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and no effects on M. cavernosa after 90 days of contact. 
In natural encounters, 52 and 0.1 % of the S. stellata and 
M. cavernosa colonies, respectively, showed tissue mortal-
ity. These results indicate that competitive interactions with 
native competitors are important to understand alien coral 
establishment on coral reef. Our study documents the nega-
tive effects of the alien coral on coral reef assemblages and 
reinforces the urgent need for monitoring and management 
actions to control the expansion of this invader on Brazilian 
reefs.

Introduction

Biological invasion is a primary threat to global biodi-
versity and ecosystem function (Ruiz et al. 1997; Molnar 
et al. 2008; Seebens et al. 2013). Invasive species have 
had extensive effects on marine systems worldwide (Carl-
ton and Geller 1993), and a large number of studies have 
demonstrated the negative impacts of invasive species on 
marine benthic assemblages (Hollebone and Hay 2007; 
Caralt and Cebrian 2013). However, coral reefs, one of 
the most biodiverse and productive marine systems in the 
world (e.g., Birkeland 1977; Connell 1978), have been the 
subject of relatively few rigorous studies evaluating the 
potential consequences of invasions on coral assemblages 
(Coles and Eldredge 2002; Fernández and Cortés 2005; 
Ávila and Carballo 2009; Pérez-Estrada et al. 2013). Coral 
reef systems are highly dependent on hermatypic corals 
which build complex three-dimensional physical structures 
(Jones et al. 1994; Graham and Nash 2012), creating a large 
variety of microhabitats and leading to a high diversity and 
abundance of organisms (Crowder and Cooper 1982; Coni 
et al. 2013; Leal et al. 2013; Graham 2014; Rogers et al. 
2014; Leal et al. 2015). Thus, understanding how invasions 
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affect these ecosystems is crucial for the well-being of the 
coral reefs and the organisms that depend of them.

The ahermatypic coral Tubastraea (Scleractinia, Den-
drophylliidae), commonly known as cup coral, is a native 
genus from the Indo-Pacific region likely introduced by 
ships and/or oil platforms in the Atlantic Ocean in the 1940s 
(Cairns 2000; Castro and Pires 2001; Fenner 2001; Fen-
ner and Banks 2004). Three species of Tubastraea genus 
were reported in the Atlantic (T. micranthus, T. coccinea 
and T. tagusensis). Tubastraea spp. is a successful invader 
due to its high fecundity (Glynn et al. 2008; De Paula et al. 
2014), rapid growth (Wellington and Trench 1985), allelo-
chemical defenses (Lages et al. 2010a, b) and competitive 
aggressiveness (Wellington and Trench 1985; Dos Santos 
et al. 2013). However, there are no reports of the ecologi-
cal impacts of this invader on native coral species in coral 
reefs (Fenner and Banks 2004). Recent biological invasions 
by the species T. coccinea and T. tagusensis are threatening 
coral reefs along the northeast Brazilian coast in the south-
western Atlantic (Sampaio et al. 2012). These species were 
first reported on the subtropical southwest coast of Brazil 
(De Paula and Creed 2004) on rocky shores, where they 
can change the structure of benthic assemblages (Lages 
et al. 2011). However, there is an urgent need to assess the 
potential effects of these alien species on Brazilian corals, 
especially on the northeast coast, the region with the rich-
est hermatypic coral fauna in the southwestern Atlantic 
(Leão et al. 2003). The orange cup coral represents a seri-
ous threat to the local marine biodiversity (Creed 2006) 
because Brazilian reefs are relatively poor in coral spe-
cies but have high endemism (Castro and Pires 2001; Leão 
and Kikuchi 2001; Neves et al. 2006; Nunes et al. 2008). 
Direct interactions of T. tagusensis and T. coccinea with a 
Brazilian endemic coral (Mussismilia hispida) result in the 
tissue necrosis of native coral, but the effect is not recipro-
cal (Creed 2006; Dos Santos et al. 2013). These evidences 
suggest that the alien coral Tubastraea spp. can reduce or 
exclude the native coral species by space competition (Dos 
Santos et al. 2013).

Competition for space is an important process on coral 
reefs determining patterns of distribution, abundance and 
species diversity in benthic communities (Connell et al. 
2004). Competitive processes regulate reef structure, since 
the space on hard substratum is limiting resource for the 
settlement, growth and reproduction of reef-building corals 
(Lang and Chornesky 1989; Connell et al. 2004; Chadwick 
and Morrow 2011). Competition among corals can occur 
(1) indirectly by overtopping, when growth by one colony 
(e.g., branching, tabular or foliaceous forms) overshadows 
another or (2) directly, when tissues of different colonies 
come into contact, resulting in necrosis of one or both 
competitors (Connell 1973). Direct interactions among 

corals are frequent in coral communities, especially those 
dominated by massive corals (e.g., Leão et al. 2003). These 
interactions may involve several mechanisms including, 
sweeper tentacles (Hidaka and Yamazato 1984), sweeper 
polyps (Peach and Hoegh-Guldberg 1999), mesenterial fila-
ments (Lang 1973) and the secretion of mucus (Chadwick 
1988). The competitive outcomes are complex and can lead 
to fitness reduction of the subordinate coral, cessation of 
growth along the margin of damaged and/or even competi-
tive reversal. In the cases, the most aggressive coral species 
may impact the structure of reef communities (Dai 1990).

Dos Santos et al. (2013) showed that tissue necrosis 
caused by the alien coral species T. tagusensis and T. coc-
cinea on the native coral M. hispida occurred mainly due to 
physical mechanisms in direct encounters. Thus, effects of 
direct encounters between Tubastraea spp. and native cor-
als should be considered to understand biological invasions 
on Brazilian coral reefs. In this study, we evaluate whether 
T. tagusensis negatively affected the hermatypic coral 
assemblage in Brazil. To achieve this, we tested whether 
(1) sites with a high cover of T. tagusensis would have dif-
ferent structure of native coral assemblages compared with 
non-invaded sites and (2) whether direct encounter with T. 
tagusensis would cause tissue damage on native coral spe-
cies. Therefore, we combined mensurative and manipula-
tive experiments to provide an important baseline that will 
serve as a starting point for future monitoring and manage-
ment actions.

Materials and methods

Study area

The study was conducted at Cascos Reef (13°07′46″S, 
38°38′31″W) in the outer part of Todos os Santos Bay 
(TSB), east coast of Brazil (Fig. 1). Cascos Reef is the first 
coral reef site where T. tagusensis was documented in the 
southwestern Atlantic (Sampaio et al. 2012). This reef, 
at depths of approximately 20 m, consists of reef patches 
11–13 m in height and 1–100 m in length (Fig. 1). Two 
main habitats are clearly distinguished on Cascos Reef: the 
reef top (horizontal surfaces; 11–13 m deep) and the walls 
(vertical surfaces; 12–20 m deep).

Eight species of native hermatypic coral occur on 
Cascos Reef, the scleractinians Montastraea cavernosa, 
Madracis decactis, Phyllangia americana, M. hispida, 
Mussismilia leptophylla, Siderastrea stellata, and Mean-
drina braziliensis (the last four species are endemic to 
Brazilian reefs: e.g., Leão et al. 2003; Neves et al. 2006; 
Nunes et al. 2008; Budd et al. 2012) and the hydrozoan 
fire coral Millepora alcicornis. There is only one zone 
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on Cascos Reef where the population of T. tagusensis is 
aggregated over approximately 800 m2 (Fig. 1b, “Invaded 
Zone”). This population is dense, with patches measuring 
approximately 4 m2. T. coccinea was not found in field 
samples in the study area, and therefore, only T. tagusensis 
was used in our study.

Assemblage structure in invaded and non‑invaded 
zones

We compared the structure of coral assemblages in the 
invaded zone (hereafter indicated as I) with that in non-
invaded zones (NI1 and NI2, hereafter denoted NIs; 
Fig. 1b) to evaluate whether the presence of T. taguse-
nsis affected the native coral assemblage structure. We 
selected the non-invaded zones based on their similarity 
in size (800 m2) and environmental conditions (i.e., wave 
exposure and depth) to the invaded zone. The non-invaded 
zones, where T. tagusensis did not occur, were 20 m apart. 
We sampled two distinct habitats, reef walls and reef tops, 
within each zone because of the marked differences in abi-
otic conditions (e.g., light incidence and substrate inclina-
tion, Francini-Filho et al. 2013).

We used an asymmetrical design to compare the coral 
cover between I and NIs. This design, with two non-
invaded (“control”) locations (NIs), produces better esti-
mates of natural variability than the use of a single “control” 
area, which was appropriate for this situation in which 
there was only a single impacted location (I) that could not 
be replicated (see Underwood 1992; Glasby 1997; Terlizzi 
et al. 2005a, b). Therefore, our design had three factors: 
Treatment (I and NIs, fixed and orthogonal), Zone (I, NI1 
and NI2 random, nested in Treatment) and Habitat (Wall 
and Top fixed, nested in Zone).

During the summer of 2012/2013 (December–March), 
we characterized the coral assemblages using photo-quad-
rats (0.25 m2) of the reef tops and walls. We haphazardly 
took 80 photographs per zone (I, NI1 and NI2), 40 in each 
habitat (top and wall). We estimated the percentage of coral 
cover per species through 30 randomly distributed points 
per photo-quadrat (2400 points per zone, 1200 per habitat) 
using the Coral Point Count with Excel Extensions Soft-
ware (CPCe) (http://www.nova.edu/ocean/cpce/) (Kohler 
and Gill 2006).

We analyzed the data using a combination of multivari-
ate and univariate procedures to evaluate the variations in 
the structure of coral assemblages and native hermatypic 
species, respectively. We used a permutational multivariate 
analysis of variance (PERMANOVA, Anderson 2001) to 
test for differences between assemblages of corals in I and 
NIs, based on Bray–Curtis dissimilarities using 9999 ran-
dom permutations, with arc-sine square root transformation 
of the data to achieve homogeneity of dispersions using the 
software PRIMER 6. The significance level (α) adopted in 
this analysis and the other analyses was 0.05.

We used analysis of variance (ANOVA) to test for dif-
ferences in cover of each native coral species in I and NIs 
using the software STATISTICA version 8.0. A Cochran’s 
C test (Underwood 1997) and the Kolmogorov–Smirnov 
test were used to check for homogeneity of variance and 

Fig. 1  Location map of coral reefs in Todos os Santos Bay, Brazil 
(a): (b) Cascos Reef, with sampling zones (I = invaded zone; NI1 
and NI2 = non-invaded zones) and (c) reef assemblages of the 
invaded zone

http://www.nova.edu/ocean/cpce/
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normality, respectively. If necessary, data were arc-sine 
square root transformed to remove variance heterogeneity. 
If there was no suitable transformation, we performed anal-
yses on the untransformed data. Previous studies argued 
that ANOVA was robust to departures from the assumption 
of homogeneous variances when there were many inde-
pendent estimates of sample variance (e.g., Underwood 
1997; Terlizzi et al. 2005a), as in the present study.

Natural encounters

We investigated the natural encounters between the alien 
coral and any native coral species in I (described above 
and shown in Fig. 1b) to estimate the percentage of native 
colonies with tissue damage. We estimated the total num-
ber of colonies of each native species contacting T. tagu-
sensis in 80 photographs taken as previously described. 
We considered it a natural encounter when one colony of 
T. tagusensis was in contact with, or closer than 5 cm to, 
a native coral colony and when tissue lesions and algae 
overgrowth were observed (Dai 1990; Van Veghel et al. 
1996). The distance between 1 and 5 cm was defined 
based on the different mechanisms of competition (e.g., 
sweeper tentacles, sweeper polyps, elongated polyps and 
mesenteric filaments) that can cause tissue damage on 
neighboring corals within this range (Lapid et al. 2004; 
Lapid and Chadwick 2006; Dos Santos et al. 2013). We 
also conducted a night dive to observe coral competitive 
morphological structures (e.g., sweeper tentacles and 
elongated polyps) in open polyps acting during natural 
encounters.

Manipulative experiment

We selected two well-distributed coral species of the Bra-
zilian reefs (M. cavernosa and S. stellata) to evaluate the 
direct competitive encounter effects of the invasive coral T. 
tagusensis. These two native species were chosen because 
they occurred in the study area and were abundant in sev-
eral other coral reefs (non-invaded, see Ferreira and Maida 
2006; Cruz et al. 2009) susceptible to invasion in the north-
eastern and northern regions of the Brazilian coast. We 
established a manipulative experiment in the field (Cascos 
Reef) using paired species (alien-native) and corresponding 
controls (single colony of one species) attached to polyeth-
ylene plates (20 cm × 20 cm) as experimental units. Over-
all, we collected 42 colonies (18 of T. tagusensis, 12 of M. 
cavernosa and 12 of S. stellata) with diameters between 
8 cm and 12 cm to minimize potential size effects (e.g., 
Zilberberg and Edmunds 2001). We attached the colonies 
to experimental plate units with non-toxic marine epoxy 
(Tubolit Men) immediately after collection. After allowing 
the epoxy to harden in a tank for 1 h, we attached the plate 

units to 20 cm × 20 cm × 40 cm cement blocks, which 
we had previously placed on the coral reef substrate at a 
depth of 21 m, with cable ties. We distributed the experi-
mental units randomly on the substrate. We used two treat-
ments: (1) Contact, where paired alien-native colonies (T. 
tagusensis with M. cavernosa and T. tagusensis with S. 
stellata) were placed 5 mm apart to avoid skeletal con-
tact, but allowing tissue contact when their tentacles were 
expanded; (2) No Contact, where a single colony of each of 
the three species was placed alone one in the experimental 
unit. Each treatment had six replicates (n = 6).

The experiment lasted for 90 days, and our obser-
vations were made on days 5, 15, 30, 60 and 90 using 
SCUBA diving and underwater photography (high-res-
olution digital images). After 3 months, we performed a 
night dive to observe competitive morphological struc-
tures when the coral polyps were expanded. We quanti-
fied tissue necrosis of the native species by measuring the 
necrosed area (cm2) with photographs taken at each time, 
using CPCe (Kohler and Gill 2006). We used a one-way 
repeated measures ANOVA to assess the possible differ-
ences in the mortality of native species with the follow-
ing factors: Treatment (fixed, two levels: Contact and No 
Contact) and Time (fixed, five levels: 5, 15, 30, 60 and 
90 days), with time as a repeated measurement factor. 
To test the homogeneity of variance and normality, we 
used Cochran s C and the Kolmogorov–Smirnov statistic, 
respectively, using STATISTICA software, version 8.0. 
We applied a square root transformation to the mortality 
data prior to the analysis to remove variance heterogene-
ity. A post hoc Tukey test was used when significant dif-
ferences were found.

Results

Assemblage structure in invaded and non‑invaded 
zones

The top five most abundant coral species (mean cover 
≥1 %) in the Cascos Reef were M. cavernosa (14.1 ± 1.3, 
mean ± SE), T. tagusensis (8.9 ± 1.3), M. decac-
tis (5.1 ± 0.7), M. hispida (2.8 ± 0.4) and S. stellata 
(1.4 ± 0.2). In the invaded zone, T. tagusensis was domi-
nant (26.7 ± 3.1) and its cover was higher on reef wall 
(34.9 ± 4.2) than on reef top (18.5 ± 4.1). In the non-
invaded zones, the native coral M. cavernosa was dominant 
(11.6 ± 1.7 in NI1 and 16.8 ± 2.2 in NI2) and more abun-
dant on reef top (18.6 ± 2.7 in NI1 and 27.8 ± 3.4 in NI2) 
than on reef wall (4.5 ± 1.5 NI1 and 5.7 ± 1.6 NI2). The 
PERMANOVA showed significant differences in the cover 
pattern of coral assemblages between I and NIs (Table 1). No 
significant differences were detected between NIs, although 
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the assemblages differed significantly between habitats (top 
and wall, Table 1; Fig. 2 “Native Hermatypic Corals”).

The ANOVA analysis showed significant differences 
for M. decactis and M. hispida between reef walls at I and 
NIs (F(1,239) = 4.96, p < 0.05 and F(1,239) = 7.53, p < 0.01, 
respectively), and four native corals showed differences 

between habitats (M. decactis, F(2,237) = 31.38, p < 0.01; 
M. hispida, F(2,237) = 7.43, p < 0.01; M. cavernosa, 
F(2,237) = 45.75, p < 0.01; and S. stellata, F(2,237) = 13.63, 
p < 0.01, Fig. 2).

Natural encounters

We observed 141 natural encounters between the invasive 
coral and the four most abundant native coral species (M. 
cavernosa, M. decactis, M. hispida and S. stellata). Colo-
nies of native corals showed partial mortality on the side 
facing the neighboring invader in 21 % of the encounters 
(n = 30). S. stellata and M. hispida had the highest percent-
age of colonies with partial mortality, 52 % (n = 10) and 
50 % (n = 7), respectively (Fig. 3). M. cavernosa and M. 
decactis had the lowest percentage of colonies with partial 
mortality, 0.1 % (n = 2) and 20 % (n = 11). At night, we 
observed M. cavernosa and M. decactis using sweeper ten-
tacles against the elongated polyps of T. tagusensis (Fig. 4).

Table 1  Asymmetrical PERMANOVA based on the Bray–Curtis dis-
similarities (arcsine square root data transformed) of the coral assem-
blages (5 taxa)

** p < 0.01

Source DF MS Pseudo-F Unique perms p (MC)

Treatment 1 23,779 98.833 3 0.004**

Zone (treatment) 1 240.6 0.892 9953 0.467

Habitat (zone 
(treatment))

3 9967.3 36.967 9938 0.0001**

Res 234 269.63

Total 239

Fig. 2  Mean coral cover (±SE) 
within habitats in invaded and 
non-invaded zones. The differ-
ent letters denote significant 
differences. Native Hermatypic 
Corals represent the sum of 
native species covers
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Manipulative experiment

During the first 15 days of the experiment, the native coral 
S. stellata was healthy and no significant mortality was 
found between Contact and No Contact treatments (Fig. 5). 
However, after the 30th day, the area with tissue necrosis 
in S. stellata became more pronounced (1.3 ± 1.1 cm2), 
and bleaching and turf algae growth was also observed in 
the Contact treatment. At this time, we frequently observed 
hermit crabs in the contact zones between corals. At night, 
we also recorded elongated polyps of open T. tagusensis 
between dead and living zones in the S. stellata colonies. 
The mortality area of S. stellata increased significantly 
on the 60th and 90th days (3.2 ± 1.4 and 3.4 ± 1.3 cm2, 

respectively, Fig. 5; Table 2) and no tissue necrosis was 
observed in the colonies of T. tagusensis on the side fac-
ing S. stellata. Furthermore, all colonies of the No Contact 
treatment were healthy during the entire experiment.

On the 5th day of the experiment, the mortality of M. 
cavernosa was 0.04 ± 0.03 cm2 (Fig. 5) and no necrosis 
was observed in T. tagusensis during this period in the 
Contact treatment. On day 15, the necrosis in M. caver-
nosa increased slightly (0.1 ± 0.04 cm2), followed by the 
growth of turf and fleshy algae; however, this pattern was 
also observed in T. tagusensis. Over time, mortality area on 
M. cavernosa was insignificant (Table 2) and only a small 
portion of its colony tissue was lost during the entire exper-
iment (0.2 ± 0.1 cm2). We also observed that the number 

Fig. 3  Percentage of natural 
encounters with mortality in 
each native coral species on the 
side facing Tubastraea taguse-
nsis: a Siderastrea stellata, b 
Madracis decactis, c Montast-
raea cavernosa and d Mus-
sismilia hispida. The number at 
the base of each bar represents 
the total number of colonies of 
each species in contact with T. 
tagusensis
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of polyps increased (one to seven polyps) by budding in all 
six replicates. These observations indicated that M. caver-
nosa remained in good condition during the experiment. 
In addition, M. cavernosa showed the ability to attack the 
alien coral. We recorded the sweeper tentacles of M. cav-
ernosa reaching the living edge of T. tagusensis colonies 

at night (Fig. 4) that resulted in progressive tissue necrosis 
in the alien coral over time. By day 30, we observed the 
growth of turf algae in the mortality area of T. tagusensis 
colonies and occurrences of hermit crabs in contact zones. 
At 60–90 days, additional T. tagusensis polyp mortality 

Fig. 4  Sweeper tentacles 
(arrows) observed in natural 
encounters involving competi-
tion: a–c Montastraea caver-
nosa and d Madracis decactis
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Fig. 5  Mortality (mean and SE) of native species in treatments 
(Contact and No Contact) in a manipulative experiment over 90 days 
(n = 6)

Table 2  One-way repeated measures ANOVA of mortality area in 
native species (Siderastrea stellata and Montastraea cavernosa) over 
time, with time as the repeated measure

Treatment (n = 2) was “Contact” with colonies of the invasive coral 
Tubastraea tagusensis versus “No Contact”. The times were the 
sampling periods 5, 15, 30, 60 and 90 days following the start of the 
experimental contact (n = 5 periods, Fig. 5). S. stellata: one level 
of the factor time (Day 5) was removed due to mortality = 0. n = 6 
native colonies per treatment

* p < 0.05

Source of variation DF MS p

Siderastrea stellata

Treatment 1 47.124 0.046*

Time 3 7.829 0.015*

Treatment (time) 3 7.829 0.015*

Post hoc Tukey tests TIME60: Contact > No Contact

TIME 90: Contact > No Contact

Montastraea cavernosa

Treatment 1 0.179 0.211

Time 4 0.017 0.161

Treatment (time) 4 0.007 0.430
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occurred together with coenosarc discoloration, deteriora-
tion of the skeleton, growth of epibionts (crustose coralline 
algae and turf algae) and occurrences of polychaetes and 
hermit crabs.

Discussion

We showed that the structure of coral assemblages in Cas-
cos Reef were different in reef zones with and without the 
presence of the alien coral. The invaded zone in Cascos 
Reef was dominated by T. tagusensis, especially on the ver-
tical surfaces (i.e., reef wall), and this zone showed signifi-
cantly lower abundances of the native hermatypic corals, 
M. decactis and M. hispida. We also found natural differ-
ences in patterns of native coral cover between habitats (as 
observed by Glynn 1976; Francini-Filho et al. 2013) with 
higher cover of the native zooxanthellate coral on horizon-
tal surfaces, indicating that the alien coral likely found less 
free space in this habitat than on vertical surfaces. On verti-
cal surfaces, we found a high number of natural encounters 
between alien and native corals with tissue mortality in col-
onies of S. stellata, M. hispida and M. decactis, indicating 
a large number of competitive interactions. A manipulative 
experiment confirmed that the tissue mortality on S. stel-
lata was significantly higher when in contact with T. tagu-
sensis than without contact. This was similarly observed 
for M. hispida by Dos Santos et al. (2013). However, our 
experiment also showed that M. cavernosa had insignifi-
cant mortality and reacted to the presence of T. tagusensis 
developing sweeper tentacles and damaging the alien colo-
nies. This native coral was dominant on all reef tops and 
its cover did not differ between invaded and non-invaded 
zones, suggesting possible resistance to the invader effects.

A similar pattern was reported on the rocky shores of 
southeast Brazil, where the high cover of the alien coral 
(e.g., on vertical surfaces) was positively correlated with 
changes in native assemblage structure (Lages et al. 2011). 
Vertical surfaces, with less light than horizontal surfaces, 
seems to have optimal conditions for the rapid growth of 
azooxanthellate T. tagusensis in Brazilian rocky and coral 
reefs (De Paula and Creed 2005; Mizrahi et al. 2014; pre-
sent study). Light is a key source of energy for reef-build-
ing, zooxanthellate corals via photosynthesis (autotrophy) 
for successful growth and competition in horizontal habi-
tats (Muscatine 1990). This could explain the preference 
of the alien coral for shaded habitats where they can find 
greater release from competition with native zooxanthellate 
corals than in high-irradiance habitats (Mizrahi et al. 2014). 
The traditional niche-based models of interspecific compe-
tition propose that one species can dominate a community, 
leading to either resource partitioning between the species, 
or elimination of the weaker competitor from the habitat 

(Colwell and Fuentes 1975; Diamond 1978). However, this 
hypothesis needs further testing.

Our results showed that alien coral dominance in the 
invaded zone (e.g., reef wall) can be related, at least in 
part, to their competitive abilities. We observed in natural 
encounters a high percentage of colonies of the native cor-
als M. hispida and S. stellata with partial mortality on the 
side facing the neighboring invader. Several authors have 
suggested that cup coral species from the Dendrophylliidae 
family (i.e., T. tagusensis, T. coccinea, T. micrantha and 
Balanophyllia elegans) are aggressive competitors using 
tentacular contact that can frequently cause tissue dam-
age to neighboring corals (Wellington and Trench 1985; 
Creed 2006; Dos Santos et al. 2013) or prevent overgrowth 
by ascidians (Bruno and Witman 1996). Creed (2006) and 
Dos Santos et al. (2013) demonstrated by mensurative and 
manipulative experiments that despite the ability of M. 
hispida to extrude mesenteric filaments a defense mecha-
nism, high mortality rates were observed on this native 
coral species when in direct contact with the alien corals 
T. tagusensis and T. coccinea. This may explain why cover 
of M. hispida was significantly lowest in the invaded zone. 
These observations corroborate previous suggestions that 
the endemic Brazilian coral M. hispida can be reduced or 
competitively excluded by T. tagusensis (Creed 2006; Dos 
Santos et al. 2013).

Our experiments also confirmed a negative effect of 
alien coral contact on the endemic coral S. stellata. We 
registered tentacular contact of T. tagusensis on native S. 
stellata by the use mechanism of elongated polyps which 
likely caused a significant increase of the mortality area 
observed in this native species 60 days after contact. 
Despite the fact that there was no test for the effects of 
mechanical contact on tissue necrosis (coral mimic con-
trol as in Box and Mumby 2007; Diaz-Pulido et al. 2011; 
Lages et al. 2012), our experiment strongly suggests that 
competition was the important mechanism causing tissue 
necrosis. The polyps of S. stellata are relatively small, and 
this may explain its lower ability to compete against the 
large and extensive polyps of T. tagusensis. This native 
species showed the lowest cover in the invaded zone, along 
with M. hispida and M. decactis, but cover was also very 
low at reef walls on non-invaded zones (Fig. 2), which 
might impede the detection of significant differences. An 
alternative explanation for the absence of significant vari-
ation in cover variation of S. stellata between zones is 
the compensation of high adult mortality by high settle-
ment and recruitment rates. Reproductive characteristics 
of S. stellata (e.g., early reproductive age and brooding) 
enable mature colonies of small size to release planulae 
larvae able to settle rapidly on substrate, favoring high 
recruitment rates in shallow reefs (Barros et al. 2003). 
This supports the competition–colonization trade-off 
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model (Levins and Culver 1971; Horn and MacArthur 
1972). This model proposes that species that are inferior 
competitors are better colonizers and vice versa (Levins 
and Culver 1971; Horn and MacArthur 1972). Following 
this model, inferior competitors are better at colonizing 
vacant space; however, superior competitors can gener-
ally displace the subordinates in time (Amarasekare et al. 
2004). Furthermore, the high reproductive capacity of the 
alien coral (Glynn et al. 2008; De Paula et al. 2014) would 
accelerate the displacement of S. stellata by strong compe-
tition between recruits, and therefore additional studies are 
needed to assess this issue.

T. tagusensis seemed competitively superior to most of 
the endemic species when competing for space; however, 
their aggressive mechanism had no effect on M. cavernosa. 
This native species had a low percentage of colonies with 
mortality in natural encounters and the tissue necrosis of 
this native species did not significantly increase when it 
was in contact with the invasive coral in the manipulative 
experiment. This result was most likely due to the abil-
ity of M. cavernosa to use sweeper tentacles (Richardson 
et al. 1979), as observed in the present study. It is probable 
that these tentacles developed in response to contact with 
the neighboring invasive coral (Richardson et al. 1979). 
In fact, 30 days after the beginning of the experiment, the 
alien coral began to show tissue necrosis. Several authors 
recorded the development of sweeper tentacles 20–30 days 
after contact with a neighbor (Wellington 1980; Chornesky 
1983; Langmead and Chadwick-Furman 1999; Lapid et al. 
2004; Lapid and Chadwick 2006). This ability to retaliate 
against invasive corals can explain why this species did 
not show differences in cover between invaded and non-
invaded zones, as observed in our manipulative experi-
ment. The cosmopolitan species M. cavernosa appears to 
offer resistance to competition from this invasive species. 
However, development of competitive mechanisms such as 
sweeper tentacles requires high energetic demands to coral 
which in turn cause a trade-off between the allocation of 
energy to aggressive interactions versus coral growth or 
reproduction (Tanner 1997). Thus, long-term competition 
against the alien coral could alter fitness of the native M. 
cavernosa.

Overall, our study confirmed negative effects of an alien 
coral on endemic hard corals as suggested by Creed (2006) 
and Dos Santos et al. (2013). This may be the trigger for 
a change in the functional benthic group dominance (Cruz 
et al. 2014) from hermatypic to ahermatypic coral. This 
would be dramatic for reef integrity, because hermatypic 
corals are ecological engineers accumulating high rates 
of calcium carbonate (Birkeland 1977) that increase reef 
structural complexity and facilitate the occurrence of a 
large number of species (Graham and Nash 2012; Graham 
2014; Rogers et al. 2014). Thus, alien ahermatypic corals 

could indirectly affect the physical structure and biodiver-
sity of the reef ecosystem. Due to the importance of biodi-
versity for ecosystem properties (Hooper et al. 2005), these 
impacts may represent the loss of ecological function and 
services (Micheli et al. 2014; Pratchett et al. 2014). Future 
experiments must address how this invasive species affects 
coral reef functioning.

Several studies suggested that highly diverse communi-
ties were more resistant to invasion than communities with 
low diversity (Elton 1958; Levine and D’Antonio 1999; 
Stachowicz et al. 1999). The biotic resistance  is the abil-
ity of a native community to resist change in the face of an 
invasion (Elton 1958; Kimbro et al. 2013). When compared 
with Caribbean or Indo-Pacific reefs, Brazilian coral reefs 
may have low resistance to alien coral impacts due to lower 
species richness and a higher level of endemism. These 
characteristics may facilitate the establishment of Tubast-
raea spp. in other Brazilian reefs and explain the absence 
of impacts of Tubastraea spp. on the coral assemblages of 
Caribbean reefs (Sammarco et al. 2012).

Our findings showed that the expansion of the invader 
to other Brazilian coral reefs along the coast could be 
extremely negative for the most important coral system on 
the South Atlantic Ocean. Species distribution modeling 
showed that habitats occupied by native species along the 
entire Brazilian coast were suitable for Tubastraea spp. 
(Riul et al. 2013). The Abrolhos reef complex, the most 
important marine hotspot of the southern Atlantic (the larg-
est and richest coral reef system, Leão et al. 2003), has not 
yet been invaded by Tubastraea spp., but a recent study 
reported this invader on oil platforms south of the Abrol-
hos Bank (Costa et al. 2014). The recent introduction of 
this species on Brazilian coral reefs requires the imple-
mentation of immediate eradication or control protocols 
with long-term monitoring in order to better understand the 
effects on Brazilian reefs. In addition, given that the intro-
duction of Tubastraea spp. in Brazil most likely occurred 
by ships and oil/gas platforms (Fenner 2001; De Paula and 
Creed 2004), there is a need for the appropriate rules to 
supervise maritime trade to reduce the flow of this invasive 
species to the region.
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