

From [44], it can be seen that the conditions for flip bifurcation to occur are:

α1 =

[
∂F2

∂ε
+ 2

∂2F2

∂X∂ε

]
(0, 0) = −2 	= 0,

α2 =

[
1
2

(
∂2F2

∂X2

)2

+
1
3

(
∂3F2

∂X3

)]
(0, 0) =

1
3
	= 0.

Thus, by [44], the system (5) undergoes a flip bifurcation if (α, β, M, A) ∈ ΩE1FB holds
at E1(α, 0).

3.3.3. Bifurcation Analysis of Positive Fixed Point E∗3j(x∗j , yj)(j = 2, 3)

Theorem 12. If E∗3j(x∗j , yj)(j = 2, 3) exists, the map (5) has:

(a) A flip bifurcation for parameter (α, β, M, A) ∈ ΩE32FB = {(α, β, M, A) ∈ R4 : 0 < α < 2,
β = β∗2, M 	= M∗, 0 < A < 1} at E∗32(x∗2 , y2).

(b) A fold bifurcation for parameter (α, β, M, A) ∈ ΩE33FOB = {(α, β, M, A) ∈ R4 : 0 < α < 2,
M = M∗, 0 < A < 1, β > 0 and β 	= β∗3} at E∗33(x∗3, y3). In addition, with the increase
of M, the number of positive fixed points of the map (5) has a 2-1-0 change. That is, when
M < M∗, there are E∗31(x∗1, y1) and E∗32(x∗2, y2); when M = M∗, there is a unique positive
fixed point E∗33(x∗3 , y3), and when M > M∗ the positive fixed point disappears.

Proof. (a) From Theorem 8 (2)(iii), we can easily obtain that, when (α, β, M, A) ∈ ΩE32FB =
{(α, β, M, A) ∈ R4 : 0 < α < 2, β = β∗2, 0 < A < 1, M 	= M∗}, λ1 = −1, |λ2| =
|1 + y2(−1 + M

(y2+A)2 )| < 1. Then, to obtain the flip bifurcation, we regard β as the bifur-
cation parameter and shift the fixed point E∗32(x∗2, y2) to (0, 0) through a transformation
u = x − x∗2, v = y − y2 and δ = β − β∗2; here, |δ‖ � 1 and is a sufficiently small new
variable. We then have⎛⎝ u

v

⎞⎠→
(

a001 a010
0 b010

)⎛⎝ u

v

⎞⎠+

(
f5(u, v, δ)
f6(u, v, δ)

)
; (28)

here,
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f5(u, v, δ) = a210u2v + a201u2δ + a120uv2 + a102uδ2 + a021v2δ + a012vδ2 + a110uv

+ a300u3 + a101uδ + a011vδ + a020v2 + a111uvδ + a200u2 + a003δ3

+ a002δ2 + a030v3 + O
(
(|u|+ |v|+ |δ|)3)

f6(u, v, δ) = b020v2 + b030v3 + O
(
(|u|+ |v|+ |δ|)3),

and

a100 = 1− x∗2 , a001 = x∗2y2, a010 = x∗2 β∗2,

a210 =
β∗2(x∗2 − 2)

2
, a201 =

y2(x∗2 − 2)
2

, a120 = − β∗2
2(x∗2 − 1)

2
,

a102 = −y2
2(x∗2 − 1)

2
, a021 =

x∗2 β∗2(β∗2y2 + 2)
2

, a012 =
x∗2y2(β∗2y2 + 2)

2
,

a110 = −β∗2(x∗2 − 1), a300 = − x∗2
6

+
1
2

, a101 = −y2(x∗2 − 1),

a011 = x∗2(β∗2y2 + 1), a020 =
x∗2 β∗2

2

2
, a111 = (1− x∗2)(1 + β∗2y2),

a200 =
x∗2
2
− 1, a003 =

x∗2y3
2

6
, a002 =

x∗2y2
2

2
, a030 =

x∗2
3

6
,

b010 = − 1
(A + y2)2 (A2y2 + 2Ay2

2 + y3
2 − A2 − 2Ay2 −My2 − y2

2),

b020 =
1

2(A + y2)4 (A4y2 + 4A3y2
2 + 6A2y3

2 + 4Ay4
2 + y5

2 − 2A4

− 8A3y2 − 2A2My2 − 12A2y2
2 − 4AMy2

2 − 8Ay3
2 − 2My3

2

− 2y4
2 + 2A2M + 2AMy2 + M2y2),

b030 =
1

6(A + y2)6 (A6y2 + 6A5y2
2 + 15A4y3

2 + 20A3y4
2 + 15A2y5

2 + 6Ay6
2

− 18A5y2 − 3A4My2 − 45A4y2
2 − 12A3My2

2 − 60A3y3
2 − 18A2My3

2

− 12AMy4
2 − 18Ay5

2 + y7
2 − 3A6 − 3My5

2 − 3y6
2 + 6A4M + 18A3My2

+ 3A2M2y2 + 18A2My2
2 + 6AM2y2

2 + 6AMy3
2 + 3M2y3

2 + 6A3M

− 45A2y4
2 − 3A2M2 + 12A2My2 + 6AMy2

2 −M3y2 + 3M2y2
2).

The linearization matrix for the map (28) is

J(E∗32) =

(
a100 a010

0 b010

)
.

Find an invertible matrix T, for instance

T =

(
a010 a010

−1− a100 λ2 − a100

)

50



Axioms 2023, 12, 1031

and make the transformation: (
u
v

)
= T

(
X
Y

)
, (29)

the map (18) yields⎛⎝ X

Y

⎞⎠→
( −1 0

0 λ2

)⎛⎝ X

Y

⎞⎠+

(
G5(X, Y, δ)
G6(X, Y, δ)

)
, (30)

where

G5(X, Y, δ) = K300X3 + K210X2Y + K201X2δ + K200X2 + K120XY2 + K111XYδ

+ K110XY + K102Xδ2 + K101Xδ + K030Y3 + K020Y2 + K021Y2δ

+ K012Yδ2 + K011Yδ + K003δ3 + K002δ2 + O
(
(|X|+ |Y|+ |δ|)3),

G6(X, Y, δ) = C300X3 + C210X2Y + C200X2 + C120XY2 + C110XY + C3Y3 + C2Y2

+ O
(
(|X|+ |Y|+ |δ|)3),

where

K300 = a030Γ3 + a120a010Γ2 + a210a2
010Γ + a300a3

010,

K210 = 3a030ΘΓ2 + a120a010Γ2 + 2a120a010ΓΘ + 3a210a2
010Γ + 3a300a3

010,

K201 = a021Γ2 + a111a010Γ + a201a2
010,

K200 = a020Γ2 + a110a010Γ + a200a2
010,

K120 = 3a030ΓΘ2 + 2a120a010ΓΘ + a210a2
010Γ + a120a010Θ2 + 2a210a2

010Θ + 3a300a3
010,

K111 = 2a021ΘΓ + a111a010Γ + a111a010Θ + 2a201a2
010,

K110 = 2a020ΘΓ + a110a010Γ + a110a010Θ + 2a200a2
010,

K102 = a012Γ + a102a010, K101 = a011Γ + a010a101,

K030 = a030Θ3 + a120a010Θ2 + a210a2
010Θ + a300a3

010,

K021 = a021Θ2 + a111a010Θ + a201a2
010,

K020 = a020Θ + a110a010Θ + a200a2
010,

K012 = Θa012 + a010a102,

K011 = a011Θ + a010a101, K003 = a003,

K002 = a002, C300 = b030Γ3,

C210 = 3b030ΘΓ2, C200 = b020Γ2, C120 = 3b030Θ2Γ,

C110 = 2b020ΘΓ, C003 = b030Θ3, C002 = b020Θ2,

Γ = (−1− a100), Θ = λ2 − a100.
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According to the center manifold theory, a one-parameter simplified system of equa-
tions restricted to the manifold determines the stability of (X, Y) = (0, 0) in the neighbor-
hood of δ = 0, given by

Wc(0, 0, 0) =
{
(X, Y, δ) ∈ R3 : Y = g(X, δ), g(0, 0) = 0, Dg(0, 0) = 0

}
with X and δ sufficiently small. Moreover, let

g(X, δ) = g1δ + g2X2 + g3Xδ + g4δ2 + O
(
(|X|+ |δ|)3); (31)

thus,

N(g(X, δ)) = g(−X + G5(X, g(X, δ), δ), δ)− λ2g(X, δ)− G6(X, g(X, δ), δ) = 0. (32)

From (31) and (32), we obtain

g1 = 0, g2 =
C200

1− λ2
, g3 =

C110g1

1 + λ2
, g4 =

C002g2
1

1− λ2
.

Hence, the map restricted to the center manifold becomes

F3 : X → −X + s0δ + s1X2 + s2Xδ + s3δ2 + s4X2δ + s5Xδ2

+ s6X3 + s7δ3 + O
(
(|X|+ |δ|)3).

where
s0 = 0, s1 = K200, s2 = K101, s3 = K002, s4 = K201 −

C200K011

λ2 − 1
,

s5 = K102, s6 = K300 −
K110C200

λ2 − 1
, s7 = K003.

We give the following two transversal conditions in [44]:

α1 =

[
∂2F3

∂X∂δ
+

1
2

∂F3

∂δ

∂2F3

∂X2

]
(0, 0) = s2 + s0s1 	= 0,

α2 =

[
1
6

(
∂3F3

∂X3

)
+

(
1
2

∂2F3

∂X2

)2]
(0, 0) = s6 + s2

1 	= 0.

Therefore, a flip bifurcation occurs when (α, β, M, A) ∈ ΩE32FB at the fixed point
E∗32(x∗2 , y2).

(b) From Theorem 8(3), it is easy to obtain that, when (α, β, M, A) ∈ ΩE33FOB =
{(α, β, M, A) ∈ R4 : 0 < α < 2, M = M∗, 0 < A < 1, β > 0 and β 	= β∗3}, |λ1| =
|1− x∗3 | 	= 1, λ2 = 1. Now, we select M as the bifurcation parameter. Take ζ = M− M∗,
|ζ| � 1, and it is a new variable. We transform the fixed point E∗33(x∗3 , 1−A

2 ) of the map (5) to
(0, 0) with u = x− x∗3 , v = y− 1−A

2 , and then, the map (5) becomes⎛⎜⎜⎜⎝
u

ζ

v

⎞⎟⎟⎟⎠→

⎛⎝ 1− x∗3 0 βx∗3
0 1 0
0 A−1

1+A 1

⎞⎠
⎛⎜⎜⎜⎝

u

ζ

v

⎞⎟⎟⎟⎠+

⎛⎝ f7(u, v, ζ)
0

f8(u, v, ζ)

⎞⎠, (33)

where
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f7(u, v, ζ) =

(
x∗3
2
− 1

)
u2 +

β2x∗3
2

v2 − β(x∗3 − 1)uv +

(
1
2
− x∗3

6

)
u3 +

β3x∗3
6

v3

+
β(x∗3 − 2)

2
u2v− β2(x∗3 − 1)

2
uv2 + O

(
(|u|+ |v|+ |ζ|)3),

f8(u, v, ζ) =
A− 1
1 + A

v2 − 4A
(1 + A)2 vζ − A− 1

(1 + A)2 ζ2 − 4A
(1 + A)2 v3

− 2(A2 − 4A− 1)
(1 + A)3 v2ζ +

2(3A− 1)
(1 + A)3 vζ2 +

2(A− 1)
3(1 + A)3 ζ3

+ O
(
(|u|+ |v|+ |ζ|)3).

The coefficient matrix is given by

J(E∗33) =

⎛⎝ 1− x∗3 0 βx∗3
0 1 0
0 A−1

1+A 1

⎞⎠.

Convertthe matrix J(E∗33) in (33) into the normal form with matrix translation
as follows: ⎛⎝ u

ζ
v

⎞⎠ = T

⎛⎝ X
η
Y

⎞⎠, (34)

where

T =

⎛⎜⎝ β − β
x∗3

1

0 1+A
A−1 0

1 0 0

⎞⎟⎠
is an invertible matrix. From (33) and (34), we have⎛⎜⎜⎜⎝

X

η

Y

⎞⎟⎟⎟⎠→

⎛⎝ 1 1 0
0 1 0
0 0 1− x∗3

⎞⎠
⎛⎜⎜⎜⎝

X

η

Y

⎞⎟⎟⎟⎠+

⎛⎝ G7(X, Y, η)
0

G8(X, Y, η)

⎞⎠, (35)

where

G7(X, Y, η) = p101Xη + p200X2 + p102Xη2 + p300X3 + p201X2η + p002η2

+ p003η3 + O
(
(|X|+ |Y|+ |η|)3),

G8(X, Y, η) = m300X3 + m201X2η + m200X2 + m102Xη2 + m101Xη

+ m020Y2 + m021Y2η + m011Yη + m012Yη2 + m002η2

+ m111XYη + m120XY2 + m003η3 + O
(
(|X|+ |Y|+ |η|)3),

and
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p101 = − 4A
(1 + A)(A− 1)

, p200 =
A− 1
1 + A

,

p102 = − 2(−1 + 3A)

(1 + A)(A− 1)2 , p300 = − 4A
(1 + A)2 ,

p201 = − 2(A2 − 4A− 1)
(1 + A)2(A− 1)

, p002 =
1

A− 1
,

p003 =
2

3(A− 1)2 , m300 =
4βA

(1 + A)2 ,

m201 =
2β(A2 − 4A− 1)
(1 + A)2(A− 1)

, m200 = − β(A− 1)
1 + A

,

m102 =

(
β3

2x∗2
3

+
(2− 6A)β

(1 + A)(A− 1)2

)
, m101 =

(
β2

x∗3
+

4βA
(1 + A)(A− 1)

)
,

m020 =

(
(1− A)β

4
+

α

2
− 1

)
, m021 =

β((A− 1)β− 2α + 6)
(2A− 2)β− 4α

,

m011 = − ((A− 1)β− 2α + 4)β

(A− 1)β− 2α
, m012 =

β2((A− 1)β− 2α + 6)
((A− 1)β− 2α)2 ,

m002 = −2((A− 1)(α + 2)β− 2α2)β

(A− 1)((A− 1)β− 2α)2 , m111 = −
(

β +
β2

x∗3

)
, m120 =

β

2
,

m003 =
8((α + 3

2 )(A− 1)2β2 − 3α2(A− 1)β + 2α3)β

3(A− 1)2((A− 1)β− 2α)3 .

By implementing the center manifold theorem, the stability of the map (35) at
(X, Y) = (0, 0) in a neighborhood of η = 0 can be approximated as follows:

Wc(0, 0, 0) =
{
(X, Y, η) ∈ R3 : Y = g(X, η), g(0, 0) = 0, Dg(0, 0) = 0

}
with X and η small. Then, assume

g(X, η) = g1X2 + g2Xη + g3η2 + O
(
(|X|+ |η|)3), (36)

and g(X, η) have the following equation

N(g(X, η)) = g(X + η + G7(X, g(X, η), η), η)− (1− x∗3)g(X, η)− G8(X, g(X, η), η) = 0. (37)

Substituting (36) into (37) and comparing the coefficients of X2, Xη, and η2 in (37),
we obtain

g1 =
(1− A)β

(A + 1)x∗3
,

g2 =
((A− 1)2β− 4Aα)β

(A2 − 1)x∗2
3

+
2g1

x∗3
,

g3 =
β((α + 2)(1− A)β + α2)

2(A− 1)x∗3
3

− g1 + g2

x∗3
.
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Thus, the restricted map to the center manifold Wc(0, 0, 0) is given as

F4 : X → X + η +
A− 1
1 + A

X2 − 4A
(1 + A)(A− 1)

Xη − 1
A− 1

η2

− 4A
(1 + A)2 X3 − 2(A2 − 4A− 1)

(1 + A)2(A− 1)
X2η +

2
3(A− 1)2 η3

+
2(3A− 1)

(1 + A)(A− 1)2 Xη2 + O
(
(|X|+ |η|)3).

We can simply calculate

F4(0, 0) = 0,
∂F4

∂X
(0, 0) = 1,

∂F4

∂η
(0, 0) = 1,

∂2F4

∂X2 (0, 0) =
2(A− 1)

1 + A
	= 0,

∂2F4

∂X∂η
(0, 0) = − 4A

(1 + A)(A− 1)
	= 0,

which leads to a fold bifurcation when (α, β, M, A) ∈ ΩE33FOB at the E∗33(x∗3 , 1−A
2 ).

3.4. Chaos Control

From Theorem 12(a), it can be seen that a flip bifurcation of the map (5) is shown at
the coexistence fixed point E∗32 = (x∗2, y2). This will cause chaos in the system, so we use
a hybrid chaos-control method in [46], which is a combination of parameter perturbation
and feedback control, to delay or get rid of chaos. First, the control system corresponding
to the map (5) is given by

⎛⎝ x

y

⎞⎠→

⎛⎜⎝ ρx exp(α− x + βy) + (1− ρ)x
)

ρy exp(1− y− M
y + A

) + (1− ρ)y
)

⎞⎟⎠. (38)

where 0 < ρ < 1 and ρ is an external control parameter. Moreover, the calculation shows
that System (38) and the map (5) have the same fixed points. The linearized Jacobian matrix
of the map (38) at fixed point E∗32 = (x∗2 , y2) is

J(E∗32) =

(
1− ρx∗2 ρx∗2 β

0 1 + ρy2

(
−1 + M

(y2+A)2

) )
.

Obviously, the two eigenvalues of the Jacobian matrix J(E∗32) are λ1 = 1− ρx∗2 < 1

and λ2 = 1 + ρy2

(
−1 + M

(y2+A)2

)
. According to the previous analysis, J2 < 1, then

−1 + M
(y2+A)2 < 0. We have λ2 = 1 + ρy2

(
−1 + M

(y2+A)2

)
< 1. Therefore, with the help of

Definition 1(1), the controlled system (38) has the following statement.

Theorem 13. If and only if

ρx∗2<2 and ρy2

(
1− M

(y2 + A)2

)
< 2

holds, the coexistence fixed point E∗32(x∗2 , y2) of the map (38) is locally asymptotically stable.

4. Numerical Simulations

In this section, the analysis results obtained above are further studied through numeri-
cal simulations.

55



Axioms 2023, 12, 1031

Case (1): Select different parameters of the map (6), in Table 3, to observe the solution
curve in Figure 6.
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Figure 6. (a) With M = 2, A = 4, and the initial value as y(0) = 0.1, 0.5, 1, the map (6) has
positive fixed points y2 = 0.5616; (b) with M = A = 0.5 and the initial value as y(0) = 0.1, 0.5, 1,
the map (6) has positive fixed points y2 = 0.5; (c) with M = 0.54, A = 0.5, and the initial value as
y(0) = 0.09, 0.05, 0.02, 0.2, 0.3.0.5, the map (6) has two positive fixed points y1 = 0.1, y2 = 0.4; (d) with
M = 0.5625, A = 0.5, and the initial value as y(0) = 0.09, 0.05, 0.02, 0.2, 0.3.0.5, the map (6) has
positive fixed points y3 = 0.25; (e) with M = 1, A = 0.5, and the initial value as y(0) = 0.15, 0.3, 1, the
map (6) has no positive fixed point; (f) with M = 1, A = 1, and the initial value as y(0) = 0.15, 0.3, 1,
the map (6) has no positive fixed point.
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Table 3. Parameter table.

Parameter Positive Fixed Point Initial Value

M = 2, A = 4 y2 = 0.5616 y(0) = 0.1, 0.5, 1

M = A = 0.5 y2 = 0.5 y(0) = 0.1, 0.5, 1

M = 0.54, A = 0.5 y1 = 0.1, y2 = 0.4 y(0) = 0.09, 0.05, 0.02, 0.2, 0.3.0.5

M = 0.5625, A = 0.5 y3 = 0.25 y(0) = 0.09, 0.2, 0.24, 0.26, 0.3.0.45

M = 1, A = 0.5 no y(0) = 0.15, 0.3, 1

M = 2, A = 1 no y(0) = 0.15, 0.3, 1

Case (2): Set parameters α = β = 1, M = 2, A = 4 and initial values as (x(0),
y(0)) = ((1.5, 0.3), (1.2, 0.6), (0.8, 0.2)) in the map (5). There is a positive fixed point
E∗32(1.5616, 0.5616) and global asymptotic stability by Theorem 9. Figure 7 shows the result.
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Figure 7. Stability of the fixed point E∗32 of the map (5) with α = β = 1, M = 2, A = 4, and the initial
values as (x(0), y(0)) = ((1.5, 0.3), (1.2, 0.6), (0.8, 0.2)).

Case (3): Set parameters α = 3, β = 1, A = 0.15 in the map (5). We find that the two
eigenvalues of the Jacobian matrix J(E1) at the boundary fixed point E1(3, 0) are λ1 = −2,
λ2 = 1. Therefore, by Theorem 6, the fixed point E1(3, 0) is non-hyperbolic. According to
Theorem 11(i) of the bifurcation analysis, the map (5) has transcritical bifurcation at E1.

Figure 8 is a diagram of the transcritical bifurcation on the M− y plane in the local
range of the fixed point E1(3, 0) when M ∈ [0, 0.331], and the other parameters are given
in Case (3). From Figure 8, it can be found that, when M < 0.15, E1(3, 0) is unstable,
but when M > 0.15, there is a stable fixed point E1(3, 0) and an unstable fixed point
E∗31(3.425−

√
1.3225−4M

2 , 0.425−
√

1.3225−4M
2 ).
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Figure 8. Transcritical bifurcation diagrams in the M− y plane with α = 3, β = 1, A = 0.15.
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Case (4): Further, based on Case (3), we change the parameter A and let A = 1. At this
time, by Theorem 11(ii), the map (5) generates a pitchfork bifurcation at E1(3, 0). Namely, it
is a pitchfork bifurcation point.

Figure 9 is a diagram of the pitchfork bifurcation on the M− y plane in the local area
of the fixed point E1. Select the initial value of x0 = 0.5, y0 = 0.3, M ∈ [0, 1.5], α = 3, and
β = 1. It can be seen from Figure 9 that the fixed point E1 is unstable, when M < 1; the
stable fixed point E1(3, 0) appears when M > 1. Additionally, there are two stable fixed
points E∗31 = (3−

√
1−M,−

√
1−M) and E∗32 = (3 +

√
1−M,

√
1−M) when M < 1;

E∗31 = (3−
√

1−M,−
√

1−M) and E∗32 = (3 +
√

1−M,
√

1−M) coincide to form the
double-root E∗33(3, 0) when M = 1; E∗33 disappears when M > 1.

Figure 9. Pitchfork bifurcation diagrams in the M− y plane with α = 3, β = 1, A = 1.

Case (5): Set the parameters α = 1, M = 0.4, A = 0.3 in the map (5). When β = 2,
the corresponding eigenvalues of the matrix J(E∗32) are λ1 = −1, λ2 = 0.8125, respectively.
From Theorem 8(2)(iii), E∗32(2, 0.5) is non-hyperbolic. Further, from Theorem 12(a), the map
(5) has a flip bifurcation at E∗32.

Figure 10a describes the diagram of the flip bifurcation on the β− x plane at the initial
value x0 = 0.5, y0 = 0.3, β ∈ [0, 6], and the other parameters are shown in Case (5). From
Figure 10a, the coexistence equilibria E∗32 are stable when β < 2, and when β = 2, the map
(5) is unstable, resulting in a stable two-period solution; when β > 3.065, it will further
generate four-dimensional solutions and constantly flip to generate chaotic sets.

Figure 10b shows the maximum Lyapunov exponents of Figure 10a, and β ranges in
[0, 6]. When the exponent value is less than 0, this indicates that the map (5) is stable in the
small field of E∗32(2, 0.5). In other words, when the exponent value is greater than 0, the
map (5) is chaotic in the small field of E∗32(2, 0.5). From Figure 10b, when β varies in [0, 2], the
index is negative, except for β = 2, which is 0. When β belongs to (2, 3.345], the index is only
0 at β = 3.065 and β = 3.345, and in other cases, the index is negative. When β is greater than
3.345, most of the indices are positive and very few are negative numbers, which indicates
that the map (5) produces chaotic behavior near the fixed point E∗32(2, 0.5). We also give local
bifurcation diagrams in Figure 11. Further, when we choose β = 1, 2.5, 3.2, 3.345, 4.5, 5, the
phase diagrams are depicted in Figure 12. As β increases, it can be seen from Figure 12 that
there will be one point, two points, four points, eight points, etc., gradually becoming chaotic.

Case (6): To study the impact of the Allee effect on the dynamic behavior of the
map (5), we used the matlab 2017a drawing software to give the bifurcation diagram on
the M− x plane and M− y. We selected four sets of parameters. (a) Set the parameter
α = 1.5, β = 1.5, A = 0.5, M ∈ [0, 1]; (b) set the parameter α = 1.5, β = 1.5, A = 2,
M ∈ [0, 2]; (c) set the parameter α = 2.5, β = 1, A = 0.5, M ∈ [0, 1]; (d) set the parameter
α = 2.5, β = 1.5, A = 4, M ∈ [0, 6], taking the initial value x0 = 0.5, y0 = 0.3.
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Figure 10. (a) Flip bifurcation diagrams on the β − x plane with α = 1, M = 0.4, A = 0.3;
(b) maximum Lyapunov exponents corresponding to (a).
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Figure 11. Local bifurcation diagrams corresponding to Figure 10a.
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Figure 12. Phase diagrams corresponding to Figure 10a.

From Figure 13a,c, it is shown that, with the increase of M, it helps the stability of
the commensal populations. Further, we also found that a strong Allee effect reduces the
species density of the commensal. Figure 13b,d are graphs showing the impact of the Allee
effect M on the population density of the host species. It can be seen from Figure 13b,d
that, if M increases, the host population is accelerated to extinction. It can be seen from
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Figure 13e,f that, as M increases, the map (5) moves from chaos to a two-period solution,
but the map (5) is unstable.
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Figure 13. (a) Bifurcation diagrams in the M− x plane with α = 1.5, β = 1.5, A = 0.5; (b) bifurcation
diagrams in the M− y plane with α = 1.5, β = 1.5, A = 0.5; (c) bifurcation diagrams in the M− x
plane with α = 1.5, β = 1.5, A = 2; (d) bifurcation diagrams in the M− y plane with α = 1.5, β = 1.5,
A = 2; (e) bifurcation diagrams in the M− x plane with α = 2.5, β = 1.5, A = 0.5; (f) bifurcation
diagrams in the M− x plane with α = 2.5, β = 1.5, A = 4.

Case (7): Set parameters α = 1, β = 1, A = 0.5 in the map (5). We can simply
calculate β∗3 = 4. Then, the eigenvalues of the Jacobian matrix J(E∗32) of the map (5)
are λ1 = −0.25, λ2 = 1, respectively. By Theorem 8(3), E∗33(1.25, 0.25) is non-hyperbolic.
Through the bifurcation study of Theorem 12(b), a fold bifurcation occurs at coexistence
equilibrium E∗33(1.25, 0.25), which is also called a fold point.
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Figure 14 is a diagram of fold bifurcation on the M− y plane within the local range
of the fixed point E∗33(1.25, 0.25). Select the initial value x0 = 0.5, y0 = 0.3, M ∈ (0, 1),
and other parameters are given in Case (7). As M increases from 0 to 0.5625, the map (5)
has an unstable fixed point E∗31 = (1.25−

√
1−M, 0.25−

√
1−M) (shown in red) and a

stable fixed point E∗32 = (1.25 +
√

1−M, 0.25 +
√

1−M) (shown in blue). At M = 0.5625,
System (5) undergoes a fold (also called saddle-node) bifurcation at E∗33(1.25, 0.25). Then,
the fixed point E∗33(1.25, 0.25) vanishes for M > 0.5625.
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Figure 14. Fold bifurcation diagrams in the M− y plane with α = 1, β = 1, A = 0.5.

Case (8): Set the parameters α = 2.5, β = 1, M = 0.1, A = 4, and the initial value
x0 = 0.5, y0 = 0.3. We can simply calculate y2 ≈ 0.96, x∗2 ≈ 3.48, and ρx∗2 < 2 is equivalent
to ρ < 0.57. Moreover, ρy2(1− M

(y2+A)2 ) < 2 implies that ρ < 2.04. So, let us take a smaller
ρ. From Theorem 13, when 0 < ρ < 0.57, it is locally asymptotically stable. Figure 15 shows
that when the external control parameters change in the range [0,0.57], the map (5) can be
stabilized again. In addition, we set the parameter α = 2.5, β = 1, A = 4, then the stability
region diagram is given of the control system (28) in Figure 16.
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Figure 15. Time series of the commensal species for (28) with α = 0.5, β = 0.5, M = 0.2, A = 4.
(a) ρ = 0.57; (b) ρ = 0.58.
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Figure 16. Stability region diagram in the M− ρ plane with α = 2.5, β = 1, A = 4.

5. Summary

This paper investigated a discrete-time commensalism mode with an additive Allee
effect for the host species. First, we gave the existence and local stability of fixed points
in the map (6), and we found that, under the weak Allee effect, the system has a unique
positive fixed point of global attraction. Under the strong Allee effect, the stability of the
system is related to the attraction domain, which has similar properties to the corresponding
continuous system. Secondly, we studied the existence and stability of the solutions of the
map (5), then gave the possible bifurcation of the map (5) by the center manifold theorem
and bifurcation theory. We found that the map (5) has new bifurcation phenomena, such as
flip and pitchfork bifurcations, which could not be found in the corresponding continuous-
time system. Wei et al. [47] presented a commensal model with additive Allees in the
first species and discussed the occurrence of saddle-node bifurcation and transcritical
bifurcation. Examining a Lotka–Volterra commensal model featuring an Allee effect within
the first species, Lin [48] revealed that heightened Allee effects lead to an escalation in the
final population density of the species. In [13], Chen examined a comparable two-species
commensal symbiosis model and noted that the Allee effect introduces instability to the
system; nevertheless, this effect can be managed and controlled. From our investigation, it
was revealed that the Allee increases the system complexity through multiple bifurcations.
Recently, the studies by He et al. [11] revealed that, in the case of the weak Allee effect,
the additive Allee effect negatively correlated with the final population density of both
species. For a strong Allee effect, the additive Allee effect played a significant role in the
extinction of the second species. Our study in this domain showed more-complex dynamics
in comparison to the continuous-time model (2), which were presented through bifurcation
analysis. Through numerical simulations of our proposed model, in the case where the
first population had a lower birth rate, we observed that the Allee effect enhanced the
stability of the commensal species, while hastening the extinction of the host species (see
Figure 13a–d). These intricate and multifaceted dynamic behaviors mark our model as a
truly novel contribution. Moreover, the map (5) may also have a fold–flip bifurcation of
a codimension of two at fixed point E∗33(x∗3, y3), which is something we need to study in
the future. When M = 0, the map (5) has at most four positive fixed points, and only flip
bifurcation can occur. When M 	= 0, the system may have six positive fixed points, and
they may undergo flip, fold, transcritical, pitchfork, and fold–flip bifurcations, which are
left for future investigation.
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Abstract: Many phenomena can be described by random variables that follow asymmetrical distri-
butions. In the context of regression, when the response variable Y follows such a distribution, it
is preferable to estimate the response variable for predictor values using the conditional median.
Quantile regression models can be employed for this purpose. However, traditional models do not
incorporate a distributional assumption for the response variable. To introduce a distributional as-
sumption while preserving model flexibility, we propose new varying-coefficients quantile regression
models based on the family of log-symmetric distributions. We achieve this by reparametrizing the
distribution of the response variable using quantiles. Parameter estimation is performed using a
maximum likelihood penalized method, and a back-fitting algorithm is developed. Additionally,
we propose diagnostic techniques to identify potentially influential local observations and leverage
points. Finally, we apply and illustrate the methodology using real pollution data from Padre Las
Casas city, one of the most polluted cities in Latin America and the Caribbean according to the World
Air Quality Index Ranking.

Keywords: local influence techniques; log-symmetric distributions family; PM2.5 levels; quantile
regression; semiparametric models

MSC: 62J20

1. Introduction

In the process of data modeling, it is common to utilize regression models that assume
that the response variable follows a normal distribution, as this is well-established in theory.
However, there are situations where using such models may not be appropriate, particularly
when the response variable exhibits an asymmetric distribution and is restricted to the
positive real line. Failing to account for this behavior can introduce bias in parameter
estimates and the estimation of associated measures of variability; see [1]. To address the
limitations associated with the assumption of normality, several authors have proposed
alternative approaches that employ more flexible distributional assumptions. This allows
for a better representation of the underlying data. Some examples of such approaches
include the works of [2–7].

Vanegas and Paula [8] proposed a family of log-symmetric distributions, which are
obtained by transforming symmetric distributed random variables whose probability
density functions involve the exponential function. Some examples of log-symmetric dis-
tributions are the log-normal, log-power-exponential, log-Laplace, log-logistic, log-slash,

Axioms 2023, 12, 976. https://doi.org/10.3390/axioms12100976 https://www.mdpi.com/journal/axioms
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log-hyperbolic, Birnbaum–Saunders (BS), and log-Student-t cases. This family of distribu-
tions includes special cases that exhibit bimodal behavior, as well as distributions with tails
that are either lighter or heavier than the log-normal distribution. Regression models based
on log-symmetric distributions have been studied by Vanegas and Paula [1,9,10].

In many real-life phenomena, the focus of interest is often on modeling a specific
quantile of the response variable rather than the mean, as commonly done in classical
regression models. This is particularly relevant when the distribution of the response
variable exhibits asymmetry, where the median becomes a more appropriate measure of
central tendency for estimating the response. Another reason is that our interest can be
to model the relation between another non-central position measure and the covariates.
This happens, for example, when we want to analyze the relationship between the greater
(or lower) values of the response variable and the covariates; see [11]. Therefore, quantile
regression models are useful for modeling the relationship between a set of predictor
variables and specific quantiles of a response variable. Unlike traditional regression models,
quantile regression does not assume a specific distribution for the response variable [11,12].
However, if we introduce a distributional assumption, it is possible to formulate quantile
regression models based on the reparameterization of the distribution using a quantile.
This approach has been successfully applied by [5,6,13]. Quantile regression models based
on reparametrized log-symmetric distributions by quantiles (QLS) have been recently
developed by Saulo et al. [7], albeit from a purely parametric perspective.

Considering the inclusion of nonparametric functions in the modeling, it becomes
possible to incorporate the nonlinear effects of covariates. Semiparametric models have
been developed to address this, where linear structures are described by parametric com-
ponents and nonlinear structures are described by nonparametric components. Therefore,
these models offer better flexibility for modeling data than those using only a parametric
approach. Semiparametric structures have been effectively utilized to represent nonlin-
ear components, as demonstrated in previous studies such as [1,14–21]. Based on our
literature review, it appears that no semiparametric quantile regression models based on
log-symmetric distributions have been developed thus far.

For over 30 years, Chile has been grappling with a significant public health issue
related to the contamination of respirable particulate matter, particularly during winter
periods. In the context of Latin America and the Caribbean, Chile currently ranks second,
following Peru, in terms of cities with the highest levels of fine particulate matter (PM2.5),
as reported by the World Air Quality Index Ranking (https://bit.ly/3MXVP38; accessed
on 20 August 2023). It is concerning to note that these levels often exceed both national and
international regulations, highlighting the severity of the problem in terms of public health.
Statistical models provide a valuable approach to understanding and describing air quality,
enabling us to study the relative impact of atmospheric contaminants on human health and
the urban environment. Periodic episodes of extreme air pollution concentrations can occur
with certain atmospheric contaminants, varying with geographical and meteorological
factors and dependent on changes in emission sources and types; see [22]. Considering this
variability, air pollutant concentrations are treated as non-negative random variables. In
general, the distribution of these variables is asymmetrical and exhibits positive skewness,
aligning with the characteristics of log-symmetric distributions.

The primary aim of this article is to develop varying-coefficients quantile regression
models based on the family of log-symmetric distributions. Our secondary objectives
encompass the following: (i) to estimate the parameters of the model using the maximum
penalized likelihood (MPL) technique and a back-fitting algorithm; (ii) to incorporate the
nonparametric structure through natural cubic smoothing splines (iii) to calculate local
influence techniques for model diagnostics by assess the normal curvatures under different
perturbation scenarios; (iv) to implement the obtained outcomes computationally within
the R programming environment; and (v) to apply these results to real data related to
atmospheric pollutants in Padre Las Casas, a city in Chile recognized as one of the most
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contaminated cities in Latin America and the Caribbean, as per the World Air Quality Index
Ranking (https://www.iqair.com/; accessed on 20 August 2023).

The remainder of this work is organized as follows. Section 2 presents the proposed
model for varying-coefficients quantile regression based on log-symmetric distributions.
In Section 3, we explain the parameter estimation procedure utilizing the MPL method
and a back-fitting algorithm. Section 4 extends the local influence method to assess the
potential impact of specific observations on the proposed model, including the derivation
of the generalized leverage matrix. In Section 5, we apply the proposed model to analyze
a real dataset, demonstrating its potential applications. Finally, in Section 6, we provide
concluding remarks and suggestions for future research.

2. Log-Symmetric Varying-Coefficient Quantile Regression Models

In this section, we introduce the varying-coefficients quantile regression models based
on the log-symmetric distribution family.

2.1. Formulation

Let q ∈ (0, 1) be a fixed number. We will denote by Y ∼ QLS(Q, φ, g) to the log-
symmetric distribution reparametrized by the q-quantile of Y (Q), where φ > 0 is a
power parameter and g(·) is the probability density function generator kernel; see [7].
Let Y1, Y2, . . . , Yn be independent random variables such that Yi ∼ QLS(Qi, φ, g), for
i ∈ {1, 2, . . . , n}. We assume the semiparametric additive structure for Qi given by

h(Qi) = w�
i α + x1i β1(t1i) + · · ·+ xsi βs(tsi), i ∈ {1, 2, . . . , n}, (1)

where w�
i = (1, w1i, . . . , wpi), α is a (p + 1)× 1 unknown regression coefficients vector,

with p + 1 < n, β1, . . . , βs are unspecified smooth real functions of the explanatory variable
Tk that do not depend on α or some other parameter. Also, xji, wji and tji are the values of
covariates Xj, Wj and Tj for the ith observation, respectively. The function h has positive
support and is at least twice differentiable, called the link function. The structure of the right
side in Equation (1) defines the so-called partially varying-coefficients regression models;
see [23]. Therefore, we have defined a partially varying-coefficient quantile regression
model based on the family of log-symmetric distributions. Equation (1) can be written as

h(Qi) = w�
i α + ñ�1i β1 + · · ·+ ñ�si βs, i ∈ {1, 2, . . . , n},

where ñ�ki denote the ith row of the matrix Ñk = X(k) Nk, X(k) = diag{xk1, , . . . , xkn},
Nk is the incidence matrix n× rk whose (i, l)-th element equals to the indicator function
I(tki = t0

kl), βk = (ζk1, . . . , ζkrk
)� is a rk × 1 vector called a vector of spline coefficients such

that ζkl = βk(t0
kl), with t0

kl for l ∈ {1, . . . , rk} representing the distinct and ordered values
of the explanatory variable Tk usually called knots. For a similar formulation, see [16].

2.2. Penalized Log-Likelihood Function

The log-likelihood function for the proposed model in Equation (1) is given by

�(θ) =
n

∑
i=1

log
(

ξnc

yi

)
+ log(g(v2

i ))−
1
2

log(φ),

where θ = (α�, β�1 , . . . , β�s , φ)� and vi = (log(yi)− log(Qi) +
√

φzq)/
√

φ. To address
the identifiability issues of the regression coefficient α and mitigate overfitting in the
semiparametric modeling process, penalties are commonly incorporated into the smooth
functions. The MPL method, initially introduced by Good and Gaskins [24] for estimating
probability density curves, has been extended to the nonparametric regression context by
researchers such as [25,26]. These extensions have provided effective solutions to handle the
challenges of identifiability and overfitting in semiparametric models. This same approach
is used to fit our model, optimizing the penalized log-likelihood function expressed as

�p(θ, λ) = �(θ)−
s

∑
k=1

λ∗k J(βk), (2)
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where J(βk) corresponds to a penalty function on the function βk that regulates the lack
of smoothness of the estimated curve. Assuming that the design points t0

k belong to the
compact set [ak, bk] and that the functions βk’s belongs to the Sobolev function space [27]

W[ak ,bk ]
=

{
βk : βk and β

′
k are absolutely continuous on [ak, bk], and

∫ bk

ak

[β
′′
k(tk)]

2 dtk < ∞
}

,

Then one way to measure the roughness of the function βk over the interval [ak, bk]

is by their squared norm given by J(βk) = ‖βk‖2 =
∫ bk

ak
[β
′′
k(tk)]

2 dtk. Green and Silver-

man [15] showed that J(βk) = β�k Kkβk, where Kk is a rk × rk non-negative definite ma-
trix. Please note that both βk and Kk are evaluated at the values belonging to the set of
knots {t0

k1, t0
k2, . . . , t0

krk
}, for k ∈ {1, 2, . . . , s}, and therefore have finite dimensions. Tak-

ing λ∗k = λk/2, we can obtain the maximum penalized likelihood estimator (MPLE) of θ,
denoted by θ̂, maximizing

�p(θ, λ) = �(θ)−
s

∑
k=1

λk
2

β�k Kkβk, (3)

where λ = (λ1, . . . , λs)� denotes an s× 1 vector of smoothing parameters. Each λk ≥ 0
measures the “rate of exchange” between goodness-of-fit and variability of the function βk.
In this scenario, the estimators of βk’s result in a cubic spline that is completely determined
by the finite-dimensional set of knots {t0

k1, t0
k2, . . . , t0

krk
}.

3. Parameter Estimation and Inference

In this section, we focus on estimating the parameters of the model described in
Equation (1) and discuss aspects of statistical inference. We also provide a brief discussion
on calculating the effective degrees of freedom and selecting smoothing parameters. To
facilitate the parameter estimation process and associated inference, we have developed a
routine in the R-project (https://www.r-project.org/; accessed on 15 May 2023).

3.1. Penalized Score Vector

First, we make the assumption that the function �p(θ, λ) given in Equation (2) is
regular, meaning that it has first and second partial derivatives with respect to the elements
of the parameter vector θ. By performing partial derivative operations, we can express the
score function for θ in matrix form as follows:

U�
p (θ) =

∂�p(θ)

∂θ
=

(
Uα�

p (θ) Uβ�1
p (θ) . . . Uβ�s

p (θ) Uφ�
p (θ)

)�
,

where Uα
p (θ) = W�Daz, Uβk

p (θ) = Ñ�
k Daz − λkKkβk, for k ∈ {1, . . . , s}, and Uφ

p (θ) =

tr(Db), with Da = diag{a1, . . . , an}, Db = diag{b1, . . . , bn}, z = (z1, . . . , zn)�, zi =
vir(vi)/Qi

√
φ, bi = r(vi) φ−3/2vi[log(yi) − log(Qi)]/2− 1/2φ and ai = 1/h′(Qi), being

r(vi) = −2g′(v2
i )/g(v2

i ). Please note that g′ represents the derivative of the function g.

3.2. Penalized Hessian Matrix

To obtain the penalized Hessian matrix, we need to compute the second derivate of
�p(θ, λ) with respect to each element of θ, i.e., ∂2�p(θ, λ)/∂θj∗∂θl∗ for j∗, l∗ ∈ {1, . . . , p∗}
and p∗ = 2 + p + ∑s

k=1 rk. After performing some algebraic manipulations, we obtain the
penalized Hessian matrix in the following form:
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L̈p(θ) =
∂2�p(θ, λ)

∂θ∂θ�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̈αα
p L̈αβ1

p · · · L̈αβs
p L̈αφ

p

L̈αβ�1
p L̈β1 β1

p · · · L̈β1 βs
p L̈β1φ

p
...

...
. . .

...
...

L̈αβ�s
p L̈β1 β�s

p · · · L̈βs β�s
p L̈βsφ

p

L̈αφ�
p L̈β1φ�

p · · · L̈βsφ�
p L̈φφ

p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

with L̈αα
p = W�DcW , L̈αβk

p = W�DcÑk, L̈αφ
p = W�Dam, L̈βkφ

p = Ñ�
k Dam, for

k ∈ {1, . . . , s}, L̈φφ
p = tr(Dd), and

L̈
βk β�k′
p =

{
Ñ�

k DcÑk − λkKk, k = k′

Ñ�
k DcÑk′ , k 	= k′

where the matrices Dc = diag{c1, . . . , cn}, Da = diag{a1, . . . , an} and vector m = (m1, . . . ,
mn)�, with ci, ai and mi defined in Appendix A. The Hessian matrix presented in this
section will be used in the construction of the normal curvature for the local influence
method developed in Section 4.

3.3. Penalized Fisher Information Matrix

By taking the expectation of the matrix −L̈p(θ) given in Equation (4), we derive the
p∗ × p∗ penalized expected information matrix given by

Jp(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jαα
p Jαβ1

p · · · Jαβs
p Jαφ

p

Jαβ�1
p Jβ1 β1

p · · · Jβ1 βs
p Jβ1φ

p
...

...
. . .

...
...

Jαβ�s
p Jβ1 β�s

p · · · Jβs β�s
p Jβsφ

p

Jαφ�
p Jβ1φ�

p · · · Jβsφ�
p Jφφ

p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

whose elements can be expressed as Jαα
p = W�DvW , Jαβk

p = W�DvÑk, Jαφ
p = W�Das,

Jβkφ
p = Ñ�

k Das, for k ∈ {1, . . . , s}, Jφφ
p = tr(Du), and

J
βk β�k′
p =

{
Ñ�

k DvÑk + λkKk, k = k′

Ñ�
k DvÑk′ , k 	= k′,

where Dv = diag{e1, . . . , en}, Du = diag{u1, . . . , un} and s = (s1, . . . , sn)�, being
ei = E[−ci], si = E[−mi] and ui = E[−di], with E[·] denoting the expected value op-
erator. This matrix will be utilized to approximate the variance-covariance matrix of θ̂, as
discussed in Section 3.5.

3.4. Iterative Process

The MPLE of θ is obtained by maximizing the penalized log-likelihood function
presented in Equation (3). Since the resulting estimation equation Up(θ) = 0 is nonlinear,
an iterative process is necessary to solve it. In this regard, we propose to employ the Fisher
scoring algorithm, which updates θ using the matrix equation

Jp(θ)
[
θ(m+1) − θ(m)

]
= Up(θ)

(m), m = 0, 1, . . . . (6)

3.4.1. φ Unknown

After some algebraic operations, we obtain the following expressions for the iterative
solutions for the case where φ unknown:

69



Axioms 2023, 12, 976

α(m+1) = (W�D(m)
v W)−1W�D(m)

v

[
ψ
(m)
α − D(m)

v,a sΦ
(m+1,m)
φ −

s

∑
k=1

ÑkΦ
(m+1,m)
βk

]
,

β
(m+1)
� = (Ñ�D(m)

v Ñ + λkK)−1Ñ�D(m)
v

[
ψ
(m)
β�
− D(m)

v,a sΦ
(m+1,m)
φ −WΦ

(m+1,m)
α

−
s

∑
k=1,k 	=�

ÑkΦ
(m+1,m)
βk

]
, � ∈ {1, . . . , s} and

φ(m+1) = tr−1(D(m)
u

[
tr(D(m)

b ) + tr(D(m)
u )φ(m) − s�D(m)

a WΦ
(m+1,m)
α

−s�D(m)
a

s

∑
k=1

ÑkΦ
(m+1,m)
βk

]
,

where ψ
(m)
α = D(m)

v,a z(m) +Wα(m) and ψ
(m)
β�

= D(m)
v,a z(m) + Ñ�β

(m)
� , with D(m)

v,a = D(m)−1

v D(m)
a .

3.4.2. φ Known

When φ is known, it is possible to obtain simplified expressions for the iterative
solutions of α(m+1) and β

(m+1)
� . In this case, we have that

α(m+1) = (W�D(m)
v W)−1W�D(m)

v

[
r(m)

v,a −
s

∑
k=1

Ñkβ
(m+1)
k

]
, and

β
(m+1)
� = (Ñ�D(m)

v Ñ + λkK)−1Ñ�D(m)
v

[
r(m)

v,a −Wα(m+1) −
s

∑
k=1,k 	=�

Ñkβ
(m+1)
k

]
,

for � ∈ {1, . . . , s}, where r(m)
v,a = D(m)

(v,a)z
(m) + η(m), with η(m) = Wα(m) + ∑s

k=1 Ñkβ
(m)
k . It is

possible to prove that these expressions correspond to the weighted back-fitting (Gauss-
Seidel) iterations considering r(m)

v,a as dependent modified variable and Dv as a matrix of
weights that changes with each iteration of the process; see, for instance [28]. A general
expression for these iterations is as follows:

β
(m+1)
� = S(m)

�

[
r(m)

v,a −
s

∑
k=0,k 	=�

Ñkβ
(m+1)
k

]
, � ∈ {1, . . . , s} , (7)

where r(m)
v,a = D(m)

v,a z(m) + η(m), with η(m) = ∑s
k=0 Ñkβ

(m)
k , Ñ0 = W , β0 = α, S(m)

0 =

(Ñ�
0 D(m)

v Ñ0)
−1Ñ�

0 D(m)
v and S(m)

k = (Ñ�
k D(m)

v Ñk + λkKk)
−1Ñ�

k D(m)
v . A discussion about

the consistency of the system of Equations (6) and the convergence of the back-fitting
algorithm in (7) is given, for example, in [29].

3.5. Approximate Standard Errors

In this work, we propose to approximate the variance-covariance matrix of θ̂ using
the inverse of the penalized Fisher information matrix defined in Equation (5). In effect, an
estimation of the variance-covariance matrix of θ̂ is given by

Ĉov(θ̂) ≈ Jp(θ̂)
−1 . (8)

Following [14], we can consider an approximate pointwise standard error band (SEB)
for nonparametric functions β′ks to evaluate the accuracy of the estimators β̂′ks for different
locations within the range of interest. In our case, these approximate pointwise SEBs are
provided by

SEBapprox

(
βk

(
t0
l

))
= β̂k

(
t0
l

)
± 2

√
V̂ar

(
β̂k

(
t0
l
))

,
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where Var
(

β̂k(tl)
)

is the l-th principal diagonal element of the matrix provided in Equation (8)

for l ∈ {1, 2, . . . , rk}. Please note that t0
l corresponds to the knots associated with each

variable with a nonparametric contribution to the model.

3.6. Effective Degrees of Freedom and λk’s

The calculation of the degrees of freedom associated with the parametric and non-pa-
rametric contributions is based on the iterative process used in the parameters estimation
of the proposed model. Assuming φ fixed, we have from the convergence of the iterative
process that

β̂� = (Ñ�D̂vÑ + λkK)−1Ñ�D̂v r̂∗v,a, � ∈ {1, . . . , s},

where r̂∗v,a = r̂v,a − ∑s
k=0,k 	=� Ñk β̂k, r̂v,a = D̂(a,v)ẑ + η̂, η̂ = W α̂ + ∑s

k=1 Ñk β̂k and
ẑ = (ẑ1, . . . , ẑn)�, with zi (i ∈ {1, 2, . . . , n}) defined in Section 3.1. Note that r∗v,a can
be interpreted as a modified variable and Dv a weight matrix that is updated at each
stage of the iterative process. From this, we define the effective degrees of freedom (edf)
associated with the smooth functions as (see, for instance [14])

edf(λk) = tr
{

Ñ(Ñ�D̂vÑ + λkK)−1Ñ�D̂v
}

, � ∈ {1, . . . , s} .

Following Ibacache-Pulgar and Reyes [23], we choose the optimal smoothing parame-
ter for each smooth function by specifying an appropriate edf(λk) value. Another way to
select the λk’s is to consider the Akaike Information Criterion (AIC). The idea is to minimize
a function with respect to λ formulated as follows:

AIC(λ) = −2�p(θ̂, λ) + 2(2 + p + edf(λ)), (9)

where �p(θ̂, λ) denotes the penalized log-likelihood function evaluated at θ̂ for a fixed λ
and edf(λ) = ∑s

k=1 edf(λk) denoting the number of effective parameters involved in the
modeling of the smooth functions. A grid for different values of λ and its corresponding
AIC(λ) are helpful to choose the suitable smoothing parameters. The criteria defined in
Equation (9) can also be used to select the best model within the class of varying coefficients
quantile regression models based on the log-symmetric family.

4. Diagnostic Analysis

In this section, we extend the local influence method for the model given in Equation (1)
and derive the generalized leverage matrix, which allows us to assess the influence of each
observed value of the response variable yi on its corresponding predicted value ŷi.

4.1. Local Influence Analysis

Let ω = (ω1, . . . , ωn)� be an n× 1 vector of perturbations restricted to some open
subset Ω ∈ Rn and �p(θ, λ |ω) be the logarithm of the perturbed penalized likelihood
function. It is assumed that exists ω0 ∈ Ω, a vector of non-perturbation, such that
�p(θ, λ|ω0) = �p(θ, λ). To assess the influence of small perturbations on the MPL es-
timate θ̂, we can consider the displacement of the penalized likelihood, which is given by
LD(ω) = 2

(
�p(θ̂, λ)− �p(θ̂ω, λ)

)
, where θ̂ω is the MPL estimate under �p(θ, λ |ω). The

measure LD(ω) is helpful for assessing the distance between θ̂ and θ̂ω . Cook [30] suggested
studying the local behavior of LD(ω) around ω0. The procedure involves selecting a unit
direction d ∈ Ω with |d| = 1 and plotting LD(ω0 + ad) against a ∈ R. This plot, known as
a lifted line, can be characterized by considering the normal curvature Cd(θ) around a = 0.
To determine the direction d = dmax that corresponds to the largest curvature Cdmax(θ),
one can examine the index plot of dmax. This plot helps identify cases that, under small
perturbations, may have a significant potential influence on LD(ω). According to Cook [30],
the normal curvature at the unit direction d can be expressed as

Cd(θ) = −2
(
d�Δ�p L̈−1

p Δpd
)
,
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with L̈p(θ) = ∂2�p(θ, λ)/∂θ∂θ� and Δp = ∂2�p(θ, λ |ω)/∂θ∂ω� evaluated at θ = θ̂ and
ω = ω0. Δp is called a penalized perturbation matrix. Observe that Cd(θ) denotes the local
influence on the estimate θ̂ after perturbing the model or data. Escobar and Meeker [31]
proposed to study the normal curvature at the direction d = ei, where ei is an n × 1
vector with a one at the ith position and zeros at the remaining positions. Thus, the normal
curvature, called the total local influence of the ith case, assumes the form Cei (θ) = 2|cii|, for
i ∈ {1, . . . , n}, where cii is the ith principal diagonal element of the matrix C = Δ�p L̈−1

p Δp.
Next, we present the perturbed penalized log-likelihood function for four perturba-

tion schemes, namely case weight, response variable, power parameter, and explanatory
variable perturbation. The matrix Δp for each case is presented in Appendix B.

1. The case-weight perturbation scheme considers the perturbed penalized log-likelihood
function as

�p(θ, λ |ω) =
n

∑
i=1

ωi�i(Qi, φ; yi)−
s

∑
k=1

λk
2

β�k Kkβk,

where ω = (ω1, . . . , ωn)� is the vector of weights, with 0 ≤ ωi ≤ 1 for i ∈ {1, . . . , n}.
2. Regarding the response variable perturbation scheme, we consider an additive type

of perturbation weighted by a scaling factor on the ith response variable, i.e., yi(ωi) =
yi + ωisYi , where sYi is a scale factor that can be the sample standard deviation of Yi
and ωi ∈ R, for i ∈ {1, . . . , n}. Then, the perturbed penalized log-likelihood function
is written as

�p(θ, λ |ω) =
n

∑
i=1

�i(Qi, φ; yi(ωi))−
s

∑
k=1

λk
2

β�k Kkβk.

3. Initially, the model given in Equation (1) assumes that the power parameter is constant
across observations. However, we can introduce a perturbation in the power param-
eter such that it is not constant between the observations, i.e., Yi ∼ QLS

(
Qi, φi, g

)
,

where φi = φ/ωi, with ωi > 0 for i ∈ {1, . . . , n}. Under this perturbation scheme,
the perturbed penalized log-likelihood function is constructed from the expression
defined in Equation (3) with φ being replaced by φi.

4. The last perturbation scheme considered in this work consists of incorporating an
additive type perturbation on one of the covariates X1, . . . , Xs, say Xl , given by
xli(ωi) = xli + ωisxl , where sxl is a scale factor that can be the sample standard
deviation of Xl and ωi ∈ R, for i ∈ {1, . . . , n}. In this case, the perturbed penalized
log-likelihood function can be expressed as

�p(θ, λ |ω) =
n

∑
i=1

�i(Qi(ωi), φ; yi)−
s

∑
k=1

λk
2

β�k Kkβk,

where Qi(ωi) is as given in Equation (1) replacing wli for wli(ωi).

4.2. Generalized Leverage Matrix

The generalized leverage (GL) measures the influence of the observed value of the
response variable yi on its corresponding predicted value ŷi based on the model given
in Equation (1). Following the approach proposed by Wei et al. [32], the GL for θ̂ can be
computed using the lemma they provided. The expression for the GL is given by ∂ŷ/∂y� =

Hθ(−L̈p(θ))−1�̈θy

∣∣∣
θ=θ̂

, where Hθ = ∂μ/∂θ�, L̈p(θ) = ∂2�p(θ)/∂θ∂θ�, �̈θy = ∂2�p(θ)/

∂θ∂y�, y = (y1, . . . , yn)� and μ = (μ1, . . . , μn)�, with μi being the mean of the Yi. Using
the chain rule, we have

∂ŷ
∂y�

=
∂μ

∂Q�
∂Q
∂θ�

(−L̈p(θ))
−1�̈θy

∣∣∣
θ=θ̂

.
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Because of μ = log(λ) and Q = λ exp(
√

φ zq), where zq is the q-quantile of the distribu-
tion S(0, 1, g) [7], we have μ = log(Q)−√φzq. Therefore, ∂μ/∂Q� = diag{1/Q1, . . . , 1/Qn}.
Also, we can obtain the n× p∗ matrix

∂Q
∂θ�

=

(
∂Q
∂α�

,
∂Q
∂β�1

, . . . ,
∂Q
∂β�s

,
∂Q
∂φ

)
=

(
DaW DaÑ1 · · · DaÑs 0n

)
,

where 0n is the n× 1 null vector and �̈θy =
(

DψDaW DψDaÑ1 · · · DψDaÑs τ
)

is a n× p∗

matrix. Please note that the computation of the matrix −L̈p(θ) relies on the availability of
the penalized Hessian matrix given in Equation (4). By utilizing this penalized Hessian
matrix, we have all the necessary elements to calculate the GL matrix ∂ŷ/∂y�.

5. Real Data Analysis

In this section, we apply the model proposed in Section 2 to real pollution data from
the Padre Las Casas Air Quality Monitoring Station (AQMS). The AQMS is situated in the
commune of Padre Las Casas in the Araucanía region of southern Chile, approximately
695 km away from Santiago, the capital city of Chile. Padre Las Casas has gained notoriety
for its elevated levels of pollution, particularly concerning PM2.5. It is recognized as one of
the most heavily polluted cities in Latin America and the Caribbean, as indicated by the
World Air Quality Index Ranking (https://bit.ly/3MXVP38; accessed on 20 August 2023).
The average concentration of PM2.5 in Padre Las Casas exceeds the limits set by national
and international regulations [22], highlighting the significance of analyzing this type of
data and developing models that accurately capture its behavior.

By studying the pollution data from the Padre Las Casas AQMS, we aim to gain
insights into the underlying patterns and factors contributing to pollution levels. The
proposed model will help us to describe and understand the behavior of pollution in this
area, providing valuable information for monitoring and management purposes.

5.1. Exploratory Data Analysis

The dataset used in this analysis consists of hourly (h) average values for the months
of June and July 2020, acquired from the Chilean Ministry of Environment (MMA) website
(http://sinca.mma.gob.cl; accessed on 11 January 2022). The dataset includes measure-
ments of various variables related to air pollution and meteorological conditions in Padre
Las Casas. The considered random variables in this dataset are: (i) Median of PM2.5
concentrations: this variable represents the median concentration of fine particulate matter
with a diameter less than 2.5 micrometers in micrograms per normal cubic meter (μg/Nm3).
PM2.5 is a commonly monitored pollutant and is known to have detrimental effects on
human health; (ii) Median of PM10 concentrations: this variable represents the median
concentration of particulate matter with a diameter smaller than 10 micrometers (PM10) in
μg/Nm3. PM10 includes both fine and coarse particles and is also considered a significant
air pollutant; (iii) Ambient temperature (TEMP): this variable represents the temperature
at the monitoring station in degrees Celsius. Temperature is an important meteorological
parameter that can influence air quality and pollutant levels; (iv) Wind speed (WIND): this
variable represents the speed of wind at the monitoring station in meters per second. Wind
speed plays a crucial role in the dispersion and transport of pollutants in the atmosphere;
(v) Relative air humidity (HR): this variable represents the percentage of moisture in the air at
the AQMS. Humidity can affect atmospheric stability and the formation of certain pollutants.
By analyzing these variables, we can gain insights into the relationship between air pollution
levels and meteorological conditions in Padre Las Casas during the specified period.

In the exploratory data analysis (EDA) of the median PM2.5 concentrations recorded
by the Padre Las Casas AQMS during June–July 2020, Figure 1a shows a histogram with
density kernel estimation. This plot provides an overview of the distribution of the data,
and permits us to visualize the shape of the empirical distribution. From the histogram, it
appears that the distribution of the PM2.5 concentrations has a positive skewness, indicating
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that most of the observations have lower values with a few extremely high values. Figure 1b
presents a boxplot for the median PM2.5 concentrations. From the boxplot, we can see
that there are some observations labeled as atypical data (#1, #3, #4, #14, #36, #45) that
lie outside the whiskers. These observations deviate from the overall pattern of the data
and may represent extreme or unusual values. This suggests that there may be some
extreme pollution events or unusual conditions during the observed period. Based on
the positive skewness of the empirical distribution and the presence of atypical data
points, it is reasonable to consider using log-symmetrical distributions to model the PM2.5
concentrations. Log-symmetrical distributions can better capture the positive skewness
and accommodate the potential presence of extreme values in the data.

(a) (b)

Figure 1. Histogram with density kernel estimation (solid black line) (a) and boxplot (b) for median
PM2.5 concentrations recorded by Padre Las Casas AQMS during June–July 2020.

Table 1 provides descriptive statistics for the median PM2.5 concentrations recorded
by the Padre Las Casas AQMS during June-July 2020. These statistics include measures of
central tendency (mean, median), dispersion (range, standard deviation –SD–), as well as
coefficients of skewness (CS) and kurtosis (CK). The descriptive statistics reveal that the
median PM2.5 concentrations have a mean of 43.4 μg/Nm3 and a median of 36.0 μg/Nm3.
The SD is relatively high, with a value of 26.0 μg/Nm3, indicating substantial variability in
the data. The CS is 1.3, indicating a positive skewness and confirming the observation from
the histogram in Figure 1a. The positive skewness suggests that most of the observations
have lower values, while a few extremely high values contribute to the right tail of the
distribution. The CK is 0.8, which indicates a moderately peaked distribution compared
to a normal distribution. Furthermore, as mentioned in the text, a significant quantity of
levels that surpass the recommended Chilean thresholds for PM2.5, set at 50 μg/Nm3. This
suggests that the air pollution level in Padre Las Casas is dangerous from a toxicological
perspective, posing potential health risks for the inhabitants of this commune in southern
Chile. Overall, the descriptive statistics and Figure 1a,b provide evidence of the high
pollution levels and the need for modeling approaches that can adequately capture the
characteristics of the PM2.5 concentrations in this region.

Table 1. Descriptive statistics for median PM2.5 concentrations recorded by Padre Las Casas AQMS
during June–July 2020.

Variable n Min Max Range Mean Median SD CS CK

PM2.5 61 15 121.5 106.5 43.4 36.0 26.0 1.3 0.8

Figure 2 shows a correlation matrix for PM2.5, PM10, TEMP, WIND, and HR. From
this figure, we detect: (i) a high positive association between PM2.5 and PM10 (Pearson
coefficient of correlation equal to 0.99); (ii) medium negative association between PM2.5
and TEMP and WIND (Pearson coefficient of correlation equal to −0.70); (iii) low positive
association between PM2.5 and HR (Pearson coefficient of correlation equal to 0.38). In
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Figure 3, scatter plots depicting the explanatory variables, response variable, and potential
interactions among the explanatory variables are presented. In Figure 3a, note that the
relationship between PM2.5 and PM10 is linear, while in Figure 3b, the relationship between
PM2.5 and WIND is not linear. Furthermore, Figure 3c,d imply that the explanatory
variables TEMP and HR may be engaging with the WIND variable in a nonlinear manner.

Figure 2. Correlation matrix displaying the respective Pearson correlation coefficient for the specified
explanatory and response variables.
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Figure 3. Scatter plots for median PM2.5 vs. PM10 concentrations (a); median PM2.5 vs. WIND (b);
median PM2.5 vs. HR*WIND (c); and, median PM2.5 vs. TEMP*WIND (d) recorded by Padre Las
Casas AQMS during June–July 2020.
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5.2. Parameter Estimation

Based on the EDA and the observed relationships between the median PM2.5 con-
centration and the variables as PM10, WIND, TEMP, and HR, we suggest the following
varying-coefficients quantile regression models to capture the trends:√

Qi = w�
i α + x1iβ1(ti) + x2iβ2(ti), i ∈ {1, 2, . . . , 61} (10)

where yi ∼ QLS(Qi, φ, g) with Student-t and normal PDF generator g, β represents the
vector of regression coefficients, while w�

i = (1, w1i)
� with w1i denoting the values of the

parametric covariate for the ith observation (PM10). The coefficients βk(for k ∈ {1, 2})
correspond to unknown, smooth, and arbitrary functions of the explanatory variable ti
(WIND), which are linked to the explanatory variables x1i (TEMP) and x2i (HR) from the
ith case. These varying-coefficients quantile regression models allow for a more flexi-
ble and comprehensive characterization of the relationships between the median PM2.5
concentration and the other variables, considering potential variations across quantiles.

Table 2 presents the MPL estimates for the model parameters, their approximate stan-
dard errors (SEs), p-values obtained from a z-test, the AIC, selected smoothing parameters,
and the degrees of freedom df(·) for the models defined by Equation (10). The best values
of λ1 and λ2 were selected by considering a grid of values and choosing those that yielded
a range of df(λ1) and df(λ2) within the range of (4, 12), while minimizing the AIC value.

When comparing the results reported in Table 2, we observe that the estimates for α0
and α1 show similarity between both models, but the log-t model has smaller estimated
standard errors (SEs) for these parameters compared to the log-normal model. Additionally,
the estimated value of φ in the log-t model is smaller than that in the log-normal model. It
is worth noting that based on the (AIC), the log-t model is preferred as it yields a lower
AIC value.

Table 2. MPL estimates, SEs, p-values, AIC and selected smoothing parameters and df(·) of the
indicated model.

Model Parameter Estimate SE p-Value AIC

Log-normal α0 3.072 2.2 × 10−5 <0.001 374.1
α1 0.068 1.1 × 10−3 <0.001
φ 0.013 4.1 × 10−6

λ1 4034.3
λ2 2.2 × 105

df(λ1) 4.001
df(λ2) 4.466

Log-t(ν = 4) α0 3.052 1.7 × 10−5 <0.001 361.3
α1 0.070 8.3 × 10−4 <0.001
φ 0.007 4.9 × 10−6

λ1 4034.3
λ2 5.9 × 105

df(λ1) 4.556
df(λ2) 4.198

To assess the distributional assumption made in the model, we examine the goodness-
of-fit plots based on generalized Cox-Snell (GCS) residuals, as shown in Figure 4. Ad-
ditionally, we provide the p-values associated with the Kolmogorov–Smirnov (KS) test,
which are 0.73 for the log-normal model and 0.89 for the log-t(ν = 4) model. Based on the
goodness-of-fit plots, the KS test, and the AIC, we can conclude that the log-t(ν = 4) model
provides a better fit to the dataset. The log-t model captures the underlying distribution of
the data more accurately compared to the log-normal model, as indicated by the higher
p-value and better fit observed in the goodness-of-fit plots.
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(a) Log-normal model
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(b) Log-t (ν = 4) model

Figure 4. Goodness-of-fit plots with simulated envelope for GCS residual under the indicated model
with the analyzed data set.

Figure 5 displays the plots of the partial residuals relative to the WIND covariate, with
the superimposed estimated smooth functions β1 (on the left) and β2 (on the right). The
behavior of the partial residuals (dots) in these plots appears reasonable, indicating that the
fit of the log-t(ν = 4) varying-coefficients quantile regression model to the pollution dataset
is adequate. The dots are closely aligned with the estimated curves, as expected, suggesting
that the model captures the relationship between the WIND covariate and the partial
residuals effectively. This agreement between the partial residuals and the estimated curves
supports the appropriateness of the log-t(ν = 4) varying-coefficients quantile regression
model for analyzing the pollution data.
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Figure 5. Plots of partial residuals in relation to the WIND covariate, with the estimated smooth
functions β1 (on the left) and β2 (on the right) superimposed.

5.3. Diagnostic Analysis

In this section, we investigate the potential influence of individual observations using
the local influence method for the selected varying-coefficients quantile regression model.
We consider four perturbation schemes: case-weight perturbation, response variable pertur-
bation, power parameter perturbation, and explanatory variable perturbation. Additionally,
we examine the GL to assess the influence of each observed value on its own predicted
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value. These analyses allow us to identify potentially influential cases and understand their
impact on the selected model. Details on the local influence method and the perturbation
schemes can be found in Section 4.2.

In Figure 6, we present index plots illustrating Ci(θ) as defined in Section 4.2 for α, β1,
β2 and φ under the case-weight perturbation (a,b,c,d), under response perturbation (e,f,g,h)
and perturbation on the power parameter (i,j,k,l) schemes. Also, Figure 7 showcases the
index plots of Ci(θ) when introducing perturbations in covariates X1 (a, b, c, d) and X2 (e, f,
g, h). Despite different observations being detected as potentially influential, it is worth
noting that there are four cases (#13, #18, #31, and #45) that consistently appear as potentially
influential across multiple perturbation schemes. These cases exhibit characteristics that
make them stand out and have a notable impact on the model results.

Figure 8 displays the GL plot, which assesses the influence of each observation on
its own predicted value. From this plot, we observe that cases #45, #36, #14, #1, #3, #4 are
potentially leverage points. These observations have response variable values that can
exert a significant influence on their own predicted values. It is worth noting that these
cases correspond to the outliers identified by the boxplot in Figure 1b. Their extreme values
contribute to their influential nature within the model.
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Figure 6. Case weight (a–d), response (e–h) and on the power parameter (i–l) perturbation for α, β1,
β2 and φ.
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It is interesting to observe that the cases identified as potentially influential in the
parametric component may not necessarily be detected in the nonparametric component,
and vice versa. This indicates that different aspects of the data and model may be driving
their influence in different ways. Additionally, the local influence analysis technique has
successfully detected some atypical cases that were previously identified as outliers in
Figure 1b. This reinforces the effectiveness of the local influence method in identifying
observations that have a considerable impact on the model.

In the sense of evaluating the impact of these observations in the selected model, the
subsets of cases {#13}, {#18}, {#31}, {#45}, {#13, #18}, {#13, #31}, {#13, #45}, {#18, #31}, {#18,
#45}, {#31, #45}, and {#13, #18, #31}, {#13, #18, #45}, {#18, #31, #45} and {#13, #18, #31, #45}
are removed and the model parameters are re-estimated. To determine the variation in
the estimates of model parameters, we use the value of the relative changes (RCs) for
each parameter. The RCs for each estimated parameter are calculated using the formula:
RCθ =

∣∣(θ̂j − θ̂j(i))/θ̂j
∣∣× 100%, where θ̂j represents the MPLE of θj, and θ̂j(i) represents

the MPLE of θj after removing the subset i of observations. Here, j = 1, 2, 3 with θ1 = α0,
θ2 = α1, and θ3 = φ.
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Figure 7. Perturbationin the covariate X1 (a–d) and X2 (e–h) scheme for α, β1, β2 and φ.
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Table 3 reports the values of RCs for the varying-coefficients quantile regression model
after removing the indicated sets of cases. In this table, the individual elimination of cases
#13 and #45 produces a RC in α0 and α1 of 5.1%, 4.7% and 5.3%, 5.6%, respectively, while
the elimination of case #18 produces an RC in φ of 5.5%. In addition, note that set of cases
{#13, #18} and {#13, #18, #31} produces the largest RCs in α0, α1 and φ.

During the analyzed period, it was observed that observation #45 had particularly high
concentrations of PM2.5 and PM10 compared to other observations. On the other hand,
observation purple #31 had a very low wind speed, close to the minimum recorded during
the entire period. These observations exhibit extreme values in their respective covariates.
When the sets of potentially influential cases {#13, #18, #31, #45} are excluded from the analysis,
it is observed that their removal results in notable alterations solely in the estimation of φ,
displaying a percentage change of 21.4%. This suggests that these observations have a notable
influence on the estimation of the dispersion parameter φ in the model.

Table 3. RC (in %) on the MPL estimate of αj and φ and respective p-values (in parenthesis) for
varying-coefficients quantile regression model after removing the indicated sets of cases.

Parameters Relative Changes
Removed Case α0 α1 φ RCα0 RCα1 RCφ

none 3.052 0.069 0.007
(<0.001) (<0.001)

{#13} 3.213 0.066 0.007 5.1% 4.7% 4.0%
(<0.001) (<0.001)

{#18} 2.961 0.072 0.006 3.0% 3.4% 5.5%
(<0.001) (<0.001)

{#31} 3.095 0.069 0.007 1.4% 1.1% 3.9%
(<0.001) (<0.001)

{#45} 2.891 0.073 0.006 5.3% 5.6% 4.0%
(<0.001) (<0.001)

{#13, #18} 3.415 0.065 0.006 11.9% 6.7% 18.0%
(<0.001) (<0.001)

{#13, #31} 3.223 0.066 0.006 5.6% 4.7% 9.4%
(<0.001) (<0.001)

{#13, #45} 3.093 0.069 0.006 1.4% 0.4% 13.0%
(<0.001) (<0.001)

{#18, #31} 3.011 0.071 0.006 1.3% 2.2% 9.5%
(<0.001) (<0.001)

{#18, #45} 2.901 0.073 0.006 4.9% 5.4% 10.9%
(<0.001) (<0.001)

{#13, #18, #31} 3.488 0.064 0.005 14.3% 7.8% 20.5%
(<0.001) (<0.001)

{#13, #18, #45} 3.005 0.071 0.006 1.5% 2.8% 17.4%
(<0.001) (<0.001)

{#18, #31, #45} 2.960 0.072 0.006 3.0% 4.0% 14.5%
(<0.001) (<0.001)

{#13, #18, #31, #45} 3.046 0.071 0.005 0.2% 1.9% 21.4%
(<0.001) (<0.001)

Finally, in Table 3, while certain RCs exhibit considerable values, there are no sub-
stantial alterations in inference, as evidenced by the diminutive p-values (less than 0.001)
associated with the parameter estimates. It is important to note that when observations de-
tected as influential in the diagnostic plots are eliminated, it can lead to significant changes
in the parameter estimates. This indicates that the well-known robustness properties of
maximum likelihood estimates from Student-t models may not necessarily apply to other
perturbation schemes. Therefore, it is crucial to conduct diagnostic examinations specific to
each case to properly assess the influence of observations and ensure the reliability of the
model estimates.
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6. Discussion, Conclusions and Future Research

In this work, we propose new varying-coefficients semiparametric quantile regression
models based on the family of log-symmetric distributions, following the approach of [5–7].
By reparametrizing the family of log-symmetric distributions using a quantile, we introduce
new quantile models that offer greater flexibility in modeling data compared to the model
proposed by Saulo et al. [7], as a nonparametric component has been added (Section 2). We
develop parameter estimation based on the penalized likelihood function and propose a
back-fitting iterative algorithm implemented in the R language (Section 3). Additionally,
we discuss diagnostic techniques for detecting potentially influential local observations
and identifying leverage points (Section 4). Please note that the local influence analysis re-
inforces the need for diagnostic evaluation. It has been observed that parameter estimators
in this class of models tend to be sensitive to the presence of atypical or influential data
points. To the best of our knowledge, techniques for detecting leverage points have not
been developed for semiparametric quantile regression models.

We illustrate the methodology developed in this work using data associated with
PM2.5 pollution in Padre Las Casas city for predicting the daily median of 1-h average
values. We propose and fit two models (log-normal and log-t(ν = 4)) and evaluate them
using CGS residuals and their AIC values. The plots of CGS residuals and partial residuals
show a good fit of the selected model (log-t(ν = 4)) to the data. We also apply our diagnostic
techniques to detect potentially influential cases and leverage points (Section 4.2); however,
no inferential changes are observed in the parameter estimates.

Thus, among the accomplishments of this work, we can highlight: (i) The development
of novel quantile regression models suitable for modeling data following asymmetric
distributions, which can be added into the existing toolkit for quantile modeling; (ii) The
expansion of our model beyond the one presented in [7], incorporating nonlinear structures
arising from interaction effects. (iii) The derivation of analytical tools for identifying
potentially influential observations and leverage points.

One limitation of our study is that the proposed models may not be suitable for
describing other types of data, such as temporally or spatially correlated data, as well as
censored data. In such cases, the utilization of multivariate distributions for the response
variable, reparametrized by quantiles of marginal distributions, may be necessary. Another
area for future investigation is conducting a simulation study to evaluate the distributional
behavior of the residuals used in this study and exploring alternative types of residuals
appropriate for this type of regression. This aspect has received limited attention in the
existing literature. Furthermore, we aim to establish inferences about the model parameters
through asymptotic analysis of specific estimators. Lastly, we intend to compare our model
with others, including models proposed by [7,12]. These are additional areas that remain
unexplored, and we plan to address these open questions in our future research.
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Appendix A

Here, we present the quantities ci, mi, and di, involved in the definition of the Penalized
Hessian matrix presented in Section 3.2. In fact, we have
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φ
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In addition, the expression ∂ r(vi)/∂Qi and ∂ r(vi)/∂φ are, respectively,

∂ r(vi)

∂Qi
= 4

[
g′′(v2

i )g(v2
i )− (g′(v2

i ))
2

(g(v2
i ))

2

]
vi

Qi
√

φ
, and

∂ r(vi)

∂φ
= 2

[
g′′(v2

i )g(v2
i )− (g′(v2

i ))
2

(g(v2
i ))

2

]
viφ

−3/2[log(yi)− log(Qi)].

Appendix B

Here we present the matrix Δp for four perturbation schemes, namely case weight,
response variable, power parameter, and explanatory variable perturbation. In general,
this matrix is defined as

Δp =
(

Δ�α Δ�β1
. . . Δ�βs

Δ�φ
)�

.

Appendix B.1. Case-Weight Perturbation

Here, the elements of the matrix Δp are given by

Δα = W�D̂aD̂z,

Δβk = Ñ�
k D̂aD̂z, for k ∈ {1, . . . , s},

Δφ = b̂,

with D̂a, D̂z and b̂ correspond to Da, Dz and b = (b1, . . . , bn)� evaluated at θ = θ̂ and
ω0 = (1, . . . , 1)�, respectively.

Appendix B.2. Response Variable Perturbation

Under this perturbation schemes, the elements of the matrix Δp are given by
Δα = W�D̂aD̂ψD̂ϑ, Δβk = Ñ�

k D̂aD̂ψD̂ϑ, for k ∈ {1, . . . , s}, Δφ = τ̂�Dϑ, with
D̂ϑ = diag{ϑ̂1, . . . , ϑ̂n}, D̂ψ = diag{ψ̂1, . . . , ψ̂n}, and τ̂ = (τ̂1, . . . , τ̂n)�, with

ϑ̂i = sYi ,

ψ̂i =
1

φ̂ Q̂i yi

[
r(v̂i) + v̂i r′(v̂i)

]
,

τ̂i = − φ̂−3/2

2

[[
vi r′(v̂i) + r(v̂i)

][ log(yi)− log(Q̂i)

yi

√
φ̂

]
+

r(v̂i) v̂i
yi

]
, i ∈ {1, . . . , n},

and r′(v̂i) = dr(v̂i)/dv̂i. In this case, v̂i, Q̂i and φ̂ are evaluated at θ = θ̂ and ω = (0, . . . , 0)�.
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Appendix B.3. Power Parameter Perturbation

Considering the power parameter perturbation, the elements of the matrix Δp are
given by Δβk = Ñ�

k D̂aD̂� , for k ∈ {1, . . . , s}, Δφ = ϕ̂�, where D̂� = diag{�̂1, . . . , �̂n} and
ϕ = (ϕ̂1, . . . , ϕ̂n)�, with �i = −φ̂ m̂i and ϕ̂i = −φ̂ d̂i, for i ∈ {1, . . . , n}. Here, m̂i and d̂i
correspond to mi and di evaluated at θ = θ̂ and ω0 = (1, . . . , 1)�, respectively.

Appendix B.4. Explanatory Variable Perturbation

In this case, the elements of the matrix Δp can be expressed as follows:

(i) for l = k,

Δα = W�(
D̂a′ D̂z + D̂aD̂c

)
D̂a sXl D̂Ñl fl

,

Δβl = Ñl D̂aD̂zsXl + Ñ�
l D̂aD̂Ñl fl

sXl

(
D̂a′ D̂z + D̂c

)
− λlKl β̂l , for k ∈ {1, . . . , s},

Δφ = m̂� D̂aD̂Ñl fl
sXl ;

(ii) for l 	= k,

Δα = W�(
D̂a′ D̂z + D̂aD̂c

)
D̂a sXl D̂Ñl · fl

,

Δβl = Ñ�
1 D̂aD̂Ñl βl

sXl

(
D̂a′ D̂z + D̂c

)
− λ1K1β̂1, for k ∈ {1, . . . , s},

Δφ = m̂� D̂aD̂Ñl βl
sXl .

where Da′ = diag{a′1, . . . , a′n}, with a′i = dai/dQi, and DÑl βl
is the diagonalization of the

vector Ñl βl . Here, ω0 = (0, . . . , 0)T corresponds to the vector of no perturbation.

References

1. Vanegas, L.; Paula, G. A semiparametric approach for joint modeling of median and skewness. Test 2015, 24, 110–135. [CrossRef]
2. Arellano-Valle, R.B.; Gómez, H.W.; Quintana, F.A. A New Class of Skew-Normal Distributions. Commun. Stat. Theory Methods

2004, 33, 1465–1480. [CrossRef]
3. Paula, G.A.; Leiva, V.; Barros, M.; Liu, S. Robust statistical modeling using the Birnbaum-Saunders-t distribution applied to

insurance. Appl. Stoch. Model. Bus. Ind. 2012, 28, 16–34. [CrossRef]
4. Leiva, V.; Santos-Neto, M.; Cysneiros, F.J.A.; Barros, M. Birnbaum–Saunders statistical modelling: A new approach. Stat. Model.

2014, 14, 21–48. [CrossRef]
5. Sánchez, L.; Leiva, V.; Galea, M.; Saulo, H. Birnbaum-Saunders quantile regression and its diagnostics with application to

economic data. Appl. Stoch. Model. Bus. Ind. 2021, 37, 53–73. [CrossRef]
6. Sánchez, L.; Leiva, V.; Marchant, C.; Saulo, H.; Sarabia, J.M. A new quantile regression model and its diagnostic analytics for a

Weibull distributed response with applications. Mathematics 2021, 9, 2768. [CrossRef]
7. Saulo, H.; Dasilva, A.; Leiva, V.; Sanchez, L.; de la Fuente-Mella, H. Log-symmetric quantile regression models. Stat. Neerl. 2022,

76, 124–163. [CrossRef]
8. Vanegas, L.; Paula, G. Log-symmetric distributions: Statistical properties and parameter estimation. Braz. J. Probab. Stat. 2016,

30, 196–220. [CrossRef]
9. Vanegas, L.; Paula, G. An extension of log-symmetric regression models: R codes and applications. J. Stat. Simul. Comput. 2016,

86, 1709–1735. [CrossRef]
10. Ventura, M.; Saulo, H.; Leiva, V.; Monsueto, S.E. Log-symmetric regression models: Information criteria and application to movie

business and industry data. Appl. Stoch. Model. Bus. Ind. 2019, 35, 963–977. [CrossRef]
11. Hao, L.; Naiman, D.Q. Quantile Regression; Sage Publications: London, UK, 2007.
12. Koenker, R.; Chernozhukov, V.; He, X.; Peng, L. Handbook of Quantile Regression; CRC Press: Boca Raton, FL, USA, 2018.
13. Noufaily, A.; Jones, M.C. Parametric quantile regression based on the generalized gamma distribution. J. R. Stat. Soc. Ser. 2013,

62, 723–740. [CrossRef]
14. Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman and Hall: New York, NY, USA, 1990.
15. Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models; Chapman and Hall: Boca Raton, FL, USA, 1994.
16. Ibacache-Pulgar, G.; Paula, G.A.; Cysneiros, F.J.A. Semiparametric additive models under symmetric distributions. Test 2013, 22, 103–121.

[CrossRef]
17. Ramires, T.; Ortega, E.; Hens, N.; Cordeiro, G.; Paula, G. A flexible semiparametric regression model for bimodal, asymmetric

and censored data. J. Appl. Stat. 2018, 45, 1303–1324. [CrossRef]

83



Axioms 2023, 12, 976

18. Manghi, R.; Cysneiros, F.J.A.; Paula, G. Generalized additive partial linear models for analyzing correlated data. Comput. Stat.
Data Anal. 2019, 129, 47–60. [CrossRef]

19. Oliveira, R.A.; Paula, G.A. Additive models with autoregressive symmetric errors based on penalized regression splines. Comput. Stat.
2021, 36, 2435–2466. [CrossRef]

20. Ferreira, C.; Montoril, M.; Paula, G. Partially linear models with p-order autoregressive skew-normal errors. Braz. J. Probab. Stat.
2022, 36, 792–806.

21. Cardozo, C.A.; Paula, G.A.; Vanegas, L.H. Generalized log-gamma additive partial linear models with P-spline smoothing. Stat. Pap.
2022, 63, 1953–1978. [CrossRef]

22. Cavieres, M.F.; Leiva, V.; Marchant, C.; Rojas, F. A methodology for data-driven decision making in the monitoring of particulate
matter environmental contamination in Santiago of Chile. Rev. Environ. Contam. Toxicol. 2020, 250, 5–67.

23. Ibacache-Pulgar, G.; Reyes, S. Local influence for elliptical partially varying coefficient model. Stat. Model. 2018, 18, 149–174.
[CrossRef]

24. Good, I.J.; Gaskins, R.A. Nonparametric roughness penalties for probability densities. Biometrika 1971, 58, 255–277. [CrossRef]
25. Silverman, B.W. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. R. Stat. 1985, 47, 1–52.

[CrossRef]
26. Green, P.J. Penalized likelihood for general semi-parametric regression models. Int. Stat. Rev. 1987, 55, 245–259. [CrossRef]
27. Adams, R.A.; Fournier, J. Sobolev Spaces. In Pure and Applied Mathematics; Academic Press: Boston, MA, USA, 2003.
28. Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. (Appl. Stat.) 2005,

54, 507–554. [CrossRef]
29. Berhane, K.; Tibshirani, J. Generalized additive models for longitudinal data. Can. J. Stat. 1998, 26, 517–535. [CrossRef]
30. Cook, R.D. Assessment of local influence (with discussion). J. R. Stat. Soc. 1986, 48, 133–169.
31. Escobar, L.; Meeker, W. Assessing influence in regression analysis with censored data. Biometrics 1992, 48, 507–528. [CrossRef]
32. Wei, B.C.; Hu, Y.Q.; Fung, W.K. Generalized leverage and its applications. Scand. J. Stat. 1998, 25, 25–37. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

84



Citation: Sobchuk, V.; Barabash, O.;

Musienko, A.; Tsyganivska, I.;

Kurylko, O. Mathematical Model of

Cyber Risks Management Based on

the Expansion of Piecewise

Continuous Analytical

Approximation Functions of Cyber

Attacks in the Fourier Series. Axioms

2023, 12, 924. https://doi.org/

10.3390/axioms12100924

Academic Editor: Giovanni Nastasi

Received: 30 August 2023

Revised: 25 September 2023

Accepted: 25 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Mathematical Model of Cyber Risks Management Based on the
Expansion of Piecewise Continuous Analytical Approximation
Functions of Cyber Attacks in the Fourier Series

Valentyn Sobchuk 1,†, Oleg Barabash 2,†, Andrii Musienko 2,†, Iryna Tsyganivska 1,† and Oleksandr Kurylko 1,*,†

1 Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 4E Academician
Glushkov Avenue, 03127 Kyiv, Ukraine; sobchuk@knu.ua (V.S.); itsy8009@knu.ua (I.T.)

2 Educational and Scientific Institute of Atomic Thermal Energy, National Technical University of Ukraine “Ihor
Sikorsky Kyiv Polytechnic Institute”, 6 Polytechnichna St., Building No. 5, 03056 Kyiv, Ukraine;
bar64@ukr.net (O.B.); mysienkoandrey@gmail.com (A.M.)

* Correspondence: alexandr.kurylko@knu.ua
† These authors contributed equally to this work.

Abstract: The comprehensive system of information security of an enterprise includes both tactical
aspects of information and strategic priorities, reflecting the information policy and information
strategy of the enterprise. Ensuring a given level of cybersecurity requires the identification of threat
actors, their purpose, intentions of attacks on the IT infrastructure, and weak points of the enterprise’s
information security. To achieve these goals, enterprises need new information security solutions. In
this work, a mathematical model of the process of cyber risk management in the enterprise, which
is based on the distribution of piecewise continuous analytical approximating functions of cyber
attacks in the Fourier series, is obtained. A constant continuous monitoring and conduction of cyber
regulatory control of the enterprise on time makes it possible to effectively ensure the cybersecurity
of the enterprise in real time—predicting the emergence of cyber threats to some extent—which, in
turn, determines the management of cyber risks arising in the field of information security of the
enterprise. Such a Fourier series expansion of the piecewise continuous analytical approximating
function of the intensity of cyber attacks on damage to standard software, obtained by approximating
empirical–statistical slices of the intensity of cyber attacks on damage to standard software for each
time period by analytical functions, opens up new mathematical possibilities of transition to systems
of regulatory control of cyber threats of the enterprise from discrete to continuous automated process
for such types of control.

Keywords: Fourier series; cyber threat; piecewise continuous function; mathematical model;
information security of an enterprise

MSC: 42A16

1. Introduction

With the appearance of new IT technologies, the intensity of new cyber attacks on
enterprise IT systems is increasing. It is also worth noting that traditional cybersecurity
activities cannot fully prevent or contain these attacks due to the increasing speed and
frequency of cyber attacks. The enterprise’s comprehensive information security system
includes both tactical aspects of information protection (express audit of the enterprise’s
information threats) and strategic priorities reflected in the enterprise’s information policy
and information strategy. Ensuring a given level of cybersecurity requires the identification
of threat actors, their purpose, intentions of attacks on the IT infrastructure, and weak
points of the enterprise’s information security. To achieve these goals, enterprises need new
information security solutions that not only meet the realities of today but also have signifi-
cant development potential, taking into account current trends in the field of information
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security in general. At the same time, the issues of researching the intensity of cyber attacks,
and their prediction and forecasting, are insufficiently researched in the scientific literature,
which is related to the complexity of predicting cyber attacks as well as the availability of
modern relevant methods for their forecasting.

The fight against the growing intensity of cyber threats requires the creation of a
multifaceted information security strategy of the enterprise, which, in particular, includes
the prediction of cyber attacks. In their scientific works, scientists Palash Goyal, Ashok Deb,
and Nazgol Tavabi described computer programming methods based on neural networks
and autoregressive time series models (AR, ARMA, ARIMA, ARIMAX) that use external
signals from publicly available web sources to forecast cyber attacks. However, such models
usually require a significant amount of data to implement computer programming in order
to establish an accurate estimate of the model parameters. Most research efforts have
focused on using network traffic to build predictive models. These studies are presented
in the works of scientists such as E. Pontes, A. E. Guelfi, S. T. Kofuji, and A. A. Silva.
Other researchers such as E. Gandotra, D. Bansal, and S. Sofat built cyber predictions using
statistical modeling and algorithmic modeling. R. Douc, E. Moulines, and D. Stoffer were
engaged in the use of ARCH and GARCH models, which are extensions of the classical
autoregression model.

However, developing an accurate model of the dynamic behavior of time series is a
difficult and important task. Therefore, there is a need for further research and development
of a scientific and methodological apparatus for determining the relationship between the
level of cyber risk and the frequency of audits, which makes it possible to ensure effective
automation of enterprise cybersecurity processes. The general task of ensuring information
security conditions the study of vulnerabilities of the IT infrastructure of the enterprise and
relevant models of cyber attack prevention. In this regard, it is necessary to conduct a study
of the relevant vulnerabilities and problems of all groups of cyber attacks on the enterprise.

As a result of the spread of freelance relations, as a modern type of business relation
of an enterprise, there is a need to process and analyze statistical data of cyber attacks in
the field of activity of an IT enterprise that involves a freelance resource. These studies
should be designed to use temporal correlations between the number of cyber attacks over
a period of time in order to predict the future intensity of cyber incidents, which will allow
the creation of an effective forecasting system. Therefore, predicting the number of cyber
attacks for a set rational time period is necessary to determine the effective frequency of
the audit.

2. Literature Analysis

Fourier series are widely used in research in various fields of activity. Thus, particularly
in [1–3], the speed of approximation of differentiable functions by generalized methods of
summation of Fourier series was investigated. In [4,5], the conditions of convergence of
Fourier transformations were investigated. Applied aspects of approximate properties of
Fourier series were considered in [6–8], while the properties and application of isometric
classes of functions based on their Fourier series were studied in [9,10].

In modern technical literature, the scientific problems of enterprise information se-
curity related, in particular, to the improvement of attack graphs for monitoring cyber-
security, handling of inaccuracies, cycle processing, display of incidents, and automatic
selection of protective measures were investigated in the works of O.A. Lapteva [11–14],
E.M. Galakhova [15], O.V. Kapustyan [16], S.P. Yevseiev, [17], and A.P. Musienko [18],
respectively. The stability of the information system, in terms of functioning with the
conditions of external and internal destabilizing factors, was studied in [19]. External and
internal destabilizing factors include mean failures, failures of system modules, mechanical
damage, thermal effects, and errors of service personnel. Ref. [20] investigated how, on
the basis of the functional dependence of the probability of missing failures on a certain
probability value, at different values of the probability of second-order control error, it is
possible to determine the recommended interval of issuing the result, which will ensure,
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at a given intensity of readiness control, an acceptable probability of missing a failure. It
was illustrated how, with a given intensity of issuing the result, it is possible to determine
such an intensity of readiness control at which the probability of failure will not exceed
the maximum permissible value. It was shown that it is possible to talk about a weak
dependence of the probability of omission on the control error of the second kind, which
means that the achievement of the specified reliability of the control is ensured on the basis
of the intensity of the readiness control and depends less on the reliability of individual
elementary checks. For the case when, in the intervals between the moments when the
result is issued, the system checks the readiness of the modules randomly, the methodology
for calculating the probability of failure was described. In [21], based on the use of a
hierarchical concept of the organization of means of ensuring the functional stability of
the company’s information system, two algorithms were developed that form a two-level
system for diagnosing hidden failures. Diagnosis begins with the execution of the first
algorithm, the advantages of which compared with known algorithms are that it requires
less system redundancy, only two rounds of message exchange between nodes of the
information system, and provides diagnosis of the information system of the subtribe when
almost half of its nodes fail. In the case of an ambiguous solution to the diagnosis problem,
the algorithm generates a signal about its failure and the diagnosis of the information
system continues according to the second algorithm, which uses the duration of the phases
as a criterion.

In [22–24], for evolutionary nonlinear problems with control parameters, the prob-
lems of approximate minimax estimation and making optimal decisions were considered.
The authors investigated the problems of the behavior of evolutionary systems, when
the system is under the influence of impulse forces of an instantaneous nature. This is
important, because even in the case of linear systems, the presence of impulse action makes
the behavior of the system significantly nonlinear, and the control of solutions of such
systems is extremely difficult. At the same time, cyber attacks have a similar nature when
they try to destabilize the system through the influence of external forces. Prediction of the
number of possible cyber attacks, statistical and analytical assessments of cyber attacks,
timely identification, development of an action plan and preventive measures to eliminate
identical cyber attacks, implementation of a control system, and the introduction of mod-
ernized approaches to regulatory control of cyber attacks in the enterprise were carried out
in [25,26].

The purpose of this work is to develop a mathematical model of cyber risks manage-
ment of the enterprise, which makes it possible to move the system of regulatory control
of cyber threats of the enterprise from a discrete to a continuous automated process of
regulatory control.

3. Main Part

Let us consider a mathematical model of the process of managing cyber risks of the
enterprise, which makes it possible to move the system of regulatory control of cyber
threats of the enterprise from a discrete to a continuous automated process of regulatory
control. This model differs from the existing ones, based mainly on the statistical analysis
of time series, in that piecewise continuous analytical approximating functions of cyber
attacks are decomposed into a Fourier series.

The research interest of this model is to determine the recommended frequency for the
cyber risk management process in the enterprise. The model focuses on the following key
stages of research:

1. Retrospective statistical analysis of cyber risk identification time series.

1.1. Determination of time intervals of regulatory control and approximation of
statistical sections by analytical functions (Figures 1 and 2).

1.2. Graphical visualization of the implemented statistical analysis of time series of
cyber risk identification (Figure 1).
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2. Analysis of the enterprise’s existing cyber risks strategy based on the retrospective sta-
tistical analysis of cyber risk identification time series, conducted above, highlighting
weaknesses of the existing strategy, possible cyber threats, identification of potential
strengths, and opportunities for further modernization.

3. Development of a predictive and analytical model of regulatory control.
4. Introduction of modernized approaches into the existing system of regulatory control

of the enterprise.

Figure 1. Dependence of the number of cyber threats on the frequency of regulatory control over
4 time intervals.

Figure 2. Approximation of statistical slices of cyber attacks on damage to network infrastructure by
analytical functions.

Figure 1 shows 4 time periods of regulatory control within the framework of the
proposed model. The implementation of consistent activities of regulatory control ensures
the minimization of cyber threats in each time period, which is illustrated in Figure 1.
Figure 1 illustrates similar effects from the implementation of regulatory control and almost
the same behavior in the number of cyber threats between the conducted audits.

According to part 1.1 of the abovementioned key bases of model research, an approx-
imation of the statistical slices of cyber attacks on damage to the network infrastructure
was carried out by analytical functions in the period between 4 time periods of regulatory
control within the framework of the proposed model (Table 1).

Table 1. Approximation of time series of cyber attacks on damage to network infrastructure by
analytical functions.

Time Period
Nonlinear Equation of the

Approximating Function on
the Interval (0; 1)

Coefficient of Determination

1st period y = 1.0643× e0.064x 0.9032
2nd period y = 1.0534× e0.053x 0.9040
3rd period y = 1.0626× e0.065x 0.9012
4th period y = 1.0596× e0.059x 0.8933
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Figure 2 presents a graphical interpretation of the approximation of the time series
of cyber attacks on damage to the network infrastructure by analytical functions with
averaged values for each time period in view of the almost identical equations of the
approximating functions for different periods, which are presented in Table 1.

From Figure 2, we establish that the function is periodic with a period T = 1 (2l = 1,
l = 1/2); then, we expand the given function into a Fourier series on the closed interval
[0, 2l] = [0, 1]. Let us write down the equation of the given function presented in Figure 2
with unknown coefficients: y = A× eBx. Let us determine the estimated coordinates of the
points from the bundle of nonlinear curves approximating the statistical series, which are
in the confidence interval with the smallest variances in the form y = 1.0595× e0.060205x.
Note that 0.52975 is the statistical average value of the cyber threat function at its points of
jump discontinuity. Thus, we have

y =

{
1.0595× e0.060205x k < x < k + 1
0.52975 x = k, k ∈ Z

(1)

For function (1), we find the coefficients of the Fourier series:

a0 =
∫ 1

0
1.0595× e0.060205xdx =

1.0595
0.060205

× (e0.060205x)|10 = 17.5982(e0.060205 − 1) = 1.09351. (2)

Denoting the desired integral by I and applying the method of integration by parts
twice, we obtain

an =
1

1/2

∫ 1

0
1.0595e0.060205x × cos

(
πnx
1/2

)
dx = 2× 1.0595× I = 2.119× I

=

∣∣∣∣ e0.060205x = U 0.060205e0.060205xdx = dU
cos(2πnx)dx = dV V = 1

2πn sin(2πnx)

∣∣∣∣
= 2.119

[(
e0.060205x × 1

2πn
sin(2πnx)

)
|10 −

0.060205
2πn

∫ 1

0
e0.060205x sin(2πnx)dx

]
=

∣∣∣∣ e0.060205x = U 0.060205e0.060205xdx = dU
sin(2πnx)dx = dV V = − 1

2πn cos(2πnx)

∣∣∣∣
= −2.119× 0.060205

2πn

[
− e0.060205x

2πn
cos(2πnx)

]
|10 +

0.060205
2πn

∫ 1

0
e0.060205x cos(2πnx)dx

=
0.127574

2πn

(
− e0.060205 − 1

2πn
+

0.060205
2πn

)
× I

(3)

To find the integral I, we solve the following equation:

2.119× I =
0.127574

2πn

(
− e0.060205 − 1

2πn
+

0.060205
2πn

)
× I ⇒

⇒ I
(

2.119− 0.127574
2πn

× 0.060205
2πn

)
= −0.127574

2πn
× e0.060205 − 1

2πn

(4)

Thus, we have

I =
0.127574

(
e0.060205 − 1

)
0.00678− 2.119(2πn)2 . (5)

Then, the coefficients an are obtained in the form

an =
1

1/2

∫ 1

0
1.061−x × cos

(
πnx
1/2

)
dx = 2.119× I

=
2.119× 0.127574

(
e0.060205 − 1

)
0.00678− 2.119(2πn)2 =

0.27033
(
e0.060205 − 1

)
0.00678− 2.119(2πn)2 .

(6)
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Similarly, we find the coefficients bn:

bn =
1

1/2

∫ 1

0
1.0595e0.060205x sin

(
πnx
1/2

)
dx = 2× 1.0595× I = 2.119× I

=

∣∣∣∣ e0.060205x = U 0.060205e0.060205xdx = dU
sin(2πnx)dx = dV V = − 1

2πn cos(2πnx)

∣∣∣∣
= 2.119

[(
−e0.060205x × 1

2πn
sin(2πnx)

)
|10 +

0.060205
2πn

∫ 1

0
e0.060205x cos(2πnx)dx

]
=

∣∣∣∣ e0.060205x = U 0.060205e0.060205xdx = dU
cos(2πnx)dx = dV V = 1

2πn sin(2πnx)

∣∣∣∣
= 2.119

[
−

(
e0.060205 − 1

)
× 1

2πn
+

0.060205
2πn

[
e0.060205x

2πn
sin(2πnx)|10 −

0.060205
2πn

∫ 1

0
e0.060205x sin(2πnx)dx

]]
=

2.119
(
1− e0.060205)
2πn

− 0.0076806

(2πn)2 × I

(7)

To find the integral I, we solve the following equation:

2.119× I =
2.119

(
1− e0.060205)
2πn

− 0.0076806

(2πn)2 × I ⇒

⇒ I

[
2.119 +

0.0076806

(2πn)2

]
=

2.119
(
1− e0.060205)
2πn

.

(8)

Thus, we obtain

I =
2.119

(
1− e0.060205)

2πn
(

2.119 + 0.0076806
(2πn)2

) . (9)

Then, the coefficients bn will have the following form:

bn =
4.49020

(
1− e0.060205)

2πn
(

2.119 + 0.0076806
(2πn)2

) . (10)

Hence, let us write down the expansion of Function (1) in the Fourier series:

f (x) = 1.09351 +
∞

∑
n=1

⎡⎢⎢⎣ 0.27033
(
e0.060205 − 1

)
0.00678− 2.119(2πn)2 × cos(2πnx) +

4.49020
(
1− e0.060205)

2πn
(

2.119 + 0.0076806
(2πn)2

) × sin(2πnx)

⎤⎥⎥⎦ (11)

Thus, Function (11) is a continuous function that models a piecewise continuous
function with points of jump irremovable discontinuities. Such a mathematical model
is based on the expansion of a piecewise continuous analytical approximating function
into the Fourier series, which makes it possible to move the system of regulatory control
of cyber threats of the enterprise from a discrete to a continuous automated process of
regulatory control.

Therefore, the approximation of statistical slices of cyber attacks on damage to the
network infrastructure by analytical functions in the period between 4 time periods of
regulatory control within the framework of the proposed model provides an automated
approach to minimizing cyber threats in each time period.

Let us consider the mathematical possibilities of transition from a discrete to continu-
ous automated process of cyber regulatory control of the enterprise. The modern approach
to the information security of an enterprise in the sphere of action of cyber attacks is deter-
mined by the following stages: forecasting the number of possible cyber attacks; carrying
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out empirical–statistical and analytical evaluation of cyber attacks; identification of cyber
attacks on time; development of an action plan and preventive activities to eliminate similar
cyber attacks; and, most importantly, the implementation of the control system and the
introduction of innovative approaches to the timely regulatory control of cyber attacks in
the enterprise.

Therefore, with the growth of cyber threats, the need for express audits and their
implementation on time increases the effectiveness of the enterprise’s comprehensive
information security strategy.

Figure 3 schematically reflects the behavior of the intensity of cyber attacks on damage
to standard software for 4 time periods between conducting the scheduled regulatory
control. After the scheduled regulatory control before the first time period, activities were
taken that ensured the minimization of cyber threats in the first 2 time periods after the
scheduled regulatory control.

Figure 3. Dependence of the number of cyber attacks on the damage standard software from
frequency of carrying out regulatory control for 4 time intervals.

Approximation of the statistical slices of cyber attacks on damage to standard software
for each period by analytical functions was carried out (Table 2).

Table 2. Approximation of time series of cyber attacks on damage to standard software by analytical
functions.

Time Period
An Equation of the

Approximating Function on
the Interval (0; 1)

Coefficient of Determination

1st period I(t) = 1.0364 0.8731
2nd period I(t) = 1.0453 0.8540
3rd period I(t) = 1.00076t 0.8912
4th period I(t) = 1.0237t 0.8721

Based on Table 2, given the almost identical equations of approximating functions for
the 1st, 2nd and 3rd, and 4th periods, respectively, it is possible to represent analytically
the function of the intensity of cyber attacks on damage to standard software, combining
the 1st, 2nd and 3rd, and 4th periods. Then, analytically, the function of the intensity of
cyber attacks can be represented as

I(t) =

{
1, 0 ≤ t < 2
t, 2 ≤ t ≤ 4.

(12)
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Let us expand Function (12) into a Fourier series, which will make it possible to move
the regulatory control system of cyber attacks on damage of the enterprise’s standard
software from a discrete to a continuous automated process of regulatory control.

Let us find the following coefficients:

an =
1
2

∫ 4

0
f (t) cos

πnt
2

dt =
1
2

(∫ 2

0
cos

πnt
2

dt +
∫ 4

2
t cos

πnt
2

dt
)

=

∣∣∣∣ t = U dt = dU
cos πnt

2 = dV V = 2
πn sin πnt

2

∣∣∣∣
=

1
2

(
2

πn
sin

πnt
2
|20 +

(
2t
πn

sin
πnt

2
+

4
π2n2 cos

πnt
2

)
|42
)

=
1
2
× 4

π2n2 (cos 2πn− cos πn) =
2

π2n2 (1− cos πn) =
2

π2n2 (1− (−1)n);

(13)

a0 =
1
2

∫ 4

0
f (t)dt =

1
2

(∫ 2

0
dt +

∫ 4

2
tdt

)
=

1
2

(
2 +

t2

2
|42
)
=

1
2
(2 + 6) = 4; (14)

bn =
1
2

∫ 4

0
f (t) sin

πnt
2

dt =
1
2

(∫ 2

0
sin

πnt
2

dt +
∫ 4

2
t sin

πnt
2

dt
)

=

∣∣∣∣ t = U dt = dU
sin πnt

2 = dV V = − 2
πn cos πnt

2

∣∣∣∣
=

1
2

(
− 2

πn
cos

πnt
2
|20 +

(
− 2t

πn
cos

πnt
2

+
4

π2n2 sin
πnt

2

)
|42
)

= −1
2
× 2

πn

(
cos

πnt
2
|20 + t cos

πnt
2
|42
)
= − 1

πn
(cos πn− 1 + 4 cos 2πn− 2 cos πn)

= − 1
πn

(3− cos πn) =
1

πn
((−1)n − 3).

(15)

The desired expansion looks like

I(t) = 2 +
∞

∑
n=1

[
2

π2n2 (1− (−1)n) cos
πnt

2
+

1
πn

((−1)n − 3) sin
πnt

2

]
. (16)

For all t ∈ (0; 2), we have in the open interval (0; 2) the sum of the series s(t) = 1,
while in the open interval (2; 4), we have the sum of the series s(t) = t. At the point of
jump discontinuity t = 2,

s(t) =
f (2−) + f (2+)

2
=

1 + 2
2

=
3
2

. (17)

At points t = 0 and t = 4, the sum s(t) is equal to

s(t) =
f (0) + f (4)

2
=

1 + 4
2

=
5
2

. (18)
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Consider the first nine terms of the series (16)

I(t) = 2 +
8

∑
n=1

[
2

π2n2 (1− (−1)n) cos
πnt

2
+

1
πn

((−1)n − 3) sin
πnt

2

]
= 2 +

(
2

π2 (2) cos
πt
2

+
1
π
(−4) sin

πt
2

)
+

(
1

2π
(−2) sin πt

)
+

(
2

9π2 (2) cos
3πt

2
+

1
3π

(−4) sin
3πt

2

)
+

(
1

4π
(−2) sin 2πt

)
+

(
2

25π2 (2) cos
5πt

2
+

1
5π

(−4) sin
5πt

2

)
+

(
1

6π
(−2) sin 3πt

)
+

(
2

49π2 (2) cos
7πt

2
+

1
7π

(−4) sin
7πt

2

)
+

(
1

8π
(−2) sin 4πt

)
.

(19)

Figure 4 presents the graphs of the expansion of I(t) into the Fourier series, taking
into account from 3 to 8 terms in (16), respectively.

Figure 4. Visualization when increasing the terms of the Fourier series (from three members of the
series to eight) as a function of the intensity of cyber attacks on damage to standard software.
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Therefore, constant continuous monitoring and timely conduction of cyber regulatory
control of the enterprise makes it possible to effectively ensure the cybersecurity of the
enterprise in real time—predicting the emergence of cyber threats, to some extent—which,
in turn, determines the management of cyber risks arising in the field of information
security of the enterprise.

Such a Fourier series expansion of the piecewise continuous analytical approximating
function of the intensity of cyber attacks on damage to standard software, obtained by
approximating empirical–statistical slices of the intensity of cyber attacks on damage to
standard software for each time period by analytical functions, opens up new mathematical
possibilities of transition to systems of regulatory control of cyber threats of the enterprise
from a discrete to a continuous automated process of regulatory control.

Figure 5 presents a graphical interpretation of the approximation of the time series
of the intensity of cyber attacks on e-mail damage by analytical functions with averaged
values for each time period.

Figure 5. Dependence of the intensity of cyber attacks on e-mail damage on the frequency of
regulatory control over 4 time intervals.

In view of the homogeneity of the behavior of the intensity of cyber attacks in each
time period, the approximation of the statistical slices of the intensity of cyber attacks on
e-mail damage for each period was carried out using analytical functions (Table 3).

Table 3. Approximation of time series of the intensity of cyber attacks on e-mail damage by analytical
functions.

Time Period
An Equation of the

Approximating Function on
the Interval (0; 1)

Coefficient of Determination

1st period I(t) = −1.0754t2 + 4.9954t 0.7942
2nd period I(t) = −0.99164t2 + 5.0127t 0.8184
3rd period I(t) = −1.0032t2 + 5.0073t 0.8532
4th period I(t) = −1.0116t2 + 5.0096t 0.8258

Based on the data given in Table 3, it is possible to present analytically the function
of the intensity of cyber attacks on e-mail damage, combining all periods in view of the
standard cyclicality in each period. Then, analytically, the function of the intensity of cyber
attacks can be represented as

I(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−t2 + 5t, 0 ≤ t < 1,
−(t− 1)2 + 5(t− 1), 1 ≤ t < 2,
−(t− 2)2 + 5(t− 2), 2 ≤ t < 3,
−(t− 3)2 + 5(t− 3), 3 ≤ t ≤ 4.

(20)

Let us write the Fourier series for Function (20) only on the first interval, the graph
of which is shown in Figure 6, since periodicity is performed on the other intervals. This
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will make it possible to move the system of regulatory control of cyber attacks on damage
to standard enterprise software from a discrete to a continuous automated process of
regulatory control.

Figure 6. Analytical function of the intensity of cyber attacks on e-mail damage in the first time
period.

Let us find the coefficients of the Fourier series for the function
f (t) = −t2 + 5t, t ∈ [0; 1].

The Fourier series expansion on the interval (−T; T) has the form

f (t) =
a0

2
+

∞

∑
n=1

(
an cos

πnt
T

+ bn sin
πnt

T

)
, (21)

a0 =
1
T

∫ T

−T
f (t)dt, (22)

an =
1
T

∫ T

−T
f (t)× cos

πnt
T

dt, (23)

bn =
1
T

∫ T

−T
f (t)× sin

πnt
T

dt. (24)

In our case, T = 1; so,

a0 =
∫ 1

0
(−t2 + 5t)dt =

(
− t3

3
+

5t2

2

)
|10 =

13
6
− 0 =

13
6

, (25)

an =
∫ 1

0
(−t2 + 5t)× (cos πnt)dt

=

[
−t2 sin(πnt)

πn
+ 5t

sin(πnt)
πn

− 2t
cos(πnt)

π2n2 + 5
cos(πnt)

π2n2 + 2
sin(πnt)

π3n3

]
|10

=

[
4

sin(πn)
πn

+ 3
cos(πn)

π2n2 + 2
sin(πn)

πn
− 5

π2n2

]
=

3(−1)n − 5
π2n2 ,

(26)

bn =
∫ 1

0
(−t2 + 5t)× sin(πnt)dt

=

[
−t2 cos(πnt)

πn
− 5t

cos(πnt)
πn

− 2t
sin(πnt)

π2n2 + 5
sin(πnt)

π2n2 − 2
cos(πnt)

π3n3

]
|10

=

[
−4

cos(πn)
πn

+ 3
sin(πn)

π2n2 − 2
cos(πn)

π3n3 −
(
− 2

π3n3

)]
= 2

−2(−1)nπ2n2 − (−1)n + 1
π3n3 .

(27)
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Hence, for even numbers n (n = 2k), we have bn = 0, and for odd n (n = 2k− 1),

bk =
4π2(2k− 1)2 + 4

π3(2k− 1)3 . (28)

Thus, we have

f (t) =
13
12

+
∞

∑
k=1

[
3(−1)k − 5

π2k2 × cos(πkt) +
4π2(2k− 1)2 + 4

π3(2k− 1)3 × sin(π(2k− 1)t)

]
. (29)

Figures 7–9 present graphs of the expansion of Function (20) on the interval (0;1) into
the Fourier series, taking into account 3, 5, or 7 terms of the series, respectively.

Figure 7. Expansion of the function of the intensity of e-mail cyber attacks in the Fourier series (29)
for k = 1.

Figure 8. Expansion of the function of the intensity of e-mail cyber attacks in the Fourier series (29)
for k = 2.

Figure 9. Expansion of the function of the intensity of e-mail cyber attacks in the Fourier series (29)
for k = 3.
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Figure 7 shows the graph of the function

f (t) =
13
12
− 8 cos(πt)

π2 +
(

4 + 4π2
)
× sin(πt)

π3 , (30)

which is obtained from (29) for k = 1 on the interval (0, 1).
Figure 8 shows the graph of the function

f (t) =
13
12
− 8 cos(πt)

π2 +
(

4 + 4π2
)
× sin(πt)

π3 − cos(2πt)
2π2 +

(
4 + 36π2

)
× sin(3πt)

27π3 , (31)

which is obtained from (29) for k = 2 on the interval (0, 1).
Figure 9 shows the graph of the function

f (t) =
13
12
− 8 cos(πt)

π2 +
(

4 + 4π2
)
× sin(πt)

π3 − cos(2πt)
2π2

+
(

4 + 36π2
)
× sin(3πt)

27π3 − 8 cos(3πt)
9π2 +

(
4 + 100π2

)
× sin(5πt)

125π3 ,
(32)

which is obtained from (29) for k = 3 on the interval (0, 1).
Therefore, with an increase in the number of terms of the Fourier series, the function

will be continuous periodic in approximation to the piecewise continuous function, which
enables constant continuous automated monitoring and timely conduction of cyber reg-
ulatory control of the enterprise in relation to e-mail attacks, which effectively ensures
real-time cybersecurity of the enterprise.

This is due to the fact that information systems are widely implemented and used for
processing, storing, and transmitting information, which, in turn, has led to the need to
protect information systems, since information attacks can cause large financial and material
losses. Auditing and monitoring serve to develop effective measures to ensure information
security in enterprises, organizations, and institutions. With the help of an information
security audit, the collection and analysis of information is carried out with regard to the
information system being checked. It is conducted for the purpose of quantitative as well as
qualitative assessment of the level of protection of the information system against possible
attacks by intruders. The audit itself can provide an objective assessment of the security of
any type of enterprise or institution, as well as prevent the realization of potential threats.
The release of the company’s products at the international level is not possible without
the implementation of international and industry standards, such as ISO/IEC 27001:2013
“Information security management systems. Requirements”, ITU-T X-1051 “Information
security management systems. Requirements for telecommunications”, as well as ISO/IEC
27035:2011 “Information technology. Security techniques. Information security incident
management”.

One of the most common types of audit is an active audit. It consists in studying
the state of security of the information system from the point of view of an attacker (or
an attacker with high IT skills). Active audits can be conditionally divided into two
types—external and internal. Also, during an active audit, a study of system performance
and stability, or stress test, is carried out. It is aimed at determining the critical load
points at which the system, due to a denial-of-service attack or increased load, ceases to
respond adequately to legitimate (defined by the security policy) user requests. The stress
test will allow to identify “bottlenecks” in the process of formation and transmission of
information and to determine the conditions under which normal operation of the system
is impossible. Such testing involves simulating denial-of-service attacks as user requests to
the system and conducting a general analysis of its performance. The result of an active
audit is information about all vulnerabilities, degrees of their criticality and elimination
methods, and information about publicly available information (information available to
any potential violator) of the customer’s network. Based on the results of an active audit,
recommendations are provided for the modernization of the network protection system,
which make it possible to eliminate dangerous vulnerabilities and, thus, increase the level
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of protection of the company’s information system against the actions of an intruder with
minimal costs for information security. It should be noted that the information security
management system (ISMS) is a part of the overall management system, which is based on
the assessment of business risks in order to create, implement, operate, constantly monitor,
analyze, maintain, and improve the protection of information.

4. Conclusions

Constant continuous monitoring and regulatory control of enterprise’s cyber threats
provides management with key real-time information about the enterprise’s cybersecurity
efficiency, allowing not only to better understand problems when they occur but also to
predict their occurrence, which improves the ability to manage risks and opportunities.

Note that the enterprise’s comprehensive information security system should include
both tactical aspects of information protection and strategic priorities, which are reflected
in the information policy and information strategy of the enterprise.
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Abstract: In this paper, we derive some classical and fractional properties of the rRs matrix function
by using the Hilfer fractional operator. The theory of special matrix functions is the theory of
those matrices that correspond to special matrix functions such as the gamma, beta, and Gauss
hypergeometric matrix functions. We will also show the relationship with other generalized special
matrix functions in the context of the Konhauser and Laguerre matrix polynomials.
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1. Introduction

Matrix functions are an important mathematical tool, not only in mathematics, but
also in several fundamental disciplines like physics, engineering, and applied sciences.
Special matrix functions are used in a variety of fields including statistics [1,2], but also
in probability theory, physics, engineering [3,4], and Lie theory [2]. In particular, Jódar
and Cortés [5,6], at the beginning of this century, initiated the investigation into the ma-
trix analogs of the gamma, beta, and Gauss hypergeometric functions, thus giving the
foundation of the theory of special matrix functions. Indeed, in [7], it is shown that the
Gauss hypergeometric matrix function is the analytic solution of the hypergeometric matrix
differential equation. Dwivedi and Sahai expanded their studies on one of the variable
special matrix functions to include n variables [8,9]. In [10], this topic is discussed, in detail,
in an extended work on the Appell matrix functions. The matrix analogs of the Appell
functions and Lauricella functions of several variables were studied in [10,11].

Polynomials of one or more variables are introduced and investigated from a matrix
perspective in [12–14]. Cetinkaya [15] introduced and studied the incomplete second
Appell hypergeometric functions together with their properties.

Jódar and Cortés [6] defined the region of convergence and the integral representation
of the Gauss hypergeometric matrix function by using the matrix parameters represented
by 2F1(A; B; C; z). The generalized hypergeometric matrix function, abbreviated to pFq, is a
natural generalization of the Gauss hypergeometric matrix function [16].

In particular, the hypergeometric matrix function plays a fundamental role in the
solution of numerous problems in mathematical physics, engineering, and mathematical
sciences [17,18].

The multidisciplinary applications of fractional order calculus have dominated recent
advances in the subject. Without a doubt, fractional calculus has emerged as an exciting
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new mathematical approach to solving problems in engineering, mathematics, physics
models, and many other fields of science (see, for example, [19–21]).

Because of their utility and applications in a variety of research fields, the fractional
integrals associated with special matrix functions and orthogonal matrix polynomials have
been recently receiving attention (see, for example, [22–28]).

The main goal of this paper is to investigate the analytical and fractional integral
properties of the rRs matrix function. This function is a combination of the generalized
Mittag–Leffler function [29–31] and the generalized hypergeometric function; it is useful in
many topics of mathematical analysis, fractional calculus, and statistics (see e.g., [32–36],
as well as in the field of free-electron laser equations [19,37] and fractional kinetic equa-
tions [38].

In this paper, we will discuss the convergence of the matrix function rRs, as well
as its analytic properties (type and order) that have certain integral representations and
applications. The organization of this paper is as follows. Section 1 introduces the theory of
matrix functions and includes some preliminary notes and definitions. In Section 2, we use
the ratio test with perturbation lemma [39] to prove the convergence of the matrix function
rRs. Section 3 presents a new Theorem 2 for obtaining the properties of the rRs matrix
function via Stirling’s formula for the logarithm of the gamma function, including analytic
properties (type and order). Section 4 discusses some contiguous relations, differential
properties, matrix recurrence relations, and the matrix differential equation of the rRs
function that shows new theorems. Section 5 discusses some integral representations of
the rRs matrix function, as well as the generalized integral representation (see, Theorem 8),
which involves some special cases that are related to integral representations, such as the
Euler-type, Laplace transform, and the Riemann–Liouville fractional derivative operator
of the rRs matrix function. In the final section, we discuss the fundamental properties
of the rRs matrix function, as well as certain special cases, such as Laguerre and Kon-
hauser matrix polynomials, the Mittag–Leffler matrix function, and the generalized Wright
matrix function.

Preliminary Remarks

Throughout this paper, for a matrix A in CN×N , its spectrum σ(A) denotes the set of
all eigenvalues of A. The two-norm will be denoted by ||A||2, and it is defined by (see [5,6])

||A||2 = sup
x 	=0

||Ax||2
||x||2

,

where for a vector x in CN , ||x||2 = (xTx)
1
2 is the Euclidean norm of x. Let us denote the

real numbers M(A) and m(A) as in the following

M(A) = max{Re(z) : z ∈ σ(A)}; m(A) = min{Re(z) : z ∈ σ(A)}. (1)

If f(z) and g(z) are holomorphic functions of the complex variable z, as defined in
an open set Ω of the complex plane, and A and B are matrices in CN×N with σ(A) ⊂ Ω
and σ(B) ⊂ Ω, such that AB = BA, then it follows from the matrix functional calculus
properties in [5,6] that

f(A)g(B) = g(B)f(A).

Throughout this study, a matrix polynomial of degree � in x means an expression of
the form

P�(x) = A�x� + A�−1x�−1 + . . . + A1x + A0,
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where x is a real variable or complex variable Aj for 0 < j < �, and A� 	= 0 are complex
matrices in CN×N , where 0 is the null matrix in CN×N .

We recall that the reciprocal gamma function, denoted by Γ−1(z) = 1
Γ(z) , is an entire

function of the complex variable z, and thus Γ−1(A) is a well defined matrix for any matrix
A in CN×N . In addition, if A is a matrix, then

A + �I is an invertible matrix for all integers � ≥ 0, (2)

where I is the identity matrix in CN×N . Then, from [5], it follows that

(A)� = A(A + I) . . . (A + (�− 1)I) = Γ(A + �I)Γ−1(A) ; � ≥ 1 ; (A)0 = I. (3)

If � is large enough so that for � > ‖B‖, then we will mention the following relation,
which exists in Jódar and Cortés [6,7], in the form

‖(B + �I)−1‖ ≤ 1
�− ‖B‖ ; � > ‖B‖. (4)

If A(�, n) and B(�, n) are matrices in CN×N for n ≥ 0 and � ≥ 0, then it follows, in a
manner analogous to the proof of Lemma 11 [5], that

∞

∑
n=0

∞

∑
�=0

A(�, n) =
∞

∑
n=0

[ 1
2 n]

∑
�=0

A(�, n− 2�),

∞

∑
n=0

∞

∑
�=0

B(�, n) =
∞

∑
n=0

n

∑
�=0

B(�, n− �).

(5)

According to (5), we can write

∞

∑
n=0

[ 1
2 n]

∑
�=0

A(�, n) =
∞

∑
n=0

∞

∑
�=0

A(�, n + 2�),

∞

∑
n=0

n

∑
�=0

B(�, n) =
∞

∑
n=0

∞

∑
�=0

B(�, n + �).

(6)

Hypergeometric matrix function 2F1(A, B; C; z) is given in the following form:

2F1(A, B; C; z) =
∞

∑
�=0

(A)�(B)�[(C)�]−1

�!
z�, (7)

for A, B, and C matrices in CN×Nm such that C + �I is an invertible matrix for all integers
� ≥ 0 and for |z| < 1. Jódar and Cortés [6,7] observed that this series is absolutely
convergent for |z| = 1 when

m(C) > M(A) + M(B),

where m(Q) and M(Q) in (1) are for any matrix Q in CN×N .
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Definition 1. As p and q are finite positive integers, the generalized hypergeometric matrix
function is defined as (see [16])

pFq(A1, A2, . . . , Ap; B1, B2, . . . , Bq; z)

=
∞

∑
�=0

z�

�!
(A1)�(A2)� . . . (Ap)�[(B1)�]

−1[(B2)�]
−1 . . . [(Bq)�]

−1

=
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ q

∏
j=1

(Bj)�

]−1

,

(8)

where Ai; 1 ≤ i ≤ p and Bj; 1 ≤ j ≤ q are matrices in CN×N such that

Bj + �I are invertible matrices for all integers � ≥ 0. (9)

1. If p ≤ q, then the power series (8) converges for all finite z.
2. If p > q + 1, then the power series (8) diverges for all z, z 	= 0.
3. If p = q + 1, then the power series (8) is convergent for |z| < 1 and diverges for |z| > 1.
4. If p = q + 1, then the power series (8) is absolutely convergent for |z| = 1 when

q

∑
j=1

m(Bj) >
p

∑
i=1

M(Ai). (10)

5. If p = q + 1, then the power series (8) is conditionally convergent for |z| = 1 when
p

∑
i=0

M(Ai)− 1 <
q

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai). (11)

6. If p = q + 1, then the power series (8) diverges from |z| = 1 when
q

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai)− 1 (12)

where M(Ai) and m(Bj) are as defined in (1).

2. Definition and Convergence Conditions for the rRs(P, Q, z) Matrix Function

This section discusses the convergence properties of the rRs matrix function.

Definition 2. Let us suppose that P, Q, Re(P) > 0, Re(Q) > 0, Ai; Re(Ai) > 0, 1 ≤ i ≤ r and
Bj; Re(Bj) > 0, 1 ≤ j ≤ s are matrices in CN×N such that

Bj + �I are invertible matrices for all integers � ≥ 0, (13)

where r and s are finite positive integers. The matrix function rRs(P, Q, z) is then defined as

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; z)

=
∞

∑
�=0

z�

�!
(A1)�(A2)� . . . (Ar)�[(B1)�]

−1[(B2)�]
−1 . . . [(Bs)�]

−1Γ−1(�P + Q)

=
∞

∑
�=0

z�

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q) =
∞

∑
�=0

W�,

(14)

where W� =
z�
�! ∏r

i=1(Ai)�

[
∏s

j=1(Bj)�

]−1

Γ−1(�P + Q).

We will now investigate the convergence properties of the rRs(P, Q, z), where one
obtains
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1
R

= lim sup
�→∞

(‖U�‖)
1
� = lim

�→∞
sup

(∥∥∥∥∏r
i=1(Ai)�[∏

s
j=1(Bj)�]

−1Γ−1(�P + Q)

�!

∥∥∥∥
) 1

�

= lim sup
�→∞

∥∥∥∥ r

∏
i=1

√
2πe−(Ai+�I)(Ai + �I)Ai+�I− 1

2 I
( s

∏
j=1

√
2πe−(Bj+�I)(Bj + �I)Bj+�I− 1

2 I
)−1

(√
2πe−(�P+Q)(�P + Q)�P+Q− 1

2 I
)−1 ∏r

i=1 Γ−1(Ai)∏s
j=1 Γ(Bj)

√
2πe−�−1��+

1
2

∥∥∥∥ 1
�

= lim sup
�→∞

∥∥∥∥ r

∏
i=1

√
2πe−(Ai+�I)(Ai + �I)Ai+�I− 1

2 I
(√

2πe−Ai (Ai)
Ai− 1

2 I
)−1

s

∏
j=1

1√
2π

e(Bj+�I)(Bj + �I)−Bj−�I+ 1
2 I
(

1√
2π

e(Bj)(Bj)
−Bj+

1
2 I
)

1√
2π

e(�P+Q)(�P + Q)−�P−Q+ 1
2 I 1
√

2πe−�−1��+
1
2

∥∥∥∥ 1
�

≈ lim sup
�→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

eBj+�I+�P+Q−Ai−�I+�I−Bj+Ai (Ai + �I)Ai+�I− 1
2 I(Bj + �I)−Bj−�I+ 1

2 I

(�P + Q)−�P−Q+ 1
2 I�−�−

1
2

∥∥∥∥ 1
�

≈ lim sup
�→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

e�P+Q+�I(Ai + �I)Ai+�I− 1
2 I(Bj + �I)−Bj−�I+ 1

2 I(�P + Q)−�P−Q+ 1
2 I�−�−

1
2

∥∥∥∥ 1
�

≈ ‖eP+I‖ lim sup
�→∞

∥∥∥∥ r

∏
i=1

s

∏
j=1

(Ai + �I)(Bj + �I)−1(�P + Q)−P

�

∥∥∥∥
∥∥∥∥(Ai + �I)Ai− 1

2 I(Bj + �I)−Bj+
1
2 I(�P + Q)−Q+ 1

2 I�−
1
2

∥∥∥∥ 1
�

.

The last limit shows that:

1. If r ≤ s + 1, then the power series in (14) converges for all finite z.
2. If r = s + 2, then the power series in (14) converges for all |z| < 1 and diverges for all

|z| > 1.
3. If r > s + 2, then the power series in (14) diverges for z 	= 0.

The above definition of the rRs(P, Q, z) matrix function can be referred to in reference
to [40], whereby the different method is taken into consideration by being used in proving
it is based on the perturbation lemma [39] and ratio test detailed in this paper.

As an analog to Theorem 3 in [6], we can state the following:

Theorem 1. 1. If r = s + 2, then the power series in (14) is absolutely convergent on the circle
|z| = 1 when

s

∑
j=1

m(Bj)−
r

∑
i=1

M(Ai) > 0. (15)

2. If r = s + 2, then the power series (14) is conditionally convergent for |z| = 1 when
r

∑
i=0

M(Ai)− 1 <
s

∑
j=0

m(Bj) ≤
p

∑
i=0

M(Ai). (16)

3. If r = s + 2, then the power series (14) diverges from |z| = 1 when
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s

∑
j=0

m(Bj) ≤
r

∑
i=0

M(Ai)− 1 (17)

where M(Ai); 1 ≤ i ≤ r and m(Bj); 1 ≤ j ≤ s are defined in (1).

Thus, rRs is an entire function of z when ‖P + I‖ > 0.

Remark 1. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s be matrices in CN×N that satisfy (13), and where
all matrices are commutative. As such, P = Q = A1 = I in (14) reduces to

rRs(I, A2, . . . , Ap; B1, B2, . . . , Bs; I, I; z)

=
∞

∑
�=0

z�

k!

p

∏
i=2

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(kP + Q) =
∞

∑
�=0

W�

= r−1Fs(A2, . . . , Ap; B1, B2, . . . , Bs; z)

(18)

where r−1Fs is the generalized hypergeometric matrix function detailed in (8).

3. Order and Type of the rRs(P, Q, z) Matrix Function

In this section, we obtain the properties of the rRs matrix function, including its
analytic properties (type and order).

Theorem 2. Let Ai; 1 ≤ i ≤ r, Bj; 1 ≤ j ≤ s, P and Q be matrices in CN×N that satisfy (13),
and where all matrices are commutative. Then, the rRs matrix function is an entire function of
variable z of the order ρ = ‖(P + I)−1‖ and type τ = ‖(P + I)P−P(P+I)−1‖.

Proof. In applying Stirling’s formula of the gamma matrix function, we obtain

Γ(A) ≈
√

2πe−A AA− 1
2 I , (19)

which recovers Stirling’s formula:

�! ≈
√

2π�

(
�

e

)�

, (20)

and which uses the asymptotic expansion

ln Γ(A) ≈ ln
√

2πI − A + (A− 1
2

I) ln(A)

≈ 1
2

ln(2π)I − A + (A− 1
2

I) ln(A)

(21)

To evaluate the order, we apply Stirling’s asymptotic formula for a large �, and the logarithm
of the gamma function Γ(�+ 1) is set at infinity as follows:

ρ( rRs) = lim sup
�→∞

∥∥∥∥ � ln(�)
ln( 1

U�
)

∥∥∥∥ = lim sup
�→∞

∥∥∥∥ � ln(�)
ln(�! ∏s

j=1(Bj)�Γ(�P + Q)[∏r
i=1(Ai)�]−1)

∥∥∥∥
= lim sup

�→∞

∥∥∥∥ � ln(�)
ln(�! ∏s

j=1 Γ(Bj + �I)Γ−1(Bj)Γ(�P + Q)∏r
i=1 Γ−1(Ai + �I)Γ(Ai))

∥∥∥∥
= lim sup

�→∞

∥∥∥∥ 1
Ψ

∥∥∥∥ =

∥∥∥∥(P + I)−1
∥∥∥∥,

(22)

where
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Ψ =
r

∏
i=1

s

∏
j=1

ln Γ(�+ 1)I + ln Γ(Ai)− ln Γ(Ai + �I) + ln Γ(Bj + �I)− ln Γ(Bj)− ln Γ(�P + Q)

� ln(�)

=
r

∏
i=1

s

∏
j=1

1
2

ln(2π�)

� ln(�)
I +

� ln(�)
� ln(�)

I − � ln(e)
� ln(�)

I

+
1
2

ln(2π(Bj + �I))
� ln(�)

+
(Bj + �I) ln(Bj + �I)

� ln(�)
−

(Bj + �I) ln(e)
� ln(�)

− 1
2

ln(2π(Bj))

� ln(�)
−

Bj ln(Bj)

� ln(�)
+

Bj ln(e)
� ln(�)

+
1
2

ln(2π(�P + Q))

� ln(�)
+

(�P + Q) ln(�P + Q)

� ln(�)
− (�P + Q) ln(e)

� ln(�)

+
1
2

ln(2π(Ai))

� ln(�)
+

Ai ln(Ai)

� ln(�)
− Ai ln(e)

� ln(�)

− 1
2

ln(2π(Ai + �I))
� ln(�)

− (Ai + �I) ln(Ai + �I)
� ln(�)

+
(Ai + �I) ln(e)

� ln(�)
.

Thus, we obtain the order ρ =

∥∥∥∥(P + I)−1
∥∥∥∥.

We obtain the asymptotic estimate for Γ(�P + Q) and Γ(�+ 1) by repeatedly applying
the asymptotic formula for the logarithm of the gamma function:

τ =τ( rRs) =
1
eρ

lim sup
�→∞

∥∥∥∥�(U�

) ρ
�
∥∥∥∥ =

1
eρ

lim sup
�→∞

∥∥∥∥�(∏r
i=1(Ai)�[∏

s
j=1(Bj)�]

−1Γ−1(�P + Q)

�!

) ρ
�
∥∥∥∥

=
1
eρ

lim sup
�→∞

�

∥∥∥∥ r

∏
i=1

s

∏
j=1

√
2πe−(Ai+�I)(Ai + �I)Ai+�I− 1

2 I
(√

2πe−(Bj+�I)(Bj + �I)Bj+�I− 1
2 I
)−1

(√
2πe−(�P+Q)(�P + Q)�P+Q− 1

2 I
)−1 Γ−1(Ai)Γ(Bj)√

2πe−���+
1
2

∥∥∥∥
ρ
�

≈
1
eρ

lim sup
�→∞

�

∥∥∥∥ r

∏
i=1

s

∏
j=1

eBj+�I+�P+Q−Ai−�I+�I(Ai + �I)Ai+�I− 1
2 I(Bj + �I)−Bj−�I+ 1

2 I

(�P + Q)−�P−Q− 1
2 I�−�−

1
2

∥∥∥∥
ρ
�

≈
1
eρ

∥∥∥∥e(P+I)ρ
∥∥∥∥ lim sup

�→∞
�

∥∥∥∥ r

∏
i=1

s

∏
j=1

(Ai + �I)Ai− 1
2 I(Ai + �I)�(Bj + �I)−Bj+

1
2 I(Bj + �I)−�

(�P + Q)−Q− 1
2 I(�P + Q)−�P�−�−

1
2

∥∥∥∥
ρ
�

≈
1
eρ

∥∥∥∥e(P+I)ρP−P(P+I)−1
∥∥∥∥ =

∥∥∥∥(P + I)P−P(P+I)−1
∥∥∥∥.

Finally, we arrive at the type of function τ =

∥∥∥∥(P + I)P−P(P+I)−1
∥∥∥∥.

4. Contiguous Function Relations

The contiguous function relations and differential property of the rRs matrix function
are established in this section.

Assume that Ai(i = 1, 2, . . . , r) and Bj(j = 1, 2, . . . , s) have no integer eigenvalues for
those matrices that commute with one another. The relation Ai(Ai + I)� = (Ai + kI)(Ai)�,
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when combined with the definitions of the matrix contiguous function relations, yields the
following formulas:

rRs(A1+) =
∞

∑
�=0

z�

n!
(A1 + I)�(A2)� . . . (Ar)�[(B1)�]

−1[(B2)�]
−1 . . . [(Bs)�]

−1Γ−1(�P + Q)

=
∞

∑
�=0

(A1 + �I)
(

A1

)−1

W�(z).

(23)

Similarly, we obtain

rRs(Ai+) =

(
Ai

)−1 ∞

∑
�=0

(Ai + �I)W�(z),

rRs(Ai−) = (Ai − I)
∞

∑
�=0

(
Ai + (�− 1)I

)−1

W�(z),

rRs(Bj+) = (Bj)
∞

∑
�=0

(
Bj + �I

)−1

W�(z),

rRs(Bj−) =
(

Bj − I
)−1 ∞

∑
�=0

(Bj + (k− 1)I)W�(z).

(24)

For all integers n ≥ 1, we deduce that:

rRs(Ai + nI) =
n

∏
k=1

(
Ai + (k− 1)I

)−1 ∞

∑
�=0

n

∏
k=1

(Ai + (�+ k− 1)I)W�(z),

rRs(Ai − nI) =
n

∏
k=1

(Ai − kI)
∞

∑
�=0

n

∏
k=1

(
Ai + (�− k)I

)−1

W�(z),

rRs(Bj + nI) =
n

∏
k=1

(Bj + (k− 1)I)
∞

∑
�=0

n

∏
k=1

(
Bj + (�+ k− 1)I

)−1

W�(z),

rRs(Bj − nI) =
n

∏
k=1

(
Bj − kI

)−1 ∞

∑
�=0

n

∏
k=1

(Bj + (�− k)I)W�(z).

(25)

Remark 2. If we apply the above results for (25), we obtain the contiguous relations for the
generalized hypergeometric matrix function [16].

Theorem 3. Let A, B, P, and Q be commutative matrices in CN×N that satisfy the condition (13).
Then, the following recursion formulas hold true for rRs

rRs =

(
θP + Q

)
rRs(Q + I), (26)

where θ = z d
dz .
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Proof. Starting with the right hand side, we have

Q rRs(Q + I) + zP
d
dz rRs(Q + I)

= Q rRs(Q + I) + zP
[ ∞

∑
�=0

�z�−1

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + I)
]

= Q rRs(Q + I) +
∞

∑
�=0

(�P + Q)z�

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q)(�P + Q)−1

−Q
∞

∑
�=0

z�

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + I)
]

=
∞

∑
�=0

z�

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q) = rRs.

Remark 3. For further specific values of the parameters in (26), we obtain the contiguous relations
for the generalized hypergeometric matrix function [16].

Theorem 4. The rRs matrix function has the following differential property:(
d
dz

)κ[
zQ−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; czP)

]
= zQ−(κ+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , BsP, Q− κI; czP).

(27)

Proof. By differentiating term by term under the sign of summation in (14), we obtain the
result (27).

Theorem 5. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s, P, and Q be matrices in CN×N that satisfy
(13), and where all matrices are commutative, then the following recurrence matrix relation for rRs
matrix function holds true:

θ
s

∏
j=1

(θ I + Bj − I) rRs − z
r

∏
i=1

(θ I + Ai) rRs(Q + P) = 0, (28)

where 0 is the null matrix in CN×N.

Proof. Consider the differential operator θ = z d
dz , Dz =

d
dz , θz� = �z�. For the matrices that

commute with one another, we thus have

θ
s

∏
j=1

(θ I + Bj − I) rRs =
∞

∑
�=1

� z�

�!

s

∏
j=1

(�I + Bj − I)
r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q)

=
∞

∑
�=1

z�

(�− 1)!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�−1

]−1

Γ−1(�P + Q).

When � is replaced by �+ 1, we have

θ
s

∏
j=1

(θ I + Bj − I) rRs =
∞

∑
�=0

z�+1

�!

r

∏
i=1

(Ai)�+1

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + P)

= z
r

∏
i=1

(θ I + Ai) rRs(Q + P).
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Theorem 6. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s, P, and Q be commutative matrices in CN×N

that satisfy the condition (13), and where all matrices are commutative. Then, the rRs matrix
function satisfies the matrix differential equation

rRs(P, Q + (μ + 1)I, z)− rRs(P, Q + (μ + 2)I, z) = z2P2 d2

dz2 rRs(P, Q + (μ + 3)I, z)

+ zP(P + 2I + 2(Q + μI))
d
dz rRs(P, Q + (μ + 3)I, z)

+ (Q + νI)(Q + (μ + 2)I) rRs(P, Q + (μ + 3)I, z).

(29)

Proof. In using the fundamental relation of the gamma matrix function Γ(A + I) = AΓ(A)
in (2), we have

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 1)I; z)

=
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

(�P + Q + μI)−1Γ−1(�P + Q + μI).
(30)

Similarly, we find

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 2)I; z)

=
∞

∑
�=0

(
(�P + Q + μI)−1 − (�P + Q + (μ + 1)I)−1

)
z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 1)I; z)

−
∞

∑
�=0

(�P + Q + (μ + 1)I)−1 z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI).

(31)

Next, we denote the last term of (31) by L, which can be written as follows:

L =
∞

∑
�=0

(�P + Q + (μ + 1)I)−1 z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 1)I; z)

− rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 2)I; z).

(32)

The sum L can be expressed as
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L =
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

(�P + Q + μI)Γ−1(�P + Q + (μ + 3)I)

+
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

(�P + Q + μI)(�P + Q + (μ + 1)I)Γ−1(�P + Q + (μ + 3)I)

=P
∞

∑
�=0

�z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

+(Q + μI)
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

+P2
∞

∑
�=0

�2z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

+(2Q + (2μ + 1)I)P
∞

∑
�=0

�z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

+(Q + μI)(Q + (μ + 1)I)
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I).

(33)

On evaluating each term on the R.H.S. of Equation (33), we have

d2

dz2

(
z2

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)
)

=
∞

∑
�=0

(�+ 1)(�+ 2)z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

or

z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

+ 4z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

=
∞

∑
�=0

�2z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

+3
∞

∑
�=0

�z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I).

(34)

Similarly, we have

d
dz

(
z rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

)
=

∞

∑
�=0

(�+ 1)z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

or

z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

+
∞

∑
�=0

�z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I).
(35)

110



Axioms 2023, 12, 817

Therefore, from (34) and (35), we obtain

∞

∑
�=0

�2z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + (μ + 3)I)

=z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

+ z
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z).

(36)

By taking into account (33), (34) and (36), we have

L =P2z2 d2

dz2 rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

+ z(P2 + P + (2Q + (2μ + 1)I)P)
d
dz rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z)

+ (Q + μI + (Q + μI)(Q + (μ + 1)I)) rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 3)I; z).

(37)

By substituting the equation in (37) and taking into account (37) and (32), we yield the
desired proof.

5. Integrals Involving the rRs Matrix Function

Here, we establish the integral representations and differential property of the rRs
matrix function, whereby its integrals that involve relationships with other well-known
fractional calculus and special functions are accounted for.

The integral representations of the rRs matrix function in [6] can be extended to yield
the following result:

Theorem 7. Let Ai; 1 ≤ i ≤ r and Bj; 1 ≤ j ≤ s be matrices in CN×N such that Bj + �I are
invertible matrices for all integers � ≥ 0. Suppose that Ai, Bj, and Bj − Ai are positive stable
matrices. If r ≤ s + 2 for |z| < 1, then we have

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z)

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

× r−1Rs−1

(
A1, . . . , Ai−1, Ai+1 . . . , Ar;
B1, . . . , Bj−1, Bj+1 . . . , Bs

; P, Q, zt
)

.

(38)

Proof. By definition of the pochammar matrix symbol (3) for Re(B1) > Re(A1) > 0, as
well as by using the integral definition of the beta matrix function, we obtain

(Ai)�[
(

Bj
)
�
]−1 = Γ−1(Ai)Γ−1(Bj − Ai

)
Γ
(

Bj
) ∫ 1

0
tAi+(�−1)I(1− t)Bj−Ai−Idt
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where AiBj = Bj Ai. Also, we have

rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs;

z
)

=
∞

∑
�=0

z�

k!
(A1)� . . . (Ai−1)�(Ai+1)� . . . (Ar)�[(B1)�]

−1 . . . [
(

Bj−1
)
�
]−1[

(
Bj+1

)
�
]−1

. . . [(Bs)�]
−1 × Γ−1(Ai)Γ−1(Bj − Ai

)
Γ
(

Bj
) ∫ 1

0
tAi+(n−1)I(1− t)Bj−Ai−Idt

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

×
∞

∑
�=0

(zt)�

k!
(A1)� . . . (Ai−1)�(Ai+1)� . . . (Ar)�

[(B1)�]
−1 . . . [

(
Bj−1

)
�
]−1[

(
Bj+1

)
�
]−1 . . . [(Bs)�]

−1dt

= Γ−1(Ai)Γ−1(Bj − Ai
)
Γ
(

Bj
) ∫ 1

0
tAi−I(1− t)Bj−Ai−I

× r−1Rs−1

(
A1, . . . , Ai−1, Ai+1, . . . , Ar;
B1, . . . , Bj−1, Bj+1, . . . , Bs;

zt
)

dt.

Remark 4. If A1 = P = Q = I in (38), we obtain the results for the generalized hypergeometric
matrix functions [16].

Theorem 8. The following integral representation holds true:∫ 1

0
tQ+μI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 1)I; 1)− rRs(A1, A2, . . . , Ap;

B1, B2, . . . , Bs; P, Q + (μ + 2)I; 1).

(39)

Proof. By putting z = 1 in (31), we obtain

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 2)I; 1)

= rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + (μ + 1)I; 1)

−
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

(�P + Q + (μ + 1)I)−1Γ−1(�P + Q + μI).
(40)

One can observe that

zQ+μI
rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + μI; zP)

=
∞

∑
�=0

z�P+Q+μI

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI).

On integrating both sides with respect to z, this yields∫ z

0
tQ+μI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

=
∞

∑
�=0

1
�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI)
∫ z

0
t�P+Q+μIdt

=
∞

∑
�=0

1
�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI)(�P + Q + (μ + 1)I)−1z�P+Q+(μ+1)I .

(41)
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By putting z = 1 in (41), we obtain∫ 1

0
tQ+μI

rRs(A1, A2, . . . , Ap; B1, B2, . . . , Bs; P, Q + νI; tP)dt

=
∞

∑
�=0

1
�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + μI)(�P + Q + (μ + 1)I)−1.
(42)

Taking into account the work of (40) and (42), one can obtain the equation detailed
in (39).

Theorem 9. The rRs matrix function has the following integral representation

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z) = Γ−1(A1)∫ ∞

0
tA1−I e−t

r−1Rs(A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, zt)dt.
(43)

Proof. When using the definition of the gamma matrix function

Γ(A1 + �I) =
∫ ∞

0
e−ttA1+�I−Idt,

we obtain (43).

Theorem 10. The rRs matrix function satisfies the following representations

Γ(Φ) r+1Rs(Φ, A1, A2, . . . , Ar; B1, B2, . . . , Bs; z)

=
√

2πF

[
eϕu exp(−eu) rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; zeu); τ

] (44)

where Φ = ϕ + iτ, ϕ > 0, r ≤ s + 1, the F(Φ, τ) is the Fourier transform of Φ ([41])

F(Φ, τ) =
1√
2π

∫ ∞

−∞
eiuτΦ(u)du, τ ∈ R > 0. (45)

Proof. By substituting the t = eu in (43), we can easily acquire the Fourier transform
representation of the rRs matrix function.

Theorem 11. The Euler-type integral representation of the rRs matrix function is determined as

r+κ Rs+κ(A1, A2, . . . , Ar, Δ(P; κ); B1, B2, . . . , Bs,�(P + Q; κ); P, Q, czκ)

= zI−P−QΓ−1(P)Γ(P + Q)Γ−1(Q)
∫ z

0
tP−I(z− t)Q−I

× rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs

; P, Q, ctκ

)
dt.

(46)

where κ is a positive integer and Δ(P, r) is the array of parameters

Δ(P, κ) =
1
κ

P,
1
κ
(P + I),

1
κ
(P + 2I), . . . ,

1
κ
(P + (κ − 1)I).

Proof. By putting t = zu and t = zdu into the equation, we obtain∫ z

0
tP+(κ�−1)I(z− t)Q−Idt = zP+Q+(κ�−1)I

∫ 1

0
uP+(κ�−1)I(1− u)Q−Idu

= zP+Q+(κ�−1)IΓ(P)Γ(Q)Γ−1(P + Q)(P)κ�[(P + Q)κ�]
−1.

(47)
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Theorem 12. The Euler-type integral representation of the rRs matrix function is determined as

r+κ+ıRs+κ+ı

(
A1, A2, . . . , Ar, Δ(P; κ), Δ(Q; ı); B1, B2, . . . , Bs,�(P + Q; κ + ı); P, Q,

cκκ ıı

(κ + ı)κ+ı

)
= Γ−1(P)Γ(P + Q)Γ−1(Q)

∫ 1

0
tP−I(1− t)Q−I

× rRs

(
A1, A2, . . . , Ar;
B1, B2, . . . , Bs

; P, Q, ctκ(1− t)ı
)

dt.

(48)

Proof. When using the beta matrix function, we obtain∫ 1

0
tP+(κ�−1)I(1− t)Q+(ı�−1)Idu

= Γ(P)Γ(Q)Γ−1(P + Q)(P)κ�(Q)ı�[(P + Q)κ�+ı�]
−1.

(49)

When using the above equation (49), we obtain (48)

Theorem 13. The Laplace transform of the rRs matrix function is determined by

L

[
tQ−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, ztP); s
]

=
∫ ∞

0
tQ−I e−st

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, ztP)dt

= s−Q
rFs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; zs−P),

(50)

where L[ f (t); s] is the Laplace transform

L[ f (t); s] =
∫ ∞

0
e−st f (t)dt = F(s), s ∈ C.

Proof. When using Euler’s integral, we have

L[t�P+Q−I ; s] =
∫ ∞

0
e−stt�P+Q−Idt =

Γ(�P + Q)

s�P+Q , (51)

where min Re(�P + Q), Re(s) > 0, Re(s) = 0, or 0 < Re(�P + Q) < 1.
When using the above Equation (51), this yields the right-hand side of (50).

Theorem 14. As such, the following integral formula holds:∫ x

0
(x− t)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z(x− t)P)

tQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, ztP)dt

= xQ+Q′−I
rRs(A1 + A′1, A2 + A′2, . . . , Ar + A′r; B1 + B′1, B2 + B′2, . . . , Bs + B′s; P, Q + Q′; zxP).

(52)

Proof. On employing the convolution theorem of the Laplace transform, we obtain

L[
∫ x

0
Ψ(x− τ)Ω(τ)dτ; s] = L[Ψ(x); s]L[Ω(τ); s]. (53)
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When using (53), we obtain

L[
∫ x

0
(x− t)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, z(x− t)P)

tQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, ztP)dt; s]

= L[xQ−I
rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q, zxP); s]

L[xQ′−I
rRs(A′1, A′2, . . . , A′r; B′1, B′2, . . . , B′s; P, Q′, zxP); s]

=
∞

∑
�=0

∞

∑
j=0

z�

�!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1 zj

j!

r

∏
i=1

(A′i)j

[ s

∏
j=1

(B′j)j

]−1

s−(�+j)P−Q−Q′

=
∞

∑
�=0

∞

∑
j=0

z�+j

�!j!

r

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1 r

∏
i=1

(A′i)j

[ s

∏
j=1

(B′j)j

]−1

s−(�+j)P−Q−Q′

=
∞

∑
�=0

�

∑
j=0

z�

(�− j)!j!

r

∏
i=1

(Ai)�−j

[ s

∏
j=1

(Bj)�−j

]−1 r

∏
i=1

(A′i)j

[ s

∏
j=1

(B′j)j

]−1

s−�P−Q−Q′

=
∞

∑
�=0

�

∑
j=0

z�

�!

r

∏
i=1

(Ai + A′i)�

[ s

∏
j=1

(Bj + B′j)�

]−1

s−�P−Q−Q′ .

(54)

When using (51), we find that

L−1(s−�P−Q−Q′) = x�P+Q+Q′−IΓ−1(�P + Q + Q′). (55)

When we use the inverse Laplace transform, we obtain the right hand side of (54), and
when we use (55), we obtain

xQ+Q′−I
rRs(A1 + A′1, A2 + A′2, . . . , Ar + A′r; B1 + B′1, B2 + B′2, . . . , Bs + B′s; P, Q + Q′; zxP).

Theorem 15. For x > a, the following relations hold true:

Iα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q+(α−1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + αI; c(x− a)P),
(56)

where Iα
a+ is the right-sided Riemann–Liouville (R–L) fractional integral operator ([42,43])(

Iα
a+ f

)
(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a,

and

Dα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P),
(57)

where Dα
a+ is the right-hand-sided Riemann–Liouville (R–L) fractional derivative operator of order α(

Dα
a+ f

)
(x) =

(
d

dx

)n(
In−α

a+ f
)
(x),
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and

D
α,β
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P),
(58)

where Dα,β
a+ is the right-hand-sided Riemann–Liouville (R–L) fractional derivative operator of order

α, (
D

α,β
a+ f

)
(x) =

(
I

β(1−α)
a+

d
dx

(
I
(1−β)(1−α)
a+ f

))
(x), α ∈ (0, 1], β ∈ [0, 1].

Proof. When using the relation, we obtain

Iα
a+

[
(z− a)�P+Q−I

]
= Γ(�P + Q)Γ−1(�P + Q + αI)(x− a)�P+Q+(α−1)I , x > a, (59)

this yields the right hand side of (56). Thus, we obtain

Iα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q)Iα
a+(z− a)�P+Q−I

=
∞

∑
�=0

z�

�!

p

∏
i=1

(Ai)�

[ s

∏
j=1

(Bj)�

]−1

Γ−1(�P + Q + αI)(x− a)�P+Q+(α−1)I

= (x− a)Q+(α−1)I
rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + αI; c(x− a)P).

When using the relation

In−α
a+

[
(z− a)�P+Q−I

]
= Γ(�P + Q)Γ−1(�P + Q + (n− α)I)(x− a)�P+Q+(n−α−1)I , x > a, (60)

and

Dn
[
(z− a)�P+Q+(n−α−1)I

]
= Γ(�P + Q + (n− α)I)Γ−1(�P + Q− αI)(x− a)�P+Q−(α+1)I , x > a (61)

to prove assertion (57), we use (60) and (61), which gives

Dα
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

(
d

dx

)n

In−α
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
=

(
d

dx

)n[
(x− a)Q+(n−α−1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + (n− α)I; c(x− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P).

By applying the D
α,β
a+ right-hand-sided Riemann–Liouville (R–L) fractional derivative oper-

ator of order α, we obtain

I
(1−β)(1−α)
a+

[
(z− a)�P+Q−I

]
= Γ(�P + Q)Γ−1(�P + Q + ((1− β)(1− α))I)(x− a)�P+Q+((1−β)(1−α)−1)I , (62)

D

[
(x− a)�P+Q+((1−β)(1−α)−1)I

]
= (�P + Q + ((1− β)(1− α)− 1)I)(x− a)�P+Q+((1−β)(1−α)−2)I , (63)
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I
β(1−α)
a+

[
(z− a)�P+Q+((1−β)(1−α)−2)I

]
= Γ(�P + Q + ((1− β)(1− α)− 1)I)

Γ−1(�P + Q + ((1− β)(1− α)− 1)I + β(1− α)I)(x− a)�P+Q+((1−β)(1−α)−2)I+β(1−α)I ,
(64)

and (
D

α,β
a+

[
(z− a)�P+Q−I

]
= Γ(�P + Q)Γ−1(�P + Q− αI)(x− a)�P+Q−(α+1)I . (65)

Thus, we obtain

D
α,β
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= I

β(1−α)
a+

d
dx

I
(1−β)(1−α)
a+

[
(z− a)Q−I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q; c(z− a)P)

]
= I

β(1−α)
a+

d
dx

[
(z− a)Q+(1−β)(1−α)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q + (k− α)I; c(z− a)P)

]
= (x− a)Q−(α+1)I

rRs(A1, A2, . . . , Ar; B1, B2, . . . , Bs; P, Q− αI; c(x− a)P).

6. Some Special Cases and Applications

In this section, we develop an integral of the rRs matrix function that involves a
relation with some of the special cases related to the integral representations of the rRs
matrix function, which is also explained below.

Theorem 16. As |z| < 1, Re(B) > Re(A) > 0 of the r+1Rr matrix function satisfies the following
Euler-type integral representation, we obtain the following:

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q,E(ztr)dt (66)

where EP,Q,E(z) is a three-parametric Mittag–Leffler matrix function [40].

Proof. For convenience, let r+1Rr be the left hand side of (66), then

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z) =
∞

∑
�=0

z�

�!
(E)�(

1
r

A)�(
1
r
(A + I))� . . .

1
r
(A + (r− 1)I)

× [(
1
r

B)�]−1[(
1
r
(B + I))�]−1 . . . [

1
r
(B + (r− 1)I)]−1Γ−1(�P + Q).

(67)

When using the relation [16], we obtain

(A)�r = r�r
r

∏
i=1

(
A + (i− 1)I

r

)
�

, � = 0, 1, 2, . . . , (68)

where r is a positive integer.
Thus, (67) becomes

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z) =
∞

∑
�=0

z�

�!
(E)�(A)r�[(B)r�]

−1Γ−1(�P + Q), (69)

and we find

(A)r�[(B)r�]
−1 = Γ(B)Γ−1(A)Γ−1(B− A)B(A + r�, B− A). (70)
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When using (69) and (70), we arrive at

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z)

=
∞

∑
�=0

z�

�!
(E)�(A)r�[(B)r�]

−1Γ−1(�P + Q)

=Γ(B)Γ−1(A)Γ−1(B− A)
∞

∑
�=0

z�

�!
(E)�Γ−1(�P + Q)

∫ 1

0
tA+(r�−1)I(1− t)B−A−Idt

=Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q,E(ztr)dt.

Theorem 17. For any matrix E in CN×N, the following assertion integral holds true:

r+1Rr(E, Δ(A, r); Δ(B, r); I, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)Γ−1(Q)
∫ 1

0
tA−I(1− t)B−A−I

1F1(E; Q; ztr)dt.
(71)

Proof. For P = I in (66), the three-parameter Mittag–Leffler matrix function EA,P,Q(xt2)
coincides with the confluent hypergeometric matrix function. Thus, we obtain (71).

Theorem 18. For the r+1Rr matrix function, we find that it satisfies the following Euler-type
integral representation:

r+1Rr(−nI, Δ(A, r); Δ(B, r); kI, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)

× Γ(n + 1)Γ−1(nkI + Q)
∫ 1

0
tA−I(1− t)B−−IZQ−I

n (ztr; k)dt
(72)

where n, k ∈ N and ZQ−I
n (z; k) are the Konhauser matrix polynomials [16,44–48] of degree n in zk.

Proof. By performing E = −nI and P = kI, we find that (66) reduces to

r+1Rr(−nI, Δ(A, r); Δ(B, r); kI, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−I EkI,Q;−nI(ztr)dt

When using the result defined in [16,45], this leads to the right-hand side of (72).

Yet another such integral representation is obtained in a straight forward manner as
follows.

Theorem 19. For n ∈ N, the following integral representation reduces to

r+1Rr(−nI, Δ(A, r); Δ(B, r); 1I, Q; z) = Γ(B)Γ−1(A)Γ−1(B− A)

× Γ(n + 1)Γ−1(Q + nI)
∫ 1

0
tA−I(1− t)B−A−ILQ−I

n (ztr)dt,
(73)

where LQ−I
n (z) is a Laguerre matrix polynomial [14].

Theorem 20. The r+1Rr matrix function satisfies the following result:

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z) = Γ(B)Γ−1(A)
∞

∑
�=0

z�

�!
Γ−1(B− A− �I)(A + �I)−1

× r+1Rr(E, Δ(A + �I, r); Δ(A + (�+ 1)I, r); P, Q; z)

(74)
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Proof. From the equation in (66) and when letting r+1Rr be the left-hand side of (74),
we obtain

r+1Rr(E, Δ(A, r); Δ(B, r); P, Q; z)

= Γ(B)Γ−1(A)Γ−1(B− A)
∫ 1

0
tA−I(1− t)B−A−IEP,Q;E(ztr)dt

= Γ(B)Γ−1(A) ∑
�=0

(−1)�

�!
Γ−1(B− A− �I)

∞

∑
k=0

1
k!
(E)kzkΓ−1(kP + Q)

∫ 1

0
tA+(�+rk−1)Idt

= Γ(B)Γ−1(A) ∑
�=0

(−1)�

�!
Γ−1(B− A− �I)

∞

∑
k=0

1
k!
(E)kzkΓ−1(kP + Q)(A + (�+ rk)I)−1

= Γ(B)Γ−1(A) ∑
�=0

(−1)�

�!
(A + �I)−1Γ−1(B− A− �I)

∞

∑
k=0

1
k!
(E)k(A + �I)rk

× [(A + (�+ 1)I)rk]
−1Γ−1(kP + Q)zk

= Γ(B)Γ−1(A) ∑
�=0

(−1)�

�!
(A + �I)−1Γ−1(B− A− �I)

× r+1Rr(E, Δ(A + �I, r); Δ(A + (�+ 1)I, r); P, Q; z).

Corollary 1. For |z| < 1, the 2R1 matrix function is given by

2R1(A, I; B; P, I; z) = Γ(B)Γ−1(A) 2Ψ2(A, I; B, P; z). (75)

Proof. From (38), we obtain

2R1(A, I; B; P, I, z) = Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I

1R0(I;−; P, I, zt)dt

= Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I

∞

∑
�=0

Γ−1(�P + I)(zt)�dt

= Γ−1(A)Γ−1(B− A)Γ(B)
∫ 1

0
tA−I(1− t)B−A−I EP(zt)dt,

where EP(zt) is a Mittag–Leffler matrix function.
By using the relation between the Mittag–Leffler matrix function EP(zt) and the

generalized Wright matrix function 2Ψ2 [45], we find∫ 1

0
tA−I(1− t)B−A−I EP(zt)dt = Γ(B− A) 2Ψ2(A, I; B, P; z) (76)

where 2Ψ2 is a special case of the generalized Wright matrix function rΨs in [22]. This
completes the proof

7. Conclusions or Concluding Remarks

We were motivated in this paper to obtain a recurrence relation and to then use this
result to obtain an integral representation of the rRs matrix function. The results presented
in this paper appear to be novel in the literature. The convergence properties of the rRs
matrix function with some of its properties—including its analytic properties (type and or-
der), as well as the contiguous function relations and differential property of the rRs matrix
function—were established. The contiguous relations for the generalized hypergeometric
matrix function; the extended integral representations and the differential property of the
rRs matrix function with its integrals involving relationships with some other well-known
fractional calculus equations with special functions; the transform method with an appli-
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cation to the Mittag–Leffler matrix function; Euler-type integral representation; and some
special cases related to the integral representations of the rRs matrix functions, are also
explained in this paper. Since several of the results that involve the generalizations and
extensions of the hypergeometric matrix functions have the potential to play important
roles in the theory of the special matrix functions of mathematical physics, applied math-
ematics, engineering, probability theory, and statistical sciences, it would be interesting,
and possible, to develop its study in the future. As a result, in this context, some particular
cases, as well as our main results, can be applied theoretically, practically, and in some
numerical, algorithmical points of view. With the assistance of this article, a variety of fields
and their applications can be accessed, such as the representation of the matrix R-function
via Fourier transformation, the distributional representation of the rRs matrix function, and
the Euler-type integral matrix representations of the generalized rRs matrix function (which
were developed in some special cases from the perspectives of the Konhauser and Laguerre
matrix polynomials). We can also now study some applications in the areas of probability
theory and groundwater pumping modeling via the pathway integral representation of the
rRs matrix function and the pathway transformation of the rRs matrix function in terms of,
as well as, the solution of the fractional matrix differential equations that involve the Hilfer
derivative operator (which involves the composition of the Riemann–Liouville fractional
integral and derivative). The conclusions of this work are thus diverse and important;
therefore, it will be intriguing, and possible, to expand the study of these conclusions in
the future.
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Abstract: We take into account the (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation
with beta-derivative (SKPE-BD) in this paper. To develop new hyperbolic, trigonometric, elliptic, and
rational solutions, the Riccati equation and Jacobi elliptic function methods are employed. Because
the KP equation is required for explaining the development of quasi-one-dimensional shallow-water
waves, the solutions obtained can be used to interpret various attractive physical phenomena. To
display how the multiplicative white noise and beta-derivative impact the exact solutions of the
SKPE-BD, we plot a few graphs in MATLAB and display different 3D and 2D figures. We deduce
how multiplicative noise stabilizes the solutions of SKPE-BD at zero.

Keywords: stochastic KP; fractional KP; stability by noise; exact solution; beta derivative

MSC: 60H15; 83C15; 60H10; 35Q51; 35A20

1. Introduction

Fractional differential equations (FDEs) are often used in relation to optical fibers, chem-
ical kinematics, solid-state physics, electrical circuits, nuclear-physics, fluid mechanics, elastic
media, quantum field theory, plasma physics, neural physics, mathematical biology, and
other domains [1–7]. Also, many physical phenomena, such as fluid dynamics, elasticity, heat,
electrodynamics, gravity, sound electrostatics, quantum mechanics, and diffusion, are de-
scribed by fractional-order derivatives. Consequently, it is essential in mathematical physics
to seek exact solutions for FDEs. In recent years, multiple approaches for dealing with FDEs
have been devised, such as the (G′/G)-expansion method [8,9], Kudryashov method [10],
first-integral method [11], sine–cosine method [12,13], exp(−φ(ς))-expansion [14], direct
algebraic method [15], perturbation method [16,17], tanh-sech [18,19], sine-Gordon expan-
sion [20], Jacobi elliptic function [21], etc.

Recently, beta-derivative (BD), a new conformable fractional derivative, was proposed
by Atangana et al. in [22]. From here, the BD for Y : (0, ∞)→ R of order β ∈ (0, 1] is defined
as follows:

D
β
xY(x) = lim

ε→0

Y(x + ε(x + 1
Γ(β)

)1−β)−Y(x)

ε
.

The beta-derivative satisfies the next features for any constant a and b:

(1) D
β
x [a] = 0,

(2) D
β
x [aR(x) + bY(x)] = a Dβ

xR(x) + b D
β
xY(x),

(3) D
β
xY(θ) = (x + 1

Γ(β)
)1−β dY

dx , (4) If θ = a
β (x + 1

Γ(β)
)β, then D

β
xY(θ) = a dY

dθ .
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On the contrary, it is now well known that randomness or fluctuations play an essential
role in a wide range of phenomena. Consequently, random impacts have assumed a greater
role in demonstrating numerous physical processes that take place in disciplines such as
telecommunications, cryptography, computer science, ecology, biology, information theory,
signal processing, neuroscience, chemistry, image processing, physics, and finance, among
others [23–25]. Partial differential equations are appropriate mathematical equations for
modeling complex systems in the presence of noise or random effects.

It is essential to consider FDEs with a stochastic term. Therefore, we look at the follow-
ing (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation with beta-derivative
(SKPE-BD):

D
β
x [Rt + 6RD

β
xR+D

β
xxxR+ γRW t] + ρD

β
yyR = 0, (1)

whereR denotes the rescaled velocities and the rescaled wave amplitude in surface shallow-
water waves, ρ = ±1, γ is the noise strength and it is a real number,Wt(t) =

∂W(t)
∂t is the

derivative of the Wiener processW(t), andRWt is an Itô multiplicative noise.
When γ = 0 and β = 1, we attain the Kadomtsev–Petviashvili (KP) equation [26,27]

that can be used to characterize the development of quasi-one-dimensional shallow-water
waves whenever the impacts of viscosity and surface tension are negligible:

∂

∂x
[
∂R
∂t

+ 6R∂R
∂x

+
∂3R
∂x3 ] + ρ

∂2R
∂y2 = 0. (2)

The KP equation (2) has numerous applications in fluid dynamics and plasma physics.
The equation is widely used to study various physical phenomena, such as the propagation
of waves and solitons in different media. As such, the KP equation has been crucial in
advancing our understanding of complex nonlinear systems. Its importance lies in its
ability to accurately model and predict the behavior of waves and solitons, which has
applications in a wide range of fields including oceanography, optics, and plasma physics.
As a result, several approaches to acquiring the exact solutions of KP Equation (2) have been
suggested, such as sine–cosine [28], Hirota’s bilinear method [29], Hirota’s method [30],
trial equation method [31], novel generalized (G′/G)-expansion [32], extended mapping
method [33], F-expansion method [34], etc.

Our contribution here is to find the exact solutions for SKPE-BD (1). To obtain these
solutions, we utilize the Riccati equation method (RE-Method) and Jacobi elliptic function
method (JEF-Method). Because Equation (1) is used in describing the propagation of
waves on the surface of shallow water, the acquired solutions of the SKPE-BD (1) will help
researchers to gain a deeper understanding of these phenomena and make predictions
about their behavior. Additionally, the obtained solutions can also be used in practical
applications, such as designing improved tsunami warning systems or optimizing wave
energy converters. Furthermore, we investigate the effect of BD and noise on the analytical
solutions of the SKPE-BD (1) by providing some graphs via the MATLAB program 2022b .

Following is the structure of the paper: In Section 2, the wave equation of SKPE-BD (1)
is derived. In Section 3, the RE-Method and JEF-Method are utilized to obtain the exact
solution of the SKPE-BD (1). In Section 4, we can examine the effect of the Wiener process
and the beta-derivative on the achieved solutions of the SKPE-BD. In Section 5, we discuss
the physical meaning of the obtained results. Finally, the conclusions of the paper are
offered in Section 6.

2. Traveling Wave Equation for SKPE-BD

The wave equation for SKPE-BD (1) is found by using

R(x, y, t) = Y(ξ)e[−γW(t)− 1
2 γ2t], ξ = [

1
β
(x +

1
Γ(β)

)β +
1
β
(y +

1
Γ(β)

)β − λt], (3)
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where Y is a deterministic and real function. It is worth noting that

∂R
∂t

= [−λY′ − γY ∂W
∂t

]e[−γW(t)− 1
2 γ2t], (4)

and

D
β
xR = Y′e[−γW(t)− 1

2 γ2t], Dβ
xxxR = Y′′′e[−γW(t)− 1

2 γ2t], Dβ
yyR = Y′′e[−γW(t)− 1

2 γ2t]. (5)

Inserting Equation (3) into Equation (1) and using (4) and (5), we obtain

Y′′′′ + (ρ− λ)Y′′ + 6[YY′′ + (Y′)2]e[−γW(t)− 1
2 γ2t] = 0.

Taking into account the expectations of both sides, we achieve

Y′′′′ + (ρ− λ)Y′′ + 6[YY′′ + (Y′)2]e−
1
2 γ2tEe[−γW(t)] = 0. (6)

SinceW(t) is normal process, hence E(e−γW(t)) = e
1
2 γ2t for any real number γ. There-

fore, Equation (6) becomes

Y′′′′ + (ρ− λ)Y′′ + 6(YY′)′ = 0, (7)

where we replaced YY′′ + (Y′)2 by (YY′)′. Integrating Equation (7) twice and ignoring
the integration constant, we have

Y′′ − (λ− ρ)Y + 3Y2 = 0. (8)

3. Exact Solutions of SKPE-BD

To obtain exact solutions for SKPE-BD (1), we employ two alternative methods:
the RE-Method [35] and JEF-Method [36].

3.1. RE-Method

Let us assume the solution Y of Equation (8) is

Y(ξ) =
K

∑
j=0

ajZj, (9)

whereR solves the Riccati equation

Z′ = Z2 + b, (10)

with b is a unknown constant. Equation (10) has the following solutions:

Z =
−1
ξ

, (11)

if b = 0, or
Z =

√
b tan(

√
bξ) or Z = −

√
b cot(

√
bξ), (12)

if b > 0, or
Z = −

√
−b tanh(

√
−bξ) or Z = −

√
−b coth(

√
−bξ), (13)

if b < 0.
In order to compute the parameter K in Equation (9), we balance Y2 with Y′′ in

Equation (8) to obtain
2K = K + 2,

then
K = 2. (14)
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Rewriting Equation (9), with K = 2, as

Y(ξ) = a0 + a1Z + a2Z2. (15)

Substituting Equation (15) into Equation (8) we obtain

(6a2 + 3a2
2)Z4 + (2a1 + 3a1a2)Z3

+(8ba2 − (λ− ρ)a2 + 3a2
1 + 6a0a2)Z2

+(2a1b− (λ− ρ)a1 + 6a0a1)Z

+(2b2a2 − (λ− ρ)a0 + 3a2
0) = 0.

We derive by setting each coefficient of Zj to zero

6a2 + 3a2
2 = 0,

2a1 + 3a1a2 = 0,

8ba2 − (λ− ρ)a2 + 3a2
1 + 6a0a2 = 0,

2a1b− (λ− ρ)a1 + 6a0a1 = 0,

and
2b2a2 − (λ− ρ)a0 + 3a2

0 = 0.

The next two families are obtained by solving these equations:
First family:

a0 =
−2
3

b, a1 = 0, a2 = −2, λ = ρ + 4b. (16)

Second family:

a0 = −2b, a1 = 0, a2 = −2, λ = ρ− 4b. (17)

First family: There are three cases relying on b.
Case 1: If b = 0, then the solution of (8), by using (11) and (15), is

Y(ξ) = −2
ξ2 .

Consequently, the solution of SKPE-BD (1) is

R(x, y, t) = −2[
1
β
(x +

1
Γ(β)

)β +
1
β
(y +

1
Γ(β)

)β − ρt]−2e[−γW(t)− 1
2 γ2t]. (18)

Case 2: If b > 0, then the solutions of (8), using (12) and (15), are

Y(ξ) = −2
3

b− 2b tan2(
√

bξ),

or
Y(ξ) = −2

3
b− 2b cot2(

√
bξ).

As a result, the solutions of SKPE-BD (1) are

R(x, y, t) = [
−2
3

b− 2b tan2(
√

bξ)]e[−γW(t)− 1
2 γ2t], (19)

or
R(x, y, t) = [

−2
3

b− 2b cot2(
√

bξ)]e[−γW(t)− 1
2 γ2t]. (20)
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Case 3: If b < 0, then the solutions of (8), by using (13) and (15), are

Y(ξ) = −2
3

b + 2b tanh2(
√
−bξ),

or
Y(ξ) = −2

3
b + 2b coth2(

√
−bξ).

Thence, the solutions of SKPE-BD (1) are

R(x, y, t) = [
−2
3

b + 2b tanh2(
√
−bξ)]e[−γW(t)− 1

2 γ2t], (21)

or
R(x, y, t) = [

−2
3

b + 2b coth2(
√
−bξ)]e[−γW(t)− 1

2 γ2t]. (22)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ + 4b)t.
Second family: There are three cases also relying on b.
Case 1: If b = 0, then we have the same solution as announced before in the first set.
Case 2: If b > 0, then the solutions of (8), using (12) and (15), are

Y(ξ) = −2b− 2b tan2(
√

bξ),

or
Y(ξ) = −2b− 2b cot2(

√
bξ).

Thence, the solutions of SKPE-BD (1) are

R(x, y, t) = [−2b− 2b tan2(
√

bξ)]e[−γW(t)− 1
2 γ2t], (23)

or
R(x, y, t) = [−2b− 2b cot2(

√
bξ)]e[−γW(t)− 1

2 γ2t]. (24)

Case 3: If b < 0, then the solution of (8), using (13) and (15), are

Y(ξ) = −2b + 2b tanh2(
√
−bξ) = −2bsech2(

√
−bξ),

or
Y(ξ) = −2b + 2b coth2(

√
−bξ) = 2bcsch2(

√
−bξ).

As a result, the solutions of SKPE-BD (1) are

R(x, y, t) = −2bsech2(
√
−bξ)e[−γW(t)− 1

2 γ2t], (25)

or
R(x, y, t) = 2bcsch2(

√
−bξ)e[−γW(t)− 1

2 γ2t]. (26)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ− 4b)t.

Remark 1. If we put β = 1 and γ = 0 in Equation (25), then we obtain the solution (2), reported
in [37].

3.2. JEF-Method

In this subsection, we use the JEF-method [36]. Assuming the solutions to Equation (8)
has the form (with K = 2):

Y(ξ) = h̄0 + h̄1Z(ξ) + h̄2Z2(ξ), (27)
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where h̄0, h̄1, and h̄2 are undefined constants and Z(ξ) = sn(ξ, κ) is the Jacobi elliptic sine
function for 0 < κ < 1. Differentiating Equation (27) twice,

Y′′(ξ) = 2h̄2 − h̄1(κ
2 + 1)Z− 4h̄2(κ

2 + 1)Z2 + 2h̄1κ2Z3 + 6h̄2κ2Z4. (28)

Plugging Equations (27) and (28) into Equation (8), we have

(2κ2h̄2 + 3h̄2
2)Z4 + (2κ2h̄1 + 6h̄1h̄2)Z3

+[6h̄0h̄2 − 4h̄2(κ
2 + 1)− h̄2(λ− ρ) + 3h̄2

1]Z
2

−[(κ2 + 1)h̄1 + h̄1(λ− ρ)− 6h̄0h̄1]Z + (2h̄2 − h̄0(λ− ρ) + 3h̄2
0) = 0.

Equating coefficient of Zn to zero for n = 4, 3, 2, 1, 0 :

2κ2h̄2 + 3h̄2
2 = 0,

2κ2h̄1 + 6h̄1h̄2 = 0,

6h̄0h̄2 − 4h̄2(κ
2 + 1)− h̄2(λ− ρ) + 3h̄2

1 = 0,

(κ2 + 1)h̄1 + h̄1(λ− ρ)− 6h̄0h̄1 = 0,

and
2h̄2 − h̄0(λ− ρ) + 3h̄2

0 = 0.

When these equations are solved, we derive

h̄0 =
2(κ2 + 1) + 2

√
κ4 − κ2 + 1

3
, h̄1 = 0, h̄2 = −2κ2, λ = ρ + 4

√
κ4 − κ2 + 1,

or

h̄0 =
2(κ2 + 1)− 2

√
κ4 − κ2 + 1

3
, h̄1 = 0, h̄2 = −2κ2, λ = ρ− 4

√
κ4 − κ2 + 1,

Thus, Equation (8), by using (27), has the solution

Y(ξ) = 2(κ2 + 1) + 2
√

κ4 − κ2 + 1
3

− 2κ2sn2(ξ, κ),

or

Y(ξ) = 2(κ2 + 1)− 2
√

κ4 − κ2 + 1
3

− 2κ2sn2(ξ, κ).

Hence, the solutions of SKPE-BD (1) is

R(x, y, t) = [
2(κ2 + 1) + 2

√
κ4 − κ2 + 1

3
− 2κ2sn2(ξ, κ)]e[−γW(t)− 1

2 γ2t] , (29)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ + 4
√

κ4 − κ2 + 1)t, or

R(x, y, t) = [
2(κ2 + 1)− 2

√
κ4 − κ2 + 1

3
− 2κ2sn2(ξ, κ)]e[−γW(t)− 1

2 γ2t] , (30)

where ξ = 1
β (x+ 1

Γ(β)
)β + 1

β (y+
1

Γ(β)
)β− (ρ− 4

√
κ4 − κ2 + 1)t. If κ → 1, then Equation (29)

changes to
R(x, y, t) = 2sech2(ξ)e[−γW(t)− 1

2 γ2t], (31)

or
R(x, y, t) = [

2
3
− 2 tanh2(ξ)]e[−γW(t)− 1

2 γ2t]. (32)
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In a similar way, we can replace sn in (27) by cn to obtain the solutions of Equation (8)
as follows:

Y(ξ) = [
2
√

κ4 − κ2 + 1− 2(2κ2 − 1)
3

+ 2κ2cn2(ξ, κ)].

Therefore, the solutions of the SKPE-BD (1) is

R(x, y, t) = [
2
√

κ4 − κ2 + 1− 2(2κ2 − 1)
3

+ 2κ2cn2(ξ, κ)]e[−γW(t)− 1
2 γ2t] . (33)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y+
1

Γ(β)
)β− (ρ+ 4

√
κ4 − κ2 + 1)t. If κ → 1, then the solutions

(33) takes the form
R(x, y, t) = [2sech2(ξ)]e[−γW(t)− 1

2 γ2t]. (34)

4. The Effect of the Wiener Process and Beta Derivative

Here, the impact of SWP and BD on the analytical solutions of the SKPE-BD (1) is
discussed. We illustrate the behavior of these solutions through a number of graphs. For
different γ (noise strength), we generate certain figures for some found solutions including
Equations (29) and (31). First, let us define the parameters ρ = 1 and κ = 0.5. Also,
let t ∈ [0, 2] and x ∈ [0, 4].

First the beta derivative effects: In Figures 1 and 2, if γ = 0, we notice that the profile
of the graphs is pressed as the value of β decreases:

(a) γ = 0, β = 0.5 (b) γ = 0, β = 1, 0.75, 0.5

(c) β = 0.5 (d) β = 1, 0.7, 0.5

Figure 1. (a–c) Display of 3D-graph of Equation (29) with γ = 0 and several values of β = 1, 0.75, 0.5,
and (d) shows 2D-graph of Equation (29) with several values of β = 1, 0.75, 0.5.

(a) γ = 0, β = 1 (b) γ = 0, β = 0.75

Figure 2. Cont.
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(c) γ = 0, β = 0.5 (d) γ = 0, β = 0.25

Figure 2. (a–c) Display of 3D-graph of Equation (31) with γ = 0 and several values of β = 1, 0.75, 0.5,
and (d) shows 2D-graph of Equation (31) for several values of β = 1, 0.75, 0.5.

We deduced from Figures 1 and 2 that no overlap exists between the contours
of the solutions. Additionally, the surface moves to the right as the order of the beta
derivative decreases.

Second the noise effects:

In Figure 3, the surface is not flat and contains various imperfections when γ = 0 (i.e.,
there is no noise).

γ = 0 γ = 0

Figure 3. Diplay of 3D-profile of solutionR(x, y, t) in Equations (29) and (31).

Meanwhile, we can see in Figures 4 and 5, after small movement patterns, the surface
becomes more flat:

(a) γ = 1 (b) γ = 2

Figure 4. Display of 3D-profile of solutionR(x, y, t) in Equation (29) for various γ = 1, 2.

(a) γ = 1 (b) γ = 2

Figure 5. Diplay of 3D-profile of solutionR(x, y, t) in Equation (31) for various γ = 1, 2.
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In the end, we can deduce from Figures 3–5 that several solutions exist when noise is
disregarded (i.e., at γ = 0), such as periodic solutions, kink solutions, and others. After
minor transit patterns, the surface becomes significantly flattened when noise occurs and
its intensity is increased by γ = 1, 2. This demonstrates that the multiplicative white noise
has an impact on the SKPE-BD solutions and stabilizes them at zero.

5. Discussion and Physical Meaning

In this paper, we take into consideration stochastic Kadomtsev–Petviashvili equation
with beta-derivative (SKPE-BD). Finding an exact stochastic solution to the KP equation is a
challenging task due to its nonlinearity and complexity. Here, we applied two methods, the
RE-Method and JEF-Method, to attain the exact solutions for this equation. The first method
provided solutions in the form of trigonometric, hyperbolic, and rational functions, while
the second method gave elliptic solutions. Additionally, the specific characteristics of the
stochastic term play a crucial role in the effect it has on the solution. Overall, understanding
the stochastic effects is essential for accurately modeling and analyzing systems in the
presence of uncertainty. The obtained solutions provide insights into the behavior of waves
in different physical systems and can aid in the development of innovative technologies.
They serve as foundational tools for advancing our understanding of nonlinear wave
phenomena and can lead to significant advancements in fields such as plasma physics,
fluid dynamics, and engineering.

6. Conclusions

In the current study, the stochastic (2 + 1)-dimensional Kadomtsev–Petviashvili equa-
tion with beta derivative (SKPE-BD) was derived. By employing two distinct methods
such as the Riccati equation and Jacobi elliptic function, we obtained the exact solutions
of SKPE-BD (1). Due to the importance of KP in the field of fluid dynamics and plasma
physics, the acquired solutions are important for illustrating a wide range of intriguing
and complex physical phenomena. Finally, the MATLAB tool was applied to illustrate the
effect of SWP and BD on the obtained solutions of the SKPE-BD (1). We deduced that the
beta-derivative shifted the surface to the left when the fractional-order derivative increased
and the Wiener process stabilized the solutions at zero.
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Abstract: The present study is concerned with studying the dynamical behavior of two space-
dimensional nonlinear time-fractional models governing the unsteady-flow of polytropic-gas (in
brief, pGas) that occurred in cosmology and astronomy. For this purpose, two efficient hybrid
methods so-called optimal homotopy analysis J-transform method (OHAJTM) and J-variational
iteration transform method (J-VITM) have been adopted. The OHAJTM is the hybrid method,
where optimal-homotopy analysis method (OHAM) is utilized after implementing the properties
of J-transform (JT), and in J-VITM is the J-transform-based variational iteration method. Banach’s
fixed point approach is adopted to analyze the convergence of these methods. It is demonstrated
that J-VITM is T-stable, and the evaluated dynamics of pGas are described in terms of Mittag–Leffler
functions. The proposed evaluation confirms that the implemented methods perform better for
the referred model equation of pGas. In addition, for a given iteration, the proposed behavior via

OHAJTM performs better in producing more accurate behavior in comparison to J-VITM and the
methods introduced recently.

Keywords: caputo derivative; polytropic gas; J-transform; variational calculus; optimal homotopy
analysis method

MSC: 35R11; 65F10; 26A33

1. Introduction

Fractional calculus (FC) is one of the growing/youthful branches of applied mathemat-
ics that is a generalized concept of differential equations from an integer order to positive
fractional order. It is a preferred selection in modeling complicated physical realistic situ-
ations marked by hereditary/memory behaviors. It is because of the nonlocal nature of
these operators [1,2]. FC is a useful tool for showcasing the transition of highly complicated
nonlinear dynamics with long-term memory effects. In contrast to ordinary derivatives,
identifying fractional order derivatives of a function requires its entire history [3]. This
nonlocal property, referred as the memory consequence, allows it even more convenient
to characterize real-world physical systems using differential equations with fractional
derivatives. In recent decades, investigating the evolution of fractional order systems,
such as chaos, complexity, stability, bifurcation, and synchronization has emerged as an
exciting area of research in areas of research and development [4–7], and the fractional
partial differential equations (FPDEs) are more appropriate for modeling numerous realistic
situations such as in optics, earthquake propagation, population growth, volcanic eruption,
signal processing, the process of reaction/diffusion, in electrical networking, control theory,
hydrology, astrophysics, and in biological systems [8–13].
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To know about the behavior of a model, one must know about its solution behaviors,
and many physical phenomena can be represented by a suitable model in terms of the
nonlinear fractional partial differential equations (NFPDEs), and the evaluation of the
solution behaviors of such type of model is quite difficult, and so the study of these NF-
PDEs is of vital importance. In the last three decades, various rigorous new techniques
are investigated to elucidate a system of NFPDEs. In consequence, Liao [14] developed
a rigorous technique so-called homotopy analysis method for studying many types of
nonlinear partial differential equations (NPDEs) like differential-integral/algebraic equa-
tions/partial differential equations/ordinary differential equations and associated coupled
systems or the fractional models of the above-mentioned types equations. Differ from all
the perturbation/nonperturbation approaches for nonlinear differential equations (NDEs),
HAM generates an effective/easy technique to assure the convergent solutions by suitable
selection of different base functions (see [9,13,15] and inside articles for more details).

In this article, the fractional order model of gas-dynamic equations administering the
development of the two-space dimensional unsteady flow of an ideal gas has been studied.
Write P = Kρ1+(1/κ), where ρ = U/V → energy density, U → total energy of the gas, V →
container volume, κ → polytropic index, and K → a constant. In the sequel, degenerate
electron gas and adiabatic gas are two instances of such types of gases. The investigation
of polytropic gases identified an essential job in cosmology and astronomy [16], and
its behavior is found dark energy-like [11], and the special case of the pGas model has
been utilized in astrophysics in stellar wind and accretion problems. In recent years, the
researchers generalized the model of gas-dynamic equations governing the advancement
of unsteady progression of an ideal-gas of fraction order [17,18]. We need both evolution
equations for ρ and P due to the energy density and ρ and polytropic index. The value of
P = Kρ1+(1/k) in the below system (1) is due to the dynamics of a strongly nonlocal reaction–
diffusion population model [19]. The fractional model of equations of a pGas [15,20] given
below in (1) via two hybrid techniques, namely - OHAJTM and J-VITM

τDα
C℘1 + ℘1

∂℘1

∂z1
+ ℘2

∂℘1

∂z2
+

1
ρ

∂P
∂z1

= 0

τDα
C℘2 + ℘1

∂℘2

∂z1
+ ℘2

∂℘2

∂z2
+

1
ρ

∂P
∂z2

= 0

τDα
Cρ + ℘1

∂ρ

∂z1
+ ℘2

∂ρ

∂z2
+ ρ

∂℘1

∂z1
+ ρ

∂℘2

∂z2
= 0

τDα
CP + ℘1

∂P
∂z1

+ ℘2
∂P
∂z2

+ ΩP
∂℘1

∂z1
+ ΩP

∂℘2

∂z2
= 0

(1)

with initial condition

℘1(z1,2, 0) = f1(z1,2), ℘2(z1,2, 0) = f2(z1,2), ρ(z1,2, 0) = f3(z1,2), P(z1,2, 0) = f4(z1,2), z1,2 = (z1, z2),

where ℘1(z1,2, τ) and ℘2(z1,2, τ) →velocity components, ρ(z1,2, τ) is the density,
P(z1,2, τ)→ pressure and Ω →ratio of specific heat and refers adiabatic index. τDα

C(·) is
the Caputo-fractional differential operator (C-FDO) as defined below:

Definition 1 ([1,2]). The C-FDO τDα
C ϕ(z1,2, τ) of order κ − 1 < α ≤ κ of a function ϕ ∈ Cμ,

μ ≥ −1 is defined by τDκ
C ϕ(z1,2, τ) := ∂κ ϕ(z1,2,τ)

∂τκ and

τDα
C ϕ(z1,2, τ) = τD−(κ−α)

C τDκ
C ϕ(z1,2, τ) = 1

Γ(κ−α)

∫ τ
0 (τ − ε)κ−(α+1) ∂κ ϕ(z1,2,ε)

∂εκ dε, wheneverκ − 1 < α < κ

In addition, let τD−α
C ϕ(z1,2, τ) is the αth order Riemann–Liouville fractional integral operator

(RLFIO) on ϕ. Then

τD0
C ϕ(z1,2, τ) := ϕ(z1,2, τ)

and

135



Axioms 2023, 12, 285

τD−α
C ϕ(z1,2, τ) = 1

Γ(α)

∫ τ
0 (τ − ε)α−1 ϕ(z1,2, ε)dε, α > 0, τ > 0.

The readers are referred to [1,2,21,22] for more details on fractional calculus. The
researchers have beendeveloped/ implemented various rigorous methods for studying
behaviors of various models occurred in terms of NFPDEs (see [22–37]). The behavior of the
integer order system of the referred model equations was analyzed using distinct techniques
like Adomian decomposition method (ADM) [38], variational iteration technique (VIT) [17],
and HAM [18]. Recently, numerical simulation and behavior of fractional order system have
been investigated by fractional natural decomposition method (NDM) [20] and q-homotopy
analysis transform method (q-HATM) [15]. In the present work, the novel integral transform
called J-transform is implemented in combination with two efficient techniques, namely
oHAM and VIM to investigate the nonlinear time-fractional model governing unsteady
flow of polytropic. The main strategy of our work in considering the J-transform is that it
is the generalized form of the Laplace transform and the Elzaki transform. Also, in case of
the J-transform, we will get the two-dimensional frequency domain, which will give us
more degree of freedom to analyze the respective solutions. The proposed fractional model
interprets the most realistic behavior for considered fractional orders and which states the
originality of the paper. The relative error solutions are presented in terms of logarithmic
plots for different fractional orders. We have achieved the faster rate of convergence of
the obtained series solution to the exact solution with the help of optimal value of the
convergence control parameter.

The rest part of the work is structured as follows: Section 2 reports some basic literature
to complete understanding of the work. In Section 3, we report the basic procedure for J-
VITM and its stability/convergence analysis. In Section 4, we report the basic procedure for
OHAJTM and its convergence analysis. Validity/effectiveness/efficiency of the aforesaid
methods is tested in Section 5 by considering test examples of the fractional model equation
of pGas. At last, concluding remark is reported in Section 6.

2. Basic Concepts

Banach’s fixed point approach and JT-based basics are revisited to understand the rest
part of the study. Let us denote Π = (Π, d) as a metric space.

Definition 2 ([39]). Let T be a contraction on metric space Π; this is a map that satisfies the
following condition

d(Ty, Ty1) ≤ γd(y, y1) y, y1 ∈ Π, (2)

for some positive real γ ∈ R+ less than unity, i.e., 0 < γ < 1, where R+ be set of positive reals.

Theorem 1 (Banach’s Fixed-Point Theorem [39]). A contraction T over complete space Π always
has a unique fixed point.

In the sequel, if {yλ}∞
λ=1 is a iterative sequence formulated via the iterative procedure

yλ+1 = Tyλ with y0 ∈ Π (arbitrary) such that yλ approaches the unique fixed point y as
λ → ∞, the error estimates are evaluated as follows

d(yλ, y) ≤ γλ

1−γ d(y0, y1), (prior-etimate), and

and

d(yλ, y) ≤ γ
1−γ d(yλ−1, yλ). (posterior-estimate).

Theorem 2 ([40,41]). A self-map T defined over Π (Banach space) is termed as Picard T-stable if
the condition d(Ty, Ty1) ≤ κd(y, Ty) + γd(y, y1), ∀y, y1 ∈ Π holds true for some non-negative
real κ, and γ with 0 ≤ γ < 1.
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J-Transform and Its Properties

The transformation

J[ψ(τ)](s, ϑ) = Ψ(s, ϑ) := ϑ
∫ ∞

0
e(
−sτ

ϑ )ψ(τ)dτ, (3)

is referred to as J-transform of ψ ∈ F (provided it exists), s, ϑ are transformed variables,
and F is the set functions of exponential order satisfying the following conditions

F =
{

ψ : ∃m1, m2 > 0, 0 < Γ < ∞ such that |ψ(τ)| ≤ Γ exp
(
|τ|
rj

)
, if τ ∈ (−1)j × [0, ∞)

}
,

The properties of JT are listed is the following

Lemma 1 (Properties of JT, [42]). Let G(z, s, ϑ) and Ψ(z, s, ϑ) are JT of g(z, τ), ψ(z, τ) ∈ F ,
respectively. Then
(a) J

[
τκα+λ

Γ(1+λ+κα)

]
(s, ϑ) = ϑκα+λ+2

sκα+λ+1 , λ, κ = 0, 1, 2, . . .

(b) J
[

∂κ g(z,τ)
∂τκ

]
(s, ϑ) = sκ

ϑκ G(z, s, ϑ)−∑κ
�=1

sκ−�

ϑκ−(�+1)
∂�−1g(z,0+)

∂τ�−1 , κ ≥ 1;
(c) J[A1g(z, τ) + A2ψ(z, τ)](s, ϑ) = A1G(z, s, ϑ) + A2Ψ(z, s, ϑ);
(d) J[(g ∗ ψ)(z, τ)](s, ϑ) = 1

ϑG(z, s, ϑ)Ψ(z, s, ϑ), where g ∗ ψ is the convolution of g and ψ.

The properties of JT for fractional calculus [31] that we use to study the behavior of
referred model equation is mentioned below

Lemma 2. If �(z1,2, s, ϑ) is the J-transform of ψ(z1,2, τ) ∈ F , then

(i) J
[

τD−α
C ψ(z1,2, τ)

]
(s, ϑ) = ϑα

sα Ψ(z1,2, s, ϑ),

(ii) J
[

τDα
Cψ(z1,2, τ)

]
(s, ϑ) =

( s
ϑ

)αΨ(z1,2, s, ϑ)−∑κ
�=1

sα−�

ϑα−(�+1)
∂�−1ψ(z,0+)

∂τ�−1 , κ − 1 < α ≤ κ ∈ N.

where τDα
Cψ(z1,2, τ), τD−α

C ψ(z1,2, τ) denote C-FDO and Riemann–Liouville FIO of ψ of
order α.

Proof. The proof is reported in [31].

3. Procedure of Variational Iteration Technique (VIT)

The variational theory-based technique so-called VIT is an efficient technique in-
troduced by He [43] for the study of various models that occurred in terms of classical
differential equations. After He’s seminal work, VIT and its modified forms has been
introduced for studying various types of nonlinear problems of integer orders [44–47] and
fractional order [47–51].

Consider time-fractional nonlinear partial differential equation (TF-NPDE).

τDα
Cψ(z1,2, τ) + T ψ(z1,2, τ) = 0, κ − 1 < α ≤ κ, (4)

where z1,2 = (z1, z2) be space-variable of 2-dimensions, τDα
C(·) is Caputo FDO [23–25], T (·)

nonlinear differential operator involving linear operators and nonhomogeneous/source
term as well, and κ ∈ N.

The basic procedure of VIT for TF-NPDE, the correction functional of (4) in mVIT [47],
is given via

ψλ+1(z1,2, τ) = ψλ(z1,2, τ) +
∫ τ

0
θ(τ, ε)[τDα

Cψ(z1,2, ε) + T ψ̃λ(z1,2, ε)]dε, (5)

where θ(τ, ε) refers to Lagrange multiplier to be determine, ψλ is λth-iteration solution,
and ψ̃λ is the restricted variation [52]. The evaluation of the Lagrange multiplier is a tedious
task in studying the behavior of TF-NPDE. On imposing optimality criteria to the functional
as in (5), we have

δψλ+1(z1,2, τ) = δψλ(z1,2, τ) + δ
∫ t

0 θ(τ, ε) τDα
Cψλ(z1,2, ε)dε = 0,
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The evaluation of the Lagrange multiplier θ(τ, ε) in the above equation is tough for
fraction case (α 	= κ) [51]. The implementation of the properties of an integral transform
with variational theory [53,54] makes the evaluation procedure for finding the optimal
value of the Lagrange multiplier easily.

3.1. Procedure of J-VITM For NFPDEs

The J-VITM is a hybrid method that is based on properties of JT and variational
theory (see [31]) that we implemented for studying nonlinear fractional partial differential
equations (NFPDEs).

Impose JT to NFPDEs (4) and adopt the property τDα
Cψ(z1,2, τ) of JT from

Theorem 2(ii), we have

( s
ϑ

)α
ψ(z1,2, s, ϑ)−

κ

∑
�=1

sα−�

ϑα−(�+1)
∂�−1ψ

∂τ�−1

∣∣∣∣∣
τ=0

+ J[T ψ̃λ(z1,2, ε)]θ(s, ϑ) = 0. (6)

In sequel to modified variational iteration technique, correction functional for (6) con-
structed as

ψλ+1(z1,2, s, ϑ) = ψλ(z1,2, s, ϑ) + θ(s, ϑ)

(( s
ϑ

)α
ψλ(z1,2, s, ϑ)−

κ

∑
�=1

sα−�

ϑα−(�+1)
∂�−1ψλ

∂τ�−1

∣∣∣∣∣
τ=0

)
− θ(s, ϑ)J

[
T̃ ψλ(z1,2, τ)

]
(s, ϑ).

(7)

where ψ̃λ and T̃ restricted variations, i.e., δφ̃λ = 0 and δT̃ = 0.
The variational operator δ to (7) with the above-mentioned property leads to

δψλ+1(z1,2, s, ϑ) = δψλ(z1,2, s, ϑ)
(

1 + θ(s, ϑ)
( s

ϑ

)α)
, (8)

The optimality condition: δψλ+1(z1,2, s, ϑ) = 0 for (7) in (8) leads to the optimal value

of the Lagrange multiplier θ(s, ϑ) = −
(

ϑ
s

)α
. Thus, (7) reduces to

ψλ+1(z1,2, s, ϑ) =
κ

∑
�=1

(
ϑ�+1

s�

)
∂�−1ψλ

∂τ�−1

∣∣∣∣∣
τ=0

−
(

ϑ

s

)α

J[T ψλ(z1,2, τ)](s, ϑ). (9)

The inverse JT operator with (9) leads to

ψλ+1(z1,2, τ) = Tψλ(z1,2, τ), λ = 0, 1, 2, . . . (10)

where

Tψλ(z1,2, τ) = ψ0
λ(z1,2, τ)− J−1

[(
ϑ
s

)α
J[T ψλ(z1,2, τ)](s, ϑ)

]
, and

ψ0
λ(z1,2, τ) = ∑κ

�=1

(
τ�−1

Γ(�)

)
∂�−1ψλ

∂τ�−1

∣∣∣
τ=0

.

it is the desired (λ + 1)th iterative solution of NFPDEs (4), and when κ = 1, the solution at
(λ + 1)th iteration read from (10) as

ψλ+1(z1,2, τ) = Tψλ(z1,2, τ) = ψλ(z1,2, 0)− J−1
[(

ϑ

s

)α

J[T ψλ(z1,2, τ)](s, ϑ)

]
. (11)

3.2. Convergence and Stability Analysis of J-VITM

The analysis of convergence and stability for the aforesaid J-VITM is provided in the
following theorem. For sake of convenience, we read ψn in place of ψn(z1,2, τ) throughout
this section

Theorem 3 (Stability analysis). Let a self-map T : B → B, where (B, ‖ · ‖) is the Banach space;
then, the iterative results via iteration formula (10) are: ψλ+1(X, τ) = Tψλ(X, τ) is Picard T
stable if ∃η0 > 0 for which the following axioms hold true for every τ.
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(a)
∥∥T (

ψp
)
− T (ψn)

∥∥ ≤ ∥∥T (
ψp − ψn

)∥∥ ≤ η0‖ψp − ψn‖
(b) θ = η0

∥∥∥ τα

Γ(α+1)

∥∥∥ < 1.

Proof. Let p, n ∈ N.Then,

Tψp − Tψn = ψ0
p − ψ0

n + J−1
[(

ϑ

s

)α

J
[
T ψp

]
(s, ϑ)

]
− J−1

[(
ϑ

s

)α

J[T ψn](s, ϑ)

]
,

= ψ0
p − ψ0

n + J−1
[(

ϑ

s

)α

J
[
T ψp − T ψn

]
(s, ϑ)

]
,

(12)

as ψ0
p = ψ0

n at each iteration holds from the initial condition. Imposing norm to both sides
of (12) with condition (a) leads to

∥∥Tψp − Tψn
∥∥ ≤ J−1

[(
ϑ

s

)α

J
[∥∥T ψp − T ψn

∥∥](s, ϑ)

]
≤ η0

∥∥ψp − ψn
∥∥(J−1

[
ϑ2+α

sα

])
≤ θ

∥∥ψp − ψn
∥∥,

and this can be expressed in the following form∥∥Tψp − Tψn
∥∥ ≤ β‖ψp − Tψp‖+ θ‖ψp − ψn‖, for β ≥ 0 (13)

which confirms that the proposed J-VITM is Picard T stable whever θ < 1 (see Theorem 2).

Theorem 4 (Convergence analysis). In a Banach space B = (C[Ω× (0, T)], ‖ · ‖), let {ψn}∞
1

be a sequence from the iteration procedure (10): ψλ+1 = Tψλ, where T be associated self-map on B.
Then
(a) {ψn}∞

1 with ψ0 ∈ B (initial value) is convergent.
(b) A unique fixed point exist for T in B.
(b) In κth order iterative results, the error bounds as derived as

‖ψ− ψκ‖ ≤ θκ

1−θ ‖ψ1 − ψ0‖ (Prior-estimate of error),

and

‖ψ− ψκ‖ ≤ 1
1−θ ‖ψ1 − ψ0‖, 0 ≤ θ < 1 (posterior-error estimate)

Proof. For the complete proof please visit [31].

4. Basic Procedure of OHAJTM

The basic solution procedure of OHAJTM for NFPDEs (4) is derived in [31], is reported
in the following. On operating JT to NFPDEs (4) with the help of the property of JT to get
(6) that can be expressed as

J[ψ(z1,2, τ)](s, ϑ)−
κ

∑
�=1

ϑ�+1

s�
∂�−1ψ

∂τ�−1

∣∣∣∣∣
τ=0

+

(
ϑ

s

)α

J[T ψ̃λ(z1,2, τ)](s, ϑ) = 0.

Set nonlinear operator as

�[ϕ(z1,2, τ;ℵ)] = J[ϕ(z1,2, τ;ℵ)](s, ϑ)−
κ

∑
�=1

ϑ�+1

s�
∂�−1ψ

∂τ�−1

∣∣∣∣∣
τ=0

+

(
ϑ

s

)α

J[T ϕ(z1,2, τ;ℵ)](s, ϑ).

where ϕ(z1,2, τ;ℵ) is the real-valued map of ℵ, z1,2, τ; ℵ ∈ [0, 1] → standard embedded-
parameter.

The following zeroth-order deformation equation as in [12,14] is

(1− ℵ)J[ϕ(z1,2, τ;ℵ)− ψ0(z1,2, τ)](s, ϑ) = ℵh̄H(z1,2, τ)�[ϕ(z1,2, τ;ℵ)], (14)
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where h̄ 	= 0, H(z1,2, τ) → is the auxiliary function/parameter, and ψ0(z1,2, τ) → is the
initial guess of ψ(z1,2, τ). Remark that OHAJTM have a merit in selecting auxiliary things
in procedure.
For ℵ = 01,

ϕ(z1,2, τ; 0) = ψ(z1,2, 0) and ϕ(z1,2, τ; 1) = ψ(z1,2, τ),

and it signifies that when ℵ moving from 0 to 1, the solution ϕ(z1,2, τ;ℵ) moves simultane-
ously from initial approximation: ψ0(z1,2, τ) to the exact solution behavior: ψ(z1,2, τ).

Expand ϕ(z1,2, τ;ℵ) via Taylor’s formula in the powers of ℵ as:

ϕ(z1,2, τ;ℵ) = ψ0(z1,2, τ) +
∞

∑
λ=1

ψλ(z1,2, τ)ℵλ, (15)

where ψλ(z1,2, τ) = 1
λ !

∂λ ϕ

∂ℵλ

∣∣∣
ℵ=0

, on selecting suitable value of h̄ improves convergence
region to the solution as in (15). Convergence of result (15) at ℵ = 1 can be secured via
selecting appropriate values of h̄, H(z1,2, τ) 	= 0 and the initial guess, and so

ψ(z1,2, τ) = ψ0(z1,2, τ) +
∞

∑
λ=1

ψλ(z1,2, τ). (16)

Set
−→
ψ λ(z1,2, τ) = (ψ0(z1,2, τ), ψ1(z1,2, τ), ψ2(z1,2, τ), . . . , ψλ(z1,2, τ)).

In the squel, λth order deformation equation is evaluated as

J[ψλ(z1,2, τ)− χλψλ−1(z1,2, τ)](s, ϑ) = h̄ℵH(z1,2, τ)Pλ(
−→
ψ λ−1(z1,2, τ)), (17)

where χλ = 0 if λ ≤ 1 and 1 otherwise.
On imposing inverse operator of JT to (17) with ℵ = 1, H(z1,2, τ) = 1, we have

ψλ(z1,2, τ) = χλψλ−1(z1,2, τ) + h̄J−1
[
Pλ(

−→
ψ λ−1(z1,2, τ))

]
(18)

where

Pλ

(−→
ψ λ−1(z1,2, τ)

)
= 1

(λ−1)!
∂λ−1T [ϕ(z1,2,τ,ℵ)]

∂ℵλ−1

∣∣∣∣
ℵ=0

.

On evaluation ψλ(z1,2, τ), λ ≥ 1. We can calculate Mth-order series behavior of (4) is
evaluated as:

SM(z1,2, τ) =
M

∑
λ=0

ψλ(z1,2, τ), (19)

which converges to ψ(z1,2, τ), the exact behavior of the Equation (4) accurately for suffi-
ciently large M (see the following).

Theorem 5 (Convergence & Error Estimates in OHAJTM). If ∃ θ with 0 < θ < 1, for which
the condition ‖ψ�+1(z1,2, τ)‖ ≤ θ‖ψ�(z1,2, τ)‖, � ≥ 1 holds true, then
(a) The approximate Mth order OHAJTM result SM(z1,2, τ) in (19) for NFPDEs (4) evaluated
from converges (16) as M → ∞.
(b) the maximum absolute error in SM(z1,2, τ) is

‖ψ(z1,2, τ)− SM(z1,2, τ)‖ ≤ θM+1

1− θ
‖ψ0(z1,2, τ)‖. (20)

(c) In addition, as for as the result in (16) convergent, where ψλ(z1,2, τ)’s are evaluated by (18).
Then, the result recorded from (16) is the exact solution behavior of NFPDEs (4).
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Proof. The assumption leads to

‖ψ1(z1,2, τ)‖ ≤ θ‖ψ0(z1,2, τ)‖, ‖ψ2(z1,2, τ)‖ ≤ θ‖ψ1(z1,2, τ)‖ ≤ θ2‖ψ0(z1,2, τ)‖, . . . ‖ψ�(z1,2, τ)‖ ≤ θ�‖ψ0(z1,2, τ)‖.

In consequence, and so, for M, N ∈ N with N > M, we get

‖SM(z1,2, τ)− SN(z1,2, τ)‖ =
∥∥∥∥∥ N

∑
j=M+1

ψj(z1,2, τ)

∥∥∥∥∥ ≤ ‖ψ0(z1,2, τ)‖
N

∑
j=M+1

θ j = ‖ψ0(z1,2, τ)‖ (1− θN−M)θM+1

1− θ
.

Moreover, 1− λN−M < 1 as 0 < λ < 1, and so, the above inequality reduces to

‖SM(z1,2, τ)− SN(z1,2, τ)‖ ≤ ‖ψ0(z1,2, τ)‖ θM+1

1− θ
→ 0 as M → ∞. (21)

implying that {SM(z1,2, τ)}∞
M=1 is Cauchy sequence, and so, it is convergent.

Part (b) is obtained direct by taking N → ∞ in (21) as follows

‖SM(z1,2, τ)− ψ(z1,2, τ)‖ ≤ ‖ψ0(z1,2, τ)‖ θM+1

1− θ
. (22)

(c) In special case, when N − 1 = M = κ. Then, from Equation (21), we get

(∗) limκ→∞ ψκ(z1,2, τ) = 0.

Since

(∗∗) ψκ(z1,2, τ) = ∑κ
λ=1[ψλ(z1,2, τ)− χλψλ−1(z1,2, τ)].

Use condition (∗) and (∗∗) in (18) with property ℵ 	= 0 to get

limκ→∞ ∑κ
λ=1 Pλ(

−→
ψ λ−1(z1,2, τ)) = ∑∞

λ=1 Pλ(
−→
ψ λ−1(z1,2, τ)) = 0.

and so

∑∞
λ=1 Pλ

(−→
ψ λ−1(z1,2, τ)

)
= ∑∞

λ=1

[
J[ψλ−1(z1,2, τ)](s, ϑ)− (1− χλ)∑λ

�=1
ϑ�+1

s�
∂�−1ψ

∂τ�−1

∣∣∣
τ=0

+
(

ϑ
s

)α
J[T ψ̃λ−1(z1,2, τ)](s, ϑ)

]
=

(
ϑ
s

)α
J
[

τDC
α (ψ(z1,2, τ)) + T [ψ(z1,2, τ)]

]
= 0 =⇒τ DC

α (ψ(z1,2, τ)) + T [φ(z1,2, τ)] = 0,

which confirms that the behavior ψ(z1,2, τ) in (16) is the exact exact behavior to NF-
PDEs (4).

Evaluation of Optimal Value of the Convergence Control Parameter (h̄)

The efficiency/validity of OHAJTM is confirmed by measuring the L2 or residual-
errors. The square residual error [12,14] in the Mth-order solution behavior SM(z1,2, τ) as
in (19)

ΔM(h̄) =
∫ b1

a1

∫ b2

a2

∫ b3

a3

(
R�[SM(z1, z2, τ)]

)2dz1dz2dτ, (23)

where R�[SM(z1,2, τ)] is refer to residual error in the solution behavior of order M as
SM(z1,2, τ), and controlling parameter h̄ appeared in solution (19) have a significant role
and that receive faster convergence rate on suitable adjustment of h̄. Precisely, the optimal
value for h̄ is values of h̄ within the h̄-region correspond to that ΔM(h̄) is minimized, and so
h̄ correspond for which dΔM(h̄)

dh̄ = 0. To CPU time under consideration, following formula
in place of (23) is preferred.

ΔM(h̄) =
1

c1 c2 c3

c1

∑
j=0

c2

∑
k=0

c3

∑
l=0

(
R�[SM(jδz1, kδz2, lδt)]2

)
. (24)

where δz1 = b1−a1
c1

, δz2 = b2−a2
c2

and δτ = b3−a3
c3

. We set c1 = c2 = c3 = 10.

141



Axioms 2023, 12, 285

5. Validation of Technique

To validate the efficiency and accuracy of the proposed techniques, we consider the
fractional order system of equations of governing unsteady flow of a polytropic gas.

Take the fractional order system as described in Equation (1) subject to the initial
conditions:

ψ1(z1,2, 0) = ez1+z2 , ψ2(z1,2, 0) = −1− ez1+z2 , ρ(z1,2, 0) = ez1+z2 , P(z1,2, 0) = η (25)

where η is a real constant.

5.1. Validation of J-VITM

By implementing the iteration formula Equation (10) of J-VITM on the system of
Equation (1) with ICs (25), we obtain the following recurrence relation

℘1,λ+1 = ℘1,λ(z1,2, 0)− J−1
[(

ϑ

s

)α

J

[
℘1,λ

∂℘1,λ

∂z1
+ ℘2,λ

∂℘1,λ

∂z2
+

1
ρλ

∂Pλ

∂z1

]
(s, ϑ)

]
℘2,λ+1 = ℘2,λ(z1,2, 0)− J−1

[(
ϑ

s

)α

J

[
℘1,λ

∂℘2,λ

∂z1
+ ℘2,λ

∂℘2,λ

∂z2
+

1
ρλ

∂Pλ

∂z2

]
(s, ϑ)

]
ρλ+1 = ρλ(z1,2, 0)− J−1

[(
ϑ

s

)α

J

[
℘1,λ

∂ρλ

∂z1
+ ℘2,λ

∂ρλ

∂z2
+ ρλ

∂℘1,λ

∂z1
+ ρλ

∂℘2,λ

∂z2

]
(s, ϑ)

]
Pλ+1 = Pλ(z1,2, 0)− J−1

[(
ϑ

s

)α

J

[
℘1,λ

∂Pλ

∂z1
+ ℘2,λ

∂Pλ

∂z2
+ ΩPλ

∂℘1,λ

∂z1
+ ΩP

∂℘2,λ

∂z2

]
(s, ϑ)

]
(26)

On solving the recurrence (26), we get
At first iteration:

℘1,1 = ez1+z2

(
1 +

τα

Γ(α + 1)

)
; ℘2,1 = −1− ez1+z2

(
1 +

τα

Γ(α + 1)

)
ρ1 = ez1+z2

(
1 +

τα

Γ(α + 1)

)
; P1 = η

At second iteration:

℘1,2 = ez1+z2

(
1 +

τα

Γ(α + 1)
+

τ2α

Γ(2α + 1)

)
; ℘2,2 = −1− ez1+z2

(
1 +

τα

Γ(α + 1)
+

τ2α

Γ(2α + 1)

)
ρ2 = ez1+z2

(
1 +

τα

Γ(α + 1)
+

τ2α

Γ(2α + 1)

)
; P2 = η

At third iteration:

℘1,3 = ez1+z2
3

∑
j=0

τ jα

Γ(jα + 1)
, ℘2,3 = −1− ez1+z2

3

∑
j=0

τ jα

Γ(jα + 1)
,

ρ3 = ez1+z2
3

∑
j=0

τ jα

Γ(jα + 1)
, P3 = η

In similar fashion, κth order iterative results for κ = 6, 10 are given computed as

℘1,6 = ez1+z2
6

∑
j=0

τ jα

Γ(jα + 1)
, ℘2,6 = −1− ez1+z2

6

∑
j=0

τ jα

Γ(jα + 1)

ρ6 = ez1+z2
6

∑
j=0

τ jα

Γ(jα + 1)
, P6 = η,
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and

℘1,10 = ez1+z2
10

∑
j=0

τ jα

Γ(jα + 1)
, ℘2,10 = −1− ez1+z2

10

∑
j=0

τ jα

Γ(jα + 1)

ρ10 = ez1+z2
10

∑
j=0

τ jα

Γ(jα + 1)
, P10 = η.

This concludes that general κth order iterative solutions is of the form

℘1,κ = ez1+z2
κ

∑
j=0

τ jα

Γ(jα + 1)
, ℘2,κ = −1− ez1+z2

κ

∑
j=0

τ jα

Γ(jα + 1)

ρκ = ez1+z2
κ

∑
j=0

τ jα

Γ(jα + 1)
, Pκ = η.

In consequence, κth order iterative solutions converges to the exact solutions as κ → ∞:

℘1 = ez1+z2
∞

∑
j=0

τ jα

Γ(jα + 1)
= ez1+z2 Eα,1(τ

α)

℘2 = −1− ez1+z2
∞

∑
j=0

τ jα

Γ(jα + 1)
= −1− ez1+z2 Eα,1(τ

α)

ρ = ez1+z2
∞

∑
j=0

τ jα

Γ(jα + 1)
= ez1+z2 Eα,1(τ

α)

P = η.

In special case, when α = 1 the above results converges to the exact solutions:

℘1(z1,2, τ) = ez1+z2+τ , ℘2(z1,2, τ) = −1− ez1+z2+τ , ρ(z1,2, τ) = ez1+z2+τ , P(z1,2, τ) = η. (27)

5.2. Validation of OHAJTM

Imposing J-transform on system of Equation (1) with ICs (25), we get

J[℘1(z1,2, τ)](s, ϑ)− ϑ2

s
ez1+z2 +

(
ϑ

s

)α

J

[
℘1

∂℘1

∂z1
+ ℘2

∂℘1

∂z2
+

1
ρ

∂P
∂z1

]
(s, ϑ) = 0.

J[℘2(z1,2, τ)](s, ϑ)− ϑ2

s
(
−1− ez1+z2

)
+

(
ϑ

s

)α

J

[
℘1

∂℘2

∂z1
+ ℘2

∂℘2

∂z2
+

1
ρ

∂P
∂z2

]
(s, ϑ) = 0.

J[ρ(z1,2, τ)](s, ϑ)− ϑ2

s
ez1+z2 +

(
ϑ

s

)α

J

[
℘1

∂ρ

∂z1
+ ℘2

∂ρ

∂z2
+ ρ

∂℘1

∂z1
+ ρ

∂℘2

∂z2

]
(s, ϑ) = 0.

J[P(z1,2, τ)](s, ϑ)− ϑ2

s
η +

(
ϑ

s

)α

J

[
℘1

∂P
∂z1

+ ℘2
∂P
∂z2

+ ΩP
∂℘1

∂z1
+ ΩP

∂℘2

∂z2

]
(s, ϑ) = 0.

(28)

Formulate nonlinear operator as follows:
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�1[ϕ1(z1,2, τ;ℵ), ϕ2(z1,2, τ;ℵ), ϕ3(z1,2, τ;ℵ), ϕ4(z1,2, τ;ℵ)] = J[ϕ1(z1,2, τ;ℵ)](s, ϑ)− ϑ2

s
ez1+z2

+

(
ϑ

s

)α

J

[
ϕ1(z1,2, τ;ℵ) ∂

∂z1
ϕ1(z1,2, τ;ℵ) + ϕ2(z1,2, τ;ℵ) ∂

∂z2
ϕ1(z1,2, τ;ℵ) + 1

ϕ3(z1,2, τ;ℵ)
∂

∂z1
ϕ4(z1,2, τ;ℵ)

]
(s, ϑ)

�2[ϕ1(z1,2, τ;ℵ), ϕ2(z1,2, τ;ℵ), ϕ3(z1,2, τ;ℵ), ϕ4(z1,2, τ;ℵ)] = J[ϕ2(z1,2, τ;ℵ)](s, ϑ)− ϑ2

s
(
−1− ez1+z2

)
+

(
ϑ

s

)α

J

[
ϕ1(z1,2, τ;ℵ) ∂

∂z1
ϕ2(z1,2, τ;ℵ) + ϕ2(z1,2, τ;ℵ) ∂

∂z2
ϕ2(z1,2, τ;ℵ) + 1

ϕ3(z1,2, τ;ℵ)
∂

∂z2
ϕ4(z1,2, τ;ℵ)

]
(s, ϑ)

�3[ϕ1(z1,2, τ;ℵ), ϕ2(z1,2, τ;ℵ), ϕ3(z1,2, τ;ℵ), ϕ4(z1,2, τ;ℵ)] = J[ϕ2(z1,2, τ;ℵ)](s, ϑ)

− ϑ2

s
ez1+z2 +

(
ϑ

s

)α

J

[
ϕ1(z1,2, τ;ℵ) ∂

∂z1
ϕ3(z1,2, τ;ℵ) + ϕ2(z1,2, τ;ℵ) ∂

∂z2
ϕ3(z1,2, τ;ℵ)

+ϕ3(z1,2, τ;ℵ) ∂

∂z1
ϕ1(z1,2, τ;ℵ) + ϕ3(z1,2, τ;ℵ) ∂

∂z2
ϕ2(z1,2, τ;ℵ)

]
(s, ϑ)

�4[ϕ1(z1,2, τ;ℵ), ϕ2(z1,2, τ;ℵ), ϕ3(z1,2, τ;ℵ), ϕ4(z1,2, τ;ℵ)] = J[ϕ1(z1,2, τ;ℵ)](s, ϑ)− ϑ2

s
η

+

(
ϑ

s

)α

J

[
ϕ1(z1,2, τ;ℵ) ∂

∂z1
ϕ4(z1,2, τ;ℵ) + ϕ2(z1,2, τ;ℵ) ∂

∂z2
ϕ4(z1,2, τ;ℵ)

+Ωϕ4(z1,2, τ;ℵ) ∂

∂z1
ϕ1(z1,2, τ;ℵ) + Ωϕ4(z1,2, τ;ℵ) ∂

∂z2
ϕ2(z1,2, τ;ℵ)

]
(s, ϑ).

(29)

Utilizing (31) in (18) to obtain the recursive formula

℘1,λ(z1,2, τ) = χλ℘1,λ−1(z1,2, τ) + h̄J−1
[
P1

λ

[−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,
−→
P λ−1

]]
℘2,λ(z1,2, τ) = χλ℘2,λ−1(z1,2, τ) + h̄J−1

[
P2

λ

[−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,
−→
P λ−1

]]
ρλ(z1,2, τ) = χλρλ−1(z1,2, τ) + h̄J−1

[
P3

λ

[−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,
−→
P λ−1

]]
Pλ(z1,2, τ) = χλPλ−1(z1,2, τ) + h̄J−1

[
P4

λ

[−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,
−→
P λ−1

]]
(30)

where

P1
λ

[−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,
−→
P λ−1

]
= J[℘1,λ−1(z1,2, τ)](s, ϑ)− (1− χλ)ϑ

2

s
ez1+z2

+

(
ϑ

s

)α

J

[
λ−1

∑
j=0

[
℘1,λ−1−j

∂℘1,j

∂z1
+ ℘2,λ−1−j

∂℘1,j

∂z2
+

1
ρj

∂

∂z1
Pλ−1−j

]]
(s, ϑ)

P2
λ(
−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,

−→
P λ−1) = J[℘2,λ−1(z1,2, τ)](s, ϑ)− (1− χλ)ϑ

2

s
(
−1− ez1+z2

)
+

(
ϑ

s

)α

J

[
λ−1

∑
j=0

[
℘1,λ−1−j

∂℘2,j

∂z1
+ ℘2,λ−1−j

∂℘2,j

∂z2
+

1
ρj

∂

∂z2
Pλ−1−j

]]
(s, ϑ)

P3
λ(
−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,

−→
P λ−1) = J[ρλ−1(z1,2, τ)](s, ϑ)− (1− χλ)ϑ

2

s
ez1+z2

+

(
ϑ

s

)α

J

[
λ−1

∑
j=0

[
℘1,λ−1−j

∂ρj

∂z1
+ ℘2,λ−1−j

∂ρj

∂z2
+ ρλ−1−j

∂℘1,j

∂z1
+ ρλ−1−j

∂℘2,j

∂z2

]]
(s, ϑ)

P4
λ(
−→℘ 1,λ−1,−→℘ 2,λ−1,−→ρ λ−1,

−→
P λ−1) = J[Pλ−1(z1,2, τ)](s, ϑ)− (1− χλ)ϑ

2

s
η

+

(
ϑ

s

)α

J

[
λ−1

∑
j=0

[
℘1,λ−j−1

∂Pj

∂z1
+ ℘2,λ−j−1

∂Pj

∂z2
+ ΩPλ−j−1

∂℘1,j

∂z1
+ ΩPλ−j−1

∂℘2,j

∂z2

]]
(s, ϑ).

(31)
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with the aid of Mathematica software, solve recurrence relation (30).
At first iteration:

℘1,1(z1,2, τ) = − h̄ταez1+z2

Γ(α + 1)
; ℘2,1(z1,2, τ) =

h̄ταez1+z2

Γ(α + 1)
; ρ1(z1,2, τ) = − h̄ταez1+z2

Γ(α + 1)
; P1(z1,2, τ) = 0.

At second iteration:

℘1,2(z1,2, τ) = ez1+z2

(
h̄2τ2α

Γ(2α + 1)
− (h̄ + h̄2)τα

Γ(α + 1)

)
; ℘2,2(z1,2, τ) = ez1+z2

(
− h̄2τ2α

Γ(2α + 1)
+

(h̄ + h̄2)τα

Γ(α + 1)

)

ρ2(z1,2, τ) = ez1+z2

(
h̄2τ2α

Γ(2α + 1)
− (h̄ + h̄2)τα

Γ(α + 1)

)
; P2(z1,2, τ) = 0.

At third iteration:

℘1,3(z1,2, τ) = ez1+z2

(
− h̄3τ3α

Γ(3α + 1)
2(h̄2 + h̄3)τ2α

Γ(2α + 1)
− (h̄ + h̄2 + h̄3)τα

Γ(α + 1)

)

℘2,3(z1,2, τ) = ez1+z2

(
h̄3τ3α

Γ(3α + 1)
− 2(h̄2 + h̄3)τ2α

Γ(2α + 1)
+

(h̄ + h̄2 + h̄3)τα

Γ(α + 1)

)

ρ3(z1,2, τ) = ez1+z2

(
− h̄3τ3α

Γ(3α + 1)
2(h̄2 + h̄3)τ2α

Γ(2α + 1)
− (h̄ + h̄2 + h̄3)τα

Γ(α + 1)

)
P3(z1,2, τ) = 0.

In sequel, the terms corresponding to λ ≥ 4 for the system of equation can be com-
puted from (30). The 6th order approximate results for the system is

S6℘1(z1,2, τ) =
6

∑
λ=0

℘1,λ(z1,2, τ); S6℘2(z1,2, τ) =
6

∑
λ=0

℘2,λ(z1,2, τ),

S6ρ(z1,2, τ) =
6

∑
λ=0

ρλ(z1,2, τ); S6P(z1,2, τ) =
6

∑
λ=0

Pλ(z1,2, τ).

(32)

This series solution (32) with h̄ = −1 reduced to

S6℘1(z1,2, τ) = ez1+z2
6

∑
λ=0

τλα

Γ(λα + 1)
, S6℘2(z1,2, τ) = −1− ez1+z2

6

∑
λ=0

τλα

Γ(λα + 1)

S6ρ(z1,2, τ) = ez1+z2
6

∑
λ=0

τλα

Γ(λα + 1)
, S6P(z1,2, τ) = η.

which is the adjacent form of the exact solution (27) obtained via J-VITM. In addition for
α = 1, it is an adjacent form of the exact solution (27).

5.3. Result and Discussion

Throughout computation fixed z2 = 1. The comparison in absolute errors κth order
results (κ = 6, 10) for ℘1/ρ and ℘2 via J-VITM and OHAJTM in 0 < τ, z1 < 1 are reported
in Table 1 and Table 2, respectively. In consequence, Table 3 reports the comparison of exact
results with 10th order results for ℘1 and ℘2 computed via OHAJTM with optimal value of
h̄ for 0 < z1 < 1, z2 = 1 at different time levels 0 < τ ≤ 1. The computation is carried out
by taking h̄ = −1 and h̄ = −1.0692 (optimal value). One can see that, we can achieve faster
convergence rate with the help of optimal value of the convergence control parameter (h̄).
The obtained error solutions witness the efficacy of the projected schemes.
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Table 1. Comparison of absolute errors κth order results (κ = 6, 10) for ℘1 / ρ via J-VITM and

OHAJTM for 0 < z1 < 1, z2 = 1 at different time levels 0 < τ ≤ 1.

℘16(ρ6) ℘110(ρ10)

(z1, z2, τ) h̄ = −1 h̄ = −1.0692 h̄ = −1 h̄ = −1.0349

J-VITM HA JTM OHAJTM J-VITM HAJTM OHAJTM

(0.25,1,0.25) 4.3627 × 10−8 4.3627 × 10−8 2.0887 × 10−9 2.1316 × 10−14 3.9968 × 10−14 2.5757 × 10−14

(0.25,1,0.5) 5.7683 × 10−6 5.7683 × 10−6 1.6874 × 10−7 4.4546 × 10−11 4.4606 × 10−11 1.1191 × 10−13

(0.25,1,0.75) 1.0189 × 10−4 1.0189 × 10−4 3.4828 × 10−7 3.9379 × 10−9 3.9380 × 10−9 3.3333 × 10−12

(0.25,1,1) 7.8977 × 10−5 7.8977 × 10−4 1.5869 × 10−5 9.5331 × 10−8 9.5331 × 10−8 1.7106 × 10−10

(0.5,1,0.25) 5.6018 × 10−8 5.6018 × 10−8 2.6820 × 10−9 2.7534 × 10−14 6.0396 × 10−14 1.7764 × 10−15

(0.5,1,0.5) 7.4066 × 10−6 7.4066 × 10−6 2.1667 × 10−7 5.7198 × 10−11 5.7214 × 10−11 4.0856 × 10−14

(0.5,1,075) 1.3083 × 10−4 1.3083 × 10−4 4.4720 × 10−7 5.0564 × 10−9 5.0564 × 10−9 4.6523 × 10−12

(0.5,1,1) 1.0141 × 10−3 1.0141 × 10−3 2.0376 × 10−5 1.2241 × 10−7 1.2241 × 10−7 2.1923 × 10−10

(0.75,1,0.25) 7.1929 × 10−8 7.1929 × 10−8 3.4437 × 10−9 3.4639 × 10−14 4.1744 × 10−14 6.3949 × 10−14

(0.75,1,0.5) 9.5103 × 10−6 9.5103 × 10−6 2.7821 × 10−7 7.3443 × 10−11 7.3399 × 10−11 6.5725 × 10−14

(0.75,1,0.75) 1.6799 × 10−4 1.6799 × 10−4 5.7422 × 10−7 6.4926 × 10−9 6.4929 × 10−9 5.4818 × 10−12

(0.75,1,1) 1.3021 × 10−3 1.3021 × 10−3 2.6164 × 10−5 1.5717 × 10−7 1.5717 × 10−7 2.8172 × 10−10

(1,1,0.25) 9.2359 × 10−8 9.2359 × 10−8 4.4219 × 10−9 4.4409 × 10−14 2.6645 × 10−14 4.7962 × 10−14

(1,1,0.5) 1.2211 × 10−5 1.2211 × 10−5 3.5723 × 10−7 9.4301 × 10−11 9.4241 × 10−11 3.8547 × 10−13

(1,1,0.75) 2.1570 × 10−4 2.1570 × 10−4 7.3731 × 10−7 8.3366 × 10−9 8.3368 × 10−9 6.9846 × 10−12

(1,1,1) 1.6719 × 10−3 1.6719 × 10−3 3.3595 × 10−5 2.0181 × 10−7 2.0181 × 10−7 3.6275 × 10−10

CPU Time 1.8290 4.0150 3.2340 12.0300

For ℘1: Figure 1a,b depict 2D and 3D behavior of 10th-order computed results for
different α. There is a significant variation in the obtained solutions for different fractional
order α. For the accuracy of the projected schemes, we can consider plots for α = 1 where
the secured solutions are in best match with the exact solutions of the problem under
consideration. Figure 1c,d depicts logarithmic plots of relative errors in κth iterative results
(κ = 6, 8, 10) via OHAJTM for α = 0.85, 1, respectively, while Figure 1e,f depicts logarithmic
plots of relative errors in κth iterative results (κ = 6, 8, 10) via J-VITM for α = 0.85, 1,
respectively. The value of the relative error for the obtained solution is decreases as we
increase the iterations. In the 10th-order iteration, we have achieved the better solutions as
compare to the previous iterations.

For ℘2: Figure 2a,b, depict 2D and 3D behavior of 10th-order computed results for
different α. The velocity ℘2 decreases with increase in time variable τ. α = 1 curve matches
exactly with the exact solution of the considered problem. The velocity ℘2 drops faster for
the decreasing fractional order α. The 3D view of variation of the solution ℘2 for different
fractional order is presented to analyze the influence of fractional parameter α. Figure 2c,d
depicts logarithmic plots of relative errors in κth iterative results (κ = 6, 8, 10) via OHAJTM
for α = 0.85, 1, respectively while Figure 2e,f depicts logarithmic plots of relative errors in
κth iterative results (κ = 6, 8, 10) via J-VITM for α = 0.85, 1 respectively. As we increase
the number of iterations, we are getting the better approximate solution for both projected
algorithms. These plots gives an explaination about how large the absolute error is in
comparision with the exact numerical value of the solution.
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Table 2. Comparison of absolute errors κth order results (κ = 6, 10) for ℘2 via J-VITM and OHAJTM
for 0 < z1 < 1, z2 = 1 at different time levels 0 < τ ≤ 1.

℘26 ℘210

(z1, z2, τ) h̄ = −1 h̄ = −1.0692 h̄ = −1 h̄ = −1.0349

J-VITM HA JTM OHAJTM J-VITM HAJTM OHAJTM

(0.25,1,0.25) 4.3627 × 10−8 4.3627 × 10−8 9.3490 × 10−12 2.0428 × 10−14 2.5757 × 10−14 2.5757 × 10−14

(0.25,1,0.5) 5.7683 × 10−6 5.7683 × 10−6 1.7979 × 10−7 4.4546 × 10−11 4.4578 × 10−11 1.1191 × 10−13

(0.25,1,0.75) 1.0189 × 10−4 1.0189 × 10−4 5.4706 × 10−7 3.9379 × 10−9 3.9380 × 10−9 3.3342 × 10−12

(0.25,1,1) 7.8977 × 10−4 7.8977 × 10−4 1.5031 × 10−5 9.5331 × 10−8 9.5331 × 10−8 1.7106 × 10−10

(0.5,1,0.25) 5.6018 × 10−8 5.6018 × 10−8 1.2006 × 10−11 2.8422 × 10−14 6.0396 × 10−14 1.7764 × 10−15

(0.5,1,0.5) 7.4066 × 10−6 7.4066 × 10−6 2.3086 × 10−7 5.7197 × 10−11 5.7213 × 10−11 4.0856 × 10−14

(0.5,1,075) 1.3083 × 10−4 1.3083 × 10−4 7.0244 × 10−7 5.0564 × 10−9 5.0564 × 10−9 4.6523 × 10−12

(0.5,1,1) 1.0141 × 10−3 1.0141 × 10−3 1.9301 × 10−5 1.2241 × 10−7 1.2241 × 10−7 2.1923 × 10−10

(0.75,1,0.25) 7.1929 × 10−8 7.1929 × 10−8 1.5415 × 10−11 3.5527 × 10−14 4.2633 × 10−14 6.3949 × 10−14

(0.75,1,0.5) 9.5103 × 10−6 9.5103 × 10−6 2.9643 × 10−7 7.3443 × 10−11 7.3399 × 10−11 6.5725 × 10−14

(0.75,1,0.75) 1.6799 × 10−4 1.6799 × 10−4 9.0195 × 10−7 6.4926 × 10−9 6.4929 × 10−9 5.3682 × 10−12

(0.75,1,1) 1.3021 × 10−3 1.3021 × 10−3 2.4783 × 10−5 1.5717 × 10−7 1.5717 × 10−7 2.8173 × 10−10

(1,1,0.25) 9.2359 × 10−8 9.2359 × 10−8 1.9796 × 10−11 4.4409 × 10−14 5.1514 × 10−14 9.5923 × 10−14

(1,1,0.5) 1.2211 × 10−5 1.2211 × 10−5 3.8062 × 10−7 9.4301 × 10−11 9.4298 × 10−11 3.6415 × 10−13

(1,1,0.75) 2.1570 × 10−4 2.1570 × 10−4 1.1581 × 10−6 8.3366 × 10−9 8.3369 × 10−9 7.0415 × 10−12

(1,1,1) 1.6719 × 10−3 1.6719 × 10−3 3.1822 × 10−5 2.0181 × 10−7 2.0181 × 10−7 3.6265 × 10−10

Table 3. Comparison of 10th order results for ℘1 and ℘2 via OHAJTM with optimal value of h̄ for
0 < z1 < 1, z2 = 1 at different time levels 0 < τ ≤ 1 with exact results.

℘1 ℘2

(z1, z2, τ) α = 0.85 α = 1 Exact α = 0.85 α = 1 Exact

(0.25,1,0.25) 4.8728202329 4.4816890703 4.4816890703 5.8728202329 5.4816890703 5.4816890703
(0.25,1,0.5) 6.4418579146 5.7546026760 5.7546026760 7.4418579146 6.7546026760 6.7546026760

(0.25,1,0.75) 8.4088209398 7.3890560989 7.3890560989 9.4088209398 8.3890560989 8.3890560989
(0.25,1,1) 10.9090468543 9.4877358365 9.4877358364 11.9090468543 10.4877358365 10.4877358364

(0.5,1,0.25) 6.2568250301 5.7546026760 5.7546026760 7.2568250301 6.7546026760 6.7546026760
(0.5,1,0.5) 8.2715092930 7.3890560989 7.3890560989 9.2715092930 8.3890560989 8.3890560989
(0.5,1,075) 10.7971398111 9.4877358364 9.4877358364 11.7971398111 10.4877358364 10.4877358364

(0.5,1,1) 14.0074934328 12.1824939609 12.1824939607 15.0074934328 13.1824939609 13.1824939607
(0.75,1,0.25) 8.0339223664 7.3890560989 7.3890560989 9.0339223664 8.3890560989 8.3890560989

(0.75,1,0.5) 10.6208281666 9.4877358364 9.4877358364 11.6208281666 10.4877358364 10.4877358364
(0.75,1,0.75) 13.8638019450 12.1824939607 12.1824939607 14.8638019450 13.1824939607 13.1824939607

(0.75,1,1) 17.9859775918 15.6426318845 15.6426318842 18.9859775918 16.6426318845 16.6426318842
(1,1,0.25) 10.3157605141 9.4877358364 9.4877358364 11.3157605141 10.4877358364 10.4877358364

(1,1,0.5) 13.6374133121 12.1824939607 12.1824939607 14.6374133121 13.1824939607 13.1824939607
(1,1,0.75) 17.8014740693 15.6426318842 15.6426318842 18.8014740693 16.6426318842 16.6426318842

(1,1,1) 23.0944523718 20.0855369235 20.0855369232 24.0944523718 21.0855369236 21.0855369232
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Figure 1. Solutions for ℘1(z1,2, τ). (a) Behavior of computed results from OHAJTM at 10th iteration
with exact results; (b) logarithmic plots of relative errors in κth iterative results (κ = 6, 8, 10) for (c,e)
α = 0.85, (d,f) α = 1; at z1 = 0.5, z2 = 1 and optimal value of h̄, for ℘1 obtained from OHAJTM (c,d),
J-VITM (e,f) respectively.
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Figure 2. Solutions for ℘2(z1,2, τ). (a) Behavior of computed results from OHAJTM at 10th iteration
with exact results; (b) logarithmic plots of relative errors in κth iterative results (κ = 6, 8, 10) for
(c,e) α = 0.85, (d,f) α = 1; at z1 = 0.5, z2 = 1 and optimal value of h̄, for ℘2 obtained from OHAJTM
(c,d), J-VITM (e,f) respectively.

For ρ: Figure 3a,b depict 2D and 3D behavior of 10th-order computed results for
different α. We can see that the density ρ increases with increase in time τ. The density
distribution over the space with coordinates (z1, z2, τ) is presented in Figure 3b. Figure 3c,d
depicts logarithmic plots of relative errors in κth iterative results (κ = 6, 8, 10) via OHAJTM
for α = 0.85, 1, respectively, while Figure 3e,f depicts logarithmic plots of relative errors
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in κth iterative results (κ = 6, 8, 10) via J-VITM for α = 0.85, 1, respectively. Table 3 cites
that we have achieved the solution which is in best match with the exact solution of the
considered problem. We can observe the same in Figure 3.

(a) Comparision of 10th order solution with exact
results in τ ∈ (0, 1)

(b) 3-D plot of 10th order solution in τ ∈ (0, 1) for
distinct values of α

(c) OHAJTM logarithmic plots of relative errors for
α = 0.85
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(d) OHAJTM logarithmic plots of relative error for
α = 1
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(f) J-VITM logarithmic plots of relative error for α = 1

Figure 3. Solutions for ρ(z1,2, τ). (a) Behavior of computed results from OHAJTM at 10th iteration
with exact results; (b) logarithmic plots of relative errors in κth iterative results (κ = 6, 8, 10) for
(c,e) α = 0.85, (d,f) α = 1; at z1 = 0.5, z2 = 1 and optimal value of h̄, for ρ obtained from OHAJTM
(c,d), J-VITM (e,f), respectively.
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It is easy to demonstrate numerically from Figures 1c–f–3c–f and Tables 1 and 2 that
for a given order of approximation, OHAJTM with optimal h̄ are of high accuracy but
requires larger CPU time as compared to J-VITM. In addition both of the proposed hybrid
methods converges, that is, OHAJTM with optimal h̄ converges faster than J-VITM. For
h̄ = −1, the rate of convergence of OHAJTM is the same as that of J-VITM while J-VITM
requires less computational timethan OHAJTM.

6. Conclusions

In that present work studied, two space-dimensional time-fractional models governing
the unsteady flow of pGas via two new efficient techniques so-called OHAJTM and J-VITM.
Both techniques are shown convergent with help of the Banach’s fixed point approach, and
J-VITM is shown T-stable.

For an arbitrary fractional order α, the evaluated solution behavior of the referred
model equation is expressed in the form of well known Mittag–Leffler function. The effec-
tiveness/validity of the evaluated new approximations is demonstrated via a numerical
test example of a two space-dimensional time-fractional model governing the unsteady
flow of a pGas by computing the absolute-errors/relative-error.

The numerical evaluation demonstrates that both of the developed techniques are
convergent and perform better for the considered time-fractional model governing the
unsteady flow of pGas. In addition, for given iteration new results by OHAJTM with
optimal convergence control parameter (h̄) are of high accuracy but require larger CPU time
as compared to J-VITM, that is, OHAJTM with optimal h̄ converges faster than J-VITM. It is
remarkably mentioned that for h̄ = −1, both methods converge to the exact results with the
same rate of convergence while J-VITM requires less computational time than OHAJTM.
The motivation of this work is to explore the fractional behaviour of the considered model.
We have observed the significant variations in the solutions for different fractional orders,
which may lead to various physical consequences for the future work.
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Abstract: This paper deals with the electron transport and heat generation in a Resonant Tunneling
Diode semiconductor device. A new electrothermal Monte Carlo method is introduced. The method
couples a Monte Carlo solver of the Boltzmann–Wigner transport equation with a steady-state solution
of the heat diffusion equation. This methodology provides an accurate microscopic description of the
spatial distribution of self-heating and its effect on the detailed nonequilibrium carrier dynamics.
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1. Introduction

Due to the continued miniaturization of integrated circuits and the current trend
toward nanoscale electronics, power densities, heat generation, and chip temperatures will
reach levels that will prevent the reliable operation of such circuits. In order to minimize
self-heating effects, the development of accurate electrothermal simulators is required,
which takes into account the coupling between electronic and lattice dynamics. In the active
regions of such small devices, heat generation is a direct consequence of the nonequilibrium
carrier transport. In high electric field regions, the electrons are accelerated and collide with
the lattice in such a way that the emission of a large number of phonons contributes to heat
transport in the device. In the framework of semiclassical charge transport, electrothermal
simulators are based on drift–diffusion or hydrodynamic models [1,2], which are able
to capture nonequilibrium transport effects. Alternatively, the direct simulation Monte
Carlo (MC) can provide an accurate nonequilibrium charge transport simulation, which
is free from the approximations made in the drift–diffusion or hydrodynamic model.
Electrothermal Monte Carlo simulators have been developed during these years [3–5]
but not in quantum regimes where the Boltzmann Transport Equation must be replaced
by the Wigner Transport Equation (WTE). Since electron devices are quantum systems
outside of thermodynamic equilibrium, scattering by phonons should be included in the
WTE for a realistic simulation. Many proposals for the collision operator can be found
in the literature [6,7], which provide an accurate description of the phenomena at the
price of a high requirement of computational resources. Because of that, the use of such
operators is restricted to very simple (idealized) systems. In this paper, the effects of
scattering with phonons are taken into account via a semiclassical Boltzmann collision
operator, which employs transition rates calculated using Fermi’s golden rule, obtaining
the so called Boltzmann–Wigner transport equation (BWTE). Numerical solvers of the
WTE can be based on finite-difference schemes [8–13], where scattering was restricted
to the relaxation time approximation and the momentum space to one dimension. The
Monte Carlo method allows for scattering processes to be included on a more detailed
level, assuming a three-dimensional momentum–space. In this paper, we shall use the
so-called Signed Particle Monte Carlo method (SPMC) [14,15] in which the effect of the
Wigner potential is interpreted as a probabilistic generation of couples of positive and
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154



Axioms 2023, 12, 216

negative particles, where the quantum information is carried by their sign. The huge
number of generated particles can be controlled by an annihilation process: two particles
with an opposite sign entering a given phase space cell are canceled. Recently, this method
has also been understood in terms of the Markov jump process theory [16], producing
a class of new stochastic algorithms. Algorithms that belong to this class are a standard
time-splitting algorithm and a new no-splitting algorithm that avoids errors due to time-
discretization [17,18].

Taking advantage of previous Electrothermal Monte Carlo semiclassical models, in this
paper, we shall study the heating effect in a Resonant Tunneling Diode (RTD), coupling
the SPMC solver of the BWTE with a steady-state solution of the heat diffusion equation.
To the author’s knowledge, this model is the first of its kind in terms of model accuracy.
The paper is organized as follows. Details of the Boltzmann–Wigner transport equation
are provided in Section 2, and in Section 3 we deal with the Signed Particle Monte Carlo
method. In Section 3, we introduce the Resonant Tunneling diode structure and in Section 5
the Electrothermal Signed Particle Monte Carlo Method. Simulation results are shown in
Section 6, and conclusions are drawn in Section 7.

2. The Boltzmann–Wigner Transport Equation

The BWTE writes [19]

∂

∂t
fw(t, x, k) +

h̄
m∗

k · ∇x fw(t, x, k) +
e
h̄
∇x ϕ · ∇k fw(t, x, k) = Q( fw) + C( fw). (1)

x ∈ R
3 and h̄k ∈ R

3 are the electron position and momentum, respectively, m∗ is the
electron effective mass, and ϕ the slowly-varying potential satisfying the Poisson equation

∇ · [ε0εr∇ϕ(x)] = −e(ND − NA − n), (2)

where e is the elementary charge, ε0 the absolute dielectric constant, εr the relative dielectric
constant, ND, NA are the donors and acceptors’ doping profiles, and n the particle density

n(t, x) =
∫

fw(x, k, t) dk . (3)

C( fw) is the Boltzmann scattering operator which, in the not-degenerate case, is as fol-
lows [20]:

C( fw) =
∫ [

ws(k′, k) fw(k′)− ws(k, k′) fw(k)
]
dk′, (4)

where ws(k, k′) is the scattering rate at which electrons suffer with phonons and impurities,
given by the Fermi’s golden rule. The quantum evolution is taken into account by the term

Q( fw) =
∫
R

d Vw(x, k− k′) fw(t, x, k′) dk′ , (5)

where Vw is the Wigner potential

Vw(x, k) =
1

ih̄(2π)d

∫
R

d dx′ e−ik·x′
[

V
(

x +
x′

2

)
−V

(
x− x′

2

)]
, (6)

and V is the rapidly-varying term of the potential energy.

3. The Signed Particle Monte Carlo Method

The quantum evolution term (5) can be interpreted like the Gain term of the collisional
operator of the Boltzmann transport equation, in which the Loss term is missing. However,
the Wigner potential (6) is not always positive and, for this reason, cannot be considered a
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scattering term. The main idea of the Signed Particle Monte Carlo method [14] consists of
separating Vw into a positive and negative part V+

w , V−w such that

Vw = V+
w −V−w , V+

w , V−w ≥ 0 (7)

Consequently, we can define an integrated scattering probability per unit time as

γ(x) =
∫

dk′ V+
w (x, k− k′) =

∫
dk′ V−w (x, k− k′) (8)

and rewrite the quantum evolution term as the difference between Gain and Loss terms, i.e.,

Q( fw) =
∫

dk′w(k′, k) fw(t, x, k′)− γ(x) fw(t, x, k) (9)

w(k′, k) = V+
w (x, k− k′)−V−w (x, k− k′) + γ(x)δ(k− k′) . (10)

The interpretation of the scattering term w(k′, k) is that a particle produces, in the same
position, a couple of new particles with weight u and −u according to a generation rate
given by the function γ(x). The momentum of the new particles is generated with probabil-
ity V+

w (x, k)/γ(x). Since usually γ is rapidly oscillating, an exponential growth of particle
numbers is expected and, in order to control the particle number, a cancellation procedure
is mandatory.

This procedure has been understood using the theory of the piecewise deterministic
Markov processes [16], where the state space is

zj(t) = (uj(t), xj(t), kj(t)), t ≥ 0 , j = 1, . . . , N(t) , (11)

and uj ∈ {−1,+1} is the weight. The time evolution of the particle system (11) is assigned
by a deterministic motion according to the flow

F(t, z) = (u, x + v(k)t, k) , v =
h̄
m

k (12)

and a jump kernel Q(zj(t)). The random waiting time τ until the next jump satisfies

P(τ ≥ t) = exp
(
−

∫ t

0
Q(F(s, z)) ds

)
. (13)

For numerical purposes, we introduce a majorant V̂w such that

|Vw(x, k)| ≤ V̂w(x, k) ∀x, k ∈ R
3 . (14)

If the j-th particle generates two new particles with

z
′
1 =

(
uj signVw(xj, k), xj, kj + k

)
, z

′
2 =

(
uj signVw(xj, k), xj, kj − k

)
(15)

the jump kernel takes the form [17]

Q(zj) =
1
2

∫
V̂w(xj, k) dk (16)

and Equation (13) writes

P(τ ≥ t) = exp
(
−

∫ t

0
γ̂(xj + v(kj)s) ds

)
(17)

where
γ̂(x) =

1
2

∫
V̂w(x, k) dk (18)
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represents the generation probability. It is possible to prove that functionals of the so-
lution of the Wigner equation are expressed in terms of the particle system using the
representation [16]

∫ ∫
φ(x, k) f (t, x, k)dkdx =

1
Nini

E

(
N(t)

∑
j=1

uj(t)φ(xj(t), kj(t))

)
(19)

where φ is an appropriate test function, and Nini = N(0) is the initial particle number. In
order to to separate the transport and the jump processes, usually a splitting time step Δt is
used at the expense of a discretization error. This can be avoided by using a no-splitting
algorithm recently introduced in [17,18]. By introducing a majorant for the generation
process (8) and one for the total phonon scattering rate

Γs ≥ max λ(k) , λ(k) = ∑
α

∫
wα(k, k′) dk′ (20)

The total majorant is
Γ = Γs + γ̂ (21)

and Equation (17), for all particles, now is as follows:

P(τ ≥ t) = exp

(
−

N

∑
j=1

∫ t

0

[
Γs + γ̂(xj + v(kj)s)

]
ds

)
. (22)

In the case in which γ̂ does not depend on the position, we have

P(τ ≥ t) = exp(−ΓNt)→ τ = − 1
ΓN

log r (23)

where r ∈ U[0, 1], and τ is completely determined. With respect to the splitting case, now
the transport and the generation process can not be separated, and the results shall not be
affected by any discretization error.

4. The Resonant Tunneling Diode

A standard Resonant Tunneling Diode structure [21] has been implemented, as shown
in Figure 1. The barriers have depth b = 3 nm, height a = 0.3, and the quantum well dimen-
sion is bw = 5 nm, symmetric with respect to the mid-point L/2 (total length L = 150 nm).
The barrier structure is embedded in a 30 nm lightly doped region (ND = 1016 cm−3) which
is connected to 60 nm highly doped regions on either side (N+

D = 1018 cm−3).
In this case, the Wigner potential (6) can be easily evaluated in addition to the ma-

jorant (18) (see [18] for the details). The device considered is made by Gallium Arsenide
(GaAs) (with m∗ = 0.067), and polar optical phonons (POP) within a single Γ band [20] in
the parabolic band approximation used are taken into account. The total scattering rate is
written as follows [20]:

λ(k, TL) = λ−(k, TL) + λ+(k, TL) (24)

where the first term represents POP absorption and the second one emission

λ−(k, TL) =
e2ωp

(
1

ε∞
− 1

εr

)
2πε0h̄

√
2ε(k)

m∗

n0 sinh−1

√
ε(k)
h̄ωp

(25)

λ+(k, TL) =
e2ωp

(
1

ε∞
− 1

εr

)
2πε0h̄

√
2ε(k)
m∗

(n0 + 1) sinh−1

√
ε(k)

h̄ωp
− 1 (26)

The term n0(TL) is the phonon equilibrium distribution, i.e.,
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n0(TL) =
1

exp
(

h̄ωp
kBTL

)
− 1

(27)

h̄ωp is the polar optical phonon energy (0.03536 eV) and TL the lattice temperature. The
initial lattice temperature is 300 K, and ohmic boundary conditions are used.
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Figure 1. The quantum well region.

5. The Electrothermal Signed Particle Monte Carlo Method

An important issue that arises from the coupling of an MC electronic transport algo-
rithm to any thermal model is the significant difference in the characteristic time scales of
electronic and thermal transport. Electronic transients in GaAs systems are of the order of
picoseconds, whereas thermal transients may be of the order of nanoseconds, microseconds,
or even longer. Performing MC computations for the duration of thermal transients across
the whole semiconductor die would not be feasible. Consequently, the method used in this
paper extracts steady-state electrothermal device characteristics only. The electrothermal
SPMC method of simulation is an iterative approach:

• The initial SPMC iteration is run at a room temperature of 300 K for a few ps, in order
to reach a steady-state;

• As the steady state is reached, electronic parameters are sampled for typically 15 ps,
in order to evaluate the heat generation rate H(x);

• The lattice temperature TL(x) is obtained by solving the steady-state heat diffusion
equation

∇x(κ∇xTL(x)) + H(x) = 0 (28)

κ being the thermal conductivity in GaAs;
• The SPMC solver is rerun, in the next iteration, with the new lattice temperature TL(x).

We observe that the scattering rates (25) and (26) depend on the lattice temperature;
• We repeat this procedure until convergence is reached.

This model does not account for temperature changes beyond the semiconductor die.
Radiation losses are neglected, as their contribution at the small die surface areas is insignificant.

The mechanism through which Joule heating occurs is that of electron scattering with
phonons, and consequently only a simulation approach which deliberately incorporates
all such scattering events will capture the complete microscopic, detailed picture of lattice
heating. The phonon emission and absorption events during a simulation run are tallied
and full heat generation statistics can be collected. We wait until the steady state has been
reached at time t0. Then, we count our events in the observation points ti , i = 0, . . . , Nobs.
We evaluate the heat generation rate in two ways:
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1. Counting the phonon number.

We introduce the quantity [22]

Hc(ti−1, ti, x) =
n(ti, x)

Np(ti, x)
h̄ωp[C+ − C−]

dt
, (29)

where C+(ti−1, ti, x), C−(ti−1, ti, x) are the numbers of the phonon emitted and ab-
sorbed in the time interval (ti−1, ti) in the x-th grid point, n(t, x) the charge density,
and Np(t, x) the particle number at time t in the x-th cell. Then, the heat generation
rate is

〈Hc(x)〉 = 1
Nobs

Nobs

∑
i=1

Hc(ti−1, ti, x) (30)

2. using the integrated probability scattering function.
From the integrated probability scattering (25) and (26) we can define

HF(ti, x) =
n(ti, x)

Nini

N(ti)

∑
j=1

ujG(ε(kj)) , G(ε) = h̄ωp
[
λ+(k)− λ−(k)

]
(31)

Then, the heat generation rate is

〈
HF(x)

〉
=

1
Nobs

Nobs

∑
i=1

HF(ti, x) . (32)

The heat generation is reduced to the usual calculation of functionals according to
Equation (19). This estimator enjoys better approximation properties due to reduced
statistical fluctuations [5].

6. Numerical Results

In order to have a significant lattice temperature increase with respect to the equi-
librium temperature of 300 K, the applied bias voltage Vb must be greater than 0.8 V. In
Figure 2, we plot the heat generation rate versus the position, evaluated by means of the
counting estimator (30) and the integrated probability estimator (32), for Vb = 0.8 V. From
this figure, we can see that the maximum heat is produced inside the quantum well region,
representing a so-called hot spot region.
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Figure 2. The heat generation rate versus the position for Vb = 0.8 V evaluated by means of the
counting estimator (30) and the integrated probability estimator (32).
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In Figure 3, we plot the corresponding standard deviation, proving the variance
reduction of the integrated probability estimator (32). In Figure 4, we plot a zoom of
Figure 2 with the error bar, proving that the integrated probability estimator is always
inside the tolerance band of the counting estimator. Figure 5 shows the density for the first
two iterations, showing no appreciable variation.
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Figure 3. The standard deviation of the counting estimator (30) and the integrated probability
estimator (32) versus position, for Vb = 0.8 V.
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Figure 4. The heat generation rate vs. position for Vb = 0.8 V evaluated by means of the counting
estimator (30) and the integrated probability estimator (32), with error bar.

Figure 6 shows the lattice temperature evaluated by means of the heat diffusion
Equation (28) for the first two iterations, which are enough to reach the convergence. We
observe that the lattice temperature is decreasing with the iteration number. To explain this
behavior, one must consider the function G(ε) in Equation (31). This function represents the
difference between the emitted and absorbed phonon probability; if this quantity is positive,
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more phonons are released into the lattice and in turn the temperature increases. We plot
this quantity in Figure 7 showing that, for this particular kind of scattering mechanism,
it decreases with the lattice temperature. In Figure 8, we plot the current versus the
iteration number, proving that this quantity is constant. If we double the applied voltage to
Vb = 1.6 V, the increase of temperature is of a factor 5 as shown in Figure 9.
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Figure 5. The density versus position for some iterations, for Vb = 0.8 V.
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Figure 6. The lattice temperature TL versus position for some iterations, for Vb = 0.8 V.
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Figure 7. The function G(ε) (31) versus energy for some lattice temperature.
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Figure 8. The current versus iteration number, for Vb = 0.8 V.
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Figure 9. The lattice temperature TL versus position for some iterations, for Vb = 1.6 V.

7. Conclusions

The Electrothermal Signed Particle Monte Carlo algorithm provides an accurate tool
for studying heat generation and quantum effects in nanometric semiconductor devices,
at the expense of huge computational effort. The coupling between the MC charge transport
and the heat diffusion equation is given by a term called heat generation rate obtained,
usually, by counting the number of phonons emitted/absorbed during the steady-state.
Alternatively, a new estimator of the heat generation rate, based on the integrated scatter-
ing probability function (32), can be used, which enjoys reduced statistical fluctuations.
Simulation results for a Resonant Tunneling Diode are shown, proving that the heat is
produced almost entirely inside the quantum well and estimating the lattice temperature,
which depends on the applied voltage. The localization of hot spot regions can be useful in
the design of such devices, in order to optimize the heat removal.
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Abstract: Co-infections with respiratory viruses were reported in hospitalized patients in several
cases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) are
two respiratory viruses and are similar in terms of their seasonal occurrence, clinical manifestations,
transmission routes, and related immune responses. SARS-CoV-2 is the cause of coronavirus disease
2019 (COVID-19). In this paper, we study the dynamic behaviors of an influenza and COVID-19
co-infection model in vivo. The role of humoral (antibody) immunity in controlling the co-infection
is modeled. The model considers the interactions among uninfected epithelial cells (ECs), SARS-
CoV-2-infected ECs, IAV-infected ECs, SARS-CoV-2 particles, IAV particles, SARS-CoV-2 antibodies,
and IAV antibodies. The model is given by a system of delayed ordinary differential equations
(DODEs), which include four time delays: (i) a delay in the SARS-CoV-2 infection of ECs, (ii) a delay
in the IAV infection of ECs, (iii) a maturation delay of newly released SARS-CoV-2 virions, and (iv) a
maturation delay of newly released IAV virions. We establish the non-negativity and boundedness of
the solutions. We examine the existence and stability of all equilibria. The Lyapunov method is used
to prove the global stability of all equilibria. The theoretical results are supported by performing
numerical simulations. We discuss the effects of antiviral drugs and time delays on the dynamics
of influenza and COVID-19 co-infection. It is noted that increasing the delay length has a similar
influence to that of antiviral therapies in eradicating co-infection from the body.

Keywords: influenza; COVID-19; co-infection; time delay; global stability; Lyapunov function

MSC: 34D20; 34D23; 37N25; 92B05

1. Introduction

Global health and economies have been severely affected since the emergence of the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019. This
virus causes coronavirus disease 2019 (COVID-19), which swept the whole world with
its rapid spread. Based on an update given by the World Health Organization (WHO)
on 18 December 2022 [1], about 649 million confirmed cases and over 6.6 million deaths
were reported globally. Influenza is another infectious respiratory disease that can cause
serious morbidity and death. Influenza viruses of types A, B, C, and D infect about 20% of
the world’s population in annual epidemics, resulting in 3–5 million severe illnesses and
290,000–650,000 deaths each year [2]. Influenza A virus (IAV) usually occurs in winter and
is able to infect many species.

Epithelial cells (ECs) are the targets of both IAV and SARS-CoV-2 [3,4]. Both viruses
have similar transmission paths. In addition, they have quite similar clinical manifestations,
such as cough, myalgia, dyspnea, sore throat, headache, fever, and rhinitis [5]. Viral
shedding often occurs within five to ten days in influenza, while it takes two to five weeks
in COVID-19 [5]. Acute respiratory distress occurs more frequently in patients with COVID-
19 than in those with influenza [5]. Less than 1% of influenza cases may die, while the death
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rate among COVID-19 patients is 3–4% [5]. The precautionary measures implemented
by governments to limit the transmission of COVID-19 can play a role in reducing the
transmission of influenza [6]. Currently, there are eleven vaccines for COVID-19 [7] and
three types of influenza vaccines used worldwide [8].

One study by Zhu et al. [9] reported that 94.2% of COVID-19-infected individuals
were also co-infected with many other types of microorganisms, such as viruses, fungi,
and bacteria. Many co-infections of COVID-19 and influenza were reported in several
studies [5,9–12] (see also the review articles [13–16]). Infection with multiple competitive
respiratory viruses can cause the phenomenon of viral interference. It may happen that a
certain type of virus has the ability to suppress the development and growth of another
virus [17,18]. In [18,19], it was found that SARS-CoV-2 had a slower growth rate than that
of IAV if the two infections started at the same time. If the influenza infection started after
COVID-19, then influenza and COVID-19 co-infection could be detected. The progression
and outcome of COVID-19 are highly dependent on a patient’s immunity. The risk of
co-infection may be increased for persons who are immunocompromised [17]. In addition,
Hashemi et al. [20] conducted a study that reported that, in patients with co-infection of
influenza and COVID-19, the presence of underlying diseases, such as chronic neurological
pathologies, diabetes, asthma, and heart disease, may lead to an increase in mortality.

Mathematical models of mono-infection or co-infection of viruses are important for
understanding in-host viral infections and for developing antiviral drugs and vaccines.
Models of in-host influenza mono-infection were formulated in many works (see the re-
view papers [21–24]). Baccam et al. [25] presented a basic target-cell-limited influenza
infection model. Several extensions were made for this model by incorporating the im-
pacts of innate immunity [25,26], adaptive immunity [27,28], both innate and adaptive
immunities [3,29–32], drug therapies [33], and time delays [34].

The model presented in [25] was used to describe the in-host COVID-19 dynamics
in [35]. Li et al. [36] considered the regeneration and death of susceptible ECs. A model
that was limited to target cells and a model with the regeneration and death of susceptible
ECs were presented, respectively, in [35,36], where they were modified and extended by
taking into account the influences of immune response [37–44], drug therapies [45–47],
time delays [48], and reaction diffusion [49]. In [50], a two-state mathematical model of
within-host SARS-CoV-2-neutralizing antibody dynamics in response to vaccination was
considered. The stability of in-host COVID-19 mono-infection models was investigated
in [41–43,48,51,52].

Pinky and Dobrovolny [18] constructed a SARS-CoV-2/IAV co-infection model that
was limited to target cells. The authors mentioned that some types of respiratory viruses
may be able to inhibit the progression of SARS-CoV-2. In [18], the effect of the immune
response was not included. Moreover, the production and death of susceptible ECs were
not considered. Elaiw et al. [53,54] examined the global properties of a SARS-CoV-2/IAV
co-infection model with antibody immune response. However, a time delay was not
considered in these papers. Time delay is one of the key factors for studying innovative
insights into viral dynamics. In the process of SARS-CoV-2 and IAV infections, it takes
time for the viruses to infect susceptible ECs and then release new mature viral particles.
Therefore, it is important to include a time delay in COVID-19 and influenza co-infection
models. The aim of this article is to construct a system of delayed differential equations
(DDEs) that describe the in-host co-dynamics of influenza and COVID-19. The model
extends the model presented in [53] by incorporating four time delays: (i) a delay in the
SARS-CoV-2 infection of ECs, (ii) a delay in the IAV infection of ECs, (iii) a maturation delay
of newly released SARS-CoV-2 virions, and (iv) a maturation delay of newly released IAV
virions. We first investigate the basic properties of the DDEs; then, we find all equilibria
and examine their global stability. We illustrate the theoretical results via numerical
simulations. The effects of time delays on the dynamics of COVID-19 and influenza
co-infection are discussed.
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2. Model Formulation

This section develops a system of DDEs that describe influenza and COVID-19 co-
infection with four time delays. Let t represent the time and let X(t), Y(t), I(t), V(t), P(t),
Z(t), and M(t) represent the concentrations of susceptible ECs, SARS-CoV-2-infected ECs,
IAV-infected ECs, SARS-CoV-2 particles, IAV particles, SARS-CoV-2 antibodies, and IAV
antibodies. The following system of DDEs is to be studied:

dX(t)
dt

=

ECs production︷︸︸︷
δ −

natural death︷ ︸︸ ︷
�X(t) −

SARS-CoV-2 infectious transmission︷ ︸︸ ︷
ξV X(t)V(t) −

IAV infectious transmission︷ ︸︸ ︷
ξPX(t)P(t) , (1)

dY(t)
dt

=

SARS-CoV-2 infectious transmission︷ ︸︸ ︷
e−α1τ1 ξV X(t− τ1)V(t− τ1) −

natural death︷ ︸︸ ︷
βYY(t) , (2)

dI(t)
dt

=

IAV infectious transmission︷ ︸︸ ︷
e−α3τ3 ξPX(t− τ3)P(t− τ3)−

natural death︷ ︸︸ ︷
β I I(t) , (3)

dV(t)
dt

=

SARS-CoV-2 production︷ ︸︸ ︷
e−α2τ2 θVY(t− τ2) −

natural death︷ ︸︸ ︷
λVV(t) −

SARS-CoV-2 neutralization︷ ︸︸ ︷
ρVV(t)Z(t) , (4)

dP(t)
dt

=

IAV production︷ ︸︸ ︷
e−α4τ4 θP I(t− τ4)−

natural death︷ ︸︸ ︷
λPP(t) −

IAV neutralization︷ ︸︸ ︷
ρPP(t)M(t) , (5)

dZ(t)
dt

=

proliferation SARS-CoV-2 antibodies︷ ︸︸ ︷
ηZV(t)Z(t) −

natural death︷ ︸︸ ︷
γZZ(t) , (6)

dM(t)
dt

=

proliferation IAV antibodies︷ ︸︸ ︷
ηMP(t)M(t) −

natural death︷ ︸︸ ︷
γM M(t) . (7)

Here, τ1 and τ3 are the delays between the entries of SARS-CoV-2 and IAV into ECs
and the start of production of immature SARS-CoV-2 and IAV virions, respectively. τ2 and
τ4 are the maturation delays of newly released SARS-CoV-2 and IAV virions, respectively.
The probabilities of SARS-CoV-2-infected ECs and IAV-infected ECs surviving to the ages
of τ1 and τ3 are represented by e−α1τ1 and e−α3τ3 , respectively. The probabilities of released
SARS-CoV-2 and IAV virions surviving to the ages τ2 and τ4 are denoted by e−α2τ2 and
e−α4τ4 , respectively.

The initial states (conditions) for system (1)–(7) are given as:

X(u) = ψ1(u), Y(u) = ψ2(u), I(u) = ψ3(u), V(u) = ψ4(u),

P(u) = ψ5(u), Z(u) = ψ6(u), M(u) = ψ7(u),

ψi(u) ≥ 0, u ∈ [−τ∗, 0],

ψi(u) ∈ C([−τ∗, 0],R≥0), i = 1, 2, . . . , 7, (8)

where τ∗ = max{τ1, τ2, τ3, τ4}, and C is the Banach space of continuous functions mapping
the interval [−τ∗, 0] into R≥0 with ‖ψi‖ = sup−τ∗≤u≤0|ψi(u)| for ψi ∈ C. We note that
system (1)–(7), with initial conditions (8), has a unique solution [55].

3. Well-Posedness of the Solutions

Here, we investigate the non-negativity and ultimate boundedness of system (1)–(7).

Lemma 1. The solutions of system (1)–(7) with initial states (8) are non-negative and ulti-
mately bounded.
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Proof. We have that

dX
dt
|X=0= δ > 0,

dZ
dt
|Z=0= 0,

dM
dt
|M=0= 0.

Hence, X(t), Z(t), M(t) ≥ 0 for all t ≥ 0. Moreover, for all t ∈ [0, τ∗], we have:

Y(t) = ψ2(0)e−βYt + ξVe−α1τ1

t∫
0

e−βY(t−u)X(u− τ1)V(u− τ1)du ≥ 0,

I(t) = ψ3(0)e−β I t + ξPe−α3τ3

t∫
0

e−β I(t−u)X(u− τ3)P(u− τ3)du ≥ 0,

V(t) = ψ4(0)e−
∫ t

0 (λV+ρV Z(r))dr + θVe−α2τ2

t∫
0

e−
∫ t

u(λV+ρV Z(r))drY(u− τ2)du ≥ 0,

P(t) = ψ5(0)e−
∫ t

0 (λP+ρP M(r))dr + θPe−α4τ4

t∫
0

e−
∫ t

u(λP+ρP M(r))dr I(u− τ4)du ≥ 0.

Hence, Y(t), I(t), V(t), P(t) ≥ 0 for all t ∈ [0, τ∗]. Through recursive argumentation, we
get Y(t), I(t), V(t), P(t) for all t ≥ 0. Therefore, X, Y, I, V, P, Z, and M are non-negative.

The non-negativity of the system’s solution implies that:

dX(t)
dt

≤ δ− �X =⇒ lim
t→∞

sup X(t) =
δ

�
.

Let us define
Ψ1(t) = e−α1τ1 X(t− τ1) + Y(t).

Then,

dΨ1(t)
dt

= e−α1τ1 δ− e−α1τ1 �X(t− τ1)− e−α1τ1 ξPX(t− τ1)P(t− τ1)− βYY(t)

≤ δ− e−α1τ1 �X(t− τ1)− βYY(t)

≤ δ− ϕ1
[
e−α1τ1 X(t− τ1) + Y(t)

]
= δ− ϕ1Ψ1(t),

where ϕ1 = min{�, βY}. This implies that

lim
t→∞

sup Ψ1(t) ≤
δ

ϕ1
= A1 =⇒ lim

t→∞
sup Y(t) ≤ A1.

Let

Ψ2(t) = e−α3τ3 X(t− τ3) + I(t)

dΨ2(t)
dt

= e−α3τ3 δ− e−α3τ3 �X(t− τ3)− e−α3τ3 ξV X(t− τ3)V(t− τ3)− β I I(t)

≤ δ− e−α3τ3 �X(t− τ3)− β I I(t)

≤ δ− ϕ2
[
e−α3τ3 X(t− τ3) + I(t)

]
= δ− ϕ2Ψ2(t),

where ϕ2 = min{�, β I}. It follows that

lim
t→∞

sup Ψ2(t) ≤
δ

ϕ2
= A2 =⇒ lim

t→∞
sup I(t) ≤ A2.
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Let us define

Ψ3(t) = V(t) + P(t) +
ρV
ηZ

Z(t) +
ρP
ηM

M(t).

dΨ3(t)
dt

= e−α2τ2 θVY(t− τ2)− λVV(t) + e−α4τ4 θP I(t− τ4)− λPP(t)− ρVγZ
ηZ

Z(t)

− ρPγM
ηM

M(t).

Since Y(t) ≤ A1, I(t) ≤ A2, then

dΨ3(t)
dt

≤ θV A1 + θP A2 − λVV(t)− λPP(t)− ρVγZ
ηZ

Z(t)− ρPγM
ηM

M(t)

≤ θV A1 + θP A2 − ϕ3

[
V(t) + P(t) +

ρV
ηZ

Z(t) +
ρP
ηM

M(t)
]

= θV A1 + θP A2 − ϕ3Ψ3(t)

where ϕ3 = min{λV , λP, γZ, γM}. Then, we get

lim
t→∞

sup Ψ3(t) ≤
θV A1 + θP A2

ϕ3
= A3.

Since V(t) > 0, P(t) > 0, Z(t) > 0 and M(t) > 0, then

lim
t→∞

sup V(t) ≤ A3, lim
t→∞

sup P(t) ≤ A3,

lim
t→∞

sup Z(t) ≤ ηZ
ρV

A3 = A4 and lim
t→∞

sup M(t) ≤ ηM
ρP

A3 = A5.

Based on Lemma 1, we can show that the domain

Φ = {(X, Y, I, V, P, Z, M) ∈ C7
≥0 : ‖X‖, ‖Y‖ ≤ A1, ‖I‖ ≤ A2, ‖V‖, ‖P‖ ≤ A3, ‖Z‖ ≤ A4,

‖M‖ ≤ A5}

is positively invariant for model (1)–(7).

4. Equilibria

Here, we calculate the system’s equilibria and deduce the condition of their existence.
Any equilibrium point Δ = (X, Y, I, V, P, Z, M) satisfies:

0 = δ− �X− ξV XV − ξPXP, (9)

0 = e−α1τ1 ξV XV − βYY, (10)

0 = e−α3τ3 ξPXP− β I I, (11)

0 = e−α2τ2 θVY− λVV − ρVVZ, (12)

0 = e−α4τ4 θP I − λPP− ρPPM, (13)

0 = ηZVZ− γZZ, (14)

0 = ηMPM− γM M. (15)

Solving Equations (9)–(15), we get eight equilibria.
(i) Infection-free equilibrium, Δ0 = (X0, 0, 0, 0, 0, 0, 0), where X0 = δ/�.
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(ii) COVID-19 mono-infection equilibrium with inactive antibody response Δ1 =
(X1, Y1, 0, V1, 0, 0, 0), where

X1 =
βYλV

e−α1τ1−α2τ2 θVξV
, Y1 =

�λV
e−α2τ2 θVξV

[
e−α1τ1−α2τ2 X0θVξV

βYλV
− 1

]
,

V1 =
�

ξV

[
e−α1τ1−α2τ2 X0θVξV

βYλV
− 1

]
.

Therefore, Y1 > 0 and V1 > 0 when

e−α1τ1−α2τ2 X0θVξV
βYλV

> 1.

We define the basic COVID-19 mono-infection reproduction number as:

�1 =
e−α1τ1−α2τ2 X0θVξV

βYλV
.

Thus, we can write:

X1 =
X0

�1
, Y1 =

�λV
e−α2τ2 θVξV

(�1 − 1), V1 =
�

ξV
(�1 − 1).

Consequently, Δ1 exists if �1 > 1.
(iii) Influenza mono-infection equilibrium with inactive antibody response, Δ2 =

(X2, 0, I2, 0, P2, 0, 0), where

X2 =
β IλP

e−α3τ3−α4τ4 θPξP
, I2 =

�λP
e−α4τ4 θPξP

[
e−α3τ3−α4τ4 X0θPξP

β IλP
− 1

]
,

P2 =
�

ξP

[
e−α3τ3−α4τ4 X0θPξP

β IλP
− 1

]
.

Therefore, I2 > 0 and P2 > 0 when

e−α3τ3−α4τ4 X0θPξP
β IλP

> 1.

We define the basic influenza mono-infection reproduction number as:

�2 =
e−α3τ3−α4τ4 X0θPξP

β IλP
.

In terms of �2, we write

X2 =
X0

�2
, I2 =

�λP
e−α4τ4 θPξP

(�2 − 1), P2 =
�

ξP
(�2 − 1).

Therefore, Δ2 exists if �2 > 1.
(iv) COVID-19 mono-infection equilibrium with activated SARS-CoV-2-specific anti-

body response, Δ3 = (X3, Y3, 0, V3, 0, Z3, 0), where

X3 =
δηZ

ξVγZ + �ηZ
, Y3 =

e−α1τ1 δξVγZ
βY(ξVγZ + �ηZ)

,

V3 =
γZ
ηZ

, Z3 =
λV
ρV

[
e−α1τ1−α2τ2 δξVηZθV
βYλV(ξVγZ + �ηZ)

− 1
]

.
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We note that Δ3 exists when

e−α1τ1−α2τ2 δξVηZθV
βYλV(ξVγZ + �ηZ)

> 1.

Let us define the SARS-CoV-2-specific antibody response activation number for
COVID-19 mono-infection as:

�3 =
e−α1τ1−α2τ2 δξVηZθV
βYλV(ξVγZ + �ηZ)

.

Thus, Z3 = λV
ρV

(�3 − 1).
(v) Influenza mono-infection equilibrium with activation of of IAV-specific antibody

response, Δ4 = (X4, 0, I4, 0, P4, 0, M4), where

X4 =
δηM

ξPγM + �ηM
, I4 =

e−α3τ3 δξPγM
β I(ξPγM + �ηM)

,

P4 =
γM
ηM

, M4 =
λP
ρP

[
e−α3τ3−α4τ4 δξPηMθP
β IλP(ξPγM + �ηM)

− 1
]

.

We note that Δ4 exists when

e−α3τ3−α4τ4 δξPηMθP
β IλP(ξPγM + �ηM)

> 1.

The IAV-specific antibody response activation number for influenza mono-infection is
defined as:

�4 =
e−α3τ3−α4τ4 δξPηMθP
β IλP(ξPγM + �ηM)

.

Thus, M4 = λP
ρP
(�4 − 1).

(vi) Influenza and COVID-19 co-infection equilibrium with only the activated SARS-
CoV-2-specific antibody response, Δ5 = (X5, Y5, I5, V5, P5, Z5, 0), where

X5 =
β IλP

e−α3τ3−α4τ4 θPξP
, Y5 =

e−α1τ1 ξV β IλPγZ
e−α3τ3−α4τ4 θPξPβYηZ

,

I5 =
λP(ξVγZ + �ηZ)

e−α4τ4 θPξPηZ

[
e−α3τ3−α4τ4 δξPθPηZ
β IλP(ξVγZ + �ηZ)

− 1
]

, V5 =
γZ
ηZ

,

P5 =
ξVγZ + �ηZ

ξPηZ

[
e−α3τ3−α4τ4 δξPθPηZ
β IλP(ξVγZ + �ηZ)

− 1
]

,

Z5 =
λV
ρV

[
e−α1τ1−α2τ2 θVξV β IλP
e−α3τ3−α4τ4 θPξPβYλV

− 1
]
=

λV
ρV

(�1/�2 − 1).

Hence, Δ5 exists when

�1

�2
> 1 and

e−α3τ3−α4τ4 δξPθPηZ
β IλP(ξVγZ + �ηZ)

> 1.

The influenza infection reproduction number in the presence of COVID-19 infection is
stated as:

�5 =
e−α3τ3−α4τ4 δξPθPηZ
β IλP(ξVγZ + �ηZ)

.

Hence,

I5 =
λP(ξVγZ + �ηZ)

e−α4τ4 θPξPηZ
(�5 − 1), P5 =

ξVγZ + �ηZ
ξPηZ

(�5 − 1),
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and then Δ5 exists if �1
�2

> 1 and �5 > 1.
(vii) Influenza and COVID-19 co-infection equilibrium with only the activated IAV-

specific antibody response, Δ6 = (X6, Y6, I6, V6, P6, 0, M6), where

X6 =
βYλV

e−α1τ1−α2τ2 θVξV
, Y6 =

λV(ξPγM + �ηM)

e−α2τ2 θVξVηM

[
e−α1τ1−α2τ2 δξVθVηM
βYλV(ξPγM + �ηM)

− 1
]

,

I6 =
e−α3τ3 ξPγMβYλV

e−α1τ1−α2τ2 θVξV β IηM
, V6 =

ξPγM + �ηM
ξVηM

[
e−α1τ1−α2τ2 δξVθVηM
βYλV(ξPγM + �ηM)

− 1
]

,

P6 =
γM
ηM

, M6 =
λP
ρP

[
e−α3τ3−α4τ4 θPξPβYλV
e−α1τ1−α2τ2 θVξV β IλP

− 1
]
=

λP
ρP

(�2/�1 − 1).

We note that Δ6 exists when

�2

�1
> 1 and

e−α1τ1−α2τ2 δξVθVηM
βYλV(ξPγM + �ηM)

> 1.

The COVID-19 infection reproduction number in the presence of influenza infection is
stated as:

�6 =
e−α1τ1−α2τ2 δξVθVηM
βYλV(ξPγM + �ηM)

.

Thus,

Y6 =
λV(ξPγM + �ηM)

e−α2τ2 θVξVηM
(�6 − 1), V6 =

ξPγM + �ηM
ξVηM

(�6 − 1).

(viii) Influenza and COVID-19 co-infection equilibrium with activation of both SARS-
CoV-2 and IAV antibody responses Δ7 = (X7, Y7, I7, V7, P7, Z7, M7), where

X7 =
δηZηM

ξPγMηZ + ξVγZηM + �ηZηM
, Y7 =

e−α1τ1 δξVγZηM
βY(ξPγMηZ + ξVγZηM + �ηZηM)

,

I7 =
e−α3τ3 δξPγMηZ

β I(ξPγMηZ + ξVγZηM + �ηZηM)
, V7 =

γZ
ηZ

, P7 =
γM
ηM

,

Z7 =
λV
ρV

[
e−α1τ1−α2τ2 δξVθVηMηZ

βYλV(ξPγMηZ + ξVγZηM + �ηZηM)
− 1

]
,

M7 =
λP
ρP

[
e−α3τ3−α4τ4 δξPθPηMηZ

β IλP(ξPγMηZ + ξVγZηM + �ηZηM)
− 1

]
.

It is obvious that Δ7 exists when

e−α1τ1−α2τ2 δξVθVηMηZ
βYλV(ξPγMηZ + ξVγZηM + �ηZηM)

> 1 and
e−α3τ3−α4τ4 δξPθPηMηZ

β IλP(ξPγMηZ + ξVγZηM + �ηZηM)
> 1.

Now, we define

�7 =
e−α1τ1−α2τ2 δξVθVηMηZ

βYλV(ξPγMηZ + ξVγZηM + �ηZηM)
,

�8 =
e−α3τ3−α4τ4 δξPθPηMηZ

β IλP(ξPγMηZ + ξVγZηM + �ηZηM)
.

Here,�7 is the SARS-CoV-2-specific antibody response activation number for influenza
and COVID-19 co-infection, and �8 is the IAV-specific antibody response activation number
for influenza and COVID-19 co-infection. Hence, Z7 = λV

ρV
(�7 − 1) and M7 = λP

ρP
(�8 − 1).

If �7 > 1 and �8 > 1, then Δ7 exists.
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From what was stated above, we obtain eight threshold parameters that establish the
existence of eight equilibria:

�1 = e−α1τ1−α2τ2 X0θV ξV
βYλV

, �2 = e−α3τ3−α4τ4 X0θPξP
β I λP

,

�3 = e−α1τ1−α2τ2 δξV ηZθV
βYλV(ξV γZ+�ηZ)

, �4 = e−α3τ3−α4τ4 δξPηMθP
β I λP(ξPγM+�ηM)

,

�5 = e−α3τ3−α4τ4 δξPθPηZ
β I λP(ξV γZ+�ηZ)

, �6 = e−α1τ1−α2τ2 δξV θV ηM
βYλV (ξPγM+�ηM)

,

�7 = e−α1τ1−α2τ2 δξV θV ηMηZ
βYλV(ξPγMηZ+ξV γZηM+�ηZηM)

, �8 = e−α3τ3−α4τ4 δξPθPηMηZ
β I λP(ξPγMηZ+ξV γZηM+�ηZηM)

.

(16)

5. Global Stability

This section is devoted to the study of the global asymptotic stability of all equilibria.
We configure the Lyapunov functions by following the way that was outlined in [56,57].

Let Λk(X, Y, I, V, P, Z, M) be a Lyapunov function and let Θ̄k be the largest invariant
subset of

Θk =

{
(X, Y, I, V, P, Z, M) :

dΛk
dt

= 0
}

, k = 0, 1, 2, . . . , 7.

We define a function � : (0, ∞) −→ [0, ∞) as �(u) = u − 1 − ln u. We denote
(X, Y, I, V, P, Z, M) = (X(t), Y(t), I(t), V(t), P(t), Z(t), M(t)).

Theorem 1. If �1 ≤ 1 and �2 ≤ 1, then Δ0 is globally asymptotically stable (GAS).

Proof. We define

Λ0 = X0�

(
X
X0

)
+ eα1τ1Y + eα3τ3 I +

βY
θV

eα1τ1+α2τ2 V +
β I
θP

eα3τ3+α4τ4 P

+
ρV βY
ηZθV

eα1τ1+α2τ2 Z +
ρPβ I
ηMθP

eα3τ3+α4τ4 M + ξV

t∫
t−τ1

X(u)V(u)du

+ ξP

t∫
t−τ3

X(u)P(u)du + βYeα1τ1

t∫
t−τ2

Y(u)du + β I eα3τ3

t∫
t−τ4

I(u)du.

Clearly, Λ0 > 0 for all X, Y, I, V, P, Z, M > 0, and Λ0(X0, 0, 0, 0, 0, 0, 0) = 0. We
calculate dΛ0

dt along the solutions of model (1)–(7) as:

dΛ0

dt
=

(
1− X0

X

)
dX
dt

+ eα1τ1
dY
dt

+ eα3τ3
dI
dt

+
βY
θV

eα1τ1+α2τ2
dV
dt

+
β I
θP

eα3τ3+α4τ4
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4
dM
dt

+ ξV [XV − X(t− τ1)V(t− τ1)]

+ ξP[XP− X(t− τ3)P(t− τ3)] + βYeα1τ1 [Y−Y(t− τ2)] + β I eα3τ3 [I − I(t− τ4)].

Substituting from Equations (1)–(7), we obtain

dΛ0

dt
=

(
1− X0

X

)
[δ− �X− ξV XV − ξPXP] + eα1τ1

[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2
[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4
[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2 [ηZVZ− γZZ]

+
ρPβ I
ηMθP

eα3τ3+α4τ4 [ηMPM− γM M] + ξV [XV − X(t− τ1)V(t− τ1)]
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+ ξP[XP− X(t− τ3)P(t− τ3)] + βYeα1τ1 [Y−Y(t− τ2)] + β I eα3τ3 [I − I(t− τ4)]. (17)

Simplifying Equation (17), we get:

dΛ0

dt
=

(
1− X0

X

)
(δ− �X) +

(
ξV X0 −

βYλV
θV

eα1τ1+α2τ2

)
V

+

(
ξPX0 −

β IλP
θP

eα3τ3+α4τ4

)
P− ρV βYγZ

ηZθV
e

α1τ1+α2τ2 Z− ρPβ IγM
ηMθP

e
α3τ3+α4τ4 M.

Using the equilibrium condition δ = �X0, we obtain:

dΛ0

dt
= −�

(X− X0)
2

X
+

βYλV
e−α1τ1−α2τ2 θV

(�1 − 1)V +
β IλP

e−α3τ3−α4τ4 θP
(�2 − 1)P

− ρV βYγZ
ηZθV

e
α1τ1+α2τ2 Z− ρPβ IγM

ηMθP
e

α3τ3+α4τ4 M.

Since �1 ≤ 1 and �2 ≤ 1, then dΛ0
dt ≤ 0 for all X, V, P, Z, M > 0. Further, dΛ0

dt = 0 when
X = X0 and V = 0, P = 0, Z = 0, and M = 0. The solutions of system (1)–(7) converge to
Θ̄0 [55], which contains elements with V = 0 and P = 0. Hence, dV

dt = 0 and dP
dt = 0, and

from Equations (4) and (5), we obtain

0 =
dV
dt

= e
−α2τ2 θVY(t− τ2) =⇒ Y(t) = 0, for all t,

0 =
dP
dt

= e
−α4τ4 θP I(t− τ4) =⇒ I(t) = 0, for all t.

Consequently, Θ̄0 = {Δ0}, and by applying the Lyapunov–LaSalle asymptotic stability
theorem (L-LAST) [58–60], we find that Δ0 is GAS.

Theorem 2. If �1 > 1, �2/�1 ≤ 1, and �3 ≤ 1, then Δ1 is GAS.

Proof. We formulate a Lyapunov function Λ1 as:

Λ1 = X1�

(
X
X1

)
+ eα1τ1Y1�

(
Y
Y1

)
+ eα3τ3 I +

βY
θV

eα1τ1+α2τ2 V1�

(
V
V1

)
+

β I
θP

eα3τ3+α4τ4 P +
ρV βY
ηZθV

eα1τ1+α2τ2 Z +
ρPβ I
ηMθP

eα3τ3+α4τ4 M

+ ξV X1V1

t∫
t−τ1

�

(
X(u)V(u)

X1V1

)
du + ξP

t∫
t−τ3

X(u)P(u)du

+ βYeα1τ1Y1

t∫
t−τ2

�

(
Y(u)

Y1

)
du + β I eα3τ3

t∫
t−τ4

I(u)du.

We calculate dΛ1
dt as:

dΛ1

dt
=

(
1− X1

X

)
dX
dt

+ eα1τ1

(
1− Y1

Y

)
dY
dt

+ eα3τ3
dI
dt

+
βY
θV

eα1τ1+α2τ2

(
1− V1

V

)
dV
dt

+
β I
θP

eα3τ3+α4τ4
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4
dM
dt

+ ξV X1V1

[
XV

X1V1
− X(t− τ1)V(t− τ1)

X1V1
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
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+ ξP[XP− X(t− τ3)P(t− τ3)] + βYeα1τ1Y1

[
Y
Y1
− Y(t− τ2)

Y1
+ ln

(
Y(t− τ2)

Y

)]
+ β I eα3τ3 [I − I(t− τ4)].

From Equations (1)–(7), we get

dΛ1

dt
=

(
1− X1

X

)
[δ− �X− ξV XV − ξPXP]

+ eα1τ1

(
1− Y1

Y

)[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2

(
1− V1

V

)[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4
[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2 [ηZVZ− γZZ] +
ρPβ I
ηMθP

eα3τ3+α4τ4 [ηMPM− γM M]

+ ξV X1V1

[
XV

X1V1
− X(t− τ1)V(t− τ1)

X1V1
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξP[XP− X(t− τ3)P(t− τ3)] + βYeα1τ1Y1

[
Y
Y1
− Y(t− τ2)

Y1
+ ln

(
Y(t− τ2)

Y

)]
+ β I eα3τ3 [I − I(t− τ4)]. (18)

Simplifying Equation (18), we get

dΛ1

dt
=

(
1− X1

X

)
(δ− �X) + ξV X1V + ξPX1P− ξV X(t− τ1)V(t− τ1)

Y1

Y

+ eα1τ1 βYY1 − eα1τ1+α2τ2
βYλV

θV
V − eα1τ1 βYY(t− τ2)

V1

V
+ eα1τ1+α2τ2

βYλV
θV

V1

+ eα1τ1+α2τ2
βYρV

θV
V1Z− eα3τ3+α4τ4

β IλP
θP

P− eα1τ1+α2τ2
βYρVγZ

θVηZ
Z− eα3τ3+α4τ4

β IρPγM
θPηM

M

+ ξV X1V1 ln
(

X(t− τ1)V(t− τ1)

XV

)
+ eα1τ1 βYY1 ln

(
Y(t− τ2)

Y

)
.

Using the equilibrium conditions for Δ1,

δ = �X1 + ξV X1V1, ξV X1V1 = eα1τ1 βYY1,

Y1 = eα2τ2
λV
θV

V1,

we obtain

dΛ1

dt
=

(
1− X1

X

)
(�X1 − �X) + 3ξV X1V1 − ξV X1V1

X1

X
− ξV X1V1

X(t− τ1)V(t− τ1)Y1

X1V1Y

− ξV X1V1
Y(t− τ2)V1

Y1V
+ ξV X1V1 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ ξV X1V1 ln

(
Y(t− τ2)

Y

)
+ eα3τ3+α4τ4

β IλP
θP

[
ξPX1θP

β IλP
e−α3τ3−α4τ4 − 1

]
P + eα1τ1+α2τ2

βYρVγZ
θVηZ

[
ηZ
γZ

V1 − 1
]

Z

− eα3τ3+α4τ4
β IρPγM

θPηM
M. (19)

Then, collecting the terms of (19), we get
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dΛ1

dt
= −�

(X− X1)
2

X
+ 3ξV X1V1 − ξV X1V1

X1

X
− ξV X1V1

X(t− τ1)V(t− τ1)Y1

X1V1Y

− ξV X1V1
Y(t− τ2)V1

Y1V
+ eα3τ3+α4τ4

β IλP
θP

(�2/�1 − 1)P

+ ξV X1V1

[
ln

(
X(t− τ1)V(t− τ1)Y1

X1V1Y

)
+ ln

(
X1

X

)
+ ln

(
Y(t− τ2)V1

Y1V

)]
+

βYρV(�ηZ + ξVγZ)

e−α1τ1−α2τ2 ηZξVθV
(�3 − 1)Z− eα3τ3+α4τ4

β IρPγM
θPηM

M.

= −�
(X− X1)

2

X
− ξV X1V1

[
�

(
X1

X

)
+�

(
Y(t− τ2)V1

Y1V

)
+�

(
X(t− τ1)V(t− τ1)Y1

X1V1Y

)]
+

β IλP
e−α3τ3−α4τ4 θP

(�2/�1 − 1)P +
βYρV(�ηZ + ξVγZ)

e−α1τ1−α2τ2 ηZξVθV
(�3 − 1)Z− eα3τ3+α4τ4

β IρPγM
θPηM

M.

Since �2/�1 ≤ 1 and �3 ≤ 1, then dΛ1
dt ≤ 0 for all X, Y, V, P, Z, M > 0. Moreover,

dΛ1
dt = 0 when X = X1, Y = Y1, V = V1, P = 0, Z = 0, and M = 0. The trajectories of

system (1)–(7) converge to Θ̄1, where P = 0. Thus, dP
dt = 0, and Equation (5) yields

0 =
dP
dt

= e−α4τ4 θP I(t− τ4) =⇒ I(t) = 0, fot all t.

Then, Θ̄1 = {Δ1} and Δ1 is GAS by utilizing the L-LAST.

Theorem 3. Let �2 > 1, �1/�2 ≤ 1 and �4 ≤ 1; then, Δ2 is GAS.

Proof. Consider

Λ2 = X2�

(
X
X2

)
+ eα1τ1Y + eα3τ3 I2�

(
I
I2

)
+

βY
θV

eα1τ1+α2τ2 V

+
β I
θP

eα3τ3+α4τ4 P2�

(
P
P2

)
+

ρV βY
ηZθV

eα1τ1+α2τ2 Z +
ρPβ I
ηMθP

eα3τ3+α4τ4 M

+ ξV

t∫
t−τ1

X(u)V(u)du + ξPX2P2

t∫
t−τ3

�

(
X(u)P(u)

X2P2

)
du

+ eα1τ1 βY

t∫
t−τ2

Y(u)du + eα3τ3 β I I2

t∫
t−τ4

�

(
I(u)

I2

)
du.

We calculate dΛ2
dt as:

dΛ2

dt
=

(
1− X2

X

)
dX
dt

+ eα1τ1
dY
dt

+ eα3τ3

(
1− I2

I

)
dI
dt

+
βY
θV

eα1τ1+α2τ2
dV
dt

+
β I
θP

eα3τ3+α4τ4

(
1− P2

P

)
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4
dM
dt

+ ξV [XV − X(t− τ1)V(t− τ1)]

+ ξPX2P2

[
XP

X2P2
− X(t− τ3)P(t− τ3)

X2P2
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ βYeα1τ1 [Y−Y(t− τ2)] + β I eα3τ3 I2

[
I
I2
− I(t− τ4)

I2
+ ln

(
I(t− τ4)

I

)]
.
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From Equations (1)–(7), we have

dΛ2

dt
=

(
1− X2

X

)
[δ− �X− ξV XV − ξPXP] + eα1τ1

[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

(
1− I2

I

)[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2
[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4

(
1− P2

P

)[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2 [ηZVZ− γZZ] +
ρPβ I
ηMθP

eα3τ3+α4τ4 [ηMPM− γM M]

+ ξV [XV − X(t− τ1)V(t− τ1)]

+ ξPX2P2

[
XP

X2P2
− X(t− τ3)P(t− τ3)

X2P2
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ βYeα1τ1 [Y−Y(t− τ2)] + β I eα3τ3 I2

[
I
I2
− I(t− τ4)

I2
+ ln

(
I(t− τ4)

I

)]
. (20)

Then, simplifying Equation (20), we get

dΛ2

dt
=

(
1− X2

X

)
(δ− �X) + ξPX2P− ξPX(t− τ3)P(t− τ3)

I2

I
+ eα3τ3 β I I2

− eα3τ3+α4τ4
β IλP

θP
P− eα3τ3 β I I(t− τ4)

P2

P
+ eα3τ3+α4τ4

β IλP
θP

P2

+ ξPX2P2 ln
(

X(t− τ3)P(t− τ3)

XP

)
+ eα3τ3 β I I2 ln

(
I(t− τ4)

I

)
+

βYλV
e−α1τ1−α2τ2 θV

(
ξV X2θVe−α1τ1−α2τ2

βYλV
− 1

)
V +

β IρPγM
e−α3τ3−α4τ4 θPηM

(
ηM
γM

P2 − 1
)

M

− eα1τ1+α2τ2
ρV βYγZ

ηZθV
Z.

Using the equilibrium conditions for Δ2,

δ = �X2 + ξPX2P2, ξPX2P2 = eα3τ3 β I I2,

I2 = eα4τ4
λP
θP

P2,

we obtain

dΛ2

dt
=

(
1− X2

X

)
(�X2 − �X) + 3ξPX2P2 − ξPX2P2

X2

X
− ξPX2P2

X(t− τ3)P(t− τ3)I2

X2P2 I

− ξPX2P2
I(t− τ4)P2

I2P
+ ξPX2P2 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ ξPX2P2 ln

(
I(t− τ4)

I

)
+

βYλV
e−α1τ1−α2τ2 θV

(�1

�2
− 1

)
V +

β IρP(�ηM + γMξP)

e−α3τ3−α4τ4 ξPηMθP
(�4 − 1)M− eα1τ1+α2τ2

ρV βYγZ
ηZθV

Z. (21)

Then, simplifying Equation (21), we get:

dΛ2

dt
= −�

(X− X2)
2

X
+ 3ξPX2P2 − ξPX2P2

X2

X
− ξPX2P2

I(t− τ4)P2

I2P

− ξPX2P2
X(t− τ3)P(t− τ3)I2

X2P2 I
+

βYλV
e−α1τ1−α2τ2 θV

(�1/�2 − 1)V
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+
β IρP(�ηM + γMξP)

e−α3τ3−α4τ4 ξPηMθP
(�4 − 1)M− eα1τ1+α2τ2

ρV βYγZ
ηZθV

Z

+ ξPX2P2

[
ln

(
X2

X

)
+ ln

(
I(t− τ4)P2

I2P

)
+ ln

(
X(t− τ3)P(t− τ3)I2

X2P2 I

)]
= −�

(X− X2)
2

X
− ξPX2P2

[
�

(
X2

X

)
+�

(
I(t− τ4)P2

I2P

)
+�

(
X(t− τ3)P(t− τ3)I2

X2P2 I

)]
+

βYλV
e−α1τ1−α2τ2 θV

(�1/�2 − 1)V +
β IρP(�ηM + γMξP)

e−α3τ3−α4τ4 ξPηMθP
(�4 − 1)M

− eα1τ1+α2τ2
ρV βYγZ

ηZθV
Z.

If �1/�2 ≤ 1 and �4 ≤ 1, then dΛ2
dt ≤ 0 for all X, I, V, P, Z, M > 0. In addition,

dΛ2
dt = 0 when X = X2, I = I2, P = P2, V = 0, M = 0, and Z = 0. The trajectories of

system (1)–(7) converge to Θ̄2, which includes solutions with V = 0, and thus, dV
dt = 0.

Equation (4) implies that

0 =
dV
dt

= e−α2τ2 θVY(t− τ2) =⇒ Y(t) = 0, for all t.

Hence, Θ̄2 = {Δ2}, and the global stability of Δ2 follows from applying the L-LAST.

Theorem 4. Let �3 > 1 and �5 ≤ 1; then, Δ3 is GAS.

Proof. We define

Λ3 = X3�

(
X
X3

)
+ eα1τ1Y3�

(
Y
Y3

)
+ eα3τ3 I +

βY
θV

eα1τ1+α2τ2 V3�

(
V
V3

)
+

β I
θP

eα3τ3+α4τ4 P +
ρV βY
ηZθV

eα1τ1+α2τ2 Z3�

(
Z
Z3

)
+

ρPβ I
ηMθP

eα3τ3+α4τ4 M

+ ξV X3V3

t∫
t−τ1

�

(
X(u)V(u)

X3V3

)
du + ξP

t∫
t−τ3

X(u)P(u)du

+ eα1τ1 βYY3

t∫
t−τ2

�

(
Y(u)

Y3

)
du + eα3τ3 β I

t∫
t−τ4

I(u)du.

We calculate dΛ3
dt as:

dΛ3

dt
=

(
1− X3

X

)
dX
dt

+ eα1τ1

(
1− Y3

Y

)
dY
dt

+ eα3τ3
dI
dt

+
βY
θV

eα1τ1+α2τ2

(
1− V3

V

)
dV
dt

+
β I
θP

eα3τ3+α4τ4
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z3

Z

)
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4
dM
dt

+ ξV X3V3

[
XV

X3V3
− X(t− τ1)V(t− τ1)

X3V3
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξP[XP− X(t− τ3)P(t− τ3)]

+ eα1τ1 βYY3

[
Y
Y3
− Y(t− τ2)

Y3
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I [I − I(t− τ4)].
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From Equations (1)–(7), we get

dΛ3

dt
=

(
1− X3

X

)
[δ− �X− ξV XV − ξPXP]

+ eα1τ1

(
1− Y3

Y

)[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2

(
1− V3

V

)[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4
[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z3

Z

)
[ηZVZ− γZZ] +

ρPβ I
ηMθP

eα3τ3+α4τ4 [ηMPM− γM M]

+ ξV X3V3

[
XV

X3V3
− X(t− τ1)V(t− τ1)

X3V3
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξP[XP− X(t− τ3)P(t− τ3)]

+ eα1τ1 βYY3

[
Y
Y3
− Y(t− τ2)

Y3
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I [I − I(t− τ4)]. (22)

Then, simplifying Equation (22), we get:

dΛ3

dt
=

(
1− X3

X

)
(δ− �X) + ξV X3V − ξV X(t− τ1)V(t− τ1)

Y3

Y

+ eα1τ1 βYY3 − eα1τ1+α2τ2
βYλV

θV
V − eα1τ1 βYY(t− τ2)

V3

V
+ eα1τ1+α2τ2

βYλV
θV

V3

+ eα1τ1+α2τ2
βYρV

θV
V3Z− eα1τ1+α2τ2

βYρVγZ
θVηZ

Z− eα1τ1+α2τ2
βYρV

θV
Z3V

+ eα1τ1+α2τ2
βYρVγZ

θVηZ
Z3 − eα3τ3+α4τ4

β IρPγM
θPηM

M

+ eα3τ3+α4τ4
β IλP

θP

[
ξPX3θP

β IλP
e−α3τ3−α4τ4 − 1

]
P + ξV X3V3 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ eα1τ1 βYY3 ln

(
Y(t− τ2)

Y

)
.

Using the equilibrium conditions for Δ3,

δ = �X3 + ξV X3V3, ξV X3V3 = eα1τ1 βYY3,

Y3 = eα2τ2
λV
θV

V3 + eα2τ2
ρV
θV

Z3V3,

V3 =
γZ
ηZ

,

we obtain

dΛ3

dt
=

(
1− X3

X

)
(�X3 − �X) + 3ξV X3V3 − ξV X3V3

X3

X

− ξV X3V3
X(t− τ1)V(t− τ1)Y3

X3V3Y
− ξV X3V3

Y(t− τ2)V3

Y3V

+ ξV X3V3 ln
(

X(t− τ1)V(t− τ1)

XV

)
+ ξV X3V3 ln

(
Y(t− τ2)

Y

)
+ eα3τ3+α4τ4

β IλP
θP

(�5 − 1)P− eα3τ3+α4τ4
β IρPγM

θPηM
M. (23)
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Equation (23) can be written as:

dΛ3

dt
= −�

(X− X3)
2

X
+ 3ξV X3V3 − ξV X3V3

X3

X
− ξV X3V3

Y(t− τ2)V3

Y3V

− ξV X3V3
X(t− τ1)V(t− τ1)Y3

X3V3Y
+ eα3τ3+α4τ4

β IλP
θP

(�5 − 1)P− eα3τ3+α4τ4
β IρPγM

θPηM
M

+ ξV X3V3

[
ln

(
X3

X

)
+ ln

(
Y(t− τ2)V3

Y3V

)
+ ln

(
X(t− τ1)V(t− τ1)Y3

X3V3Y

)]
= −�

(X− X3)
2

X

− ξV X3V3

[
�

(
X3

X

)
+�

(
X(t− τ1)V(t− τ1)Y3

X3V3Y

)
+�

(
Y(t− τ2)V3

Y3V

)]
+ eα3τ3+α4τ4

β IλP
θP

(�5 − 1)P− eα3τ3+α4τ4
β IρPγM

θPηM
M.

Obviously, dΛ3
dt ≤ 0 for all X, Y, V, P, M > 0 when �5 ≤ 1. Further, dΛ3

dt = 0 when X = X3,
Y = Y3, V = V3, P = 0, and M = 0. Similarly to the proofs of the previous theorems, one
can complete the proof.

Theorem 5. If �4 > 1 and �6 ≤ 1, then Δ4 is GAS.

Proof. We define a function Λ4 as:

Λ4 = X4�

(
X
X4

)
+ eα1τ1Y + eα3τ3 I4�

(
I
I4

)
+

βY
θV

eα1τ1+α2τ2 V

+
β I
θP

eα3τ3+α4τ4 P4�

(
P
P4

)
+

ρV βY
ηZθV

eα1τ1+α2τ2 Z +
ρPβ I
ηMθP

eα3τ3+α4τ4 M4�

(
M
M4

)

+ ξV

t∫
t−τ1

X(u)V(u)du + ξPX4P4

t∫
t−τ3

�

(
X(u)P(u)

X4P4

)
du

+ eα1τ1 βY

t∫
t−τ2

Y(u)du + eα3τ3 β I I4

t∫
t−τ4

�

(
I(u)

I4

)
du.

We calculate dΛ4
dt as:

dΛ4

dt
=

(
1− X4

X

)
dX
dt

+ eα1τ1
dY
dt

+ eα3τ3

(
1− I4

I

)
dI
dt

+
βY
θV

eα1τ1+α2τ2
dV
dt

+
β I
θP

eα3τ3+α4τ4

(
1− P4

P

)
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M4

M

)
dM
dt

+ ξV [XV − X(t− τ1)V(t− τ1)]

+ ξPX4P4

[
XP

X4P4
− X(t− τ3)P(t− τ3)

X4P4
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βY[Y−Y(t− τ2)] + eα3τ3 β I I4

[
I
I4
− I(t− τ4)

I4
+ ln

(
I(t− τ4)

I

)]
.

Substituting from Equations (1)–(7), we obtain

dΛ4

dt
=

(
1− X4

X

)
[δ− �X− ξV XV − ξPXP] + eα1τ1

[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
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+ eα3τ3

(
1− I4

I

)[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2
[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4

(
1− P4

P

)[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2 [ηZVZ− γZZ] +
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M4

M

)
[ηMPM− γM M]

+ ξV [XV − X(t− τ1)V(t− τ1)]

+ ξPX4P4

[
XP

X4P4
− X(t− τ3)P(t− τ3)

X4P4
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βY[Y−Y(t− τ2)] + eα3τ3 β I I4

[
I
I4
− I(t− τ4)

I4
+ ln

(
I(t− τ4)

I

)]
. (24)

Collecting the terms of Equation (24), we get:

dΛ4

dt
=

(
1− X4

X

)
(δ− �X) + ξPX4P− ξPX(t− τ3)P(t− τ3)

I4

I
+ eα3τ3 β I I4

− eα3τ3+α4τ4
β IλP

θP
P− eα3τ3 β I I(t− τ4)

P4

P
+ eα3τ3+α4τ4

β IλP
θP

P4

+ eα3τ3+α4τ4
β IρP

θP
P4M− eα1τ1+α2τ2

βYρVγZ
θVηZ

Z− eα3τ3+α4τ4
β IρPγM

θPηM
M

− eα3τ3+α4τ4
β IρP

θP
M4P + eα3τ3+α4τ4

β IρPγM
θPηM

M4

+ eα1τ1+α2τ2
βYλV

θV

[
ξV X4θV

βYλV
e−α1τ1−α2τ2 − 1

]
V + ξPX4P4 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ eα3τ3 β I I4 ln

(
I(t− τ4)

I

)
.

Using the equilibrium conditions for Δ4,

δ = �X4 + ξPX4P4, ξPX4P4 = eα3τ3 β I I4,

I4 = eα4τ4
λP
θP

P4 + eα4τ4
ρP
θP

P4M4, P4 =
γM
ηM

,

we obtain

dΛ4

dt
=

(
1− X4

X

)
(�X4 − �X) + 3ξPX4P4 − ξPX4P4

X4

X
− ξPX4P4

X(t− τ3)P(t− τ3)I4

X4P4 I

− ξPX4P4
I(t− τ4)P4

I4P
+ ξPX4P4 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ ξPX4P4 ln

(
I(t− τ4)

I

)
+ eα1τ1+α2τ2

βYλV
θV

(�6 − 1)V − eα1τ1+α2τ2
βYρVγZ

θVηZ
Z. (25)

Then, simplifying Equation (25), we get:

dΛ4

dt
= −�

(X− X4)
2

X
+ 3ξPX4P4 − ξPX4P4

X4

X
− ξPX4P4

I(t− τ4)P4

I4P

− ξPX4P4
X(t− τ3)P(t− τ3)I4

X4P4 I
+ eα1τ1+α2τ2

βYλV
θV

(�6 − 1)V − eα1τ1+α2τ2
βYρVγZ

θVηZ
Z

+ ξPX4P4

[
ln

(
X4

X

)
+ ln

(
X(t− τ3)P(t− τ3)I4

X4P4 I

)
+ ln

(
I(t− τ4)P4

I4P

)]
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= −�
(X− X4)

2

X
− ξPX4P4

[
�

(
X4

X

)
+�

(
X(t− τ3)P(t− τ3)I4

X4P4 I

)
+�

(
I(t− τ4)P4

I4P

)]
+ eα1τ1+α2τ2

βYλV
θV

(�6 − 1)V − eα1τ1+α2τ2
βYρVγZ

θVηZ
Z.

Since �6 ≤ 1, then dΛ4
dt ≤ 0 for all X, I, V, P, Z > 0. In addition, dΛ4

dt = 0 when X = X4,
I = I4, P = P4, V = 0, and Z = 0. The proof can be completed similarly to the previous
theorems.

Theorem 6. If �5 > 1, �8 ≤ 1, and �1/�2 > 1, then Δ5 is GAS.

Proof. We define

Λ5 = X5�

(
X
X5

)
+ eα1τ1Y5�

(
Y
Y5

)
+ eα3τ3 I5�

(
I
I5

)
+

βY
θV

eα1τ1+α2τ2 V5�

(
V
V5

)
+

β I
θP

eα3τ3+α4τ4 P5�

(
P
P5

)
+

ρV βY
ηZθV

eα1τ1+α2τ2 Z5�

(
Z
Z5

)
+

ρPβ I
ηMθP

eα3τ3+α4τ4 M

+ ξV X5V5

t∫
t−τ1

�

(
X(u)V(u)

X5V5

)
du + ξPX5P5

t∫
t−τ3

�

(
X(u)P(u)

X5P5

)
du

+ eα1τ1 βYY5

t∫
t−τ2

�

(
Y(u)

Y5

)
du + eα3τ3 β I I5

t∫
t−τ4

�

(
I(u)

I5

)
du.

We calculate dΛ5
dt as:

dΛ5

dt
=

(
1− X5

X

)
dX
dt

+ eα1τ1

(
1− Y5

Y

)
dY
dt

+ eα3τ3

(
1− I5

I

)
dI
dt

+
βY
θV

eα1τ1+α2τ2

(
1− V5

V

)
dV
dt

+
β I
θP

eα3τ3+α4τ4

(
1− P5

P

)
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z5

Z

)
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4
dM
dt

+ ξV X5V5

[
XV

X5V5
− X(t− τ1)V(t− τ1)

X5V5
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξPX5P5

[
XP

X5P5
− X(t− τ3)P(t− τ3)

X5P5
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY5

[
Y
Y5
− Y(t− τ2)

Y5
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I5

[
I
I5
− I(t− τ4)

I5
+ ln

(
I(t− τ4)

I

)]
.

It follows from Equations (1)–(7) that

dΛ5

dt
=

(
1− X5

X

)
[δ− �X− ξV XV − ξPXP]

+ eα1τ1

(
1− Y5

Y

)[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

(
1− I5

I

)[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2

(
1− V5

V

)[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
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+
β I
θP

eα3τ3+α4τ4

(
1− P5

P

)[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z5

Z

)
[ηZVZ− γZZ] +

ρPβ I
ηMθP

eα3τ3+α4τ4 [ηMPM− γM M]

+ ξV X5V5

[
XV

X5V5
− X(t− τ1)V(t− τ1)

X5V5
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξPX5P5

[
XP

X5P5
− X(t− τ3)P(t− τ3)

X5P5
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY5

[
Y
Y5
− Y(t− τ2)

Y5
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I5

[
I
I5
− I(t− τ4)

I5
+ ln

(
I(t− τ4)

I

)]
. (26)

Equation (26) can be simplified as:

dΛ5

dt
=

(
1− X5

X

)
(δ− �X) + ξV X5V + ξPX5P− ξV X(t− τ1)V(t− τ1)

Y5

Y

+ eα1τ1 βYY5 − ξPX(t− τ3)P(t− τ3)
I5

I
+ eα3τ3 β I I5 − eα1τ1+α2τ2

βYλV
θV

V

− eα1τ1 βYY(t− τ2)
V5

V
+ eα1τ1+α2τ2

βYλV
θV

V5 + eα1τ1+α2τ2
βYρV

θV
ZV5

− eα3τ3+α4τ4
β IλP

θP
P− eα3τ3 β I I(t− τ4)

P5

P
+ eα3τ3+α4τ4

β IλP
θP

P5

− eα1τ1+α2τ2
βYρVγZ

θVηZ
Z− eα1τ1+α2τ2

βYρV
θV

Z5V + eα1τ1+α2τ2
βYρVγZ

θVηZ
Z5

+ ξV X5V5 ln
(

X(t− τ1)V(t− τ1)

XV

)
+ ξPX5P5 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ eα1τ1 βYY5 ln

(
Y(t− τ2)

Y

)
+ eα3τ3 β I I5 ln

(
I(t− τ4)

I

)
+ eα3τ3+α4τ4

β IρPγM
θPηM

[
ηM
γM

P5 − 1
]

M.

Using the equilibrium conditions for Δ5,

δ = �X5 + ξV X5V5 + ξPX5P5, ξV X5V5 = eα1τ1 βYY5,

ξPX5P5 = eα3τ3 β I I5, Y5 = eα2τ2
λV
θV

V5 + eα2τ2
ρV
θV

V5Z5,

I5 = eα4τ4
λP
θP

P5, V5 =
γZ
ηZ

,

we obtain

dΛ5

dt
=

(
1− X5

X

)
(�X5 − �X) + 3ξV X5V5 + 3ξPX5P5 − ξV X5V5

X5

X
− ξPX5P5

X5

X

− ξV X5V5
X(t− τ1)V(t− τ1)Y5

X5V5Y
− ξPX5P5

X(t− τ3)P(t− τ3)I5

X5P5 I

− ξV X5V5
Y(t− τ2)V5

Y5V
− ξPX5P5

I(t− τ4)P5

I5P
+ ξV X5V5 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ ξPX5P5 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ ξV X5V5 ln

(
Y(t− τ2)

Y

)
+ ξPX5P5 ln

(
I(t− τ4)

I

)
+ eα3τ3+α4τ4

β IρP(ξPγMηZ + ξVγZηM + �ηZηM)

ξPθPηMηZ
(�8 − 1)M. (27)
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Then, simplifying Equation (27), we get:

dΛ5

dt
= −�

(X− X5)
2

X
+ 3ξV X5V5 + 3ξPX5P5 − ξV X5V5

X5

X
− ξV X5V5

Y(t− τ2)V5

Y5V

− ξV X5V5
X(t− τ1)V(t− τ1)Y5

X5V5Y
− ξPX5P5

X(t− τ3)P(t− τ3)I5

X5P5 I
− ξPX5P5

I(t− τ4)P5

I5P

+ ξV X5V5

[
ln

(
X5

X

)
+ ln

(
Y(t− τ2)V5

Y5V

)
+ ln

(
X(t− τ1)V(t− τ1)Y5

X5V5Y

)]
− ξPX5P5

X5

X
+ ξPX5P5

[
ln

(
X5

X

)
+ ln

(
X(t− τ3)P(t− τ3)I5

X5P5 I

)
+ ln

(
I(t− τ4)P5

I5P

)]
+ eα3τ3+α4τ4

β IρP(ξPγMηZ + ξVγZηM + �ηZηM)

ξPθPηMηZ
(�8 − 1)M

= −�
(X− X5)

2

X

− ξV X5V5

[
�

(
X5

X

)
+�

(
X(t− τ1)V(t− τ1)Y5

X5V5Y

)
+�

(
Y(t− τ2)V5

Y5V

)]
− ξPX5P5

[
�

(
X5

X

)
+�

(
X(t− τ3)P(t− τ3)I5

X5P5 I

)
+�

(
I(t− τ4)P5

I5P

)]
+ eα3τ3+α4τ4

β IρP(ξPγMηZ + ξVγZηM + �ηZηM)

ξPθPηMηZ
(�8 − 1)M.

If �8 ≤ 1, then dΛ5
dt ≤ 0 for all X, Y, I, V, P, M > 0. Moreover, we have dΛ5

dt = 0 when

X = X5, Y = Y5, V = V5, I = I5, P = P5, and M = 0. One can show that Θ̄5 = {Δ5}, and
then Δ5 is GAS.

Theorem 7. Let �6 > 1, �7 ≤ 1 and �2/�1 > 1; then, Δ6 is GAS.

Proof. Consider

Λ6 = X6�

(
X
X6

)
+ eα1τ1Y6�

(
Y
Y6

)
+ eα3τ3 I6�

(
I
I6

)
+

βY
θV

eα1τ1+α2τ2 V6�

(
V
V6

)
+

β I
θP

eα3τ3+α4τ4 P6�

(
P
P6

)
+

ρV βY
ηZθV

eα1τ1+α2τ2 Z +
ρPβ I
ηMθP

eα3τ3+α4τ4 M6�

(
M
M6

)

+ ξV X6V6

t∫
t−τ1

�

(
X(u)V(u)

X6V6

)
du + ξPX6P6

t∫
t−τ3

�

(
X(u)P(u)

X6P6

)
du

+ eα1τ1 βYY6

t∫
t−τ2

�

(
Y(u)

Y6

)
du + eα3τ3 β I I6

t∫
t−τ4

�

(
I(u)

I6

)
du.

We calculate dΛ6
dt as:

dΛ6

dt
=

(
1− X6

X

)
dX
dt

+ eα1τ1

(
1− Y6

Y

)
dY
dt

+ eα3τ3

(
1− I6

I

)
dI
dt

+
βY
θV

eα1τ1+α2τ2

(
1− V6

V

)
dV
dt

+
β I
θP

eα3τ3+α4τ4

(
1− P6

P

)
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M6

M

)
dM
dt

+ ξV X6V6

[
XV

X6V6
− X(t− τ1)V(t− τ1)

X6V6
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
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+ ξPX6P6

[
XP

X6P6
− X(t− τ3)P(t− τ3)

X6P6
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY6

[
Y
Y6
− Y(t− τ2)

Y6
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I6

[
I
I6
− I(t− τ4)

I6
+ ln

(
I(t− τ4)

I

)]
.

It follows from Equation (1)–(7) that

dΛ6

dt
=

(
1− X6

X

)
[δ− �X− ξV XV − ξPXP]

+ eα1τ1

(
1− Y6

Y

)[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

(
1− I6

I

)[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2

(
1− V6

V

)[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4

(
1− P6

P

)[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2 [ηZVZ− γZZ] +
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M6

M

)
[ηMPM− γM M]

+ ξV X6V6

[
XV

X6V6
− X(t− τ1)V(t− τ1)

X6V6
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξPX6P6

[
XP

X6P6
− X(t− τ3)P(t− τ3)

X6P6
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY6

[
Y
Y6
− Y(t− τ2)

Y6
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I6

[
I
I6
− I(t− τ4)

I6
+ ln

(
I(t− τ4)

I

)]
. (28)

We collect the terms of Equation (28) as follows:

dΛ6

dt
=

(
1− X6

X

)
(δ− �X) + ξV X6V + ξPX6P− ξV X(t− τ1)V(t− τ1)

Y6

Y

+ eα1τ1 βYY6 − ξPX(t− τ3)P(t− τ3)
I6

I
+ eα3τ3 β I I6 − eα1τ1+α2τ2

βYλV
θV

V

− eα1τ1 βYY(t− τ2)
V6

V
+ eα1τ1+α2τ2

βYλV
θV

V6 − eα3τ3+α4τ4
β IλP

θP
P

− eα3τ3 β I I(t− τ4)
P6

P
+ eα3τ3+α4τ4

β IλP
θP

P6 + eα3τ3+α4τ4
β IρP

θP
P6M

− eα3τ3+α4τ4
β IρPγM

θPηM
M− eα3τ3+α4τ4

β IρP
θP

M6P + eα3τ3+α4τ4
β IρPγM

θPηM
M6

+ eα1τ1+α2τ2
βYρVγZ

θVηZ

[
ηZ
γZ

V6 − 1
]

Z + ξV X6V6 ln
(

X(t− τ1)V(t− τ1)

XV

)
+ ξPX6P6 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ eα1τ1 βYY6 ln

(
Y(t− τ2)

Y

)
+ eα3τ3 β I I6 ln

(
I(t− τ4)

I

)
.
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Using the equilibrium conditions for Δ6,

δ = �X6 + ξV X6V6 + ξPX6P6, ξV X6V6 = eα1τ1 βYY6, ξPX6P6 = eα3τ3 β I I6,

Y6 = eα2τ2
λV
θV

V6, I6 = eα4τ4
λP
θP

P6 + eα4τ4
ρP
θP

P6M6, P6 =
γM
ηM

,

we obtain

dΛ6

dt
=

(
1− X6

X

)
(�X6 − �X) + 3ξV X6V6 + 3ξPX6P6 − ξV X6V6

X6

X

− ξPX6P6
X6

X
− ξV X6V6

X(t− τ1)V(t− τ1)Y6

X6V6Y

− ξPX6P6
X(t− τ3)P(t− τ3)I6

X6P6 I
− ξV X6V6

Y(t− τ2)V6

Y6V

− ξPX6P6
I(t− τ4)P6

I6P
+ ξV X6V6 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ ξPX6P6 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ ξV X6V6 ln

(
Y(t− τ2)

Y

)
+ ξPX6P6 ln

(
I(t− τ4)

I

)
+ eα1τ1+α2τ2

βYρV(ξPγMηZ + ξVγZηM + �ηZηM)

ξVθVηMηZ
(�7 − 1)Z. (29)

Then, simplifying Equation (29), we get:

dΛ6

dt
= −�

(X− X6)
2

X

− ξV X6V6

[
�

(
X6

X

)
+�

(
X(t− τ1)V(t− τ1)Y6

X6V6Y

)
+�

(
Y(t− τ2)V6

Y6V

)]
− ξPX6P6

[
�

(
X6

X

)
+�

(
X(t− τ3)P(t− τ3)I6

X6P6 I

)
+�

(
I(t− τ4)P6

I6P

)]
+ eα1τ1+α2τ2

βYρV(ξPγMηZ + ξVγZηM + �ηZηM)

ξVθVηMηZ
(�7 − 1)Z.

If �7 ≤ 1, then dΛ6
dt ≤ 0 for all X, Y, I, V, P, Z > 0. In addition, dΛ6

dt = 0 occurs at X = X6,
Y = Y6, I = I6, V = V6, P = P6, and Z = 0. The proof can be completed similarly to the
previous theorems.

Theorem 8. If �7 > 1 and �8 > 1, then Δ7 is GAS.

Proof. We define a function Λ7 as:

Λ7 = X7�

(
X
X7

)
+ eα1τ1Y7�

(
Y
Y7

)
+ eα3τ3 I7�

(
I
I7

)
+

βY
θV

eα1τ1+α2τ2 V7�

(
V
V7

)
+

β I
θP

eα3τ3+α4τ4 P7�

(
P
P7

)
+

ρV βY
ηZθV

eα1τ1+α2τ2 Z7�

(
Z
Z7

)
+

ρPβ I
ηMθP

eα3τ3+α4τ4 M7�

(
M
M7

)

+ ξV X7V7

t∫
t−τ1

�

(
X(u)V(u)

X7V7

)
du + ξPX7P7

t∫
t−τ3

�

(
X(u)P(u)

X7P7

)
du

+ eα1τ1 βYY7

t∫
t−τ2

�

(
Y(u)

Y7

)
du + eα3τ3 β I I7

t∫
t−τ4

�

(
I(u)

I7

)
du.

We calculate dΛ7
dt as:
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dΛ7

dt
=

(
1− X7

X

)
dX
dt

+ eα1τ1

(
1− Y7

Y

)
dY
dt

+ eα3τ3

(
1− I7

I

)
dI
dt

+
βY
θV

eα1τ1+α2τ2

(
1− V7

V

)
dV
dt

+
β I
θP

eα3τ3+α4τ4

(
1− P7

P

)
dP
dt

+
ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z7

Z

)
dZ
dt

+
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M7

M

)
dM
dt

+ ξV X7V7

[
XV

X7V7
− X(t− τ1)V(t− τ1)

X7V7
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξPX7P7

[
XP

X7P7
− X(t− τ3)P(t− τ3)

X7P7
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY7

[
Y
Y7
− Y(t− τ2)

Y7
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I7

[
I
I7
− I(t− τ4)

I7
+ ln

(
I(t− τ4)

I

)]
.

It follows from Equations (1)–(7) that

dΛ7

dt
=

(
1− X7

X

)
[δ− �X− ξV XV − ξPXP]

+ eα1τ1

(
1− Y7

Y

)[
e−α1τ1 ξV X(t− τ1)V(t− τ1)− βYY

]
+ eα3τ3

(
1− I7

I

)[
e−α3τ3 ξPX(t− τ3)P(t− τ3)− β I I

]
+

βY
θV

eα1τ1+α2τ2

(
1− V7

V

)[
e−α2τ2 θVY(t− τ2)− λVV − ρVVZ

]
+

β I
θP

eα3τ3+α4τ4

(
1− P7

P

)[
e−α4τ4 θP I(t− τ4)− λPP− ρPPM

]
+

ρV βY
ηZθV

eα1τ1+α2τ2

(
1− Z7

Z

)
[ηZVZ− γZZ]

+
ρPβ I
ηMθP

eα3τ3+α4τ4

(
1− M7

M

)
[ηMPM− γM M]

+ ξV X7V7

[
XV

X7V7
− X(t− τ1)V(t− τ1)

X7V7
+ ln

(
X(t− τ1)V(t− τ1)

XV

)]
+ ξPX7P7

[
XP

X7P7
− X(t− τ3)P(t− τ3)

X7P7
+ ln

(
X(t− τ3)P(t− τ3)

XP

)]
+ eα1τ1 βYY7

[
Y
Y7
− Y(t− τ2)

Y7
+ ln

(
Y(t− τ2)

Y

)]
+ eα3τ3 β I I7

[
I
I7
− I(t− τ4)

I7
+ ln

(
I(t− τ4)

I

)]
. (30)

We collect the terms of Equation (30) as follows:

dΛ7

dt
=

(
1− X7

X

)
(δ− �X) + ξV X7V + ξPX7P− ξV X(t− τ1)V(t− τ1)

Y7

Y

+ eα1τ1 βYY7 − ξPX(t− τ3)P(t− τ3)
I7

I
+ eα3τ3 β I I7 − eα1τ1+α2τ2

βYλV
θV

V

− eα1τ1 βYY(t− τ2)
V7

V
+ eα1τ1+α2τ2

βYλV
θV

V7 + eα1τ1+α2τ2
βYρV

θV
ZV7

− eα3τ3+α4τ4
β IλP

θP
P− eα3τ3 β I I(t− τ4)

P7

P
+ eα3τ3+α4τ4

β IλP
θP

P7
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+ eα3τ3+α4τ4
β IρP

θP
P7M− eα1τ1+α2τ2

βYρVγZ
θVηZ

Z− eα1τ1+α2τ2
βYρV

θV
VZ7

+ eα1τ1+α2τ2
βYρVγZ

θVηZ
Z7 − eα3τ3+α4τ4

β IρPγM
θPηM

M− eα3τ3+α4τ4
β IρP

θP
M7P

+ eα3τ3+α4τ4
β IρPγM

θPηM
M7 + ξV X7V7 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ ξPX7P7 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ eα1τ1 βYY7 ln

(
Y(t− τ2)

Y

)
+ eα3τ3 β I I7 ln

(
I(t− τ4)

I

)
.

Using the equilibrium conditions for Δ7,

δ = �X7 + ξV X7V7 + ξPX7P7,

ξV X7V7 = eα1τ1 βYY7, ξPX7P7 = eα3τ3 β I I7,

Y7 = eα2τ2
λV
θV

V7 + eα2τ2
ρV
θV

V7Z7, I7 = eα4τ4
λP
θP

P7 + eα4τ4
ρP
θP

P7M7,

V7 =
γZ
ηZ

, P7 =
γM
ηM

,

we obtain

dΛ7

dt
=

(
1− X7

X

)
(�X7 − �X) + 3ξV X7V7 + 3ξPX7P7 − ξV X7V7

X7

X
− ξPX7P7

X7

X

− ξV X7V7
X(t− τ1)V(t− τ1)Y7

X7V7Y
− ξPX7P7

X(t− τ3)P(t− τ3)I7

X7P7 I

− ξV X7V7
Y(t− τ2)V7

Y7V
− ξPX7P7

I(t− τ4)P7

I7P
+ ξV X7V7 ln

(
X(t− τ1)V(t− τ1)

XV

)
+ ξPX7P7 ln

(
X(t− τ3)P(t− τ3)

XP

)
+ ξV X7V7 ln

(
Y(t− τ2)

Y

)
+ ξPX7P7 ln

(
I(t− τ4)

I

)
. (31)

Then, simplifying Equation (31), we get:

dΛ7

dt
= −�

(X− X7)
2

X

− ξV X7V7

[
�

(
X7

X

)
+�

(
X(t− τ1)V(t− τ1)Y7

X7V7Y

)
+�

(
Y(t− τ2)V7

Y7V

)]
− ξPX7P7

[
�

(
X7

X

)
+�

(
X(t− τ3)P(t− τ3)I7

X7P7 I

)
+�

(
I(t− τ4)P7

I7P

)]
.

Clearly, dΛ7
dt ≤ 0 for all X, Y, I, V, P > 0, where dΛ7

dt = 0 when X = X7, Y = Y7, V = V7,
I = I7, and P = P7. One can show that Θ̄7 = {Δ7}, and by using the L-LAST, we find that
Δ7 is GAS.

The existence and global stability conditions of the equilibria are summarized in
Table 1.
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Table 1. Existence and stability conditions of the equilibria.

Equilibrium Point Existence Conditions Global Stability Conditions

Δ0 = (X0, 0, 0, 0, 0, 0, 0) None �1 ≤ 1 and �2 ≤ 1

Δ1 = (X1, Y1, 0, V1, 0, 0, 0) �1 > 1 �1 > 1, �2/�1 ≤ 1 and �3 ≤ 1

Δ2 = (X2, 0, I2, 0, P2, 0, 0) �2 > 1 �2 > 1, �1/�2 ≤ 1 and �4 ≤ 1

Δ3 = (X3, Y3, 0, V3, 0, Z3, 0) �3 > 1 �3 > 1 and �5 ≤ 1

Δ4 = (X4, 0, I4, 0, P4, 0, M4) �4 > 1 �4 > 1 and �6 ≤ 1

Δ5 = (X5, Y5, I5, V5, P5, Z5, 0) �5 > 1 and �1/�2 > 1 �5 > 1, �8 ≤ 1 and �1/�2 > 1

Δ6 = (X6, Y6, I6, V6, P6, 0, M6) �6 > 1 and �2/�1 > 1 �6 > 1, �7 ≤ 1 and �2/�1 > 1

Δ7 = (X7, Y7, I7, V7, P7, Z7, M7) �7 > 1 and �8 > 1 �7 > 1 and �8 > 1

6. Numerical Simulations

We illustrate the global stability of the model’s equilibria via numerical simulations.
We use the values of the parameters presented in Table 2. In addition, we discuss the effects
of antiviral treatments and time delays on the co-infection dynamics.

Table 2. Model parameters.

Parameter Description Value

δ Production rate of susceptible ECs 0.5

� Death rate constant of susceptible ECs 0.05

βY Death rate constant of SARS-CoV-2-infected ECs 0.11

β I Death rate constant of IAV-infected ECs 0.2

θV
Virus–cell incidence rate constant between
SARS-CoV-2 particles and susceptible ECs 0.2

λV Death rate constant of SARS-CoV-2 particles 0.2

ρV
Neutralization rate constant of SARS-CoV-2 by
SARS-CoV-2-specific antibodies 0.05

θP
Virus–cell incidence rate constant between
IAV particles and susceptible ECs 0.4

λP Death rate constant of IAV particles 0.1

ρP
Neutralization rate constant of IAV by
IAV-specific antibodies 0.04

γZ Death rate constant of SARS-CoV-2-specific antibodies 0.05

γM Death rate constant of IAV-specific antibodies 0.04

α1 Constant 1

α2 Constant 1

α3 Constant 0.1

α4 Constant 0.1

6.1. Stability of the Equilibria

Here, we fix the delay parameters as τ1 = 0.1, τ2 = 0.1, τ3 = 0.2, and τ4 = 0.2. In
addition, we solve system (1)–(7) with the following initial states:

IS(I) : (X(u), Y(u), I(u), V(u), P(u), Z(u), M(u)) = (5, 1, 0.5, 0.03, 0.5, 1, 4),

IS(II) : (X(u), Y(u), I(u), V(u), P(u), Z(u), M(u)) = (4, 1.5, 0.7, 0.06, 0.8, 2, 6),

IS(III) : (X(u), Y(u), I(u), V(u), P(u), Z(u), M(u)) = (3, 2, 1, 0.3, 1.4, 3, 8),

where u ∈ [−0.2, 0].
We use the values given in Table 2 and select eight sets of values of (ξV ,ξP,ηZ, ηM) for

the following strategies.
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First strategy (Stability of Δ0): (ξV ,ξP,ηZ, ηM) = (0.001, 0.001, 0.01, 0.02). These values
gives �1 = 0.0744 < 1 and �2 = 0.1922 < 1. It is shown in Figure 1 that the trajectories
starting with initials IS(I)-IS(III) tend to the equilibrium, Δ0 = (10, 0, 0, 0, 0, 0, 0). This
supports the global stability results given in Theorem 1. In this strategy, both influenza
and COVID-19 will be cleared. In fact, making �1 ≤ 1 and �2 ≤ 1 can be achieved in one
or more of the following ways: (i) applying two antiviral drugs for blocking SARS-CoV-2
and IAV infections with drug efficacies of εV and εP, respectively, where 0 ≤ εV ≤ 1 and
0 ≤ εP ≤ 1; then, the parameters ξV and ξP will be reduced to (1− εV)ξV and (1− εP)ξP,
respectively; (ii) applying two antiviral drugs for blocking the replication of SARS-CoV-2
and IAV with drug efficacies of εV and εP, respectively, where 0 ≤ εV ≤ 1 and 0 ≤ εP ≤ 1.
Then, the parameters θV and θP will be reduced to (1− εV)θV and (1− εP)θP, respectively.

Second strategy (Stability of Δ1): (ξV ,ξP,ηZ, ηM) = (0.05, 0.001, 0.002, 0.02). This se-
lection provides �1 = 3.7215 > 1, �3 = 0.1431 < 1, and �2/�1 = 0.0516 < 1. The
equilibrium Δ1 exists with Δ1 = (2.69, 3.008, 0, 2.72, 0, 0, 0). Figure 2 shows that the trajecto-
ries initiated with IS(I)-IS(III) converge to Δ1, and this result agrees with Theorem 2. This
strategy suggests that a COVID-19 mono-infection with an inactive antibody response will
be established.

Third strategy (Stability of Δ2): (ξV ,ξP,ηZ, ηM) = (0.005, 0.03, 0.01, 0.001). This gives
�2 = 5.7647 > 1, �4 = 0.2306 < 1, and �1/�2 = 0.0646 < 1. The numerical solution
confirms that Δ2 = (1.73, 0, 2.03, 0, 7.94, 0, 0) exists. It can be observed from Figure 3 that the
solutions initiated with IS(I)-IS(III) converge to Δ2, and this result agrees with Theorem 3.
This strategy suggests that an influenza mono-infection with an inactive antibody response
will be established.

Fourth strategy (Stability of Δ3): (ξV ,ξP,ηZ, ηM) = (0.09, 0.002, 0.05, 0.05). This yields
�3 = 2.3924 > 1 and �5 = 0.1373 < 1. Figure 4 illustrates that the solutions tend to
Δ3 = (3.57, 2.64, 0, 1, 0, 5.57, 0) regardless of the initial states. This result supports the global
stability result given in Theorem 4. This strategy shows that a COVID-19 mono-infection
with an activated SARS-CoV-2-specific antibody response will be attained.

Fifth strategy (Stability of Δ4): (ξV ,ξP,ηZ, ηM) = (0.01, 0.1, 0.01, 0.02). The values of
�4 and �6 are computed as �4 = 3.8432 > 1 and �6 = 0.1489 < 1. Thus, Δ4 exists
with Δ4 = (2, 0, 1.96, 0, 2, 0, 7.11). The numerical solutions with initials IS(I)-IS(III) tend
to Δ4 (see Figure 5). This shows the global stability of Δ4 given in Theorem 5. In this
strategy, an influenza mono-infection with a stimulated IAV-specific antibody response will
be achieved.

Sixth strategy (Stability of Δ5): (ξV ,ξP,ηZ, ηM) = (0.09, 0.01, 0.9, 0.001). Then, we
calculate �5 = 1.7469 > 1, �8 = 0.2112 < 1, and �1/�2 = 3.486 > 1. The numerical
results displayed in Figure 6 establish that Δ5 = (5.2, 0.21, 1.05, 0.06, 4.11, 9.94, 0) exists
and that it is GAS; this agrees with the result of Theorem 6. This result suggests that a co-
infection with influenza and COVID-19 with only an active SARS-CoV-2-specific antibody
response will be attained.

Seventh strategy (Stability of Δ6): (ξV ,ξP,ηZ, ηM) = (0.04, 0.05, 0.01, 0.05). We compute
�6 = 1.654 > 1, �7 = 0.5133 < 1, and �2/�1 = 3.2272 > 1. We find that the equilibrium
Δ6 = (3.36, 1.63, 0.66, 1.47, 0.8, 0, 5.57) exists. Figure 7 draws the numerical solutions of the
DDEs with initials IS(I)-IS(III). It is shown that Δ6 is GAS, and this supports the result of
Theorem 7. This strategy leads to a co-infection with influenza and COVID-19 with only an
active IAV-specific antibody response.

Eighth strategy 8 (Stability of Δ7): (ξV ,ξP,ηZ, ηM) = (0.09, 0.09, 0.5, 0.5). This se-
lection gives �7 = 5.0594 > 1 and �8 = 13.0621 > 1. Figure 8 shows that Δ7 =
(7.55, 0.56, 0.27, 0.1, 0.08, 16.24, 30.16) exists and that it is GAS according to Theorem 8.
This strategy leads to the case of co-infection with influenza and COVID-19 in which both
types of antibody responses are active.
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Figure 1. Solutions of system (1)–(7) when �1 ≤ 1 and �2 ≤ 1 (first strategy).
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Figure 2. Solutions of system (1)–(7) when �1 > 1,�2/�1 ≤ 1, and �3 ≤ 1 (second strategy).
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Figure 3. Solutions of system (1)–(7) when �2 > 1,�1/�2 ≤ 1, and �4 ≤ 1 (third strategy).
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Figure 4. Solutions of system (1)–(7) when �3 > 1 and �5 ≤ 1 (fourth strategy).
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Figure 5. Solutions of system (1)–(7) when �4 > 1 and �6 ≤ 1 (fifth strategy).
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Figure 6. Solutions of system (1)–(7) when �5 > 1,�1/�2 > 1, and �8 ≤ 1 (sixth strategy).
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Figure 7. Solutions of system (1)–(7) when �6 > 1,�2/�1 > 1, and �7 ≤ 1 (seventh strategy).
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Figure 8. Solutions of system (1)–(7) when �7 > 1 and �8 > 1 (eighth strategy).
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6.2. Effect of Antiviral Treatment on the Dynamics of Influenza and COVID-19 Co-Infection

We consider two antiviral drugs for SARS-CoV-2 and IAV with drug efficacies of εV
and εP, respectively, where 0 ≤ εV ≤ 1 and 0 ≤ εP ≤ 1. Then, the parameters ξV and ξP
will be changed to (1− εV)ξV and (1− εP)ξP, respectively. Moreover, �1 and �2 become
functions of εV and εP, respectively, when all other parameters are fixed:

�1(εV) =
(1− εV)e−α1τ1−α2τ2 X0θVξV

λV βY
, �2(εP) =

(1− εP)e−α3τ3−α4τ4 X0θPξP
λPβ I

.

To make �1 ≤ 1 and �2 ≤ 1, the effectiveness of εV and εP has to satisfy

εmin
V ≤ εV ≤ 1, εmin

V = max
{

0, 1− eα1τ1+α2τ2 λV βY
X0θVξV

}
,

εmin
P ≤ εP ≤ 1, εmin

P = max
{

0, 1− eα3τ3+α4τ4 λPβ I
X0θPξP

}
.

It follows that, if εmin
V ≤ εV ≤ 1 and εmin

P ≤ εP ≤ 1, then Δ0 is GAS, and both influenza and
COVID-19 are cleared. Therefore, if real data from patients co-infected with influenza and
COVID-19 are used, the model’s parameters can be estimated and the model can be used
to determine the minimum drug efficacies required to eliminate both SARS-CoV-2 and IAV
from the body.

6.3. Effects of Time Delays on the Dynamics of Influenza and COVID-19 Co-Infection

In this subsection, we analyze the impacts of time delays with various delay parame-
ters τi, i = 1, 2, 3, 4. We fix the parameters ξV = 0.13, ξP = 0.1, ηZ = 0.3, and ηM = 0.5. Let
us consider the following scenarios:

S1: τ1 = 0.1, τ2 = 0.3, τ3 = 0.5, τ4 = 0.8,
S2: τ1 = 1, τ2 = 0.9, τ3 = 13, τ4 = 14,
S3: τ1 = 1.2348, τ2 = 1.2348, τ3 = 14.9787, τ4 = 14.9787,
S4: τ1 = 3, τ2 = 4, τ3 = 20, τ4 = 25.

From the above values, we solve the system (1)–(7) under the following initial condition:

IS(IV) : (X(u), Y(u), I(u), V(u), P(u), Z(u), M(u)) = (7, 0.6, 0.5, 0.05, 0.05, 7, 8),

u ∈ [−τ∗, 0].

The numerical results are displayed in Figure 9. We note that time delays can sig-
nificantly increase the concentration of susceptible ECs and reduce the concentrations of
other factors. Since �1 and �2 are given in (16), they depend on τi, i = 1, 2, 3, 4 when all
other parameters are fixed. We observe from Table 3 that �1 and �2 decrease if τi increases;
hence, the stability of Δ0 will be changed.

Now, we need to calculate the critical value of the time delays that makes the system
stable around the equilibrium point Δ0. Let τ12 = τ1 = τ2 and τ34 = τ3 = τ4, and we write
�1(τ12) and �2(τ34) as:

�1(τ12) =
e−(α1+α2)τ12 X0θVξV

βYλV
, �2(τ34) =

e−(α3+α4)τ34 X0θPξP
β IλP

.
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Clearly, when all other parameters are fixed, �1 and �2 are decreasing functions
of τ12 and τ34, respectively. Let us calculate τmin

12 and τmin
34 such that �1

(
τmin

12
)
= 1 and

�2
(
τmin

34
)
= 1 as:

τmin
12 = max

{
0,

1
α1 + α2

ln
(

X0θVξV
βYλV

)}
,

τmin
34 = max

{
0,

1
α3 + α4

ln
(

X0θPξP
β IλP

)}
.

Consequently,

�1(τ12) ≤ 1, for all τ12 ≥ τmin
12 ,

�2(τ34) ≤ 1, for all τ34 ≥ τmin
34 .

Therefore, Δ0 is GAS when τ12 ≥ τmin
12 and τ34 ≥ τmin

34 . Using the values of the
parameters, we get τ12 = 1.2348 and τ34 = 14.9787. It follows that:

(i) If τ12 ≥ 1.2348 and τ34 ≥ 14.9787, then �1(τ12) ≤ 1, �2(τ34) ≤ 1, and Δ0 is GAS.
(ii) If τ12 < 1.2348 or τ34 < 14.9787, then �1(τ12) > 1 or �2(τ34) > 1, and Δ0 will lose

its stability.
We note that time delays can play a similar role to that of antiviral drugs. This can

guide researchers to create new treatments for influenza and COVID-19 co-infection that
work to prolong time delays.

Table 3. The variation in �1 and �2 with respect to the delay parameters.

Delay Parameters �1 �2

τ1 = 0.1, τ2 = 0.3, τ3 = 0.5 and τ4 = 0.8 7.92 17.56

τ1 = 0.5, τ2 = 0.6, τ3 = 10 and τ4 = 11 3.93 2.45

τ1 = 1, τ2 = 0.9, τ3 = 13 and τ4 = 14, 1.77 1.34

τ1 = τ2 = 1.2348 and τ3 = τ4 = 14.9787, 1.0 1.0

τ1 = 2, τ2 = 3, τ3 = 15 and τ4 = 16 0.08 0.9

τ1 = 3, τ2 = 4, τ3 = 20 and τ4 = 25. 0.011 0.22
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Figure 9. Cont.

200



Axioms 2023, 12, 151

0 100 200 300 400 500 600
Time (t)

0

0.2

0.4

0.6

0.8

1

IA
V

-i
nf

ec
te

d 
E

C
s 

(I
(t

))

S1
S2
S3
S4

(c) IAV-infected ECs

0 100 200 300 400 500 600
Time (t)

0

0.05

0.1

0.15

0.2

0.25

0.3

SA
R

S-
C

oV
-2

 p
ar

ti
cl

es
 (V

(t
))

S1
S2
S3
S4

(d) SARS-CoV-2 particles

0 100 200 300 400 500 600
Time (t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

IA
V

 p
ar

ti
cl

es
 (P

(t
))

S1
S2
S3
S4

(e) IAV particles

0 100 200 300 400 500 600
Time (t)

0

5

10

15

20

SA
R

S-
C

oV
-2

 a
nt

ib
od

ie
s 

(Z
(t

))

S1
S2
S3
S4

(f) SARS-CoV-2 antibodies

0 100 200 300 400 500 600
Time (t)

0

10

20

30

40

50

IA
V

 a
nt

ib
od

ie
s 

(M
(t

))

S1
S2
S3
S4

(g) IAV antibodies

Figure 9. Effects of delay parameters τi, i = 1, 2, 3, 4, on the trajectories of system (1)–(7).

7. Conclusions

Influenza and COVID-19 co-infection cases were reported in recent works (see, e.g., [5,9–11]).
Mathematical models can be helpful for understanding the dynamics of influenza and COVID-
19 co-infection within a host. In this paper, we developed and examined a system of DDEs
to describe the in-host dynamics of influenza and COVID-19 co-infection under the effects of
humoral immunity. The model considered the interactions among susceptible ECs, SARS-CoV-2-
infected ECs, IAV-infected ECs, SARS-CoV-2 particles, IAV particles, SARS-CoV-2 antibodies, and
IAV antibodies. The model included four time delays: τ1 and τ3 for the delays between the entries
of SARS-CoV-2 and IAV into ECs and the start of production of immature SARS-CoV-2 and IAV
virions, respectively, and τ2 and τ4 for the maturation delays of newly released SARS-CoV-2
and IAV virions, respectively. We showed the non-negativity and ultimate boundedness of the
solutions. We deduced that the system had eight equilibria, and their existence and stability were
governed by eight threshold parameters (�i, i = 1, 2, . . . , 8). We used the Lyapunov method

201



Axioms 2023, 12, 151

to prove the global stability of the equilibria. We carried out some numerical simulations and
showed that they agreed with the theoretical results. We addressed the effects of antiviral drugs
and time delays on the co-infection dynamics. We showed that both antiviral drugs and time
delays had the same effect in eradicating co-infection from the body. This can guide scientists and
pharmaceutical companies in synthesizing new drugs that prolong time delays. Our proposed
model can be useful for determining the minimum drug doses that are required to eliminate both
SARS-CoV-2 and IAV infections from the body. Moreover, the model can be used to describe the
in-host dynamics of co-infection with two or more viral strains or co-infections with SARS-CoV-2
(or IAV) and other respiratory viruses.

The model presented in this article can be extended to include several biological
aspects, such as viral mutation [61], stochastic interactions [62], and reaction diffusion [63].
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Abstract: Second-order Ordinary Differential Equations (ODEs) with discontinuous forcing have
numerous applications in engineering and computational sciences. The analysis of the solution spaces
of non-homogeneous ODEs is difficult due to the complexities in multidimensional systems, with
multiple discontinuous variables present in forcing functions. Numerical solutions are often prone to
failures in the presence of discontinuities. Algebraic decompositions are employed for analysis in such
cases, assuming that regularities exist, operators are present in Banach (solution) spaces, and there
is finite measurability. This paper proposes a generalized, finite-dimensional algebraic analysis of
the solution spaces of second-order ODEs equipped with periodic Dirac delta forcing. The proposed
algebraic analysis establishes the conditions for the convergence of responses within the solution
spaces without requiring relative smoothness of the forcing functions. The Lipschitz regularizations
and Lebesgue measurability are not considered as preconditions maintaining generality. The analysis
shows that smooth and locally finite responses can be admitted in an exponentially stable solution
space. The numerical analysis of the solution spaces is computed based on combinatorial changes
in coefficients. It exhibits a set of locally uniform responses in the solution spaces. In contrast, the
global response profiles show localized as well as oriented instabilities at specific neighborhoods in
the solution spaces. Furthermore, the bands of the expansions–contractions of the stable response
profiles are observable within the solution spaces depending upon the values of the coefficients and
time intervals. The application aspects and distinguishing properties of the proposed approaches are
outlined in brief.

Keywords: ODE; convergence; sequence; algebraic decomposition; numerical solution

MSC: 34B37; 34D20; 34D23; 34G10

1. Introduction

Ordinary differential equations (ODEs) have a wide array of applications with respect
to modeling engineering systems and performing numerical (computational) analyses of
data. The systems of differential equations often contain discontinuous forcing functions
(or forcing factors) with applications in physics, engineering, data science, biology, and ge-
ology [1–3]. The comprehensive treatments concerning the solving of differential equations
with discontinuous and periodic forcing functions stem from Filippov [4]. The generalized
form of such equations (termed feedback equations) with single-variable discontinuity can
be represented as

•
x = Ax − BF(x), where F(x) is a discontinuous forcing function and

A, B are the constant matrices of finite dimensions [5]. However, if a differential equation
contains multi-variable discontinuous forcing, then the corresponding two-variable forcing
can be represented as F2(x, t), which has numerous applications in physical systems mod-
eling [1]. It has been noted that the determination of classical solutions to such an equation
is both difficult and insufficient [5,6]. Furthermore, the numerical solution techniques
using software solvers are often prone to failures due to the presence of discontinuous
forcing functions [7]. In order to simplify the equation for the determination of an analytical
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solution, it is often assumed that the single-variable discontinuous function F(x) is finitely
Lebesgue-measurable and linear. Similar problems arise regarding differential equations
in the four-dimensional numerical analysis of meteorological data, which are equipped
with the discontinuous forcing function given in the form G(u(x, t), x, t), where (x, t) is a
pair of space-time variables and the first variable is a function represented as u = f (x, t)|c
at a critical state c representing the state of discontinuity [8]. In this particular case, the
analytic evaluation of the term ∂G/∂u is not straightforward; as a consequence, a differ-
ent functional form is formulated, which is given as F2(x, t) = G(u(x, t), x, t). However,
such a function does not greatly reduce analytical complexity. Thus, the discontinuous
forcing function F2(x, t) is further algebraically decomposed as F2(x, t) = S(x)D(t), where
S(x) ∈ C∞ and the function D(t) constitutes a discontinuous function [8].

1.1. Motivations

The presence of (discontinuous) Dirac delta functions in the forcing factor is often
considered as multiplicative variety. These types of differential equations with Dirac delta
discontinuity have numerous applications in non-smooth mechanics [9–12]. In general,
the multiplicative variety of a differential equation with Dirac delta forcing is given as
dy/dt = u(t, y) + v(y)δ(t), where δ(t) is the Dirac function. In general, the solution is
formulated by incorporating regularizations, wherein the continuous function u(., .) should
be locally Lipschitz with respect to y and it should be compact in terms of its time interval
within the solution space [12]. Moreover, the additionally required condition is that the
function v(.) should have the following property: v ∈ C1(R), where R is the set of real
numbers. It is known that if u(., .) and v(.) are globally Lipschitz, then the solution is a
convergent (limiting) function [12]. In this case, the restriction is that regularization is
mandatory to find a solution if the singularity is superimposed at the initial condition. This
motivated us to ask a general question: How do we algebraically analyze a second-order
differential equation with periodic Dirac delta forcing given in general form? Moreover, our
corollary question is as follows: what are the behaviors of such equations under additive
as well as discontinuous and impulsive forcing factors? We address these questions
comprehensively in this paper.

1.2. Contributions

The contributions made in this paper can be summarized as follows: We present the
generalized algebraic analysis and numerical simulations of the behavior of solution spaces
of non-homogeneous ODEs endowed with Dirac delta periodic forcing (refer to Equation
(1)). Our algebraic analysis considers the combinatorial changes in the set of coefficients
of the ODE. The algebraic analysis of the convergence of solution within an exponentially
stable solution space is presented by employing the polynomial expansions of functions.
The proposed algebraic analysis of the solution space does not employ any external function
decomposition or Lipschitz regularizations as preconditions. It is shown that discontinuous
periodic forcing can be regularized within a smooth, exponential solution space admitting
locally finite responses. This results in the formation of sharp boundaries of stable responses
and occasional appearances of instabilities at specific neighborhoods within the solution
spaces, mostly at sharp boundaries. We present the numerical analysis of local and global
response profiles in-detail under varying coefficients and time intervals within the solution
spaces, while considering different algebraic relations between the constant factors of the
governing equation. The results of the numerical analysis are presented as a set of surface
maps exposing the interrelationships between the ranges of constant factors, the algebraic
relations between them, and the degree of non-linearity covering negative and positive
domains. In this paper, DD stands for Dirac Delta, which generates a periodic forcing factor
of the non-homogeneous ODE. The sets of real numbers and integers are denoted by R, Z
respectively, where R = (−∞,+∞).
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The rest of the paper is organized as follows. The algebraic analysis is presented in
Section 2. Section 3 presents the numerical simulations in detail. Section 4 presents the
application aspects of the proposed analysis. Finally, Section 5 concludes the paper.

2. Analysis of ODE with Periodic DD Forcing

The general form of a second-order non-homogeneous ODE with a periodic DD forcing
factor can be represented as given in the following equation (note that D is a differentiation
operator and the product f (t)δ(t) constitutes forcing):

D2x + kxn =
t=+∞

∑
t=0

f (t)δ(t),

k ∈ R\{0}.
(1)

Note that the forcing factor is of the discrete (discontinuous) variety, controlling the
dynamic behavior of the equation in the solution space. Moreover, it is considered that the
sequence generated by the periodic DD forcing factor must be convergent for the solution
to exist. Note that in almost all practical application cases, the finite subsequences are
considered due to computational limitations (i.e., practical cases consider the presence of
convergence within bounded solution spaces). The corresponding finite form of the general
equation for the terms N ∈ Z+ can be formulated as:

D2x + kxn =
t=N
∑

t=0
f (t)δ(t),

1 ≤ N < +∞.
(2)

Let us consider the corresponding homogeneous equation with an exponentially
smooth variety of solutions in the solution spaces for the ODE under investigation. Let
x = aebt, {a, b} ⊂ R be a solution of a homogenized form of Equation (2). This leads to the
following algebraic conditions to be satisfied:

ab2 + kane(n−1)bt = 0,
and,
x = −

(
kan/b2)enbt.

(3)

It is important to note that the solution of x given in Equation (3) is applicable only for
the homogenized form of Equation (2). However, as Equation (2) is not in a homogeneous
form, we need to resolve the degree of discrete forcing by using the corresponding series
within the solution spaces. Let us consider that there is a sequence in time 〈st〉t=+∞

t=0 at a
finite interval such that st ∈ [−α1,+α2], where αi ∈ R, i ∈ {1, 2} are the boundaries. As
a subsequence of a bounded sequence is convergent following the Cauchy criteria, the
periodic DD forcing factor can be represented as:

〈vt〉t=N
t=0 ⊂ 〈st〉t=+∞

t=0 ,

t=N
∑

t=0
f (t)δ(t) =

t=N
∑

t=0
vt.

(4)

This leads to the following result in view of the algebraic expansion of Equation (3),
while considering the preservation of the conditions given in Equation (4):

ab2 + kan + (n− 1)kanbt + ((n− 1)2/2!)kan(bt)2 + . . . . . . =
t=N

∑
t=0

vt. (5)
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In order to resolve the finite series at multiple time instants, we need a set of varying
sums of sequences satisfying Equation (5). Let us consider a discrete and convergent
sequence space; then, we construct a set of series at different time instants, as given below:

[t = 0]⇒ [εt = 0],
[t = 1]⇒ [εt = (n− 1)b + ((n− 1)2/2)b2 + ((n− 1)3/3!)b3 + . . . . . .],
[t = 2]⇒ [εt = 2(n− 1)b + 2(n− 1)2b2 + (4/3)(n− 1)3b3 + . . . . . .],
. . . . . .
[t = N]⇒ [εt = bN((n− 1) + (1/2)(n− 1)2bN + (1/3!)(n− 1)3(bN)2 + . . . . . .)].

(6)

Note that Equation (5) is of a discrete variety, and it needs to satisfy the following
algebraic conditions by considering Equation (6):

vt = ab2 + kan(1 + εt),
εt < εt+1.

(7)

This immediately leads to the following set of results, which are presented as a set of
theorems that consider the degree of non-linearity (n) as a constant, while the other set of
constants {a, b, k} is considered to constitute finite-valued elements. We present the first
result in the following theorem considering Equation (7).

Theorem 1. If 〈εt〉+∞
t=1 is a Cauchy sequence with b > 0 , then Lv = limt→+∞

(
∑
t

vt

)
is not

convergent if ka 	= 0.

Proof. Let us consider a Cauchy sequence 〈εt〉+∞
t=1 such that b > 0. Note that in this case the

condition of ∀t ∈ (0,+∞], εt > 0 is preserved, and the sequence 〈εt〉+∞
t=1 is not considered

to be bounded as a precondition. Thus, if the corresponding sum of the series is computed as
l = ∑

t
(1 + εt), then we can conclude that l → +∞ as t → +∞ . As a consequence, the sum

of the limiting value, computed as Lv = limt→+∞

(
∑
t

vt

)
, is not convergent if ka 	= 0. �

This leads to the following lemma representing the strict boundedness condition of

Lv(N) = limt→N

(
∑
t

vt

)
within the local space of responses.

Lemma 1. If b ∈ [0, 1) and N < +∞, then Lv(N) is strictly convergent.

Proof. If we consider that b ∈ [0, 1), we obtain the condition given as bm > bm+1. As
a result, we can conclude that εt ∈ (0, M), where M < +∞ and t ∈ (0, N]. Hence,
if we consider an exponentially stable and finite solution space with N < +∞, then
−∞ < Kl ≤ Lv(N) ≤ Kh < +∞, depending on the values of the set of constants {a, n},
and as a result Lv(N) is strictly convergent. Note that the finite boundaries Kl , Kh are real
numbers. �

On the other hand, if we impose an additional condition on Equation (7) such that
b < 0, εt < 0, we obtain the corresponding convergence criteria presented in the following
theorem as a result.

Theorem 2. If the sequence 〈εt〉+∞
t=1 maintains the conditions that b < 0, εt < εt+1 < 0 and

εt → −1 , then limt→+∞ vt is convergent.

Proof. The proof is relatively straightforward. In this case, the sequence 〈εt〉+∞
t=1 is a

monotone sequence if we consider that εt < εt+1; moreover, it is possible that εt → −1 if we
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impose the following restriction: εt ∈ (−∞,−1]. As a result, the limit (limt→+∞vt)→ ab2

is convergent, wherein the set of constants {a, b} is finite-valued. �

Remark 1. It is important to note in Theorem 2 that limt→+∞ vt is finite even if k 	= 0 . In other
words, in this case, the convergence of vt is independent of the vanishing k . Moreover, we can
generalize the observation by the condition as ∀t ∈ [0,+∞], εt ∈ R indicating that εt is finite at
every time instant if the sequence 〈εt〉+∞

t=1 is a finitely bounded Cauchy sequence.

Note that we have mentioned earlier that the complete solution of a non-homogeneous
ODE with periodic DD forcing needs to be convergent within the solution spaces. The
representation of Equation (7) and the aforesaid theorems illustrate that convergence
analysis is necessary within the solution space to maintain the finiteness of the responses
of the ODE under periodic DD forcing at different time instants. The detailed algebraic
analyses of the sequential convergence of the terms within the solution space are presented
in the following subsection.

Convergence Analysis

These algebraic convergence analyses consider the complete solution of a generalized
non-homogeneous ODE along with the incorporated periodic DD forcing factor. The
following identity must be satisfied by the complete solution space of the non-homogeneous
ODE with discontinuities:

ab2 + kane(n−1)bt = ab2N + kan
t=N

∑
t=0

(1 + εt). (8)

This leads to the following conclusion considering the condition that kan ∈ R\{0},
where an exponential function is strictly convergent (because the solution space is finite):

−∞ <
t=N
∑

t=0
(1 + εt) < +∞,

t=N
∑

t=0
(1 + εt) = e(n−1)bt +

(
1−N
kan

)
ab2.

(9)

The above algebraic condition controlling the proposed exponential type of response is
of a smooth variety and is convergent, thereby resolving the non-homogeneities generated
by the periodic DD forcing factor. The solution space is termed a locally stable space if we
consider a finite time interval [0, N], where the responses are also finite. We can derive an
interesting observation, as presented in the following theorem, before proceeding to the
numerical simulations.

Theorem 3. If the solution space is locally stable in the finite time interval [0, N], then it preserves
the condition −∞ < εt < +∞ and ka 	= 0.

Proof. Let us consider Equation (9) such that
t=N
∑

t=0
(1 + εt)− e(n−1)bt = a(1−n)k−1b2(1− N).

Note that the right side of the expression is a constant and finite if ka 	= 0. Hence, the

expression
t=N
∑

t=0
(1 + εt)− e(n−1)bt is convergent at the time interval [0, N], indicating that

−∞ < εt < +∞ at the local responses within the locally stable solution space. �

It can be observed from Theorem 3 that the finiteness of εt can be admitted under the
convergence conditions. The local and global behaviors of the response profiles of the ODE
within the solution space are numerically analyzed in-detail in the following section.
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3. Numerical Analysis

The simulations are performed through numerical computation, where time (t) is
varied in the two different half-open intervals. In one set of simulations, the time interval
is kept very short within the solution space to evaluate the local response profiles. In
another set of simulations, the time interval is comparatively larger (the supremum is
more than 10 times larger) to evaluate the global response profiles of the ODE under
consideration. As a result, if the time, t, is fixed in the interval (0, 11), then the generated
responses are called local responses of the ODE. On the other hand, if time t is varied in the
interval (0, 400), then the generated responses of the ODE are called global responses. The
simulations are performed in three categories based on the values of the constant factor
k ∈ {1, h, w}, where h ∈ R\[0,+∞) and w ∈ (1,+∞). The other constants, such as a, b, are
varied as a relationally ordered pair (aΔb) considering various ordering relations, such as
Δ ∈ {	=,<,>,=}. In all the cases, the degree of non-linearity (n) of variable x is varied
in the interval [−100, 100], covering a wide range in both positive and negative domains.
The response profiles of x(t) are presented for various numerical values of the constants
and the mutual algebraic relations between them considering the homogeneous form,
where the response of ODE at t = 0 is trivially computable and is not emphasized in the
corresponding response profiles. The response profiles are presented as 3D surface maps,
where the X-axis represents time, the Y-axis represents the degree of non-linearity, and the
variations in the responses of x(t) are given by the Z-axis. The computable regions are
presented as surface maps, where the instabilities or singularities in responses are visible at
specific neighborhoods within the solution spaces at boundary regions.

3.1. Response Profiles for k = 1 and a 	= b

In the first set of simulations, we consider that k = 1, while the other constant factors
are kept finite but unequal within the solution space. The generated 3D response profile is
presented in Figure 1 as a surface map for the varying degrees of non-linearity.

Figure 1. Surface map of local response for k = 1, a = 1, b = 10.

The surface map illustrates that the local response is uniformly flat in the interior of the
solution space, thus signifying extreme smoothness for the negative values of non-linearity.
However, there are several neighborhoods wherein the local responses attain instabilities in
the solution space when the degree of non-linearity is increased more towards the positive
domain. The corresponding global response profile is presented in Figure 2.
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Figure 2. Surface map of global response for k = 1, a = 1, b = 10.

It is observable that the global response profile preserves the local response due to
the fixed values of the constants and their mutual algebraic relation (an inequality relation
in this case). Note that the simulations in these cases consider a = k, and the algebraic
ordering is b > a. If we relax the restriction on one of the constants such that a > 1 while
enhancing the values of another constant 10 times compared to the earlier case, then the
generated local response profile retains smoothness, as presented in Figure 3. Interestingly,
in this case, the local response profile is comparable to the global response with constrained
values of the constants, as given in Figure 2.

Figure 3. Surface map of local response for k = 1, a = 7, b = 100.

The surface map of the global response profile with a > 1 and b > a is illustrated in
Figure 4. The global response profile retains local smoothness, and the boundary of the
solution space is sharp near the origin, which contrasts with the earlier 3D surface maps.

Figure 4. Surface map of global response for k = 1, a = 7, b = 100.
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Interestingly, if we reverse the combinatorial selection of the constants such that
k = 1, a = 10, b = 1, then the 3D surface map of local response profile is extended
into the positive domain of non-linearity, as presented in Figure 5. Note that in this case,
the smoothness is preserved for an extended interval within the solution space and the
neighborhood of instability is confined within a narrow zone at a comparatively higher
time interval.

Figure 5. Surface map of local response for k = 1, a = 10, b = 1.

The corresponding global response profile is illustrated as the surface map given
in Figure 6. The pronounced effect of non-linearity is observable in the global response
profile as compared to the local response profile, wherein the values of the constants remain
unaltered. The location of the neighborhood of instability is also shifted closer to the origin,
where the boundary of the solution space is sharp.

Figure 6. Surface map of global response for k = 1, a = 10, b = 1.

However, the local response profile of the ODE is moderately altered if we increase
one of the constants as b > 1 while keeping k = 1. The corresponding 3D surface map is
shown in Figure 7. It is relatively clear to see that smoothness is retained mostly in the
negative index of non-linearity and that there are instabilities at the boundary region for
the increased degree of non-linearity in the positive domain.

On the contrary, the global response profile exhibits a retraction mode if we increase
the time interval while keeping all other parameters unaltered. This observation is depicted
in Figure 8. The neighborhood of instability is present in the surface map very close
to origin.
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Figure 7. Surface map of local response for k = 1, a = 100, b = 7.

Figure 8. Surface map of global response for k = 1, a = 100, b = 7.

The comparisons of the surface maps illustrate that the response profiles of the ODE in
Figure 3, Figure 6, and Figure 8 are nearly comparable. This indicates that the effects of the
combinatorial choices of the constants a, b determine the dynamics of the local and global
responses for the fixed value of k = 1 (i.e., in the positive domain closer to the origin).

3.2. Response Profiles for k > 1 and a 	= b

The simulation results presented in this section illustrate the effects of increasing
the value of k in the positive domain away from origin. The 3D surface map of the local
response profile for k = 40, a = 1, b = 10 is given in Figure 9. The comparisons of the
response profiles given in Figures 1 and 9 show that the increasing value of k reduces the
neighborhoods of instabilities within the solution space.

Figure 9. Surface map of local response for k = 40, a = 1, b = 10.
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Interestingly, the comparisons of the global response profiles given in Figures 2 and 10
show that the surface maps are nearly similar in both cases. This indicates that at longer
time intervals, the effect of the moderately increased value of k is negligible.

Figure 10. Surface map of global response for k = 40, a = 1, b = 10.

Likewise, if the values of constants a, b are increased while maintaining the algebraic
ordering relation b > a, then the surface map of the local response profile, represented in
Figure 11, remains nearly identical to that of Figure 10. This indicates that the values of
the respective constants do not heavily influence the response when the corresponding
algebraic ordering relation is maintained.

Figure 11. Surface map of local response for k = 40, a = 7, b = 100.

The global response profile of the ODE under consideration is largely similar to those
of Figures 10 and 11, except for the elimination of instabilities at the boundary regions, as
shown in Figure 12.

Figure 12. Surface map of global response for k = 40, a = 7, b = 100.
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The similarity between Figures 4 and 12 suggests that the global response of the ODE
is stable under the corresponding choices of the constants a, b and the algebraic ordering
b > a and that it is not sensitive to the values of k.

The noticeable shift in the local response profile of the ODE is observable if the
algebraic ordering relation between constants is changed to a > b. The corresponding 3D
surface map of the response profile is shown in Figure 13. Note that the response surface
largely covers both positive and negative domains of varying degrees of non-linearity
(i.e., an expansion of a uniformly stable solution space emerges). The neighborhood of
instability is locally restricted at the sharp boundary region.

Figure 13. Surface map of local response for k = 40, a = 10, b = 1.

The global response profile of the ODE with an algebraic ordering of constants of
a > b and a value of k = 40 is given in Figure 14. Interestingly, it is nearly identical to the
responses shown in Figure 3, Figure 6, Figure 8, and Figure 11. This observation illustrates
that both the local and global dynamics of the ODE under consideration are highly stable
irrespective of the combinatorial effects exerted by the set of constants {a, b, k}.

Figure 14. Surface map of global response for k = 40, a = 100, b = 7.

3.3. Response Profiles for k > 1 and a = b

The results of the numerical simulation presented in this section compute the global
and local response profiles of the ODE under periodic DD forcing, while the parameters are
set as a, b, k ∈ (1,+∞) and the algebraic restriction is enforced as a = b. The corresponding
local response profile is presented in Figure 15.
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Figure 15. Surface map of local response for k = 40, a = b = 100.

The surface map of the local response of the ODE appears to be fairly smooth and
uniform with a varying degree of non-linearity. However, the neighborhood of instability
is observable within the solution space. Interestingly, if we compute the global response of
the ODE in a relatively longer time interval, then the uniformity and smoothness of the
surfaces are retained within the sharp boundary, as presented in Figure 16.

Figure 16. Surface map of global response for k = 40, a = b = 100.

Notably, the response surfaces are not computable when covering the entire region of
the varying degree of non-linearity. In other words, the global and local response profiles
appear to be incompletely identical across the large solution space under the parameters
applied in this case.

However, if we reverse the sign of k into the negative domain, then the influence of
the degree of varying non-linearity is reduced and the response surfaces are extended, as
presented in the following section.

3.4. Local Response Profiles for k < 0

In this section, we present the local response profiles of the ODE, while reversing the
sign of k into the negative domain away from the origin and fixing the constant b = 1.
However, the other constant is changed to a ∈ (1,+∞). The corresponding local response
profile is presented in Figure 17, where a = 10. It is easily observable that the uniform
solution space free of instability is expanded. The oriented instabilities appear in multiple
local neighborhoods at sharp boundary regions.
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Figure 17. Surface map of local response for k = −40, a = 10.

Next, we increase the value of constant b such that b = 30 (i.e., three times greater
than the earlier value of constant a), and we reduce the value of constant a such that an
algebraic relation wherein a < b is enforced. As a result, the effect of the varying degree of
non-linearity is observable in the local response profile, as presented in Figure 18. Note
that the space of uniformity and smoothness of the surface has contracted. This indicates
that the choices of the values of the constants and the algebraic ordering have effects on the
local response of the ODE under periodic DD forcing.

Figure 18. Surface map of local response for k = −40, a = 4, b = 30.

Finally, we reverse the algebraic ordering relation of constants {a, b} again and we
keep the value of constant k unaltered in the negative domain. The corresponding local
response profile is presented in Figure 19.

Figure 19. Surface map of local response for k = −40, a = 10, b = 2.

Observe that the space with a stable response is expanded, covering widely varying
degrees of non-linearity unlike the earlier case. However, the neighborhoods of instabilities
at the boundary within the solution space are observable in the response profile.
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3.5. Evaluations of Variations of Sum of Series

In this section, we present the variations of the sum of series ∑t (1 + εt) as given
in Equation (9) with respect to the variations of t, N and the degree of non-linearity (n).
The variations of the sum of series are presented on the Z-axis. First, we show that the
sum of series is bounded for the second degree of non-linearity, the short range of series
N = [0, 100], and the positive values of the elements of the set {a = 10, b = 1, k = 100}.
The resulting response profile is given in Figure 20.

Figure 20. Surface map of local variations of ∑t (1 + εt) (on Z-axis) for n = 2.

Next, we increase the range of series to a relatively large value such that N = [0, 1000]
while keeping the other parameters unchanged. The resulting response profile is presented
in Figure 21. It is interesting to note that the enhancement of the range of series does not
have any large influence on the response profile.

Figure 21. Surface map of local variations of ∑t (1 + εt) (on Z-axis) for N = [0, 1000].

In the next experiment, we reduced the range of the series and computed the global
response profile, and the results are given in Figure 22. The rapid increase in the values of
the sum of the series is observable at the sharp boundary.
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Figure 22. Surface map of global variations of ∑t (1 + εt) for N = [0, 100], n = 2.

A similar effect is sustained in the global response profile if we enhance the range of
the series by ten-fold, as presented in Figure 23.

Figure 23. Surface map of global variations of ∑t (1 + εt) for N = [0, 1000], n = 2.

However, the increase in the values of the sum of the series becomes relatively gradual
if we rearrange the combinatorial values of constants such that {a = 1, b = 10, k = 100}.
The resulting response profile is given in Figure 24.

Figure 24. Surface map of local variations of ∑t (1 + εt) for N = [0, 100] and n = 2.
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An observable shift in the variations in the sum of the series appears if the global
response profile is computed for a relatively short range of the series, i.e., N = [0, 100]. The
resulting response profile is presented in Figure 25.

Figure 25. Surface map of global variations of ∑t (1 + εt) for N = [0, 100] and n = 2.

Interestingly, the aforesaid shift in the response is retained, as presented in Figure 26.,
even if we increase the range of the series to ten times that of the earlier experiment. Note
that the degree of non-linearity remains unchanged.

Figure 26. Surface map of global variations of ∑t (1 + εt) for N = [0, 1000] and n = 2.

In the next experiment, we make combinatorial changes to the set of constants such
that {a = −10, b = −1, k = −100}. This reverses the domain of the set of constants from
positive to negative. The resulting response profile is presented in Figure 27. Interestingly,
the influence of the domain of the set of constants is visible in the response profile, where
the sum of series shows a gradual decline to a stable surface.

Figure 27. Surface map of local variations of ∑t (1 + εt) (on Z-axis) for N = [0, 100], n = 2.
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The slope of the reduction in the values of the sum of series becomes steeper than that
of the previous response if we increase the degree of non-linearity five times in the positive
domain. The resulting response profile is shown in Figure 28.

Figure 28. Surface map of local variations of ∑t (1 + εt) for N = [0, 100] and n = 10.

The effect of the degree of non-linearity on the series is observable (Figure 29) when
we change the degree of non-linearity from the positive domain to the negative domain.

Figure 29. Surface map of local variations of ∑t (1 + εt) for N = [0, 100] and n = −10.

On the other hand, the response profile of the sum of series shows sensitivity with
respect to the range of the series. This effect is visible in Figure 30.

Figure 30. Surface map of global variations of ∑t (1 + εt) for N = [0, 1000] and n = −10.
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Evidently, the overall effects of the domain of non-linearity and the domains of the
constants on the variations of the sum of series are significantly different. However, in
all cases, the variations are finite. Moreover, the mutual variations of the domain of
non-linearity and the range of the series have greater effects on the response profiles.

4. Applicational Prospects

In this section, the applicational prospects of the differential equations with discontin-
uous forcing are presented, and the distinguishing properties of the proposed approach
are outlined comprehensively. In general, the ODEs involving sporadic disturbances have
applications in fluid-flow modeling, wherein the uncertainties are considered to be the
governing factors of the respective dynamics [13]. ODEs and PDEs (Partial Differential
Equations) with Dirac delta forcing have a wide array of applications in physical sciences
and engineering [14]. For example, the one-dimensional and two-dimensional differential
equations equipped with Dirac-type discrete forcing are given as −uxx = δ(x− a), a ∈ R
and −∇2uxy = δ(x, y), respectively, with applications in geology and hydrology [14,15].
On the other hand, the non-homogeneous ODE in the form given in Equation (1) has
potential applications in the jitter modeling of networked systems [16–18]. Specifically, in
computer network modeling involving sporadic jitters, the constant factor is considered
to be positive (i.e., k > 0). The main focus of the analysis of such differential equations
with discontinuous forcing is to ascertain the convergence in the solution spaces and the
rapidity of such convergence [19]. In general, the ODEs of perturbed systems consider
uniform convergence of solutions within [a, b], where the solution intervals are finite in the
set of reals R. Let us consider that the forcing factor f (.) is restricted to relative smoothness
(i.e., the forcing f ∈ C3([a, b]) for a singularly perturbed system [19]. This indicates that the
governing equations of such systems do not consider discontinuities in the forcing factors.
As a distinction, the analyses presented in this paper consider periodic discontinuities in
the forcing function f (.). Furthermore, the positions of the roots of characteristic equations
do not play any significant role with respect to maintaining generality, as proposed in this
paper. The modeling of systems with input disturbances considers cascaded PDE-ODE
formulation given by DX = AX(t) + Bu(0, t) with the condition ux(1, t) = U(t) + ω(t),
where U(t) is the control input, ω(t) is the disturbance within input, A is an n× n constant
matrix, and B is an n× 1 constant matrix [20]. It is important to note that the elements of
constant matrices A, B are real numbers such that the ordered pair (A, B) is stabilizable. The
formulation depends on the precondition that ω(t) can be resolved as ω(t) = ∑

i
fi(t), where

every fi(t) is periodic and i ∈ [1, m], m < +∞. Furthermore, it is required that | fi(t)|< +∞
in the system under consideration. The distinctive property of the algebraic analyses pro-
posed in this paper is that the forcing factor is periodic as well as discontinuous and does
not specially distinguish any control input U(t) separately. Moreover, the resolution of
periodic forcing does not require the convergent finite sum of other periodic functions
within a finite interval (i.e., we are not decomposing Dirac forcing into external function
forms). In other words, our proposed algebraic analyses consider a generalized analytical
formulation. Note that numerical solution approaches are frequently employed rather than
complete analytical methods in order to avoid complexities. It has been observed that
numerical solution approaches are prone to the effects of varying dimensionalities [14,19].
In such cases, the convergence analyses deal with the limiting value property δε → δ, ε > 0
through the regularization of the discrete delta function δε towards the Dirac delta forcing.
However, the algebraic and numerical analyses presented in this paper are in a general
form that does not require any specific regularization.

5. Conclusions

Second-order, non-homogeneous ODEs with both discontinuous and periodic forcing
have numerous applications in engineering sciences as well as computational sciences.
Second-order ODEs equipped with Dirac delta forcing comprise a variety of this class of
equations. Analyses of such equations are difficult in multi-dimensional cases and the
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complexities are increased if the number of variables with discontinuities is increased. In
order to analyze such equations, Lipschitz regularizations and Lebesgue measurability
conditions are often employed. The generalized analytical approach presented in this
paper was conducted with two directions: conducting algebraic analyses of convergence
in lower-dimensional cases in simple forms under Dirac delta forcing and determining
the corresponding numerical simulations of the behaviors of the solution spaces. The
algebraic analyses proposed in this paper do not assume any specific preconditions or pre-
regularizations. It has been shown that locally finite and smooth responses are admissible
within exponential solution spaces and that discontinuous forcing can be resolved. Numer-
ical simulations exhibit a set of consistent local uniformities in solution spaces. However,
the global response profiles show occasional appearances of oriented discontinuities at
specific local neighborhoods in the solution spaces with sharp boundaries. The expansion–
contraction of smooth and uniformly stable response profiles is observable depending on
the chosen sets of parameters and time intervals influencing the governing equation. The
analyses proposed in this paper consider the sequential convergence property within the
solution spaces, without requiring any relative smoothness of the forcing function.
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Abstract: This paper is devoted to boundary-value problems for Riemann–Liouville-type fractional
differential equations of variable order involving finite delays. The existence of solutions is first
studied using a Darbo’s fixed-point theorem and the Kuratowski measure of noncompactness. Sec-
ondly, the Ulam–Hyers stability criteria are examined. All of the results in this study are established
with the help of generalized intervals and piecewise constant functions. We convert the Riemann–
Liouville fractional variable-order problem to equivalent standard Riemann–Liouville problems of
fractional-constant orders. Finally, two examples are constructed to illustrate the validity of the
observed results.

Keywords: fractional differential equations of variable order; finite delay; boundary-value problem;
fixed-point theorem; green function; Ulam–Hyers stability

MSC: 26A33; 34A37

1. Introduction and Motivations

The concept of fractional calculus, whose origin goes back to 1695, is considered
as one of the most important branches in mathematics. It has been shown that models
with fractional derivatives may more accurately represent complex phenomena than
integer-order models. Fractional integrals and derivatives have attracted the attention of
the researchers due to their essential features such as long-term dependence properties
and more degrees of freedom. As a result, in the last few decades we have witnessed the
application of fractional calculus methods in modeling processes studied in computer
sciences, physics, neuroscience, biology, medicine, engineering, etc. [1–7]. In view
of their advantages, the Riemann–Liouville and Caputo types are the most applied
fractional derivatives [3,5].

Additionally, various techniques have been introduced and applied to establish ex-
istence criteria for analytical, semi-analytical, and numerical solutions of fractional-order
boundary-value problems. Different researchers applied fixed-point theorems [3], nondif-
ferentiable traveling-wave techniques [8], the homotopy perturbation transform method
and the Yang transform decomposition method [9], iteration transformation techniques [10],
the natural transform method [11], measures of noncompactmess [12], almost sectorial
operators [13], and some others.

On the other hand, the extended class of variable-order fractional derivatives have also
been recently developed [14–17]. In fact, the generalizations performed by the fractional
derivatives of a variable order offered great opportunities for applications and mathematical
modeling approaches [18–20].
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The main idea of variable-order fractional calculus is to substitute the constant fractional
order μ with a function μ(.). Although this difference seems simple, a variable-order operator
can explain and model several physical and natural phenomena [21,22]. The recent publica-
tions in the field confirm our understanding of the importance of this consideration [23–27].

Despite the proven potential in applications to describe the complicated behavior of
real-world problems, the theory of variable-order delayed fractional differential equations
is not well developed. Some numerical approaches to solve such differential equations
have been developed in several articles. For example, in [28] a collocation numerical
approach is applied with the aid of shifted Chebyshev polynomials to solve a multiterm
variable-order fractional delay differential equation. The existence, uniqueness criteria, and
stability results have been presented in [29] for linear systems with distributed delays and
distributed-order fractional derivatives based on Caputo type single fractional derivatives
with respect to a nonnegative density function. In [30], a numerical method based on the
Lagrangian piece-wise interpolation is proposed to solve variable-order fractal-fractional
time delay equations with power law, exponential decay, and Mittag–Leffler memories.
The paper [31] applied a method based on the fundamental theorem of fractional calculus
and the Lagrange polynomial interpolation to numerically solve a type of variable-order
fractional delay differential equation.

However, as stated in [28], analytical solutions for variable-order delayed fractional
differential equations are difficult to obtain since the kernel of the variable-order opera-
tors has a variable exponent. This explains the limited number of results related to the
fundamental and qualitative results for the solutions of such equations. To the best of the
authors’ knowledge, the existence results are established only for a damped fractional
subdiffusion equation with time delay with a variable-order fractional Caputo operator
in a very resent publication [32] where the authors applied shifted Chebyshev polynomi-
als to solve the presented problem by a matrix discretization technique. Similar results
for delayed variable-order fractional differential equations involving Riemann–Liouville
derivatives have not yet been reported in the existing literature. This is the main aim of
our research.

In [33], the authors studied the existence of solutions for the following nonlinear
fractional differential equations of constant order:{

Dμ
0+ξ(s) = ϕ(s, ξs), s ∈ N := [0, N], μ ∈]0, 1],

ξ(s) = χ(s), s ∈ (−∞, 0],

where Dμ
0+ is the standard Riemann–Liouville fractional derivative, 0 < N < +∞, ϕ and χ

are well defined functions, and ξs is an element of C((−∞, 0],R) defined by

ξs(τ) := ξ(s + τ), τ ∈ (−∞, 0]

for any function ξ defined on (−∞, N] and any s ∈ N , C((−∞, 0],R) is the class of all
continuous functions from (−∞, 0] to R.

Since the paper [33] considers an infinite delay, the obtained existence results can be
examined as a generalization of several existence results for delayed fractional differen-
tial equations with fractional constant-order derivatives. In fact, there have been some
important existence results for such equations where different techniques have been ap-
plied [34–38]. However, as stated above, the corresponding results for delayed fractional
variable-order boundary-value problems are very few.

Motivated by [15,23–27,33], in this paper we study the existence of solutions for the
boundary-value problem of the nonlinear fractional differential equation of variable order
with finite delay in the format{

Dμ(s)
0+ ξ(s) = ϕ(s, ξs), s ∈ N := [0, N],

ξ(s) = χ(s), s ∈ [−γ, 0], γ > 0,
(1)
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where 1 < μ(s) ≤ 2, Dμ(s)
0+ is the Riemann–Liouville fractional derivative of the variable-

order μ(.), ϕ : N × C([−γ, 0],R)→ R. The initial function χ ∈ C([−γ, 0],R) and χ(0) = 0,
ξs in C([−γ, 0],R) is given by

ξs(τ) := ξ(s + τ), τ ∈ [−γ, 0],

for any function ξ defined on [−γ, N] and any s ∈ N .
Such problems have a great potential to model numerous real-world phenomena

studied in science and engineering.
The main novelty of the paper is in the following five points: (1) a fractional boundary-

value problem for delay differential equations in the variable-order Riemann–Liouville
settings is introduced, which generalizes the fractional constant-order concepts; (2) new ex-
istence specifications of solutions are established; (3) we consider generalized subintervals
by combining the existing notions in relation to the Kuratowski measure of noncompactness
in the context of Darbo’s fixed-point theorem; (4) we apply piecewise constant functions to
convert the Riemann–Liouville fractional boundary-value problem of variable order (1) to
standard Riemann–Liouville fractional constant-order boundary-value problems, which
allows for the more accurate estimation of the solution operator and leads to a better
exploration of the effect of the variable fractional order; and (5) the Ulam–Hyers stability
behavior of the fractional variable-order problem is analyzed, and new stability criteria
are proved.

The organization of the paper is as follows. Some definitions and preliminary results
are presented in Section 2. In Section 3, the main existence criteria for solutions of the
boundary-value problem of variable order (1) are established using Darbo’s fixed-point
theorem. Section 4 presents our main Ulam–Hyers stability results. Two illustrative
examples are presented in Section 5 to complete the consistency of our findings. Finally,
some conclusion notes and the future scope of this paper are given in Section 6.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts, which are
used throughout this paper.

We denote by C(N ,R) the space of real-valued continuous functions on N equipped
with the supremum norm

‖ξ‖N = sup{|ξ(s)| : s ∈ N},

for any ξ ∈ C(N ,R).

Definition 1 ([39,40]). The left Riemann–Liouville fractional integral of variable-order μ(.), μ :
[c, d]→ (0,+∞), −∞ < c < d < +∞, for a function ξ(.), is defined by

Iμ(s)
c+ ξ(s) =

∫ s

c

(s− τ)μ(τ)−1

Γ(μ(τ))
ξ(τ)dτ, s > c, (2)

where the standard Gamma function is denoted by Γ(.).

Definition 2 ([39,40]). For −∞ < c < d < +∞, we consider the mapping μ : [c, d] →
(m− 1, m), m ∈ N. Then, the left Riemann–Liouville fractional derivative of variable-order μ(.)
for a function ξ is defined by

Dμ(s)
c+ ξ(s) =

( d
ds

)m
Im−μ(s)
c+ ξ(s) =

( d
ds

)m ∫ s

c

(s− τ)m−μ(τ)−1

Γ(m− μ(τ))
ξ(τ)dτ, s > c. (3)

Obviously, if the order μ(.) is a constant function, then the Riemann–Liouville frac-
tional variable order derivative (3) and Riemann–Liouville fractional integral of variable-
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order (2) are reduced to the classical Riemann–Liouville fractional derivative and Riemann–
Liouville fractional integral, respectively; see [3,5,14,39].

The following properties are some of the main ones of the fractional derivatives and
integrals that we will use in our analysis.

Lemma 1 ([3]). Let � > 0, c ≥ 0, ξ ∈ L1(c, d), D�
c+ξ ∈ L1(c, d). Then, the differential equation

D�
c+ξ = 0

has a solution

ξ(s) = η1(s− c)�−1 + η2(s− c)�−2 + · · ·+ η�(s− c)�−� + · · ·+ ηm(s− c)�−m,

where m = [�] + 1, η� ∈ R, � = 1, 2, . . . , m.

Lemma 2 ([3]). Let � > 0, c ≥ 0, ξ ∈ L1(c, d), D�
c+ξ ∈ L1(c, d). Then,

I�
c+D�

c+ξ(s) = ξ(s) + η1(s− c)�−1 + η2(s− c)�−2 + · · ·+ η�(s− c)�−� + · · ·+ ηm(s− c)�−m, (4)

where m = [�] + 1, η� ∈ R, � = 1, 2, . . . , m.

Lemma 3 ([3]). Let � > 0, c ≥ 0, ξ ∈ L1(c, d), D�
c+ξ ∈ L1(c, d). Then,

D�
c+ I�

c+ξ(s) = ξ(s).

Lemma 4 ([3]). Let �, ρ > 0, c ≥ 0, ξ ∈ L1(c, d). Then,

I�
c+ Iρ

c+ξ(s) = Iρ
c+ I�

c+ξ(s) = I�+ρ
c+ ξ(s).

Remark 1 ([41,42]). Generally, for two functions μ1(s) and μ2(s), the semigroup property does
not hold, i.e.,

Iμ1(s)
c+ Iμ2(s)

c+ ξ(s) 	= Iμ1(s)+μ2(s)
c+ ξ(s).

Definition 3 ([43]). Let E be a Banach space and Pb(E) the family of bounded subsets of E. Then,
ζ : Pb(E)→ [0,+∞[ defined by

ζ(U) = in f {λ > 0 : U ⊆ ∪n
k=1Bk and diam(Bk) < λ}.

for every U ∈ Pb(E) is called the Kuratowski measure of noncompactness.

The Kuratowski measure of noncompactness satisfies the following properties:

Proposition 1 ([44,45]). Let E be a Banach space. Then, for all bounded subsets U, V of E, the
following assertions hold:

1. ζ(U) = 0 ⇐⇒ U is compact;
2. ζ(φ) = 0;
3. ζ(U) = ζ(U) = ζ(convU);
4. (U ⊂ V) =⇒ ζ(U) ≤ ζ(V);
5. ζ(U + V) ≤ ζ(U) + ζ(V);
6. ζ(λU) = |λ|ζ(U), λ ∈ R;
7. ζ(U ∪V) = max{ζ(U), ζ(V)};
8. ζ(U ∩V) ≤ min{ζ(U), ζ(V)};
9. ζ(U + x0) = ζ(U) for any x0 ∈ E.

Lemma 5 ([45]). If the bounded set U ⊂ C(N , E) is equicontinuous, then
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(i) the function ζ(U(s)) is continuous for s ∈ N , and

ζN (U) = sup
s∈N

ζ(U(s)).

(ii) ζ
(∫ N

0 ξ(s)ds : ξ ∈ U
)
≤

∫ N
0 ζ(U(s))ds,

where
U(s) = {ξ(s) : ξ ∈ U}, s ∈ N .

Remark 2. For the definition and properties of equicontinuous sets, we refer to [45].

Remark 3. In the following, we shall use ζ and ζN to denote the Kuratowski measures of noncom-
pactness of sets in space R and space C(N ,R) respectively.

The following theorem will be needed.

Theorem 1 (Darbo’s fixed-point theorem [43]). Let M be a nonempty, bounded, convex, and
closed subset of a Banach space E and T : M −→ M is a continuous operator satisfying ζ(TA) ≤
Lζ(A) for any nonempty subset A of M and for some constant L ∈ [0, 1). Then, T has at least one
fixed point in M.

Definition 4 ([46,47]). Equation (1) is Ulam–Hyers is stable if there exists a real number cϕ > 0
such that for each ε > 0 and any solution y ∈ C([−γ, N],R) of the inequality{

|Dμ(s)
0+ y(s)− ϕ(s, ys)| ≤ ε, s ∈ N := [0, N],

y(s) = χ(s), s ∈ [−γ, 0],
(5)

there exists a solution ξ ∈ C([−γ, N],R) of Equation (1) with

|y(s)− ξ(s)| ≤ cϕε, s ∈ [−γ, N].

Remark 4. A function y ∈ C([−γ, N],R) is a solution of the inequality (5) if and only if a
function h ∈ C([−γ, N],R) (which depends on solution y) exists such that

(i) |h(s)| ≤ ε, for all s ∈ [−γ, N].

(ii) Dμ(s)
0+ y(s) = ϕ(s, ys) + h(s) for all s ∈ N .

Definition 5 ([15,48]). Let I ⊂ R.

(a) The interval I is called a generalized interval if it is either an interval or {ρ1} or ∅.
(b) A partition of I is a finite set P such that each x in I lies in exactly one of the generalized

intervals E in P .
(c) A function g : I → R is called piecewise constant with respect to the partition P of I if for

any E ∈ P , g is constant on E.

3. Existence Criteria

We will begin with the introduction of some main hypotheses:

(Hyp1) For an integer n ∈ N, let the finite sequence of points {Nk}n
k=0 be given such that

0 = N0 < Nk−1 < Nk < Nn = N, k = 2, . . . , n − 1. Denote Nk := (Nk−1, Nk],
k = 1, 2, . . . , n and consider the partition P = {Nk : 1 = 1, 2, . . . , n} of the intervalN .
Let μ : N → (1, 2] be a piecewise constant function with respect to P , represented
as follows:
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μ(s) =
n

∑
k=1

μk Ik(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ1, if s ∈ N1,
μ2, if s ∈ N2,

.

.

.
μn, if s ∈ Nn,

where 1 < μk ≤ 2 are constants and Ik is an indicator of the interval Nk, k = 1, 2, . . . , n
defined by

Ik(s) =
{

1, for s ∈ Nk,
0, elsewhere.

(Hyp2) Let sσ ϕ : N × C([−γ, 0],R) → R be continuous (0 < σ < 1). K > 0 exists, such
that sσ|ϕ(s, ys) − ϕ(s, zs)| ≤ K‖ys − zs‖[−γ,0], for any y, z ∈ C([−γ, N],R) and
s ∈ N .

The next definition of a solution of the problem (1) will be essential in this paper.

Definition 6. Problem (1) has a solution, if there are functions ξk, k = 1, 2, . . . , n, so that
ξk ∈ C([−γ, Nk],R) satisfying Equation (7) for s ∈ [0, Nk], ξk(s) = χ(s) for s ∈ [−γ, 0]
and ξk(0) = ξk(Nk) = 0.

In order to apply Darbo’s fixed-point theorem and the Kuratowski measure of non-
compactness, we will perform an essential analysis to the problem (1).

Using (3), we represent the equation of the problem (1) in the following form:

d2

ds2

∫ s

0

(s− τ)1−μ(τ)

Γ(2− μ(τ))
ξ(τ)dτ = ϕ(s, ξs), s ∈ N . (6)

According to (Hyp1), we can represent Equation (6) on the interval Nk, k = 1, 2, . . . ,
n as

d2

ds2

( ∫ N1

0

(s− τ)1−μ1

Γ(2− μ1)
ξ(τ)dτ + ... +

∫ s

Nk−1

(s− τ)1−μk

Γ(2− μk)
ξ(τ)dτ

)
= ϕ(s, ξs) (7)

for s ∈ Nk.
For 0 ≤ s ≤ Nk−1, by taking ξ(s) ≡ 0, Equation (7) is reduced to

Dμk
N+

k−1
ξ(s) = ϕ(s, ξs), s ∈ Nk.

Let us consider the following problem:⎧⎪⎨⎪⎩
Dμk

N+
k−1

ξ(s) = ϕ(s, ξs), s ∈ Nk,

ξ(Nk−1) = 0, ξ(Nk) = 0,
ξ(s) = χk(s), s ∈ [Nk−1 − γ′, Nk−1],

(8)

where γ′ = Nk−1 + γ and

χk(s) =
{

0, i f s ∈ [0, Nk−1]
χ(s), i f s ∈ [−γ, 0].

The following auxiliary lemma will offer existence criteria for solutions for the problem (8).

Lemma 6. The function ξ ∈ C([−γ, Nk],R) is a solution of problem (8) if and only if ξ satisfies
the integral equation

ξ(s) =

{
−

∫ Nk
Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ, i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1],

(9)
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where Gk(s, τ) is a Green’s function defined by

Gk(s, τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(μk)

[
(Nk − Nk−1)

1−μk (s− Nk−1)
μk−1(Nk − τ)μk−1 − (s− τ)μk−1

]
,

Nk−1 ≤ τ ≤ s ≤ Nk,

1
Γ(μk)

(Nk − Nk−1)
1−μk (s− Nk−1)

μk−1(Nk − τ)μk−1,

Nk−1 ≤ s ≤ τ ≤ Nk,

k = 1, 2, . . . , n.

Proof. Let ξ ∈ C([−γ, Nk],R) be a solution of the problem (8). From (4), we have

ξ(s) = η1(s− Nk−1)
μk−1 + η2(s− Nk−1)

μk−2 + Iμk
N+

k−1
ϕ(s, ξs), s ∈ Nk, k ∈ {1, 2, . . . , n}. (10)

Using ξ(Nk−1) = ξ(Nk) = 0, we find that η2 = 0 and

η1 = −(Nk − Nk−1)
1−μk Iμk

N+
k−1

ϕ(NK, ξNk ).

By substituting the values of η1 and η2 in (10), we obtain

ξ(s) = −(Nk − Nk−1)
1−μk (s− Nk−1)

μk−1 Iμk
N+

k−1
ϕ(Nk, ξNk ) + Iμk

N+
k−1

ϕ(s, ξs), s ∈ Nk.

Then, the solution of the problem (8) is given by

ξ(s) = −(Nk − Nk−1)
1−μk (s− Nk−1)

μk−1 1
Γ(μk)

∫ Nk

Nk−1

(Nk − τ)μk−1 ϕ(τ, ξτ)dτ

+
1

Γ(μk)

∫ s

Nk−1

(s− τ)μk−1 ϕ(τ, ξτ)dτ

= − 1
Γ(μk)

[ ∫ s

Nk−1

[
(Nk − Nk−1)

1−μk (s− Nk−1)
μk−1(Nk − τ)μk−1 − (s− τ)μk−1

]
ϕ(τ, ξτ)dτ

+
∫ Nk

s
(Nk − Nk−1)

1−μk (s− Nk−1)
μk−1(Nk − τ)μk−1 ϕ(τ, ξτ)dτ

]
= −

[ ∫ s

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ +
∫ Nk

s
Gk(s, τ)ϕ(τ, ξτ)dτ

]
and the continuity of the Green function gives

ξ(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ, s ∈ Nk.

Conversely, let ξ ∈ C([−γ, Nk],R) be a solution of integral Equation (9); then, by the
continuity of function Sσ ϕ and Lemma 3, we can easily obtain that ξ is the solution of the
problem (8).

Proposition 2 ([16]). Let 0 < σ < 1 and assume that sσ ϕ : Nk × C([−γ, 0],R) → R is
continuous, and μ : Nk → (1, 2] satisfies (Hyp1). Then, the Green’s function of problem (8)
satisfies the following properties:

(1) Gk(s, τ) ≥ 0 for all Nk−1 ≤ s, τ ≤ Nk,

(2) max
s∈Nk

Gk(s, τ) = Gk(τ, τ), τ ∈ Nk,
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(3) Gi(s, s) has a unique maximum given by

max
τ∈Nk

Gk(τ, τ) =
1

Γ(μk)

( Nk − Nk−1
4

)μk−1
,

where k = 1, 2, . . . , n.

We will now establish the existence results for the Riemann–Liouville constant-order
fractional problem (8). Our first result is based on Darbo’s fixed-point theorem.

Theorem 2. Suppose that both (Hyp1) and (Hyp2) hold, and

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
< 1. (11)

Then, the Riemann–Liouville constant-order fractional problem (8) possesses at least one solution on
C([−γ, Nk],R).

Proof. Consider the operator

L : C([−γ, Nk],R)→ C([−γ, Nk],R),

defined by

(Lξ)(s) =

{
χk(s), s ∈ [−γ, Nk−1],
−

∫ Nk
Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ, s ∈ Nk.

Let v(.) : [−γ, Nk]→ R be a function defined by

v(s) =
{

0, i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1].

For each z ∈ C([Nk−1, Nk],R), with z(Nk−1) = 0, we denote by z the function de-
fined by

z(s) =
{

z(s), i f s ∈ Nk,
0, i f s ∈ [−γ, Nk−1].

If ξ(.) satisfies the integral equation

ξ(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ,

then we can decompose ξ(.) as ξ(s) = z(s) + v(s), Nk−1 ≤ s ≤ Nk, which implies ξs =
zs + vs for every Nk−1 ≤ s ≤ Nk, and the function z(.) satisfies

z(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ.

Set
CNk−1 = {z ∈ C([Nk−1, Nk],R) : z(Nk−1) = 0}

and let ‖.‖Nk be the norm in CNk−1 defined by

‖z‖Nk = sup
s∈Nk

|z(s)|, z ∈ CNk−1 .
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Thus, CNk−1 is a Banach space with the norm ‖.‖Nk . Let the operator P : CNk−1 → CNk−1
be defined by

(Pz)(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ, s ∈ Nk. (12)

It follows from the properties of fractional integrals and from the continuity of function
sσ ϕ that the operator P : CNk−1 → CNk−1 in (12) is well defined.

Then, it is enough to show that the operator P has a fixed point z that will guarantee
that the operator L has a fixed point ξ = z + v, and in consequence, this fixed point will
correspond to a solution of the problem (8). Indeed,

ξ(s) = z(s) + v(s)

=

{
z(s), i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1]

=

{
−

∫ Nk
Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ, i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1]

=

{
−

∫ Nk
Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ, i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1]

= (Lξ)(s).

Let

Rk ≥

(K‖χ‖[−γ,0]+ϕ�)(Nk−Nk−1)
μk−1

(
N1−σ

k −N1−σ
k−1

)
4μk−1Γ(μk)(1−σ)

1−
K
(

N1−σ
k −N1−σ

k−1

)(
Nk−Nk−1

)μk−1

4μk−1(1−σ)Γ(μk)

with ϕ� = sups∈N sσ|ϕ(s, 0)|, and consider the following set:

BRk = {z ∈ CNk−1 , ‖z‖Nk ≤ Rk}.

Clearly, BRk is nonempty, convex, bounded, and closed.
For z ∈ BRk and s ∈ Nk, we have

‖zs‖[−γ′ ,0] = sup
−Nk−1−γ≤θ≤0

|zs(θ)|

= sup
−Nk−1−γ≤θ≤0

|z(s + θ)|

≤ sup
−γ≤τ≤Nk

|z(τ)|

= sup
τ∈Nk

|z(τ)| = ‖z‖Nk

and

‖vs‖[−γ′ ,0] = sup
−Nk−1−γ≤θ≤0

|vs(θ)|

= sup
−Nk−1−γ≤θ≤0

|v(s + θ)|

≤ sup
−γ≤τ≤Nk

|v(τ)|

= sup
−γ≤τ≤0

|v(τ)| = sup
−γ≤τ≤0

|χ(τ)| = ‖χ‖[−γ,0].

We shall show that P satisfies Theorem 1 in five steps.
Step 1: P(BRk ) ⊆ (BRk ).
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For z ∈ BRk , by Proposition 2 and (Hyp2), we obtain

|Pz(s)| =
∣∣∣ ∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ
∣∣∣

≤
∫ Nk

Nk−1

Gk(s, τ)|ϕ(τ, zτ + vτ)|dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

|ϕ(τ, zτ + vτ)|dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−στσ
∣∣∣ϕ(τ, zτ + vτ)− f (τ, 0)

∣∣∣dτ

+
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−στσ|ϕ(τ, 0)|dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ(K‖zτ + vτ‖[−γ′ ,0])dτ

+
ϕ�(Nk − Nk−1)

μk−1

Γ(μk)4μk−1

∫ Nk

Nk−1

τ−σdτ

≤ K
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

(‖zτ‖[−γ′ ,0] + ‖vτ‖[−γ′ ,0])τ
−σdτ

+
ϕ�

(
Nk − Nk−1

)μk−1(
N1−σ

k − N1−σ
k−1

)
4μk−1Γ(μk)(1− σ)

≤ K
Γ(μk)

( Nk − Nk−1
4

)μk−1
(‖z‖Nk + ‖χ‖[−γ,0])

∫ Nk

Nk−1

τ−σdτ

+
ϕ�

(
Nk − Nk−1

)μk−1(
N1−σ

k − N1−σ
k−1

)
4μk−1Γ(μk)(1− σ)

≤ K
Γ(μk)

( Nk − Nk−1
4

)μk−1
Rk

( N1−σ
k − N1−σ

k−1
1− σ

)

+
K

Γ(μk)

( Nk − Nk−1
4

)μk−1
‖χ‖[−γ,0]

( N1−σ
k − N1−σ

k−1
1− σ

)

+
ϕ�

(
Nk − Nk−1

)μk−1(
N1−σ

k − N1−σ
k−1

)
4μk−1Γ(μk)(1− σ)

≤
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
Rk

+

(
Nk − Nk−1

)μk−1(
N1−σ

k − N1−σ
k−1

)
4μk−1Γ(μk)(1− σ)

(
K‖χ‖[−γ,0] + ϕ�

)
≤ Rk,
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which means that P(BRk ) ⊆ BRk .
Step 2: P is continuous.
We presume that the sequence (zn) converges to z in CNk−1 and s ∈ Nk. Then,

|P(zn)(s)− (Pz)(s)| ≤
∫ Nk

Nk−1

Gk(s, τ)
∣∣∣ϕ(τ, znτ + vτ)− ϕ(τ, zτ + vτ)

∣∣∣dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

∣∣∣ϕ(τ, znτ + vτ)− ϕ(τ, zτ + vτ)
∣∣∣dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σK‖znτ − zτ‖[−γ′ ,0]dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1
(K‖zn − z‖Nk )

∫ Nk

Nk−1

τ−σdτ

≤
K
(

N1−σ
k − T1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
‖zn − z‖Nk .

Hence, we obtain
‖(Pzn)− (Pz)‖Nk → 0 as n → ∞.

Then, the operator P is a continuous on CNk−1 .
Step 3: P(BRk ) is bounded set in CNk−1 .
As in Step 1, we have P(BRk ) ⊂ BRk . This implies that P(BRi ) is bounded set in CTi−1 .
Step 4: P(BRk ) is equicontinous set in CNk−1 .
For arbitrary s1, s2 ∈ Nk, with s1 < s2, let z ∈ BRk . Estimate

|P(z)(t2) − (Pz)(t1)| =
∣∣∣ ∫ Nk

Nk−1

Gk(s2, τ)ϕ(τ, zτ + vτ)dτ −
∫ Nk

Nk−1

Gk(s1, τ)ϕ(τ, zτ + vτ)dτ
∣∣∣

≤
∫ Nk

Nk−1

∣∣∣(Gk(s2, τ)− Gk(s1, τ)
)

ϕ(τ, zτ + vτ)
∣∣∣dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣|ϕ(τ, zτ + vτ)|dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣τ−σ

(
τσ

∣∣∣ϕ(τ, zτ + vτ)− ϕ(τ, 0)
∣∣∣+ τσ|ϕ(τ, 0)|

)
dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σ(K‖zτ + vτ‖[−γ′ ,0]) + τ−σ ϕ�

]
ds

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σK(‖zτ‖[−γ′ ,0] + ‖vτ‖[−γ′ ,0]) + τ−σ ϕ�

]
dτ
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≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σK(‖z‖Nk + ‖χ‖[−γ,0]) + ϕ�

]
dτ

≤ KN−σ
k−1(R + ‖χ‖[−γ,0])

∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣dτ

+ ϕ�N−σ
k−1

∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣dτ.

Hence, |P(z)(s2)− (Pz)(s1)| → 0 as |s2− s1| → 0. This implies thatP(BRk ) is equicon-
tinuous.

Note that [49] the inequality

ζ
(

sδ ϕ(s, B1)
)
≤ Kζ[−γ,0](B1)

is equivalent to (Hyp2) for each B1 ⊂ C([−γ, 0],R) and s ∈ N , where B1 is bounded.
Step 5: P is L-set contraction.
For U ⊂ BRk , s ∈ Nk, we obtain

ζ(P(U)(s)) = ζ(
{
(Pz)(s), z ∈ U

}
)

= ζ(
{
−

∫ Nk
Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ, z ∈ U
}
)

≤
∫ Nk

Nk−1

Gk(s, τ)ζ(
{

ϕ(τ, zτ + vτ), z ∈ U
}
)

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σζ(
{

τσ ϕ(τ, zτ + vτ), z ∈ U
}
).

Remark 3 indicates that

ζ(P(U)(s)) ≤
∫ Nk

Nk−1

Gk(s, τ)τ−σ[K(ζ[−γ′ ,0]{zτ + vτ , z ∈ U})]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σ[Kζ[−γ′ ,0]({zτ , z ∈ U}+ vτ)]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK[ζ[−γ′ ,0]({zτ , z ∈ U})]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−γ′≤θ≤0

ζ({zτ(θ), z ∈ U}dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−γ′≤θ≤0

ζ({z(τ + θ), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−r≤t≤Nk

ζ({z(t), z ∈ U})dτ

=
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U} ∪ {0})dτ
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≤
∫ Nk

Nk−1

Gi(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
t∈Nk

ζ(U(t))dτ

≤ 1
Γ(μk)

( Nk − Nk−1
4

)μk−1[
KζNk (U)

∫ Nk

Nk−1

τ−σds
]
,

≤
K
(

N1−δ
k − N1−δ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
ζNk (U).

Therefore,

ζNk (PU) ≤
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
ζNk (U).

Consequently by (11), we deduce that P is a L-set contraction, where

L :=
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
.

Therefore, since all conditions of Theorem 1 are fulfilled we deduce that P has a fixed
point zk ∈ BRk .

Then, L has a fixed point; thus, the Riemann–Liouville constant-order fractional
boundary-value problem (8) has at least one solution ξk = zk + v ∈ C([−γ, Nk],R).

Now, we will prove the existence result for the Riemann–Liouville fractional problem
of variable order (1).

Theorem 3. Let the hypotheses (Hyp1), (Hyp2) and inequality (11) be satisfied for all
k ∈ {1, 2, . . . , n}. Then, the Riemann–Liouville fractional problem of variable order (1) possesses at
least one solution in C([−γ, N],R).

Proof. For all k ∈ {1, 2, . . . , n} according to Theorem 2, the Riemann–Liouville constant-
order fractional boundary-value problem (8) possesses at least one solution
ξk ∈ C([−γ, Nk],R). For any k ∈ {1, 2, . . . , n}, we have

ξ1(s) = z1(s) + v(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1

and for any k ∈ {2, . . . , n}

ξk(s) = zk(s) + v(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
zk(s), s ∈ Nk.

Thus, the function ξk ∈ C([−γ, Nk],R) satisfies the integral Equation (7) for s ∈ Nk
with ξk(0) = 0, ξk(Nk) = zk(Nk) = 0 and ξk(s) = χ(s) for s ∈ [−γ, 0].
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Then, the function

ξ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ N1,
z2(s), s ∈ N2,

.

.

.

.

ξn(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nn−1],
zn(s), s ∈ Nn,

gives the solution for the Riemann–Liouville fractional problem of variable order (1).

Remark 5. The existence results for fractional delay differential equations of constant order are
well established [33–38], but very little research has been done on delay fractional variable-order
systems because of the complex features of fractional variable-order derivatives [32]. Theorems 2
and 3 extend the existent results to boundary-value problems for variable-order fractional delay
differential equations. The offered results are established by converting the Riemann–Liouville
fractional boundary-value problem of variable order (1) to a standard Riemann–Liouville fractional
boundary-value problem with constant-order fractional derivatives (8), and using piecewise constant
functions, the Kuratowski measure of noncompactness in the context of Darbo’s fixed-point theorem.

Remark 6. Our results also extend and generalize some recently published existence results on
boundary-value problems for fractional variable-order differential equations without
delays [15,23,24,26,27,50] to the delay case, considering that the delay terms in the models are
more general and more relevant to the real-world applied problems.

Remark 7. Unlike the existing results in [32] for the delay fractional variable-order problem,
in this study we consider the Riemann–Liouville variable-order fractional derivatives of order
μ : N → (1, 2] and apply Darbo’s fixed-point theorem together with the Kuratowski measure of
noncompactness. In fact, due to the superiority of this strategy, it is intensively applied to fractional
variable-order problems [23,27]. In the further investigations of the proposed boundary-value
problem, different approaches may be applied, and the corresponding comparisons can be made.

We expect that the proposed results will motivate the researchers regarding further
development of the topic.

4. Ulam–Hyers Stability

Existence criteria are necessary when we study the qualitative behavior of the solutions.
In order to demonstrate the applicability of the proposed in Section 2 criteria, we will
provide Ulam–Hyers stability results.

Theorem 4. Assume that conditions (Hyp1), (Hyp2) and (11) hold. Then, the Equation (1) is
Ulam–Hyers stable.

Proof. Let ε > 0 be arbitrary, and the function y ∈ C([−γ, N],R) satisfies the following
inequality: {

|Dμ(s)
0+ y(s)− ϕ(s, ys)| ≤ ε, s ∈ N := [0, N],

y(s) = χ(s), s ∈ [−γ, 0].
(13)
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We define the functions

y1(s) =
{

y(s), s ∈ [0, N1],
χ(s), s ∈ [−γ, 0]

(14)

and for k = 2, 3, . . . , n :

yk(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
y(s), s ∈ Nk.

(15)

For any k ∈ {1, 2, . . . , n} according to equality (7) for s ∈ Nk, we obtain

Dμ(s)
0+ yk(s) =

1
Γ(2− μk)

(
d
ds

)2
∫ s

Nk−1

(s− τ)1−μk y(τ)dτ.

Taking Iμk
N+

k−1
on both sides of (13), we obtain

∣∣∣y(s) + ∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, yτ)dτ
∣∣∣ ≤ ε

Γ(μk)

∫ s

Nk−1

(s− τ)μk−1dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)
.

According to Theorem 3, the Riemann–Liouville fractional problem (1) of variable
order has a solution ξ ∈ C([−γ, N],R) defined by ξ(s) = ξk(s)for s ∈ [0, Nk], k = 1, 2, . . . ,
n, where

ξ1(s) =
{

χ(s), s ∈ [−γ, 0]
z1(s), s ∈ N1,

(16)

and for any k ∈ {2, . . . , n}

ξk(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
zk(s), s ∈ Nk

(17)

and ξk ∈ C([−γ, Nk],R) is a solution of the Riemann–Liouville constant-order fractional
problem (8). According to Lemma 6, we have

ξk(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (ξk)τ)dτ. (18)

Let s ∈ Nk, k ∈ {1, 2, . . . , n}.Then, by (15), (16), (17), and (18), we obtain

|y(s)− ξ(s)| = |y(s)− ξk(s)| = |yk(s)− ξk(s)|

= |yk(s) +
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (ξk)τ)dτ|

≤
∣∣∣yk(s) +

∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (yk)τ)dτ
∣∣∣+ ∫ Nk

Nk−1

Gk(s, τ)
∣∣∣ϕ(τ, (yk)τ)− ϕ(τ, (ξk)τ)

∣∣∣dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ‖(yk)τ − (ξk)τ‖[−γ′ ,0]dτ
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≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ sup
−Nk−1−γ≤θ≤0

|(yk)τ(θ)− (ξk)τ(θ)|dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ sup
−Nk−1−γ≤θ≤0

|yk(τ + θ)− ξk(τ + θ)|dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ sup
−γ≤t≤Tk

|yk(t)− xk(t)|dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1 ∫ Nk

Nk−1

τ−σ‖yk − ξk‖[−γ,Nk ]
dτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)

+ K
1

Γ(μk)

( Nk − Nk−1
4

)μk−1
‖yk − ξk‖[−γ,Nk ]

∫ Nk

Nk−1

τ−σdτ

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)
+

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
‖yk − ξk‖[−γ,Nk ]

≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)
+ ν‖yk − ξk‖[−γ,Nk ]

,

where

ν = max
k=1,2,...,n

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)μk−1

4μk−1(1− σ)Γ(μk)
.

Then,

‖y− ξ‖[−γ,Nk ]
(1− ν) ≤ ε

(
Nk − Nk−1

)μk

Γ(μk + 1)
,

and so for cϕ :=

(
Nk−Nk−1

)μk

(1−ν)Γ(μk+1) ,

‖y− ξ‖[−γ,Nk ]
≤ cϕε,

i.e.,
|y(s)− ξ(s)| ≤ cϕε, s ∈ [−γ, Nk].

Then, by Definition 4, the Riemann–Liouville fractional problem (1) of variable order
is Ulam–Hyers stable.

Remark 8. With the established result in this section, we contribute to the development of the Ulam–
Hyers stability theory for fractional variable-order models. In fact, due to the great opportunities for
applications, this stability notion has been studied by numerous authors [24,46,47,50]. In addition,

240



Axioms 2023, 12, 80

the qualitative results offered by Theorem 4 demonstrate the opportunities for applications of the
existence criteria proved in Theorems 2 and 3.

5. Illustrative Examples

Example 1. Let γ > 0,

μ(s) =
{ 7

5 , s ∈ N1 := [0, 1],
3
2 , s ∈ N2 :=]1, 2]

(19)

and consider the following Riemann–Liouville fractional variable-order boundary-value problem:⎧⎨⎩ Dμ(s)
0+ ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N :=]0, 2],

ξ(s) = χ(s), s ∈ [−γ, 0].
(20)

The choice of μ(s) guarantee that (Hyp1) holds. Let

ϕ(s, ys) =
s−

1
2

4es(1 + ‖ys‖[−γ,0])
, (s, ys) ∈ [0, 2]× C([−γ, 0],R).

For y, z ∈ C([−γ, 2],R) and s ∈ N , we have

s
1
2 |ϕ(s, ys)− ϕ(s, zs)| =

∣∣∣∣∣ 1
4es

(
1

1 + ‖ys‖[−γ,0]
− 1

1 + ‖zs‖[−γ,0]

)∣∣∣∣∣
≤

|‖ys‖[−γ,0] − ‖zs‖[−γ,0]|
4es(1 + ‖ys‖[−γ,0])(1 + ‖ys‖[−γ,0])

≤ 1
4es (‖ys − zs‖[−γ,0])

≤ 1
4
‖ys − zs‖[−γ,0].

Hence, (Hyp2) holds for σ = 1
2 and K = 1

4 .
By (19), according to (8) we consider the following two auxiliary problems for Riemann–

Liouville fractional differential equations of constant orders:⎧⎪⎪⎨⎪⎪⎩
D

7
5
0+ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N1,

ξ(0) = 0, ξ(1) = 0,
ξ(s) = χ1(s), s ∈ [−γ, 0]

(21)

and ⎧⎪⎪⎨⎪⎪⎩
D

3
2
0+ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N2,

ξ(1) = 0, ξ(2) = 0,
ξ(s) = χ2(s), s ∈ [−γ, 1],

(22)

where χ1 = χ and

χ2(s) =
{

0, , i f s ∈ [0, 1],
χ(s), i f s ∈ [−γ, 0].

We will show also that condition (11) is satisfied for k = 1. Indeed,

K
(

N1−σ
1 − N1−σ

0

)(
N1 − N0

)μ1−1

4μ1−1(1− σ)Γ(μ1)
=

1
4

(
11− 1

2 − 01− 1
2

)(
1− 0

) 7
5−1

4
7
5−1(1− 1

2 )Γ(
7
5 )

 0.323663 < 1.

241



Axioms 2023, 12, 80

By Theorem 2, the problem (21) has a solution ξ1 ∈ C([−γ, 1],R), where

ξ1(s) =

{
χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1.

We also have that

K
(

N1−σ
2 − N1−σ

1

)(
N2 − N1

)μ2−1

4μ2−1(1− σ)Γ(μ2)
=

1
4

(
21− 1

2 − 11− 1
2

)(
2− 1

) 3
2−1

4
3
2−1(1− 1

2 )Γ(
3
2 )

 0.11684748 < 1.

Thus, (11) is fulfilled for k = 2. According to Theorem 2, the problem (22) possesses a solution
ξ2 ∈ C([−γ, 2],R), where

ξ2(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 1],
z2(s), t ∈ N2.

Then, by Theorem 3, the problem (20) has a solution

ξ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ1(s) =

{
χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ N1,
z2(s), s ∈ N2,

In addition, according to Theorem 4, problem (20) is Ulam–Hyers-stable.

Example 2. Let γ > 0,

μ(s) =

⎧⎨⎩
7
5 , s ∈ N1 := [0, 1],
6
5 , s ∈ N2 :=]1, 3

2 ],
3
2 , s ∈ N3 :=] 3

2 , 2].
(23)

and consider the following Riemann–Liouville fractional variable-order boundary-value problem:⎧⎪⎨⎪⎩
Dμ(s)

0+ ξ(s) = s−
1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N :=]0, 2],

ξ(s) = χ(s), s ∈ [−γ, 0],

(24)

The choice of μ(s) guarantees that (Hyp1) holds. Let

ϕ(s, ys) =
s−

1
3

(ee
s3

1+s + 6)(1 + ‖ys‖[−γ,0])

, (s, ys) ∈ [0, 2]× C([−γ, 0],R).

For y, z ∈ C([−γ, 2],R) and s ∈ N , we have

s
1
3 |ϕ(s, ys)− ϕ(s, zs)| =

∣∣∣∣∣∣ 1

(ee
s3

1+s + 6)

(
1

1 + ‖ys‖[−γ,0]
− 1

1 + ‖zs‖[−γ,0]

)∣∣∣∣∣∣
≤

|‖ys‖[−γ,0] − ‖zs‖[−γ,0]|

(ee
s3

1+s + 6)(1 + ‖ys‖[−γ,0])(1 + ‖ys‖[−γ,0])
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≤ 1

(ee
s3

1+s + 6)
‖yt − zs‖[−γ,0]

≤ 1
e + 6

‖ys − zs‖[−γ,0].

Hence, (Hyp2) holds for σ = 1
3 and K = 1

e+6 .
By (23), according to (8) we consider three auxiliary problems for Riemann–Liouville fractional

differential equations of constant order⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

7
5
0+ξ(s) = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N1,

ξ(0) = 0, ξ(1) = 0,
ξ(s) = χ1(s), s ∈ [−γ, 0],

(25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

6
5
0+ξ(s) = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N2,

ξ(1) = 0, ξ( 3
2 ) = 0,

ξ(s) = χ2(s), s ∈ [−γ, 1],

(26)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

3
2
0+ = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N3,

ξ( 3
2 ) = 0, x(2) = 0,

ξ(s) = χ2(s), s ∈ [−γ, 3
2 ],

(27)

where χ1 = χ ,

χ2(s) =
{

0, , i f s ∈ [0, 1],
χ(s), i f s ∈ [−γ, 0]

and

χ3(s) =
{

0, , i f s ∈ [0, 3
2 ],

χ(s), i f s ∈ [−γ, 0].

We will also show that condition (11) is satisfied for k = 1. Indeed,

K
(

N1−σ
1 − N1−σ

0

)(
N1 − N0

)μ1−1

4μ1−1(1− σ)Γ(μ1)
=

1
e+6

(
11− 1

3 − 01− 1
3

)(
1− 0

) 7
5−1

4
7
5−1(1− 1

3 )Γ(
7
5 )

 0.11137 < 1.

By Theorem 2, the problem (25) has a solution ξ1 ∈ C([−γ, 1],R), where

ξ1(s) =

{
χ(s), s ∈ [−γ, 0]
z1(s), s ∈ N1.

We also have that

K
(

N1−σ
2 − N1−σ

1

)(
N2 − N1

)μ2−1

4μ2−1(1− σ)Γ(μ2)
=

1
e+6

(
3
2

1− 1
3 − 11− 1

3

)(
3
2 − 1

) 6
5−1

4
6
5−1(1− 1

3 )Γ(
6
5 )

 0.03837 < 1.
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Thus, (11) is fulfilled for k = 2. According to Theorem 2, the BVP (26) possesses a solution
ξ2 ∈ C([−γ, 3

2 ],R), where

ξ2(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 1],
z2(s), s ∈ N2.

We also have that

K
(

N1−σ
3 − N1−σ

2

)(
N3 − N2

)μ3−1

4μ3−1(1− σ)Γ(μ3)
=

1
e+6

(
21− 1

3 − 3
2

1− 1
3
)(

2− 3
2

) 3
2−1

4
3
2−1(1− 1

3 )Γ(
3
2 )

 0.01901 < 1.

Thus, (11) is fulfilled for k = 3. According to Theorem 2, the BVP (27) possesses a solution
ξ3 ∈ C([−γ, 2],R),
where

ξ3(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 3

2 ],
z3(s), s ∈ N3.

Then, by Theorem 3, problem (24) has a solution

ξ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈]0, N1],
z2(s), s ∈ N2,

ξ3(s) =

⎧⎨⎩
χ(s), s ∈ [−γ, 0],
0, s ∈]0, N2],
z3(s), s ∈ N3.

In addition, according to Theorem 4, problem (24) is Ulam–Hyers stable.

Remark 9. The constructed examples show the capability of the elaborated existence and stability
results.

6. Conclusions

This research introduces a boundary-value problem for a Riemann–Liouville non-
linear fractional differential equation of variable order with finite delay. The analytical
solutions have been successfully investigated via three strategies: the Kuratowski mea-
sure of noncompactness, Darbo’s fixed-point theorem, and the Ulam–Hyers stability
concept. We established existence and stability criteria for the solutions of the problem
under consideration. The presented new results generalize some existing results for the
Riemann–Liouville delayed fractional differential equation of constant order considering
the variable order of fractional derivatives. Two examples are given at the end to support
and validate the potentiality of the obtained results. We expect that the proposed results
will motivate the researchers in the further development of the topic. The established
existence results are essential in the qualitative investigation of the introduced problem.
Additionally, since the Riemann–Liouville delayed fractional differential equations of
variable order are intensively applied in the mathematical modeling, our research is
practically important. Hence, the application of our results to some Riemann–Liouville
fractional-neural-network models of variable order with finite delay is an interesting
topic for a future research. The obtained results can also be applied in the investigation of
numerous qualitative properties of the solutions. In addition, it is possible to extend the
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proposed results to the impulsive case and study the effect of some impulsive controllers
on the fundamental and qualitative behavior of the solutions.
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Abstract: In this paper, the pantograph delay differential equation y′(t) = ay(t) + by(ct) subject to
the condition y(0) = λ is reanalyzed for the real constants a, b, and c. In the literature, it has been
shown that the pantograph delay differential equation, for λ = 1, is well-posed if c < 1, but not if
c > 1. In addition, the solution is available in the form of a standard power series when λ = 1. In the
present research, we are able to determine the solution of the pantograph delay differential equation
in a closed series form in terms of exponential functions. The convergence of such a series is analysed.
It is found that the solution converges for c ∈ (−1, 1) such that

∣∣∣ b
a

∣∣∣ < 1 and it also converges for c > 1
when a < 0. For c = −1, the exact solution is obtained in terms of trigonometric functions, i.e., a
periodic solution with periodicity 2π√

b2−a2 when b > a. The current results are introduced for the first
time and have not been reported in the relevant literature.

Keywords: delay differential equation; ordinary differential equation; pantograph; analytic solution;
exact solution

MSC: 34k06

1. Introduction

The dynamics of an overhead current collection system for an electric locomotive has
been discussed earlier by Fox et al. [1]. Such analysis gives rise to linear first-order ordinary
differential equations (1st-ODEs) in which the argument of one of the dependent variables
is multiplied by a factor, e.g., c. This kind of 1st-ODEs is well-known as the pantograph
delay differential equations (PDDEs) in the form:

y′(t) = ay(t) + by(ct), y(0) = λ, (1)

where a, b, c, and λ are real constants. The PDDE in (1) was extensively studied by numerous
researchers in the literature [2–5] because of its wide applications including the modelling
of tumour cells growth [6]. Moreover, the function y represents a probability density
function (pdf) as described in other applications such as the cell growth model of Hall and
Wake [7,8] and the absorption probability problem originating in the waiting line theory [9]
and light absorption in the Milky Way [10].

Two direct solutions for the PDDE in (1) are obvious at specific values of c, mainly
c = 1 and c = 0. For c = 1, it converts to the ODE y′(t) = (a+ b)y(t) and the corresponding
solution is clearly given as y(t) = λe(a+b)t. Moreover, at c = 0, the PDDE in (1) converts
to y′(t)− ay(t) = bλ which is a first-order linear ODE and its solution is y(t) = −λb/a +
λ(1 + b/a)eat. For other values of c ∈ R− {0, 1}, the solution of Equation (1) is still a
challenge. Thus, we focus in this paper on obtaining analytic solutions for the PDDE in (1)
at the real values of c such that c 	∈ {0, 1}.
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As a special case, if a = −1 and b = c = 1
q (q > 1), then the PDDE in (1) transforms to

the Ambartsumian delay differential equation (ADDE) [11]:

y′(t) = −y(t) +
1
q

y
(

t
q

)
, y(0) = λ. (2)

The solutions of the standard ADDE have been obtained by numerous approaches
in the literature [11–13]. Moreover, possible generalizations of the ADDE have been
introduced and discussed by the authors in Refs. [14,15]. Searching for a simple analytical
solution for the PDDE in (1) is still of manifest practical interest. In order to contribute to an
improved solution of this problem, two different cases are to be analysed separately, mainly,
c ∈ R− {±1} and c = −1. For c ∈ R− {±1}, the solution is determined in a closed series
form and the convergence issue is addressed in detail. In addition, the solution in the case
c = −1 is provided in exact form in terms of trigonometric functions, which is a periodic
solution. Moreover, it is shown in this paper that the solution obtained by Aharbi and
Ebaid [12] for the ADDE in (2) can be recovered as a special case of the current solution of
the PDDE in (1).

2. Analytic Solution at c ∈ R, c �= ±1

In this section, we search for a solution of Equation (1) in the following form

y(t) =
∞

∑
n=0

dneαcnt, (3)

where α is a constant to be determined. Substituting Equation (3) into Equation (1), we obtain

(α− a)d0eαt +
∞

∑
n=0

((
αcn+1 − a

)
dn+1 − bdn

)
eαcn+1t = 0, (4)

which gives α = a where d0 	= 0, and

dn+1 =
(b/a)dn

cn+1 − 1
, n ≥ 0. (5)

Accordingly,

dm = d0

(
(b/a)m

∏m
k=1

(
ck − 1

)), m ≥ 1. (6)

Hence,

y(t) = d0eat +
∞

∑
n=1

dneacnt = d0

(
eat +

∞

∑
n=1

(b/a)neacnt

∏n
k=1

(
ck − 1

)). (7)

Applying the initial condition y(0) = λ, d0 is obtained as d0 = λ

1+∑∞
n=1

(b/a)n

∏n
k=1(ck−1)

.

Therefore, the closed-form solution is obtained by inserting d0 into Equation (7) as

y(t) = λ

⎛⎜⎝ eat + ∑∞
n=1

(b/a)neacnt

∏n
k=1(ck−1)

1 + ∑∞
n=1

(b/a)n

∏n
k=1(ck−1)

⎞⎟⎠. (8)

Using the property ∏n
k=1

(
ck − 1

)
= (−1)n ∏n

k=1

(
1− ck

)
, then
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y(t) = λ

⎛⎜⎝ eat + ∑∞
n=1

(−b/a)neacnt

∏n
k=1(1−ck)

1 + ∑∞
n=1

(−b/a)n

∏n
k=1(1−ck)

⎞⎟⎠, a 	= 0, c 	= ±1. (9)

The Solution in Simplest Form

In this section, we aim to derive a simpler form for the solution given by Equation (9). This
is achieved by implementing some well-known properties in q-calculus (quantum calculus) [16]
such as the product (p : q)n = ∏n−1

k=0

(
1− pqk

)
, where (p : q)n denotes the Pochhammer

symbol. For p = q = c, we have (c : c)n = ∏n−1
k=0

(
1− ck+1

)
= ∏n

k=1

(
1− ck

)
. Thus,

y(t) = λ

⎛⎝ eat + ∑∞
n=1

(−b/a)n

(c:c)n
eacnt

1 + ∑∞
n=1

(−b/a)n

(c:c)n

⎞⎠ = λ

⎛⎝∑∞
n=0

(−b/a)n

(c:c)n
eacnt

∑∞
n=0

(−b/a)n

(c:c)n

⎞⎠, (10)

where (c : c)n = 1 for n = 0, hence

y(t) = λ

(
∑∞

n=0 βneacnt

∑∞
n=0 βn

)
, βn =

(−b/a)n

(c : c)n
, a 	= 0, c 	= ±1, (11)

or

y(t) =
λ

S

∞

∑
n=0

βneacnt, S =
∞

∑
n=0

βn. (12)

3. Convergence Analysis

Theorem 1. The series
∞

∑
n=0

βn =
∞

∑
n=0

(−b/a)n

(c : c)n
, a 	= 0, (13)

is convergent for |c| < 1 provided
∣∣∣ b

a

∣∣∣ < 1, and the sum S in (12) becomes

S =
∞

∑
n=0

(−b/a)n

(c : c)n
=

1
(−b/a : c)∞

. (14)

If |c| > 1, the series in (13) is convergent ∀ a ∈ R− {0} and ∀ b ∈ R.

Proof. Applying the ratio test, we have

lim
n→∞

∣∣∣∣ βn+1

βn

∣∣∣∣ = ∣∣∣∣ b
a

∣∣∣∣ lim
n→∞

∣∣∣∣∣∣
∏n

k=1

(
1− ck

)
∏n+1

k=1

(
1− ck

)
∣∣∣∣∣∣ =

∣∣∣∣ b
a

∣∣∣∣ lim
n→∞

∣∣∣∣ 1
1− cn+1

∣∣∣∣ =
{∣∣∣ b

a

∣∣∣ if |c| < 1,

0 if |c| > 1.
(15)

It is obvious that ∑ βn is convergent for the two cases (i)
∣∣∣ b

a

∣∣∣ (|c| < 1), (ii) a ∈ R− {0},

b ∈ R (|c| > 1). However, for
∣∣∣ b

a

∣∣∣ and |c| < 1, we have

∞

∑
n=0

(−b/a)n

(c : c)n
=

1
(−b/a : c)∞

, (16)

where the identity [16]:

∞

∑
n=0

xn

(c : c)n
=

1
(x : c)∞

, |x| < 1, |c| < 1, (17)
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is applied for x = −b/a. Moreover, it follows from Equation (15), for |c| > 1, that the series
in (13) is convergent ∀ a ∈ R− {0} and ∀ b ∈ R, which completes the proof. �

Theorem 2. For all t > 0, the series

∞

∑
n=0

βneacnt =
∞

∑
n=0

(−b/a)n

(c : c)n
eacnt, (18)

converges for |c| < 1 provided that
∣∣∣ b

a

∣∣∣ < 1. If c > 1, the series in (18) is convergent ∀ a < 0 and
∀ b ∈ R.

Proof. Assuming that
σn(t) = βneacnt, t > 0, (19)

and applying the ratio test yields

lim
n→∞

∣∣∣∣σn+1(t)
σn(t)

∣∣∣∣ = lim
n→∞

∣∣∣∣ βn+1

βn
eacn(c−1)

∣∣∣∣ = lim
n→∞

∣∣∣∣ βn+1

βn

∣∣∣∣. lim
n→∞

eacn(c−1). (20)

The two limits in the last equation are

lim
n→∞

∣∣∣∣ βn+1

βn

∣∣∣∣ =
{∣∣∣ b

a

∣∣∣ if |c| < 1,

0 if |c| > 1.
, lim

n→∞
eacn(c−1) =

{
1 if |c| < 1,
L if |c| > 1,

(21)

where L is either zero, ∞, or undetermined according to the signs of a and cn in the domains
c > 1 and c < −1 (i.e., |c| > 1), as detailed below.

L =

⎧⎪⎨⎪⎩
0 if c > 1, a < 0,
∞ if c > 1, a > 0,
undetermined if c < −1, a ∈ R− {0}.

(22)

However, by combining Equations (20)–(22), we get

lim
n→∞

∣∣∣∣σn+1(t)
σn(t)

∣∣∣∣ =
{∣∣∣ b

a

∣∣∣ if |c| < 1,

0 if c > 1, a < 0,
(23)

which completes the proof. �

Lemma 1. For t > 0, the solution given by Equation (12) converges for |c| < 1 provided that∣∣∣ b
a

∣∣∣ < 1 and this yields

y(t) = λ(−b/a : c)∞

∞

∑
n=0

(−b/a)neacnt

(c : c)n
. (24)

Moreover, the solution in (12) converges for c > 1 ∀ a < 0, ∀ b ∈ R such that the sum S 	→ 0.

Proof. The proof follows immediately from Theorems 1 and 2. Moreover, for |c| < 1 and∣∣∣ b
a

∣∣∣ < 1, we have from Theorem 1 that

S =
∞

∑
n=0

βn =
∞

∑
n=0

(−b/a)n

(c : c)n
=

1
(−b/a : c)∞

. (25)

Substituting (25) into (12) gives (24), which completes the proof. �
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Remark 1. The above analysis gives the solution and convergence of the PDDE in (1) for the cases
|c| < 1 and |c| > 1. However, such an analysis does not include the solution at c = ±1. This is
because the coefficients βn = (−b/a)n

(c:c)n
are not defined at such values, where (1 : 1)n = 0 for all

n ≥ 1 and (−1 : −1)n = 0 for all n > 1; hence, these cases lead to βn = ±∞. As mentioned
in the introduction, the exact solution is available when c = 1 and given by y(t) = λe(a+b)t,
but the solution at the special case c = −1 is to be determined through a separate analysis in the
next section.

4. Exact Solution at c = −1

In this section, we aim to derive the exact solution of the PDDE in (1) when c = −1. In
this case, Equation (1) becomes

y′(t) = ay(t) + by(−t), y(0) = λ. (26)

In view of the assumption in (3), the solution takes the form:

y(t) =
∞

∑
n=0

hneγ(−1)nt = (h0 + h2 + h4 + . . .)eγt + (h1 + h3 + h5 + . . .)e−γt = μeγt + νe−γt, (27)

where μ, ν, and γ are constants to be determined. Applying the initial condition y(0) = λ
leads to μ + ν = λ. Substituting (27) into (26) yields

μγeγt − νγe−γt = (μa + νb)eγt + (νa + μb)γe−γt. (28)

Comparing both sides, we obtain the algebraic system:

(γ− a)μ = νb, (γ + a)ν = −μb, (29)

which gives γ as
γ = ±

√
a2 − b2. (30)

Note that γ is real if a > b. Hence, we obtain μ and ν in terms of γ as μ = λb
γ−a+b and

ν = λ(γ−a)
γ−a+b , thus

y(t) =
λ

γ− a + b
(
beγt + (γ− a)e−γt), (31)

or equivalently

y(t) = λ

[
cosh(γt)−

(
γ− a− b
γ− a + b

)
sinh(γt)

]
. (32)

Although the form (32) is simple, it can be further simplified as follows. The magnitude(
γ−a−b
γ−a+b

)
can be calculated explicitly in terms of a and b as

γ− a− b
γ− a + b

=
γ− (a + b)
γ− (a− b)

× γ + (a− b)
γ + (a− b)

= − γ

a− b
= ∓

√
a + b
a− b

. (33)

Therefore, Equation (32) becomes

y(t) = λ

[
cosh(±

√
a2 − b2t)±

√
a + b
a− b

sinh(±
√

a2 − b2t)

]
, (34)

which finally gives

y(t) = λ

[
cosh(

√
a2 − b2t) +

√
a + b
a− b

sinh(
√

a2 − b2t)

]
, a > b. (35)
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This solution transforms to the following trigonometric functions if b > a:

y(t) = λ

[
cos(

√
b2 − a2t) +

√
b + a
b− a

sin(
√

b2 − a2t)

]
. (36)

It is clear from (36) that the solution is periodic with a period 2π√
b2−a2 , which is in full

agreement with the obtained results in Ref. [17].

5. Results

In this section, numerical results are obtained about the behaviours/properties and
convergence of the obtained solutions in previous sections. In addition, the convergence
introduced by previous theorems and lemma is numerically confirmed here. Three different
cases are analysed which depend on the values/intervals of c, a, and b.

5.1. c ∈ (−1, 1),
∣∣∣ b

a

∣∣∣ < 1, a ∈ R−{0}
In this case, it was indicated and proved by Lemma 1 that the solution of Equation (1)

takes the form:

y(t) = λ(−b/a : c)∞

∞

∑
n=0

(−b/a)neacnt

(c : c)n
. (37)

This closed-form solution can be approximated by taking m-terms, m ≥ 1 from the
right-hand side. Consequently, the approximate solution φm(t) is

φm(t) = λ(−b/a : c)∞

m−1

∑
n=0

(−b/a)neacnt

(c : c)n
, m ≥ 1. (38)

In Figures 1–4, the approximations φ3(t), φ5(t), φ7(t), and φ9(t) are plotted versus
t at λ = 1 and different four sets of values of c, a, and b. In these figures, the values of
the inputs c, a, and b were chosen so that the convergence conditions are satisfied, i.e.,
c ∈ (−1, 1),

∣∣∣ b
a

∣∣∣ < 1. It is observed from these figures that the approximate solutions φ3(t),
φ5(t), φ7(t), and φ9(t) converge rapidly to a certain function which validates Lemma 1 for
the convergence of solution (38).

� �

Φ � �

Φ � �

Φ � �

Φ � �

Figure 1. Plots of the approximate solutions φm(t), m = 3, 5, 7, 9 in Equation (38) vs. t at λ = 1, c = 1
2 ,

b = 1, and a = −2.
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� �

Φ � �

Φ � �

Φ � �

Φ � �

Figure 2. Plots of the approximate solutions φm(t), m = 3, 5, 7, 9 in Equation (38) vs. t at λ = 1, c = 1
2 ,

b = 1, and a = 2.
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Φ � �

Φ � �

Φ � �

Figure 3. Plots of the approximate solutions φm(t), m = 3, 5, 7, 9 in Equation (38) vs. t at λ = 1,
c = − 1

2 , b = 1, and a = −2.

� �

Φ � �

Φ � �

Φ � �

Φ � �

Figure 4. Plots of the approximate solutions φm(t), m = 3, 5, 7, 9 in Equation (38) vs. t at λ = 1,
c = − 1

2 , b = 1, and a = 2.

5.2. c > 1, a < 0, b ∈ R

The solution provided by Equation (12) is valid for c > 1 and a < 0, which can be
approximated by the following m-term approximate solution φm(t):
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φm(t) =
λ

Sm

m−1

∑
n=0

βneacnt, Sm =
m−1

∑
n=0

βn =
m−1

∑
n=0

(−b/a)neacnt

(c : c)n
, m ≥ 1. (39)

The second part of Lemma 1 teaches us that the sequence of approximate solutions
{φm(t)} converges for all c > 1 such that a < 0 and Sm 	= 0. For a validation, different sets
of approximations are depicted in Figures 5–8 at various values of the inputs a < 0, b, and
c > 1. Rapid convergence is detected from these figures, especially when c is increased as
can be shown in Figure 8 (c = 5). In this case, a few terms of the series solution in (39) is
sufficient to achieve the convergence, where the φ1(t), φ2(t), φ3(t) and φ4(t) in Figure 8 are
nearly identical.

5.3. c = −1, a, b ∈ R

Really, this is an interesting case because it allows us to obtain the exact solutions
given by Equation (35) and Equation (36) for a > b and b > a, respectively. Two types of
solutions are obtained for this case, the first is given in terms of hyperbolic functions when
a > b, while the second is expressed is terms of trigonometric functions if b > a. The first
solution is plotted in Figure 9 and the hyperbolic curves of the solution in (35) are observed
when a > b. Moreover, the second solution is plotted in Figure 10 and the periodic curves
of the solution in (36) can be seen when b > a.

� �

Φ � �

Φ � �

Φ � �

Φ � �

Figure 5. Plots of the approximate solutions φm(t), m = 3, 4, 5, 6 in Equation (39) vs. t at λ = 1, c = 3
2 ,

b = 1, and a = −2.

� �

Φ � �

Φ � �

Φ � �

Φ � �

Figure 6. Plots of the approximate solutions φm(t), m = 5, 6, 7, 8 in Equation (39) vs. t at λ = 1, c = 3
2 ,

b = 3, and a = −3.
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� �
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Φ � �
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Figure 7. Plots of the approximate solutions φm(t), m = 3, 4, 5, 6 in Equation (39) vs. t at λ = 1, c = 5
2 ,

b = 3, and a = −2.
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Φ � �

Figure 8. Plots of the approximate solutions φm(t), m = 1, 2, 3, 4 in Equation (39) vs. t at λ = 1, c = 5,
b = −1, and a = −5.
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Figure 9. Plots of the exact solution in Equation (35) vs. t at different values of λ when a = 1 and
b = 0.
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Figure 10. Plots of the exact solution in Equation (36) vs. t at different values of λ when a = 0 and
b = 1.

5.4. a = −1, b = c = 1
q , q > 1

Let a = −1 and b = c = 1
q (q > 1), then Equation (1) becomes

y′(t) = −y(t) +
1
q

y
(

t
q

)
, y(0) = λ, (40)

which is well-known as the Ambartsumian equation [12]. The following closed-form
solution for Equation (40) was obtained by Alharbi and Ebaid [12]:

y(t) = λ

⎛⎜⎝ e−t + ∑∞
n=1

αne−αnt

∏n
k=1(1−αk)

1 + ∑∞
n=1

αn

∏n
k=1(1−αk)

⎞⎟⎠, α =
1
q

. (41)

In fact, this solution can be directly determined by substituting a = −1 and b = c = 1
q

into Equation (8). Hence, the solution obtained in Ref. [12] is a special case of the present results.

6. Conclusions

The analytic solution for the PDDE model y′(t) = ay(t) + by(ct), y(0) = λ was
obtained in this paper. In the literature [1], the solution was obtained in the form of a
standard power series when λ = 1. However, the present research determined the solution
in a closed series form in terms of exponential functions. The convergence of the obtained
series was theoretically proved and then confirmed through numerical calculations and
plots. It was demonstrated that the solution converged for c ∈ (−1, 1) such that

∣∣∣ b
a

∣∣∣ < 1 and
also converged for c > 1 when a < 0. Furthermore, the exact solution was obtained when
c = −1. This solution was expressed in terms of trigonometric functions and was periodic
if b > a. It was also shown that this solution was periodic with periodicity 2π√

b2−a2 , which
was in full agreement with the corresponding results in Ref. [17]. Moreover, the solution
was determined in terms of hyperbolic functions when b < a. Finally, numerical results
were conducted to describe the behaviours/properties and convergence of the obtained
solutions. The present analysis can be further extended to include other mathematical
models [18–20].
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