
Pohang 2012 robert@riken.jp 1

Lecture on

QuTiP: Quantum Toolbox in Python
with case studies in

Circuit-QED

Robert Johansson
RIKEN

 In collaboration with
Paul Nation

Korea University

Pohang 2012 robert@riken.jp 2

Content

● Introduction to QuTiP

● Case studies in circuit-QED

– Jaynes-Cumming-like models

● Vacuum Rabi oscillations

● Qubit-gates using a resonators as a bus

● Single-atom laser

– Dicke model / Ultrastrong coupling

– Correlation functions and nonclassicality tests

– Parametric amplifier

Pohang 2012 robert@riken.jp 3

2000 2005 2010

NEC 1999

qubits

qubit-qubit

qubit-resonator

resonator as coupling bus

high level of control
of resonators

Delft 2003

NIST 2007

NEC 2007

NIST 2002

Saclay 2002

Saclay 1998 Yale 2008

Yale 2011

UCSB 2012

UCSB 2006

NEC 2003

Yale 2004

UCSB 2009

UCSB 2009

ETH 2008

ETH 2010

Chalmers 2008

Pohang 2012 robert@riken.jp 4

What is QuTiP?

● Framework for computational quantum dynamics

– Efficient and easy to use for quantum physicists

– Thoroughly tested (100+ unit tests)

– Well documented (200+ pages, 50+ examples)

– Quite large number of users (>1000 downloads)

● Suitable for

– theoretical modeling and simulations

– modeling experiments

● 100% open source

● Implemented in Python/Cython using SciPy, Numpy, and matplotlib

Pohang 2012 robert@riken.jp 5

Project information

Authors: Paul Nation and Robert Johansson

Web site: http://qutip.googlecode.com

Discussion: Google group “qutip”

Blog: http://qutip.blogspot.com

Platforms: Linux and Mac

License: GPLv3

Download: http://code.google.com/p/qutip/downloads

Repository: http://github.com/qutip

Publication: Comp. Phys. Comm. 183, 1760 (2012)

http://qutip.googlecode.com/
http://qutip.blogspot.com/
http://code.google.com/p/qutip/downloads

Pohang 2012 robert@riken.jp 6

What is Python?

Python is a modern, general-purpose, interpreted programming language

Modern

Good support for object-oriented and modular programming, packaging and reuse of code, and
other good programming practices.

General purpose

Not only for scientific use. Huge number of top-quality packages for communication, graphics,
integration with operating systems and other software packages.

Interpreted

No compilation, automatic memory management and garbage collection, very easy to use and
program.

More information:
http://www.python.org

Pohang 2012 robert@riken.jp 7

Why use Python for scientific computing?

● Widespread use and a strong position in the computational physics community

● Excellent libraries and add-on packages

– numpy for efficient vector, matrix, multidimensional array operations

– scipy huge collection of scientific routines

ode, integration, sparse matrices, special functions, linear algebra, fourier transforms, …

– matplotlib for generating high-quality raster and vector graphics in 2D and 3D

● Great performance due to close integration with time-tested and highly optimized compiled codes

– blas, atlas blas, lapack, arpack, Intel MKL, …

● Modern general purpose programming language with good support for

– Parallel processing, interprocess communication (MPI, OpenMP), ...

More information at:
http://www.scipy.org

Pohang 2012 robert@riken.jp 8

What we want to accomplish with QuTiP

Objectives

To provide a powerful framework for quantum mechanics that
closely resembles the standard mathematical formulation

– Efficient and easy to use

– General framework, able to handle a wide
range of different problems

Design and implementation

– Object-oriented design

– Qobj class used to represent quantum objects

● Operators

● State vectors

● Density matrices

– Library of utility functions that operate on Qobj instances

QuTiP core class: Qobj

Pohang 2012 robert@riken.jp 9

Quantum object class: Qobj

Abstract representation of quantum states and operators

– Matrix representation of the object

– Structure of the underlaying state space, Hermiticity, type, etc.

– Methods for performing all common operations
on quantum objects:

eigs(),dag(),norm(),unit(),expm(),sqrt(),tr(), ...

– Operator arithmetic with implementations of: +. -, *, ...

>>> sigmax()

Quantum object: dims = [[2], [2]], shape = [2, 2],
type = oper, isHerm = True
Qobj data =
[[0. 1.]
 [1. 0.]]

Example: built-in operator

>>> coherent(5, 0.5)

Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
Qobj data =
[[0.88249693]
 [0.44124785]
 [0.15601245]
 [0.04496584]
 [0.01173405]]

Example: built-in state

Pohang 2012 robert@riken.jp 10

Calculating using Qobj instances

Basic operations
operator arithmetic
>> H = 2 * sigmaz() + 0.5 * sigmax()

Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[2. 0.5]
 [0.5 -2.]]

superposition states
>> psi = (basis(2,0) + basis(2,1))/sqrt(2)

Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[0.70710678]
 [0.70710678]]

expectation values
>> expect(num(2), psi)

0.4999999999999999

>> N = 25
>> psi = (coherent(N,1) + coherent(N,3)).unit()
>> expect(num(N), psi)

4.761589143572134

Composite systems
operators
>> sx = sigmax()
Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[0. 1.]
 [1. 0.]]

>> sxsx = tensor([sx,sx])
Quantum object: dims = [[2, 2], [2, 2]],
shape = [4, 4], type = oper, isHerm = True
Qobj data =
[[0. 0. 0. 1.]
 [0. 0. 1. 0.]
 [0. 1. 0. 0.]
 [1. 0. 0. 0.]]

states
>> psi_a = fock(2,1); psi_b = fock(2,0)
>> psi = tensor([psi_a, psi_b])
Quantum object: dims = [[2, 2], [1, 1]],
shape = [4, 1], type = ket
Qobj data =
[[0.]
 [1.]
 [0.]
 [0.]]

>> rho_a = ptrace(psi, [0])
Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[1. 0.]
 [0. 0.]]

Basis transformations

eigenstates and values for a Hamiltonian
>> H = sigmax()
>> evals, evecs = H.eigenstates()
>> evals

array([-1., 1.])

>> evecs

array([
Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[-0.70710678]
 [0.70710678]],
Quantum object: dims = [[2], [1]],
shape = [2, 1], type = ket
Qobj data =
[[0.70710678]
 [0.70710678]]], dtype=object)

transform an operator to the eigenbasis of H
>> sx_eb = sigmax().transform(evecs)

Quantum object: dims = [[2], [2]],
shape = [2, 2], type = oper, isHerm = True
Qobj data =
[[-1. 0.]
 [0. 1.]]

Pohang 2012 robert@riken.jp 11

Organization
Time evolution

Visualization

Gates

OperatorsStates

Quantum objects

Entropy and
entanglement

Pohang 2012 robert@riken.jp 12

Evolution of quantum systems

Typical simulation workflow:

i. Define parameters that characterize the
system

ii. Create Qobj instances for operators and
states

iii. Create Hamiltonian, initial state and
collapse operators, if any

iv. Choose a solver and evolve the system

v. Post-process, visualize the data, etc.

Available evolution solvers:

– Unitary evolution: Schrödinger and von
Neumann equations

– Lindblad master equations

– Monte-Carlo quantum trajectory method

– Bloch-Redfield master equation

– Floquet-Markov master equation

– Propagators

The main use of QuTiP is quantum evolution. A number of solvers are available.

Pohang 2012 robert@riken.jp 13

Lindblad master equation

Equation of motion for the density matrix for a quantum system that interacts with its
environment:

How do we solve this equation numerically?

I. Construct the matrix representation of all operators
II. Evolve the ODEs for the unknown elements in the density matrix
III. For example, calculate expectation values for some selected operators for each

Pohang 2012 robert@riken.jp 14

Lindblad master equation

Equation of motion for the density matrix for a quantum system that interacts with its
environment:

How do we solve this equation numerically in QuTiP?

from qutip import *

psi0 = ... # initial state
H = ... # system Hamiltonian
c_op_list = [...] # collapse operators
e_op_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mesolve(H, psi0, tlist, c_op_list, e_op_list)

Pohang 2012 robert@riken.jp 15

Monte-Carlo quantum trajectory method

Equation of motion for a single realization of the state vector for a quantum system that
interacts with its environment:

Comparison to the Lindblad master equation (LME)

I. MC uses state vectors instead of density matrices → huge advantage for large quantum systems
II. MC give only one stochastic realization of the state vector dynamics → need to average over many

trajectories to get the ensemble average that can be compared to the density matrix.
III. MC is faster than LME for large system, but LME is faster for small system.

Pohang 2012 robert@riken.jp 16

Monte-Carlo quantum trajectory method

Equation of motion for a single realization of the state vector for a quantum system that
interacts with its environment:

Comparison to the Lindblad master equation (LME) in QuTiP code:

from qutip import *

psi0 = ... # initial state
H = ... # system Hamiltonian
c_list = [...] # collapse operators
e_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mesolve(H, psi0, tlist, c_list, e_list)

from qutip import *

psi0 = ... # initial state
H = ... # system Hamiltonian
c_list = [...] # collapse operators
e_list = [...] # expectation value operators

tlist = linspace(0, 10, 100)
result = mcsolve(H, psi0, tlist, c_list, e_list, ntraj=500)

Pohang 2012 robert@riken.jp 17

Example: Jaynes-Cummings model

Mathematical formulation:

Hamiltonian

Initial state

Time evolution

Expectation values

QuTiP code:
from qutip import *
N = 10

a = tensor(destroy(N),qeye(2))
sz = tensor(qeye(N),sigmaz())
s = tensor(qeye(N),destroy(2))
wc = wq = 1.0 * 2 * pi
g = 0.5 * 2 * pi
H = wc * a.dag() * a - 0.5 * wq * sz + \
 0.5 * g * (a * s.dag() + a.dag() * s)
psi0 = tensor(basis(N,1), basis(2,0))
tlist = linspace(0, 10, 100)
out = mesolve(H, psi0, tlist, [], [a.dag()*a])

from pylab import *
plot(tlist, out.expect[0])
show()

(a two-level atom in a cavity)

Qobj
instances

Pohang 2012 robert@riken.jp 18

Example: time-dependence
Multiple Landau-Zener transitions

from qutip import *

Parameters
epsilon = 0.0
delta = 1.0

Initial state: start in ground state
psi0 = basis(2,0)

Hamiltonian
H0 = - delta * sigmaz() - epsilon * sigmax()
H1 = - sigmaz()
h_t = [H0, [H1, 'A * cos(w*t)']]
args = {'A': 10.017, 'w': 0.025*2*pi}

No dissipation
c_ops = []

Expectation values
e_ops = [sigmax(), sigmay(), sigmaz()]

Evolve the system
tlist = linspace(0, 160, 500)
output = mesolve(h_t, psi0, tlist, c_ops, e_ops, args)

Process and plot result
...

Pohang 2012 robert@riken.jp 19

Example: open quantum system

from qutip import *

g = 1.0 * 2 * pi # coupling strength
g1 = 0.75 # relaxation rate
g2 = 0.25 # dephasing rate
n_th = 1.5 # environment temperature
T = pi/(4*g)

H = g * (tensor(sigmax(), sigmax()) + tensor(sigmay(), sigmay()))

c_ops = []
qubit 1 collapse operators
sm1 = tensor(sigmam(), qeye(2))
sz1 = tensor(sigmaz(), qeye(2))
c_ops.append(sqrt(g1 * (1+n_th)) * sm1)
c_ops.append(sqrt(g1 * n_th) * sm1.dag())
c_ops.append(sqrt(g2) * sz1)
qubit 2 collapse operators
sm2 = tensor(qeye(2), sigmam())
sz2 = tensor(qeye(2), sigmaz())
c_ops.append(sqrt(g1 * (1+n_th)) * sm2)
c_ops.append(sqrt(g1 * n_th) * sm2.dag())
c_ops.append(sqrt(g2) * sz2)

U = propagator(H, T, c_ops)

qpt_plot(qpt(U, op_basis), op_labels)

Dissipative two-qubit iSWAP gate

C
ol

la
ps

e
o p

er
at

or
s

Pohang 2012 robert@riken.jp 20

Visualization
● Objectives of visualization in quantum mechanics:

– Visualize the composition of complex quantum states (superpositions and statistical mixtures).

– Distinguish between quantum and classical states. Example: Wigner function.

● In QuTiP:

– Wigner and Q functions, Bloch spheres, process tomography, ...

– most common visualization techniques used in quantum mechanics are implemented

Pohang 2012 robert@riken.jp 21

Case-studies in circuit-QED

● IPython notebooks:

– Jaynes-Cumming-like models

● Vacuum Rabi oscillations

● Qubit-gates using a resonators as a bus

● Single-atom laser

– Dicke model / Ultrastrong coupling

– Correlation functions and nonclassicality tests

– Parametric amplifiers

● Available for download from github:

http://github.com/jrjohansson/qutip-lectures

Pohang 2012 robert@riken.jp 22

Summary
● QuTiP: framework for numerical simulations of

quantum systems

– Generic framework for representing quantum states
and operators

– Large number of dynamics solvers

● Main strengths:

– Ease of use: complex quantum systems can
programmed rapidly and intuitively

– Flexibility: Can be used to solve a wide variety of
problems

– Performance: Near C-code performance due to use of
Cython for time-critical functions

● Future developments:

– Stochastic master equations?
Non-markovian master equations?

More information at:
http://qutip.googlecode.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

