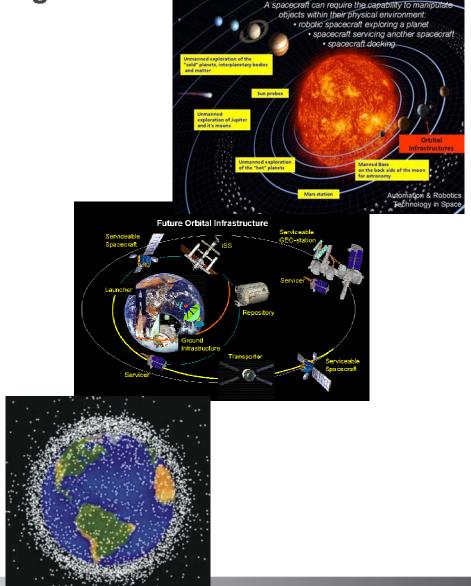


Automation and Robotics within the German Space Program

Bernd Sommer,
General Technologies and Robotics
German Aerospace Center, DLR, Space Management

ASTRA 2011

11th Symposium on Advanced Space Technologies in Robotics and Automation Noordwijk, The Netherlands


Services in Space The German Space Robotics Program

- Motivation: Why did DLR declare Space Robotics a program of special emphasis?
- Status: What did DLR achieve so far?
- Goals: What does DLR want to achieve for Germany and the national Space Program by focusing on Space Robotics
- Measures to achieve the goals

Automation & Robotics combines key technologies for manned and unmanned space flight

Automation & Robotics

- Makes distant worlds directly accessible for scientific exploration and exploitation
- → Helps to built the future by breaking new ground for space flight
- Helps to secure save access to space and to mitigate threats to public and space assets

Services in Space The German Space Robotics Program

- Motivation: Why did DLR declare Space Robotics a program of special emphasis?
- Status: What did DLR achieve so far?
- Goals: What does DLR want to achieve for Germany and the national Space Program by focusing on Space Robotics
- Measures to achieve the goals

Technological Heritage

- Basic Mechatronics (arms, hands, tools)
- Mobility concepts and vehicles
- Remote control and autonomy concepts
- Tools for ground control
- Test facilities

 Business segment evaluation

Manipulator on ISS

GETEX

1999

On Orbit Servicing & Exploration

DEOS DEOS 2010,ФВ1

2007,Ф0,А

CX-OLEV TECSAS 2006

ROKVISS

2005

2004

ETS VII Mission

ESS / ESST

1997

MARCO 1997

ROTEX 1993

> **D2 Mission Deutsches Zentrum**

für Luft- und Raumfahrt e.V.

VITAL

Services in Space The German Space Robotics Program

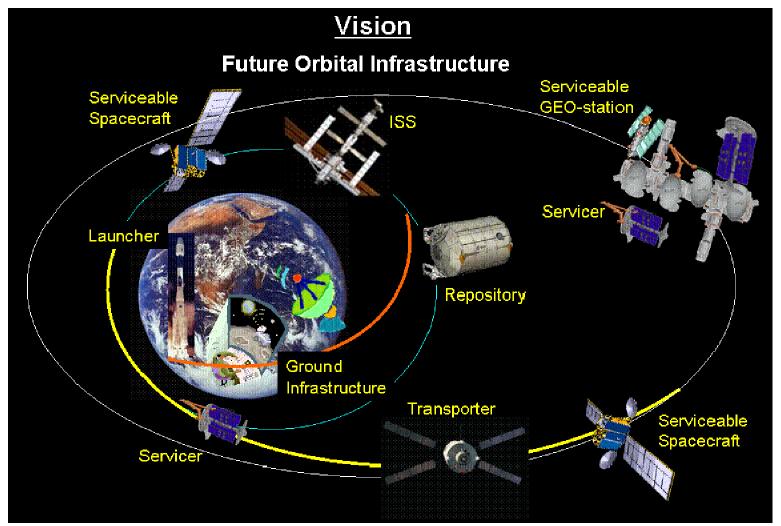
- Motivation: Why did DLR declare Space Robotics a program of special emphasis?
- Status: What did DLR achieve so far?
- → Goals: What does DLR want to achieve for Germany and the national Space Program by focusing on Space Robotics
- Measures to achieve the goals

Federal Ministry of Economics and Technology (FMET) strongly promotes Space-Robotics within its technology program launched in order to take provision for Germanys future economy

In recognition of the

- **フ Potential**
- → Special skills of German companies and academia in Space-Robotics
- Multitude of technology transfer opportunities from and to terrestrial applications

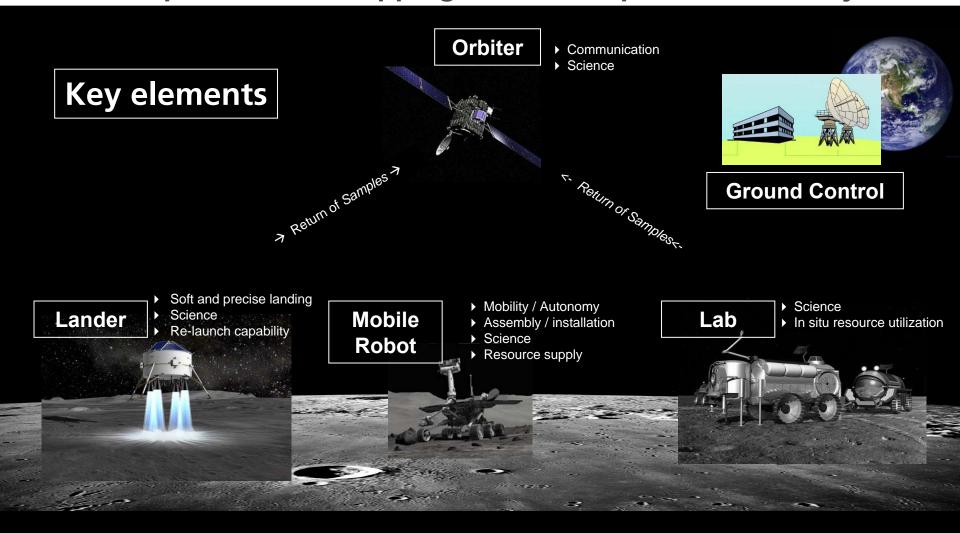
FMET declared Space-Robotics to be a core area within the German Space Program



High level goals

- Shape and sharpen Germany's profile as a "High-tech Country"
- Achieve and maintain a technological key position in future cooperative international space projects through:
 - ▼ Introduction of <u>new unmanned orbital infrastructure</u> concepts
 - Sound contributions to the *robotic exploration* of the solar system
- Contribute to set up international rules an regulations to enforce responsible and considerate treatment of space assets
- Boost economy by applying technological solutions for space to terrestrial applications

Programmatic goals (1) Operation of serviceable satellites and stations

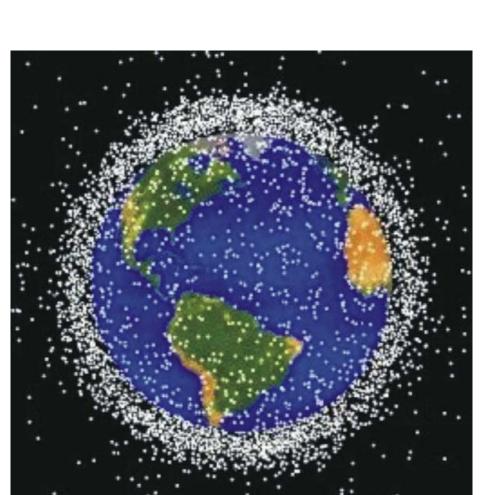


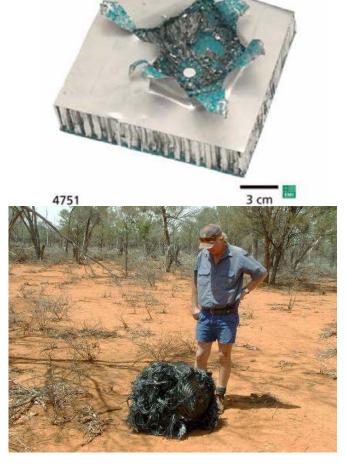
High level goals

- Shape and sharpen Germany's profile as a "High-tech Country"
- Achieve and maintain a technological key position in future cooperative international space projects through:
 - → Introduction of new unmanned orbital infrastructure concepts
 - → Sound contributions to the <u>robotic exploration</u> of the solar system
- Contribute to set up international rules an regulations to enforce responsible and considerate treatment of space assets
- Boost economy by applying technological solutions for space to terrestrial applications

Programmatic goals (2)

Moon exploration as stepping stone to explore the solar system


High level goals


- Shape and sharpen Germany's profile as a "High-tech Country"
- Achieve and maintain a technological key position in future cooperative international space projects through:
 - → Introduction of new unmanned orbital infrastructure concepts
 - → Sound contributions to the robotic exploration of the solar system
- Contribute to set up <u>international rules an regulations to enforce</u> <u>responsible and considerate</u> treatment of space assets
- Boost economy by applying technological solutions for space to terrestrial applications

Programmatic goals (3)

Disposal of space debris – safety for human population on earth and space assets on orbit



High level goals

- Shape and sharpen Germany's profile as a "High-tech Country"
- Achieve and maintain a technological key position in future cooperative international space projects through:
 - → Introduction of new unmanned orbital infrastructure concepts
 - → Sound contributions to the robotic exploration of the solar system
- Contribute to set up international rules an regulations to enforce responsible and considerate treatment of space assets
- <u>Boost economy</u> by applying technological solutions for space to terrestrial applications

Programmatic goals (4) Transfer of Technology from and to Space-Robotics

- **▼** In unknown Environment
 - Locating and connecting
 - **→** Flight control und navigation
 - Detection and monitoring
- → For Servicing
 - Assembling/Disassembling of equipment and stations
 - Supply, operation & maintenance of equipment, platforms and stations
 - Transport of equipment and goods
- → For Automation
 - Local/artificial intelligence
 - **→** Autonomous navigation
 - Autonomous activities/workflows

In space \rightarrow robustness-reliability-accuracy \leftarrow On earth

Services in Space The German Space Robotics Program

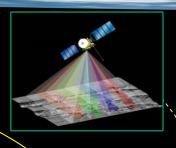
- Motivation: Why did DLR declare Space Robotics a program of special emphasis?
- Status: What did we achieve so far?
- Goals: What do we want to achieve for the national Space Program by focusing on Space Robotics
- Measures to achieve the goals

National Conference on Space-Robotics in May 2009 marked the starting point for the extended robotics

program

ERSTE NATIONALE KONFERENZ ZUR RAUMFAHRT-ROBOTIK

> Raumfahrt-Robotik – Motor modernster Technologie-Entwicklungen


FMET assigned an additional budget to the program!

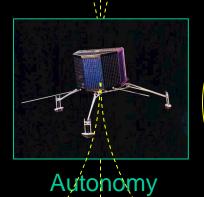
Exploration

Orbiter

Orbital infrastructure

Docking & capturing

Remote and on-site sensing


Mapping

In-situ – scientific analyses

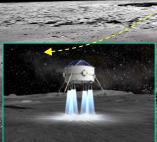
In-situ - resource utilization

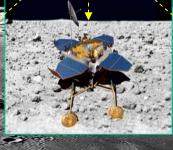
Sample return

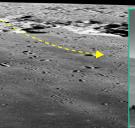
Operational stations

Soft and precise landing

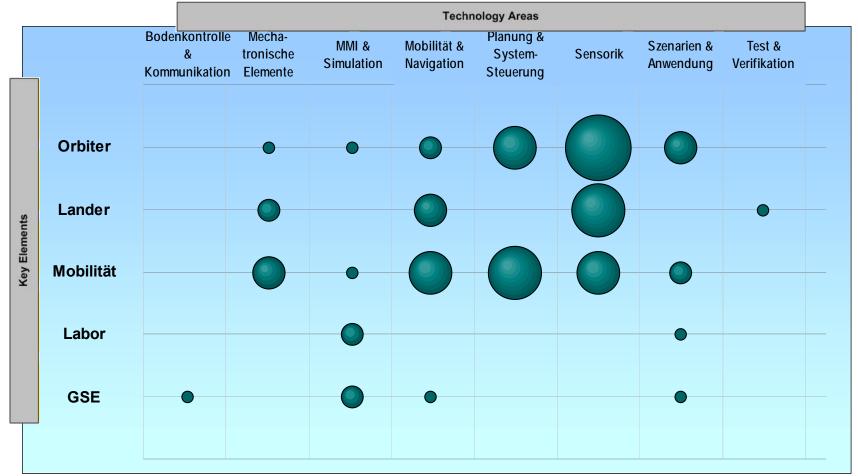
Assembly maintenance, repair


Guidance, Navigation & Control


Rendezvous & Docking

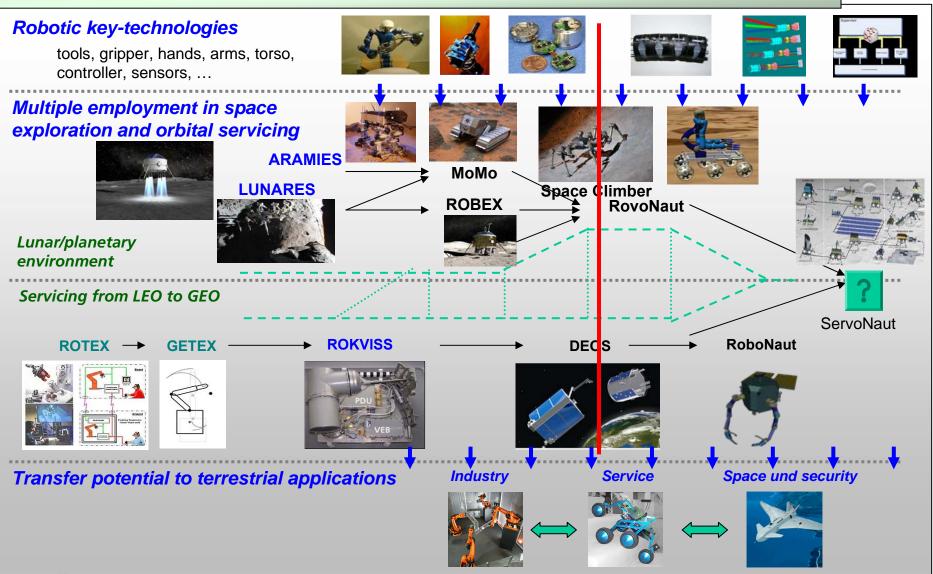

Self localization

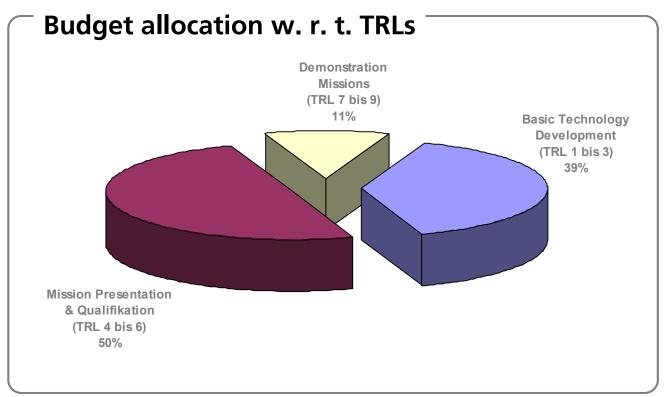
Mobility

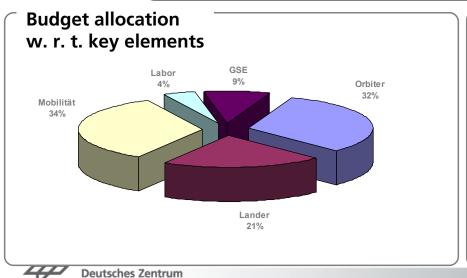


One underlying technological basis!

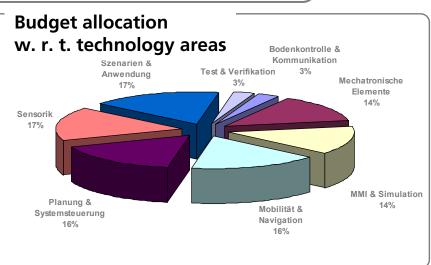
Assessment of technological sectors with respect to their application potential for multiple mission elements


Selection criteria for activities and projects:


- Key technology with potential for further development?
- Multiple employment in space exploration and orbital servicing?
- Transfer potential to terrestrial applications?



Assessment of technological sectors with interdisciplinary application


Roadmap of activities, topics and projects to be pursued

DLR für Luft- und Raumfahrt e.V.

Automation & Robotics – Current projects

DEOS Deutsche Orbitale Servicing Mission

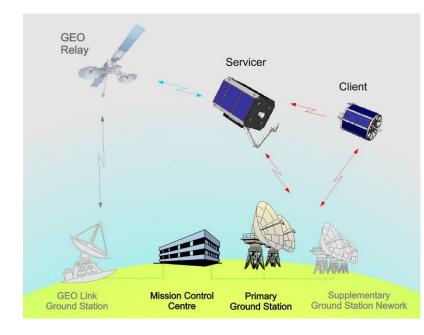
Mission statement:

- Autonomous rendezvous
- Capture of a non-cooperative satellite
- Demonstration of satellite servicing
- Controlled disposal of the satellite

Status:

Phase 0: Concept evaluation by DLR


04/07-07/07


Phase A: Feasibility Study

07/08-02/09

Phase B: Preliminary Design

currently running

More detailed information in separate presentation!

Automation and Robotics – Current projects

Space Climber

Biologically inspired, energy-efficient, sixlegged, semi-autonomous, free climbing robot for steep slopes and rough terrain

- Provide unique terrain adaptive robot mobility through biologically inspired motion patterns
- "Passive dynamic" through intelligent morphology (motion patterns arise from body shape and structural elements)
 - → High energy efficiency
- Distributed control of the robot

Term of Contract: 01.07.2007 – 30.11.2010

Status: : Assembly and integration completed

Test phase completed

System demonstration this week here at ESTEC during ASTRA on Thursday 14th of April 2011!!!

Automation and Robotics – Current projects

Mobile Payload Element, MPE

Potential German contribution to ESA's

NEXT Lunar Lander Mission

 Mobility range > 100 m from lander module (LM) position

- Collection and transfer of probes to scientific instruments on the LM
- Cooperation of MPE and LM for communication, navigation, probe handling and re-charging purposes
- In-situ scientific experiments
- Passive survival of the lunar night, no RHU or RTG
- Lifetime: 6 9 month

Artist's view of MPE

Term of Contract: April 2011 – January 2012

Status: : Award of contract effected for combined phase 0/A

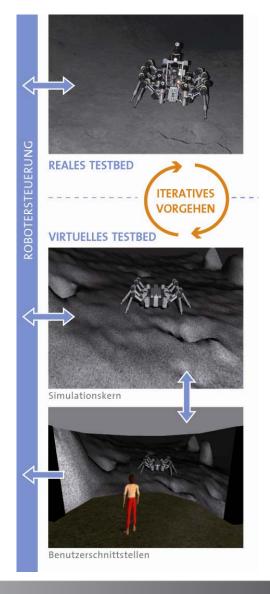
Due to discrepancy between LM requirements and goals

Phase B/C/D-decisions to be taken after successful

completion of Ph. 0/A

Automation and Robotics – Current Projects

Virtual Crater


- Development of a virtual test environment for programming and optimization of robotic systems in a realistically simulated lunar crater scene.
- Interconnection of the virtual environment with an existing laboratory test bed.
- Adjustment of the two test beds in order to achieve convergence.

Term of contract: 01.05.2009 – 30.04.2012

Status: Analysis of requirements

completed, design phase and

bread boarding running

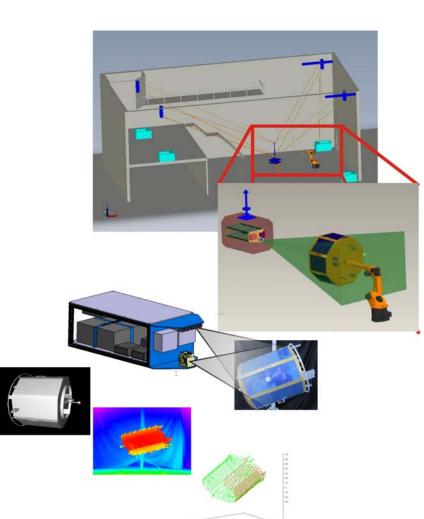
INVERITAS

Innovative technologies for relative navigation of mobile autonomous systems

Integrated sensor head for:

- relative navigation to perform on-orbit rendezvous, docking and capture
- SLAM and navigation on planetary surfaces
- Control of the touch-down trajectory of a lander

Set-up of a 3D-laboratory test bed in order to achieve TRL 5 - 6


Term of contract: 01.05.2009 – 31.01.2012

Status: Analysis of requirements

completed, preliminary des phase and bread boarding

running

Automation and Robotics - Current projects

KARS

Controller for autonomous spacecrafts

- Flexible high level system control software suitable for various mobile platforms in robotic missions
- Adjustable autonomy levels
- Data base driven hierarchical control and command structure
- Structuring of the whole platform system into subsystems
- Subsystems coordination, scheduling, messaging, data distribution, inter process communication etc. through a central supervisor

Term of Contract: 01.01.2011 – 31.07.2013

Status: : MARCO V.1.0 to control ROKVISS

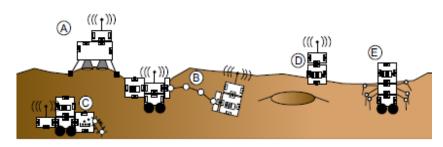
Award of contract effected,

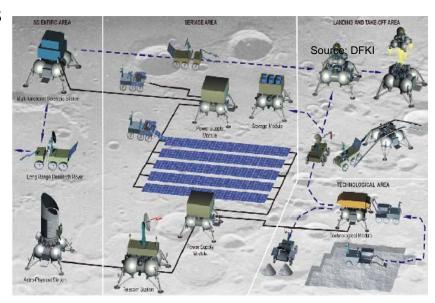
design phase running

Automation and Robotics – Current Projects

RIMRES

Reconfigurable integrated multiple-robot exploration system


- Assembly of robotic agents with varying properties based on standardized components for mobility, manipulation, power supply, communications etc.
- Highly modular system concept Compilation of a robot team out of robotic agents based on mission objectives and requirements
- Inherent redundancy through modularity


Term of contract: 01.09.2009 – 31.08.2012

Status: Analysis of requirements

completed, design phase and

bread boarding running

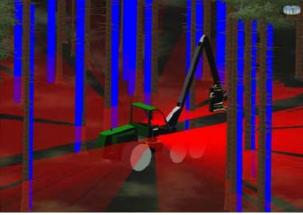
Source: Roskosmos - "Lunar Polygon"

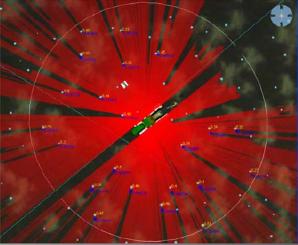
Automation and Robotics – Current projects

SELOC

Self-localization of robots on planetary surfaces

- Two major components:
 - High resolution laser scanner for detection and measuring of landmarks in the vicinity of the robot
 - Advanced localization algorithms based terrestrial applications in forestry
- Position determination through comparison of the detected landmarks with low resolution maps of the area, 3d resolution 30 cm
- Set-up of a prototypic self localization unit
- Test and verification in relevant environment, goal TRL 5


Term of Contract: 01.01.2010 - 31.03.2013

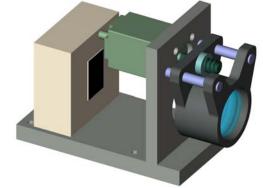

Status: Derivation of requirements

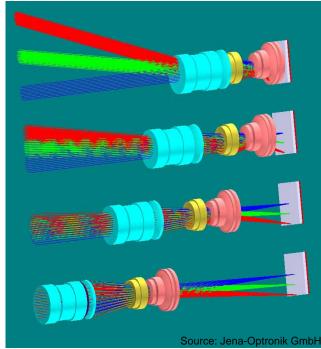
completed, H/W and S/W design running, bread boarding running

Automation and Robotics – Current Projects

ZoomOb

Feasibility study of a zoom lens for rendezvous sensors in space


- Image-guided method to measure relative position, orientation and motion between two mission elements like servicer and client satellite, or rover and target object
- Stereoscopic vision possible using twin zoom lenses
- Determination of distance irrespective of target rotation or missing markers/ reflectors, e.g. applicable to non-cooperative satellites or space debris


Term of contract: 01.11.2009 - 28.02.2011

Status: Feasibility study and analysis

of requirements completed, preliminary design phase and

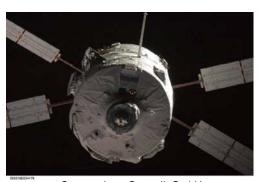
bread boarding running

Automation and Robotics - Current Projects

LiQuaRD

3D-lidar pre-qualification for rendezvous and docking with non-cooperative satellites

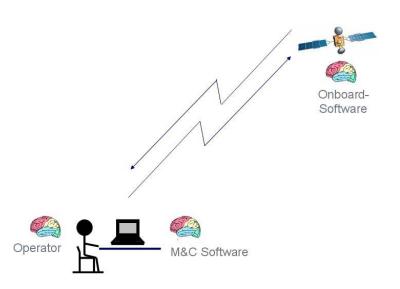
- Further development of the existing lidars from ATV and HTV for the approach of non-cooperative targets:
 - Reduction of size, power consumption, mass, image integration time, data transfer rate
 - Increase of resolution and sampling rate
- Focus on optical scanner unit and suitable fiber laser
- Qualification tests of main components in relevant environment, achieve TRL 5


Term of Contract: 01.08.2010 – 31.01.2012

Status: : Design phase and bread

boarding running

Source: Jena-Optronik GmbH



Automation and Robotics – Current projects

MiCCRo

Mission Control Concepts for interactive Robotic Platforms

- Concept and design of a ground control station for highly mobile robotic platforms on orbits and on planetary surfaces
- Data handling, e. g. storage, update distribution, communication
- Evaluation and implementation of adjustable autonomy levels
- Design of suitable MMI's for monitoring, control, (re-)planning, reprogramming, troubleshooting, etc.

Term of Contract: 01.10.2010 – 31.07.2012

Status: : Proposal evaluation completed

Award of contract effected

Automation and Robotics – Current Projects

iStruct

Intelligent structural elements as building blocks for mobile robots

- Development and construction of biologically inspired standardized structural elements such as tractionsupporting structures or flexible body structures
- Integration of sensors, data preprocessing, communication-, data-, power-I/F etc.
- Set-up of an exemplary application by integration and test of basic building blocks and demonstration of intelligent structures

Term of Contract: 15.05.2010 - 15.08.2013

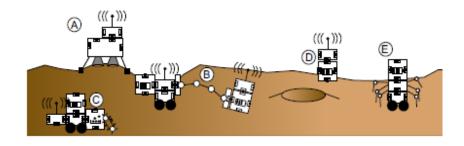
Status: : Evaluation of concept, derivation

of requirements completed,

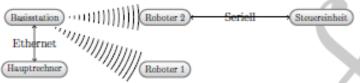
design phase running

Automation and Robotics - Current Projects

CoHoN


Communication in Heterogeneous Networks

- Communication Library for a distributed software architecture on embedded systems (multi robot communication)
- Application oriented, event driven communications paradigm as basis for transparent distribution of processor load
- Assessment of system status for selection of communication channel
- Data re-routing in case of failure
- Parallel operation of different communications channels
- Simple and unified interface


Term of contract: 01.04.2010 - 31.03.2013

Status: Design phase and bread


boarding running

Source: DFKI

(a) Direkte Nachhrichtenübermittlung von Hauptrechner zu Steuereinheit von Roboter ?

(b) Indirekte Nachhrichtenübermittlung von Hauptrechner zu Steuereinheit von Roboter 2 wenn dieser nicht in Reichweite ist

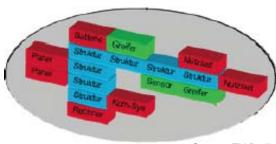
Abbildung 4: Beispiel für eine sich automatisch anpassende Kommunikation in Funknetzen

Automation and Robotics - Current Projects

iBOSS

Intelligent Building Blocks for On-Orbit Satellite Servicing

- Development of building blocks for highly flexible and modular S/C design increasing maintainability with focus OOS applications
- Combination of different building blocks or reconfiguration of existing ones result in new building block chains (S/C) which can be adapted depending on mission objectives
- Building blocks consist of "intelligent" interfaces in order to identify new configurations


Term of contract: 01.07.2010 - 30.06.2012

Status: Analysis of requirements,

system analysis, derivation of

theoretical basics

Source: TU Berlin

Automation and Robotics – Current Projects

IMMI

Intelligent Man - Machine Interface

- Advanced brain-reading
- Development of key technologies
- Demonstration of key features in laboratory environment

Term of Contract: 01.05.2009 – 31.01.2012

Status: : Evaluation of concept, derivation

of theoretical basics,

prototyping

Automation and Robotics – current projects

MUSE

MUlti-core architecture for SEnsor based position and orientation tracking in space

- Utilization of a multi-core processor for complex tracking sensor data processing
- Evaluation of the computing performance
- Evaluation and selection of methods for parallelization of algorithms
- Design, implementation and test of a prototypic tracking sensor data processing architecture

Sensors/Actors

Sensors/Actors

Notwork

Interface

Int

MUSE NODE(HPPN)

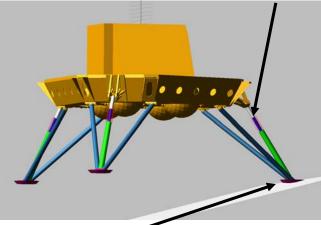
Term of Contract: 01.07.2010 – 31.06.2012

Status: Evaluation processes running

Automation and Robotics – current projects

Triple A

Autonomous Anti-tilt Actuator for Cushioning of touch down, erection and alignment of a planetary lander


- Evaluation of two shock damping methods:
 - Deformable materials in combination with robotic actuators
 - Fully actuated system
- Set-up of a landing trajectory and touch down simulator
- Bread boarding, test of dampers and actuators and sensors

Term of Contract: 01.10.2010 - 31.05.2012

Status: Proposal evaluation completed

Award of contract effected

Primary strut shock absorber

Contact elements based on stiffness, damping and friction

Source: First ASTRIUM internal EDLM Study

Automation and Robotics – Current Projects

VIBANASS

<u>Vision-Based Navigation Sensor</u> <u>System</u>

- Multi-purpose optical camera for orbital RvD, landing, surface navigation etc.
- Development and building of a qualification model
- Set-up of a camera data processing unit to create input signals for GNC algorithms
- Test and verification in relevant laboratory environment, goal TRL 5

Facility Monitoring and Control

Robot Control

System

VIBANASS Performance
Analysis

Vision-based Trajectory Data

Term of Contract: 01.01.2010 - 30.06.2012

Status: : Evaluation of concept, derivation

of requirements completed,

design phase running

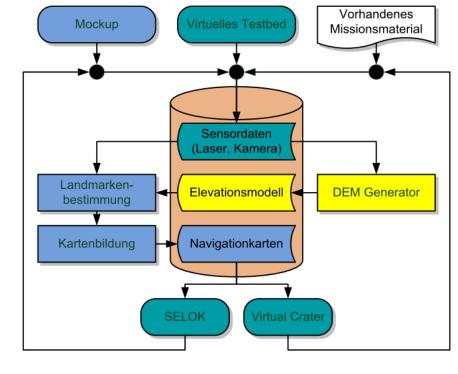
VIBANASS in test lab

Source: Kayser-Threde GmbH

Automation and Robotics – current projects

Fast Maps

Extremely fast generation of 3D maps for planetary landing and operations on the surface


- Investigation and selection of appropriate methods to rapidly create digital elevation models and maps of planetary surfaces
- Localization of vehicles via extraction of suitable landmarks from models and maps
- Planetary mockup & virtual test bed for verification of the derived methods

Term of Contract: 01.07.2010 - 31.12.2012

Status: : Derivation of requirements and

investigation of methods

running

