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Content

● Introduction to QuTiP

● Case studies in circuit-QED

– Jaynes-Cumming-like models

● Vacuum Rabi oscillations

● Qubit-gates using a resonators as a bus

● Single-atom laser

– Dicke model / Ultrastrong coupling

– Correlation functions and nonclassicality tests

– Parametric amplifier
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What is QuTiP?

● Framework for computational quantum dynamics

– Efficient and easy to use for quantum physicists

– Thoroughly tested (100+ unit tests)

– Well documented (200+ pages, 50+ examples)

– Quite large number of users (>1000 downloads)

● Suitable for 

– theoretical modeling and simulations

– modeling experiments

● 100% open source

● Implemented in Python/Cython using SciPy, Numpy, and matplotlib
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Project information

Authors: Paul Nation and Robert Johansson

Web site: http://qutip.googlecode.com

Discussion: Google group “qutip”

Blog: http://qutip.blogspot.com

Platforms: Linux and Mac

License: GPLv3

Download: http://code.google.com/p/qutip/downloads

Repository: http://github.com/qutip

Publication: Comp. Phys. Comm. 183, 1760 (2012)

http://qutip.googlecode.com/
http://qutip.blogspot.com/
http://code.google.com/p/qutip/downloads
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What is Python?

Python is a modern, general-purpose, interpreted programming language

Modern

Good support for object-oriented and modular programming, packaging and reuse of code, and 
other good programming practices.

General purpose

Not only for scientific use. Huge number of top-quality packages for communication, graphics, 
integration with operating systems and other software packages.

Interpreted

No compilation, automatic memory management and garbage collection, very easy to use and 
program.

More information:
http://www.python.org
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Why use Python for scientific computing?

● Widespread use and a strong position in the computational physics community

● Excellent libraries and add-on packages

– numpy for efficient vector, matrix, multidimensional array operations

– scipy huge collection of scientific routines

ode, integration, sparse matrices, special functions, linear algebra, fourier transforms, …

– matplotlib for generating high-quality raster and vector graphics in 2D and 3D

● Great performance due to close integration with time-tested and highly optimized compiled codes

– blas, atlas blas, lapack, arpack, Intel MKL, …

● Modern general purpose programming language with good support for

– Parallel processing, interprocess communication (MPI, OpenMP), ... 

More information at:
http://www.scipy.org
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What we want to accomplish with QuTiP

Objectives

To provide a powerful framework for quantum mechanics that 
closely resembles the standard mathematical formulation

– Efficient and easy to use

– General framework, able to handle a wide
range of different problems

Design and implementation

– Object-oriented design

– Qobj class used to represent quantum objects

● Operators

● State vectors

● Density matrices 

– Library of utility functions that operate on Qobj instances

QuTiP core class: Qobj
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Quantum object class: Qobj

Abstract representation of quantum states and operators

– Matrix representation of the object

– Structure of the underlaying state space, Hermiticity, type, etc.

– Methods for performing all common operations
on quantum objects:

eigs(),dag(),norm(),unit(),expm(),sqrt(),tr(), ... 

– Operator arithmetic with implementations of: +. -, *, ...

>>> sigmax()

Quantum object: dims = [[2], [2]], shape = [2, 2], 
type = oper, isHerm = True
Qobj data =
[[ 0.  1.]
 [ 1.  0.]]

Example: built-in operator 

>>> coherent(5, 0.5)

Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[ 0.88249693]
 [ 0.44124785]
 [ 0.15601245]
 [ 0.04496584]
 [ 0.01173405]]

Example: built-in state 



Pohang 2012 robert@riken.jp 10

Calculating using Qobj instances

Basic operations
# operator arithmetic
>> H = 2 * sigmaz() + 0.5 * sigmax()

Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 2.   0.5]
 [ 0.5 -2. ]]
 
# superposition states
>> psi = (basis(2,0) + basis(2,1))/sqrt(2)

Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[ 0.70710678]
 [ 0.70710678]]

# expectation values
>> expect(num(2), psi)

0.4999999999999999

>> N = 25 
>> psi = (coherent(N,1) + coherent(N,3)).unit()
>> expect(num(N), psi)

4.761589143572134

Composite systems
# operators
>> sx = sigmax()
Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 0.  1.]
 [ 1.  0.]]

>> sxsx = tensor([sx,sx])
Quantum object: dims = [[2, 2], [2, 2]],
shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[ 0.  0.  0.  1.]
 [ 0.  0.  1.  0.]
 [ 0.  1.  0.  0.]
 [ 1.  0.  0.  0.]]

# states
>> psi_a = fock(2,1); psi_b = fock(2,0)
>> psi = tensor([psi_a, psi_b])
Quantum object: dims = [[2, 2], [1, 1]],
shape = [4, 1], type = ket
Qobj data =
[[ 0.]
 [ 1.]
 [ 0.]
 [ 0.]]

>> rho_a = ptrace(psi, [0])
Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[ 1.  0.]
 [ 0.  0.]]

Basis transformations
 
# eigenstates and values for a Hamiltonian
>> H = sigmax() 
>> evals, evecs = H.eigenstates()
>> evals

array([-1.,  1.])

>> evecs

array([
Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[-0.70710678]
 [ 0.70710678]],
Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[ 0.70710678]
 [ 0.70710678]]], dtype=object)

# transform an operator to the eigenbasis of H
>> sx_eb = sigmax().transform(evecs)

Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[-1.  0.]
 [ 0.  1.]]
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Organization
Time evolution

Visualization

Gates

OperatorsStates

Quantum objects

Entropy and
entanglement
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Evolution of quantum systems

Typical simulation workflow:

i. Define parameters that characterize the 
system

ii. Create Qobj instances for operators and 
states

iii. Create Hamiltonian, initial state and
collapse operators, if any

iv. Choose a solver and evolve the system

v. Post-process, visualize the data, etc.

Available evolution solvers:

– Unitary evolution: Schrödinger and von 
Neumann equations

– Lindblad master equations

– Monte-Carlo quantum trajectory method

– Bloch-Redfield master equation

– Floquet-Markov master equation

– Propagators

The main use of QuTiP is quantum evolution. A number of solvers are available.
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Lindblad master equation

Equation of motion for the density matrix         for a quantum system that interacts with its 
environment:

How do we solve this equation numerically?

I. Construct the matrix representation of all operators
II. Evolve the ODEs for the unknown elements in the density matrix
III. For example, calculate expectation values for some selected operators for each 
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Lindblad master equation

Equation of motion for the density matrix         for a quantum system that interacts with its 
environment:

How do we solve this equation numerically in QuTiP?

from qutip import *

psi0 = ... # initial state
H  = ... # system Hamiltonian 
c_op_list = [...] # collapse operators
e_op_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mesolve(H, psi0, tlist, c_op_list, e_op_list)
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Monte-Carlo quantum trajectory method

Equation of motion for a single realization of the state vector           for a quantum system that 
interacts with its environment:

Comparison to the Lindblad master equation (LME)

I. MC uses state vectors instead of density matrices → huge advantage for large quantum systems
II. MC give only one stochastic realization of the state vector dynamics → need to average over many

trajectories to get the ensemble average that can be compared to the density matrix. 
III. MC is faster than LME for large system, but LME is faster for small system.
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Monte-Carlo quantum trajectory method

Equation of motion for a single realization of the state vector           for a quantum system that 
interacts with its environment:

Comparison to the Lindblad master equation (LME) in QuTiP code:

from qutip import *

psi0 = ... # initial state
H  = ... # system Hamiltonian 
c_list = [...] # collapse operators
e_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mesolve(H, psi0, tlist, c_list, e_list)

from qutip import *

psi0 = ... # initial state
H  = ... # system Hamiltonian 
c_list = [...] # collapse operators
e_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mcsolve(H, psi0, tlist, c_list, e_list, ntraj=500)
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Example: Jaynes-Cummings model

Mathematical formulation:

Hamiltonian

Initial state

Time evolution

Expectation values

QuTiP code:
from qutip import *
N  = 10

a  = tensor(destroy(N),qeye(2))
sz = tensor(qeye(N),sigmaz())
s  = tensor(qeye(N),destroy(2))
wc = wq = 1.0 * 2 * pi
g  = 0.5 * 2 * pi
H  = wc * a.dag() * a - 0.5 * wq * sz + \
     0.5 * g * (a * s.dag() + a.dag() * s)
psi0  = tensor(basis(N,1), basis(2,0))
tlist = linspace(0, 10, 100)
out   = mesolve(H, psi0, tlist, [], [a.dag()*a])

from pylab import *
plot(tlist, out.expect[0])
show()

(a two-level atom in a cavity)

Qobj
instances
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Example: time-dependence
Multiple Landau-Zener transitions

from qutip import *

# Parameters
epsilon = 0.0
delta = 1.0

# Initial state: start in ground state
psi0 = basis(2,0)

# Hamiltonian
H0 = - delta * sigmaz() - epsilon * sigmax()
H1 = - sigmaz()
h_t = [H0, [H1, 'A * cos(w*t)']]
args = {'A': 10.017, 'w': 0.025*2*pi}

# No dissipation
c_ops = []

# Expectation values
e_ops = [sigmax(), sigmay(), sigmaz()]

# Evolve the system
tlist = linspace(0, 160, 500)
output = mesolve(h_t, psi0, tlist, c_ops, e_ops, args)

# Process and plot result
# ...
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Example: open quantum system

from qutip import *

g = 1.0 * 2 * pi # coupling strength
g1 = 0.75        # relaxation rate
g2 = 0.25        # dephasing rate
n_th = 1.5       # environment temperature
T = pi/(4*g)

H = g * (tensor(sigmax(), sigmax()) + tensor(sigmay(), sigmay()))

c_ops = []
# qubit 1 collapse operators
sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+n_th)) * sm1)
c_ops.append(sqrt(g1 * n_th) * sm1.dag())
c_ops.append(sqrt(g2) * sz1)
# qubit 2 collapse operators
sm2 = tensor(qeye(2), sigmam())
sz2 = tensor(qeye(2), sigmaz())
c_ops.append(sqrt(g1 * (1+n_th)) * sm2)
c_ops.append(sqrt(g1 * n_th) * sm2.dag())
c_ops.append(sqrt(g2) * sz2)

U = propagator(H, T, c_ops)

qpt_plot(qpt(U, op_basis), op_labels)

Dissipative two-qubit iSWAP gate 
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Visualization
● Objectives of visualization in quantum mechanics:

– Visualize the composition of complex quantum states (superpositions and statistical mixtures).

– Distinguish between quantum and classical states. Example: Wigner function.

● In QuTiP:

– Wigner and Q functions, Bloch spheres, process tomography, ... 

– most common visualization techniques used in quantum mechanics are implemented
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Case-studies in circuit-QED

● IPython notebooks:

– Jaynes-Cumming-like models

● Vacuum Rabi oscillations

● Qubit-gates using a resonators as a bus

● Single-atom laser

– Dicke model / Ultrastrong coupling

– Correlation functions and nonclassicality tests

– Parametric amplifiers

● Available for download from github:

http://github.com/jrjohansson/qutip-lectures
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Summary
● QuTiP: framework for numerical simulations of 

quantum systems

– Generic framework for representing quantum states 
and operators

– Large number of dynamics solvers

● Main strengths: 

– Ease of use: complex quantum systems can 
programmed rapidly and intuitively

– Flexibility: Can be used to solve a wide variety of 
problems

– Performance: Near C-code performance due to use of 
Cython for time-critical functions

● Future developments:

– Stochastic master equations?
Non-markovian master equations?

More information at: 
http://qutip.googlecode.com
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