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ARTICLE INFO ABSTRACT

Keywords: Australia harbours a rich and highly endemic orchid flora, with c. 90% of species endemic to the country. Despite
Australia that, the biogeographic history of Australasian orchid lineages is only poorly understood. Here we examined
Diurideae

evolutionary relationships and the spatio-temporal evolution of the sun orchids (Thelymitra, 119 species), which
display disjunct distribution patterns frequently found in Australasian orchid lineages. Phylogenetic analyses
were conducted based on one nuclear (ITS) and three plastid markers (matK, psbJ-petA, ycf1) using Maximum
Likelihood and Bayesian inference. Divergence time estimations were carried out with a relaxed molecular clock
in a Bayesian framework. Ancestral ranges were estimated using the dispersal-extinction-cladogenesis model and
an area coding based on major disjunctions. The phylogenetic analyses clarified intergeneric relationships within
Thelymitrinae, with Epiblema being sister to Thelymitra plus Calochilus, both of which were well-supported.
Within Thelymitra, eight major and several minor clades were retrieved in the nuclear and plastid phylogenetic
reconstructions. Five major clades corresponded to species complexes previously recognized based on mor-
phological characters, whereas other previously recognized species groups were found to be paraphyletic.
Conflicting signals between the nuclear and plastid phylogenetic reconstructions provided support for hy-
bridization and plastid capture events both in the deeper evolutionary history of the genus and more recently.
Divergence time estimation placed the origin of Thelymitra in the late Miocene (c. 10.8 Ma) and the origin of the
majority of the main clades within Thelymitra during the late Pliocene and early Pleistocene, with the majority of
extant species arising during the Pleistocene. Ancestral range reconstruction revealed that the early diversifi-
cation of the genus in the late Miocene and Pliocene took place predominantly in southwest Australia, where
most species with highly restricted distributional ranges occur. Several long-distance dispersal events eastwards
across the Nullarbor Plain were inferred, recurrently resulting in lineage divergence within the genus. The
predominant eastwards direction of long-distance dispersal events in Thelymitra highlights the importance of the
prevailing westerly winds in the Southern Hemisphere for the present-day distribution of the genus, giving rise
to the Thelymitra floras of Tasmania, New Zealand and New Caledonia, which were inferred to be of com-
paratively recent origin.

Historical biogeography
Hybridisation
Molecular dating
Molecular phylogeny
Thelymitrinae

1. Introduction

Australia harbours a rich and highly endemic orchid flora with over
1300 species, around 90% of which occur nowhere else (Govaerts et al.,
2016). Several orchid lineages underwent extensive diversification on
the continent, in particular in the terrestrial tribe Diurideae (Orchi-
doideae), which comprises the majority of Australia’s orchid species
(Clements, 1989; Govaerts et al.,, 2016). Diurideae are highly

morphologically diverse and a characteristic element of the Aus-
tralasian orchid flora, displaying their greatest diversity in Australia,
and extending to New Zealand, New Guinea, New Caledonia, tropical
Asia, as well as the Pacific region (Pridgeon et al., 2001a,b). A family-
level phylogenomic study on the historical biogeography of Orchida-
ceae identified Australia as the second most important source area for
migration in the evolutionary history of orchids (Givnish et al., 2016).
However, at generic level the spatio-temporal evolution of Australasian
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orchids is still poorly understood.

The genus Thelymitra (subtribe Thelymitrinae) is one of the five
largest genera in Diurideae (Chase et al., 2015) and comprises 119
species of tuberous geophytic herbs (Govaerts et al., 2016; Bates, 2010;
Jeanes, 2013), many of which are considered rare or listed as threa-
tened (46 and 36 spp., respectively). Their flowers have a radial sym-
metric perianth, an unusual feature in orchids, and possess a char-
acteristic hood-like structure (mitra), formed by the fused column
wings (Pridgeon et al., 2001a,b). The nectarless flowers are food-de-
ceptive and attract mainly bees for pollination (Edens-Meier et al.,
2014). The flowers have a tendency to open in response to daylight,
warm temperatures and humidity, hence their common name Sun
Orchids. However, several species are autogamous and barely open
their flowers (Pridgeon et al., 2001a,b). Like in all orchids, Thelymitra
seeds are minute and rely on wind-dispersal.

Thelymitra exhibits biogeographical patterns frequently found in
Australasian orchid lineages. The majority of species occur in southeast
Australia, whereas their centre of endemism lies in the global biodi-
versity hotspot of southwest Australia (Myers et al., 2000). The genus
exhibits several disjunct distributions in Australia, i.e., between
southwest Australia, eastern Australia, and Tasmania (AVH, 2016). The
distribution of Thelymitra extends to New Zealand (22 ssp.), New Ca-
ledonia (2 ssp.), New Guinea (2 ssp.), East Timor (1 ssp.), Indonesia (1
ssp.), and the Philippines (1 ssp.) (AVH, 2016; Govaerts et al., 2016).
The genus occurs in a wide range of mesic habitats with seasonal cli-
mates, from coastal scrub to heathlands and swamps, sclerophyll forests
and woodlands to subalpine meadows and alpine herb fields (Pridgeon
et al., 2001a,b).

The complex patterns of morphological variation in Thelymitra, in
particular of floral traits, and the frequent occurrence of natural hybrids
have greatly hampered our understanding of evolutionary relationships
within the genus. Previous infrageneric classifications were mainly
based on column morphology (Bentham and von Mueller, 1873;
Lindley, 1840; Pfitzer, 1889) or flower colour (Brown, 1810). Tradi-
tionally, three sections are discerned within the genus (Cucullaria,
Macdonaldia, and Biaurella); but the infrageneric classification has been
regarded as not comprehensive and in need of revision (Pridgeon et al.,
2001a,b). Jones (2006) recognised 16 informal groups within Thely-
mitra, mainly defined by column morphology and flower colour. Six
Australian species complexes within Thelymitra have been tax-
onomically revised (Jeanes, 2001, 2004, 2006, 2009, 2010, 2011,
2013). However, no molecular phylogenetic studies in Thelymitra are
available to assess whether previous infrageneric classifications ade-
quately reflect evolutionary relationships.

Previous molecular phylogenetic studies supported the placement of
Thelymitra in the tribe Diurideae (Cameron et al., 1999; Clements et al.,
2002; Givnish et al., 2015; Kores et al., 2001). The monophyly of
subtribe Thelymitrinae including Thelymitra, Calochilus, and the
monotypic genus Epiblema was confirmed more recently (Weston et al.,
2014). However, intergeneric relationships remained unclear due to
conflicting results between nuclear and plastid phylogenetic re-
constructions (Weston et al., 2014). Phylogenetic relationships based
on the Internal Transcribed Spacer (ITS) found that Calochilus is sister to
a clade in which Epiblema was nested within Thelymitra (Clements et al.,
2002; Weston et al. 2014). On the other hand, a study based on several
plastid markers recovered Epiblema as sister to a clade comprising
Thelymitra and Calochilus (Weston et al., 2014). Both studies focussed
on broad-level phylogenetic relationships in Diurideae, and thus sam-
pling in Thelymitrinae was limited. So far, molecular phylogenetic
studies elucidating infrageneric relationships in Thelymitra and the
spatio-temporal evolution of the genus are still lacking.

This study aimed to use nuclear and plastid markers to (a) clarify
intergeneric relationships in Thelymitrinae, (b) infer phylogenetic re-
lationships within Thelymitra, (c) estimate divergence times within the
genus, and (d) reconstruct the biogeographical history of Thelymitra.
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2. Material and methods
2.1. Taxon sampling

In total, 143 orchid samples were included in the study. For
Thelymitra, 121 samples were included, representing 69 species and five
as yet undescribed taxa. Four Calochilus species and the monospecific
genus Epiblema were sampled to represent the remaining two genera
within subtribe Thelymitrinae. As outgroups, representatives of seven
subtribes of Diurideae (Acianthinae, Caladeniinae, Cryptostylidinae,
Diuridinae, Megastylidinae, Prasophyllinae) were sampled with one to
four species each, and tribe Cranichideae, sister group to Diurideae, was
represented with three samples. Voucher details and GenBank accession
numbers are provided in Table 1.

2.2. DNA extraction, amplification, sequencing, and alignment

Total genomic DNA was extracted from lyophilized leaf and/or stem
tissue using commercial DNA extraction kits (DNeasy 96 plant kit and
DNeasy plant mini kit, Qiagen, Hilden, Germany) following the man-
ufacturer’s protocols. In total, four markers were amplified and se-
quenced, the nuclear internal transcribed spacer region (ITS), the
plastid genes matK and ycf1, and the intergenic spacer psbJ-petA. The
following primer pairs were used for amplification: primers 17SE and
26SE for the ITS region (Sun et al., 1994), primers 19F (Molvray et al.,
2000) and 1326R for matK (Cuénoud et al., 2002), primers 3720F and
intR for ycf1 (Neubig et al., 2009), and primers psbJ and petA for psbJ-
petA (Shaw et al., 2007).

For the plastid markers, each PCR reaction contained 3 pl template
DNA [2-10ng/ull, 0.5 ul of each primer [10 uM], 2 ul 10x PCR buffer
including 1.5mM MgCl, (Kapa Biosystems, Wilmington, MA, USA),
0.5 ul MgCl, [25 mM], 0.9 ul bovine serum albumin [4 mg/ml], 0.5 pl
deoxynucleotide triphosphates [10 mM] (Kapa Biosystems), 0.2 ul Taq
polymerase [5 units/10pl] (Kapa Biosystems), and 12.9 ul ultrapure
water (Millipore, Merck, Bayeswater, Australia). For ITS, 1 ul of 100%
dimethyl sulfoxide was added to the PCR mix, adjusting the volume of
ultrapure water to 11.9 pl. For amplification of ITS, a touchdown pro-
tocol was used with an initial denaturation at 94 °C for 2 min followed
by seven cycles with denaturation at 94 °C for 45 s, annealing at 66 °C to
60 °C for 1 min (incrementally reduced by 1 °C per cycle) and elonga-
tion at 72°C for 45s, followed by 28 cycles with an annealing tem-
perature at 49 °C for 1 min, and a final elongation at 72 °C for 5 min. For
amplification of ycf1, an initial denaturation was carried out at 94 °C for
3 min followed by ten cycles of denaturation at 94 °C for 30 s, annealing
at 60 °C to 51 °C for 60 s (incrementally reduced by 1 °C per cycle) and
elongation at 72 °C for 3 min, followed by 30 cycles with an annealing
temperature of 50°C, and a final elongation at 72°C for 5min.
Thermocycling conditions for the matK and psbJ-petA started with an
initial denaturation of 94 °C for 2 min, followed by 35 cycles of dena-
turation at 94 °C for 30 s, annealing at 49 °C for 1 min and extension at
72 °C for 2 min, with a final extension at 72 °C for 5 min. Thermocycling
was carried out in a Realplex2 Mastercycler (Eppendorf, Hamburg,
Germany). PCR products were cleaned using 7.5ul of PCR product,
0.25pul thermosensitive alkaline exonuclease [1 unit/pl] (Thermo
Scientific, Waltham, USA), 1 ul FastAP buffer (Thermo Scientific) and
1.25pl ultrapure water (Millipore) and an incubation for 15min at
37 °C, followed by 15 min at 85 °C. Sequencing reactions were carried
out using the BigDye Terminator kit 3.1 (Thermo Scientific) following
the manufacturer’s protocol and sequencing runs were conducted on an
AB3730xl sequencer (Thermo Scientific) at the Australian Genome
Research Facility, Melbourne, Australia.

Raw sequences for each marker were assembled and edited using
Geneious R9 (Kearse et al., 2012). Four ITS sequences showed ambig-
uous base calls consistent with the presence of multiple ITS copies and
therefore were excluded from subsequent analyses (Thelymitra rubra 2,
T. sp. “darkie”, T. sp. “rough leaf”, and T. luteocilium). The four loci



L. Nauheimer et al.

were aligned separately using the MAFFT plugin for Geneious 1.3.3
(Katoh and Standley, 2013), and alignments were subsequently manu-
ally edited in Geneious. DNA sequences generated for this study were
deposited on GenBank (Table 1).

2.3. Phylogenetic analyses

For the phylogenetic analyses, the best-fit substitution model was
selected for each marker using jModeltest 2.1.7 (Darriba et al., 2012)
based on the Akaike Information Criterion AIC (Akaike, 1974). Max-
imum likelihood (ML) analyses were conducted in RAXML 8.1.2
(Stamatakis, 2014) with the rapid bootstrap option in effect and 1000
bootstrap replicates. Bayesian analyses were carried out in MrBayes
3.2.5 (Ronquist and Huelsenbeck, 2003), with two independent runs
and three heated chains with two million generations to ensure the
standard deviation of split frequencies were below 0.01. Trees were
sampled every 4000th generation and a consensus tree including all
compatible groups was created after removing a burn-in of 20%. All
analyses were performed with the GTR + G substitution model, which
was the best-fit model available in the software packages used (RAXML
and MrBayes). Phylogenetic analyses were first carried out for each
marker separately and resulting trees were visually examined for in-
congruences. Congruence of the trees based on the plastid markers
(matK, ycf1, and psbJ-petA) allowed concatenation of all plastid markers
for combined analysis. The combined analysis was performed under the
same configurations as for the separate markers with the only exception
that the Bayesian inference was run with five million generations.
Several incongruences were detected between the inferred phylogenies
based on the plastid and the nuclear markers, which received moderate
to high statistical support. Thus, the plastid and nuclear markers were
not subjected to a combined analysis.

2.4. Divergence time estimation

Bayesian divergence time estimation was carried out in BEAST 2.4.2
(Bouckaert et al., 2014; Drummond and Rambaut, 2007). A secondary
calibration approach was used due to the absence of fossil records in
Diurideae. Estimated node ages were taken from Chomicki et al. (2015),
based on an uncorrelated lognormal relaxed clock with one maximum
constraint (normal distribution) and three internal fossil constraints
(hard bound, gamma distributions) for the family-wide divergence time
estimation in Orchidaceae. In our analysis, secondary calibrations were
set as normally distributed priors for two nodes: the Diurideae stem
node (offset = 56.2Ma, SD = 6.4) and the Diurideae crown node
(offset = 49.7 Ma, SD = 5.8). To reduce biases in the divergence time
estimations that can result from uneven sampling between the in- and
outgroup (Linder et al., 2005; Muellner et al., 2016), two consecutive
nodes were used for the secondary calibration.

BEAST analyses were carried out for the nuclear data set (ITS) and
the plastid dataset (matK, ycf1, and psbJ-petA) applying a strict clock
model and a relaxed clock model. The datasets were optimized for di-
vergence dating to contain divergent sequences only and one accession
per species. In cases where several species had identical sequences,
these were represented by only one of the species in the analysis. In the
chronogram, all omitted species were added to the representative spe-
cies as part of a polytomy with zero branch length. The final matrices
contained 39 Thelymitra species for the nuclear and 69 for the plastid
dataset (see Table 1). In order to conserve the backbone tree topology
according to a previous molecular phylogenetic study in Diurideae
(Kores et al., 2001), we enforced the monophyly of two groups in the
analysis: (1) the Diurideae, (2) a clade within Diurideae formed by
Calochilus, Coilochilus, Cryptostylis, Diuris, Epiblema, Leporella, Mega-
stylis, and Thelymitra. We used the GTR + G substitution model with
empirical base frequencies, a Yule tree prior, and the strict clock model
as well as the uncorrelated relaxed clock model with rates drawn from a
lognormal distribution. For both datasets, four analyses were run for
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the strict and eight for the relaxed clock model, each with 11 million
generations. For each clock model, one analysis with an empty align-
ment was carried out to assess the influence of the chosen priors on the
resulting posteriors. The convergence of runs was assessed in Tracer 1.6
(estimated sample sizes > 200) and the burn-in phase determined.
Multiple runs were combined in LogCombiner (BEAST 2.4.2 package)
discarding a burn-in of 10% and resampling set to obtain approximately
10,000 trees. Finally, TreeAnnotator (Drummond and Rambaut, 2007)
was used to create annotated maximum clade credibility trees with
mean node heights.

2.5. Ancestral range estimation

The biogeographical history of Thelymitra was inferred via ancestral
range estimation using the R package BioGeoBEARS (Matzke, 2013).
Two models of biogeographical range inheritance were compared: a
maximum likelihood version of dispersal-vicariance (ML-DIVA,
Ronquist, 1997; Matzke, 2014) and dispersal-extinction-cladogenesis
(DEC, Ree and Smith, 2008). BioGeoBEARS implements one additional
range evolution scenario, the founder event, in which one descendant
reaches a new area different from the ancestral area (Matzke, 2014).
This parameter (J) is added to the existing models. All four models
(DEC, DEC + J, ML-DIVA, ML-DIVA + J) were run on the maximum
clade credibility tree based on the relaxed molecular clock analysis on
the nuclear dataset and the resulting likelihood values were compared
using the Akaike Information Criterion (Akaike, 1974) to determine
best model fit.

For the ancestral area analysis, 11,084 distribution records for
Thelymitra were downloaded from the Australian Virtual Herbarium
(AVH, 2016) and used to assess the distribution of the genus. Five
biogeographic areas were coded based on major disjunctions in the
distribution of Thelymitra: southwest Australia (W), eastern Australia
(E), Tasmania (T), New Zealand (Z), and New Caledonia (C). Species
from New Guinea, Indonesia or the Philippines (T. forbesii, T. javanica,
T. papuana) were not available for the study, and thus these distribu-
tions were not included in the coding.

Ancestral range estimations were carried out based on the BEAST
chronogram of the nuclear ITS region only. Due to patterns of past
hybridization and subsequent plastid capture retrieved in the phylo-
genetic analyses, we refrained from carrying out ancestral range ana-
lyses based on the plastid data set. During the optimization of the da-
taset for divergence dating, taxa with identical sequences were
removed. In cases where the biogeographical coding of a species did not
comprise the distribution of the other species represented by the
terminal taxon, ancestral areas were combined for the species the
terminal taxon represented, e.g., the two species with identical se-
quences but different distributions T. canaliculata (W) and T. jonesii (T)
were represented by a terminal node coded (WT). The maximum
number of combined areas was set to four based on the highest number
of combined areas in the sampling. Area combinations and dispersal
probabilities were left unconstrained.

3. Results
3.1. Phylogenetic analyses

Sequencing of one nuclear and three plastid markers resulted in
alignments with 1,337 base pairs (bp) and 109 accessions (matK),
1502bp and 114 accessions (psbJ-petA), 799bp and 126 accessions
(ycf1), and 789bp and 128 accessions (ITS). The combined plastid
matrix contained 3,587 bp and 137 accessions (Table 1). Alignments
and resulting trees were uploaded to TreeBase (submission no. 22660).

Maximum likelihood and Bayesian phylogenetic inference based on
both the combined plastid and nuclear dataset retrieved Thelymitrinae
as well-supported (bootstrap percentages for the plastid dataset: BSy,
90, bootstrap percentages for the nuclear data set: BS,. 97) with
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Fig. 1. Phylogenetic relationships in Thelymitra inferred via Maximum Likelihood analysis of the nuclear ITS region. Bootstrap percentages are given above branches;
posterior probabilities from a corresponding Bayesian inference are reported below branches. Outgroup relationships are provided in Suppl. Fig. Sla.

Epiblema in sister group position to Thelymitra and Calochilus (Suppl.
Fig. S1). The latter two were resolved as sister groups to each other with
high support. The monophyly of Calochilus was highly supported in all
analyses and the monophyly of Thelymitra received high support in the

plastid phylogenetic reconstructions (BSp; 100, posterior probabilities
for the plastid dataset PP, 0.99) and low to high support in the nuclear
phylogenetic inferences (BS,,. 74, posterior probabilities for the nuclear
data set PP, 0.99) (Suppl. Fig. S1).
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Fig. 2. Phylogenetic relationships in Thelymitra inferred via Maximum Likelihood analysis of three plastid markers (matK, ycf1, psbJ-petA). Bootstrap percentages are
given above branches; posterior probabilities from a corresponding Bayesian inference are reported below branches. Outgroup relationships are provided in Suppl.

Fig. S1b.

Within Thelymitra, eight main clades were retrieved in the nuclear
and plastid phylogenetic reconstructions, as well as several clades
comprising a single species each (Fig. 1, Fig. 2). The “variegata” clade

ta
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comprised all sampled species of the “variegata” complex sensu Jeanes
(2013) (T. matthewsii, T. pulcherrima, T. spiralis, T. uliginosa, T. variegata)
and received moderate to high support (BS,; 85, PP, 0.99, BS,. 100,
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PP, 1). The “fuscolutea” clade encompassed all representatives of the
fuscolutea complex sensu Jeanes (2006) (T. benthamiana, T. dedma-
niarum, T. fuscolutea, T. jacksonii, T. magnifica, T. stellata) and was
highly supported (BS, 100, PPy 1, BS,. 96, PP,. 1). Relationships
within the complex remained unresolved in the plastid trees, whereas in
the nuclear trees two highly supported subclades were retrieved: one
with T. dedmaniarum, T. jacksonii, T. magnifica, T. stellata, sister to a
clade formed by T. benthamiana and T. fuscolutea (Fig. 2). The “venosa”
clade contained three representatives of the venosa complex sensu
Jeanes (2012) (T. alpicola, T. cyanea, T. vericosa) and received high
support in all analyses (BS, 100, PPy, 1; BS;,. 99, PPy 1). The “ixioides”
clade comprised all sampled species of group 5 sensu Jones (2006) (T.
ixioides, T. juncifolia, T. sparsa) and obtained maximum support in all
analyses. Interspecific relationships in the “ixioides” clade remained
unresolved due to a lack of genetic divergence. The “canaliculata” clade
was formed by the two representatives of the canaliculata complex
sensu Jeanes (2001) (T. canaliculata, T. jonesii) and received maximum
support in all analyses. The “antennifera” clade obtained moderate
support values in the nuclear trees (BS,. 80, PP, 0.97) and comprised
all representatives of group 10 sensu Jones (2006) (T. antennifera, T.
flexuosa, T. rubra, T. carnea). Thelymitra antennifera was retrieved in
sister group position to the remaining taxa of this clade with moderate
support values (BS,. 80, PP,. 0.97). In the plastid trees, T. antennifera,
T. flexuosa, and one accession of T. rubra formed a well-supported clade
(BSp¢ 96, PP 1). Nevertheless, T. carnea and one of two accessions of T.
rubra were nested within the large “pauciflora/nuda” clade, resulting in
incongruence between the plastid and nuclear data sets (Fig. 1, Fig. 2).

The “aristata” clade received low to high support values in plastid
and nuclear trees (BSyc 76, PPy 1; BS,e 92, PP, 1) and contained all
representatives of the aristata complex sensu Jeanes (2011) plus several
other species that have not been assigned to any of the species com-
plexes previously delimited (T. media, T. circumsepta, T. tholiformis, T.
aemula) (Fig. 1, Fig. 2). Thelymitra villosa grouped within the “aristata”
clade in the plastid trees, whereas it was part of a larger clade har-
bouring T. mucida and the “fuscolutea” clade, however the latter re-
lationships remained unsupported (Fig. 1, Fig. 2). The “pauciflora/
nuda” clade constituted the largest clade and comprised all re-
presentatives of the pauciflora and the nuda complexes sensu Jeanes
(2004, 2013), with the exception of T. mucida from the pauciflora
complex, for which the phylogenetic position remained unclear due to a
lack of statistical support. Both species complexes were found to be
paraphyletic.

Multiple incongruences were found between the plastid and the
nuclear phylogenetic reconstructions (Fig. 1, Fig. 2). A major incon-
gruence was found in the position of the “variegata” clade. In the nu-
clear trees, the “variegata” clade was part of a large clade comprising
the “ixioides” clade, the “variegata” clade, and T. crinita (PP 0.98).
However, in the plastid trees, the “variegata” clade was found in sister
group position to the “antennifera” clade, which received moderate to
high support (BS 83, PP 1). Another incongruence was found in phy-
logenetic positioning of T. rubra and T. carnea. The two species were
part of the moderately supported “antennifera” clade in the nuclear
phylogeny constructions, whereas they were nested within the “pauci-
flora/nuda” clade in the plastid trees (Fig. 1, Fig. 2). Further, T. cam-
panulata and T. cornicina formed part of the “pauciflora/nuda” clade in
the nuclear trees, whereas they were found in sister group position to
the “ixioides” clade with high support values (BS,. 100, PPy 1) in the
plastid trees (Fig. 1, Fig. 2). The morphological diversity within The-
lymitra is depicted in Fig. 3 with representative species from each clade.

3.2. Divergence time estimates

The four divergence age estimations of the nuclear and plastid da-
taset, each with a strict and a relaxed clock model, resulted in overall
similar age estimates. The chronograms from the analyses using strict
clock models displayed smaller 95% highest posterior density intervals
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(HPD), which in most nodes were included within the larger HDP of the
analyses applying a relaxed clock model (Suppl. Figs. S$2-S4). The age
estimates of the plastid dataset resulted in slightly older estimates of the
crown age of Thelymitra compared to the nuclear dataset, 7.9 Ma (HDP:
5.5-10.9) versus 6.1 Ma (HDP: 4.4-7.9) with the relaxed and 6.2 Ma
(HDP: 4.8-7.6) versus 5.8 Ma (HDP: 4.4-7.3) with the strict clock
model. The younger ages of the nuclear dataset were contained in the
HPD intervals of the plastid set and represent a more conservative age
estimates. We therefore refer in the following to the age estimates based
on the relaxed clock of the nuclear dataset.

The divergence age estimation resulted in a stem age for
Thelymitrinae of 24.9 Ma (HPD: 18.9-30.9), in the Oligocene. The di-
vergence of Epiblema from the lineage that gave rise to Thelymitra and
Calochilus occurred 18.7 Ma (HDP: 14.1-23.8), in the early Miocene.
The stem age for Thelymitra and for Calochilus was estimated to 10.8 Ma
(HDP: 7.9-13.9), in the mid Miocene (Fig. 4A).

Crown diversification of Thelymitra was inferred to have started
6.1 Ma (HDP: 4.4-7.9), in the late Miocene (Fig. 4B). The crown age of
the first diverging lineage in Thelymitra, the “venosa” clade, was dated
to 0.7 Ma (HDP: 0.1-1.4), in the late Pleistocene. The next diverging
lineage comprised T. tigrina, the “cucullata” clade, and the “antenni-
fera” clade, and had a stem age of 5.7 Ma (HDP: 4.1-7.3), in the late
Miocene. The divergence between T. tigrina and the rest of this clade
was estimated to have occurred 4.9 Ma (HDP: 3.4-6.6), during the early
Pliocene. The “cucullata” and “antennifera” clades diverged from each
other 3.2 Ma (HDP: 2-4.6) during the late Pliocene and had crown ages
of 2.3Ma (HDP: 1.2-3.4) and 2.4Ma (HDP: 1.3-3.5) in the early
Pleistocene, respectively.

The crown age of the remainder of the genus was dated to 4.1 Ma
(HDP: 3.1-5.3), in the early Pliocene. Within this clade, the “canali-
culata” and the “aristata” clades diverged from each other 3.1 Ma (HDP:
2.1-4.2), in the late Pliocene, and the crown diversification of the
“aristata” clade commenced 2.3Ma (HDP: 1.5-3.2), in the early
Pleistocene. The stem age of the clade containing T. mucida, T. villosa,
and the “fuscolutea” clade was dated to 3.1 Ma (HDP: 2.1-4.2). Crown
diversification of the “fuscolutea” clade was estimated to have com-
menced 0.9 Ma (HDP: 0.3-1.7), in the late Pleistocene. The stem age of
the “ixioides” clade was estimated to 3.5 Ma (HDP: 2.5-4.5) and the
divergence of T. crinita from the “variegata” clade was dated to 2.8 Ma
(HDP: 1.9-3.7), both in the late Pliocene. Crown diversification of the
“variegata” clade started 0.4 Ma (HDP: 0.1-0.7), in the late Pleistocene.
The stem age of the “pauciflora/nuda” clade was estimated to 3.2 Ma
(HDP: 2.3-4.1) and crown diversification started 2.7 Ma (HDP:
1.8-3.5), both in the late Pliocene.

3.3. Ancestral range analyses

The comparison of the fit of the nuclear data set to the four bio-
geographic models, based on the corrected Akaike Information
Criterion (AICc), favoured the DEC model (AICc 270.7), closely fol-
lowed by the DEC model plus founder event (+J) (AICc 271.8). The
ML-DIVA model and the ML-DIVA + J model received less favourable
AICc scores with 279.3 and 281.5, respectively (Suppl. Table S1). Thus,
in the following the results from the ancestral range analysis based on
the DEC model are presented.

The ancestral range analysis yielded an ambiguous result for the
ancestral range of the most recent common ancestor (MRCA) of
Thelymitra (Fig. 5, Suppl. Table S2). The ancestral range of the first
diverging lineage in Thelymitra, the “venosa” clade, was inferred as
being widespread, with occurrences in eastern Australia, Tasmania, and
New Zealand. This ancestral range scenario received a relative prob-
ability (rel. prob.) of 60%. For the MRCA of the remainder of the genus,
southwest Australia was inferred as the most likely ancestral range,
receiving a rel. prob. of 74%, and dated to the late Miocene. The an-
cestral range analysis inferred that the ancestral range of Thelymitra
lineages during the Pliocene was predominantly southwest Australia,



L. Nauheimer et al.

Molecular Phylogenetics and Evolution 127 (2018) 304-319

Fig. 3. Floral diversity in Thelymitra, illustrating the phenotypic diversity within the genus through representatives of the major clades. A. T. cyanea (“venosa” clade);
B. T. cucullata (“cucullata” clade); C. T. antennifera (“antennifera” clade); D. T. canaliculata (“canaliculata” clade); E. T. aristata (“aristata” clade); F. T. fuscolutea
(“fuscolutea” clade); G. T. ixioides (“ixioides” clade); H. T. variegata (“variegata” clade); I. T. nuda (“pauciflora/nuda” clade). Photos by Lars Nauheimer (A, E, G, D),

Mark Clements (B), and Noel Hoffman (C, D, F, H).

such as for the MRCA of the clade that comprised the “cucullata” clade,
the “antennifera” clade, and T. tigrina (rel. prob. 88%), the MRCA of the
clade that contained the “fuscolutea” clade, T. mucida, and T. villosa
(rel. prob. 82%), and the MRCA of the clade that comprised the “pau-
ciflora/nuda” clade, the “variegata” clade, and T. crinita (rel. prob.
90%, Fig. 5). Other lineages that arose during the Pliocene and for
which southwest Australia was inferred as ancestral range were the
“pauciflora/nuda” clade (late Pliocene), the “antennifera” clade (late
Pliocene), the “cucullata” clade (late Pliocene), as well as the lineages
that gave rise to T. tigrina (early Pliocene) and T. crinita (late Pliocene).

Several biogeographic events dating back to as early as the Pliocene
were inferred: (1) at least three range expansions from southwest
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Australia eastwards (a) in the MRCA of the “variegata” clade, (b) in the
MRCA of one of the two major lineages within the “pauciflora/nuda”
clade, and (c) in the lineage that gave rise to T. mucida, (2) one range
shift from southwest Australia to eastern Australia, Tasmania, and New
Zealand in the MRCA of the “ixioides” clade (rel. prob. 63%). The an-
cestral range for the “aristata” clade remained ambiguous with the
highest relative probabilities for eastern Australia (rel. prob. 24%) and
for Tasmania (rel. prob. 20%, Fig. 5).

The ancestral range reconstruction showed that the majority of
range expansions and range shifts occurred relatively recently, from the
Pleistocene onwards (Fig. 5). The ancestral range analysis revealed at
least seven independent dispersals from mainland Australia to New
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Zealand and one from mainland Australia to New Caledonia, most of
which were inferred to have occurred during the Pleistocene (Fig. 5). In
one case, i.e. the MRCA of the “venosa” clade, the range evolutionary
scenario involving a distribution in New Zealand remained ambiguous
due to the unresolved ancestral range of the MRCA of Thelymitra.
Multiple range expansions and range shifts to Tasmania were inferred,
mostly from mainland Australia, and predominantly of relatively recent
origin, in the Pleistocene or later (Fig. 5). Exact range estimates for each
node are provided in Suppl. Table S2; a more detailed description of the
biogeographic history of all major clades with remarks on their sam-
pling is given in Supplement A.

4. Discussion
4.1. Phylogenetic relationships

This study clarified intergeneric relationships within Thelymitrinae,
providing strong support for Epiblema as sister group to Thelymitra and
Calochilus. Our phylogenetic analysis based on plastid and nuclear re-
gions supported the monophyly of Thelymitra and Calochilus, as well as
their sister group relationship to each other. Previous phylogenetic
studies remained inconclusive regarding relationships within
Thelymitrinae either due to limited sampling (Kores et al., 2001;
Freudenstein et al., 2004) or due to conflicting signal between nuclear
and plastid markers (Clements et al., 2002; Weston et al., 2014). Early
studies based on ITS showed a sister group relationship between
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Calochilus and a clade comprising Thelymitra and Epiblema, with the
latter being embedded within Thelymitra (Clements et al., 2002). A
molecular study based on plastid and nuclear datasets retrieved in-
congruent relationships within Thelymitrinae (Weston et al., 2014).
While the phylogenetic reconstruction based on ITS in Weston et al.
(2014) was congruent with the ITS study by Clements et al. (2002), the
inferred plastid phylogeny showed Epiblema as the first diverging
lineage and Thelymitra and Calochilus as sister groups with moderate to
high statistical support. However, both studies used the same ITS se-
quence for Epiblema (GenBank accession AF348029) (Clements et al.,
2002; Weston et al., 2014).

For a critical assessment of the discrepancies between the studies,
we included the previously published ITS sequence in our dataset along
with an additional Epiblema ITS sequence we generated (S1079). This
revealed that the published ITS sequence had close affinities with T.
cucullata, whereas the newly generated two Epiblema sequences
grouped together and were placed in sister group position to Thelymitra
and Calochilus (results not shown). We therefore conclude that the first
published ITS sequence on Epiblema was erroneous. The topologies re-
trieved with the correct ITS sequences for Epiblema and the plastid
markers are congruent. Thus, our study clarified the phylogenetic po-
sition of Epiblema as the first diverging lineage within Thelymitrinae,
sister to the monophyletic genera Thelymitra and Calochilus.

This study also provided the first insights into intrageneric re-
lationships in Thelymitra. It included representatives from all major
morphological groups recognized within Thelymitra and represented c.
60% of the species diversity found within the genus. Eight major clades
were identified as well as several smaller clades. Five major clades
corresponded to species groups previously characterised by morpholo-
gical characters, i.e., the canaliculata, fuscolutea, variegata, and venosa
complexes (Jeanes, 2001, 2006, 2009, 2012), and species group 5
(Jones, 2006). The other main clades largely or partly corresponded to
previously recognized species groups, i.e., the aristata, nuda, and pau-
ciflora complexes (Jeanes, 2004, 2011, 2013), and species groups 10
and 12 (Jones, 2006), hence were found to be paraphyletic.

Several incongruences were detected between the nuclear and
plastid phylogenetic reconstructions, providing evidence for past hy-
bridization events between species belonging to different major
lineages. Within the genus, many natural hybrids are known for which
parental species occur in sympatry and which have morphological si-
milarities to both parental species, e.g., Thelymitra X chasmogasma,
T. x irregularis, and T. X macmillanii (Jones, 2006). Cytogenetic studies
in Thelymitra established a chromosome base number of 2n = 28 for the
genus and documented a wide range of chromosome numbers and
different ploidies (e.g., 2n = 26, 40, 45, 54, 57, 62, 70, 84, 93),
pointing to past hybridization events involving allopolyploidy and/or
dysploidy (Dawson et al., 2007).

The incongruences detected in our molecular study corroborate
previous hypotheses on the origin of species within Thelymitra through
hybridisation. For instance, Dawson et al. (2007) hypothesised that T.
carnea and T. rubra, each with a chromosome number of 2n = 62, are
allopolyploid hybrids between T. flexuosa and T. pauciflora, which
possess chromosome numbers of 2n = 36 and 2n = 26, respectively.
The incongruences between the inferred nuclear and plastid phylo-
genies detected in our study provide further support for this hypothesis.
In the nuclear trees, T. rubra and T. carnea grouped with T. flexuosa,
which is congruent with their close morphological affinity to T. flex-
uosa, while their position in the plastid trees provided evidence for past
hybridization with members of the “pauciflora/nuda” clade.

In several cases, supported incongruences were found in the posi-
tioning of clades. This points to hybridisation events in the deeper
evolutionary history of the genus. The most striking incongruence was
found in the position of the “variegata” clade. In the nuclear trees, the
“variegata” clade formed a sister group to T. crinita, and this clade was
found in sister group position to the “pauciflora/nuda” clade. In the
plastid trees, the “variegata” clade was resolved as sister to the
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“antennifera” clade. These results point toward an ancient hybridisa-
tion event between the “antennifera” clade and the “pauciflora/nuda”
clade or T. crinita with subsequent diversification of the resultant
lineage, the “variegata” clade. The species of both clades show mor-
phological similarities, and in the past, several of them were grouped
together in the formerly recognized genus Macdonaldia Gunn ex Lindl.
Our results showed that Macdonaldia does not constitute a mono-
phyletic group and therefore its recently proposed resurrection
(Szlachetko, 1995) is not supported by our findings.

Another incongruence was found in the position of a clade formed
by T. cornicina and T. campanulata. This clade was embedded within the
“pauciflora/nuda” clade in the nuclear trees and sister to the “ixioides”
clade in the plastid trees. These results indicate past hybridisation be-
tween species from the “ixioides” and the “pauciflora/nuda” clades.

The “canaliculata” clade also exhibited an incongruent phylogenetic
position between the nuclear and plastid trees. In the nuclear trees it
was found in sister group position to the “aristata” clade, whereas in the
plastid trees it was found in sister group position to a clade formed by T.
crinita, T. mucida, and the “pauciflora/nuda” clade. This indicates a past
hybridisation event between species of these two lineages. In these last
two cases, chromosome counts for the species are not available. Further
cytogenetic studies in Thelymitra are required to enhance our under-
standing of the importance of hybridisation, allopolyploidy, and dys-
ploidy in the evolution of Thelymitra.

4.2. Diversification during the Neogene and Quaternary

This study provided the first divergence time estimation for
Thelymitra. The origin of Thelymitra and the onset of the crown di-
versification of the genus were placed in the late Miocene, around
10.8 Ma and 6.1 Ma, respectively. In Australia, a global cooling trend, a
lowered sea level and a major ice sheet on Antarctica led to cooler and
drier conditions during the late Miocene than during the early Miocene
(Martin, 2006). This resulted in marked changes in the vegetation cover
of the continent, with a decline of closed rainforest and increased ex-
pansion of wet sclerophyll forests dominated by Eucalyptus, other
Myrtaceae, and Casuarinaceae (Kershaw, 1994; Martin, 1994). An
abundance of charcoal sediments in late Miocene deposits provide
evidence for the presence of a well-marked dry season in the southern
part of Australia allowing for more frequent burning to the extent that
by this time burning had become part of the environment (Martin,
1987, 2006).

The changes in climate and environmental conditions of the late
Miocene can be regarded as beneficial for the geographic expansion and
diversification of Thelymitra due to the increase in suitable habitats, i.e.
open vegetation communities, and the more regular occurrence of
natural fires. Fire reduces the abundance of competing above ground
vegetation, releases nutrients into the soil, and stimulates flowering of
many terrestrial orchids of the Australian flora, including Thelymitra
species (Lamont and Downes, 2011; Calder et al., 1989; Norton and De
Lange, 2003; Coates et al., 2006). The geophytic life form of Thelymitra
with its underground dormancy during the drier and hotter summer
months (a time of the year which is also more prone to natural fires)
may have been an advantageous feature of Thelymitra species, enabling
them to cope with and benefit from the climatic and environmental
changes from the late Miocene onwards.

Our divergence time estimates showed that the majority of main
clades in Thelymitra arose during the late Pliocene and early
Pleistocene. While the early Pliocene was characterised by warmer and
more stable climatic conditions in Australia, the climate of the late
Pleistocene was cooler and more variable (Gallagher et al., 2003). In-
creased aridification of the continent resulted in a marked acceleration
of the transition from rainforest vegetation to open sclerophyll forests
(Hill et al., 1999); open grasslands emerged and expanded for the first
time, with Poaceae and Asteraceae increasing in abundance in the fossil
record (Martin, 1998, 2006). By the Pleistocene, the vegetation of
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Australia had mostly changed to open woodlands and grasslands
(Martin, 1987; Kershaw, 1994). These broad scale vegetation changes
during the late Pliocene and early Pleistocene led to a significant ex-
pansion of suitable environments for Thelymitra and thus provided in-
creased opportunities for fine scale ecological differentiation within the
genus.

The divergence time estimation revealed that the majority of extant
Thelymitra species originated in the Pleistocene and thus are of re-
markably young age. The Pleistocene was characterized by frequent
and strong climatic oscillations, which can be seen as an important
factor driving speciation in Thelymitra. During the more humid condi-
tions of the glacial periods, denser vegetation communities expanded,
which reduced the extent of suitable habitats for Thelymitra. During the
drier conditions of the interglacials, suitable habitat for Thelymitra such
as grasslands, open heath, and mallee eucalypt shrubland communities
increased (Martin 2006). This facilitated repeated cycles of isolation
and secondary contact of previously isolated Thelymitra populations,
promoting speciation. Further, several factors in the biology of Thely-
mitra can be seen as supportive for speciation under the conditions of
the Pleistocene: (1) a generalized pollination syndrome and the ap-
parent low pre-and postzygotic barriers, which foster the creation of
hybrids when previously separated populations expand and form sym-
patric stands, (2) the frequency of alloploidy and aneuploidy, which
create highly varied genomic attributes in Thelymitra that can result in a
broader ecological amplitude of polyploids relative to the diploid par-
ents (e.g., Arnold and Martin, 2010; Spoelhof et al., 2017), and (3) the
frequent occurrence of self-compatibility and increased heterozygosity,
which are regarded to support colonization of new ecological niches
and survival when population sizes decrease (Soltis and Soltis, 2000).

4.3. Spatio-temporal evolution

The ancestral range analysis provided new insights into the evolu-
tion of today’s distributional patterns in Thelymitra. While the geo-
graphic origin of the genus could not be reconstructed with confidence,
the ancestral range of the first diverging lineage, the “venosa” clade,
was reconstructed as eastern (eastern Australia, Tasmania, and New
Zealand) whereas the ancestral area for the remainder of the genus was
reconstructed as southwest Australian.

This first divergence in Thelymitra was dated to the late Miocene (c.
6.1 Ma), when the biogeographic barrier between southwest and
southeast Australia, the Nullarbor Plain, was already established, and
New Zealand had long been separated from the Australian landmass.
The Nullarbor Plain is an area of c. 1000 km semi-arid and almost
treeless desert on limestone bedrock, which was established in its cur-
rent form since the last marine incursion c. 14 Ma, in the mid Miocene.
The barrier has been identified to have driven lineage divergence
through vicariance in several Australian plant groups, such as
Allocasuarina, Fabaceae, and Poales (Crisp and Cook, 2007).

However, the inferred age of the first lineage divergence in
Thelymitra post-dates the emergence of the Nullarbor Plain. This sug-
gests that this distributional pattern is the result of a long-distance
dispersal event between southwest Australia and the east. Our biogeo-
graphic analysis inferred several subsequent range shifts and expan-
sions from southwest Australia across the Nullarbor Plain to the east of
Australia, e.g., in the “canaliculata”/“aristata” clades (from c. 3.1 Ma
onwards), the “pauciflora/nuda” clade (from c. 1.9 Ma), and the “var-
iegata” clade (from c. 0.4 Ma onwards), which can be best explained by
long-distance dispersal.

Our study showed that early lineage diversification in Thelymitra
predominantly took place in southwest Australia, in particular during
the Pliocene. Further eastward dispersals and subsequent diversifica-
tion events in the newly occupied areas were predominantly of more
recent origin, from the early Pleistocene onwards. The prevalent di-
rection of dispersal in Thelymitra was reconstructed to be from the west
to the east. Previous biogeographic studies in Australasian plant groups
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also detected a similar predominant dispersal from the west to the east,
which is explained by the prevailing westerly winds in the Southern
Hemisphere (Sanmartin et al., 2007). This is also highly likely for the
wind-dispersed, dust like seeds of Thelymitra. Hence our study provided
another example for the strong influence of the westerly winds on
Australasian plant distribution patterns.

Our results present strong evidence that the contemporary
Thelymitra flora of New Zealand was assembled through several in-
dependent long-distance dispersals from Australia in recent geological
times. At least seven long-distance dispersals to New Zealand were re-
constructed from the Pleistocene onwards. This indicates a relatively
young age of the Thelymitra flora of New Zealand. The biogeographic
analysis also indicated that the Thelymitra flora of Tasmania was rela-
tively young. We reconstructed at least 13 colonization events of
Tasmania, five of which occurred from the early Pleistocene onwards
and six from the late Pleistocene onwards.

The relatively young age of the Thelymitra floras of New Zealand
and Tasmania seems surprising given the evident long distance dis-
persal capabilities of Thelymitra and the presence of the West Wind Drift
since the late Eocene. This relatively young age of the Thelymitra floras
of New Zealand and Tasmania is therefore more likely due to earlier
extinctions. During the Plio- and Pleistocene, Tasmania and New
Zealand were more severely affected by the cold conditions during
glacial periods, which included glaciations in both regions (Martin,
2006; Newnham et al., 1999). On the Australian mainland, in contrast,
glaciations were only present in the southeastern highlands (Martin,
2006), thus providing greater opportunities for Thelymitra to persist in
climatic refugia during the glacial periods of the Plio- and Pleistocene.
Given the dispersal capabilities of Thelymitra and the high number of
colonisations of Tasmania and New Zealand in relatively recent times,
we consider early establishment of Thelymitra lineages followed by
extinction plausible. In the case of New Caledonia, our data support a
long-distance dispersal event from eastern Australia, which gave rise to
the New Caledonian species T. sarasiniana. The inferred age for this
divergence event was dated to the late Pleistocene (c. 0.5 Ma), thus the
occurrence of T. sarasiniana in New Caledonia is also of relatively recent
origin.

The Thelymitra species occurring in New Guinea (T. papuana),
Indonesia (T. javanica), and the Philippines (T. forbesii) were not
available for this study, and hence their phylogenetic placement re-
mained uncertain. Based on their close morphological affinities with
species from the pauciflora and nuda complexes, we regard it as likely
that they are part of the "pauciflora/nuda" clade. As the latter was es-
timated to have arisen in the late Pliocene, a relative recent origin is
also assumed for the occurrences of Thelymitra in New Guinea,
Indonesia, and the Philippines.

5. Conclusions

This study clarified intergeneric relationships in Thelymitrinae and
provided first insights into phylogenetic relationships of Thelymitra and
its spatio-temporal evolution. Divergence dating and ancestral range
estimation revealed that Thelymitra originated in the late Miocene. Most
major lineages originated during the Pliocene in southwest Australia,
from where subsequent eastwards long distance dispersals followed.
Eastern Australia was reached in the early Pleistocene, and Tasmania,
New Zealand, and New Caledonia were colonized from the late
Pleistocene onwards. Incongruences between inferred nuclear and
plastid phylogenies indicate that hybridization played an important
role in the evolutionary history and diversification of Thelymitra, in
particular under the changing environmental and climatic conditions of
the Pleistocene.

While this study provided first hypotheses around evolutionary re-
lationships and the historical biogeography of Thelymitra, its complex
evolutionary history warrants further study. Recent technological ad-
vances in the field of phylogenomics, such as exome capture and
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genotyping-by-sequencing, now allow for the generation of large
genomic datasets from both nuclear and plastid genomes. In combina-
tion with cytogenetic and morphological studies in Thelymitra, these
will further enhance our understanding of the complex evolutionary
relationships in the genus, including the delimitation of closely related
species in this young group of orchids. In the face of diverse anthro-
pogenic pressures on habitats of Thelymitra, these studies are urgently
required to provide a scientific framework for the re-evaluation of the
conservation status of rare and endangered Thelymitra species and to
inform their effective conservation management.
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