Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia

Nerea TURREIRA-GARCIA^{1,*}, Dimitrios ARGYRIOU¹, CHHANG Phourin², Prachaya SRISANGA³ & Ida THEILADE^{1,*}

¹ Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg, Denmark.

² Forest and Wildlife Research Institute, Forestry Administration, Hanoi Street 1019, Phum Rongchak, Sankat Phnom Penh Tmei, Khan Sen Sok, Phnom Penh, Cambodia.

³Herbarium, Queen Sirikit Botanic Garden, P.O. Box 7, Maerim, Chiang Mai 50180, Thailand.

* Corresponding authors. Email n.turreira@gmail.com, idat@ifro.ku.dk

Paper submitted 30 September 2016, revised manuscript accepted 11 April 2017.

មូលន័យសង្ខេប

ជនជាតិដើមភាគតិច និង សហគមន៍ដែលពឹងផ្អែកលើព្រៃឈើត្រវបានគេដឹងថាមានចំណេះដឹងពិសេស លើធនធានធម្មជាតិនៅជុំ វិញតំបន់ពួកគេរស់នៅ។ ទោះជាយ៉ាងណា ការខ្ចុចបរិស្ថានបានបន្ថយកម្រិតធនធានធម្មជាតិដែលធ្លាប់មាន និង គំរាមកំហែងដល់ ភាពបន្តមាននៃជីវវប្បធម៌របស់ជនជាតិដើមនិងប្រជាជនក្នុងតំបន់ទូទាំងពិភពលោក។ ការសិក្សានេះបានចងក្រងឯកសាររុក្ខជាតិ ដែលប្រើប្រាស់ដោយប្រជាជនរស់នៅដុំវិញតំបន់ព្រៃទំនាបសេសសល់ចុងក្រោយមួយក្នុងប្រទេសកម្ពុជា។ ការប្រមូលទិន្នន័យបាន ធ្វើនៅចន្លោះឆ្នាំ២០១៤ និង ២០១៦។ ការធ្វើផែនទីសិក្សាដោយមានការចូលរួមពីសមាជិកសហគមន៍និងមានការប្រមូលគំនិតដោយ សេរី (free-listing) ជាមួយប្រជាជនចំនួន៣១នាក់ អ្នកប្រមូលរុក្ខជាតិនិងការពិភាក្សាជាមួយក្រមគោលដៅចំនួន១២នាក់ ត្រូវបាន ធ្វើក្នុងភូមិចំនួនបីក្នុងខេត្តព្រះវិហារនិងស្ទឹងត្រែង។ សរុបមានរុក្ខជាតិដែលគេនិយមប្រើចំនួន៣៧៤ប្រភេទ ដែលត្រវបានកត់ត្រា ក្នុង នោះ៩០% ត្រវបានប្រមូល និង ធ្វើចំណែកថ្នាក់។ ប្រភេទទាំងនេះភាគច្រើនត្រវបានប្រើប្រាស់ជាឱសថ(៦៧%) អាហារ(៤៤%)និងជា សម្ភារៈប្រើប្រាស់(៣៧%) ហើយភាគច្រើនប្រភេទមួយត្រូវបានប្រើប្រាស់ច្រើនយ៉ាង។ ធនធានព្រៃឈើដែលសំខាន់ជាងគេសម្រាប់ ជនជាតិគូយគឺជាប្រភេទឈើផ្តល់ជ័រនៃពួកDipterocarpus ដែលត្រវបានចាត់ក្នុងប្រភេទរងគ្រោះដោយអង្គការIUCN។ បុរសនិង ស្ត្រីបានស្គាល់ប្រភេទរុក្ខជាតិដែលមានប្រយោជន៍ក្នុងចំនូនប្រហាក់ប្រហែលគ្នា ហើយមានរបៀបនៃការប្រើប្រាស់ខុសគ្នា (បុរសប្រ មូលប្រភេទរុក្ខជាតិដូចគ្នាទៅនឹងប្រភេទដែលស្ត្រីប្រើប្រាស់)។ មានរបាយការណ៍ជាច្រើនស្តីពីប្រភេទរុក្ខជាតិមានប្រយោជន៍ដែល បង្ហាញពីប្រភេទដែលផ្តល់សារៈសំខាន់ផ្នែកសេដ្ឋកិច្ចនិងវប្បធម៌ ព្រមទាំងស្ថានភាពរបាយ និង អភិរក្ស។ ការអភិរក្សព្រៃឈើពិតជា មានសារៈសំខាន់ក្នុងការទ្រទ្រង់ជីវភាព និង ចំណេះដឹងពាក់ព័ន្ធនឹងរុក្ខជាតិនិងមនុស្សនៃប្រជាជនក្នុងតំបន់ និង ជនជាតិដើមនៅព្រៃ ទ្យង់ៗ

Abstract

Indigenous peoples and forest-dependent communities are known to hold unique knowledge on natural resources in their surrounding environment. However, environmental degradation has diminished the availability of natural resources and threatens the bio-cultural survival of indigenous and local people world-wide. This study documented the plants used by people living in the vicinity of one of Cambodia's last remaining lowland rainforests. Fieldwork took

CITATION: Turreira-García, N., Argyriou, D., Chhang P., Srisanga, P. & Theilade, I. (2017) Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia. *Cambodian Journal of Natural History*, **2017**, 76–101.

place between 2014 and 2016. Participatory mapping exercises and 'free-listings' with 31 informants and participatory botanical collections and focus group discussions with 12 key informants were conducted across three villages in the Preah Vihear and Stung Treng provinces. A total of 374 useful 'folk taxa' were recorded, 90% of which were collected and identified. These species were mostly used as medicine (67%), food (44%) and/or materials (37%) with many species having multiple uses. The most important forest resources for the Kuy people were resin trees of the genus *Dipterocarpus*, some of which are listed as Endangered by IUCN. Men and women knew similar numbers of useful plants and played different roles in relation to these. Given the many useful plants reported, the indication of culturally and economically important species, and their distribution and conservation status, forest conservation appears to be essential to maintain the livelihoods and associated ethnobotanical knowledge of local and indigenous people in Prey Lang.

Keywords

Bio-cultural diversity, knowledge loss, Kui, Kuoy, local ecological knowledge, participatory plant collection, Prey Long, traditional ecological knowledge.

Introduction

Indigenous peoples and forest-dependent people in general hold a unique knowledge on natural resources in their surrounding environment (Martin, 2004). Among other things, their knowledge about plants useful for medicine, food, and construction improves their resilience to adversity. Worldwide, deforestation threatens the availability of natural resources useful for forest-dependent people, placing their bio-cultural survival under pressure. Ethnobotanical knowledge is directly related to the use of plant resources (Gadgil et al., 1993): if a plant is no longer available, it cannot be used and knowledge related to it may disappear. Under rapidly changing socio-economic, political and environmental conditions, knowledge related to the use of natural resources can be lost within a single generation (Reyes-García et al., 2013), especially given that ethnobotanical knowledge is usually orally transmitted and rarely documented (Case et al., 2005; Turreira-García et al., 2015). Documentation of ethnobotanical knowledge consequently provides an ancestal legacy for current and future generations. Ethnobotanical knowledge can also serve as an indicator of biodiversity (Salick et al., 1999) and as a measure of dependency upon the surrounding environment (Araújo & Lopes, 2011).

There is a growing trend in employing local people as parataxonomists to provide biodiversity inventories (Janzen, 2004; Janzen & Hallwachs 2011; Zhao *et al.*, 2016) and local knowledge is increasingly used in ecological and conservation research and monitoring. Local people are rarely actively involved in the research process, however (Brook & McLachlan, 2008). According to a recent review on the status of ethnobiology in Southeast Asia, Cambodia is one of the least researched countries (Hidayati *et al.*, 2015) with only 13 ethnobiological publications between 1960 and 2014. Our reviews of recent ethnobotanical studies in Cambodia, Thailand, Vietnam, and Laos also reveal that most studies have been undertaken in Thailand and have mainly focussed on medicinal plants (Table 1). (Only studies that focused on ethnic groups and included (semi-)wild plants were taken into account. Studies that did not encompass local people's knowledge, reviewed only one species or strictly inventoried homegardens were excluded). The only ethnobotanical studies involving the Kuy people in the literature were one Master's thesis about *materia medica* employed by Kuy healers in Thailand, which documented the use of 333 medicinal plants (Virapongse, 2006), and a study of medicinal plants used for postpartum ailments (Grape *et al.*, 2016).

Prey Lang ('our forest' in Kuy language) covers 530,000 ha in the central plains of Cambodia and is considered the last intact lowland rainforest in mainland Indochina (MacDonald, 2004). In May 2016, 432,000 ha of Prey Lang were gazetted as a wildlife sanctuary. However, 4,700 ha of this area is affected by economic land concessions and mining concessions (Argyriou et al., 2016) and about 50,000 ha of forests bordering the sanctuary are impacted by 53 concessions for agro-businesses (LICADHO, 2016). Forest clearance within and nearby these concessions and rampant illegal logging throughout Prey Lang threaten its biodiversity and natural resources (Olsson & Emmett, 2007). An estimated 250,000 villagers also live in the vicinity of Prey Lang and depend on it for their livelihoods (Hüls Dyrmose et al., in press) and culture.

The aims of our study were to: i) document the ethnobotanical knowledge of Kuy and Khmer people living nearby the Prey Lang forests (specifically regarding forest types, important natural resources, useful plants **Table 1** Previous ethnobotanical studies in Indochina based on searches made in Scopus, Web of Science and the Royal Library of Denmark and Copenhagen library services on 16 March 2017. UC = Plant use category (WEP = wild edible plants; MED = general medicine; DSD = digestive system disorder; CI= cognitive impairment; WH = women's healthcare; REP = repellents and pesticides); Spp. = Number of species (not necessarily scientifically recognized species); Vill. = Number of villages; Inf. = Number of informants; n.s. = not stated; * = Includes cultivated species.

Reference	Ethnic group (Country)	UC	Spp.	Vill.	Inf.	Vegetation
Grape <i>et al.</i> (2016)	Kuy (Cambodia)	MED, WH	68	4	50	Evergreen, semi-evergreen & deciduous dipterocarp forest
Chassagne <i>et al.</i> (2016)	Buong (Cambodia)	MED	214	28	202	Savanna, evergreen, semi-evergreen, deciduous dipterocarp & bamboo forest
Whitney <i>et al.</i> (2016)	Dao, Hmon, Kinh, Ma-Lieng, Sach, Tai, Tay, Xinh-Mun (Vietnam)	n.s.	111	5	n.s.	n.s.
Cruz-Garcia & Struik (2015)	Isaan (Thailand)	WEP	20	1	7	Dry monsoon forest (dipterocarp forest)
Tangjitman <i>et al.</i> (2015)	Karen (Thailand)	MED, DSD	36	6	178	Deciduous, tropical evergreen & dry dipterocarp forest
Neamsuvan <i>et al.</i> (2015)	n.s. (Thailand)	MED	95	7	7	Mangrove & swamp forest
Offringa (2015)	Khon Muang (Thailand)	MED, CI	n.s.	n.s.	16	n.s.
Elkington <i>et al.</i> (2014)	Lao (Laos)	MED	250	n.s.	12	Evergreen-mixed & deciduous forest
Khuankaew <i>et al.</i> (2014)	Tai Yai (Thailand)	MED	141	4	126	n.s
Junsongduang et al. (2014)	Karen, Lawa (Thailand)	MED	103	2	67	n.s
Kosaka <i>et al.</i> (2013)	Lao, Tai Leu, Tai Dam, Tai Deng, Khmu, Hmong (Laos)	WEP	115	2	20	Paddy fields
Tangjitman <i>et al.</i> (2013)	Karen (Thailand)	MED, WH	379*	14	458	Mixed deciduous, coniferous & hill evergreen forest
Inta <i>et al.</i> (2013)	Yuan (Thailand)	MED	93	5	30	n.s.
Srithi et al. (2012)	Hmong (Thailand)	MED, WH	79*	3	153	n.s.
Cruz-Garcia & Price (2011)	Isaan (Thailand)	WEP	87	4	n.s.	Dry monsoon forest (dipterocarp forest)
Lamxay <i>et al.</i> (2011)	Kry (Laos)	MED, WH	49	3	20	n.s.
de Boer et al. (2010)	17 groups (Laos)	REP	92	66	n.s.	n.s.
de Boer & Lamxay (2009)	Brou, Saek, Kry (Laos)	MED, WH	55	10	38	Secondary forest
Inta <i>et al.</i> (2008)	Akha (Thailand & China)	MED	95	5	50	n.s.
Libman <i>et al.</i> (2006)	n.s. (Laos)	MED	55	8	n.s.	n.s.
Johnson & Grivetti (2002)	Karen (Thailand)	WEP	47	2	32	Degraded secondary forest
Van On <i>et al.</i> (2001)	Dao (Vietnam)	MED	200	n.s.	n.s.	Primary & secondary forest, bamboo thicket, grassland, plantation
Anderson (1986a)	Akha (Thailand)	MED	121	n.s.	n.s.	Dry evergreen & lower montane (moist evergreen) forest
Anderson (1986b)	Lahu (Thailand)	MED	68	n.s.	n.s.	Lower montane (moist evergreen) region

© Centre for Biodiversity Conservation, Phnom Penh

and forest-spirits); and, ii) investigate the ability of local and indigenous people to collect plant voucher specimens. We also compared the local names of plants and forest types to scientific classifications and assessed how much of their useful or culturally important flora was threatened. The study did not consider differences in knowledge between Kuy and Khmer people because of the cultural continuum between the two groups (Swift, 2013). Our findings will later be shared with the communities in the form of a book.

Methods

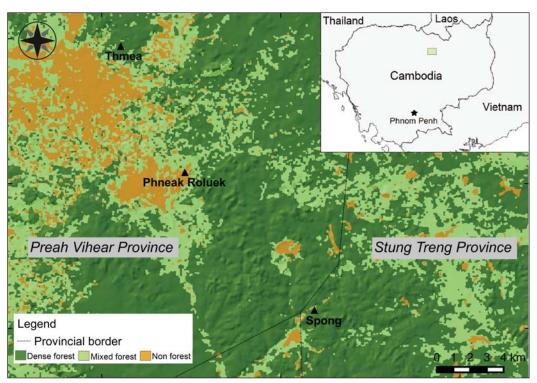
Study area and ethnicity

The greater Prey Lang area extends over four provinces in the central plains of Cambodia: Preah Vihear, Stung Treng, Kratie, and Kampong Thom. The area contains seven vegetation types among its evergreen, semi-evergreen, and deciduous forests, which differ significantly in species composition, dominant tree species and plant community structure (McDonald, 2004; Olsson & Emmett, 2007; Theilade *et al.*, 2011).

Approximately 250,000 people live in the greater Prey Lang area and the dominant ethnic groups are Kuy (indigenous) and Khmer (Cambodian). The Kuy (also recorded as Kui, Kuoy, Kuay, Kouy, Suoy or Suay) occur in northeastern Thailand, southern Laos, and northern and northeastern Cambodia. Most of the Kuy people in Cambodia live in the Prey Lang area, with an unverified population estimate of 23,000 (Swift, 2013).

Kuy and Khmer people are similar in terms of physical appearance, material culture, and religious practices: both groups are culturally and spiritually linked to the forest and practice of animism and Buddhism in Prey Lang (Swift, 2013). Lowland rice cultivation and swidden agriculture are widespread among both. The majority of inhabitants rely directly on the natural resources of Prey Lang for their livelihoods and resin tapping (extraction of oleoresin from dipterocarp trees) is the main source of cash income (Jiao *et al.*, 2015; Hüls Dyrmose *et al.*, in press).

Differences between the Kuy and Khmer groups have become subtle since national integration and assimilation policies were adopted by the Cambodian Government following independence in 1953 (Baird, 2011). These policies were strengthened during the Pol Pot regime in the 1970s, when Kuy communities were resettled to lowland areas such as Prey Lang and those speaking Kuy language were punished. Interaction and inter-marriage between Kuy and Khmer is frequent and many Kuy have adopted Khmer culture and traditions, although small differences still exist between the two groups. These include distinctive rituals (e.g., the Kuy practice communal fishing before the annual ceremony for the village spirit, perform rites for spirits before clearing new swiddens, or involve a certain species of turtle in weddings) and some characteristic crafts, foods, clothing and housing styles. While the two groups fomerly distinguished themselves through economic specialties such as iron production, their livelihood strategies of Kuy and rural Khmer are now very similar (Swift, 2013).


In recent decades, the Kuy identity has been based upon language and/or family descent, whereby a person may identify themself as Kuy if they speak the language and/or have a Kuy parent. However, Kuy people sometimes deny their ethnicity because they may be perceived as being of lower status (Swift, 2013). The Kuy language also shares many terms with Khmer, which may be due to their shared roots (because both are Mon-Khmer languages) or borrowed from Khmer (Mann & Markowski, 2005).

Three villages in Prey Lang were selected for the study: Thmea and Phneak Roluek in Preah Vihear Province and Spong in Stung Treng Province (Fig. 1). Thmea and Phneak Roluek were selected by representatives of the Prey Lang Community Network (PLCN) because they comprise traditional Kuy villages. The PLCN is a network of villagers within the Prey Lang area who advocate for forest protection through peaceful patrols and anti-logging interventions. Spong was selected by the authors due to its proximity to the core area of Prey Lang. This is the least disturbed area of the Prey Lang forests and is dominated by primary evergreen dipterocarp forest, with local residents reportedly being Khmer.

At the time of the study, Thmea was the largest village (2,024 people), closest to a paved road (36 km), surrounded by disturbed and deciduous forest, and furthest from evergreen forest. Spong was the smallest village (497 people), furthest from paved roads (73 km) and markets (76 km), and mainly surrounded by primary evergreen dipterocarp forest. Phneak Roluek Village was intermediate in size (587 people), distance to a paved road (44 km) and distance to evergreen forest (CDB Online, 2010) (Fig. 1).

Study formulation and methods

The idea to conduct an ethnobotanical study was initially discussed by the authors and PLCN steering committee. The committee agreed that it would be useful to document their knowledge and agreed to co-design the study and participate in the research process. Fieldwork took

Fig. 1 Study sites in Prey Lang, Cambodia. Created using forest cover map (Open Development Cambodia, 2014) and natural earth data in QGIS.

Fig. 2 Kuy woman carrying a handmade basket outside a traditional house. Phneak Roluek Village, Preah Vihear Province, September 2014 (© Nerea Turreira-García).

Fig. 3 Plant collector in Prey Lang, near Spong Village, Stung Treng Province, May 2015 (© Nerea Turreira-García).

place during September 2014, April–May 2015, and December 2016. Field methods included participatory mapping exercises, rankings, free-listings, forest walks, botanical collections and focus group discussions, and are explained in more detail below.

To record local knowledge of plants used by the Kuy people at Prey Lang, the Thmea, Phneak Roluek, and Spong villages were visited three times. During the first visit, five to seven men and four to seven women participated in workshops led by the first author and an interpreter in each village. The men were 53 ±13 years old and women 52 ±3 years old on average. Workshop participants were decided by a PLCN representative from each village, based on participants' knowledge of the area and its natural resources. Following the International Society of Ethnobiology guidelines (ISE, 2006), the study objectives were explained and participants gave their prior informed consent. Sharing and publication of results, and confidentiality were agreed upon. The workshops consisted of a participatory mapping exercise where participants drew their community boundaries, forest types, zones of use, and the most important sites and natural resources (Gilmore & Young, 2012). This helped the authors to become familiar with the area and local terms and aided the design of later forest walks and botanical collections with the participants. Participants were also asked to describe the defining characteristics of each-forest type and natural resources identified in the mapping exercise were ranked in order of importance.

Men and women were separated into two genderbased groups to free-list useful plants, including those they did not use or only used infrequently. This allowed for smaller and more productive working groups, because men and women sometimes differ in their knowledge due to gender-based divisions of labour (Reyes-García *et al.*, 2007). This was especially valuable for engaging the women who otherwise might have contributed less. Each group recorded the name, growth form, habitat, uses and flowering season of each plant (Martin, 2004; Reyes-García *et al.*, 2006; Powell *et al.*, 2014) and took about 90 minutes to complete their free-lists.

During the second and third visits, plant species registered during the workshops (and others not included in the workshop lists) were collected during forest walks (Martin, 2004). Twelve people comprising two men and two women from each of the three villages assisted with the plant collection (Figs 2–3), seven of whom were Kuy and five Khmer. These were divided into male and female groups and trained in botanical specimen collection and note-taking. During the forest walks, local names for forest types were compared with the vegetation classifications and descriptions of McDonald (2004) and Rollet (1972).

A total of 704 specimens were collected, after which the collectors were asked about the uses, parts used, preparation methods, and local (folk) names for each plant. Local names that referred to the same scientific species were regarded as synonyms and counted as one taxon in analysis. At the end of each visit, plant collectors cross-checked information recorded during focusgroup discussions. Information about forest spirits was collected through informal conversations with the plant collectors.

Plant uses were later categorised following Cook (1995), who defined 12 use categories, plus two additional categories defined by Gruca et al. (2014), namely 'cultural diseases and disorders' and 'ritual/magical' uses, and two categories defined by the authors, namely 'resin' and 'commerce' (Table 2). Ailments treated using medicinal plants were translated verbatim. Plant voucher specimen were dried and pressed at the Forest and Wildlife Research Institute in Phnom Penh. These were identified by two of the authors (CP & PS) and a full set of specimens were deposited in the Queen Sirikit Botanic Garden in Thailand. Species names and family classifications were confirmed using The Plant List (2013), and IUCN (2017) was used to determine the conservation status of species. In our analysis and interpretation, we refer to folk taxa based on local names, and to scientific species. Terms given in italics are in Khmer language.

Results

Forest types

During the participatory mapping exercise and forest walks, all three communities claimed to distinguish four types of forest (*prey* in Khmer, also used by Kuy):

- Prey robóh ('sparse forest', Fig. 4), described as a non-dense, deciduous forest that grows nearby their rice fields and *chamkars* ('forest gardens'). Prey robóh corresponds to two forest types described by McDonald (2004), namely deciduous forest (<35 m tall) and short semi-evergreen forest (3–12 m tall). Local informants did not distinguish successional stages of the deciduous forest, whereas the short semi-evergreen forest is a combination of both deciduous and evergreen species.
- Prey sralao' (no English translation, Fig. 5) was described by the local communities as a tall evergreen forest at Prey Lang, denser than *robóh* but easily traversable, and characterised by dominance of the *sralao'* trees (*Lagerstroemia* sp.). McDonald (2004) and Rollet (1972) classified this forest type with the same name.

Cambodian Journal of Natural History 2017 (1) 76-101

Use category	Abbr.	Description
Food	F	Plants eaten by human beings, and plants used to make beverages
Food additives	Fa	Processing additives and other additive ingredients used in food or beverages preparation
Vertebrate food	V	Forage and fodder for domestic or wild vertebrates that are useful to humans
Invertebrate food	Ι	Plants eaten by invertebrates that are useful to humans
Apicolous	А	Plants that provide pollen, nectar or resins as sources for honey or propoleum production
Fuel	Fu	Plants used to produce charcoal, or used as petroleum substitutes, alcohols, tinder or firewood
Materials	Ма	Plants used for construction of houses, fences or bridges, or to elaborate handicrafts, music instruments, work tools, weapons, home objects, etc. This category includes fibres, waxes, oils, chemicals and their derived products (but not Resin), cosmetic products and dyes
Social	S	Plants used for cultural purposes, which are not definable as food or medicines. This category includes stimulants, and plants used for games (modified according to local beliefs)
Toxic to vertebrates	Tv	Plants that are poisonous to vertebrate animals, both accidentally and when deliberately applied, such as extracts and preparations used for fishing and hunting
Toxic to non- vertebrates	Tn	Plants that are poisonous to non-vertebrates, both accidentally and when deliberately applied. This category includes insecticides and herbicides
Medicinal	М	Plants used to cure human and animal sicknesses
Environmental	Е	Plants used to protect, improve, and fertilise soils; to provide shadow, as living fences, ornamentals or that form a structural part of agroforestry systems
Cultural Diseases and Disorders	CDD	Plants used to treat disorders caused by spirits, such as mental illnesses and curses (modified according to local beliefs)
Ritual/Magical Uses	RMU	Plants used during healing ceremonies, incantations, prayers, offerings and sacrifices made to deities, fetishes/amulets/charms, divination/oracles, black magic/bad medicines, incense
Resin	R	This category is separated from 'Materials' due to its high importance in Cambodian livelihoods
Commerce	С	Plants used for trade and are part of the household economy

Table 2 Description of plant use categories employed in this study for classifying plant use records (adapted from Cook (1995) and Gruca *et al.* (2014)).

- 3. *Prey sdok* ('thick/narrow forest'), *prey thom* ('tall forest') and *prey chas* ('old forest') were Khmer synonyms for the 'hard to penetrate', tall forest at Prey Lang (Fig. 6). According to informants, this forest type is where more natural resources, expensive timber trees, resin trees, rattan and animals occur. It corresponds to the semi-evergreen and evergreen dipterocarp forests described by McDonald (2004) and the dense forest described by Rollet (1972).
- 4. *Prey choam* (in Kuy) or *prey roneam* (in Khmer, Fig. 7), was described as 'the forest growing on land permanently covered by shallow water'. McDonald (2004) distinguished two types of swamp forest, deciduous swamp forest and evergreen swamp forest, and Theilade *et al.* (2011) provided a detailed account of the latter. Both types of swamp forest are rare and endemic to the region.

Inhabitants of the three villages collect timber and nontimber forest products (NTFPs) in different areas of all four forest types. They usually follow rivers, trails which they create and maintain, and at Thmea Village, also a road built by a mining company. During their forest trips, they hunt and collect wood for construction, medicinal plants, resin and rattan. Trip frequency, duration, transportation and distance travelled vary according to the purpose and needs of each trip. In the dry season for example, men usually travel in pairs to the forest by *coyon* (local tractor) to collect oleoresin from dipterocarp trees. These trips last about three days and the collectors sleep in hammocks in forest shelters. Women usually walk or are carried by *coyon* or motorbike to collect NTFPs in daily trips throughout the year.

Importance of forest resources

Our ranking exercise revealed that the most important resources for all three villages are the resin trees belonging to the Dipterocarpaceae, followed by *pdao* (*Calamus viminalis* Willd.), a rattan used to make furniture for sale and local use. The Prey Lang area was also reported to be important for medicinal plants, wild edible plants, other kinds of NTFPs, wild animals and timber.

Fig. 4 Deciduous forest. Stung Treng Province, September 2014 (© Nerea Turreira-García).

Fig. 5 *Sralao'* (*Lagerstroemia* sp.) forest. Preah Vihear Province, April 2015 (© Nerea Turreira-García).

Fig. 7 Evergreen swamp forest. Stung Treng Province, December 2016. (© Nerea Turreira-García).

Fig. 6 Short semi-evergreen forest and evergreen dipterocarp forest. Preah Vihear Province, December 2016 (© Nerea Turreira-García).

Fig. 8 Spirit house near Phneak Roluek. Preah Vihear, September 2014 (© Nerea Turreira-García).

Cambodian Journal of Natural History 2017 (1) 76-101

Folk taxa

Our free-listing exercises and plant collections yielded 374 folk taxa, 337 (90%) of which were collected and five photographed. Of the 337 folk taxa collected, eight were identified to family, 31 to genus and 288 to species (Appendix 1). Ten were not identified to species level. Thirty-two plants were not collected or photographed, either because they were locally extinct, occurred too far away or because (in two cases) our local plant collectors did not know them. Informants claimed to use at least 11 species of fungi, of which four belong to the Basidiomycota phyla. These are not considered further in our analysis.

The folk taxa recorded belonged to 83 families and the families most frequently listed were Leguminosae (10%), Rubiaceae (8%), Annonaceae (4%), Apocynaceae (4%), Malvaceae (4%), and Dipterocarpaceae (3%). Species known by most informants included highly valuable timber species such as Hopea odorata Roxb. (korki), Afzelia xylocarpa (Kurz) Craib (beng), Heritiera javanica (Blume) Kosterm. (doungchem), Dalbergia oliveri Prain (neanghoun), Pterocarpus macrocarpus Kurz (thnong), Shorea roxburghii G. Don (porpael), Sindora siamensis Miq. (korkoh), and Terminalia mucronata Craib & Hutch. (bramdomleng); Lagerstroemia speciosa (L.) Pers. (kraol), a medicinal plant with abundant and flashy purple flowers at the time of the collection; several resin-yielding species including *Dipterocarpus alatus* Roxb. & G.Don (*chhertheal*) and D. intricatus Dyer (trach); and finally, edible species and species with medicinal properties: Azadirachta indica

A. Juss. (*sdao*), *Hymenodictyon orixense* (Roxb.) Mabb. (*aolaok*), and *Syzygium zeylanicum* (L.) DC. (*smarch*).

Most of the plants used were trees and shrubs (70%), followed by vines, including woody and non-woody lianas and climbers (24%), although herbaceous plants (5%) and palms (1%) were also registered. A total of 630 uses were recorded for the 374 folk taxa (Fig. 9) and each taxon had 2 \pm 1 (mean \pm SD) uses on average. Most were used for medicine (*n*=249, 67%), food (*n*=165, 44%) or as material (*n*=138, 37%), especially for construction of houses, fences and huts.

Most medicinal folk taxa were used for a single ailment (51% of all medicinal folk taxa), 32% for two ailments, and 17% for more than two ailments. For instance, *Lagerstroemia speciosa* was reported to cure seven different illnesses. Almost 30% of the medicinal folk taxa were used to treat postpartum ailments, usually to stimulate appetite, milk production, blood circulation or uterus contraction. This was followed by plants that cured fever (20%), skin problems (17%) and stomach problems (10%).

Informants often agreed on the uses of folk taxa, although they sometimes used the same taxon for different ailments. For example, women from Phneak Roluek Village usually grind the leaves of *Drynaria sparsisora* (Desv.) T. Moore for boils, whereas men from Spong Village claimed that chewing the root of this plant cured urine infection. In addition, different parts of the same folk taxon were sometimes used for the same ailment. In Spong for example, the bark of *Terminalia mucronata* is

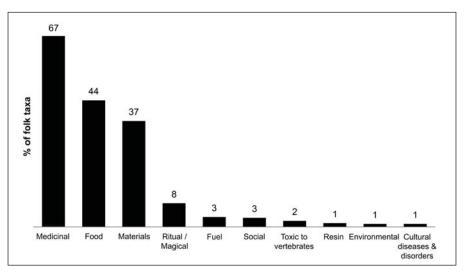


Fig. 9 Percentage of folk taxa (n=374) per plant-use category in Prey Lang, Cambodia.

boiled to treat diarrhoea, whereas women from Phneak Roluek Village boil the root for the same purpose. Men from Thmea Village claimed that the bark of *Ficus benjamina* should be boiled for skin infections, while men from Spong and women from Phneak Roluek prepare cold infusions of the root and/or leaves for the same purpose.

Men often knew the medicinal plants for postpartum ailments, but seldom knew their specific uses. The plant collectors from all three villages explained that men often collect the these plants for their wives and so recognize them, but that women usually prepare the medicines. Women consequently provided more information on the preparation of medicinal plants for postpartum ailments, although they did not always agree on what the postpartum plants were specifically used for. For example, women from Phneak Roluek boiled or made a tincture from the bark of *Hymenocardia punctata* Wall. ex Lindl. to improve postpartum blood circulation, whereas women from Spong boiled the root of the species to stimulate appetite, milk production and postpartum health.

Men collected and free-listed 237 species and women 235 species in total. Men knew 65 folk taxa that women did not free-list or collect, and women knew 81 folk taxa that men did not. Of the folk taxa known only to men, 47 were medicinal (19% of all medicinal folk taxa), 20 were materials (14%) and 12 were food (7%). Of the folk taxa only known to women, 46 were medicinal (18%, of all medicinal folk taxa), 40 were food (24%) and 18 were materials (13%). Informal conversations with the plant collectors on the differences between plants known and used by women and men revealed that they do not perceive knowledge as being influenced by gender. In their view, both men and women know the same plants.

Forest and village spirits

Informants explained during the plant collection that many spirits occur in the Prey Lang forest. Multiple forest spirits or village spirits exist, such that each community takes care of a particular forest-spirit, or group of spirits, and sometimes different communities take care of the same spirit. In addition, some trees have their own spirit. For example, when *Hopea odorata* (*korki*) and *Dipterocarpus alatus* (*chhertheal*) are large, these trees are inhabited by a spirit. Other large trees that possess their own spirit include *Irvingia malayana* Oliv. ex A.W.Benn. (*chombork*), *Sindora siamensis* (*korkoh*), *Lagerstroemia calyculata* Kurz (*sralao'*) and all resin-yielding trees. *Ficus pubilimba* Merr. (*chhrey*) trees also have a spirit, irrespective of size.

Spirit trees are not supposed to be cut, and villagers must ask permission from the spirit if they wish to do so. In general, people pray to the forest-spirit of the area in

Cambodian Journal of Natural History 2017 (1) 76-101

spirit houses (Fig. 8) and sacred sites before entering the forest. In their prayers they ask for permission to take its natural resources, and believe that if they fail to do so, the spirit will take revenge and harm them. They also make an offering to spirits before eating or drinking rice wine. Some people reported being angry at the spirits because they do not harm illegal loggers and companies that clearcut forest areas. However, they continue to praise the spirits out of respect (and possibly also fear).

A given spirit can either be male or female. The male spirit is usually called *neak ta* or *lok ta*, and the female spirit *yeay* in Khmer and *yeak* in Kuy. These names change according to the community. The culture of respect for the spirits is passed on through the generations. The forest and tree spirits can also have family members such as parents, spouse and/or children.

Conservation status

Thirty-five of the species recorded have been assessed by IUCN (2017) and a quarter of these belong to the Dipterocarpaceae, notably Shorea guiso Blume (chorchong, Critically Endangered), Dipterocarpus alatus (chhertheal, Endangered), Shorea roxburghii (porpael, Endangered) and Anisoptera costata Korth. (pdeak, Endangered). The dipterocarps are used for resin extraction and construction. Pinus merkusii Jungh. & de Vriese (srorl, Vulnerable) is also used for resin tapping. Some of the luxury wood species are also globally threatened, such as Afzelia xylocarpa (beng, Endangered), Dalbergia oliveri (neanghoun, Endangered), Hopea odorata (korki, Vulnerable), although Sindora siamensis is not (korkoh, Least Concern). A number of plant species used for food and medicine also occur on the IUCN list (though not necessarily in a threatened category), including Curcuma sparganiifolia Gagnep. (kra chork anderk, Near Threatened), Aglaia edulis (Roxb.) Wall. (bang kau, Lower Risk/Near Threatened) and Irvingia malayana Oliv. ex A.W.Benn. (chombork, Least Concern), as do species used for black magic such as Xylopia pierrei Hance (kray sor, Vulnerable).

Discussion

Prey Lang is a mosaic of forest types (McDonald, 2004; Theilade *et al.*, 2011) and its inhabitants are tightly linked to this area culturally, spiritually and economically. This forest-dependency has created a great body of ethnobotanical knowledge. The study participants, who were mainly middle-aged and older people, demonstrated extensive knowledge of useful flora in Prey Lang. Participants explained that some young people know less about the forest and do not show interest in such knowledge.

The youth would need time to accumulate ethnobotanical knowledge if they were interested to do so, if the resources were still available, and if their socio-political conditions were unchanged when they became adults (Reyes-García *et al.*, 2013).

The congruence between local and scientific forest classifications in our study supports the notion that local people can play a role in classification of forest types (Halme & Bodmer, 2007) and ecological conservation and research (Janzen, 2004). Most of the ethnobotanical terminology used by the participants was in Khmer, which suggests that use of the Kuy language for plant-related matters may be vanishing. As noted previously, the Kuy culture has largely been assimilated into Khmer culture in Cambodia (Swift, 2013). Study participants also reported that many children were separated from their parents during the Khmer Rouge (1963–1997) and lost the ability to speak Kuy. This contrasts with the culture of forest knowledge and respect for spirits, which has clearly survived.

The ethnobotanical knowledge of the inhabitants of Prey Lang encompasses mainly trees and shrubs, which may reflect the abundance and distribution of vegetation here. Most of the plants used were used for medicine, food and construction, similar to patterns of plant use by Kuy healers in Thailand (Virapongse, 2006). Compared with other studies in similar vegetation in Indochina, the numbers of medicinal plants used in Prey Lang (n=249) were similar or greater than those reportedly used by the Lao (*n*=250; Elkington *et al.*, 2013), Dao (*n*=200; Van On et al., 2001), Akha (n=121; Anderson, 1986a) and Lahu (n=68; Anderson, 1986b) ethnic groups. Somewhat higher figures have been reported for Kuy healers (n=333; Virapongse, 2006) and the Karen ethnic group in Thailand, however (n=379; Tangjitman et al., 2013), possibly due to greater survey coverage or because these studies included more cultivated species. The Kuy people also appear to know more wild edible plants (n=165) than the Isaan (*n*=87; Cruz-Garcia & Price, 2011) and Karen (*n*=47; Johnson & Grivetti, 2002) ethnic groups in Thailand.

Previous studies suggest postpartum ailments are the most frequent conditions treated with medicinal plants by the Kuy in Cambodia (Grape *et al.*, 2016). On revisiting the research sites of Grape *et al.* (2016), we found 11 new plants used for postpartum ailments, which suggests that potential remains to find additional useful plants in Prey Lang. This contrasts with other studies that have found that fever and digestive problems are the most frequently treated ailments in the region (Virapongse 2006; Tangjitman *et al.*, 2013; Elkington *et al.*, 2014; Neamsuvan *et al.*, 2015) and world-wide (e.g., Hanazaki *et al.*, 2000; Casagrande, 2002; Ayodele, 2005; Liu *et al.*, 2009).

Resin trees, the main source of income to local households (Jiao *et al.*, 2015; Hüls Dyrmose *et al.*, in press), were ranked in our study as the most important resources of Prey Lang, together with trees used for construction. Many of these trees were also considered spirit trees and thus constitute a strong bio-cultural and economic connection to the forest. Unfortunately, many of these trees are also luxury timber trees which have been logged illegally for decades, and are now endangered locally and globally. Illegal logging consequently threatens the bio-cultural life of the Kuy and Khmer people at Prey Lang.

Other studies have found gender-based differences in ethnobotanical knowledge across most use-categories (Nesheim et al., 2006; Araújo & Lopes, 2011; Müller et al., 2014). These are usually represented as differences in number of species known, and/or that men and women know different species because of their different roles in society. Our results suggest the reverse: that many plants are known by both men and women but their use is gendered (i.e., men collect the species whereas women oversee their use). Conversations with plant collectors on the differences between plants known and used by women and men revealed that they did not perceive plant knowledge as gendered: in their view, men and women know the same plants. Further studies are consequently warranted to determine if gender-specific plant knowledge exists in Prey Lang or not.

The participatory nature of our study encouraged local people to gain ownership of the research. As it was made clear from the onset that the results would be shared with the communities in the form of an ethnobotanical book, this motivatived study participants to extensively collect useful plants and explain their uses in detail. The plant collectors also felt that a book might motivate younger generations to take interest in the subject, and subsequently pass on their knowledge to future generations.

The plant list generated in this study was used to create a database to support community-based biodiversity monitoring and our study demonstrates that local experts can effectively contribute to forest categorisation and voucher specimen collection. As indigenous knowledge is constantly changing, being produced as well as reproduced, discovered as well as lost (Ellen *et al.*, 2000) and is also site-specific (Mutchnick & McCarthy, 1997), we acknowledge that additional plants may have been used in the past or in other regions of Prey Lang. Nevertheless, this study serves as an indicator of the biocultural diversity and importance of Prey Lang and it points to the need to conserve this ecosystem to sustain the livelihoods of its inhabitants.

Acknowledgements

The authors are grateful to the inhabitants of Prey Lang who shared their time and knowledge and to the Prey Lang Community Network for their brave work protecting the forest. Thanks are due to University of Copenhagen, Danmission, Oticon Fonden and O.H.F og A.J.-E Heilmanns Fond for financing the research. Special thanks go to Narith Nou for helping with the logistics and to Victoria Helene Grape and Anne-Mette Hüls Dyrmose for their assistance during the fieldwork. We also wish to thank our interpreters Vathana, Sokhan, Kim, Vuthy, Raksmey and Sokchea for their work. This work is dedicated to the memory of the environmental activist Chut Wutty and the great botanist J. F. Maxwell.

References

- Anderson, E.F. (1986a) Ethnobotany of hill tribes of northern Thailand. I. Medicinal plants of Akha. *Economic Botany*, 40, 38–53.
- Anderson, E.F. (1986b) Ethnobotany of hill tribes of Northern Thailand. II. Lahu medicinal plants. *Economic Botany*, 40, 442–450.
- Araújo, F.R. & Lopes, M.A. (2011) Diversity of use and local knowledge of palms (Arecaceae) in eastern Amazonia. *Biodi*versity and Conservation, 21, 487–501.
- Argyriou, D., Tistan, A., Theilade, I., Vogt, C., Turreira-García, N., Mitterhofer, P. & Brofeldt, S. (2016) The Current Status of Prey Lang: 4th Monitoring Report with Information from PLCN Patrolling. Prey Lang Community Network, Cambodia. Https://preylang.net/reports/ [accessed 12 June 2016].
- Ayodele, A.E. (2005) The Medicinally Important Leafy Vegetables of South Western Nigeria. Http://www.ethnoleaflets.com/leaflets/ ayodele.htm [accessed 16 November 2015].
- Baird, I.G. (2011) The construction of "indigenous peoples" in Cambodia. In Alterities in Asia: Reflections on Identity and Regionalism (ed L. Yew), pp. 155–176. Taylor and Francis, London, UK and New York, USA.
- de Boer, H. & Lamxay, V. (2009) Plants used during pregnancy, childbirth and postpartum healthcare in Lao PDR: a comparative study of the Brou, Saek and Kry ethnic groups. *Journal of Ethnobiology and Ethnomedicine*, **5**, 25.
- de Boer, H., Vongsombath, C., Pålsson, K., Björk, L. & Jaenson, T.G.T. (2010) Botanical repellents and pesticides traditionally used against hematophagous invertebrates in Lao People's Democratic Republic: a comparative study of plants used in 66 villages. *Journal of Medical Entomology*, **47**, 400–414.
- Brook, R.K. & McLachlan, S.M. (2008) Trends and prospects for local knowledge in ecological and conservation research and monitoring. *Biodiversity and Conservation*, **17**, 3501–3512.
- Casagrande, D.G. (2002) *Ecology, cognition, and cultural transmission of Tzetal Maya medicinal plant knowledge*. PhD thesis, University of Georgia, USA.

Case, R.J., Pauli, G.F. & Soejarto, D.D. (2005) Factors in maintaining indigenous knowledge among ethnic communities of Manus Island. *Economic Botany*, **59**, 356–365.

- CDB Online (2010) Community Database Online. Http://db.ncdd. gov.kh/cdbonline/home/index.castle [accessed 9 June 2016].
- Chassagne, F., Hul S., Deharo, E. & Bourdy, G. (2016) Natural remedies used by Bunong people in Mondulkiri Province (Northeast Cambodia) with special reference to the treatment of 11 most common ailments. *Journal of Ethnopharmacology*, **191**, 41–70.
- Cook, F. (1995) *Economic Botany Data Collection Standard*. Prepared for the Interantional Working Group on Taxonomic Databases for Plant Sciences. Royal Botanic Gardens, Kew, UK.
- Cruz-Garcia, G.S. & Price, L.L. (2011) Ethnobotanical investigation of "wild" food plants used by rice farmers in Kalasin, Northeast Thailand. *Journal of Ethnobiology and Ethnomedicine*, 7, 33.
- Cruz-Garcia, G.S. & Struik, P.C. (2015) Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand. *Economic Botany*, 69, 99–113.
- Elkington, B.G., Phiapalath, P., Sydara, K., Somsamouth, V., Goodsmith, N.I. & Soejarto, D.D. (2014) Assessment of the importance of medicinal plants among communities around Khiat Ngong of southern Laos. *Journal of Environmental Biology*, 35, 607–615.
- Ellen, R.F., Parkes, P. & Bicker, A. (2000) Indigenous Environmental Knowledge and Its Transformations: Critical Anthropological Perspectives. Harwood Academic, Amsterdam, the Netherlands.
- Gadgil, M., Berkes, F. & Folke, C. (1993) Indigenous knowledge for biodiversity conservation. *Ambio*, 22,151–156.
- Gilmore, M.P. & Young, J.C. (2012) The use of participatory mapping in ethnobiological research, biocultural conservation, and community empowerment: a case study from the Peruvian Amazon. *Journal of Ethnobiology*, **32**, 6–29.
- Grape, V.H., Turreira-García, N., Holger-Schmidt, L., Chhang P. & Srisanga, P. (2016) Postpartum phytomedicine and its future in maternal healthcare in Prey Lang, Cambodia. *Cambodian Journal of Natural History*, **2016**, 119–133.
- Gruca, M., Cámara-Leret, R., Macía, M. J. & Balslev, H. (2014) New categories for traditional medicine in the Economic Botany Data Collection Standard. *Journal of Ethnopharmacology*, **155**, 1388–1392.
- Halme, K.J. & Bodmer, R.E. (2007) Correspondence between scientific and traditional ecological knowledge: rain forest classification by the non-indigenous ribereños in Peruvian Amazonia. *Biodiversity and Conservation*, 16, 1785–1801.
- Hanazaki N., Tamashiro J. Y., Leitão-Filho, H.F. & Begossi, A. (2000) Diversity of plant uses in two Caiçara communities from the Atlantic Forest coast, Brazil. *Biodiversity and Conser*vation, 9, 597–615.
- Hidayati S., Franco, F.M. & Bussmann, R.W. (2015) Ready for phase 5-current status of ethnobiology in Southeast Asia.

Cambodian Journal of Natural History 2017 (1) 76-101

Journal of Ethnobiology and Ethnomedicine, 11, 17.

- Hüls Dyrmose, A.-M., Turreira-García, N., Theilade, I. & Meilby, H. (in press) Economic importance of oleoresin (*Dipterocarpus alatus*) to forest-adjacent households in Cambodia. *The Natural History Bulletin of the Siam Society*.
- Inta, A., Shengji, P., Balslev, H., Wangpakapattanawong, P. & Trisonthi, C. (2008) A comparative study on medicinal plants used in Akha's traditional medicine in China and Thailand, cultural coherence or ecological divergence? *Journal of Ethnopharmacology*, **116**, 508–517.
- Inta, A., Trisonthi, P. & Trisonthi, C. (2013) Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. *Journal of Ethnopharmacology*, 149, 344–351.
- International Society of Ethnobiology (2006) *ISE Code of Ethics* (*with 2008 additions*). Http://ethnobiology.net/code-of-ethics/ [accessed 24 August 2014].
- IUCN (2017) The IUCN Red List of Threatened Species. Http:// http://www.iucnredlist.org/ [accessed 15 March 2017].
- Janzen, D.H. (2004) Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists. *Applied Ecology*, **41**, 181–187.
- Janzen, D.H. & Hallwachs, W. (2011) Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica. *PloS one*, **6**, e18123.
- Jiao, X., Smith-Hall, C. & Theilade, I. (2015) Rural household incomes and land grabbing in Cambodia. *Land Use Policy*, 48, 317–328.
- Johnson, N. & Grivetti, L.E. (2002) Environmental change in Northern Thailand: impact on wild edible plant availability. *Ecology of Food and Nutrition*, 41, 373–399.
- Junsongduang, A., Balslev, H., Inta, A., Jampeetong, A. & Wangpakapattanawong, P. (2014) Karen and Lawa medicinal plant use: uniformity or ethnic divergence? *Journal of Ethnopharmacology*, **151**, 517–527.
- Khuankaew, S., Srithi, K., Tiansawat, P., Jampeetong, A., Inta, A.
 & Wangpakapattanawong, P. (2014) Ethnobotanical study of medicinal plants used by Tai Yai in Northern Thailand. *Journal* of *Ethnopharmacology*, **151**, 829–838.
- Kosaka Y., Xayvongsa, L., Vilayphone, A., Chanthavong, H., Takeda S. & Kato M. (2013) Wild edible herbs in paddy fields and their sale in a mixture in Houaphan Province, the Lao People's Democratic Republic. *Economic Botany*, **67**, 335–349.
- Lamxay, V., de Boer, H.J. & Björk, L. (2011) Traditions and plant use during pregnancy, childbirth and postpartum recovery by the Kry ethnic group in Lao PDR. *Journal of Ethnobiology and Ethnomedicine*, 7, 1–15.
- Libman, A., Bouamanivong, S., Southavong, B., Sydara, K. & Soejarto, D. D. (2006) Medicinal plants: an important asset to health care in a region of Central Laos. *Journal of Ethnopharmacology*, **106**, 303–311.
- LICADHO (2016) *Cambodia's Concessions: Static Maps and Spatial Data.* Http://www.licadho-cambodia.org/land_concessions [accessed 06 June 2016].

- Liu Y., Dao Z., Yang C., Liu Y. & Long C. (2009) Medicinal plants used by Tibetans in Shangri-la, Yunnan, China. *Journal of Ethnobiology and Ethnomedicine*, **5**, 15.
- Mann, N. & Markowski, L. (2005) A rapid appraisal survey of Kuy dialects spoken in Cambodia. Unpublished report to SIL International, Texas, USA. Http://www-01.sil.org/silesr/2005/ silesr2005-018.pdf [accessed 20 March 2017].
- Martin, G.J. (2004) *Ethnobotany: A Methods Manual*. Earthscan, London, UK.
- McDonald, J.A. (2004) Ecological survey of Prey Long, Kampong Thom. A proposal for the conservation of Indochina's last undisturbed lowland rainforest. Plant Resources Center, University of Texas at Austin, USA.
- Mutchnick, P.A. & McCarthy, B.C. (1997) An ethnobotanical analysis of the tree species common to the subtropical moist forest of Petén, Guatemala. *Economic Botany*, **51**, 158–183.
- Müller, J.G., Boubacar, R. & Guimbo, I.D. (2014) The "how" and "why" of including gender and age in ethnobotanical research and community-based resource management. *Ambio*, **44**, 67–78.
- Neamsuvan, O., Sengnon, N., Seemaphrik, N. & Chouychoo, M. (2015) A survey of medicinal plants around upper Songkhla Lake, Thailand. *African Journal of Traditional, Complementary* and Alternative Medicines, **12**, 133–143.
- Nesheim, I., Dhillion, S.S. & Stølen, K. (2006) What happens to traditional knowledge and use of natural resources when people migrate? *Human Ecology*, **34**, 99–131.
- Offringa, L. (2015) *Medicinal Plants of Northern Thailand for the Treatment of Cognitive Impairment in the Elderly.* Springer, Switzerland.
- Olsson, A. & Emmett, D. (2007) A floral and faunal biodiversity assessment of Prey Long. PUBLISHER?, Phnom Penh, Cambodia.
- Van On T., Quyen D., Bich L.D., Jones, B., Wunder, J. & Russell-Smith, J. (2001) A survey of medicinal plants in BaVi National Park, Vietnam: methodology and implications for conservation and sustainable use. *Biological Conservation*, 97, 295–304.
- Powell, B., Ouarghidi, A., Johns, T., Ibn Tattou, M. & Eyzaguirre, P. (2014) Wild leafy vegetable use and knowledge across multiple sites in Morocco: a case study for transmission of local knowledge? *Journal of Ethnobiology and Ethnomedicine*, **10**, 34.
- Reyes-García, V., Guèze, M., Luz, A. C., Paneque-Gálvez, J., Macía, M.J., Orta-Martínez, M., Pino, J. & Rubio-Campillo, X. (2013) Evidence of traditional knowledge loss among a contemporary indigenous society. *Evolution and Human Behavior*, 34, 249–257.
- Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. & Wilkie, D. (2006) Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. *Economic Botany*, **60**, 62–74.
- Reyes-García, V., Marti, N., Mcdade, T., Tanner, S. & Vadez, V. (2007) Concepts and methods in studies measuring individual ethnobotanical knowledge. *Journal of Ethnobiology*, 27,

© Centre for Biodiversity Conservation, Phnom Penh

182–203.

- Rollet, B. (1972) La vegetation du Cambodge. Bois et Foréts des Tropiques, 144, 3–14; 145, 34–30; 146, 4–20.
- Salick, J., Biun, A., Martin, G., Apin, L. & Beaman, R. (1999) Whence useful plants? A direct relationship between biodiversity and useful plants among the Dusun of Mt. Kinabalu. *Biodiversity and Conservation*, 8, 797–818.
- Srithi, K., Trisonthi, C., Wangpakapattanawong, P. & Balslev, H. (2012) Medicinal plants used in Hmong women's healthcare in northern Thailand. *Journal of Ethnopharmacology*, **139**, 119–135.
- Swift, P. (2013) Changing ethnic identities among the Kuy in Cambodia: assimilation, reassertion and the making of indigenous identity. *Asia Pacific Viewpoint*, 54, 296–308.
- Tangjitman, K., Wongsawad, C., Kamwong, K., Sukkho, T. & Trisonthi, C. (2015) Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. *Journal of Ethnobiology and Ethnomedicine*, **11**, 1–13.
- Tangjitman, K., Wongsawad, C., Winijchaiyanan, P., Sukkho, T., Kamwong, K., Pongamornkul, W. & Trisonthi, C. (2013) Traditional knowledge on medicinal plant of the Karen in northern Thailand: A comparative study. *Journal of Ethnopharmacology*, **150**, 232–243.
- The Plant List (2013) Version 1.1. Http://www.theplantlist.org/ (accessed 21 March 2017).
- Theilade, I., Schmidt, L., Chhang P. & McDonald, J.A. (2011) Evergreen swamp forest in Cambodia: floristic composition, ecological characteristics, and conservation status. *Nordic Journal of Botany*, 29, 71–80.
- Turreira-García, N., Theilade, I., Meilby, H. & Sørensen, M. (2015) Wild edible plant knowledge, distribution and transmission: a case study of the Achí Mayans of Guatemala. *Journal of Ethnobiology and Ethnomedicine*, **11**, 52.
- Virapongse, A. (2006) Ethnomedicine and materia medica used by Kui traditional healers in Northeast Thailand. MSc thesis, Khon Kaen University, Thailand. Http://oldsite.econbot.org/pdf/ students/virapongse.pdf [accessed 23 February 2016].
- Whitney, C.W., Min V.S., Giang L.H., Van Can V., Barber, K. & Lanh T.T. (2016) Learning with elders: human ecology and ethnobotany explorations in Northern and Central Vietnam. *Human Organization*, **75**, 71–86.

Zhao M., Brofeldt, S., Li Q., Xu J., Danielsen, F., Lægaard, S., Poulsen, M., Gottlieb, A., Maxwell, J.F. & Theilade, I. (2016) Can community members reliably identify tropical tree species for REDD+ carbon and biodiversity measurements? *PloS one*, **11**, e0152061.

About the Authors

NEREA TURREIRA-GARCÍA is a PhD student at the University of Copenhagen, Denmark. She studied environmental sciences at the University of the Basque Country (Spain) and forest and nature management at the University of Copenhagen. Her main line of research concerns local ecological knowledge and forest monitoring and she has worked in Cambodia, Vietnam, Guatemala, Spain and the Netherlands.

DIMITRIOS ARGYRIOU is a consultant and data manager in the project "It's our forest too", concerning Prey Lang forest in Cambodia. He studied Agricultural engineering in Democritus University of Thrace, Greece and an MSc in Food Safety in Wageningen University, Netherlands. He has collaborated with research projects in Cambodia, Guatemala and the Netherlands.

PHOURIN CHHANG is the Deputy Director of the Forest and Wildlife Research Institute in Phnom Penh, Cambodia. He has extensive experience of botanical surveys in the central lowlands of Cambodia and Bokor National Park.

PRACHAYA SRISANGA is a curator at Queen Sirikit Botanic Garden Herbarium, Chiang Mai, Thailand. His main research is on species diversity of plants in mainland Southeast Asia (Laos, Myanmar and Thailand), especially within the Juglandaceae and Violaceae. He also has an interest in ethnobotanical studies of ethnic groups in Southeast Asia.

IDA THEILADE is a senior researcher at the University of Copenhagen. Her current research concerns community monitoring of forest biodiversity, carbon stocks and resources, and the role of local knowledge and institutions in conservation and management of tropical forests.

Appendix 1 Information on species free-listed and collected in northwestern Prey Lang, Cambodia.

Use categories: C = Commerce, CDD = Cultural diseases and disorders, E = Environmental, F = Food, FA = Food additives, Fu = Fuel, Ma = Materials, M = Medicinal, R = Resin, RMU = Ritual/Magical Uses, S = Social, TV = Toxic to vertebrates. Ethnospecies names in italics are in Kuy, otherwise Khmer. Vouchers are deposited at Queen Sirikit Botanic Garden, Chiang Mai, Thailand.

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Acacia harmandiana (Pierre) Gagnep.	Leguminosae	Thmea	Tree	76, 387PR, 904	M, Ma, CDD
Acacia pennata (L.) Willd.	Leguminosae	Mchoo Som Bour	Shrub	948	F
Acacia pennata subsp. insuavis (Lace) I.C. Nielsen	Leguminosae	Vor Em	Vine	580, 585	M, F
Acacia sp.	Leguminosae	Vor Torleng	Vine	92	M, TV
Acronychia pedunculata (L.) Miq.	Rutaceae	Tromel	Tree	480	М
Afzelia xylocarpa (Kurz) Craib	Leguminosae	Beng	Tree	227, 669, 676, 35, 43	M, Ma, F
Aganonerion polymorphum Spire	Apocynaceae	Vor Tneng	Vine	347	F
Aglaia edulis (Roxb.) Wall.	Meliaceae	Bang Kau	Tree	921	F
Aglaia lawii (Wight) C.J. Saldanha	Meliaceae	Bang Kau Sva	Tree	222, 664	M, F
Albizia lebbeck (L.) Benth.	Leguminosae	Chres	Tree	78	F, Ma
Allophylus cobbe (L.) Raeusch.	Sapindaceae	Sleuk Bei	Shrub	775	Μ
Alpinia galanga (L.) Willd.	Zingiberaceae	Rom Deng (Prey)	Herb	197, 246	M, F, Ma
Amaranthus spinosus L.	Amaranthaceae	Ptebanla	Herb	243	M, F
Amorphophallus sp.	Araceae	Teal	Shrub	934	M, F
Amphineurion marginatum (Roxb.) D.J.Middleton	Apocynaceae	Sralao' Ompae	Vine	515, 488, 46	М
Ancistrocladus tectorius (Lour.) Merr.	Ancistrocladaceae	Khanma, Ktong	Vine	147, 132, 651	M, Ma
Anisoptera costata Korth.	Dipterocarpaceae	Pdeak	Tree	193, 645, 668	Ma
Anisoptera sp.	Dipterocarpaceae	Stearng	Tree	196, 639, 666	Ma, R
Antidesma ghaesembilla Gaertn.	Euphorbiaceae	Dongkeabkdam	Tree	278, 489, 462	M, F, RMU, Fu
Antidesma japonicum Siebold & Zucc.	Euphorbiaceae	Trormouch, Mchoo Trormouch	Shrub	165, 172, 483, 915	M, F, RMU
Aporosa ficifolia Baill.	Phyllanthaceae	Krong	Tree	413, 526, 759	М
Aporosa planchoniana Baill. ex Müll. Arg.	Phyllanthaceae	Propech Chongva	Tree	565, 570	М
Ardisia crenata Sims	Primulaceae	Kandetmean	Shrub	158.2, 581, 574	M, F
Areca triandra Roxb. ex BuchHam.	Arecaceae	Chnarb	Palm- like	463, 426	S, Ma, F
Argyreia mollis (Burm. f.) Choisy	Convolvulaceae	Vor Tror Jeark Tun Sai	Vine	527	Ma
Artocarpus chama BuchHam.	Moraceae	Knorprey	Tree	266, 289	M, Ma, F
Artocarpus nitidus subsp. lingnanensis (Merr.) F.M.Jarrett	Moraceae	Sombour	Tree	359, 473, 690	M, S, Ma, F
Azadirachta indica A. Juss.	Meliaceae	Sdao	Tree	315, 286, 667, 678, 83	M, F, Ma
Baccaurea ramiflora Lour.	Phyllanthaceae	Pnheav	Tree	213, 118, 613, 618	F

© Centre for Biodiversity Conservation, Phnom Penh

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Baeckea frutescens L.	Myrtaceae	Mrichtonsay	Tree	637, 670	M, F
Barringtonia acutangula (L.) Gaertn.	Lecythidaceae	Reang	Tree	99, 661, 624	M, F, Ma, TV
Bauhinia bracteata (Benth.) Baker	Leguminosae	Jerngkow, Klaenpor	Tree	603, 552, 510, 123	M, S, Ma
Bauhinia hirsuta Weinm.	Leguminosae	Cheungkhu	Tree	327, 174	M, F
Beaumontia murtonii Craib	Apocynaceae	Vor Thlork	Vine	785, 999	Ma
Berrya mollis Wall. ex Kurz	Malvaceae	Sor Seurm, Trorserm	Tree	373PR, 36, 907	M, Ma, Fu
Blumea balsamifera (L.) DC.	Compositae	Baymart	Shrub	457	М
Bombax anceps Pierre	Malvaceae	Rorkar	Tree	323, 302, 435, 608, 31	M, Ma
<i>Breynia vitis-idaea</i> (Burm.f.) C.E.C. Fisch.	Phyllanthaceae	Muntrei, Miat Kar	Vine	837	M, F
Bridelia ovata Decne.	Euphorbiaceae	Pnektrey	Tree	2	F
<i>Bridelia</i> sp.	Phyllanthaceae	Chhlikpork	Tree	62	Μ
Brucea javanica (L.) Merr.	Simaroubaceae	Bromatmunus, Damley Smang	Shrub	333, 38	М
Buchanania cochinchinensis (Lour.) M.R. Almeida	Anacardiaceae	Laingchey, Romchey	Tree	433, 450	M, F
Butea superba Roxb.	Leguminosae	Vor Char	Vine	326	M, Ma
Caesalpinia digyna Rottler	Leguminosae	Vor Kvav	Vine	912	М
Caesalpinia sappan L.	Leguminosae	Kvav Banla	Tree	6	М
Calamus palustris Griff.	Arecaceae	Pdao Chvang	Vine	229, 228, 13	M, Ma, F
Calamus rudentum Lour.	Arecaceae	Vor Dombong	Vine	320, 951	F, C, Ma
Calamus tetradactylus Hance	Arecaceae	Vor Seung	Vine	198	Ma, C, F
Calamus viminalis Willd.	Arecaceae	Chongpdao, Pdao	Vine	111, 455, 789, 21	M, Ma, F
Calophyllum calaba var. bracteatum (Wight) P.F.Stevens	Clusiaceae	Paong	Tree	395, 390, 199	Ma, F, Ma
<i>Cananga latifolia</i> (Hook.f. & Thomson) Finet & Gagnep.	Annonaceae	Chkaesraeng	Tree	295, 308, 595, 592, 39, 66	М
Capparis micracantha DC.	Capparaceae	Kounh Chur Beay Dach	Shrub	152	М
Careya arborea Roxb.	Lecythidaceae	Kondaul	Tree	385PR, 379SP, 492, 49	M, Ma
Caryota mitis Lour.	Arecaceae	Tunsae, Ansae, Chongsae	Tree	139, 116, 497, 620	M, Ma, F
Cassia javanica L.	Leguminosae	Kal	Tree	445	S
Cassytha filiformis L.	Lauraceae	Vor Rom saysork	Vine	449	М
<i>Catunaregam tomentosa</i> (Blume ex DC.) Tirveng.	Rubiaceae	Rorveang, Rveang Sor	Tree	382, 572	M, S
Ceiba pentandra (L.) Gaertn.	Malvaceae	Kor	Tree	698	F, Ma
Celastrus sp.	Celastraceae	Vor Kolab	Vine	622	М
Chionanthus ramiflorus Roxb.	Oleaceae	Spet, Marey	Tree	547, 505, 476	M, S
Chionanthus sp.	Oleaceae	Archdaek	Tree	7	Ma

Cambodian Journal of Natural History 2017 (1) 76–101

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
<i>Chromolaena odorata</i> (L.) R.M.King & H.Rob.	Compositae	Pka'Sor, Kon Traeng Kaet	Shrub	900	M, E, F
Cinnamomum bejolghota (Buch Ham.) Sweet	Lauraceae	Teppiroo	Tree	179	М
Cinnamomum cambodianum Lecomte	Lauraceae	Tepproo	Tree	821	М
<i>Cinnamomum polyadelphum</i> (Lour.) Kosterm.	Lauraceae	Slapok	Tree	101, 423, 563, 536	M, S
Citrus lucida (Scheff.) Mabb.	Rutaceae	Kror Sang	Tree	818	
Clausena excavata Burm. f.	Rutaceae	Kanhchrok	Shrub	241, 96, 484, 459	CDD, RMU
Cleistanthus sp.	Phyllanthaceae	Neang Leav	Tree	762	M, F, Ma
Colona auriculata (Desf.) Craib	Malvaceae	Preal	Shrub	437, 652, 168	M, Fu, Ma
Colona sp.	Malvaceae	Tangek	Tree	309	Ma
Combretum latifolium Blume	Combretaceae	Vor Rormeat	Vine	647, 314	M, F
Combretum micranthum G. Don	Combretaceae	Vor Khnos	Vine	230, 516, 471	M, F
Combretum quadrangulare Kurz	Combretaceae	Sangkae	Tree	363, 589	M, Ma, Fu
<i>Connarus cochinchinensis</i> (Baill.) Pierre	Connaraceae	Vor Lompoh	Vine	521, 496, 825	М
Coptosapelta flavescens Korth.	Rubiaceae	Vor Tonling Plerng	Vine	235	Μ
Costus speciosus (J.Koenig) C.D.Specht	Costaceae	Tar Thok	Herb	812	M, F
Cratoxylum formosum (Jacq.) Benth. & Hook.f. ex Dyer	Hypericaceae	Lngeang	Tree	45, 159	M, F, Ma, Fu
Crotalaria pallida Aiton	Leguminosae	Chongkrong Sva	Shrub	453, 810	M, F
Croton sp.	Euphorbiaceae	Montek	Tree	257, 764	М
Curculigo sp.	Hypoxidaceae	Tnoutley	Herb	322	Ma
Curcuma alismatifolia Gagnep.	Zingiberaceae	Chahouy	Herb	318, 930	F
Curcuma longa L.	Zingiberaceae	Rormeat	Herb	952	M, F, Ma
Curcuma sparganiifolia Gagnep.	Zingiberaceae	Kra Chork Anderk	Herb	593, 143, 914	F
Cyclea barbata Miers	Menispermaceae	Vor Phraskrong	Vine	905, 195, 44	M, F
Daemonorops jenkinsiana (Griff.) Mart.	Arecaceae	Saom	Vine	774	F, Ma
Dalbergia cochinchinensis Pierre	Leguminosae	Krornhong	Tree	573, 560, 84	Ma
Dalbergia oliveri Prain	Leguminosae	Neanghoun	Tree	290, 551, 502, 53	Ma
Dalbergia sp.	Leguminosae	Vor Chas	Vine	916	
Dalbergia thorelii Gagnep.	Leguminosae	Vor Ampil	Vine	523, 494	M, Ma
Dalbergia lanceolaria subsp. panicu- lata (Roxb.) Thoth.	Leguminosae	Snoul	Tree	303, 300, 441, 458, 25	M, F, Fu
Dasymaschalon macrocalyx Finet & Gagnep.	Annonaceae	Cheungchab	Shrub	110, 479	M, F
Dendrolobium lanceolatum (Dunn) Schinedl.	Leguminosae	Tronoumbangkhuy	Shrub	247, 310, 553, 460	M, F, RMU
Dialium cochinchinense Pierre	Leguminosae	Vor Kralarnh	Vine	770	Ma

© Centre for Biodiversity Conservation, Phnom Penh

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Dianella ensifolia (L.) DC.	Xanthorrhoeaceae	Kontoykrorper	Herb	409	М
Dillenia hookeri Pierre	Dilleniaceae	Ploosbart	Shrub	381PR, 87	M, F
Dillenia indica L.	Dilleniaceae	Plou	Tree	98, 411	M, F, Ma
Dillenia pentagyna Roxb.	Dilleniaceae	Rovey	Tree	75, 82	M, Fu, F
Dimocarpus longan Lour.	Sapindaceae	Meanprey	Tree	183, 102, 493, 582, 468, 16	M, F, Fu
<i>Dioscorea brevipetiolata</i> Prain & Burkill	Dioscoreaceae	Domlong Tean	Vine	203, 927	F
Dioscorea esculenta (Lour.) Burkill	Dioscoreaceae	Domlong Shar	Vine	935	F
Dioscorea pentaphylla L.	Dioscoreaceae	Vor Dom Loung Teuk	Vine	800	F
Dioscorea poilanei Prain & Burkill	Dioscoreaceae	Domlong Kour	Vine	926	F
Dioscorea polyclados Hook. f.	Dioscoreaceae	Domlong Romeat	Vine	950	F
Diospyros ehretioides Wall. ex G. Don	Ebenaceae	Mormeang	Tree	307, 288	M, TV
<i>Diospyros filipendula</i> Pierre ex Lecomte	Ebenaceae	Ambengprah	Tree	769, 917, 58	M, Ma, F, Fu
Diospyros lobata Lour.	Ebenaceae	Chherkmao	Tree	56	Ma, Fu
Diospyros pendula Hasselt ex Hassk.	Ebenaceae	Khchas	Tree	910	F, Ma
Diospyros sp.	Ebenaceae	Chaas, Ches	Tree	906	F, Fu
Diospyros sylvatica Roxb.	Ebenaceae	Khanhchas, Kror- chas	Tree	100, 814	M, Fu, F, Ma
<i>Diospyros undulata</i> Wall. ex G. Don var. <i>cratericalyx</i> (Craib) Bakh.	Ebenaceae	Chi Plerng	Tree	287, 561, 422, 771	TV, F
Diospyros venosa Wall. ex A.DC.	Ebenaceae	Chherkmao II	Tree	415, 520	Ma, Fu
Dipterocarpus alatus Roxb. & G.Don	Dipterocarpaceae	Chhertheal	Tree	107, 164, 621, 456	M, R, Ma
Dipterocarpus intricatus Dyer	Dipterocarpaceae	Trach	Tree	217, 208, 375SP, 376, 29	M, R, Ma
<i>Dipterocarpus obtusifolius</i> Teijsm. ex Miq.	Dipterocarpaceae	Tbaeng	Tree	383PR, 47	M, Ma
Dipterocarpus tuberculatus Roxb.	Dipterocarpaceae	Khlong	Tree	50	Ma
Dischidia major (Vahl) Merr.	Apocynaceae	Vor Bampong sromouch	Vine	569	М
<i>Donax canniformis</i> (G. Forst.) K.Schum	Marantaceae	Ron	Herb	777, 623, 627	M, Ma
Dracaena elliptica Thunb. & Dalm.	Asparagaceae	Tbaldaek	Shrub	542	М
Dracaena angustifolia (Medik.) Roxb.	Asparagaceae	Angraedaek	Shrub	482, 188, 173, 501	M, F, Ma
Drynaria sparsisora (Desv.) T. Moore	Polypodiaceae	Borbrok	Herb	270	М
Elephantopus scaber L.	Compositae	Chen Veal	Herb	758	F
Ellipanthus tomentosus Kurz	Connaraceae	Kdor Komprok	Shrub	267	M, F
Entada rheedii Spreng.	Leguminosae	Vor Ang Kunh	Vine	774	M, Ma
<i>Erythrophleum teysmannii</i> (Kurz) Craib	Leguminosae	Kreul	Tree	932	Ma

Cambodian Journal of Natural History 2017 (1) 76–101

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Erythroxylum cambodianum Pierre	Erythroxylaceae	Chompussek, Changkung sek	Shrub	412, 406	М
Euonymus cochinchinensis Pierre	Celastraceae	Koomouy	Tree	519, 448	М
Eurycoma longifolia Jack	Simaroubaceae	Angtongsor	Shrub	321, 316, 567, 388	M, S
Fagraea fragrans Roxb.	Gentianaceae	Tatrav	Tree	Photo	Ma
Fagraea racemosa Jack	Gentianaceae	Changka Trong	Tree	786	Ma
Ficus annulata Blume	Moraceae	Chrey Vor, Vor Chrey	Vine	248	М
Ficus benjamina L.	Moraceae	Chhreykruem	Tree	686, 64	М
Ficus callophylla Blume	Moraceae	Chrey Klaok	Tree	628	М
Ficus hirta Vahl	Moraceae	Lavadey	Tree	533	F
Ficus hispida L.f.	Moraceae	Roveadey	Tree	242	М
Ficus pubilimba Merr.	Moraceae	Chhrey	Tree	537	F, Ma
Ficus pumila var. awkeotsang (Makino) Corner	Moraceae	Vor Krorbeytraos	Vine	830, 260	М
Ficus racemosa L.	Moraceae	Lovear	Tree	665, 674, 251	M, F
Firmiana simplex (L.) W.Wight	Malvaceae	Samroung	Tree	325	Ma
Flacourtia indica (Burm.f.) Merr.	Salicaceae	Krorkob (Prey)	Tree	607, 15	M, F
Garcinia celebica L.	Clusiaceae	Proos	Tree	129, 451, 9, 442	Ma, F
<i>Garcinia cochinchinensis</i> (Lour.) Choisy	Clusiaceae	Mchhoosandan, Sandan	Tree	834, 692	F
Garcinia merguensis Wight	Clusiaceae	Kres, Yeam	Tree	578, 220	M, F, S
Garcinia oliveri Pierre	Clusiaceae	Trormoong, Mchoo Trormoong, Tronoumseik, Tromongchea	Tree	421, 24	M, F, Fu
Garcinia vilersiana Pierre	Clusiaceae	Prorhoot	Tree	633, 656, 10	Ma, F
Gardenia angkorensis Pit.	Rubiaceae	Daiklar	Tree	375PR	M, C
Gardenia sootepensis Hutch.	Rubiaceae	Barkdong	Tree	293	M, F, Ma
Garuga sp.	Burseraceae	Sdavkhmoch	Tree	5	Ma
Getonia floribunda Roxb.	Combretaceae	Kor Nhours	Vine	813	М
Glochidion kerrii Craib	Phyllanthaceae	Sesach	Tree	486	М
Gmelina asiatica L.	Lamiaceae	Anhcharnh	Tree	93, 507	М
Gnetum montanum Markgr.	Gnetaceae	Khlout	Vine	233, 124, 465, 658	F, Ma
Gomphia serrata (Gaertn.) Kanis	Ochnaceae	Pesles	Tree	175, 112, 391, 380	М
<i>Goniothalamus repevensis</i> Pierre ex Fin. & Gagnep.	Annonaceae	Vor Krovan	Vine	138	M, Ma
<i>Goniothalamus tamirensis</i> Pierre ex Finet & Gagnep.	Annonaceae	Moom	Shrub	629	M, TV
Grewia sp.	Malvaceae	Jeay moa	Tree	336	М
Haldina cordifolia (Roxb.) Rids.	Rubiaceae	Kvav	Tree	606	M, Ma

© Centre for Biodiversity Conservation, Phnom Penh

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Harrisonia perforata (Blanco) Merr.	Simaroubaceae	Klentea	Vine	254, 598,793	M, F
Hedyotis sp.	Rubiaceae	Slabbrang	Tree	838	М
Helicteres hirsuta Lour.	Malvaceae	Phrealphnom, Preal Momis	Shrub	40, 454	М
Helicteres sp.	Malvaceae	Neang Moa	Shrub	753	М
Heliotropium indicum L.	Boraginaceae	Bromony Domrey	Herb	158, 68	М
Heritiera javanica (Blume) Kosterm.	Malvaceae	Doungchem	Tree	268, 625, 648, 700	Ма
Holarrhena curtisii King & Gamble	Apocynaceae	Tekdors, Vor Chhuy, Tuekdoh Veal	Vine	341, 279	М
Hopea odorata Roxb.	Dipterocarpaceae	Korki	Tree	640, 14	Ма
Hoya sp.	Apocynaceae	Vor Krobay	Vine	416	Е
<i>Hydnocarpus anthelminthicus</i> Pierre ex Laness.	Achariaceae	Krorbao	Tree	335, 642	M, F
Hydnocarpus ilicifolia King (unresolved name)	Achariaceae	Chambokkaek	Tree	922	Ма
Hymenocardia punctata Wall. ex Lindl.	Phyllanthaceae	Komkhneang	Tree	185, 120, 619, 614	M, F, Fu
Hymenodictyon orixense (Roxb.) Mabb.	Rubiaceae	Ovlok	Tree	299, 284, 587, 77, 72	M, F
Imperata cylindrica (L.) Raeusch.	Poaceae	Sbaupleang	Herb	600, 778	M, Ma
Indigofera tinctoria L.	Leguminosae	Trom Prey	Shrub	121	М
Irvingia malayana Oliv. ex A.W.Benn.	Irvingiaceae	Chombork	Tree	161, 671, 474, 22, 170	M, F, Ma, Fu
Ixora javanica (Blume) DC.	Rubiaceae	Pkakroham	Shrub	549, 440, 91	M, F
Ixora nigricans R.Br. ex Wight & Arn.	Rubiaceae	Pkamuchol	Shrub	87PR	М
<i>Ixora</i> sp.	Rubiaceae	Chhongkonghing	Shrub	103	М
Jasminum scandens (Retz.) Vahl	Oleaceae	Vor Chuengpoh	Vine	485B	М
Lagerstroemia calyculata Kurz	Lythraceae	Sralao'	Tree	317, 584, 34	M, Ma, F, Fu
Lagerstroemia floribunda Jack (unresolved name)	Lythraceae	Trobekprey	Tree	125	М
Lagerstroemia ovalifolia Teijsm. & Binn. (unresolved name)	Lythraceae	Sralao' Trobek	Tree	503, 663	F, Ma
Lagerstroemia speciosa (L.) Pers.	Lythraceae	Kraol	Tree	345, 330, 447, 500, 634	M, Ma, E
Lasianthus hirsutus (Roxb.) Merr.	Rubiaceae	Skun	Shrub	150, 649, 650	М
Leea indica (Burm. f.) Merr.	Vitaceae	Baykdaing, Kandan Bay	Shrub	564	M, S
Leea thorelii Gagnep.	Vitaceae	Lounglang	Tree	361.2	М
Lepisanthes rubiginosa (Roxb.) Leenh.	Sapindaceae	Chunlous, Tumlos	Tree	166, 4, 938, 949	M, F
Licuala spinosa Wurmb	Arecaceae	Paav	Palm	903, 169, 146, 397, 399	F, Ma
<i>Limnophila geoffrayi</i> Bonati (unresolved name)	Plantaginaceae	Ma Orm	Herb	833	M, F

Cambodian Journal of Natural History 2017 (1) 76–101

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Limnophila sp.	Plantaginaceae	Bror Mae	Herb	836	F
<i>Loeseneriella pauciflora</i> (DC.) A.C. Sm. (unresolved name)	Celastraceae	Vor Angtong	Vine	660	M, Ma
Lygodium flexuosum (L.) Sw.	Lygodiaceae	Vor Trom, Vor Ovlor	Vine	176, 673, 680, 11, 779	M, Ma, RMU
Machilus thunbergii Siebold & Zucc.	Lauraceae	Yeangboung	Shrub	831	RMU
Macroptilium atropurpureum (DC.) Urb.	Leguminosae	Vor Sangdek bang- kuoy	Vine	791	
Madhuca butyrospermoides A.Chev.	Sapotaceae	Srorkom	Tree	475, 428	F, Ma, Fu
<i>Mallotus glabriusculus</i> (Kurz) Pax & K.Hoffm.	Euphorbiaceae	Kansamta oa	Shrub	89PR	M, F, Ma
Mallotus nanus Airy Shaw	Euphorbiaceae	Konsomthao	Tree	576	М
Mammea siamensis T.Anderson (unresolved name)	Calophyllaceae	Sophi	Tree	282	TV
Mangifera longipetiolata King (unresolved name)	Anacardiaceae	Svay Prey	Tree	274, 472	M, F, Ma
Markhamia stipulata (Wall.) Seem.	Bignoniaceae	Dakpor	Tree	137, 216	M, F
Melastoma malabathricum L.	Melastomataceae	Baynhenh	Shrub	119, 90, 119B	M, F
Melastoma saigonense (Kuntze) Merr.	Melastomataceae	Baynhenh (fem)	Shrub	399A	М
Melastoma sanguineum Sims	Melastomataceae	Baynhenh (male)	Shrub	401, 446, 410	М
Melientha suavis Pierre	Opiliaceae	Prech, Prechprey	Tree	945	F, Ma
Melodorum fruticosum Lour.	Annonaceae	Romduol	Tree	108, 477, 611	M, F, Fu, Ma
Memecylon caeruleum Jack	Melastomataceae	Phlorng	Tree	495, 8,211	Ma
Microcos tomentosa Sm.	Malvaceae	Porplear	Tree	225, 407	Ma, F, Fu
Mimosa pudica L.	Leguminosae	Phrasklob	Herb	756	Μ
Mischocarpus sp.	Sapindaceae	Promarksan	Shrub	181	Μ
Mitragyna hirsuta Hav.	Rubiaceae	Ktom, Ktomtom	Tree	355, 602	M, Ma
Mitragyna speciosa (Korth.) Havil.	Rubiaceae	Ktumphnom	Tree	294	Μ
<i>Momordica cissoides</i> Planch. ex Benth.	Cucurbitaceae	Vor M'reas Prey	Vine	832	F
Morinda coreia BuchHam.	Rubiaceae	Nhio (Prey)	Tree	343, 334, 51, 931	М
Murraya siamensis Craib (unresolved name)	Rutaceae	Brohoungarkas	Shrub	232, 617, 797	M, RMU
Myrialepis paradoxa (Kurz) J. Dransf.	Arecaceae	Chnuo	Vine	283	Ma
Myristica iners Blume	Myristicaceae	Kuok	Tree	944	F, Ma
Nauclea orientalis (L.) L.	Rubiaceae	Kdol	Tree	601, 594, 513, 632	M, Ma
Ochna integerrima (Lour.) Merr.	Ochnaceae	Angkea Sel	Tree	312, 439, 384, 429B, 189A	М
Ocimum tenuiflorum L.	Lamiaceae	M'reas Prov	Shrub	177	F
Ocotea lancifolia (Schott) Mez	Lauraceae	Krolor	Tree	201	M, F
<i>Olax scandens</i> Roxb. (unresolved name)	Olacaceae	Orkktong	Vine	511	M, F

© Centre for Biodiversity Conservation, Phnom Penh

Life Ethnospecies Scientific name Family Voucher No. Use(s) form name Oxyceros horridus Lour. Shrub Rubiaceae Thnungkanhchos, 250, 772, 182 Μ Vor Sneng kropey Rubiaceae Vor Phorm F Paederia foetida L. Vine 269 Pandanus humilis Lour. Pandanaceae 171, 467, 530 Romchekprey Screw M, Ma -pine F Pandanus sp. Pandanaceae Chak Screw 761 -pine 223, 204, 373SP, Thlork Parinari anamensis Hance Chrysobalanaceae Tree M, F 374,80 Tbaldaek, Tbaltark M, RMU Peliosanthes teta Andrews Asparagaceae Herb 828,659 Peltophorum dasyrrhachis (Miq.) Leguminosae Trorsek Tree 94, 381SP, 432, Ma, F 133, 19 Kurz Pentacme siamensis (Miq.) Kurz Dipterocarpaceae Reangphnom Tree 294, 682, 60 Ma 349, 324, 630, M, F, Fu Phyllanthus emblica L. Phyllanthaceae Kontoutprey Tree 583 Phyllodium pulchellum (L) Desv. Leguminosae Kom Prum Bae Shrub 937 М Kroy 271 M, F Solanaceae Pengposprey Herb Physalis angulata L. 535, 504 M, R Pinus merkusii Jungh. & de Vriese Pinaceae Srorl Tree Piper sarmentosum Roxb. Piperaceae Chhiplou Herb 259 F Ploiarium alternifolium (Vahl) Melch. Bonnetiaceae Sreurng Tree 631, 544 Ma Knaydael, Snaydel Polvalthia cerasoides (Roxb.) Bedd. Tree 329, 615, 57 M, F, Ma Annonaceae Tree 920 Polyalthia evecta Finet & Gagnep. Sanghasbart Annonaceae (unresolved name) Premna herbacea Roxb. Lamiaceae Ruschin Shrub 371 Μ Prismatomeris filamentosa Craib Rubiaceae Romdenhmeas Shrub 210, 402, 189 Μ Rubiaceae Romdenh M. F Prismatomeris memecyloides Craib Shrub 417 Rubiaceae Romdenhmeas II 55 Prismatomeris sessiliflora Pierre ex Shrub Μ Pit. Psychotria asiatica L. Rutaceae Sraomdav Shrub 393 M. Ma Rubiaceae 531 Μ Psychotria sp. Slerkreum Shrub Psychotria sp.1 Rubiaceae Reum Shrub 438 Μ Rubiaceae Tree 641 Ma Psydrax dicoccos Gaertn. Bongkorng Rubiaceae Tree 41 Psydrax pergracilis (Bourd.) Ridsdale Mekorng Ma Pternandra caerulescens Jack Melastomataceae Changketbrak Tree 559 F 205, 192, 487, M, Ma Pterocarpus macrocarpus Kurz Leguminosae Thnong Tree 466 F Rhodamnia dumetorum (DC.) Merr. & Myrtaceae Plorng (Uol) Shrub 539, 815 L.M.Perry F Rhodomyrtus tomentosa (Aiton) Myrtaceae Pouch Uol, Trobek-Shrub 541,508 Hassk. prey М Rinorea anguifera Kuntze (unresolved Violaceae Dom Nek Pro Ma Tree 136 name) Salacia chinensis L. Celastraceae Pengphorng, Vine 32, 400, 543, M, F Vorveay 313

Appendix 1 Cont'd

Cambodian Journal of Natural History 2017 (1) 76-101

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Salacia cochinchinensis Lour.	Celastraceae	Vor Kondab- chongae	Vine	256	M, F
Salacia typhina Pierre (unresolved name)	Celastraceae	Kon Darb Jong Ae	Vine	924	M, F
Sandoricum koetjape (Burm. f.) Merr.	Meliaceae	Kompinhreach	Tree	823	M, Ma, F
Sauropus sp.	Phyllanthaceae	Thmehntrey	Shrub	249	М
Schleichera oleosa (Lour.) Merr.	Sapindaceae	Pongror, Tomroos, Ta Tok	Tree	902, 37, 291, 913	M, F, Fu, Ma
Scindapsus officinalis (Roxb.) Schott	Araceae	Vor Chum	Vine	272	М
Scleropyrum pentandrum (Denn.) Mabb.	Santalaceae	Rlokkeo, Aola- okkao	Tree	529, 524, 141	Μ
Senna alata (L.) Roxb.	Leguminosae	Donghet	Shrub	88, 763	M, F
Senna garrettiana (Craib) H.S.Irwin & Barneby	Leguminosae	Haisan	Tree	67	Μ
Shorea guiso Blume	Dipterocarpaceae	Chorchong, Pchuek Aodom	Tree	215, 154, 635, 662, 829	R, Ma
Shorea obtusa Wall. ex Bl. (unresolved name)	Dipterocarpaceae	Pchek	Tree	361.1, 328, 59	M, Ma
Shorea roxburghii G. Don	Dipterocarpaceae	Porpael	Tree	219, 296, 377SP, 386, 48	Ma, F
Sindora siamensis Miq.	Leguminosae	Korkoh	Tree	298, 682, 60	M, Ma, F
Smilax lanceifolia Roxb.	Smilacaceae	Porpreus, Vor Porpeay	Vine	130	М
Smilax megacarpa A. DC.	Smilacaceae	Porpreus, Vor Rombers	Vine	131, 525, 550, 663V, 672, 817	M, F
Smilax sp.	Smilacaceae	Vor Thnamchin	Vine	825	М
Spatholobus acuminatus Benth.	Leguminosae	Vor Tar Arn	Vine	236, 942	M, Ma, F
Spirolobium cambodianum Baill.	Apocynaceae	Chhertheal trang (young), Preay Kbalbromboy (old)	Tree	644, 827, 532	M, CDD, F
Spondias pinnata (L. f.) Kurz	Anacardiaceae	Mkark prey, Phloch	Tree	157, 234, 684, 754, 909, 754	M, F, FA, Ma
Stemona sp.	Stemonaceae	Kbeas	Shrub	263, 114	М
<i>Stenochlaena palustris</i> (Burm. f.) Bedd.	Blechnaceae	Vor Thnanh	Vine	127, 577, 777	M, F, Ma
Sterculia sp.	Malvaceae	Prorlob	Tree	688	Ma
Streblus asper Lour.	Moraceae	Snay	Tree	609, 604	М
Streptocaulon juventas (Lour.) Merr.	Apocynaceae	Vor Chuy, Vor Joch	Vine	339, 509, 396	М
Strychnos nux-blanda A.W. Hill	Loganiaceae	Kompolvek	Tree	389PR	М
Strychnos nux-vomica L.	Loganiaceae	Sleng	Tree	306	М
Strychnos polyantha Pierre ex Dop	Loganiaceae	Vor Sleng	Vine	518, 281	М
Suregada multiflora (A.Juss.) Baill.	Euphorbiaceae	Markdaok	Tree	490	M, F
Syzygium fruticosum DC.	Myrtaceae	Pring Angkam	Tree	953	M, F, Fu
Syzygium grande (Wight) Walp.	Myrtaceae	Pring Som Bork Krars	Tree	153, 387SP, 816	M, F

© Centre for Biodiversity Conservation, Phnom Penh

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
<i>Syzygium siamense</i> (Craib) Chantaran. & J.Parn.	Myrtaceae	Pring Kbal Nakta	Tree	943	M, Ma
<i>Syzygium</i> sp.	Myrtaceae	Smarch Tuk	Tree	557	F
<i>Syzygium syzygioides</i> (Miq.) Merr. & L.M.Perry	Myrtaceae	Pring Bay	Tree	81, 811	M, Ma, F
Syzygium zeylanicum (L.) DC.	Myrtaceae	Smarch	Tree	163, 190, 419, 404, 30	M, F, Ma, Fu
Tabernaemontana bufalina Lour.	Apocynaceae	Matesprey	Tree	534, 766	М
Tadehagi triquetrum (L.) H.Ohashi	Leguminosae	Angkrorng, Chang Kes Angkrong	Shrub	167, 126, 332	М
Tamarindus indica L.	Leguminosae	Ampil	Tree	VS2	М
<i>Tamilnadia uliginosa</i> (Retz.) Tirv. & Sastre	Rubiaceae	Rompok	Tree	292	М
Tarenna hoaensis Pit.	Rubiaceae	Chantornear	Shrub	527	M, Ma
<i>Terminalia alata</i> Roth (unresolved name)	Combretaceae	Chhlik	Tree	61	M, Ma
Terminalia bialata (Roxb.) Steud.	Combretaceae	Pealkhe, Porpa- elkae	Tree	1, 596	М
Terminalia chebula Retz.	Combretaceae	Sramor, Srormor Lau	Tree	351, 933	M, F, Ma
<i>Terminalia mucronata</i> Craib & Hutch. (unresolved name)	Combretaceae	Bramdomleng	Tree	357, 431, 498, 52	M, Ma
Terminalia nigrovenulosa Pierre	Combretaceae	Bayarm	Tree	599, 646, 28	M, F, Ma, Fu
<i>Terminalia pierrei</i> Gagnep. (unresolved name)	Combretaceae	Sev	Tree	751	М
<i>Tetracera loureiri</i> (Finet & Gagnep.) Pierre ex W.G. Craib	Dilleniaceae	Vor Dakun	Vine	113, 206, 128, 443, 378	М
Thunbergia sp.	Acanthaceae	Vor Dakpor	Vine	63	М
Thyrsanthera suborbicularis Pierre ex Gagnep.	Euphorbiaceae	Rus Bong Ki, Vongsa Preahatit	Vine	929, 752	М
<i>Tiliacora triandra</i> Diels (unresolved name)	Menispermaceae	Vor Yeav	Vine	568	Ma, F, Fu
<i>Tinospora crispa</i> (L.) Hook. f. & Thomson	Menispermaceae	Bondolpich	Vine	86	М
<i>Tristaniopsis merguensis</i> (Griff.) Peter G.Wilson & J.T.Waterh.	Myrtaceae	Srorngam	Tree	506	Ma
Urceola rosea (Hook. & Arn.) Midd.	Apocynaceae	Mchoo Tneng, Vor Tneng	Vine	936	F
<i>Uvaria fauveliana</i> Pierre ex Ast (unresolved name)	Annonaceae	Saomaoprey	Vine	186, 575	M, F, Ma
Uvaria hahnii (Finet & Gagnep.) J.Sinclair (unresolved name)	Annonaceae	Songkhouch	Vine	261, 258, 548	M, F
Uvaria rufa Blume	Annonaceae	Treal Sva	Vine	97, 750	F
Uvaria sp.	Annonaceae	Vor Doskrobey, Vor Treal, Teu Doh Krobai	Vine	262, 792	M, F

Cambodian Journal of Natural History 2017 (1) 76–101

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
Uvaria littoralis (Blume) Blume	Annonaceae	Vor Chekprey	Vine	765	M, F
Vatica odorata (Griff.) Symington	Dipterocarpaceae	Chrormas	Tree	385SP, 558, 27	Ma, F
Ventilago cristata Pierre (unresolved name)	Rhamnaceae	Vor Tonlueng	Vine	638	M, Ma
Vitex pinnata L.	Lamiaceae	Porpool	Tree	304, 427, 522, 54	Μ
Vitex sp.	Lamiaceae	Protespray	Shrub	224	M, RMU
Walsura villosa Wall. ex Hiern	Meliaceae	Sdok Sdao	Tree	928	Μ
Waltheria indica L.	Malvaceae	Preash Proa Veal	Shrub	89	М
Willughbeia edulis Roxb.	Apocynaceae	Koy	Vine	155, 389SP, 408	M, F
Wrightia arborea (Dennst.) Mabb.	Apocynaceae	Klengkong	Tree	3	Μ
Xanthophyllum colubrinum Gagnep.	Polygalaceae	Trop Tum	Tree	514, 545, 776	F, Ma
Xerospermum noronhianum (Blume) Blume	Sapindaceae	Mean Angkarm, Seman	Tree	135, 106, 657, 420, 917	F, Fu
<i>Xylia xylocarpa</i> (Roxb.) Taub.	Leguminosae	Sokrom	Tree	301, 280, 591, 17	M, Ma
<i>Xylopia pierrei</i> Hance (unresolved name)	Annonaceae	Kray Sor	Tree	212, 403, 394, 911	M, RMU, Ma, Fu
<i>Xylopia vielana</i> Pierre	Annonaceae	Kray Krahorm	Tree	901	M, Fu
Zanthoxylum nitidum (Roxb.) DC.	Rutaceae	Preah Kom Jart	Tree	605, 276, 586, 760	M, F, CDD
Zingiber zerumbet (L.) Roscoe ex Sm.	Zingiberaceae	Phtue	Herb	908	F
Ziziphus cambodianus Pierre (unresolved name)	Rhamnaceae	Vor Angkrong	Vine	20, 616	M, S, Ma
Ziziphus oenopolia (L.) Mill.	Rhamnaceae	Vor Sangkher	Vine	566, 555, 187, 178, 33	M, F
	Acanthaceae	Bromatksan	Tree	180	М
	Apocynaceae	Vor Preah Trorheng	Vine	696	М
	Araceae	Vor Prork	Vine	767	Ma
	Asclepiadaceae	Vor Chlous	Vine	554	Ma
	Leguminosae	Sombour II	Tree	839	RMU
	Primulaceae	Vor Preah Samkong	Vine	925	М
	Rubiaceae	Lout	Tree	540	Ma
	Scrophulariaceae	S'mao Kreung	Herb	820	F
	-	Derm Kon Tuy Mian	Herb	Photo	М
	-	Dermprus	Tree	-	Ma
	-	K'Cheay	Shrub	-	F
	-	K'Dourch	Vine	-	F
	-	Kachdek	Tree	-	Ma
	-	Khchaeng, Krorcheng	Tree	Photo	Ma, TV, F
-	-	Kom Pong Tro aoh	Tree	-	F
-	-	Korkithmor	Tree	-	Ma
_	_	Kramuon	Tree	-	M, F

Scientific name	Family	Ethnospecies name	Life form	Voucher No.	Use(s)
-	-	Krasaeang	Tree	-	M, F
	-	Krolanh	Tree	-	M, Ma
	-	Krorlunch	Tree	-	F
	-	Lovear dei	Shrub	Photo	М
	-	Lumpoung	Tree	-	М
	-	Mermchin		-	М
	-	Ploo	Tree	923	M, F, Fu
	-	Pouk	Shrub	-	Ma
	-	Preah Oproveal	Tree	-	М
	-	Preah Trorheng	Tree	-	M, RMU, F
	-	Proteng	Herb	379PR	M, F, Ma
	-	Ptheark	Tree	-	Ma
	-	Ro Ngoung	Tree	-	RMU
	-	Rodong	Tree	-	М
	-	Rompukrorhorm	Tree	-	M, Ma, F
	-	Rumduol Sbart	Shrub	-	М
	-	Russey	Shrub	-	F, Ma
	-	Russlar	-	-	M, S
	-	Sluekprich	-	-	F
	-	Smarkrorbey	Tree	-	M, F
	-	Spong	Tree	-	M, Ma
	-	Sro Kum Bay	Tree	819	F
	-	Svarkhom	Tree	-	М
	-	Tha'Kao	Tree	-	Fu
	-	Thnenn	Vine	577, 127	F
	-	Trameng	Tree	-	М
	-	Treal Var/ Kon Treal Var	Vine	-	F
	-	Trouyprich	Tree	-	F
	-	Tuntreankhet	Shrub	-	M, E
	-	Vor K'morng	Vine	Photo	TV
	-	Vor Lanchoeung	Vine	929	Ma
	-	Vor Pouh Vien Mean	Vine	252	М
	-	Vor Tasan	Vine	-	Ma