

Mastering	SAP	ABAP

	

A	complete	guide	to	developing	fast,	durable,	and	maintainable	ABAP	programs
in	SAP

	

	

	

	

	

	

	

	

	

Paweł	Grześkowiak
Wojciech	Ciesielski
Wojciech	Ćwik

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Mastering	SAP	ABAP
Copyright	©	2019	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

	

Commissioning	Editor:	Aaron	Lazar
Acquisition	Editor:	Shahnish	Khan
Content	Development	Editor:	Akshita	Billava
Technical	Editor:	Ashi	Singh,	Neha	Pande
Copy	Editor:	Safis	Editing
Language	Support	Editor:	Storm	Mann
Project	Coordinator:	Vaidehi	Sawant
Proofreader:	Safis	Editing
Indexer:	Pratik	Shirodkar
Graphics:	Jisha	Chirayil
Production	Coordinator:	Aparna	Bhagat

First	published:	May	2019

Production	reference:	1280519

	

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-894-2

www.packtpub.com

http://www.packtpub.com

I	would	like	to	dedicate	this	book	to	my	fiancée,	Natalia,	for	her	support
and	unlimited	level	of	patience.

–	Paweł	Grześkowiak

To	my	wife,	Anna,	for	being	my	loving	partner	throughout	our	joint	life	journey.
To	my	mother,	Danuta,	and	to	the	memory	of	my	father,	Bogumił,	for	their	sacrifices	and

for	exemplifying	the	power	of	determination,	love,	support,	and	inspiration;
and	to	my	sister,	Ewelina,	for	her	smile	and	for	not	giving	up.

–	Wojciech	Ciesielski

I	dedicate	this	book	to	my	wife,	Jagoda,	for	her	love,	faith,	support,	and	for	being
an	invaluable	life	companion.

–	Wojciech	Ćwik

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.packt.
com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more	details.

At	www.packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

http://www.packt.com
http://www.packt.com

Contributors

About	the	authors
Paweł	Grześkowiak	has	been	passionate	about	programming	from	his	early
years,	and	since	2012	he	has	been	a	SAP	technical	consultant—mainly	in	the
ABAP	area.	He	has	expertise	in	boosting	implementations	in	the	rail	transport
industry,	the	chemical	industry,	media,	government	administration,	the	wood
industry,	and	banking.	Currently,	he	designs	extensions	to	SAP	S4/HANA
systems	in	ABAP	and	Java.	He	is	an	active	member	of	the	SAP	community	and
a	three-time	SAP	Inside	Track	conference	organizer.

I	would	like	to	thank	all	my	colleagues	from	Capgemini	who	helped	make	this	book	better:	Krzysztof
Bulanowski,	Daniel	Iwanowski,	Bogdan	Brzozowski,	Mateusz	Skadorwa,	Marcin	Maciejewski,	Piotr
Roszak,	and	Marcin	Bielecki.	Special	thanks	to	Anna	Wilk	for	checking	all	the	examples	carefully	and	for
her	brilliant	review.	Last	but	not	least,	many	thanks	to	my	Capgemini	mentor,	Paweł	Gaura,	for	his	support
in	my	career	and	development.

	

Wojciech	Ciesielski	graduated	from	the	Wroclaw	University	of	Technology
with	an	Engineering	degree	in	Automation	and		Robotics,	and	he	has	a	master's
degree	in	Management	in	WSB	Universities.	Since	then,	he	has	been	tightly
connected	with	the	SAP	environment,	working	as	an	ABAP	consultant.	He	has
several	years	of	business	background	in	ABAP	development	and	the	use	of
modern	technologies	in	business.	He	is	experienced	in	working	with	ERP	and
CRM	systems	and	integrating	them	with	third-party	solutions—from	single
companies	to	multinational	corporations.	He	is	a	co-creator	of	innovative
solutions	delivered	to	the	wide	international	audience	of	SAP	events.	He	is
currently	focused	on	new	technologies	and	solutions	in	the	SAP	portfolio:	SAP
Cloud	Platform,	Internet	of	Things,	and	artificial	intelligence;	but	he	is	also
increasing	his	expertise	in	development	with	other	languages.

	

Wojciech	Ćwik	has	been	a	certified	ABAP	consultant	for	several	years,	with	a
specialty	in	mobile	solutions,	especially	in	creating	interfaces	between	SAP	and
frontend	solutions	from	Fiori	and	third-party	platforms;	he	also	enjoys	creating
architectures	in	SAP	ERP	ecosystems.	He	is	a	co-originator	of	an	unconventional

system	linking	new	solutions	from	the	SAP	portfolio	such	as	IoT,	SAP	Cloud,
and	SAP	blockchain	services.

About	the	reviewer
Dariusz	Pacynko	graduated	from	Wroclaw	University	of	Technology	with	an
MSc	degree	in	Optical	Engineering.	Since	then,	he	has	been	tightly	connected
with	the	SAP	environment,	working	as	an	ABAP	consultant.	He	has	multiple
certifications,	such	as	ABAP	with	SAP	Netweaver	7.40	Development	Associate,
and	several	years	of	business	background	including	experience	with	ABAP
development,	OData	services,	and	SAPUI5	applications.	He	is	experienced	in
working	with	ERP	and	CRM	systems,	integrating	them	with	third-party
solutions,	and	opening	them	to	the	mobile	philosophy.	He	is	a	co-creator	of
innovative	solutions	delivered	to	the	wide	international	audience	of	SAP	events.
He	is	currently	focused	on	the	new	technologies	and	solutions	in	the	SAP
portfolio,	such	as	SAP	Cloud	and	IoT,	but	he	is	also	increasing	his	expertise	in
Fiori	development.

	

	

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Mastering	SAP	ABAP

Dedication

About	Packt

Why	subscribe?

Packt.com

Contributors

About	the	authors

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Code	in	action

Conventions	used

Get	in	touch

Reviews

1.	 Creating	Custom	Code
Technical	requirements

Making	changes

Design	thinking

BDUF/LDUF

Designing	for	quality	and	use

Designing	the	UI

Designing	services

Designing	the	business	logic

Designing	the	database

Agile	principles

DevOps

Continuous	delivery

Summary

Questions

2.	 The	Basic	Structure	of	ABAP

Technical	requirements

The	Data	Dictionary

Domains

Data	elements

Structures

Search	helps

Table	types

Databases

Data	declaration

Field	symbol

Summary

Questions

3.	 Database	Access	in	ABAP
Technical	requirements

Starting	with	OpenSQL

Basics

Possibilities	with	SELECT	-	the	first	part	of	the	SQL	statement

Possibilities	with	INTO	-	the	third	part	of	the	SQL	statement

The	WHERE	condition

How	to	see	data	selected	from	a	database

More	advanced	possibilities	in	OpenSQL

WHERE	conditions

Dynamic	SELECT	in	WHERE

SINGLE	FOR	UPDATE

GROUP	BY

ORDER	BY

UP	TO	and	ROWS

SELECT	and	ENDSELECT

FOR	ALL	ENTRIES

Subqueries

Reading	data	from	several	tables

Identifying	and	saving	the	changes

Creating	datasets

Updating	datasets

Deleting	datasets

The	optimization	of	reading	big	datasets

The	new	SQL	syntax

Inline	declaration

SQL	expression

Using	the	SQL	Trace	tool	for	performance	analysis

Summary

Questions

4.	 Import	and	Export	to	Document	Formats
Technical	requirements

Client-side	file	processing

Reading	files	from	the	local	PC	using	gui_upload

Writing	files	to	the	local	PC	using	gui_download

Server-side	file	processing

Basic	transactions	related	to	server-side	files

Writing	files	to	the	application	server

Reading	files	from	the	application	server

Working	with	Microsoft	Office	files

Reading	data	from	Microsoft	Excel

Saving	a	table	to	a	Microsoft	Excel	file

Working	with	Microsoft	Word

Using	DOI	to	integrate	Microsoft	Office	applications	into	ABAP	reports

Summary

Questions

Further	reading

5.	 Exposing	Data	to	Print	Forms
Technical	requirements

Introduction	to	printouts	in	SAP

SAPScript	-	the great-grandfather	of	all	printouts

Creating	our	first	SmartForm

Adobe	Forms

Creating	our	first	Adobe	Form

Summary

Questions

Further	reading

6.	 ABAP	and	XML
Technical	requirements

Using	the	CL_XML_DOCUMENT	class	for	XML

Reading	and	parsing	XML	files	to	ABAP

Changing	XML	data

Simple	transformations	in	ABAP

Serialization	using	ST

Deserialization	using	ST

sXML	library	for	XML	and	JSON

Converting XML	to	JSON

Summary

Questions

Further	reading

7.	 Building	User	Interfaces

Technical	requirements

Classic	DynPro

Screen	painter

Selection	screens

More	advanced	options	of	the	selection	screen

Checkbox

Radiobutton

Blocks	in	selection	screens

Selection	screen	event	model

ALV

Basics

Advanced	capabilities	of	ALV	sand	screens

Zebra

Coloring

Event	of	an	ALV,	exemplified	by	a	button	click

Icons	in	the	ALV

Text	fields	and	translations

Input/output	field

Radiobuttons	and	checkbox

Button

Dynamic	display	possibilities	for	individual	elements	and	grou

ps

Summary

Questions

8.	 Creating	Stunning	UI5	Interfaces
Technical	requirements

Development	tools

Layouts	and	floorplans

SAP	Fiori	elements

The	analytical	list	page

The	list	report

The	object	page

The	overview	page

The	worklist

Layouts

Floorplans

The	initial	page	floorplan

The	multi-instance floorplan

The	wizard floorplan

Basic	templates

The	SAPUI5	library

Control	documentation	page	and	inheritance

Contextual	info

Overview

Constructor

Properties

Associations

Aggregations

Events

Methods

Inheritance

Main	controls

Custom	controls

Creating	our	first	mobile	app

Application	and	project	structure

index.html

The	standard	variant

The	content	delivery	network

The	miscellaneous	variants

Component.js

manifest.json

Views	and	controllers

MainView.view.xml

SearchView.view.xml

SearchView.controller.js

i18n.properties

Testing	SAPUI5	apps

Mock	Server

Unit	tests

Integration	tests

Summary

Questions

Further	reading

9.	 Business	Object	Processing	Framework
Technical	requirements

An	introduction	to	BOPF

Transaction

Nodes	and	entities

First	BOPF	example

Creating	the	object

Displaying	an	object

Summary

Questions

Further	reading

10.	 Modification	and	Customization	Techniques
Technical	requirements

Legacy	ways	of	changing	the	standard

Customer	Exits

Using	BTE	to	extend	FI	functionality

Modifications

FQEVENTS

Appends

Classical	BAdl

Enhancement	framework	and	its	components

Enhancement	sections	and	Enhancement	points

Implicit	enhancements

Summary

Questions

Further	reading

11.	 Handling	Exceptions	in	ABAP
Technical	requirements

Classic	exception	handling

Handling

Raising

Class-based	exceptions

Handling

Raising

Assertions

Building	a	checkpoint	group

Defining	assertions

Using	assertions

Runtime	errors

ABAP	dump	analysis	tool

Error	log

System	environment

User	View

ABAP	developer	View

BASIS	developer	View

Summary

Questions

12.	 Testing	ABAP	programs
Technical	requirements

Testing	the	quality	of	code

Static	testing	with	Code	Inspector	and	ABAP	Test	Cockpit

Testing	and troubleshooting

ABAP	Memory	Inspector

Advanced	ABAP	debugger	techniques

Testing	with	eCATT

Summary

Questions

Further	reading

13.	 Advanced	Techniques	in	ABAP	Objects
Technical	requirements

Global	versus	local	classes

Creating	a	local	class

Creating	a	global	class

The	static	method	versus	the	instance	method

Nested	classes

A	class	as	an	attribute	of	the	class

Inheritance

Interfaces

The	event	concept

ABAP	Objects	design	patterns

Prototype	-	creation	pattern

Singleton	-	creation	pattern

Facade	-	structural	pattern

Decorator	-	structural	pattern

Observer	-	behavioral	pattern

Strategy	-	behavioral	pattern

Summary

Questions

14.	 Integrating	SAP	with	Third-Party	Systems
Technical	requirements

IDoc

IDoc	overview

The	construction	of	IDoc

The	EDI	system

ALE

Differentiating	ALE	from	EDI

BAPI

Implementing	BAPI

SAP	Gateway

Deployment	variants

Embedded

Hub

Hub	(with	development)

Main	tools

Gateway	Service	Maintenance

Gateway	Client

Error	Log

Gateway Service	Builder

The	OData	protocol

Characteristics

The	service	definition

Developing	our	first	OData	application

Design	time

Providing	data

Summary

Questions

15.	 The	Background	Processing	of	ABAP	Programs
Technical	requirements

Background	processing	in	SAP

Background remote	function	call

Scheduling	background	jobs

Creating	a	background	job

Recording	batch	input	sessions

Summary

Questions

16.	 Performance	and	Optimization	of	ABAP	Code
Technical	requirements

Ways	of	measuring	ABAP	programs	performance

ABAP	runtime	analysis

ABAP	trace	analysis

ABAP	SAT	transactions

Best	practice	techniques

Summary

Questions

Assessments

Answers

Chapter	1	-	Creating	Custom	Code

Chapter	2	-	The	Basic	Structures	of	ABAP

Chapter	3	-	Database	Access	in	ABAP

Chapter	4	-	Import	and	Export	to	Document	Formats

Chapter	5	-	Exposing	Data	to	Print	Forms

Chapter	6	-	ABAP	and	XML

Chapter	7	-	Building	User	Interfaces

Chapter	8	-	Creating	Stunning	UI5	Interfaces

Chapter	9	-	Business	Object	Processing	Framework

Chapter	10	-	Modification	and	Customization	Techniques

Chapter	11	-	Handling	Exceptions	in	ABAP

Chapter	12	-	Testing	ABAP	Programs

Chapter	13	-	Advanced	Techniques	in	ABAP	Objects

Chapter	14	-	Integrating	SAP	with	Third-Party	Systems

Chapter	15	-	Background	Processing	of	ABAP	Programs

Chapter	16	-	Performance	and	Optimization	of	ABAP	Code

Additional	tutorials

Creating	a	report	from	the	template

Uploading	graphics	to	SE78

Another	Book	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Advanced	Business	Application	Programming	(ABAP)	is	an	established	and
complex	programming	language	in	the	IT	industry.	This	book	will	be	your	guide
to	becoming	an	industry	expert	in	Systems,	Applications,	Products	(SAP)
ABAP.	You	will	learn	how	to	write	custom	code	that	is	suited	for	the	latest
version	of	SAP	ABAP	as	well	as	the	older	versions	of	SAP.	By	exploring
practical	examples,	you	will	learn	how	to	make	user-friendly	interfaces	and	will
uncover	various	ways	to	optimize	your	ABAP	code.

Who	this	book	is	for
This	book	is	for	developers	who	want	to	learn	and	use	ABAP	skills	in	order	to
become	an	industry	expert.	Familiarity	with	object-oriented	programming
concepts	is	expected.

What	this	book	covers
Chapter	1,	Creating	Custom	Code,	focuses	on	available	actions	for	changing	SAP
systems	within	the	modern	and	ever-changing	SAP	wold.

Chapter	2,	The	Basic	Structure	of	ABAP,	focuses	on	the	distinction	between
ABAP	and	modern	programming	languages.

Chapter	3,	Database	Access	in	ABAP,	describes	how	to	extract	data	from	a
database	in	ABAP.

Chapter	4,	Import	and	Export	to	Document	Formats,	focuses	on	the	toolset	the
ABAP	developer	has	for	importing	and	exporting	data	to/from	different
environments.

Chapter	5,	Exposing	Data	to	Print	Forms,	explains	how	to	represent	extracted	data
in	a	user-friendly	print	form,	how	to	make	it	clearly	readable,	and	how	to	make
its	maintenance	less	time-consuming.

Chapter	6,	ABAP	and	XML,	deals	with	the	different	tools	ABAP	has	for	XML
manipulation,	their	performance	features,	and	what	real-life	scenarios	they	are
intended	for.

Chapter	7,	Building	User	Interfaces,	focuses	on	how	to	build	classical	Dynpro
with	the	help	of	ABAP	tools.	It	explains	what	screen	types	exist	and	how	they
are	interconnected	with	each	other,	what	GUI	controls	ABAP	developers	have	in
their	toolset,	and	which	of	them	are	recommended	and	which	are	not.	It	also
describes	ABAP	List	Viewer	(ALV)	controls	and	the	ALV	component	model.

Chapter	8,	Creating	Stunning	UI5	Interfaces,	places	UI5	in	the	family	of	SAP
interfaces	and	explains	how	to	use	it	in	the	most	efficient	way.

Chapter	9,	Business	Object	Processing	Framework,	gives	an	overview	of	Business
Object	Processing	Framework	(BOPF)	and	explains	why	it	is	important	in
SAP	environments	for	the	acceleration	of	development,	easier	maintenance,	and
supportability.

Chapter	10,	Modification	and	Customization	Techniques,	describes
the	customization	techniques	across	SAP	modules,	explaining	which	techniques
are	recommended	to	use	and	which	are	outdated.

Chapter	11,	Handling	Exceptions	in	ABAP,	covers	testing	exceptions	in	ABAP,	the
types	of	exception	that	have	existed	from	the	beginning,	and	the	types	we	have
now.	It	also	recommends	the	proper	way	of	handling	exceptions,	explaining	in
which	situations	it	is	strongly	required,	and	those	in	which	it	is	not
recommended.

Chapter	12,	Testing	ABAP	Programs,	explains	how	to	test	ABAP	programs	for
performance	without	sacrificing	the	clarity	of	ABAP	code	and	how	to	use	the
ABAP	Debugger	correctly	to	find	bottlenecks	and	speed	up	ABAP	programs.

Chapter	13,	Advanced	Techniques	in	ABAP	Objects,	deals	with	the	advantages
ABAP	objects	bring	to	the	development	process.	

Chapter	14,	Integrating	SAP	with	Third-Party	Systems,	focuses	on	how	to	build	a
stable	and	error-prone	connection	of	a	SAP	system	with	non-SAP	software.

Chapter	15,	Background	Processing	of	ABAP	Programs,	reveals	all	the	ins	and
outs	of	background	data	processing	in	SAP	that	you	may	face,	and	the
approaches	that	are	used	to	handle	with	them.

Chapter	16,	Performance	and	Optimization	of	ABAP,	provides	a	thorough	review
of	the	available	ABAP	toolset	for	testing	the	performance	of	ABAP	apps	and
tuning	their	execution.	It	also	gives	some	best	practice	tips	and	tricks	of	internal
ABAP	statements	and	focuses	on	tracing	and	tuning	OpenSQL	selections.

To	get	the	most	out	of	this	book
The	reader	should	know	the	basics	of	programming,	as	well	as	the	basics	of	SQL
and	operations	on	databases.	Basic	knowledge	of	business	processes	will	also	be
helpful.	This	book	also	deals	with	the	subject	of	UI5;	therefore,	it	is	worth	the
reader	knowing	the	basics	of	JavaScript.	

To	create	code	in	ABAP,	the	readers	also	need	access	to	SAP	systems	with	the
developer	key.	

To	create	applications	in	UI5,	the	readers	should	create	a	trial	account	in	the	SAP
Cloud	Platform.	The	SAP	Web	IDE	Full-Stack	developer	environment	is
available	there.	The	programming	environment	allows	you	to	create	and	extend
SAP	applications	on	a	full	stack	for	browsers	and	mobile	devices.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packt.com/support
and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packt.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Mastering-SAP-ABAP.	In	case	there's	an	update	to	the	code,	it	will	be	updated
on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-SAP-ABAP
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/9781787288942_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781787288942_ColorImages.pdf

Code	in	action
Visit	the	following	link	to	check	out	videos	of	the	code	being	run:	http://bit.ly/2M
4ILyK.

http://bit.ly/2M4ILyK

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	the	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"In	the	Details	window,	create	lines	%C1	and	%C2	with
the	values	that	are	shown	in	the	following	screenshot."

A	block	of	code	is	set	as	follows:

<script

				id="sap-ui-bootstrap"

				src="resources/sap-ui-core.js"

				data-sap-ui-libs="sap.m"

				data-sap-ui-theme="sap_belize">

</script>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

data-sap-ui-bindingSyntaxt="complex"

data-sap-ui-resourceroots='{	"my.namespace":"./"	}'

Any	command-line	input	or	output	is	written	as	follows:

$	mkdir	css

$	cd	css

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

http://www.packt.com/

Creating	Custom	Code
The	chapter	is	an	introduction	to	the	Systems,	Applications,	Products	(SAP)
system.	You	will	learn	how	to	organize	their	daily	work,	how	to	act	within	SAP
systems,	how	to	add	custom	code,	and	how	to	change	software	features	of	SAP
systems.	This	chapter	presents	modern	techniques	of	cooperation	within	a
company.	Basic	knowledge	of	these	issues	is	required	to	work	with	the	SAP
system.	This	chapter	is	an	introduction	to	the	more	complex	and	difficult	topics
contained	in	this	book.

The	following	topics	will	be	covered	in	this	chapter:	

Making	changes
Design	thinking
Big	Design	Up	Front/Little	Design	Up	Front	(BDUF/LDUF)
Designing	for	quality	and	use
Designing	the	User	Interface	(UI)
Designing	the	services
Designing	the	business	logic
Designing	the	database
Agile	principles
DevOps
Continuous	Delivery

Technical	requirements
This	chapter	does	not	have	complex	technical	requirements.	To	check	the
solutions	and	examples,	it	is	worth	having	user	access	to	the	SAP	system.	Other
information	(for	example,	agile	designing	the	UI)	can	be	better	understood	by	IT
employees.	However,	it	is	worthwhile	for	everyone	who's	interested	in	working
with	SAP	systems	to	read	the	information	contained	in	this	chapter.

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter01.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter01

Making	changes
There	are	several	ways	in	SAP	to	make	changes.	Some	of	them	are	configuration
changes,	and	some	are	purely	programmatical	changes.

SAP	systems	can	be	enhanced	in	five	ways:

Customizing:	Specific	business	and	functional	process	configuration
according	to	the	implementation	guide.	The	need	to	make	these	changes	is
predicted	by	SAP	and	the	procedure	of	implementation	has	been	developed.
Personalization:	Setting	up	global	attributes	to	display	certain	fields	(such
as	default	values	or	switching	off	the	display	of	a	field).
Modification:	These	are	changes	SAP	Repository	objects	make	at	the	client
side.	SAP	also	can	deliver	a	new	version	of	those	objects,	and	customers
need	to	reflect	these	changes	in	the	system.	Before	version	4.0B,	customers
needed	to	make	this	adjustment	manually	using	upgrade	utilities.	From
4.5A,	customers	can	use	the	Modification	Assistant	to	automate	this
procedure.
Enhancement:	Creating	a	repository	object	inside	a	standard	SAP	program.
More	details	about	enhancement	will	be	in	Chapter	10,	Modification	and
Customization	Techniques.
Custom	development:	This	means	creating	objects	that	are	unique	to	the
client	repository,	which	is	created	in	the	specified	namespace,	such	as	Y*	or
Z*,	for	all	new	objects.

In	your	daily	work	as	an	ABAP	programmer,	your	most	common	work	is
creating	custom	developments	and	enhancements.	Since	we	have	a	chapter	on
enhancements,	we	will	focus	here	on	custom	development.

In	custom	development,	we	can	create	a	custom	program	and	dictionary
elements.	There	will	be	more	about	creating	dictionary	elements	in	Chapter	2,	The
Basic	Structure	of	ABAP.

As	an	example,	we	will	show	you	how	to	create	one	of	the	most	basic
programs:	Hello	World.

In	the	first	step,	we	need	to	open	one	of	the	most	commonly	used	transactions	in
our	daily	work—SE80.	This	transaction	is	called	Object	Navigator,	and	is	a
transaction	where	we	can	create,	change,	and	delete	most	ABAP	objects.

The	main	window	for	the	SE80	transaction	looks	like	this:

First,	to	open	the	SE80	transaction,	we	need	to	put	the	name	of	the	transaction	in
the	search	box,	as	shown	in	the	following	screenshot:

	Press	enter,	or	click	on	 .

After	opening	a	transaction,	we	need	to	choose	the	Program	option	in	the	drop-
down	list	on	the	left	and	enter	the	name	Z_HELLO_WORLD	in	the	window,	as	shown	in
the	following	example,	and	press	Enter:

In	the	next	window,	choose	Yes:

Confirm	the	name	of	a	new	program	in	the	next	window.	Click	on	 	or	press
Enter:

In	the	next	window,	define	the	attributes	of	the	program,	and	now	press	Enter	or
click	on	 :

After	this,	choose	a	package.	We	need	to	create	a	program	as	a	local	object,	so
click	on	 :

After	this,	we	get	a	window	like	this:

Now	change	the	mode	to	Change	by	clicking	on	the	 		icon	or	pressing	Ctrl	+
F1.	The	background	color	of	the	window	with	the	code	will	change	to	white.

Now	we	put	the	code	there.

To	print	Hello	world	on	the	screen,	we	just	need	to	add	this:

WRITE	'Hello	World'.

Remember!	All	ABAP	custom	programs	needs	REPORT	NAME_OF_PROGRAM	at	the	beginning.

The	program	looks	similar	to	the	following	screenshot:

The	program	now	needs	to	be	activated.	To	activate	it,	click	on	 	or	press
Ctrl	+	F3.	When	an	object	has	been	activated,	a	message	will	be	shown:	

.

To	execute	the	program,	click	on	 	or	press	F8:

The	result	of	the	program	is	shown	in	the	preceding	screenshot.

Design	thinking
Design	thinking	is	a	method	of	creative	problem-solving.	This	method	is
designed	to	deliver	innovative	solutions	by	using	a	specific	work	method.	The
motto	of	this	method	is	doing,	not	talking,	so	going	over	every	detail	of	the
project	is	changed	into	a	multi	stage	division	of	tasks	in	order	to	extend	and
refine	subsequent	tasks.

The	process	of	design	thinking	is	divided	into	five	steps:

1.	 Empathy:	All	of	the	new	solutions	are	created	for	people.	Therefore,	the
needs	of	a	given	group	of	people	should	be	known,	and	this	is	why	empathy
is	the	starting	point	of	all	projects	created	by	design	thinking.	To	find	the
optimal	solution,	we	need	to	see	how	this	solution	will	help	the	common
user.

2.	 Define	the	problem:	In	this	stage,	we	need	to	define	the	exact	problem	to
solve.	We	need	to	remember	not	to	define	problems	in	too	narrow	or	too
wide	a	range	so	that	the	solution	will	not	be	limited	by	rigid	frames.

3.	 Ideas:	This	stage	consists	of	creating	as	many	ideas	as	possible	for
solutions	relating	to	the	previously	defined	problem.	In	this	step,	a
brainstorm	is	very	useful.	The	important	thing	is	not	to	stick	to	your	own
ideas,	and	not	to	judge	others.	These	sessions	should	be	ended	by	choosing
a	concrete	solution,	which	will	be	picked	from	the	previously	selected
ideas.

4.	 Prototypes:	Creating	the	prototypes	is	an	indispensable	step.	Building
prototypes	should	not	be	a	very	complicated	process.	The	most	important
thing	is	to	make	a	preliminary	visualization	of	the	idea,	because	only	in	that
way	can	the	idea	be	tested	naturally.	Every	subsequent	prototype	should	be
created	by	thinking	of	the	user	and	answering	concrete	questions.

5.	 Tests:	This	step	is	extremely	important.	In	this	step,	the	product	is	tested	in
a	real	environment,	so	you	can	check	that	it	functions	correctly.	Every
prototype	can	be	evaluated	by	the	group	(for	example,	the	project	group),
and	the	best	one	will	be	chosen	for	further	improvements.	Testing	should	be
repeated	until	a	satisfactory	result	is	obtained.

BDUF/LDUF
LDUF	is	the	process	of	modeling	a	small	subsystem	before	coding,	and	BDUF	is
also	a	process	of	modeling,	but	in	BDUF,	the	whole	system	needs	to	be	modeled
before	implementation.	BDUF	can	also	be	an	anti-pattern	for	many	reasons,	but
LDUF	(or	many	occurrences	of	LDUF	within	a	project)	is	often	helpful.

BDUF	occurs	in	one	of	two	categories:

A	document	of	the	high-level	architecture,	which	determines	the	key
features	of	architecture,	but	the	rest	of	the	things	are	unspecified	and/or
unclear.
General	documentation	should	describe	everything	from	high-level
architecture	to	the	smallest	detail	of	the	system.	These	documents	are	often
incoherent	as	there	are	no	automatic	ways	to	cross-check	them.

LDUF	can	be	precise	and	concise,	and	many	programmers/architects	can
check/verify	LDUF	and	detect	any	inconsistencies.

Generating	and	changing	BDUF	is	often	hard	and	expensive.	It	requires	teams	of
analysts,	consultants,	and	architects,	and	support	from	many	layers	of
management.	LDUF	is	light	and	informal—often,	a	programmer	can	do	a	mock-
up,	and	if	it's	checked,	it	can	be	checked	by	a	small	team.

These	are	the	main	aspects	of	LDUF:

Highly	informal;	it	can	be	made	by	yourself	or	with	a	small	team	of
programmers.
Code	is	created	in	a	small	subsystem,	which	can	be	as	small	as	even	one
class,	function,	or	package.
Often	not	prescriptive—the	results	are	to	be	used	as	advice,	not
requirements.

BDUF	is	prescriptive—the	code	must	be	consistent	with	the	paper	project;	all
exceptions	require	management	intervention.	Additionally,	it	is	anti-productive
for	many	of	the	reasons	mentioned	in	the	preceding	points.

Designing	for	quality	and	use
When	designing	new	software,	it	is	not	only	a	matter	of	creating	functional	code.
The	eventual	outcome	is	going	to	be	a	product	that	serves	its	purpose,	but	is	also
possible	to	improve,	is	robust,	is	easily	maintained,	and	can	be	used	for	a	long
time.	From	the	user's	perspective,	once	the	product	is	paid	for,	it	won't	require
much	more	cost	in	terms	of	funds,	man	effort,	or	any	other	measurable	value.

In	order	to	fulfill	these	goals	and	achieve	user	satisfaction,	the	philosophy	of
quality	engineering	was	introduced.	In	principle,	it	defines	product	quality	as	the
ratio	of	the	result	of	efforts	and	the	total	cost;	however,	in	detail,	it	considers
various	factors,	such	as	reliability,	maintainability,	continuous	improvement,
corrective	actions,	and	risk	management.

Particularly	in	software	engineering,	there	is	a	need	to	estimate	the	quality
through	an	end-to-end	view.	It	requires	the	collaboration	of	various	actors,
whose	roles	are	mostly	independent—business	architects,	security	officers,
project	managers,	and	more.

One	of	the	basic	steps	in	designing	for	quality	is	to	determine	quality	objectives
that	describe	the	requirements	for	software	quality.	The	software	quality	should
be	considered	in	two	areas:

How	it	complies	with	functional	requirements—whether	the	developed
product	is	actually	doing	what	it	is	supposed	to	do
How	it	meets	the	non-functional	requirements—whether	it	reaches	its	goals
in	the	correct	way

Once	the	objectives	are	defined,	they	can	be	measured	with	help	of	appropriate
models	and	various	methods,	such	as	Goal	Question	Metric	(GQM),	Balanced
Scoreboard	(BS),	or	Practical	Software	Measurement	(PSM).

There	is	no	universal	way	to	measure	and	control	the	value	of	quality	in	all
environments.	From	the	vast	list	of	factors,	several	apply	to	SAP	systems,	and
should	always	be	considered	when	developing	new	code:

Understandability:	Both	the	code	and	all	the	documentation	should	be
readable	by	peers.
Conciseness:	Not	only	should	the	code	be	kept	small,	but	it	also	should	not
process	unnecessary	data.
Consistency:	The	software	should	follow	the	notation	conventions	present
in	the	system.
Maintainability:	It	should	be	well	documented	and	not	complex
(modularized	as	needed)	to	allow	for	future	updates.
Testability:	The	software	should	be	written	in	a	way	that	allows	tests	to
check	its	correctness	and	performance.
Reliability:	The	code	should	behave	properly	(non-erroneously)	in	all
conditions.
Security:	It	should	always	consider	preventive	measures	to	avoid
unauthorized	access	to	important	data.

Depending	on	the	level	of	interaction	with	the	user,	there	are	several	additional
factors	that	should	be	considered:

The	intuitiveness	of	the	UI	
Ease	of	use
Sensibleness	of	messages,	for	example,	errors
Responsiveness	of	the	interface

Although	these	terms	tend	to	be	subjective	and,	in	general,	hard	to	determine	in
the	design	phase,	they	have	a	major	impact	on	the	quality	of	the	software	as	seen
by	the	end	user,	and	therefore,	cannot	be	neglected.

Designing	the	UI
The	practical	approach	of	building	and	implementing	user	interfaces	will	be
shown	in	Chapter	7,	Building	User	Interfaces,	and	Chapter	8,	Creating	Stunning
UI5	Interfaces.	There	are,	however,	some	ground	rules	and	guidelines	that
should	be	followed	when	designing	UIs:

Use	written	words:	As	a	rule,	the	software	should	be	as	self-descriptive	as
possible.	Although	graphical	interfaces	use	images	or	any	other	means	of
communication,	it	is	still	encouraged	to	give	the	user	appropriate	and
relevant	information	with	text.
Use	the	user's	language:	All	messages,	field	names,	and	texts	should	be
defined	in	the	user’s	language	(if	possible).
Use	consistent	terminology:	The	same	objects	should	be	named	the	same
way	throughout	the	environment.

Creating	a	user	interface	for	R/3	transactions	requires	a	few	decisions	to	be	taken
up	front.	One	of	the	most	important	decisions	is	to	determine	the	basic	type	of
application:

With	screen	changes:
None,	or	a	few	areas	on	the	page
Simple,	sequential	navigation

With	multiple	areas:
Few	or	no	changes	to	the	main	screen;	several	areas	with	lot	of
interaction	between	them
Provides	stable	context

Both	types	have	pros	and	cons,	and	the	choice	depends	on	several	criteria—
length	of	processing,	the	amount	of	detail	required,	the	user	type	(such	as	casual
or	expert),	and	the	data	type	(such	as	a	flat	structure	or	volume).

The	main	goal	of	the	design	is	to	facilitate	the	user's	focus	on	the	current	task,
while	more	or	less	ignoring	irrelevant	details.	In	order	to	do	so,	use	expand	and
collapse	areas	and	splitters.

When	designing	R/3	screens	in	detail,	there	are	several	effects—psychological
principles—that	should	be	considered	to	improve	the	perception	of	information:

The	effect	of	proximity:	Items	that	are	close	together	tend	to	be	grouped	in
our	perception.
The	effect	of	similarity:	Items	of	the	same	size,	shape,	or	quality	are	likely
to	be	viewed	as	a	group	or	pattern.
The	effect	of	closure:	Lines	that	enclose	areas	are	perceived	as	units.
The	effect	of	continuity:	Items	arranged	into	a	unified	layout	are	perceived
as	a	unit.

Designing	services
Services,	in	principle,	are	meant	to	be	consumed	by	some	other	part	of	the
system,	or	even	by	an	external	system.	It	is	required	to	keep	in	mind	that	the
service	may	not,	and	most	likely	will	not,	be	able	to	determine	where	and	when
it	is	used.	This	is	why	this	type	of	development	needs	to	be	particularly	robust
and	reliable,	as	various	areas	of	the	system	may	depend	on	its	correct
functioning.

When	designing	the	services,	aside	from	their	scenario-specific	implementation
needs,	there	are	several	things	that	should	be	considered	in	order	to	minimize
upgrade	and	maintenance	costs:

Keep	services	singular-task	oriented:	Even	if	the	service	is	supposed	to
perform	many	actions	on	the	system,	one	entry	point	should	perform	one
consistent	end-to-end	task	(for	example,	creating	a	business	object,	or
deleting	one).	Avoid	mixing	multiple	tasks	in	a	single	service	call.
Avoid	direct	database	manipulation	in	services:	Delegate	all	logic	to	the
business	logic	layer.
Expect,	but	check:	Do	not	assume	that	all	the	required	data	is	provided	by
the	caller,	and	always	verify	its	consistency.
Provide	consistent	and	explanatory	responses,	especially	when	errors
occur,	so	the	caller	can	react	accordingly.
Keep	the	service	well	documented,	so	it	is	clear	from	the	consumer's
perspective	what	to	expect	when	calling	a	particular	part	of	it.
If	possible,	keep	the	service's	interface	unchanged:	Even	small	changes
to	the	interface	will	require	adjustments	in	the	consumer's	implementation.
Utilize	optional	parameters	to	keep	backward	compatibility.

Designing	the	business	logic
The	business	logic	layer	is	meant	to	handle	business	objects	and	the	interaction
between	them.	Decouple	it	from	the	service	and	database	layers—it	should	know
as	little	about	the	database	access	or	user	interaction	as	possible,	yet	exchange
information	with	them	as	needed	using	a	level	of	abstraction,	such	as	interfaces
or	base	classes.	The	business	logic	should	focus	on	transforming	and	calculating
data,	leaving	other	tasks	to	other	layers.

Minimize	the	complexity	of	the	business	logic	itself	by	separating	concerns	into
different	areas.	Keep	the	processing,	workflow,	and	business	entities	separated
and	loosely	coupled.	The	separation	will	make	the	implementation	easier	to
follow,	whereas	loose	coupling	will	allow	modification	with	a	relatively	low
cost.	Then,	make	sure	you	avoid	the	duplication	of	functionalities	in	different
areas	by	reusing	common	parts	of	business	logic.

Identify	the	consumers	of	the	business	layer	so	that	the	data	can	be	exposed	in
the	desired	way.	This	will	prevent	the	additional	effort	of	converting	data	from
one	format	to	another.	Having	consumers	in	mind,	make	sure	you	have	prepared
not	only	the	functional	logic,	but	also	various	auxiliary	aspects,	such	as	security
requirements,	validations,	exception	management,	and	concurrency—keep	them
consistent	and	manage	them	centrally	if	possible.

Do	not	forget	about	unexpected	situations	and	audits—use	logs	to	store	the
history	of	critical	changes	or	errors,	yet	without	business-sensitive	data.	Ensure
that	errors	in	the	logging	process	itself	do	not	affect	the	normal	functionality	of
the	system—keep	it	as	a	separate	logical	unit.	Make	sure	that	the	logged
information	is	sufficient	to	track	the	root	causes	of	any	problems.

Designing	the	database
Designing	the	database	is	an	essential	part	of	the	company's	organization.	This	is
a	definition	that	covers	data	organization	according	to	the	model	adopted.
Designing	the	database	prepares	how	data	is	to	be	linked	in	tables.	It	is	also
necessary	to	specify	which	data	should	be	stored.	Designing	the	database
provides	easier	design,	expansion,	and	maintenance	of	the	SAP	system.	The
correct	design	of	the	database	greatly	influences	the	optimization	and	quality	of
the	system.

Creating	logical	and	physical	models	of	the	database	system	is	the	target	in
designing	databases.	It	is	a	complicated	and	complex	process	due	to	the	use	of
relational	databases	in	SAP	systems.	This	architecture	has	its	own	great
advantages,	and	a	proper	design	simplifies	the	implementation	of	the	ABAP
language.

The	logical	model	contains	information	on	data	storage,	but	there	is	no
information	on	how	it	will	be	stored.	This	model	makes	it	easier	to	analyze	the
structure	of	an	information	system	that's	unrelated	to	a	specific	database
implementation.	A	physical	data	model	enables	us	to	analyze	the	tables,	views,
and	other	objects	in	a	database.	The	physical	data	design	model	includes
changing	the	logical	database	design	to	a	physical	layer.	The	designer	uses
software	systems	for	this	purpose,	such	as	database	management	systems
(DBMSes).	A	DBMS	is	system	software	for	creating	and	managing	databases.	

In	the	SAP	system,	it	is	possible	to	graphically	show	connections	using	foreign
keys.	Using	this	tool	is	extremely	simple.	The	user	enters	the	table,	for
example,	through	SE11	transactions.

After	clicking	on	the	button	shown	in	the	following	screenshot,	the	SAP	system
will	display	the	tool	in	a	separate	window:

An	example	of	how	to	connect	to	the	SFLIGHT	table	is	shown	in	the	following
screenshot:

This	allows	the	user	to	view	all	the	tables	that	are	associated	with	a	foreign	key.
A	double-click	on	one	of	the	related	tables	moves	the	user	to	this	table.
Information	on	the	types	of	relationship	between	tables	is	also	included	here.

Agile	principles
In	2001,	the	Manifesto	for	Agile	Software	Development	was	created.	This	is	an
alternative	to	the	cascaded	way	of	generating	software.	The	manifesto	describes
agile	as	a	philosophy	for	carrying	out	various	projects,	including	IT	projects.	

The	basis	of	the	Agile	Manifesto	includes	four	basic	principles:

Individuals	and	interactions	over	processes	and	tools
Working	software	over	comprehensive	documentation

Customer	collaboration	over	contract	negotiation
Responding	to	change	over	following	a	plan

The	manifesto	means	that	the	values	described	on	the	left	are	more	important
than	the	ones	on	the	right.	It's	no	coincidence	that	people	are	placed	first.	The
success	of	each	project	depends	on	them.	If	the	team	has	the	right	skills	and	a	lot
of	commitment,	there	is	a	good	chance	that	each	project	will	be	successfully
completed.	Interactions	between	team	members	speed	up	the	work	and	allow	the
use	of	maximally	positive	aspects	of	teamwork.

The	second	point	indicates	what	is	most	important	from	the	point	of	view	of	the
software	recipient.	Even	the	best	documentation	cannot	replace	properly
working	software.	The	working	end	product	is	the	basis	for	considering	whether
the	project	has	been	successful.

A	quick	response	to	changes	causes	the	team	to	be	able	to	deliver	the	ideal
product	to	the	recipient.	It	builds	a	sense	of	professionalism	and	can	contribute
to	the	expansion	of	business	cooperation	with	the	current	investor.	Agile	is	a
great	project	management	tool	that	helps	to	eliminate	the	likelihood	of	an	IT
project	failure.

Work	based	on	agile	methodologies	takes	advantage	of	an	iterative	and
incremental	approach.	This	means	that	the	team	of	programmers	is	focused	on
the	fast,	cyclic,	and	orderly	delivery	of	product	elements.	The	result	of	this	is
greater	flexibility.	This	is	very	important	due	to	the	high	frequency	of	changes,

along	with	building	solutions.	Agile	methodologies	of	software	development	do
not	have	rigid	conditions	and	assumptions	regarding	every	aspect	of	the	project.

DevOps
DevOps	is	an	organizational	culture	whose	assumption	is	to	combine	the	work	of
software	development	teams	and	operations	teams.	DevOps	is	an	innovative
approach	to	software	development.	The	benefits	of	using	this	approach	are,
among	others,	as	follows:

Time	and	cost	savings
Shortening	the	time	of	product	implementation
Quick	changes	in	products
Better-fitting	functionalities
More	accurate	verification	of	correctness
Advantage	over	competitors
Better	team	cooperation

DevOps	uses	iterative	work	growth	in	accordance	with	agile	methodologies.
This	gives	the	product	recipient	the	opportunity	to	quickly	read	the	results	of	the
work.	DevOps	characterizes	a	fast	and	visible	change	in	the	company's
operations.	Teams	carry	out	projects	that	are	more	suited	to	the	needs	of	users.

DevOps	assumes	smooth	communication	between	technical	teams	and,	at	the
same	time,	assumes	the	following:

The	product	is	built	from	the	perspective	of	the	whole.
Accurate	testing	from	the	initial	functionality.
Relying	on	reliable	data.
Reducing	the	time	of	software	development.

Continuous	delivery
Continuous	delivery	is	a	concept	of	software	development.	It	is	based	on	the
assumption	that	software	is	created	in	short	intervals	of	time.	This	approach
allows	you	to	create	solutions	tailored	to	the	current	business	needs	of	recipients.
A	very	important	feature	of	this	method	of	sharing	the	finished	product	is	the
need	to	accept	the	possibility	of	running	the	software	on	the	main	(production)
system.	The	remaining	elements	of	the	implementation	process	are	automated.
The	process	is	also	characterized	by	a	repetitive	delivery	cycle.

Continuous	delivery	is	similar	to	the	method	of	continuous	implementation,	in
which	software	is	also	produced	in	short	cycles,	but	with	the	help	of	an
automatic	process	in	terms	of	production	transfer.

Summary
This	chapter	describes	how	the	user	can	organize	their	daily	work	and	operate	in
a	broader	context.	We've	looked	at	some	ideas	for	becoming	a	more	attentive
developer	or	architect.	At	an	advanced	level,	readers	will	be	able	to	organize
several	topics	within	complex	projects,	including	managing	stakeholders.	At	a
basic	level,	the	user	should	be	familiar	with	the	daily	activities	of	a	project
manager	or	architect	and	has	learned	how	to	integrate	with	the	complex
configuration	of	the	project.		

The	next	chapter	will	describe	the	world	of	modern	SAP	systems,	with	a	basic
outline	of	the	ABAP	language	and	gives	you	a	view	on	older	syntactic	data	and
their	equivalents,	which	are	used	in	modern	ABAP	systems.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	are	the	positive	aspects	of	using	agile	methods?
2.	 What	are	the	principles	of	the	agile	manifesto?
3.	 What	is	the	difference	between	a	logical	model	and	a	physical	model	when

designing	a	database?
4.	 List	the	possible	programming	changes	in	SAP.
5.	 What	is	the	motto	of	design	thinking,	and	why	is	it	coherent	with	the	design

thinking	methodology?
6.	 In	which	categories	does	BDUF	occur?
7.	 What	aspects	of	development	impact	the	quality	of	the	design?
8.	 Why	should	business	logic	be	loosely	coupled?

The	Basic	Structure	of	ABAP
This	chapter	will	provide	you	with	a	quick	introduction	into	the	world	of
modern	systems	applications	products	(SAP)	systems,	along	with	a	basic
outline	of	the	advanced	business	application	programming	(ABAP)	language.
We	will	take	a	look	at	legacy	syntax	figures	and	their	counterparts,	which	are
often	used	in	modern	ABAP	systems.

In	this	chapter,	we	will	explain	basic	data	structures,	the	principles	of	data
manipulation,	and	also	typical	hardware	and	software	features	of	SAP	systems.
This	knowledge	is	necessary	for	navigating	the	SAP	system	and	creating
applications.

In	this	chapter,	we	will	cover	the	following	topics:

The	Data	Dictionary
Domains
Data	elements
Structures
Table	types

Technical	requirements
All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter02.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter02

The	Data	Dictionary
The	Data	Dictionary	is	a	set	of	information	describing	the	objects	of	a	database
and	the	relationship	between	its	elements.

The	Data	Dictionary	is	used	to	control	access	to	and	manipulation	of	the	database.

The	Data	Dictionary	includes	a	domain,	Types	(StRUCTURES,	DATA	TYPE,
and	TABLE	TYPE),	tables,	views,	search	helps,	and	lock	objects.

The	following	diagram	explains	the	division	of	objects	in	a	Data	Dictionary:

To	create	an	object	for	the	Data	Dictionary,	we	need	to	use	the	SE11	transaction.
The	transaction	code	is	usually	only	a	few	characters	long	and	guides	you
directly	to	the	screen	of	the	task	that	the	user	wants	to	perform.	This	screen	is
shown	in	the	following	screenshot:

Domains
A	domain	is	an	object	that	describes	various	technical	attributes,	such	as	the	data
type	length	of	a	table	field.	A	domain	is	assigned	to	a	data	element.	One	domain
can	be	assigned	to	many	data	elements.

Creating	a	domain	is	very	easy	and	quick.	We	don't	need	specialized	knowledge.
The	following	is	the	typical	procedure	for	creating	the	data	element:

1.	 Go	to	Transaction	SE11,	select	the	radio	button	for	Domain,	and	enter	the
name	you	wish	to	give	it,	preferably	something	you	will	remember	when
you	see	it.	Then,	click	on	Create.	It	is	important	that	the	names	of	the
domains	follow	the	convention	of	Z	(or	Y)	prefixes:

2.	 The	Definition	tab	defines	the	technical	data.	The	user	enters	the
description	of	the	data.	In	this	step,	we	must	select	the	data	type	(what	kind

of	data	this	is),	as	well	as	the	number	of	characters.	Fortunately,	the	SAP
environment	is	very	friendly.	If	we	forget	to	fill	in	a	field	that's	mandatory,
the	system	will	not	allow	you	to	save	the	changes.	We	have	the	option	to
enter	a	decimal	place	if	we	choose	a	numeric	data	type.	Conversion	is	the
procedure	that	SAP	uses	to	normalize	the	data	held	in	the	various	tables,	but
it	is	not	obligatory.	There	are	two	methods	in	a	conversion	routine.	The	first
adjusts	the	data	to	the	variable,	while	the	other	changes	the	data	so	that	it's
in	a	more	readable	output	form.

In	summary,	this	is	a	way	we	can	adjust	the	values	to	variables.	The
Lower	Case	checkbox	allows	you	to	store	lowercase	characters	(as	stated
by	its	label).	By	default	(when	it	is	not	checked),	the	values	are	stored	in
uppercase.	The	following	screenshot	explains	what	fields	you	need	to	fill
in	to	create	a	domain:

3.	 All	the	mandatory	fields	have	been	filled	in	so	we	can	save	our	domain.	In

the	SAP	system,	if	we	want	to	use	an	object,	we	must	activate	it.	Activation
is	the	process	by	which	execution	causes	the	object	to	be	made	available	to
the	runtime	environment.	This	means	that	it	can	be	used	or	started.

4.	 Value	Range	is	a	very	useful	option.	Often,	we	need	to	use	specific	data.	We
can	define	a	single	value	or	value	table	for	the	domain.	Value	Table	is	one
of	the	properties	of	a	semantic	domain	and	contains	the	default	values	of
the	field	control	table.	Only	the	values	contained	in	this	table	can	be	used.
The	following	screenshot	explains	how	to	define	a	value	in	a	domain:

If	we	want	to	check	or	use	this	data,	we	can	use	a	simple	program:

DATA:	lt_value_domain	TYPE	TABLE	OF	dd07v.

	

	CALL	FUNCTION	'DD_DOMVALUES_GET'

			EXPORTING

					text						=	'X'

					domname			=	'ZERPD_FIRST_DOMAIN'

			TABLES

					dd07v_tab	=	lt_value_domain.

The	result	of	the	preceding	program	is	a	table	with	values:

Now	let's	move	on	to	the	next	section.

Data	elements
Data	elements	are	objects	that	describe	the	unitary	fields	in	the	Data	Dictionary.
It	should	be	emphasized	that	the	domain	is	used	to	define	technical	parameters,
while	the	data	element	is	more	function-oriented	(because	it	has	labels
explaining	its	purpose).	This	object	is	used	to	define	the	type	of	the	table	field,
as	well	as	the	structure	of	the	component.

Follow	these	steps	to	create	a	data	element:

1.	 Go	to	Transaction	SE11,	select	the	radio	button	for	the	Data	Type	element,
and	enter	a	name	for	it.	Then,	click	on	Create:

2.	 Choose	the	Data	element	checkbox	and	press	Enter:

3.	 Enter	a	short	description	and	assign	the	element	with	the	type.	The	user	can
assign	one	of	the	following	types	to	the	data:

Domain
Elementary	type
Reference	type

The	following	screenshot	explains	the	data	element	creation	screen:	

4.	 Enter	the	fields	for	Short	text,	Medium	text,	Long	text,	and	Heading	in	the
Field	Label	tab,	as	shown	in	the	following	screenshot.	Then,	save	and
activate	your	changes:

Structures
The	structure	is	a	data	object	that	consists	of	components	or	fields.	This	data
object	can	be	created	globally	and	locally.	The	user	can	create	a	global	structure
using	the	SE11	transaction.	The	creation	of	a	local	structure	can	be	implemented
in	two	ways.	The	first	way	is	by	implementing	the	code	in	the	method:

TYPES:	BEGIN	OF	tt_type,

										first_data		TYPE	string,

										second_data	TYPE	i,

										third_data		TYPE	c,

								END	OF	tt_type.

This	solution	has	the	limitation	that	it	is	only	implemented	in	one	method.	If	we
want	to	use	a	structure	in	another	class,	we	must	create	types	in	the	class	editor:

When	we	enter	Direct	Type	Entry,	we	develop	the	preceding	code.

A	structure	can	be	used	in	classes,	report	programs,	interfaces,	and	module
pools.	If	we	create	a	table,	we	use	a	structure	to	determine	what	fields	will	be
used.	A	structure	may	have	only	a	single	record	at	runtime.	

The	creation	of	a	structure	in	the	SAP	system	can	also	be	performed	using
SE11	Transaction.

In	the	Data	type	field,	the	name	of	the	created	structure	is	entered	and	the	Create

button	must	be	pressed.	The	window	of	this	transaction	with	the	structure	name
entered	is	as	follows:

The	system	asks	what	type	of	data	the	user	wants	to	create.	The	user	should
choose	Structure.	After	entering	the	creation	screen,	enter	a	short	description	of
the	structure	being	created.	In	the	window	that	appears,	you	can	enter	any
variable	names	and	specify	their	type.	There	are	two	ways	of	declaring	variables
in	the	structure.	The	first	option	is	to	use	existing	data	types.	The	user	can	also
use	predefined	data	types.	For	example,	the	completed	fields	of	the	structure	are
shown	in	the	following	screenshot:

In	the	Attributes	section,	information	about	the	structure	creator,	last	change
time,	and	the	package	is	available.	This	information	is	useful	when	the	structure
needs	to	be	expanded	and	there	is	a	need	to	consult	its	creator.	To	use	the	created
structure,	the	creator	should	save	and	activate	it.	A	structure	that's	created	in	this
way	can	be	used	in	any	program	in	the	SAP	system.

Search	helps
One	of	the	most	important	elements	of	the	Data	Dictionary	is	its	ability	to	help
you	implement	search	helps.	It	allows	you	to	find	all	the	required	values.	Of
course,	if	we	need	to	narrow	down	our	search,	we	can	do	that.	Creating	a	search
help	in	SAP	is	very	simple	and	is	used	often.

There	are	two	types	of	search	helps	in	the	SAP	system:

A	collective	search	help
An	elementary	search	help

A	collective	search	help	is	a	combination	of	several	elementary	searches.	This
search	help	object	specifies	a	series	of	search	process	paths	for	the	object.	This
category	has	an	interface	that	carries	values	because	the	results	are	transferred
between	the	basic	search	help	and	the	input	template.	

An	elementary	search	help	is	used	to	display	the	possible	entries	of	values	into
the	field.	This	helps	in	completing	the	fields	as	we	can	select	values	from	the
list.

In	order	to	create	a	search	help,	the	user	should	select	SE11	transactions	and
select	the	appropriate	checkbox.	The	next	step	is	to	enter	a	name	and	press	the
Create	button.	In	the	next	window,	the	system	will	ask	what	category	the	user
wants	to	choose.	For	the	example	shown,	Elementary	srch	hlp	was	selected.
After	accepting	this	type	of	category,	the	system	will	display	the	creation	screen,
as	follows:

Just	like	many	other	objects	in	the	SAP	system,	a	short	description	is	obligatory.
In	the	Selection	method	field,	the	user	can	enter	tables	that	values	will	be
collected	from.	The	type	dialog	is	used	to	specify	the	appearance	of	the	limiting
dialog	box.	To	use	the	search	help	tool,	the	system	requires	the	selection	of	the
parameters	that	will	be	used.	The	user	can	do	this	in	the	parameter	section.	In	the
parameter	section,	it	is	possible	to	fill	in	the	following	fields:

Import	(IMP):	Determines	whether	the	parameter	is	imported
Export	(EXP):	Determines	whether	the	parameter	is	exported
LPos:	Entering	the	value	determines	where	the	field	will	appear	in	the
selection	list
SPos:	Entering	the	value	determines	where	the	field	will	appear	in	the
restrictive	dialog	box

An	example	screen	with	completed	data	is	as	follows:

After	creating,	saving,	and	activating,	it	is	possible	to	test	the	search	help	tool
that	was	created.	In	this	example,	the	search	help	is	as	follows:

As	we	can	see,	the	search	help	works	without	any	problems.

Table	types
The	table	type	is	one	of	the	elements	of	the	ABAP	dictionary	in	the	SAP	system.
Its	main	purpose	is	to	defend	the	internal	table	and	the	sourcing	of	structures.
Like	the	other	elements,	it	is	created	in	Transaction	SE11.	A	table	type	created
by	this	transaction	is	available	globally.	This	means	that,	once	created,	an	object
can	be	used	in	many	programs,	not	depending	on	the	place.	Changes	in	these
objects	must	be	thought	out	because	they	can	affect	many	processes	and	cause
their	incorrect	operation.	The	second	way	to	create	a	type	table	is	to	create	it
locally.	It	is	then	included	in	the	program's	code	and	is	only	available	in	this
area.

During	the	creation	of	a	types	table	in	a	SE11	transaction,	the	user	can	choose
one	of	the	following	types	of	data	access:

A	standard	table
A	sorted	table
A	hashed	table
An	index	table
Not	specified

Databases
In	most	cases,	business	processes	in	the	SAP	system	are	based	on	recorded	data.
For	this	purpose,	a	model	based	on	relational	data	is	used.	A	database	table	is,
therefore,	an	object	for	storing	data.	It	offers	many	possibilities	to	support	the
work	of	a	programmer.

Creating	a	table	is	as	simple	as	it	is	in	the	other	objects	of	the	dictionary.	The
user	starts	this	process	in	the	SE11	transaction—they	select	the	Database	table
checkbox	and	enter	a	name	(which	must	start	with	the	character	Z	or	Y),	as	shown
in	the	following	screenshot:

Then,	they	need	to	click	on	the	Create	button.	The	SAP	system	will	take	the	user
to	a	screen	where	they	can	choose	some	options.	A	short	description	should	be
entered	as	it	is	an	obligatory	field.	The	screen	the	user	will	see	is	as	follows:

As	we	can	see,	there	are	two	fields	to	fill	in	at	this	stage.	The	first	one	(Delivery
Class)	determines	what	kind	of	data	will	be	stored.	The	following	entries	are
available:

A:	An	application	table	(master	and	transaction	data)
C:	A	customization	table,	maintenance	only	by	the	customer,	with	no	SAP
imports
L:	A	table	for	storing	temporary	data.	This	is	delivered	empty
G:	A	customer	table,	protected	against	SAP	updates

E:	A	control	table	where	SAP	and	customers	have	separate	key	areas
S:	A	system	table,	where	maintenance	is	only	performed	by	SAP
W:	A	system	table	whose	contents	can	be	transported	through	separate
Transport	Request	(TR)	objects

Selecting	one	of	these	options	controls	how	the	data	is	transported.	It	is	also	used
in	the	extended	table.	The	second	option	specifies	the	ability	to	display	and	make
changes	to	the	database	table	in	the	following	ways:

Display/Maintenance	allowed	with	restrictions
Display/Maintenance	allowed
Display/Maintenance	not	allowed

After	selecting	the	appropriate	options	for	the	database,	the	user	can	go	to	the

Fields	section.	For	example,	a	table	filled	with	fields	is	shown	in	the	following
screenshot:

When	a	field	is	added	to	the	table,	the	user	must	specify	its	name	and	type.	The
item	data	can	be	used	to	determine	the	type.	You	can	use	its	attributes,	such	as	a
description,	for	this.	The	use	of	basic	types	is	also	allowed.	However,	the	system
forces	you	to	select	the	number	of	characters.	The	user	can	specify	which	fields
will	represent	the	key	in	the	table	and	whether	the	values	in	the	fields	must	be
non-initial.	

An	important	part	of	creating	an	object	is	defining	its	technical	settings.	It	isn't
possible	to	activate	the	database	table	without	specifying	these	conditions.	After
selecting	this	option,	the	system	will	move	the	user	to	a	screen	like	the
following:

In	the	Data	Class	option,	the	user	can	choose	what	data	is	stored	in	the	table	and
the	transport	system.	Each	of	the	available	classes	determines	the	physical	area
in	which	the	system	stores	data.	The	available	choices	are	shown	in	the
following	screenshot:

Another	option	is	to	specify	the	number	of	records	stored	in	the	database.	The
ranges	are	as	follows:

In	this	section,	the	options	for	caching	and	saving	the	change	log	are	also
available.	To	make	the	table	available,	save	it	and	activate	it.

Data	declaration
After	learning	about	the	objects	in	the	Data	Dictionary,	we	can	start	talking
about	the	syntax	declaration	in	ABAP.	The	easiest	way	to	declare	variables	is	as
follows:

data:	lv_first_variable	TYPE	c.	

Variables	are	named	data	objects	that	are	used	to	store	values	within	the	allotted
memory	area	of	a	program.	It	is	good	practice	to	properly	name	local	variables.
It	is	assumed	that	the	first	two	characters	in	the	variable	name	determine	its	use.
The	first	letter	indicates	whether	the	variable	is	global	or	local.	If	the	local
variable	starts	with	l,	then	in	the	case	of	global	variables,	g	is	the	first	letter.	The
second	character	determines	what	type	the	object	is:

Variable:	v
Line:	s
Internal	table:	t

Each	variable	must	have	a	type	that	describes	what	is	stored	inside.	A	variable
may	have	the	following	types:

Elementary	types
References
User-defined	types
Generic	ABAP	types

In	the	ABAP	language,	you	can	use	predefined	types	to	define	local	data	types
and	objects	in	a	program	and	to	specify	the	type	of	interface	parameters	and	field
symbols.	These	are	divided	into	numeric	types,	character	types,	and	hexadecimal
types.	These	types	can	be	defined	globally	in	the	ABAP	Data	Dictionary	or
locally	in	an	ABAP	program.	Some	data	types	are	already	defined	in	the	ABAP
Data	Dictionary.	Variables	are	also	divided	by	type.	The	first	type	is	static
variables,	which	are	declared	in	subroutines,	function	modules,	and	static
methods.	

The	elementary	types	are	mentioned	in	ABAP.	They	can	be	used	directly	to

define	a	variable.	User-created	types	are	also	based	on	elementary	ones.	The
SAP	system	has	the	following	elementary	types:

Type	C:	Its	initial	size	is	1,	and	the	range	of	characters	it	can	accept	is	1-
65535.	The	initial	value	is	space.	It	accepts	alphanumeric	characters.	It's
used	to	process	text.
Type	N:	This	type	of	variable	contains	strings	of	digits.	It	is	like	the	C	type
variable	since	it	has	an	initial	size	of	1	and	a	maximum	of	65535.	Its	initial
value	is	0,	and	it	is	used	to	express	identifying	numbers.
	Type	D:	This	is	an	eight-character	variable.	The	type	used	for	the	date.	The
initial	value	is	00000000.

	Type	T:	This	is	a	six-character	variable.	The	type	used	for	the	time	value.
The	initial	value	is	000000.
	Type	I:	This	is	used	to	store	integers,	and	the	initial	value	is	0.	The	range	of
values	is	+231	to	-231.
Type	F:	This	is	a	floating-point	number,	where	the	accuracy	range	is
approximately	15	decimals.	The	range	of	values	is	10307	to	-10307.
	Type	P:	Numbers	are	stored	in	compressed	formats;	they	are	a	maximum	of
31	digits.
	Type	STRING:	Like	type	C,	there	is	no	defined	length.
	Type	XSTRING:		Like	type	X,	there	is	no	defined	length.

For	the	C,	N,	D,	I,	and	F	variables,	the	programmer	can	define	a	length.	If	they
don't,	the	variables	will	take	the	minimum	number	of	characters.	The	user	can
also	specify	their	initial	values,	other	than	standard	values.	An	example
initialization	of	a	variable	that	has	3	characters	with	the	initial	value,	'ABC',	is
shown	in	the	following	code:

data:	lv_first_variable(3)	TYPE	c	VALUE	'ABC'.	

As	we	can	see,	the	number	of	characters	is	written	after	the	variable	name	in
brackets.	Adding	the	word	VALUE	at	the	end	of	the	initialization	adds	the	initial
value.

Field	symbol
A	field	symbol	is	an	instrument	in	which	applications	are	created	with	elasticity.
Field	symbols	do	not	have	any	memory;	instead,	they	will	be	pointing	to	a
memory	location.	An	element	can	be	compared	to	a	pointer	from	other
programming	languages.

The	following	code	will	help	you	to	declare	field	symbols	using	different	typing
methods:

	TYPES:	BEGIN	OF	ts_type,

										first_data		TYPE	string,

										second_data	TYPE	i,

										third_data		TYPE	c,

								END	OF	tt_type.

	

	DATA	:	ls_type	TYPE	tt_type,

								lt_type	TYPE	STANDARD	TABLE	OF		tt_type.

	

	FIELD-SYMBOLS:	<fs_type1>	TYPE	c,

																<fs_type2>	TYPE	tt_type,

																<fs_type4>	TYPE	data,

																<fs_type5>	TYPE	any,

																<fs_type6>	TYPE	ANY	TABLE,

																<fs_type7>	LIKE	ls_type,

																<fs_type8>	LIKE	LINE	OF	lt_type.

In	order	to	use	a	field	symbol,	we	must	assign	it	to	the	object	value.	This	results
in	the	o	element	not	reserving	a	physical	data	field	space:

ASSIGN	lv_value	TO	<fs_value>.

Field	symbols	can	also	be	used	to	reference	internal	table	variables,	as	follows:	

TYPES:	BEGIN	OF	ts_type,

										first_data		TYPE	string,

										second_data	TYPE	i,

										third_data		TYPE	c,

								END	OF	ts_type.

	

	DATA	:	lt_type	TYPE	STANDARD	TABLE	OF		ts_type.

	

	LOOP	AT	lt_type	ASSIGNING	FIELD-SYMBOL(<fs>).

			<fs>-first_data	=	'First_data'.

			<fs>-second_data	=	2.

			<fs>-third_data	=	'X'.

	ENDLOOP.

The	presented	method	of	using	the	symbol	field	is	one	possible	way	of	doing
this.	The	declaration	takes	place	dynamically	in	this	case.	You	can	also	use	the
previously	declared	variable.	An	example	of	this	implementation	is	as	follows:

	TYPES:	BEGIN	OF	ts_type,

										first_data		TYPE	string,

										second_data	TYPE	i,

										third_data		TYPE	c,

								END	OF	ts_type.

	DATA	:	lt_type	TYPE	STANDARD	TABLE	OF	ts_type.

	

	FIELD-SYMBOLS:	<fs>	TYPE	ts_type.

	

	LOOP	AT	lt_type	ASSIGNING	<fs>.

			<fs>-first_data	=	'First_data'.

			<fs>-second_data	=	2.

			<fs>-third_data	=	'X'.

	ENDLOOP.	

Summary
This	chapter	described	everything	you	need	to	know	about	when	you	work	with
the	SAP	system.	It	is	worth	you	understanding	this	chapter	because	it	is	the
introduction	to	the	modern	SAP	system.	The	information	in	this	chapter	teaches
you	about	the	use	of	explicit	techniques	when	working	with	the	system
dictionary.

The	ABAP	Dictionary	contains	information	about	all	the	metadata	in	the	SAP
system.	The	ABAP	Dictionary	is	a	very	important	part	of	the	SAP	system,	and
understanding	it	is	necessary	for	fast	and	efficient	programming.	This	issue	is
very	extensive	and,	in	most	programming	cases,	you	need	to	use	the
ABAP	Dictionary.	

In	the	next	chapter,	we	will	talk	about	database	access	in	ABAP.

Questions	
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	characters	must	the	names	of	the	objects	in	the	ABAP	Dictionary
begin	with?

2.	 What	is	a	field	symbol?
3.	 What	are	the	elementary	types	in	the	SAP	system?

Database	Access	in	ABAP
Reading	and	operating	on	databases	is	one	of	the	most	frequently	used	skills	for
an	Advanced	Business	Application	Programming	(ABAP)	developer.	A	good
understanding	of	the	principles	of	ABAP	OpenSQL	is	an	essential	skill	that	is
required	for	operating	in	databases.	To	access	the	database	in	SAP,	we	can	use
two	types	of	SQLs—ABAP	OpenSQL	and	Native	SQL.	The	main	difference
between	these	is	that	OpenSQL	can	be	used	in	all	database	platforms	to	gain
access	to	database	tables	declared	in	the	ABAP	Dictionary,	while	through	Native
SQL,	you	can	use	a	database-specific	SQL	statement,	which	allows	you	to	use	a
table	that	is	not	managed	by	the	ABAP	Dictionary.	One	of	the	biggest	issues
with	Native	SQL	is	the	fact	that	a	query	written	in	Native	SQL	cannot	be	used	in
all	databases	and	is	specific	to	each	type	of	database.	In	this	chapter,	we	will	be
looking	at	OpenSQL	only.
In	this	chapter,	we	will	cover	the	following	topics:

Extracting	data	from	the	database	in	an	efficient	way
Using	an	advanced	function	of	SQL,	for	example,	Subquery
The	ability	to	change	or	delete	data	on	databases
Optimizing	queries

Technical	requirements
All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter03.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter03

Starting	with	OpenSQL
As	ABAP	was	invented	as	a	report	language,	it	has	a	huge	set	of	statements	for
accessing	tables.	ABAP	was	designed	for	high-performance	database	operations,
but	not	for	the	definition	or	control	of	database	tables.	By	definition,
it's	usually	not	the	mission	of	the	program	to	create	or	control	database	tables.
However,	those	functionalities	are	included	implicitly	within	the	SAP	system.

The	section	of	ABAP	that	accesses	the	database	tables	is	named	OpenSQL	and
includes	similar	commands	to	standard	SQL,	such	as	SELECT,	INSERT,	UPDATE,	and
DELETE,	which	are	known	as	data	manipulation	language	(DML).	The
differences	between	standard	SQL	and	OpenSQL	include	the	fact	that	OpenSQL
is	platform	independent	and	part	of	the	ABAP	language.	This	enables	the	syntax
check	to	identify	errors	within	the	implementation	of	the	SQL	statement.
Furthermore,	there	are	several	variants	of	the	commands	that	are	only	for	ABAP
programs,	which	ease	or	accelerate	the	database	accesses.

The	platform-dependent	SQL	is	generated	by	the	database	interface	of	the	ABAP
interpreter	as	part	of	the	application	server	(AS)	ABAP.

The	data	definition	language	(DDL),	with	all	database-dependent	commands
such	as	CREATE,	ALTER,	and	DROP,	is	given	implicitly	by	the	SAP	Data	Dictionary,	as
explained	in	Chapter	1,	Creating	Custom	Code.

The	DCL	of	standard	SQL	is	not	included	in	ABAP.	Data	consistency	has	to	be
guaranteed	through	the	proper	use	of	the	concept	of	the	SAP	Logical	Unit	of
Work	(LUW)	and	the	SAP	concept	of	database	locks.

In	this	chapter,	we	will	see	how	the	database	tables	can	be	accessed	and
manipulated,	how	several	tables	can	be	read	at	one	time,	and	how	huge	amounts
of	data	can	be	read	with	high	performance.	You	will	also	learn	about	some
obsolete	statements,	as	well	as	the	current	recommendations	and	best	practices
for	accessing	data	with	high	performance	and	optimized	SQL	statements.

When	you	access	the	database	tables	within	an	ABAP	program,	you	always	have
to	have	an	eye	on	performance.	In	development	or	consolidation	systems,	the

amount	of	accessible	data	doesn't	usually	exceed	a	couple	of	thousands.	The
amount	of	the	same	data	in	productive	systems	can	be	measured	even	in
millions	(this	amount	can	be	even	higher	when	it	comes	to	the	Internet	of
Things	(IoT),	big	data,	and	the	SAP	High-Performance	Analytic
Appliance	(HANA)).

You	should	think	a	little	about	performance	while	implementing	database	access,
as	the	costs	of	implementing	high-performance	statements	are	insignificant	in
comparison	to	the	costs	of	optimizing	programs	that	are	already	productive.

Basics
In	the	first	section,	I'd	like	to	present	the	most	basic	aspects	of	how	to	extract
data	from	a	database.	In	this	subsection,	we	will	explore	how	to	create	a	basic
select	from	table,	as	well	as	look	at	what	components	the	SELECT	statement	is
creating.

The	SELECT	statement	is	built	from	at	least	three	mandatory	parts.	The	first	part	in
the	SELECT	statement	is	the	resulting	set.	The	resulting	set	is	a	list	of	fields	that
state	what	we	want	to	get	from	the	selected	table.	For	the	resulting	set,	we	can
use	a	list	of	fields	directly	entered	in	the	statement,	or	we	can	use	*	to	get	all
fields	in	the	table.	However,	using	*	is	not	recommended	due	to	performance
issues,	as	we	often	do	not	need	all	fields	in	a	table	–	only	a	few	of	them.	The
second	part	is	a	FROM	statement,	used	to	define	which	table	we	want	to	get	the	data
from.	The	third	part	is	INTO,	which	makes	it	possible	to	define	which	internal
variable	or	variables	input	the	data.

All	examples	presented	in	this	chapter	will	be	presented	in	SELECT	from
the	sflight	table.	This	SELECT	statement	will	gradually	be	expanded	by	new
capabilities.

The	following	is	an	example	of	a	basic	SELECT	statement:

SELECT	*

			FROM	sflight

			INTO	TABLE	gt_sflight.

In	the	preceding	code	snippet,	we	can	see	the	most	basic	SELECT	statement.	This
selects	all	fields	from	the	sflight	table	and	puts	them	into	a	previously	prepared
table,	named	gt_sflight.

Data	selected	in	this	query	is	presented	in	the	following	screenshot:

As	we	can	see,	all	existing	fields	in	this	table	were	selected.

If	we	want	to	select	only	several	fields—for	example,	mandt,	carrid,	and	connid—
from	the	sflight	table,	we	can	use	the	following	SELECT	statement:

SELECT	mandt	carrid	connid

	FROM	sflight

	INTO	TABLE	gt_sflight.

The	result	of	the	preceding	query	is	as	follows:

As	we	only	highlighted	several	fields,	only	those	highlighted	in	the	resulting	set
are	selected	from	the	table.

Possibilities	with	SELECT	-	the	first
part	of	the	SQL	statement
In	the	first	part	of	the	SQL	statement	(SELECT),	we	can	also	use	the	SELECT	SINGLE
and	SELECT	DISTINCT	options.	An	example	of	SELECT	SINGLE	is	as	follows:

SELECT	SINGLE	carrid	connid

			FROM	sflight

			INTO	gs_sflight.

When	we	use	the	SELECT	SINGLE	statement,	we	get	only	one	record.	The	first	row
that	is	found	is	therefore	placed	in	the	results	set.

The	SELECT	SINGLE	statement	should	be	used	with	a	where	condition,	which	is
explained	later	in	this	book.

We	can	only	use	a	work	area	as	a	target.	When	we	use	a	SELECT	SINGLE	statement,
we	cannot	use	the	ORDER	BY	and	APPENDING	clauses.

The	following	is	an	example	of	SELECT	DISTINCT:

SELECT	DISTINCT	carrid	connid

			FROM	sflight

			INTO	TABLE	gt_sflight.

The	result	of	the	preceding	query	is	as	follows:

SELECT	DISTINCT	can	be	used	when	we	want	to	exclude	duplicate	rows.	As	you	can
see,	the	selected	values	(marked	in	blue)	are	not	the	same	in	any	rows.

Possibilities	with	INTO	-	the	third
part	of	the	SQL	statement
In	the	third	part	of	the	SELECT	statement,	we	can	also	use	several	possibilities.
These	possibilities	may	include	the	following:

INTO:	When	we	choose	this,	we	can	select	fields	to	structure.	An	example
can	be	found	in	the	explanation	of	SELECT	SINGLE.
INTO	CORRESPONDING	FIELDS	OF:	We	can	also	use	this	addition,	but,	during	SELECT,
the	system	tries	to	select	and	match	fields	corresponding	to	data	elements	in
a	result.	The	differences	in	the	results	will	be	shown	in	the	example.
INTO	[obj1,	obj2	...]:	We	can	select	fields	in	relation	to	a	given	variable.
For	example,	if	we	want	to	select	the	carrid	and	connid	fields,	we	can	select
these	fields	directly	in	relation	to	a	variable	instead	of	a	structure	or	table.
INTO	TABLE:	This	is	the	same	as	INTO,	but	we	can	use	a	table	rather	than
structure	and	we	can	also	select	more	than	one	row.
INTO	CORRESPONDING	FIELDS	OF	TABLE:	This	is	the	same	as	INTO	CORRESPONDING	FIELDS
OF,	but	we	can	select	more	than	one	row	here,	and	we	need	to	use	the	table
as	an	internal	variable	where	we	can	store	the	result.
APPENDING:	Appending	can	be	used	when	we	want	to	append	new	rows	instead
of	replacing	them	with	a	new	selection,	which	is	the	case	when	using	INTO.

What	are	the	main	differences	between	INTO	and	INTO	CORRESPONDING	FIELDS	OF?	Let
me	explain	this	by	using	an	example.

When	we	use	INTO,	we	need	to	remember	to	select	the	fields	in	the	correct	order.
If	we	use	SELECT,	this	is	presented	as	follows:

SELECT	connid	carrid

			FROM	sflight

			INTO	TABLE	gt_sflight.

We	skip	one	mandt	field	and	change	the	carrid	and	connid	places	and	the	result	is	as
follows:

As	you	can	see,	the	result	of	this	query	is	different	in	comparison	to	if	we	used
the	correct	order	for	the	fields.

As	we	can	see	in	the	preceding	screenshot,	the	client	is	switching	from	400	to
001	and	006.	The	reason	for	this	is	that	SELECT	tries	to	fit	data	into	given	fields.
Data	from	the	connid	fields	is	landing	in	the	mandt	fields	in	the	following	example.
This	result	can	be	misleading,	as	data	is	not	stored	in	the	correct	field	here.

When	we	use	CORRESPONDING	FIELDS	OF,	this	problem	will	not	exist.	However,	if	we
used	the	following	SELECT,	the	result	would	be	quite	different:

SELECT	connid	carrid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight.

The	result	of	this	query	with	corresponding	fields	is	presented	as	follows:

As	we	can	see,	all	of	the	fields	will	be	selected	in	accordance	with	their
corresponding	columns.	

However,	corresponding	fields	have	one	issue	compared	to	INTO.	The	comparison
of	fields	during	the	execution	of	SELECT	and	adding	data	to	the	corresponding
fields	requires	more	time	to	execute	when	using	INTO.	This	increase	is	especially
easy	to	observe	when	we	select	a	large	amount	of	data.

Last,	but	not	least,	we	have	APPENDING.	We	can	also	use	this	with	corresponding
fields.	APPENDING	can	be	used	when	we	want	to	append	some	rows	without	clearing
the	previously	selected	rows.	If	we	use	INTO,	all	previously	selected	rows	will	be
deleted	and	replaced	by	new	ones.

The	following	is	an	example	of	having	two	SELECT	statements	in	the	same	table:

SELECT	connid	carrid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight.

	

	SELECT	connid	carrid	fldate	price

			FROM	sflight

			APPENDING	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight.

When	we	used	this,	we	selected	all	rows	from	the	sflight	table.	Initially,	we	only
selected	the	connid	and	carrid	fields,	but	in	the	next	selection,	we	appended	the
same	rows,	but	with	the	fldate	and	price	fields.

The	result	of	the	first	SELECT	statement	is	the	same	as	in	the	previous	query,	but
since	we	have	400	rows	in	the	sflight	table,	in	row	401,	we	can	see	the	next
results	but	with	an	additional	field.

The	following	is	the	result	of	selecting	to	same	table:

From	row	401,	the	data	will	be	the	same	as	in	row	1,	but	with	new	fields.

The	WHERE	condition
The	WHERE	condition	is	one	of	the	most	commonly	used	additions	to	the	SELECT
query.	We	don't	require	all	the	data	from	the	table	too	often,	but,	quite	often,	we
do	need	to	get	some	fields	from	the	table	where	they	have	a	number	of	values.	In
this	case,	the	WHERE	condition	in	particular	can	be	used.

The	most	basic	use	of	WHERE	is	when	we	choose	a	field	with	only	one	value.	For
example,	we	want	to	select	data	from	the	sflight	table,	where	carrid	has	a	value	of
LH.

Our	SELECT	looks	like	this:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	=	'LH'.

The	result	of	this	is	as	follows:

As	you	can	see,	SELECT	only	returns	data	when	carrid	has	an	LH	value.

If	we	want	to	select	data	when	using	the	more	condition	in	WHERE,	we	can	use	WHERE
with	AND.	For	example,	if	we	only	want	to	select	the	rows	where	carrid	has	a	LH
value	and	connid	has	a	2407	value,	we	can	use	the	following	SELECT	statement:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	=	'LH'

					AND	connid	=	'2407'.

The	result	of	that	query	is	as	follows:

As	you	can	see,	only	rows	with	carrid	LH	and	connid	2407	are	selected.	Fields	with
the	WHERE	condition	do	not	necessarily	need	to	be	part	of	the	WHERE	condition.

An	example	of	this	is	as	follows:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	planetype	=	'747-400'.

In	this	SELECT,	only	carrid	and	connid	are	selected	when	the	plane	is	equal	to	747-400.
These	are	the	basic	operations	of	reading	data	from	databases	in	ABAP.	Before
you	move	onto	the	next	section,	try	to	write	some	SELECT	statements	with	the
possibilities	discussed	in	this	section.	A	good	understanding	of	these	basics	is
essential	to	progressing	with	ABAP	OpenSQL.

How	to	see	data	selected	from	a
database
In	order	to	exercise	SELECT,	we	need	to	know	which	values	were	selected	from	the
database.	How	to	show	data	is	covered	in	Chapter	7,	Building	User	Interfaces.	For
now,	I	will	get	you	a	fragment	of	code	to	display	data,	which	is	selected	from
your	SELECT	statement.

	The	following	is	an	example	of	code	to	show	data	from	an	internal	table:

DATA:	gr_alv					TYPE	REF	TO	cl_salv_table,

						gr_columns	TYPE	REF	TO	cl_salv_columns_table.

	

	CALL	METHOD	cl_salv_table=>factory

			IMPORTING

					r_salv_table	=	gr_alv

			CHANGING

					t_table						=	YOUR	TABLE.

	

	gr_columns	=	gr_alv->get_columns().

	gr_columns->set_optimize(value	=	'X').

	gr_alv->display().

Do	you	see	YOUR	TABLE	in	this	piece	of	code?	This	is	where	you	can	input	the	name
of	your	table.

For	instance,	if	you	want	to	see	data	stored	in	gt_sflight,	you	use	the	following
code:

DATA:	gr_alv					TYPE	REF	TO	cl_salv_table,

						gr_columns	TYPE	REF	TO	cl_salv_columns_table.

	

	CALL	METHOD	cl_salv_table=>factory

			IMPORTING

					r_salv_table	=	gr_alv

			CHANGING

					t_table						=	gt_sflight.

	

	gr_columns	=	gr_alv->get_columns().

	gr_columns->set_optimize(value	=	'X').

	gr_alv->display().

It	is	important	to	note	that	your	SELECT	statement	must	be	executed	first,	otherwise
you	will	not	be	able	to	see	any	data.

More	advanced	possibilities	in
OpenSQL
In	OpenSQL	in	ABAP,	we	have	more	advanced	possibilities.	In	this	section,	we
will	cover	the	following	topics:

The	WHERE	conditions
The	logical	operators	in	WHERE
Casting	in	WHERE
The	IN	operator
Range	table
The	dynamic	WHERE	condition
SELECT	SINGLE	FOR	UPDATE

GROUP	BY

ORDER	BY

UP	TO	N	ROWS

SELECT	and	ENDSELECT
FOR	ALL	ENTRIES

Subqueries

There	are	many	possibilities	here.	When	we	are	familiar	with	them,	we	can	write
selects	in	effective	ways	while	retaining	the	speed	of	the	executing	statement.

WHERE	conditions
In	the	WHERE	condition,	we	can	make	it	a	requirement	that	fields	need	to	have
some	values.	The	important	thing	here	is	that	when	we	have	STRING	or	RAWSTRING
plus	LCHR	and	LRAW,	we	cannot	use	this	field	in	WHERE.	Creating	WHERE	with	the	mandt
fields	is	not	possible,	as	the	client	automatically	handles	this,	but	this
automatization	can	be	deactivated	using	CLIENT	SPECIFIED	after	the	FROM	clause.
However,	this	is	only	the	most	basic	possibility	of	the	WHERE	condition.

In	SELECT,	we	can	use	dynamic	parameters.	When	creating	the	code	with	the	exact
values	of	the	WHERE	condition,	we	rarely	know	exactly	what	values	we	need.	In
such	a	case,	dynamic	values	would	be	helpful.	They	might	be	found,	for
example,	on	some	screens:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	EQ	gv_carrid.

In	this	example,	values	in	carrid	are	the	same	as	values	in	the	gv_carrid	variable.

We	can	also	use	other	operands	as	follows:

EQ	or	=:	Select	all	data	where	the	field	is	equal	to	the	second	operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	EQ	'AA'.

This	code	snippet	provides	an	example	of	code	that	shows	data	from	the	internal
table.

The	result	is	the	SELECT	statement's	carrid	and	connid	parameters,	where	carrid	is
equal	to	AA.

NE	or	<>:	This	operand	selects	Get	all	data	when	the	field	is	not	equal	to	the
second	operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	NE	'AA'.

As	a	result,	all	carrid	and	connid	fields	are	selected,	except	those	in	which	carrid	is
equal	to	AA.

LT	or	<:	This	operand	selects	Get	all	data	when	the	value	of	the	field	is	less	than
the	second	operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	LT	'AA'.

As	a	result,	the	carrid	and	connid	fields	are	selected	only	if	carrid	is	smaller	than
AA.

GT	or	>:	This	operand	selects	Get	all	data	when	the	field	is	greater	than	the	second
operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	GT	'AA'.

As	a	result,	the	carrid	and	connid	fields	are	selected	only	if	carrid	is	greater	than	AA.

LE	or	<=:	SELECT	gets	all	of	the	data	when	the	field	is	less	than,	or	equal	to,	the
second	operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	LE	'AA'.

As	a	result,	the	carrid	and	connid	fields	are	selected	only	if	carrid	is	less	than,	or
equal	to,	AA.

GE	or	>=:	SELECT	gets	all	of	the	data	when	the	field	is	greater	than,	or	equal	to,	the
second	operand:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	GE	'AA'.

As	a	result,	the	carrid	and	connid	fields	are	selected	only	if	carrid	is	greater	than,	or

equal	to,	AA.

In	the	WHERE	condition,	we	can	also	use	the	BETWEEN	condition:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	BETWEEN	'AA'	AND	'DL'.

The	result	of	that	SELECT	statement	is	to	get	all	the	carrid	and	connid	fields	where
carrid	is	inclusive	between	'AA'	and	'DL'.

We	can	get	the	same	result	if	we	use	SELECT	like	this:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	GE	'AA'

					AND	carrid	LE	'DL'.

We	can	also	use	the	LIKE	operator,	which	may	be	helpful	for	getting	data	from	a
table,	using	only	parts	of	searched	words.	The	operator	is	built	as	follows:	LIKE
'XXX_',	where	XXX	stands	for	the	part	of	the	word	we	are	looking	for,	and	_	stands
for	any	other	set	of	symbols.	XXX	and	(_)	can	be	used	in	any	order.	In	the	given
example	in	the	preceding	code	snippet,	SELECT	gets	all	the	carrid	values	when	the
values	start	with	AND.	In	this	case,	the	second	character	may	be	any	letter.

The	following	is	an	example	of	LIKE	in	SELECT:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			WHERE	carrid	LIKE	'A_'.

In	the	results,	we	get	two	different	carrid	parameters.	The	first	of	these	is	'AA'	and
the	second	is	'AZ'.

When	using	LIKE,	we	must	have	characters	as	a	value.	However,	if	we	want	to	use
a	non-character,	we	can	try	to	use	CAST.

In	our	table,	we	have	CONNID,	for	example,	which	does	not	have	character-like
values:

SELECT	carrid,	connid

			FROM	sflight

			WHERE	CAST(connid	AS	CHAR)	LIKE	'00__'

			INTO	CORRESPONDING	FIELDS	OF	TABLE	@gt_sflight.

All	of	the	WHERE	conditions	can	also	be	used	with	the	NOT	addition.

For	instance,	we	can	use	NOT	BETWEEN	to	select	where	we	get	all	data	from	the	table,
excluding	data	with	selected	fields	that	are	not	in	range.

The	next	operator	in	WHERE	is	IN.	The	IN	operator	is	used	to	create	ranges	in	a	SELECT
query.	In	this	example,	we	add	three	values	to	a	range.	We	add	'AA',	'DL',	and	'LH'
as	values	of	carrid:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

					WHERE	carrid	in	('AA',	'DL',	'LH').

In	the	result,	we	get	values	where	carrid	is	'AA',	'DL',	or	'LH'.

In	the	IN	operator,	we	can	also	use	a	special	internal	table	to	describe	the
conditions.	One	of	the	most	common	uses	of	these	possibilities	is	when	we	want
to	dynamically	establish	conditions	in	WHERE	based	on	one	value,	or	by	using
ranges	from	the	selection	screen	(we	will	go	into	more	detail	about	the	selection
screen	in	Chapter	7,	Building	User	Interfaces).

The	range	table	has	four	fields,	and	three	of	them	need	to	be	filled.	These	fields
are	as	follows:

-	SIGN

-	OPTION

-	LOW

-	HIGH

In	the	SIGN	field	we	can	input	I	or	E.	If	we	input	I,	values	of	this	row	will	be
included	in	the	selection.	If	we	input	E,	the	value	will	not	be	included.

In	the	OPTION	field,	we	have	the	same	option	as	in	WHERE	(which	is	EQ	or	GE)	and	we
can	also	put	CP	and	BT	here.	CP	is	similar	to	the	LIKE	command,	and	BT	is	similar
to	BETWEEN.

When	we	put	an	EQ	or	ELSE	option	using	only	one	operand,	values	should	be	in	LOW.
HIGH	is	used	only	when	using	BETWEEN	in	the	OPTION	field.

The	range	table	is	really	useful	for	maintaining	code,	which	will	be	easier	to

maintain	as	the	SELECT	statement	is	shorter,	as	demonstrated	in	the	following
example:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

					WHERE	carrid	IN	gt_carrid.

In	the	gt_carrid	table,	we	have	the	following	values:

SIGN OPTION LOW HIGH

I EQ AA

I BT DL NW

I GE SA

E EQ NG

E CP F_

	

If	we	want	to	make	this	directly	in	SELECT,	it	should	look	like	this:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

					WHERE	carrid	EQ	'AA'

							AND	carrid	BETWEEN	'DL'	AND	'NW'

							AND	carrid	GE	'SA'

							AND	carrid	NE	'NG'

							AND	carrid	NOT	LIKE	'F_'.

This	WHERE	condition	in	SELECT	is	more	complicated,	and	even	if	we	have	dynamic
values,	we	cannot	use	more	than	five	values	with	operands	that	have	been	set	up
in	advance	in	this	example.

Dynamic	SELECT	in	WHERE
If	we	do	not	know	what	field	we	need	in	the	WHERE	condition,	we	can	use	the
dynamic	WHERE	condition.	We	can	decide	during	runtime	which	field	will	be	added
to	the	WHERE	condition.

The	dynamic	WHERE	condition	is	a	variable	typed	as	a	string,	where	we	have	stored
text	that	is	similar	to	code.	Let's	take	a	look	at	the	SELECT	statement:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

					WHERE	carrid	EQ	'AA'

							AND	connid	EQ	'0017'

							AND	fldate	GT	'01.01.2015'.

We	can	also	develop	this	SELECT	statement	as	the	following:

SELECT	carrid	connid

	FROM	sflight

	INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

	WHERE	(lv_dyn_where).

lv_dyn_where	has	the	following	values:	carrid	EQ	'AA',	connid	EQ	'0017',	and	fldate	GT
'01.01.2015'.	The	result	of	both	of	these	SELECT	statements	is	identical.

SINGLE	FOR	UPDATE
The	FOR	UPDATE	statement	can	be	used	to	set	an	exclusive	lock	for	a	selected	row.
However,	if	we	have	more	than	one	entry	with	the	same	primary	key,	the	result
set	will	be	empty.	Consequently,	it	is	really	important	to	specify	a	full	key.
Furthermore,	when	our	FOR	UPDATE	statement	causes	deadlock,	an	exception	will	be
raised.	When	we	use	the	FOR	UPDATE	statement,	it	is	also	important	for	the	SELECT
statement	to	bypass	SAP	buffering.

An	example	of	SELECT	SINGLE	FOR	UPDATE	is	as	follows:

SELECT	SINGLE	FOR	UPDATE	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gs_sflight

					WHERE	carrid	EQ	'AA'

							AND	connid	EQ	'0017'

							AND	fldate	GT	'01.01.2015'.

GROUP	BY
The	GROUP	BY	clause	combines	identical	content	in	columns	specified	by	a	GROUP	BY
clause,	or	content	that	has	the	same	result	in	a	SQL	expression	for	a	single	row.

The	GROUP	BY	clause	combines	identical	content	in	columns	specified	by	a	GROUP	BY
clause,	or	content	that	has	the	same	result	in	a	SQL	expression	for	a	single	row:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

				GROUP	BY	carrid	connid.

The	result	of	that	query	is	as	follows:

As	you	can	see,	the	result	set	is	pretty	much	the	same	in	that	example	as	when
we	use	SELECT	DISTINCT.	However,	in	GROUP	BY,	we	can	also	specify	a	field	with	an	IS
NOT	key,	and	SELECT	DISTINCT	only	selects	unique	values	in	a	selected	key.

ORDER	BY
ORDER	BY	clauses	are	used	to	sort	data	directly	through	the	SELECT	statement.	Sorting
can	be	carried	out	using	a	primary	key:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

				ORDER	BY	PRIMARY	KEY.

It	can	also	sort	other	columns	in	ascending	or	descending	order,	or	even	in
a	dynamic	order,	which	is	created	on	the	same	principle	as	dynamic,	with	different
values	compared	with	a	dynamic	variable:

SELECT	carrid	connid	planetype

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight

			ORDER	BY	planetype	ASCENDING.

UP	TO	and	ROWS
UP	TO	(natural	number)	ROWS	is	used	for	defining	a	limit	in	terms	of	the	number	of
rows	that	can	be	selected	in	SELECT:

SELECT	carrid	connid	planetype

			UP	TO	10	ROWS

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_sflight.

In	this	example,	we	will	get	the	first	10	rows:

SELECT	and	ENDSELECT
SELECT	and	ENDSELECT	are	used	when	we	want	to	create	a	loop	on	a	database:

SELECT	carrid	connid	planetype

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	gs_sflight.

ENDSELECT.

This	means	that	this	SELECT	statement	gets	one	row	following	a	single	execution
and	the	loop	ends	when		SELECT	cannot	get	the	next	rows	with	the	defined	key.

This	is	helpful	when	we	want	to	make	changes	directly	to	data	after	SELECT.	In	this
example,	we	delete	leading	zeros	from	connid	before	appending	them	to	the	main
gt_sflight	table:

SELECT	carrid	connid	planetype

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	gs_sflight.

			SHIFT	gs_sflight-connid	LEFT	DELETING	LEADING	'0'.

			APPEND	gs_sflight	TO	gt_sflight.

	ENDSELECT.

We	can	also	get	data	in	a	loop	on	a	database,	sent	directly	to	a	table	with	a	PACKAGE
SIZE	addition.	PACKAGE	SIZE	is	responsible	for	establishing	how	many	entries	need	to
be	selected	in	one	execution	of	a	loop:

SELECT	carrid	connid	planetype	PACKAGE	SIZE	100

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	gt_sflight.

ENDSELECT.

In	this	case,	we	get	100	rows	in	1	loop.

FOR	ALL	ENTRIES
FOR	ALL	ENTRIES	can	be	used	when	we	have	two	tables	and	we	want	get	data	from
the	second	table	based	on	a	field	in	the	first	table:

SELECT	carrid	connid

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	gt_sflight

			WHERE	planetype	=	'747-400'.

	

			IF	gt_sflight	IS	NOT	INITIAL.

					SELECT	carrid	connid	counryfr	cityfr

												airpfrom	countryto

							FROM	spfli

							INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_spfli

							FOR	ALL	ENTRIES	IN	gt_sflight

							WHERE	carrid	=	gt_sflight-carrid

									AND	carrid	=	gt_sflight-connid.

			ENDIF.

In	the	first	SELECT	statement,	we	get	data	about	carrid	and	connid,	but	only	if
planetype	is	'747-400'.	In	the	second	table,	as	we	do	not	have	planetype,	we
can	only	get	rows	where	we	want	them.

One	thing	that	we	need	to	remember	when	using	FOR	ALL	ENTRIES	is	that	we	need	to
check	before	executing	SELECT	with	FOR	ALL	ENTRIES,	if	the	table	using	this	is	not
empty.	If	the	table	is	empty,	all	records	will	be	obtained	from	the	spfli	table	in
this	example.

Subqueries
Subqueries	can	be	used	in	the	WHERE	condition	to	get	maximum	values	directly
from	another	table.	For	example,	SUBQUERY	can	be	used	with	the	following
additions:

-	ALL|ANY|SOME

If	using	ALL,	the	expression	is	true	if	the	comparison	is	true	for	all	rows	in	the
results	set	of	the	scalar	subquery.	Consequently,	if	the	ANY	or	SOME	addition	is	used,
the	expression	is	true	if	it	is	true	for	at	least	one	of	the	rows	in	the	results	set	of
the	subquery:

-	EXIST

If	using	the	EXIST	subquery,	the	expression	is	true	if	the	table	with	a	subquery
contains	at	least	one	row:

-	IN

The	IN	operator	is	working	in	the	same	way	as	in	the	WHERE	condition,	but	the
result	will	be	taken	dynamically	from	the	database.

For	instance,	if	we	want	to	book	a	flight	with	the	highest	price,	we	can	make	the
following	subquery:

SELECT	*

			FROM	sflight

			INTO	CORRESPONDING	FIELDS	OF	gt_sflight

			WHERE	price	=	(SELECT	MAX(price)

																										FROM	sflight).

Reading	data	from	several	tables
We	have	several	possibilities	for	reading	data	from	several	tables	in	SQL	and
merging	that	data	in	one	internal	table.	I	will	present	three	possibilities	for
getting	the	data	from	several	tables	into	one	internal	table.	Here,	we	can	use	FOR
ALL	ENTRIES,	SELECT...ENDSELECT,	and	JOIN.	As	the	mechanism	and	principle	of	the	FOR
ALL	ENTRIES	operation	has	been	discussed	previously,	I	have	only	shown	how	to
get	data	from	several	tables.

We	need	to	split	a	query	into	two	SELECT	statements.	However,	first	of	all,	I	will
prepare	the	structure	and	table	when	we	have	fields	from	two	tables—sflight	and
spfli:

TYPES:

			BEGIN	OF	s_for_all_entries,

					mandt					TYPE	mandt,

					carrid				TYPE	s_carr_id,

					connid				TYPE	s_conn_id,

					fldate				TYPE	s_date,

					countryfr	TYPE	land1,

					cityfrom		TYPE	s_from_cit,

					airpfrom		TYPE	s_fromairp,

					countryto	TYPE	land1,

					cityto				TYPE	s_to_city,

					airpto				TYPE	s_toairp,

			END	OF	s_for_all_entries.

	

	DATA:	gt_for_all_enties							TYPE	TABLE	OF	s_for_all_entries,

							gt_for_all_enties_spfli	TYPE	TABLE	OF	spfli.

I	have	fields	from	sflight	mandt,	carrid,	connid,	and	fldate,	as	well	as	spfli	countryfr,
cityfrom,	airpfrom,	countryto,	cityto,	and	airpto.	In	the	preceding	code	snippet,	I	have
used	a	local	definition	of	structure	and	I	have	defined	the	structure	and	table	as	a
variable.

The	first	SELECT	statement	is	to	be	used	to	get	data	from	the	sflight	table.	This
might	look	as	follows:

SELECT	mandt	carrid	connid	fldate

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_for_all_entries

			FROM	sflight.

The	result	of	SELECT	from	sflight	is	as	follows:

When	I	use	data	from	the	spfli	table,	the	code	should	look	as	follows:

IF	gt_for_all_entries	IS	NOT	INITIAL.

	

			SELECT	mandt	carrid	conid	cityfrom

										airpfrom	countryto	cityto	airpto

					INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_for_all_entries_spfli

					FROM	spfli

					FOR	ALL	ENTRIES	IN	gt_for_all_entries

					WHERE	carrid	=	gt_for_all_entries-carrid

							AND	connid	=	gt_for_all_entries-connid.

	

	ENDIF.

The	result	of	SELECT	from	spfli	is	as	follows:

We	then	need	to	merge	the	table:

LOOP	AT	gt_for_all_entries	ASSIGNING	FIELD-SYMBOL(<gs_for_all_entires>).

	

			READ	TABLE	gt_for_all_entries-spfli	ASSIGNING	field-symbol(<gs_for_all_entires_spfli>

					WITH	KEY	carrid	=	<gs_for_all_entires>-carrid	connid	=	<gs_for_all_entires>-connid.

	

			MOVE-CORRESPONDING	<gs_for_all_entires_spfli>	TO	<gs_for_all_entires>.

			

	ENDLOOP.

The	result	of	this	piece	of	code	is	presented	in	the	following	screenshot.	All
fields	will	be	filled	with	data	from	two	tables:

The	next	possibilities	include	using	the	SELECT...ENDSELECT	statements.

For	this	method,	we	need	to	create	two	more	variables,	as	we	know	that
SELECT...ENDSELECT	needs	structure,	and	we	need	the	next	structure	to	select	'single'
inside	the	SELECT...ENDSELECT	loop.	It	is	also	worth	noting	that	I	renamed	the	table:

DATA:	gt_loop		TYPE	TABLE	OF	s_2_tables,

						gs_loop		TYPE	s_2_tables,

						gs_spfli	TYPE	spfli.

SELECT...ENDSELECT	is	presented	in	the	following	code	snippet.	In	this	loop,	we	are
using	two	SELECT	queries.	First	of	all,	to	get	data	from	sflight,	we	must	get
corresponding	data	from	spfli,	and	then	move	all	data	to	where	it	is	needed	from
the	spfli	structure	to	our	target	structure.	As	a	final	step,	we	will	append	our

result	to	the	table,	as	shown	in	the	following	code	snippet:

SELECT	mandt	carrid	connid	fldate

			INTO	CORRESPONDING	FIELDS	OF	gs_loop

			FROM	sflight.

	

			SELECT	SINGLE	mandt	carrid	connid	cityfrom

																	airpfrom	countryto	cityto	airpto

					INTO	CORRESPONDING	FIELDS	OF	gs_spfli

					FROM	spfli

					WHERE	carrid	=	gs_loop-carrid

							AND	connid	=	gs_loop-connid.

	

			MOVE-CORRESPONDING	gs_spfli	TO	gs_loop.

			APPEND	gs_loop	TO	gt_loop.

	

	ENDSELECT.

Of	course,	the	result	of	this	query	is	identical	to	FOR	ALL	ENTRIES.

The	main	difference	between	them	is	that,	in	FOR	ALL	ENTRIES,	we	make	two	SELECT
statements	and	merge	tables	directly	on	the	application	server,	as	we	have	all	of
the	required	data.	In	contrast,	in	SELECT...ENDSELECT,	we	have	to	enter	the	database
every	time	we	need	data.	Let's	assume	that	in	the	sflight	table,	we	have	400
rows.	In	FOR	ALL	ENTRIES,	we	always	have	two	independent	SELECT	statements,
regardless	of	how	many	rows	are	in	the	table.	In	the	case	of	SELECT...ENDSELECT,
there	are	800	separate	SELECT	statements	to	include	on	the	database,	which
increases	the	database	workload.

The	third	option	for	getting	data	from	more	than	one	table	is	JOIN.	For	this	option,
I	have	renamed	the	main	table	and	deleted	the	rest	of	the	table	and	structure,	as
we	do	not	need	them:

DATA:	gt_join	TYPE	TABLE	OF	s_2_tables.

The	SELECT	statements	used	for	JOIN	are	shown	as	follows:

SELECT	sf~mandt	sf~carrid	sf~connid	sf~fldate

							sp~countryfrom	sp~cityfrom	sp~airpfrom

							sp~countryto	sp~cityto	sp~airpto

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_join

			FROM	sflight	AS	sf

			JOIN	spfli	AS	sp

					ON	sf~carrid	=	sp~carrid

				AND	sf~connid	=	sp~connid.

In	the	preceding	code	snippet,	you	may	see	pieces	of	code	that	were	not
previously	used;	for	example,	sf~mandt	and	sflight	as	sf.

Using	this	statement,	every	field	in	a	resulting	set	needs	to	have	an	alias
corresponding	to	a	table.	Every	field	on	a	resulting	set	needs	to	be	with	an	alias.
This	is	because	the	SQL	engine	needs	to	define	the	table	that	each	field	is	to	be
selected	from.

Furthermore,	ON	can	be	a	new	statement.	This	uses	joins	to	indicate	the	JOIN
condition.	It	is	worth	noting	that	inner	and	outer	joins	require	a	JOIN	condition.	In
JOIN,	we	can	use	three	types	of	join,	which	are	listed	as	follows:

JOIN	or	INNER	JOIN:	In	this	type	of	JOIN,	the	INNER	JOIN	joins	a	column	of	rows	in
the	result	set	of	the	left-hand	side	and	right-hand	side	only	if	the	rows	meet
the	JOIN	condition	and	the	statement	creates	all	combinations	of	keys.	If
some	rows	do	not	have	their	equivalent	on	the	first	and	second	table,	rows
are	not	created.
LEFT/RIGHT	JOIN	or	LEFT/RIGHT	OUTER	JOIN:	OUTER	JOIN	is	pretty	much	the	same	as
INNER	JOIN,	but	with	a	number	of	differences.	The	difference	between	them	is
the	following.	In	the	case	of	LEFT	OUTER	JOIN,	the	function	selects	all	rows
from	the	left-hand	side	and	all	the	matching	rows	from	the	right-hand	side
and	includes	them	in	the	result	set.	The	RIGHT	OUTER	JOIN	function	works
identically,	but	selects	rows	from	the	right-hand	side	and	matches	them
from	the	left-hand	side.	This	is	even	the	case	if	no	corresponding	rows	are
on	the	other	side.
CROSS	JOIN:	CROSS	JOIN	creates	every	possible	combination	from	the	rows	on
both	tables,	without	any	special	conditions.

We	can	also	create	JOIN	from	more	than	two	tables.	For	this	example,	I	have
created	a	new	type	with	three	tables:

	TYPES:

			BEGIN	OF	s_3_tables,

					mandt					TYPE	mandt,

					carrid				TYPE	s_carr_id,

					connid				TYPE	s_conn_id,

					fldate				TYPE	s_date,

					countryfr	TYPE	land1,

					cityfrom		TYPE	s_from_cit,

					airpfrom		TYPE	s_fromairp,

					countryto	TYPE	land1,

					cityto				TYPE	s_to_city,

					airpto				TYPE	s_toairp,

					bookid				TYPE	s_book_id,

					customid		TYPE	s_customer,

			END	OF	s_3_tables.	

	

	DATA:	gt_3join	TYPE	TABLE	OF	s_3_tables.

The	code	to	join	three	tables	looks	like	this:

SELECT	sf~mandt	sf~carrid	sf~connid	sf~fldate

								sp~countryfr	sp~cityfrom	sp~airpfrom

								sp~countryto	sp~cityto	sp~airpto

								sb~bookid	sb~customid

			INTO	CORRESPONDING	FIELDS	OF	TABLE	gt_3join

			FROM	sflight	AS	sf

			JOIN	spfli	AS	sp

					ON	sf~carrid	=	sp~carrid

				AND	sf~connid	=	sp~connid

			JOIN	sbook	AS	sb

					ON	sb~carrid	=	sf~carrid

				AND	sb~connid	=	sf~connid

				AND	sb~fldate	=	sf~fldate	.

To	create	a	JOIN	condition	from	three	tables,	we	just	need	to	expand	the	result	set
and	the	next	table	to	join	with	the	JOIN	condition.

If	we	want	to	select	from	three	tables	in	the	previous	two	ways	(FOR	ALL	ENTRIES
and	SELECT...ENDSELECT),	we	need	to	make	three	separate	SELECT	statements	in	FOR	ALL
ENTRIES.	However,	for	SELECT...ENDSELECT,	as	seen	in	the	sbook	table,	we	can	have
more	than	one	combination	of	carrid	and	connid.	As	a	result	of	that,	the	number	of
SELECT	statements	will	increase	significantly.

A	comparison	of	the	efficiency	and	execute	time	methods	will	be	made	in	the
explanation	of	the	SQL	TRACE	tool.

Identifying	and	saving	the	changes
Before	you	save	the	data	from	an	application,	you	should	reflect	on	which	data
needs	to	be	stored.	In	most	cases,	you	don't	need	to	save	all	the	data	you've	read.
Some	actions	can	be	executed	to	identify	whether	it's	an	insertion,	an	update,	or
a	deletion	of	data.

Let's	have	a	short	look	on	the	different	meanings	of	these	terms:

INSERT:	A	new	database	table	entry	is	created
UPDATE:	Existing	data	is	changed
DELETE:	Existing	data	is	deleted	from	the	database	table

In	the	case	of	implementing	any	logic	for	reading	and	maintaining	data,	you
should	follow	the	performance	rules	from	the	beginning.	As	a	best	practice,	you
can	compare	the	data	changed	by	the	application	with	the	unchanged	data	read	in
the	beginning	of	your	logical	unit	of	work	(LUW).

For	this,	you	can	hold	a	copy	of	the	original	data	within	a	data	object	that	is
similar	to	your	workspace.	In	comparison,	you	can	identify	all	actions,	such
as		INSERT,	UPDATE,	or	DELETE.	Depending	on	the	amount	of	accessed	data	(single	row
or	multiple	rows),	this	is	a	simple	comparison	of	structures,	or	a	slightly	more
complex	comparison	of	tables	and	their	entries.	When	it	comes	to	having
multiple	rows,	you	should	compare	each	row	of	your	workspace	table	with	the
corresponding	row	of	original	data.	This	logic	is	a	bit	more	complex	due	to	the
situation	in	which	some	entries	can	be	added,	removed,	or	changed.

You	have	two	possibilities	for	identifying	the	action	taken	by	the	user.	The	first
option	is	to	give	a	sign	for	the	database	action	with	the	entry	within	your
program.	You	can	achieve	this	by	extending	the	data	structure	with	a	database
action	flag	and	by	setting	this	to	I,	U,	or	D	for	the	INSERT,	UPDATE,	or	DELETE	actions,
for	example.	You	have	to	take	care	of	this	flag	in	any	action	you	might	undertake
with	the	data	and	some	dependencies	have	to	be	used.

The	second	option	is	to	make	the	comparison	just	before	saving	the	data	and
making	just	the	required	changes	to	the	methods	of	saving.	This	is	a	bit	more

convenient	and	gives	you	more	flexibility	within	the	program,	as	well	as
reducing	the	complexity	of	the	program.

In	the	next	sections,	we	will	have	a	deeper	look	at	the	different	actions	on	the
database.

Creating	datasets
Datasets	are	created	by	using	the	INSERT	statement.	You	can	either	create	a	single
row	or	multiple	rows	with	this	statement.

To	add	a	single	row,	you	can	use	one	of	the	following	variants,	which	acts	in	an
equal	manner	on	the	database:	

INSERT	INTO	dbtab	VALUES	wa

Alternatively,	you	can	use	one	of	the	following:

INSERT	dbtab	FROM	wa.

The	structure	of	wa	should	be	identical	to	the	structure	of	dbtab.	This	operation
will	only	be	executed	if	there	is	no	entry	with	the	same	primary	key.	If	there	is
an	entry	with	the	same	key,	SY-SUBRC	will	be	set	to	4	instead	of	0.

To	add	multiple	datasets,	you	can	use	the	following	statement:	

INSERT	dbtab	FROM	TABLE	itab	[ACCEPTING	DUPLICATE	KEYS]

All	entries	from	itab	are	inserted	into	the	dbtab	table.	If	at	least	one	entry	with	the
same	key	exists	on	the	database,	an	exception	will	be	raised	and	no	data	will	be
inserted.

You	can	avoid	this	exception	by	using	the	ACCEPT	DUPLICATE	KEYS	addition.	In	this
case,	the	duplicated	datasets	are	ignored	and	SY-SUBRC	will	be	set	to	4.	All	datasets
without	a	duplicate	will	be	inserted	in	the	database.	The	SY-DBCNT	field	contains
the	number	of	inserted	entries.

Following	the	five	golden	performance	rules,	you	should	execute	the	operation
with	internal	tables	whenever	possible	instead	of	executing	loops	and	single
rows.

Updating	datasets
To	change	existing	database	entries,	you	can	use	the	UPDATE	statement.	Three
different	options	are	available	for	the	UPDATE	statement.

To	change	specific	columns,	you	can	use	the	following	syntax:

UPDATE	dbtab

						SET	[col1	=	f1	col2	=	f2	...]

										[col1	=	col1	+	f2	col2	=	col2	+	f2	...]

										[col1	=	col1	–	f1	col2	=	col2	–	f2	...]

						WHERE	...

With	this	statement,	you	change	the	columns	named	at	the	SET	clause	for	all	rows
within	the	dbtab	table	for	which	the	conditions	of	the	WHERE	clause	take	effect.
Without	the	WHERE	clause,	all	rows	of	the	table	are	changed.

You	can	either	override	the	existing	value	or	add	to	or	subtract	from	those
values.

To	change	the	entire	row,	you	can	use	the	following	statement:

UPDATE	dbtab	FROM	wa

To	change	multiple	entries,	the	syntax	is	as	follows:

UPDATE	dbtab	FROM	TABLE	itab

As	usual,	the	work	area	should	be	the	same	type	as	the	database	table.

Deleting	datasets
Use	the	DELETE	statement	to	remove	one	or	more	rows.	Deletion	can	be	done	in
two	variants:

The	DELETE	FROM	target:	When	the	DELETE	FROM	target	is	used,	data	will	be
deleted	from	the	table.	To	avoid	situations	like	this,	the	WHERE	condition
needs	to	be	filled	in	or	you	should	add	additions,	such	as	ORDER	BY,	OFFSET,	and
UP	TO.
The	DELETE	target	from	the	source:	When	we	use	the	DELETE	target	from	the
source,	we	can	only	delete	rows	specific	to	a	work	area	or	multiple	rows
specified	in	a	table.

The	optimization	of	reading	big
datasets
The	performance	of	a	program	is	often	determined	by	the	efficiency	of	a
database	and	how	its	operations	are	used	on	it.

The	efficiency	of	using	a	database	and	downloading	only	necessary	data	to	the
application	server	can	be	critical	to	the	general	speed	of	a	program,	so	operations
on	a	database	should	be	as	low	as	possible.

We	need	to	follow	a	rule	that	helps	us	to	maintain	an	operation	on	a	database	in
good	performance.

In	order	to	ensure	correct	performance,	we	must	ensure	that	we	follow	these
steps:

Get	only	the	required	rows	from	a	table:	For	example,	if	we	need	to	get	a
flight	from	America	Airlines	from	the	sflight	table,	we	must	use	the	proper
conditions	in	WHERE.	When	it	comes	to	the	effective	use	of	all	data,	what	we
can	get	to	specify	the	condition	is	really	important.
Get	only	the	required	columns	from	a	table:	In	every	SELECT	statement,	the
result	set	should	only	contain	a	column	that	you	really	need.	If	we	need	to
get	data	with	regard	to	the	flight,	country,	and	airport	we	will	fly	from,	we
cannot	use	*,	because	we	do	not	need	all	columns.
Do	not	use	more	reads	than	necessary:	To	keep	a	low	number	of	database
reads,	use	a	mass	operation	instead	of	a	single	one.	For	example,	we	should
not	use	any	reads	in	a	loop.	Instead	of	this,	use	JOIN,	SELECT	VIEW,	or	SUBQUERY.
Using	local	buffers	and	indexes:	In	all	cases	when	the	secondary	index
can	improve	selection	performance,	these	indexes	should	be	used.	When	the
same	data	is	read	more	than	once,	we	can	save	this	data	to	a	local	SAP
buffer.	This	operation	can	significantly	save	time,	since	reading	data	from	a
local	buffer	is	faster	than	getting	data	from	a	database.

Even	if	we	performed	all	of	these	actions,	the	load	of	data	may	sometimes	be	too
big	and	can	cause	dumps,	resulting	in	getting	a	notification	that	the	connection	to

the	database	took	too	long.

In	this	case,	we	need	to	enter	the	CURSOR	statement.	CURSOR	is	the	way	to	split	SELECT
into	smaller	partitions.	If	we	want	to	use	CURSOR,	we	need	to	declare	them	as	a
variable.	A	CURSOR	statement	consists	of	three	pieces.	The	first	of	these	is	OPEN
CURSOR,	where	we	can	define	which	SELECT	statement	will	be	executed	in	this
cursor.

When	we	used	OPEN	CURSOR,	we	created	a	database	cursor,	which	is	pointed	to	the
result	set	of	a	database	selection.	A	database	CURSOR	is	always	assigned	to	a	line	in
the	result	set.	CURSOR	handling	is	usually	implicit,	but	when	we	use	CURSOR,	we	can
control	the	database	cursor.	

We	then	need	to	use	FETCH	to	fetch	the	next	rows,	where	we	can	decide	how	many
rows	FETCH	should	select.

After	all,	we	need	to	use	CLOSE	CURSOR	to	close	the	database	cursor.	An	example	of
using	the	CURSOR	statement	is	as	follows:

DATA:	c_cursor	TYPE	cursor,

							gt_cursor	TYPE	TABLE	OF	sflight.

	

	OPEN	CURSOR	c_cursor	FOR

	SELECT	carrid	connid

			FROM	sflight.

	

	DO.

			FETCH	NEXT	CURSOR	c_cursor	APPENDING	TABLE	gt_cursor	PACKAGE	SIZE	100.

			IF	sy-subrc	<>	0.

					EXIT.

			ENDIF.

	ENDDO.

	

	CLOSE	CURSOR	c_cursor.

In	this	example,	we	get	data	from	the	sflight	table	with	a	package	of	at	least	100
rows	in	1	call.

We	need	to	use	the	DO	loop	to	get	all	of	these	records.	Of	course,	the	SELECT
statement	of	the	CURSOR	can	be	more	extensive,	and	in	the	DO	loop,	we	executed	an
operation.	It	is	also	really	important	to	create	an	EXIT	statement,	otherwise	we	can
create	an	infinite	loop.

The	new	SQL	syntax
From	version	7.40,	SP08	SAP	introduced	a	few	important	changes	in	SQL:

Inline	declaration
SQL	expression

There	are	more	changes,	but	here	is	the	focus	on	the	most	important	and	most
helpful	in	daily	work.

Inline	declaration
The	main	changes	compared	to	the	old	SQL	is	data	declaration,	where	we
needed	to	declare	all	the	necessary	fields	that	will	be	selected.	By	using	inline
declaration,	this	is	no	longer	needed.	During	select	from	database,	a	structure	or
table	will	be	created.	This	is	really	helpful,	as	when	you	need	to	select	a	new
field	or	fields,	just	add	them	to	the	field	list.

The	following	are	three	SELECT	statements.	The	first	of	these	is	created	in	the	old
SQL,	while	the	second	and	third	are	created	with	the	inline	declaration.	All
the	SELECT	statement	results	are	identical.

The	first	SELECT	statement	is	also	presented	with	the	declaration	of	the	table:

TYPES:

			BEGIN	OF	t_spfli,

					mandt					TYPE	s_mandt,

					carrid				TYPE	s_carr_id,

					connid				TYPE	s_conn_id,

					countryfr	TYPE	land1,

					countryto	TYPE	land1,

			END	OF	t_spfli.

	

	DATA:	lt_spfli	TYPE	TABLE	OF	t_spfli.

	

	SELECT	mandt	carrid	connid	countryfr	countryto

			FROM	spfli

			INTO	TABLE	lt_spfli.

In	the	following	code	snippet,	the	fragment	is	presented	as	an	inline	declaration
(a	declaration	of	a	variable	is	not	needed):

SELECT	mandt,	carrid,	connid,	countryfr,	countryto

		FROM	spfli

		INTO	TABLE	@data(lt_spfli).

The	following	is	the	second	version	of	the	new	SQL:

SELECT	FROM	spfli

		FIELDS	mandt,	carrid,	connid,	countryfr,	countryto

		INTO	TABLE	@DATA(lt_splfi).

The	declaration	can	also	contain	fields	that	are	not	selected,	and	the	inline
declaration	was	created	with	only	the	fields	that	were	selected.

In	the	new	SQL,	it	is	possible	to	add	a	field	that	is	not	selected	from	the
database.

To	add	this	field,	we	need	to	add	a	TYPE	variable	to	the	list	of	the	SELECT	fields.	The
following	example	shows	the	first	SELECT	statement	from	the	inline	declaration
with	an	added	field	named	flag,	which	is	of	the	Boolean	type:

SELECT	mandt,	carrid,	connid,

								countryfr,	countryto,	lv_flag	AS	flag

			FROM	spfli

			INTO	TABLE	@data(lt_spfli).

In	this	case,	only	one	field	is	added,	but	it	is	also	possible	to	add	more	fields,
structure,	tables,	and	so	on.

If	the	new	SQL	is	used,	it	is	also	necessary	to	make	all	variables	a	host	variable,
for	example,	if	WHERE	is	used	in	SELECT.	In	the	following	SELECT	statement,	use	the
variable	named	lv_carrid	in	WHERE,	and	this	variable	needs	to	be	escaped	by	@:

DATA:	lv_carrid	TYPE	s_carr_id	VALUE	'AA'.

SELECT	mandt,	carrid,	connid

			FROM	sflight

			INTO	TABLE	@DATA(lt_spfli)

			WHERE	carrid	=	@lv_carrid.

SQL	expression
SQL	expression	introduced	the	ability	to	add,	for	example,	arithmetic
calculations	or	case	to	SELECT.

The	first	example	involves	creating	the	case.	In	code,	you	need	to	add	the	case
after	the	list	of	fields,	the	list	of	conditions,	and	the	name	of	the	field	where	the
result	is	shown.

In	the	following	example,	use	a	case	in	the	carrid	field.	When	a	field	in	the	entry
is	equal	to	AA,	a	field	named	flag	will	be	X;	if	carrid	is	not	equal	to	AA,	the	flag	field
is	empty:

SELECT	mandt,	carrid,	connid,	countryfr,	countryto,

			CASE	carrid

					WHEN	'AA'	THEN	'X'

					ELSE	'	'

			END	AS	flag

			FROM	spfli

			INTO	TABLE	@DATA(lt_spfli).

To	create	the	calculation,	you	need	to	create	the	new	field	with	the	result	of	the
calculation.	In	the	following	example,	we	have	created	the	result	of	an	addition
of	two	fields,	seatsocc_b	and	seatsocc_f:

SELECT	mandt,	carrid,	connid,

			(seatsocc_b	+	seatsocc_f)	AS	occupy

			FROM	sflight

			INTO	TABLE	@DATA(lt_spfli).

The	addition	of	fields	in	brackets	results	in	the	occupy	field.

Using	the	SQL	Trace	tool	for
performance	analysis
We	discussed	how	to	exercise	care	in	relation	to	the	performance	of	database
reads,	but	how	can	we	measure	that?	For	this,	we	can	use	the	SQL	Trace	tool	and
the	RUNTIME	analysis	tool.

To	start	the	SQL	trace,	we	can	open	the	ST05	transaction	and	RUNTIME	analysis	in	the
SAT	transaction.

The	main	window	of	the	SQL	trace	looks	like	this:

Here,	we	have	several	options	to	analyze	the	tracing,	but	right
now,	we	will	focus	on	SQL	Trace.	To	start	tracing,	we	need	to	click	on	the

Activate	Trace	button.	Right	after	clicking	on	that	button,	tracing	begins.	Now,
we	can	execute	our	program.

After	ending	a	program,	click	on	Deactivate	Trace.	When	we	want	to	see	the
trace,	click	on	Display	Trace.

After	doing	this,	we	get	the	window	where	we	can	select	which	Trace	Types	will
be	shown,	or	the	time	period	of	the	trace.	When	we	select	our	values,	click	on
RUN.	At	this	point,	we	will	get	the	values	of	the	selected	trace:

Let's	check	how	time-consuming	it	is	to	join	two	tables.	To	do	this,	we	will
follow	these	steps:

1.	 Run	the	ST05	transaction

2.	 Activate	the	trace
3.	 Execute	our	program	with	JOIN	SELECT
4.	 Deactivate	the	trace
5.	 Display	the	trace

We	now	need	to	locate	interesting	rows.	In	the	following	window,	we	can	see
trace	information	about	this	call:

From	this	window,	we	can	get	values	such	as	the	following:

The	duration	of	SQL
The	number	of	selected	records
The	object	name	that	is	used	for	this	call
The	program
The	SELECT	statement	that	is	used	for	this	call

To	measure	performance,	we	can	also	use	Runtime	Analysis.	Runtime	Analysis
can	be	called	by	the	SAT	transaction.

The	main	window	of	this	transaction	appears	as	follows:

In	this	transaction,	we	can	run	the	chosen	program	in	a	similar	manner	to
running	the	program	in	the	SQL	Trace	tool.	The	remaining	values	can	also	be
useful,	such	as	the	time	to	execute	the	loop	in	entries.

To	run	the	program/transaction/function	module,	we	mark	the	corresponding
radio	button,	enter	the	name,	and	click	on	Execute.

The	window	that	lists	the	values	looks	like	this:

On	the	left-hand	side	of	the	screen,	we	can	see	the	profile	of	the	trace	result,
while	on	the	Hit	List	on	the	right-hand	side	of	the	screen,	we	can	see	the	time	of
the	execution	statement,	as	well	as	how	long	the	entire	statement	needs.

We	can	now	run	an	experiment	to	determine	which	method	of	selecting	data
from	more	than	one	table	is	the	most	efficient.	The	SAT	transaction	is	the	best
option	for	this,	as	the	join	option	only	gets	data	directly	in	SELECT;	other
options	also	need	other	statements.	The	rules	for	the	experiment	are	as	follows:

Use	the	same	result	(same	data	and	number	of	entries)	of	execution	in	the
internal	table
Run	only	SELECT	and	the	requisite	statements	in	all	versions	of	the	code
Using	the	same	code	as	is	to	be	found	in	the	Reading	data	from	several
tables	section
All	versions	will	run	three	times
All	time	will	be	presented	in	microseconds

The	first	version	used	in	this	comparison	is	the	version	with	FOR	ALL	ENTRIES.

The	whole	program	takes	the	following	amount	of	time:

The	following	is	the	execution	timetable	of	FOR	ALL	ENTRIES:

First	run Second	run Third	run Average

5,167 5,525 5,814 5,502

	

Now,	we	will	look	at	the	time	required	to	execute	SELECT...ENDSELECT:

The	following	is	the	execution	timetable	of	SELECT...ENDSELECT:

First	run Second	run Third	run Average

5,983 6,647 6,700 6,443.3

Finally,	the	time	required	to	execute	the	JOIN	version	is	displayed	as	follows:

The	following	is	the	execution	time	table	of	JOIN:

First	run Second	run Third	run Average

5011 5039 5081 5043

	

As	you	can	see,	JOIN	is	more	efficient	in	this	case.	Small	differences	here	are
caused	by	small	numbers	of	rows	in	tables.

Summary
OpenSQL	is	one	of	the	most	important	parts	of	the	daily	work	of	an	ABAP
programmer.	To	do	it	right,	practice	is	necessary,	and	so	I	encourage	you	to	do
this	in	order	to	improve	your	understanding	of	SQL.

In	this	chapter,	we	discussed	the	basics	of	ABAP	OpenSQL	and	the	advanced
functions	of	SQL.	You	were	also	shown	how	to	change	data	in	databases,	how	to
optimize	big	datasets,	and	how	to	measure	the	efficiency	of	SQL	statements	and
tracing	database	operations.

In	the	next	chapter,	this	knowledge	will	prove	really	useful.	We	will	look	at	how
to	import	and	export	a	documents	format,	which	will	be	important	in	scenarios
such	as	ensuring	that	mass	importing	or	exporting	will	be	executed	with
efficiency.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	are	the	mandatory	elements	of	the	SELECT	statement?
2.	 Name	three	ways	to	read	data	from	multiple	tables.
3.	 What	can	we	do	to	optimize	reading	a	dataset	from	a	database?

Import	and	Export	to	Document
Formats
Each	reasonable	algorithm	has	some	input	data	in	addition	to	the	specific
processing	steps.	Input	data	is	processed	by	a	program	to	generate	the	expected
output.	It	is	no	different	in	the	case	of	algorithms	written	in	the	ABAP	language.
Our	input	will	usually	be	some	business	data	used	in	a	client-specific	process.	In
this	chapter,	we	will	go	through	some	of	the	possibilities	of	reading	and	saving
data	from	and	to	the	application	server.	We	will	also	go	through	the	steps	needed
to	read	and	write	data	from	local	PC.	The	chapter	will	show	you	typical
problems	for	this	type	of	task	and	how	to	deal	with	the	multitude	of	file	formats
each	developer	must	deal	with	on	a	daily	basis.	We	will	be	covering	the
following	topics:

Reading	files	from	the	local	PC	using	gui_upload
Writing	files	to	the	local	PC	using	gui_download
Basic	transactions	related	to	server-side	files
Writing	files	to	the	application	server
Reading	files	from	the	application	server
Reading	data	from	a	Microsoft	Excel	file
Saving	data	into	a	Microsoft	Excel	file
Saving	data	into	a	Microsoft	Word	file
Creating	Desktop	Office	Integration	(DOI)	in	an	ABAP	report

Technical	requirements
The	following	requirements	need	to	be	met	so	that	all	examples	from	this
chapter	will	work:	Desktop	Office	Integration	(DOI)	and	Object	Linking	and
Embedding	(OLE):	Most	of	the	examples	shown	in	this	chapter	will	require	the
Microsoft	Office	package	to	be	installed.

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter04.	

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter04

Client-side	file	processing
In	a	NetWeaver	environment,	we	always	need	to	remember	the	differences
between	the	application	server	layer	and	the	presentation	layer.	The	application
server	layer	is,	as	you	may	already	know,	a	runtime	environment	for	ABAP
code.	At	a	lower	technical	level,	the	application	server	is	a	remote	server	on
which	the	NetWeaver	platform	is	installed.	The	presentation	layer	instead	can	be
understood	as	your	local	PC.

This	difference	is	very	important	in	the	case	of	reading	and	writing	files	because
SAP	provides	separate	sets	of	tools	in	each	case—one	for	processing	files	on	the
presentation	layer	and	a	second	for	processing	files	on	the	application	server.
Both	are	commonly	used	in	SAP	projects	and	will	be	fully	covered	in	this
chapter.	

Reading	files	from	the	local	PC	using
gui_upload
Imagine	a	situation	where	a	client	asks	you	to	develop	an	ABAP	program	that
reads	the	content	of	files	stored	on	the	end	user's	local	PC.	This	section	will	tell
you	exactly	how	to	deal	with	such	a	situation.

The	following	steps	show	how	to	develop	ABAP	program	that	reads	the	content
of	files:

1.	 Go	to	the	ABAP	Workbench	(transaction	SE80)	and	create	a	new	report	from
the	local	class-based	report	template	(look	at	Appendix	A,	Assessments	for
help).	You	can	give	it	any	name,	but	I	suggest	sticking	to	the	name	given	in
this	book	(ZMSA_R_CHAPTER4_1).	The	code	will	look	like	this:

REPORT	ZMSA_R_CHAPTER4_1.

CLASS	lcl_demo	DEFINITION.

		PUBLIC	SECTION.

				CLASS-METHODS	main.

ENDCLASS.

CLASS	lcl_demo	IMPLEMENTATION.

		METHOD	main.

		ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

		lcl_demo=>main().

2.	 We	will	put	the	entire	code	in	the	main	method.	Create	two	variables—one	to
store	the	filename	and	file	path	on	our	local	system	and	one	to	store	the
contents	of	our	file.	The	code	will	look	as	follows:

DATA:	lv_filepath	TYPE	string	VALUE	'C:\temp\testfile4_1.txt'.

DATA:	lt_data	TYPE	TABLE	OF	string.

3.	 We	will	assume	just	for	now	that	our	filename	and	file	path	will	always	be
the	same	(C:\temp\testfile4_1.txt).	Later,	we	will	change	it	and	allow	the	user
to	choose	what	he	or	she	needs.	Create	a	text	file	in	C:\temp	with	the	name
testfile4_1.txt	and	insert	the	following	content:

This	is	first	line	of	testfile4_1.txt.

This	is	second	line	of	testfile4_1.txt.

This	is	third	line	of	testfile4_1.txt.

4.	 The	best	way	to	read	a	file	from	the	local	PC	is	to	use	the	gui_upload	static
method	from	the	standard	SAP	class	cl_gui_frontend_services.	Some	people
will	use	the	old	function	module	gui_upload,	but	a	better	approach	is	to	use
the	gui_upload	method.	It's	an	object-oriented	wrapper	for	gui_upload	function
which	means	the	only	purpose	of	this	method	is	to	call	another	function
module.	To	save	yourself	a	bit	of	time,	you	can	always	choose	Pattern	from
the	ABAP	Workbench	menu	bar:

5.	 In	the	popup	that	appears,	choose	ABAP	Objects	Patterns	and	click	on	the
green	checkmark:

6.	 Another	popup	will	appear.	Fill	it	in	as	follows	and	click	the	green	check
mark	again:

7.	 Thanks	to	this,	the	method	call	pattern	will	be	pasted	into	the	source	code
of	your	program.	You	should	see	something	similar	to	the	following:

CALL	METHOD	cl_gui_frontend_services=>gui_upload

*	EXPORTING

*					filename	=	SPACE

*					filetype	=	'ASC'

*					has_field_separator	=	SPACE

*					header_length	=	0

*					read_by_line	=	'X'

*					dat_mode	=	SPACE

*					codepage	=	SPACE

*					ignore_cerr	=	ABAP_TRUE

*					replacement	=	'#'

*				virus_scan_profile	=

*	IMPORTING

				*	filelength	=

				*	header	=

CHANGING

				data_tab	=

				*	isscanperformed	=	SPACE

*	EXCEPTIONS

				*	[...]

We	need	to	provide	variables	for	the	filename	and	data_tab	parameters.	It's
important	to	notice	that	the	filename	parameter	also	includes	a	path.	In	our	case,
it's	a	full	path	so	it's	an	absolute	address.	It	can	accept	relative	addressing	and	the
default	root	directory	is	c:\Users\%USER%\Documents\SAP\SAP	GUI\	(in	a	Windows
environment).	The	parameter	filename	is	commented	out	by	default,	so	you	have
to	remove	the	asterisk	from	the	parameter	name	and	from	the	EXPORTING	section.	

If	you	look	closely	at	the	gui_upload	method	call	pattern,	you	will	see	that	there
are	a	bunch	of	additional	parameters	that	can	help	you	archive	specific	business
requirements.	There	is	the	filetype	parameter,	which	can	take	one	of	three	values:
ASC	(if	data	will	be	transferred	as	ASCII	text),	BIN	(if	data	should	be	transferred
unconverted	in	binary	format),	and	DAT	(if	data	should	be	transported	unconverted
as	an	ASCII	text	table,	where	the	different	columns	are	separated	by	a	tabulator).
You	can	also	define	code-page	if	you	have	different	character	encoding
bycodepage	parameters,	the	date	format	using	dat_mode,	or	even	run	a	virus	scan	by
filling	virus_scan_profile.	For	more	information,	you	can	read	the	class
documentation.	

For	displaying	the	results,	we	can	use	the	display_data	method	from
the	cl_demo_output	class.	It's	a	very	simple	way	to	display	something	using	just	a
single	line	of	code.	Please	put	the	following	method	call	at	the	end	of	the	main
method:

cl_demo_output=>display_data(lt_data).

Now	you	can	execute	your	program.	Most	likely,	a	SAP	GUI	security	popup	will
appear.	You	need	to	click	the	Allow	button	to	make	this	example	work.	This	is
standard	SAP	protection	for	unauthorized	access	to	your	local	files.	You	can	also
mark	the	Remember	My	Decision	checkbox	to	avoid	being	noticed	next	time
you	execute	this	program.	You	can	always	change	these	settings	in	the	SAP	GUI
|	Options	|	Security	|	Security	Settings	menu:

If	everything	went	well,	you	should	see	a	popup	with	the	following	content:

This	code	is	far	from	perfect.	First	of	all,	the	user	has	the	possibility	to	choose	a
file	he	or	she	desires	and	not	get	a	hardcoded	one	all	the	time.	Let's	be	realistic;
two	user	environments	are	never	the	same,	so	the	hardcoded	approach	will	never
work	in	real	life.	To	set	up	a	dynamic	file	location,	we	need	to	use	the	method
file_open_dialog	from	cl_gui_frontend_services.	But	first,	we	need	to	declare	two
additional	variables—one	to	store	the	filename	and	file	path	and	another	to	get
user	operation	return	code.	Your	new	code	should	look	like	this:

				DATA:	lt_filetable	TYPE	filetable.

				DATA:	lt_filetable	TYPE	file_table.

				DATA:	lv_rc	TYPE	i.

Generate	the	method	call	pattern	using	the	Pattern	button	for	file_open_dialog,
exactly	like	we	did	for	the	gui_upload	method.	This	time	it	will	produce	the
following	code:

CALL	METHOD	cl_gui_frontend_services=>file_open_dialog

*	EXPORTING

				*	window_title	=

				*	default_extension	=

				*	default_filename	=

				*	file_filter	=

				*	with_encoding	=

				*	initial_directory	=

				*	multiselection	=

		CHANGING

				file_table	=

				rc	=

				*	user_action	=

				*	file_encoding	=

				*	EXCEPTIONS

				*	file_open_dialog_failed	=	1

				*	cntl_error	=	2

				*	error_no_gui	=	3

				*	not_supported_by_gui	=	4

				*	others	=	5

								.

IF	sy-subrc	<>	0.

*	Implement	suitable	error	handling	here

ENDIF.

Provide	variables	for	file_table	and	rc	parameters.	It	should	be	noted	that	the
parameter	file_table	is	of	table	type	and	can	include	more	entries.	This	can	be
useful	if	you	want	to	read	multiple	files,	but	can	be	also	annoying	if	you	have
only	one	file	in	every	scenario,	because	you	have	to	implement	additional	logic
to	read	the	first	(and	only)	file	path	in	the	table.	The	parameter	rc	gives	you
information	on	how	many	files	were	selected.	It	will	be	set	to	-1	if	something
went	wrong.	Use	the	READ	TABLE	keyword	to	read	the	first	file	path:

READ	TABLE	lt_filetable	INTO	lv_filepath	INDEX	1.

Now	if	you	run	your	program,	you	will	get	an	additional	popup	where	you	can
choose	the	desired	file:

There	are	many	additional	useful	parameters	in	the	file_open_dialog	method.	You
can	block	multiple	file	selection	options	(but	you	will	still	have	to	read	the	first
entry	from		lt_filetable).	You	can	also	make	your	dialog	more	business	oriented
and	suitable	by	choosing	the	default	directory	path,	default	filetype,	default
extension,	and	additional	filters.	If	you	want	to	improve	the	user	experience,	you
can	make	this	popup	a	bit	prettier	by	choosing	the	text	for	the	title.

There	is	still	one	last	part	missing.	We	wrote	down	a	nice	piece	of	code	but	we
didn't	handle	an	expected	situation	we	may	come	across.	What	will	happen	when
the	user	does	not	choose	any	file	at	all?	What	will	happen	if	the	file	can't	be
accessed?	As	a	good	programmer,	you	should	always	take	care	of	such
situations.	Murphy's	law	is	applicable	in	computer	science	more	than	anywhere

else,	so	if	something	can	go	wrong,	certainly	sooner	or	later	it	will.	The	most
obvious	way	is	to	tell	the	user	what	went	wrong,	put	understandable	information
on	the	screen,	and	terminate	processing.	You	can	solve	this	in	the	following	way
(place	it	just	after	the	file_open_dialog	call):

IF	sy-subrc	<>	0.

						MESSAGE	ID	sy-msgid	TYPE	sy-msgty	

								NUMBER	sy-msgno	

												WITH	sy-msgv1	sy-msgv2	sy-msgv3	sy-msgv4.

						RETURN.

ELSEIF	lv_rc	<	1.

						MESSAGE	'No	File	choosen'	TYPE	'W'.

						RETURN.

ENDIF.

Something	similar	can	be	also	applied	to	the	gui_upload	call:

IF	sy-subrc	<>	0.

				MESSAGE	ID	sy-msgid	TYPE	sy-msgty	

								NUMBER	sy-msgno	

												WITH	sy-msgv1	sy-msgv2	sy-msgv3	sy-msgv4.

				RETURN.

ENDIF.

Make	sure	you	have	uncommented	all	the	exceptions	in	the	method	call,
otherwise	catching	an	exception	will	not	work	and	you	will	end	up	with	a	short
dump.

Writing	files	to	the	local	PC	using
gui_download
Now	let's	imagine	the	situation	that	the	client	needs	a	report	which	will	generate
a	result	in	the	form	of	a	text	file	saved	on	the	user's	local	computer.	This	chapter
will	expand	your	skills	with	this	knowledge.	It's	very	similar	to	the	previous
example;	the	only	difference	is	that	we	write	the	file	to	the	PC	and	not	read	from
the	PC.	To	save	files	and	choose	a	suitable	file	path,	we	will	be	using	new
methods	from	the	previously	used	class,	cl_gui_frontend_services.	

First,	create	new	report,	ZMSA_R_CHAPTER4_2,	and	include	a	report	template	from	Appen
dix	A,	Assessments.	We	need	to	declare	variables.	We	need	three	of	them	to	make
the	method	file_save_dialog	work.	lv_filename	is	the	name	of	the	file,	lv_path	is
for	the	path-to-file	directory	where	the	file	will	be	saved,	and	lv_fullpath	is	the
path	plus	the	filename.	The	code	equivalent	to	this	step	looks	like	this:	

				DATA:	lv_filename	TYPE	string.

				DATA:	lv_path	TYPE	string.

				DATA:	lv_fullpath	TYPE	string.

We	will	not	hardcode	the	path	in	this	example	and	will	go	straight	into	the
method	file_save_dialog.	This	is	an	analogous	method	to	file_open_dialog	but	for
choosing	a	path	for	where	to	store	the	file.	Use	the	pattern	option	on
the	file_save_dialog	method	to	produce	a	call	(if	you	don't	know	how,	please	go
back	to	the	Reading	files	from	the	local	PC	using	gui_upload	section).	If	you	did
everything	according	to	the	instructions,	you	should	see	something	like	this:

CALL	METHOD	cl_gui_frontend_services=>file_save_dialog

*	EXPORTING

				*	window_title	=

				*	default_extension	=

				*	default_file_name	=

				*	with_encoding	=

				*	file_filter	=

				*	initial_directory	=

				*	prompt_on_overwrite	=	'X'

		CHANGING

				filename	=

				path	=

				fullpath	=

				*	user_action	=

				*	file_encoding	=

				*	EXCEPTIONS

				*	cntl_error	=	1

				*	error_no_gui	=	2

				*	not_supported_by_gui	=	3

				*	invalid_default_file_name	=	4

				*	others	=	5

											.

IF	sy-subrc	<>	0.

				*	Implement	suitable	error	handling	here

ENDIF.

Now,	use	the	code	pattern	tool	to	insert	the	gui_download	method	call	structure:

	CALL	METHOD	cl_gui_frontend_services=>gui_download

					EXPORTING

*							bin_filesize														=

							filename																		=

*							filetype																		=	'ASC'

*							append																				=	SPACE

*							write_field_separator					=	SPACE

*							header																				=	'00'

*							trunc_trailing_blanks					=	SPACE

*							write_lf																		=	'X'

*							col_select																=	SPACE

*							col_select_mask											=	SPACE

*							dat_mode																		=	SPACE

*							confirm_overwrite									=	SPACE

*							no_auth_check													=	SPACE

*							codepage																		=	SPACE

*							ignore_cerr															=	ABAP_TRUE

*							replacement															=	'#'

*							write_bom																	=	SPACE

*							trunc_trailing_blanks_eol	=	'X'

*							wk1_n_format														=	SPACE

*							wk1_n_size																=	SPACE

*							wk1_t_format														=	SPACE

*							wk1_t_size																=	SPACE

*							show_transfer_status						=	'X'

*							fieldnames																=

*							write_lf_after_last_line		=	'X'

*							virus_scan_profile								=	'/SCET/GUI_DOWNLOAD'

*					IMPORTING

*							filelength																=

					changing

							data_tab																		=

*					EXCEPTIONS

*							file_write_error										=	1

*							no_batch																		=	2

*							gui_refuse_filetransfer			=	3

*							invalid_type														=	4

*							no_authority														=	5

*							unknown_error													=	6

*							header_not_allowed								=	7

*							separator_not_allowed					=	8

*							filesize_not_allowed						=	9

*							header_too_long											=	10

*							dp_error_create											=	11

*							dp_error_send													=	12

*							dp_error_write												=	13

*							unknown_dp_error										=	14

*							access_denied													=	15

*							dp_out_of_memory										=	16

*							disk_full																	=	17

*							dp_timeout																=	18

*							file_not_found												=	19

*							dataprovider_exception				=	20

*							control_flush_error							=	21

*							not_supported_by_gui						=	22

*							error_no_gui														=	23

*							others																				=	24

											.

			IF	sy-subrc	<>	0.

*				Implement	suitable	error	handling	here

			ENDIF.

Two	parameters	are	obligatory—one	to	tell	the	method	where	to	store	the	file
and	another	that	contains	actual	data	to	be	stored.	For	the	first	parameter,	we	will
use	the	lv_fullpath	variable.	For	the	second	parameter,	we	need	to	declare	a	new
variable:	

	DATA:	lt_data_tab	TYPE	TABLE	OF	string.

In	real	life,	some	business	data	can	be	stored	in	a	local	file.	In	this	example,	we
will	just	add	a	few	dummy	lines:

APPEND	'1st	dummy	line'	TO	lt_data_tab.

APPEND	'2nd	dummy	line'	TO	lt_data_tab.

APPEND	'3rd	dummy	line'	TO	lt_data_tab.

If	you	execute	your	program,	you	will	see	save	the	file	dialog:

You	can	choose	whatever	directory	or	filename	you	want,	but	you	have	to
remember	to	be	consistent	in	other	parts	of	this	example—we	will	refer	to	this
value.	If	a	file	already	exists,	you	will	be	asked	to	confirm	overwriting:

After	clicking	Yes,	go	to	the	chosen	path	and	open	your	file:

Remember	to	use	the	mechanisms	from	the	previous	example	to	handle	errors	and	inform	the
user	what	went	wrong.	

I	highly	recommend	playing	around	with	all	the	other	parameters	of
the	gui_download	method.	It	allows	you	to	overwrite	files	without	prompt	popups
and	manipulate	file	content	by	using	separators	or	date	modifier	options.	You
can	also	define	the	writing	mode	(data	may	be	overwritten	or	appended	at	the
end	of	the	file).

Also,	it's	really	worthwhile	to	check	other	methods	from
the	cl_gui_frontend_services	class	as	it	can	give	you	a	variety	of	different
possibilities.	You	can	copy	and	delete	a	file	or	even	read	a	file's	attributes.	This
gives	you	a	full	spectrum	of	functionalities	for	working	with	directories.	Apart
from	operations	on	files	and	folders,	this	class	also	offers	a	vast	amount	of	other
possibilities,	such	as	the	manipulation	of	registers	and	the	reading	of
environment	variables	or	other	information	about	the	user's	system.

Server-side	file	processing
In	this	section,	we	will	cover	the	basic	transactions	related	to	server-side	files
and	writing	and	reading	files	to	an	application	server.	Those	examples	used	in
the	loop	and	in	the	background	job	may	be	used	for	mass	import	and	mass
export.

Basic	transactions	related	to	server-
side	files
Before	we	start	going	into	the	ABAP	code,	we	need	to	get	familiar	with	a	few
useful	transactions.	In	local	environments	and	common	operating	systems,	every
user	knows	how	to	explore	folders	and	view	file	contents.	But	in	the	case	of
server-side	files,	things	are	different.	Of	course,	we	talk	here	about	a	typical
situation	where	the	programmer	does	not	have	access	to	the	server	from	the	level
of	the	operating	system	and	can	view	files	only	by	using	the	SAP	GUI.	The	first
transaction,	AL11,	is	very	important	and	useful.	It's	a	SAP	equivalent	to	Windows
Explorer.	Run	AL11	from	the	Command	Field	in	the	SAP	GUI.	This	will	open	the
following:

In	AL11,	you	can	display	server-side	SAP	directories,	files,	and	file	contents.	We

will	use	transaction	AL11	to	check	if	the	files	from	the	following	example	are
really	uploaded	on	the	server.	The	full	directory	structure	depends	on	the	server
operating	system,	but	some	of	them	are	generic	and	should	be	quite	similar	in
every	SAP	installation.

We	will	not	discuss	every	single	item	in	this	list,	but	you	should	definitely	know
the	most	useful	ones:

DIR_PROFILE	is	a	central	configuration	directory	of	a	SAP	system.	An	instance
is	configured	using	a	profile	file	stored	in	the	DIR_PROFILE	directory.
DIR_SAPUSERS	is	a	default	catalog	for	user	files.
DIR_TRANS	is	a	transport	request	directory.	Basically,	every	released	transport
request	is	stored	here	as	a	file.	You	can	copy	such	files	and	move	into
another	system.	It	may	be	a	good	idea	to	back	up	your	work	for	future	use.
DIR_TEMP	is	a	directory	for	temporary	data.

Another	two	applications	need	to	be	mentioned	before	we	jump	into	ABAP.	The
first	one,	CG3Z,	is	used	to	upload	files	to	the	server.	The	second,	CG3Y,	is	to	read
files	from	the	server.	We	will	go	through	a	simple	example	for	each	transaction,
just	for	better	visualization	of	how	this	really	works.	Run	CG3Z	first	and	fill
everything	in	as	follows:

Now	you	can	verify	the	whole	process	by	going	to	AL11	and	exploring	the	used
directory.	If	the	path	is	not	specified,	the	default	folder	will	be	DIR_SAPUSERS.	For
easy	searching	of	the	file,	you	can	use	a	filter	option	on	the	menu	bar:

Just	put	your	filename	in	the	popup:

This	will	remove	all	other	files	from	the	listing:

When	you	have	located	your	file,	you	can	open	it	by	double-clicking	it:

The	second	transaction,	CG3Y,	is	used	to	download	files	from	SAP	server
directories.	Open	CG3Y	(it	looks	almost	the	same	as	CG3Z)	and	fill	it	in	as	follows:	

Write	the	source	file	path	and	filename	into	the	Source	file	on	application	server
field	(analogously	to	the	previous	example	in	the	CG3Z),	and	then	choose	to	save
your	file	anywhere	you	want	by	filling	the	Target	file	on	front	end	field.	Go	to	a
temp	directory	to	verify	the	new	testfile4_2_from_server.txt	file.	It	should	have	the
same	content	as	the	original	testfile4_2.txt:

In	both	transactions,	we	have	two	options	we	haven't	covered	yet.	The	Overwrite
file	option	will	overwrite	the	file	if	it	exists	in	the	destination	directory	and
the	Transfer	format	to	data	option	that	defines	the	method	of	file	transfer	as	BIN
for	binary	transfer	and	ASC	for	ASCII-like	transfer.	During	both	operations,	a

popup	with	an	authorization	permission	question	can	appear.	To	make	these
examples	work,	you	have	to	allow	for	read	and	write	access.	

Writing	files	to	the	application	server
Working	with	a	file	on	a	local	PC	gives	you	many	capabilities;	however,	it	has
important	limitations.	For	example,	files	are	only	available	to	us	and	if	we	close
the	current	transaction,	data	will	be	lost.	This	means	we	can't	use	this	data	in	a
job	or	later	in	another	transaction.	The	solution	for	these	two	problems	can	be
storing	files	on	the	application	server.	We	can't	use	cl_gui_frontend_services	for	that
because	it	works	only	with	the	frontend	layer.	For	application	server-based	file
operations,	we	have	a	special	keyword,	OPEN	DATASET.

Let's	check	how	exactly	this	works.	Please	create	a	new	report,	ZMSA_R_CHAPTER4_3,
from	Appendix	A,	Assessments	report	template	and	declare	the	following	variables
in	the	main	method:

DATA:	lv_file	TYPE	string	VALUE	'testfile4_3.txt'.

To	open	a	file,	you	need	to	use	the	following	syntax:

OPEN	DATASET	lv_file	FOR	OUTPUT	IN	TEXT	MODE	ENCODING	DEFAULT.	

This	actually	opens	something	that	may	be	considered	stream	to	file.	To	write
data	into	the	file,	you	have	to	use	the	TRANSFER	keyword:

TRANSFER	'1st	line	on	application	server'	TO	lv_file.

TRANSFER	'2nd	line	on	application	server'	TO	lv_file.

TRANSFER	'3rd	line	on	application	server'	TO	lv_file.

After	this	operation,	we	have	to	close	the	file.	To	do	so,	we	need	to	use	the	CLOSE
DATASET	statement:

CLOSE	DATASET	lv_file.

CLOSE	DATASET	will	also	save	the	current	buffer	to	the	file	if	there	is	some	buffer	on
the	operating	system.	An	opened	file	that	was	not	explicitly	closed	will	be
automatically	closed	when	the	program	is	exited.	We	can	check	our	new	file	in
an	AL11	transaction.	Keep	in	mind	that	we	didn't	provide	a	directory,	so	the	file
will	be	saved	in	the	default	root	folder,	DIR_SAPUSERS.

Reading	files	from	the	application
server
Reading	files	from	the	application	server	is	very	easy;	even	easier	than	writing	a
file.	But	to	be	sure	that	this	example	works,	we	first	need	to	store	something	in
the	application	server.	Copy	a	report	pattern	from	Appendix	A,	Assessments	into	the
newly	created	ZMSA_R_CHAPTER4_4.	We	need	an	additional	variable	to	store	file
content	lt_data	and	lv_line	to	temporarily	store	each	line	of	a	file.	The
variable	lv_file	is	used	to	store	the	filename:

			DATA:	lv_file	TYPE	string	VALUE	'testfile4_3.txt'.

			DATA:	lv_line	TYPE	string.

			DATA:	lt_data	TYPE	TABLE	OF	string.

The	first	statement	is	almost	the	same	as	in	the	last	exercise;	we	just	need	to
change	direction	from	OUTPUT	to	INPUT:

OPEN	DATASET	lv_file	FOR	INPUT	IN	TEXT	MODE	ENCODING	DEFAULT.

Now,	to	read	file	content,	we	have	to	loop	through	every	single	line	and	put	line
content	to	our	table	variable		lt_data:

				DO.

						READ	DATASET	lv_file	INTO	lv_line.

						IF	sy-subrc	=	0.

								APPEND	lv_line	TO	lt_data.

						ELSE.

								EXIT.

						ENDIF.

				ENDDO.

If	a	READ	DATASET	statement	encounters	the	end	of	the	file,	sy-subrc	will	return	a
value	of	4	and	the	DO	loop	will	be	stopped.	Of	course,	you	have	to	close	the	file:

	CLOSE	DATASET	lv_file.

To	check	the	results,	we	will	use	the	display_data	method	from
the	cl_demo_output	class	again:

cl_demo_output=>display_data(lt_data).

If	you	did	everything	right	after	the	execution	of	ZMSA_R_CHAPTER4_4,	you	should	see
the	following:

Now	you	know	how	to	do	two	basic	operations	with	files	on	the	application
server.	To	learn	more,	you	should	check	the	SAP	documentation	for	the	OPEN
DATASET	statement.	The	last	thing	worth	mentioning	is	two	function
modules,	archivfile_client_to_server	and	eps2_get_directory_listing.	The	first	function
allows	you	to	connect	two	operations—read	a	file	from	the	client	and	upload	it
to	the	server.	You	can	achieve	this	by	mixing	examples	from	this	chapter,	but
this	function	can	save	you	some	time.	The	second	function	allows	you	to	list	all
files	and	folders	on	the	application	server.

Working	with	Microsoft	Office	files
Every	Windows	system	user	has	heard	of	the	Microsoft	Office
package.	Microsoft	Word	or	Microsoft	Excel	formats	are	the	most	recognizable
and	characteristic	extensions	for	Windows	operating	systems.	The	Office
package	is	also	very	well	integrated	with	SAP.	We	have	the	possibility	to	export
the	result	to	an	Excel	spreadsheet	in	many	standard	transactions.	Exporting	to
Excel	is	also	part	of	standard	ABAP	List	Viewer	(ALV)	functionality.	In	this
section,	we	dive	deeper	into	SAP	and	Microsoft	integration.	Reading,	writing,
and	editing	examples	will	be	covered.	

Reading	data	from	Microsoft	Excel
Let's	assume	some	external	system	created	a	report	in	Excel	format.	We	need	to
create	an	ABAP	program	that	is	capable	of	reading	this	file.	Create	a	new
program,	ZMSA_R_CHAPTER4_5,	and	copy	the	report	pattern	from	Appendix	A,
Assessments.

We	need	to	declare	variables.	The	lv_filename	will	be	used	to	store	the	filename
and	file	path	on	our	local	PC.	The	variable	lt_excel	stores	values	in	a	special	cell-
addressing	format:

DATA:	lv_filename	TYPE	localfile	VALUE	'c:/temp/testfile4_5.xlsx'.	

DATA:	lt_excel	TYPE	TABLE	OF	alsmex_tabline.

For	reading	Excel	files,	we	have	to	use	the	function
module	alsm_excel_to_internal_table.	You	can	get	a	sample	Excel	file	from	GitHub
or	create	a	file	yourself	in	the	temp	folder.	Use	a	pattern	framework	to	get	a
function	call	structure.	The	call	will	look	like	this:

CALL	FUNCTION	'ALSM_EXCEL_TO_INTERNAL_TABLE'

						EXPORTING

								filename	=

								i_begin_col	=

								i_begin_row	=

								i_end_col	=

								i_end_row	=

						TABLES

								intern	=

*	EXCEPTIONS

*	INCONSISTENT_PARAMETERS	=	1

*	UPLOAD_OLE	=	2

*	OTHERS	=	3

														.

				IF	sy-subrc	<>	0.

*	Implement	suitable	error	handling	here

				ENDIF.

Set	i_end_col	and	i_end_row	to	1000.	These	two	parameters	have	a	limitation,	which
can	vary	depending	on	your	local	system	and	server	configuration.	Also
remember	that	indexation	starts	from	1,	so	the	parameters	i_begin_col
and	i_begin_row	have	to	be	set	at	least	to	1.	If	you	open		alms_excel_to_internal_table
and	analyze	the	code	behind	it,	you	will	find	two	important	things.	This	function
is	just	wrapper	to	an	Object	Linking	and	Embedding	(OLE)	mechanism,
which	we	will	use	in	all	other	examples.	It's	also	interesting	that	this	function

uses	some	strange	tricks.	The	Excel	file	is	opened	in	the	background	and	all	cells
are	selected.	Then	we	use	the	Copy	to	clipboard	mechanism,	and	the	algorithm
reads	values	from	the	clipboard	and	assigns	the	values	of	individual	cells	to	the
ABAP	table.	This	has	some	limitations,	for	example,	a	cell	will	be	copied	with
its	display	value	and	not	the	real	value.

Add	the	display_data	method	from	cl_demo_output:

cl_demo_output=>display_data(lt_excel).

Saving	a	table	to	a	Microsoft	Excel
file
The	common	business	case	for	using	OLE	is	to	generate	custom-format	Excel
files	generated	in	an	ABAP	report.	Please	create	a	new	ABAP
program,	ZMSA_R_CHAPTER4_6,	and	copy	the	report	pattern	from	Appendix	A,
Assessments.	If	you	checked	the	alms_excel_to_internal_table	function	module,	you
should	know	how	OLE	works.	It's	important	to	include	just	before	our	class
definition	OLE	type	information:

INCLUDE	ole2incl.

We	need	to	declare	the	following	variables:	

DATA:	lv_filename	TYPE	localfile	VALUE	'c:\temp\testfile4_6.xls'.

DATA:	lo_excel	TYPE	ole2_object.

DATA:	lo_workbook	TYPE	ole2_object.

DATA:	lo_sheet	TYPE	ole2_object.																						

DATA:	lo_cell	TYPE	ole2_object.

For	some	systems,	to	make	this	example	work,	instead	of	using	(/)	in	the	path
name,	you	have	to	use	(\)	.	This	is	only	a	problem	if	a	path	is	hardcoded.	Now
we	need	to	do	some	basic	setup:

CREATE	OBJECT	lo_excel	'EXCEL.APPLICATION'.

SET	PROPERTY	OF	lo_excel	'visible'	=	1.

CALL	METHOD	OF	lo_excel	'Workbooks'	=	lo_workbook.

CALL	METHOD	OF	lo_workbook	'Add'.

CALL	METHOD	OF	lo_excel	'Worksheets'	=	lo_sheet

																																	EXPORTING	#1	=	1.

CALL	METHOD	OF	lo_sheet	'Activate'.

SET	PROPERTY	OF	lo_sheet	'Name'	=	'TestSheet'.

This	will	initialize	both	lo_workbook	and	lo_sheet.	lo_workbook	represents	our	entire
workbook	and	lo_sheet	is	the	equivalent	of	our	single	spreadsheet.	You	can	also
change	the	name	using	the	'NAME'	property	on	the	sheet	object.	If	you	run	this
program,	Excel	will	be	opened	on	your	local	desktop.	If	you	change	the	'visible'
parameter	to	0,	the	process	will	be	run	in	the	background.

Now	we	want	to	put	some	information	into	Excel.	To	do	this,	we	will	get

a	lo_cell	object	from	lo_sheet	and	set	the	'Value'	property:

DO	10	TIMES.

				CALL	METHOD	OF	lo_sheet	'Cells'	=	lo_cell	EXPORTING	#1	=	sy-index		#2	=	1.

				SET	PROPERTY	OF	lo_cell	'Value'	=	sy-index.

ENDDO.

We	have	two	exporting	parameters	here;	the	first	is	for	the	row	and	the	second	is
for	a	column.	We	will	put	the	value	of	the	current	index	in	individual	cells.	The
last	thing	to	do	is	save	the	file	and	close	the	Excel	OLE	objects:

				CALL	METHOD	OF	lo_sheet	'SaveAs'

						EXPORTING

								#1	=	lv_filename

								#2	=	1.

				SET	PROPERTY	OF	lo_excel	'visible'	=	0.

				CALL	METHOD	OF	lo_sheet	'CLOSE'

						EXPORTING

								#1	=	'YES'.

				CALL	METHOD	OF	lo_excel	'QUIT'.

				FREE	OBJECT:	lo_excel,

																	lo_sheet.

If	everything	went	okay,	you	should	have	a	new	Excel	file	in	the
C:/temp	directory.	Go	there	and	verify	that	the	content	is	correct:

Working	with	Microsoft	Word
In	the	case	of	Microsoft	Word,	we	will	focus	only	on	writing	values	to	the	file
due	to	the	fact	that	reading	from	a	Microsoft	Word	document	is	not	especially
interesting	or	useful.	Word	documents	can	have	infinite	numbers	of	layouts.	It's
much	easier	to	work	with	structured	Excel,	where	we	always	expect	rows	and
columns,	than	with	Word,	where	the	table	can	have	any	format.

Create	a	new	program,	ZMSA_R_CHAPTER4_7,	and	copy	the	report	pattern	from	Appendix	
A,	Assessments.	Add	an	obligatory	INCLUDE	statement	to	the	OLE	type-pool	just
before	the	class	definition:	

INCLUDE	ole2incl.	

Declare	a	few	variables	in	the	main	method:

DATA:	lo_word	TYPE	ole2_object.

DATA:	lo_doc	TYPE	ole2_object.

	

DATA:	lo_selection	TYPE	ole2_object.

DATA:	lo_font	TYPE	ole2_object.

DATA:	lo_paragraph	TYPE	ole2_object.	

In	the	next	step,	we	will	initialize	and	get	the	handler	of	all	needed	objects:

CREATE	OBJECT	lo_word	'Word.Application'.

CALL	METHOD	OF	lo_word	'Documents'	=	lo_doc.

CALL	METHOD	OF	lo_doc	'Add'.

	

GET	PROPERTY	OF	lo_word	'Selection'	=	lo_selection.

GET	PROPERTY	OF	lo_selection	'ParagraphFormat'	=	lo_paragraph.

GET	PROPERTY	OF	lo_selection	'Font'	=	lo_font.

		

You	can	also	prepare	your	font	and	paragraph	format,	and	therefore	specify	the
final	layout	of	the	document's	content:

SET	PROPERTY	OF	lo_word	'Visible'	=	1.

SET	PROPERTY	OF	lo_font	'Size'	=	22.

SET	PROPERTY	OF	lo_font	'Bold'	=	1.

SET	PROPERTY	OF	lo_paragraph	'Alignment'	=	1.	"	Centered

To	write	something,	you	will	use	the	'TypeText'	method	on	the	lo_selecton	object.
The	exporting	parameters	represent	the	text	you	want	to	put	into	Word

document:

CALL	METHOD	OF	lo_selection	'TypeText'

				EXPORTING

								#1	=	'First	Word	Report	of	Airlines	with	OLE'.

CALL	METHOD	OF	lo_selection	'TypeParagraph'.	

To	make	this	example	more	reasonable,	we	will	select	data	from	a	SAP	IDES
standard	data	flight	model.	Let's	say	we'd	like	to	list	every	single	airline	from	the
current	system.	We	need	an	additional	variable	and	a	new	select	statement:

	DATA:	lt_carrname	TYPE	TABLE	OF	s_carrname.

	DATA:	lv_carrname	TYPE	s_carrname.

	SELECT	carrname	FROM	scarr	INTO	TABLE	lt_carrname.

The	list	of	the	airlines	should	be	written	with	a	smaller	font	than	the	header;
because	of	that,	we	will	change	a	few	properties:

SET	PROPERTY	OF	lo_font	'Size'	=	10.

SET	PROPERTY	OF	lo_font	'Bold'	=	0.

SET	PROPERTY	OF	lo_paragraph	'Alignment'	=	0.				

To	write	the	airline	list	into	Word,	we	will	again	use	the	'TypeText'	method	of
the	lo_selection	class:

LOOP	AT	lt_carrname	INTO	lv_carrname.

	

				CALL	METHOD	OF	lo_selection	'TypeText'

								EXPORTING

												#1	=	lv_carrname.

	

				CALL	METHOD	OF	lo_selection	'TypeParagraph'.

ENDLOOP.

If	everything	went	well,	you	should	be	able	to	see	the	Word	document	with	the
airlines	report	in	it:

Using	DOI	to	integrate	Microsoft
Office	applications	into	ABAP	reports
DOI	is	an	ABAP	object	interface	that	can	be	used	to	work	with	Office
applications	using	the	OLE2	interface.	You	can	use	it	to	edit	the	Office	format,
but	it	can	also	be	used	to	integrate	Office	applications	into	ABAP	reports.	This
could	be	bi-directional	integration,	meaning	the	ABAP	report	can	react	to	Office
events	and	Office	can	react	based	on	ABAP	logic.	DOI	significantly	extends	the
possibilities	presented	in	previous	chapters	carried	out	using	OLE	classes.

Using	DOI	is	also	much	more	complicated	than	using	OLE	objects,	so	we	will
focus	on	only	one	example	of	integrating	a	Word	document	into	the	ABAP
program.	Forget	for	a	moment	about	our	standard	program	template	and	create
an	empty	new	program,	ZMSA_R_CHAPTER4_8.	ABAP	and	the	structure	of	ABAP
programs	are	not	flexible	when	it	comes	to	programs	based	on	classic	Dynpro.
Using	the	object,	in	this	case,	is	not	so	easy,	and	in	the	end,	some	fragments
would	have	to	be	made	non-objected	anyway.	First,	create	a	few	variables.	We
also	need	to	include	the	soi	as	a	TYPE-POOLS:

TYPE-POOLS:	soi.

DATA:	lo_container	TYPE	REF	TO	cl_gui_custom_container.

DATA:	lo_control	TYPE	REF	TO	i_oi_container_control.

DATA:	lo_proxy	TYPE	REF	TO	i_oi_document_proxy.

DATA:	lv_okcode	TYPE	syst_ucomm.

In	the	next	step,	we	need	to	create	a	new	screen.	This	screen	will	encapsulate	our
integrated	Word	application	and	ABAP-based	buttons	for	interacting	with	our
Word	document.	To	create	the	screen,	right-click	on	your	report	name	in	the
navigation	bar	and	choose	Create|Screen:

A	small	popup	will	appear	where	you	can	set	a	new	screen	number.	You	can
choose	whatever	four-digit	number	you	like.	When	you	extend	standard	SAP
reports,	it	should	be	in	the	range	of	9000+,	but	in	the	case	of	custom	development,
it	can	be	anything,	such	as	0100.	Be	aware	that	if	you	change	this	number	you	will
also	have	to	remember	to	change	it	in	other	parts	of	this	example:

After	clicking	the	green	check	mark,	you	will	jump	to	a	new	screen	where	all
basic	configurations	can	be	set.	For	this	example,	only	a	short	description	is
obligatory:

In	the	next	step,	we	will	create	a	layout	for	our	screen.	To	jump	into	the	Screen
Editor,	you	can	hit	Ctrl	+	F7	on	the	keyboard	or	click	on	the	Layout	button	on
the	toolbar.	On	your	new	screen,	create	three	objects	(one	custom	container	and
two	buttons).	Use	the	icons	on	the	left	to	create	everything:

It's	very	important	to	include	the	names	and	function	codes	(FctCode)	as	in	this

example.	For	BTN_OPEN,	use	OPEN	and	for	BTN_CLOSE	use	CLOSE:

Custom	containers	also	need	to	have	reference	names,	but	FctCode	is	not
needed.	You	can	verify	names	either	in	the	layout	object	preferences	panel	or	in
the	Element	list	tab	when	you	close	the	Screen	Editor.	You	should	also	enter	an
element	name	for	the	OK	command	object:

Go	to	the	Flow	logic	tab	and	remove	everything:

Put	the	following	code	there.	It	will	be	needed	later	to	handle	screen-processing
events:

PROCESS	BEFORE	OUTPUT.

	MODULE	INIT.

PROCESS	AFTER	INPUT.

	MODULE	EXIT	AT	EXIT-COMMAND.

	MODULE	USER_COMMAND_0100.

Activate	the	screen	and	go	back	to	your	main	application.	Include	some	code	to
handle	the	three	new	modules	we	just	created	in	the	Flow	logic	tab:

MODULE	INIT	OUTPUT.

ENDMODULE.

MODULE	EXIT	INPUT.

ENDMODULE.

MODULE	user_command_0100	INPUT.

ENDMODULE.

The	INIT	module	will	be	started	just	before	screen	0100	starts.	EXIT	and
user_command_0100	modules	are	called	every	time	the	user	does	something	on	the
screen.	Now	we	need	to	call	our	screen	just	at	the	beginning	of	program
execution.	This	should	be	placed	just	after	the	data	declaration:

SET	SCREEN	100.

If	you	run	your	program,	you	should	already	be	able	to	see	your	screen:

Nothing	will	work	yet,	and	two	very	important	parts	are	missing.	We	need	to
create	a	GUI	status	or	GUI	Titles.	Right-click	on	the	report	name	and	select
Create	|	Gui	Titles:

Choose	a	custom	name	and	select	Title	Code:

Create	GUI	Status:

	

In	the	GUI	Status	popup,	fill	in	a	description	and	number	for	GUI	Status:

After	clicking	the	green	check	mark,	you	will	be	forwarded	to	a	GUI	Status
setup	window.	In	our	case,	we	need	to	set	up	only	the	STOP	code:

Activate	this	and	go	back	to	the	main	program	code.	First,	we	will	start	by
handling	the	INIT	function	code.	Put	the	following	source	code	in	the	INIT
module:

SET	PF-STATUS	'0100'.

SET	TITLEBAR	'0100'.

This	will	set	the	earlier-created	GUI	Status	and	GUI	Titlebar.	Move	one	and	add
the	following	calls:

	CALL	METHOD	c_oi_container_control_creator=>get_container_control

				IMPORTING

						control	=	lo_control.

		CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

This	will	initialize	the	lo_control	object.	The	method	show_message	can	help	you	in
case	of	any	troubleshooting.	Now	add	the	following	code:

		CREATE	OBJECT	lo_container

				EXPORTING

						container_name	=	'CUSTOMCONTAINER'.

		CALL	METHOD	lo_container->set_visible	EXPORTING	visible	=	abap_false.

		CALL	METHOD	lo_control->init_control

				EXPORTING

						r3_application_name	=	'R/3	Basis'

						inplace_enabled	=	abap_true

						inplace_scroll_documents	=	abap_true

						parent	=	lo_container

						register_on_close_event	=	abap_true

						register_on_custom_event	=	abap_true

						no_flush	=	abap_false.

		CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

Finally,	initialize	the	document	proxy	object:

		CALL	METHOD	lo_control->get_document_proxy

				EXPORTING

						document_type	=	'Word.Document.8'

						no_flush	=	abap_false

				IMPORTING

						document_proxy	=	lo_proxy.

		CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

One	last	thing	is	missing	in	the	INIT	module.	We	need	to	create	mechanisms	that
will	avoid	creating	and	initializing	objects	after	every	user	action.	For	this,	we
will	create	a	global	variable.	We	can	also	create	a	second	global	variable	that
will	be	useful	for	us	later:

DATA:	lv_init	TYPE	boolean.

DATA:	lv_closed	TYPE	i.

Use	this	variable	in	the	INIT	module.	The	first	line	of	the	following	coding	should
be	put	at	the	beginning	of	the	module	and	the	second	at	the	end:

		CHECK	lv_init	=	abap_false.

		lv_init	=	abap_true.

So	far,	so	good.	Now	we	need	to	add	buttons	logic.	We	have	two	actions,	OPEN
and	CLOSE.	CLOSE	will	also	save	a	document	into	a	database	table.	Put	the	following
code	in	the	USER_COMMAND_0100	module:

		CASE	lv_okcode.

				WHEN	'OPEN'.

						CALL	METHOD	lo_proxy->is_destroyed

								IMPORTING

										ret_value	=	lv_closed.

						

						CHECK	NOT	lv_closed	IS	INITIAL.

						

						CALL	METHOD	lo_container->set_visible

								EXPORTING

										visible	=	abap_true.

						

						CALL	METHOD	lo_proxy->create_document

								EXPORTING

										open_inplace	=	abap_true

										document_title	=	'DOI	Test	Document'	

										no_flush	=	abap_false.

						

						CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

					WHEN	'CLOSE'.				

		ENDCASE.

		CLEAR:	lv_okcode.

The	first	method	checks	if	a	document	proxy	exists;	we	don't	want	to	create	it
again	in	such	a	case.	We	will	also	make	our	container	visible.	The	final	step,
the	create_document	method,	creates	an	actual	document.	The	parameter
open_inplace	determines	whether	the	Word	application	should	be	opened
embedded	in	the	GUI	or	as	a	new	window.	If	you	execute	your	program	now	and
click	on	the	Open	button,	you	will	see	the	Word	application:

From	a	functional	perspective,	our	program	is	still	missing	two	things—saving
and	reopening	the	document.	First,	create	three	additional	variables:

DATA:	lv_changed	TYPE	i.

TYPES:	ty_row	TYPE	x	LENGTH	2048.

DATA:	lt_doc_table	TYPE	STANDARD	TABLE	OF	ty_row.

DATA:	lv_doc_size	TYPE	i.

Now	add	the	following	code	into	the	USER_COMMAND_0100	module;	this	module
concerns	the	CLOSE	command	in	the	CASE	statement:

						CALL	METHOD	lo_proxy->is_destroyed

								IMPORTING

										ret_value	=	lv_closed.

						IF	lv_closed	IS	INITIAL.

								CALL	METHOD	lo_proxy->close_document

										EXPORTING

												do_save	=	abap_true

										IMPORTING

												has_changed	=	lv_changed.

								CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

								IF	NOT	lv_changed	IS	INITIAL.

										CALL	METHOD	lo_proxy->save_document_to_table

												CHANGING

														document_table	=	lt_doc_table

														document_size	=	lv_doc_size.

										CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

								ENDIF.

								CALL	METHOD	lo_proxy->release_document.

								CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

						ENDIF.

						CALL	METHOD	lo_container->set_visible	EXPORTING	visible	=	abap_false.

The	is_destoryed	method	checks	whether	our	document	exists	or	not.	We	cannot
save	or	release	a	document	if	it	doesn't	exist.	save_document_to_table	saves
document	contents	into	a	local	ABAP	table.	The	call	of	the	method
set_visible	hides	the	container.	We	can	already	open	and	close	the	document,	but
now	we	need	to	take	care	of	reopening	it.	We	need	to	delete	everything	from
the	open	part	of	the	USER_COMMAND_0100	module	and	paste	the	following:

						CALL	METHOD	lo_proxy->is_destroyed

								IMPORTING

										ret_value	=	lv_closed.

						CHECK	NOT	lv_closed	IS	INITIAL.

						CALL	METHOD	lo_container->set_visible

								EXPORTING

										visible	=	abap_true.

						IF	lv_doc_size	>	0.

								CALL	METHOD	lo_proxy->open_document_from_table

										EXPORTING

												document_table	=	lt_doc_table

												document_size	=	lv_doc_size

												document_title	=	'DOI	Test	Document'

												open_inplace	=	abap_true.

						ELSE.

								CALL	METHOD	lo_proxy->create_document

										EXPORTING

												open_inplace	=	abap_true

												document_title	=	'DOI	Test	Document'

												no_flush	=	abap_false.

						ENDIF.

						CALL	METHOD	c_oi_errors=>show_message	EXPORTING	type	=	'E'.

Some	parts	of	the	code	are	the	same	as	earlier.	The	new	part	concerns	a
condition	statement,	where	we	check	whether	the	size	of	a	closed	document	is
not	initial.	If	not,	we	will	open	the	previously—saved	document.	Please	test	it	by
clicking	Open,	writing	something,	closing	the	document,	and	clicking	Open
again:

The	last	formality	is	to	create	a	mechanism	to	turn	off	the	program.	Copy	and
paste	the	following	code	into	the	EXIT	module.	This	will	release	all	memory,	close
all	objects,	and	exit	the	program:

		CASE	lv_okcode.

				WHEN	'STOP'.

						IF	NOT	lo_proxy	IS	INITIAL.

								CALL	METHOD	lo_proxy->close_document.

								FREE	lo_proxy.

						ENDIF.

						IF	NOT	lo_control	IS	INITIAL.

								CALL	METHOD	lo_control->destroy_control.

								FREE	lo_control.

						ENDIF.

						LEAVE	PROGRAM.

		ENDCASE.

In	this	section,	we	looked	at	the	basic	possibilities	of	DOI.	The	examples
presented	here	should	give	you	a	basic	idea	of	how	to	work	with	DOI.	Of	course,
this	mechanism	opens	up	a	wide	range	of	different	possibilities	and	it	can	handle
a	lot	more	sophisticated	business	requirements.	

Summary
In	this	chapter,	we	went	through	the	most	common	cases	of	working	with	files	in
SAP	projects.	After	reading	this	chapter,	you	should	understand	the	differences
between	working	on	files	from	the	presentation	server	and	the	application	server.
You	should	also	be	able	to	perform	all	basic	operations	on	these	files	such	as
reading,	writing,	and	modification.	You	learned	some	basic	transactions	for	file
management	on	the	application—serverside,	such	as	AL11	and	CG3Z	or	CG3Y.	It	will
not	be	a	problem	for	you	to	work	with	Microsoft	Excel	and	Microsoft	Word
files.	You	will	also	be	able	to	integrate	any	application	from	Microsoft	Office
into	your	ABAP	program.	In	the	next	chapter,	you	will	learn	about	exposing	data
to	print	the	form	and	about	all	available	print	form	technology	in	SAP.

Questions
The	following	questions	allow	you	to	consolidate	the	information	contained	in
this	chapter:

1.	 What	class	should	you	use	for	uploading	files	from	the	presentation	layer
into	the	application	layer?

2.	 Which	parameter	of	the	file_open_dialog	method	controls	how	many	files	can
be	selected?

3.	 What	function	module	can	be	used	to	upload	files	from	the	presentation
layer	into	the	application	layer	in	only	one	function	call?

4.	 What	is	the	purpose	of	the	different	settings	of	the	filetypes	parameter	(ASC,
BIN,	DAT)	in	the	gui_upload	method?

5.	 What	transaction	can	be	used	to	upload	a	file	into	the	SAP	application
server?

6.	 What	will	happen	if	you	don't	specify	a	directory	path	in	the	OPEN_DATASET
statement?

7.	 What	is	the	name	of	the	library	that	works	with	Microsoft	Office
applications	in	ABAP?

8.	 What	requirements	must	be	met	by	the	application	so	that	it	can	be
integrated	into	the	ABAP	report	using	DOI?

Further	reading
You	may	want	to	check	out	the	following:

OPEN	DATASET:	https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-US/aba
popen_dataset_mode.htm

Desktop	Office	Integration:	https://help.sap.com/saphelp_nw70ehp2/helpdata/en/4
9/173404a2e314d3e10000000a42189b/frameset.htm

https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-US/abapopen_dataset_mode.htm
https://help.sap.com/saphelp_nw70ehp2/helpdata/en/49/173404a2e314d3e10000000a42189b/frameset.htm

Exposing	Data	to	Print	Forms
Forms	are	used	for	the	representation	of	business	data	in	a	clear	and	structured
way.	They	can	be	understood	as	everything	that's	printed	from	the	SAP	system.
These	forms	can	be	printed	on	paper,	but	also	as	PDF	documents	or	emails.
There	are	three	technologies	that	are	used	to	generate	forms.	By	default,	two	of
them	are	integrated	into	the	SAP	ERP	core,	that	is,	SAPScript	and	SAP	Smart
Forms,	while	the	other	is	external	and	requires	an	additional	server	and	software,
that	is,	Adobe	Interactive	Forms.	All	three	have	their	advantages	and
disadvantages.	Most	new	forms	are	created	in	SAP	Smart	Forms	or	by	using
Adobe	Interactive	Forms.	We	will	discuss	all	three	technologies	within	this
chapter	and	use	two	of	them	to	create	a	real-life	printout	example.

The	following	topics	will	be	covered	in	this	chapter:

SAPScript	and	SmartForm	as	native	forms	of	technology	in	SAP
Adobe	PDF	forms	as	an	agile	and	flexible	tool
Interactive	Adobe	PDF	forms
JavaScript	scripting	in	Adobe	Forms

Technical	requirements
The	following	requirements	need	to	be	met	to	get	all	of	the	examples	in	this
chapter	to	work:

Adobe	Form:
Server:	SAP	Web	AS	6.40	Java	(for	all	scenarios),	SAP	Web	AS	6.40
ABAP	(if	you	are	looking	at	high-volume	print	scenarios),	Adobe
document	services	(a	runtime	component),	and	Adobe	credential
management	(for	creating	interactive	PDF	forms)
Frontend:	SAP	NetWeaver	Developer	Studio	with	Adobe	LiveCycle
Designer	(for	Web	Dynpro	for	Java	development)	and/or	SAP	GUI
6.40	with	Adobe	LiveCycle	Designer	(or	6.20,	for	developing	in	SAP
Web	AS	6.40	ABAP),	the	Active	Component	Framework	(for	filling
interactive	forms	in	a	Web	Dynpro	application),	and	Adobe	Reader
6.0.2	or	higher	(on	the	frontend	PC)

SAP	Smart	Forms:	SAP	R/3	4.6C

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter05.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter05

Introduction	to	printouts	in	SAP
When	discussing	the	topic	of	print	forms,	apart	from	the	programming	aspect,
we	can't	omit	the	subject	of	aesthetics.	For	the	company,	forms	are	a
method	of	communication	with	the	client.	And	a	poorly	designed	form,	both	in
terms	of	programming	and	appearance,	can	be	a	straightforward	way	to	offend
contractors.	During	the	design	phase,	you	can't	forget	about	form	readability,
leaving	enough	space	between	elements	to	avoid	individual	parts	overlapping
each	other,	and	other	such	concerns.

All	of	the	examples	in	this	chapter	will	be	using	the	following	form	template:	

This	is	a	standard	sales	document.	You	have	two	address	blocks,	a	logo,
document	information,	document	positions,	and	a	footer.	We	will	discuss	all	of
these	elements	and	how	to	create	them	in	the	next	chapter.

SAPScript	-	the	great-grandfather	of
all	printouts
SAPScript	is	the	first	and	oldest	technology	available	in	SAP.	Many	projects	still
use	SAPScript	due	to	legacy	reasons,	but	almost	all	new	printouts	are	already	in
SmartForm	or	Adobe.	SAP	even	provides	a	set	of	tools	that	allow	you	to	migrate
from	SAPScript	if	you	still	have	one	in	your	current	process.	We	will	not	cover
SAPScripts	in	detail	here,	but	every	self-respecting	developer	should	know	at
least	the	basics	and	understand	the	main	differences	between	each	technology.	

SAPScript	can	be	created	entirely	in	transaction	SE71:

In	this	transaction,	you	have	access	to	functionality	related	to	SAPScript	object
instances,	but	there	are	some	other	transactions	related	to	global	SAPScript
settings	that	you	need	to	be	aware	of:

SE72	SAPScript	Styles	Basis
SE73	SAPScript	Font	Maintenance	Basis
SE75	SAPScript	Settings	Basis
SE76	SAPScript		Form	Translation	Basis

The	following	table	compares	two	native	SAP	printout	technologies:

Features SAP	Script Smart	Forms

Tables
Can't	create	real	tables;	can
only	simulate	such	a	layout
using	tabulations

Can	have	true	tables,	along
with	borders

Main
window

Can	have	several	main
windows

Can	have	only	one	main
window

XML/HTML Not	possible	to	generate
Generates	XML	that	you	can
move	from	one	system	to
another

Color
Only	possible	by	using	a
work	around;	not	possible
in	an	easy	way

Can	use	multiple	colors

Client Client	dependent Client	independent

If	you	are	working	in	version	4.6	or	higher,	you	should	consider	using	Smart
Forms	and	try	and	use	version	6.40.	This	is	due	to	the	general	principle	of	using
the	latest	technology	available,	but	if	the	customer	has	already	designed	a
solution	in	SAPScript	or	Smartform,	then	a	better	solution	may	be	to	maintain
consistency	and	stay	with	the	previously	selected	option.	

Creating	our	first	SmartForm
In	this	example,	based	on	our	Sales	Document	template,	we	will	create	a	printout	in
SAP	SmartForm.	When	working	with	printouts,	we	need	to	consider	two
separate	tasks—a	printout	program	with	data	selection	and	a	printout	object
with	layout	configuration.	Go	to	SAP	Smart	Forms	editor	(transaction
SmartFormS).

In	the	main	window,	put	a	name	in	the	Form	input	field	(in	this
case,	ZMSA_05_SMARTFORM)	and	hit	Create:	

You	will	be	switched	to	the	main	window	of	SmartForm	Editor.	It's	very	easy	to
use	and	has	a	nice	appearance.	You	can	put	a	description	just	below
the	Form	name	field:

This	editor	has	three	main	sections.	On	the	left-hand	side,	you	have	a	hierarchy
view	of	form	parts	and	the	Global	Setting	section.	In	Global	Settings,	you	can	set
basic	form	attributes,	global	definitions,	and	form	interface.	In	the	middle,	the
attributes	of	the	individual	objects	are	displayed,	and	on	the	right-hand	side	is	a
graphical	view	of	the	current	configuration.	First	of	all,	we	have	to	create
placeholders	for	each	element	–	by	default,	we	have	only	one	main	window	and
one	page.	To	create	an	element,	simply	click	on	the	page	node	and	choose
Create|Window	from	the	context	menu.	We	need	four	additional	Window
elements	and	one	Graphic	element	(for	the	logo):	

To	manipulate	the	size	and	position	of	elements,	you	can	use	the	graphics	editor

on	the	right	or	change	each	parameter	in	the	Output	Options	tab:

You	should	get	something	that	looks	like	the	following,	which	suits	our
template:

For	the	Graphics	object,	you	can	only	set	the	top	and	left	margin.	The	width	and
height	is	set	based	on	an	image	file	that's	assigned	to	object.	Click	on
the	Graphic	object	and	in	General	Attributes,	open	the	context	menu	(by
pressing	F4)	for	the	image	name:

In	the	window	that	appears,	click	on	the	Execute	button:

This	will	give	you	a	full	list	of	images	on	the	server:

You	can	choose	whatever	you	like,	but	to	get	the	exact	same	result	as	in	the
template,	you	need	to	follow	the	instructions	in	regards	to	the	uploaded	image
using	transaction	SE78	in	Appendix	A,	Assessments.	You	can	get	a	sample	image
from	GitHub.	When	the	image	size	is	retrieved,	you	can	make	some	final	margin
adjustments	to	make	everything	align:

In	the	next	step,	we	will	define	form	interface,	which	allows	a	print	program	to
communicate	with	the	printout.	Go	to	the	Form	Interface	tab	and	add	the
following	lines:

Inside	%WINDOW1,	we	will	create	an	Address	object.	This	object
automatically	creates	the	address	layout.	This	is	very	helpful	because	in	certain
cases,	we	will	have	a	different	address	structure.	For	example,	you	could	have	a
PO	box	or	street	without	a	number	or	country	name,	which	should	be	included
when	going	abroad.	Manually	handling	such	cases	would	be	a	nightmare.	To
create	an	Address	element,	right-click	on	the	%WINDOW1	object	and	choose
Create|Address:

In	the	General	Attributes	tab	of	the	%ADDRESS1	object,	allow	the	address
number	to	be	read	from	the	&IV_SENDER_ADRC&	global	variable	(we	will	create	all
global	variables	later	on).	The	hierarchy	may	be	collapsed	or	expanded.	Click	on
the	small	white	arrow	beside	the	box	to	do	this:

Note	the	small	black	arrow	to	the	right	of	the	variable	name.	If	it	is	not	set	to	the
same	page	that's	shown	in	the	following	screenshot,	click	on	it.	Only	this	setting
allows	you	to	use	dynamic	variables.	Create	another	address	object	inside
%WINDOW2.	For	the	second	address,	we	will	use	the	&IV_RECIPIENT_ADRC&	variable:

If	we	refer	to	the	layout	template	again,	we	will	notice	that	in	addition	to	the
address,	there	is	a	header	inside	%WINDOW2.	In	order	to	create	something
similar,	add	a	text	object	just	above	the	%ADDRESS2	element.	Again,	right-
click	on	%WINDOW2	and	choose	Create|Text:

Now,	we	need	input	some	Bill	To	text:

You	should	also	take	care	of	the	appearance	of	the	element.	In	Output	Options,
you	can	set	a	background	and	borders.	It	should	look	like	this:

Such	settings	will	produce	the	following	output:

You	could	also	play	around	with	SMARTSYLE	to	change	font	size,	font	style,
appearance,	and	paragraph	alignment.	We	will	create	a	smartstyle	a	bit	later.
Now,	we	will	deal	with	%WINDOW3.	In	order	to	achieve	the	effect	of	being
visible	in	this	area,	it	will	be	best	to	use	the	template	object.	Create	a	new

template	object	in	%WINDOW3.	Right-click	on	the	element	and	choose
Create|Template:

In	the	Template	tab,	set	up	some	borders	using	the	Box	option	and	then	click	on
the	Details	button:

In	the	Details	window,	create	lines	%C1	and	%C2	with	the	values	that	are	shown	in
the	following	screenshot,	and	then	add	four	Text	elements	inside	Template:

Keep	in	mind	that	template	elements	need	to	be	same	size	or	smaller	than	that
windows	that	contain	them.	In	every	Text	element,	we	have	to	set	Output
structure	values	in	the	Output	Options	tab:

This	will	define	the	order	of	the	Text	element	inside	Template.	For	the	top-left
element,	set	Line	to	1	and	Column	to	1,	and	for	the	top	right	element,	set	Line
to	1	and	Column	to	2.	In	the	%TEXT2	element,	put	the	Static	Text	Date	in
%TEXT3	and	put	Document	#,	as	shown	in	the	following	screenshot:

For	%TEXT4	and	%TEXT5,	we	need	to	set	dynamic	values	that	will	we	retrieve
from	the	SmartForm	interface.	Open	Field	List	by	clicking	on	the	following
icon:

This	will	give	you	access	to	a	new	menu	on	the	bottom	left:

In	the	Import	Interface	section,	you	will	have	all	the	default	input	parameters
available,	such	as	the	printout	archive,	emails,	and	output	settings.	These	values
are	typically	populated	in	the	printing	program.	Export	Interface	are	values	that
our	printout	sends	back	to	the	printing	program.	Global	Data	are	global	variables
that	we	defined	in	the	Global	Definitions	windows	in	the	Global	Settings
directory.	The	last	category,	System	Fields,	shows	some	of	the	variables	that	are
available	in	the	SFSY	structure.	In	this	category,	you	can	find	the	current	time,
date,	or	current	page.	Go	to	the	%TEXT4	element.	Click	on	the	insert	field	icon:

In	the	Insert	Fields	popup,	add	&IS_VBAK-AUDAT&	as	text,	as	shown	in	the	following
screenshot:

You	can	get	the	name	of	a	field	from	the	Field	Name	area.	In	this	example,	we
are	using	the	IS_VBAK	structure,	which	is	a	Sales	Document	header	and
an	AUDAT	Document	Date	field.	To	extract	a	value	from	a	structure,	you	have
to	put	the	structure's	name,	a	dash,	and	then	the	name	of	the	field.	After	clicking
on	the	Continue	check	mark,	you	will	get	something	that	looks	as	follows:

A	gray	color	means	that	the	text	has	been	recognized	as	a	dynamic	variable.
Follow	the	same	procedure	that	you	did	for	%TEXT5.	The	document	number	is
in	the	VBELN	field	of	the	IS_VBAK	structure.	There	are	two	last	elements
missing:	the	footer	and	main	window,	along	with	table	of	sales	document
positions.	Now,	we	will	take	care	of	the	footer.	Go	to	the	%WINDOW4	element,
add	a	new	text	object,	and	insert	the	following	text:

If	you	have	any	questions	about	this	purchase	order,	please	contact

Service	Desk	at	(257)	563-7401	or	service@lemonfoods.com

By	running	the	preceding	code,	the	printout	footer	element	will	look	as	follows:

It's	not	quite	the	same	as	in	the	original	template.	In	order	to	achieve	the	same
effect	(the	size	and	style	of	the	font	and	the	alignment	of	the	paragraph),	we	have
to	use	Smart	Styles.	To	create	new	style,	go	to	the	SMARTSYLES	transaction
and	create	a	new	object:

Click	on	the	create	node	icon:

Then,	choose	Paragraph	Format:

Set	the	Alignment	to	CENTER:

In	the	Font	tab,	set	Font	Family	and	Font	Size:

Create	another	paragraph	format,	L0,	and	leave	it	with	its	default	values.	The	last
missing	settings	are	in	the	Header	Data	window.	You	need	to	set	L0	as	the
standard	paragraph:

Make	everything	Active	and	go	back	to	%TEXT6	in	the	SmartForm	object.	Set
Style	in	the	Output	Options	table:

In	the	General	Attributes	tab,	set	Styles	to	C8.	The	text	style	in	the	footer	should
change	immediately:

The	last	element,	that	is,	the	main	window,	is	the	most	complicated.

ed.	First,	go	to	Global	Definitions	and	add	the	following	lines:

Then,	Create	a	Table	object:

Every	Table	object	has	three	sections.	The	Header	section	is	where	we	put
information	that	has	to	be	displayed	at	the	start	of	the	table	and/or	in	the	page
break.	In	the	Main	Area,	you	insert	the	list	of	elements	that	you	want	to	display
in	the	table.	This	section	will	include	our	individual	sales	document	items.	The
content	of	the	Footer	section	is	displayed	at	the	end	of	the	table	and/or	in	the
page	break:

First	of	all,	we	have	to	create	three	types	of	lines:	one	for	the	header	of	our	table,
one	for	the	list,	and	one	with	only	two	columns	for	the	footer,	where	the	total
value	is	displayed.	Lines	define	the	layout	of	the	row.	Click	on	the	%TABLE1
object	and	in	the	Table	tab,	click	on	Details:

In	the	Details	section,	create	the	aforementioned	three	lines,	as	shown	in	the
following	screenshot:

Go	back	to	Table	Painter	and	set	all	the	styles	according	to	the	template.	We
need	to	add	a	new	line	to	each	section	of	%TABLE1.	Do	this	for	the	Header,
Main	Area,	and	Footer:

After	creating	the	line,	you	need	to	define	the	Line	Type	for	every	newly	created
line.	Set	%HEADER	in	Header,	%LINES	in	Main	Area,	and	%FOOTER	in

Footer.	Keep	in	mind	that	you	may	have	different	values	here	if	you	created	lines
differently	than	in	the	previous	steps:

After	choosing	a	Line	Type,	multiple	cell	objects	will	be	generated:

In	every	cell,	create	a	text	object	and	place	a	dynamic	or	static	value,	according

to	the	template.	In	the	Data	tab	of	the	%TABLE1	object,	you	need	to	add	a
reference	to	the	IT_VBAP	table	and	the	GS_VBAP	structure:

In	the	GS_VBAP	structure,	you	will	find	all	the	necessary	fields.	The	material

number	is	in	the	MATNR	field,	the	description	is	in	MATKL,	the	ordered
quantity	is	in	KWMENG,	and	the	unit	price	is	in	NETWR.	For	the	total	item
price,	you	need	to	multiply	the	amount	by	the	number	of	pieces.	For	such
operations,	we	need	a	command	object.	Right-click	on	%CELL6	(the	first	cell	of
the	Main	Area	row)	and	choose	to	Create|Flow	Logic|Program	Lines:

Program	Lines	allows	you	to	add	almost	any	ABAP	code	to	SAP	SmartForm.
Put	the	following	code	inside	the	new	object:	

CLEAR:	GV_SUM.

GV_SUM	=	GS_VBAP-KWMENG	*	GS_VBAP-NETWR.

GV_TOTAL	=	GV_TOTAL	+	GV_SUM.

It's	important	to	define	all	three	variables	in	the	input/output	section.	If	you	did
everything	according	to	our	instructions,	you	should	have	something	similar	to
this:

You	don't	need	to	activate	the	Program	Lines	object.	It	will	be	activated	during
the	activation	of	SAP	SmartForm.	Now,	use	&GV_SUM&	in		%CELL10	as	dynamic
fields:

The	only	thing	that's	missing	is	the	total	sum	of	the	sales	document.	Create	a
dynamic	reference	to	GV_TOTAL.	You	can	test	the	printout	manually,	but	I
recommend	using	a	dedicated	print	program.	Create	a	new	report
called	ZMSA_R_CHAPTER5_1	and	put	the	following	code	into	it:

REPORT	zmsa_r_chapter5_1.

TABLES:	vbak.

PARAMETERS:	p_vbeln	LIKE	vbak-vbeln.

PARAMETERS:	p_sf	RADIOBUTTON	GROUP	rb1	DEFAULT	'X'.

PARAMETERS:	p_af	RADIOBUTTON	GROUP	rb1.

CLASS	lcl_demo	DEFINITION.

		PUBLIC	SECTION.

				CLASS-METHODS	main	IMPORTING	iv_vbeln	TYPE	vbeln	iv_smart	TYPE	boolean.

		PRIVATE	SECTION.

				CLASS-METHODS	factory	IMPORTING	iv_vbeln	TYPE	vbeln	RETURNING

																													VALUE(ro_demo)	TYPE	REF	TO	lcl_demo.

				METHODS	print_SmartForm.

				METHODS	print_adobe.

				METHODS	load_data	IMPORTING	iv_vbeln	TYPE	vbeln.

				DATA:	mt_vbap	TYPE	vbap_tty.

				DATA:	ms_vbak	TYPE	vbak.

				DATA:	mv_sender_adrc	TYPE	adrnr.

				DATA:	mv_recipient_adrc	TYPE	adrnr.

ENDCLASS.

We	also	need	CLASS	implementation:

CLASS	lcl_demo	IMPLEMENTATION.

		METHOD	main.

				IF	p_sf	=	abap_true.

						lcl_demo=>factory(p_vbeln)->print_SmartForm().

				ELSE.

						lcl_demo=>factory(p_vbeln)->print_adobe().

				ENDIF.

		ENDMETHOD.

		METHOD	factory.

				CREATE	OBJECT	ro_demo.

				ro_demo->load_data(iv_vbeln).

		ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

		lcl_demo=>main(EXPORTING	iv_vbeln	=	p_vbeln	iv_smart	=	p_sf).

Add	the	load_data	method	to	the	implementation	section.	It	will	load	data	from	the
database	or	generate	one	if	needed.	First,	add	the	following	SELECT	logic:

METHOD	load_data.

				SELECT	SINGLE	kunnr	vkorg	audat	vbeln	FROM	vbak	INTO	CORRESPONDING	FIELDS	OF	ms_vbak	WHERE	vbeln	=	iv_vbeln.

				IF	ms_vbak-vbeln	IS	NOT	INITIAL.

								

				ELSE.

				

				ENDIF.

ENDMETHOD.

Inside	the	IF	statement,	put	the	following	code	for	cases	where	vbeln	is	supplied:

						SELECT	netwr	matnr	kwmeng	matkl	FROM	vbap	APPENDING	CORRESPONDING	FIELDS	OF	TABLE	mt_vbap.

						SELECT	SINGLE	vkorg	FROM	tvko	INTO	ms_vbak-bukrs_vf	WHERE	vkorg	=	ms_vbak-vkorg.

						SELECT	SINGLE	adrnr	FROM	t001	INTO	mv_sender_adrc	WHERE	bukrs	=	ms_vbak-bukrs_vf.

						SELECT	SINGLE	adrnr	FROM	kna1	INTO	mv_recipient_adrc	WHERE	kunnr	=	ms_vbak-kunnr.

For	the	ELSE	statement,	put	the	following	logic,	which	will	generate	fake	data	for
you:

	ms_vbak-vbeln	=	'100001'.

	ms_vbak-audat	=	'20180101'.

	SELECT	SINGLE	addrnumber	INTO	mv_recipient_adrc	FROM	adrc.

	mv_sender_adrc	=	mv_recipient_adrc.

	DATA:	ls_vbap	TYPE	vbap.

	CLEAR:	ls_vbap.

	ls_vbap-matnr	=	'101'.

	ls_vbap-matkl	=	'Test1'.

	ls_vbap-netwr	=	'13.5'.

	ls_vbap-kwmeng	=	'10'.

	APPEND	ls_vbap	TO	mt_vbap.

	CLEAR:	ls_vbap.

	ls_vbap-matnr	=	'102'.

	ls_vbap-matkl	=	'Test2'.

	ls_vbap-netwr	=	'25'.

	ls_vbap-kwmeng	=	'5'.

	APPEND	ls_vbap	TO	mt_vbap.

	CLEAR:	ls_vbap.

	ls_vbap-matnr	=	'103'.

	ls_vbap-matkl	=	'Test3'.

	ls_vbap-netwr	=	'100'.

	ls_vbap-kwmeng	=	'2'.

	APPEND	ls_vbap	TO	mt_vbap.

To	test	SmartForm,	add	the	print_SmartForm	method	by	using	the	following	code:

		METHOD	print_SmartForm.

				DATA:	lv_fname	TYPE	rs38l_fnam.

				CALL	FUNCTION	'SSF_FUNCTION_MODULE_NAME'

						EXPORTING

								formname	=	'ZMSA_05_SmartForm'

						IMPORTING

								fm_name	=	lv_fname

						EXCEPTIONS

								no_form	=	1

								no_function_module	=	2

								OTHERS	=	3.

		ENDMETHOD.

This	will	retrieve	a	function	module	for	the	ZMSA_05_SmartForm		SmartForm	object.
After	the	SSF_FUNCTION_MODULE_NAME	function	call,	add	the	following	logic	to	the	call
form	object:

	CALL	FUNCTION	lv_fname

						EXPORTING

								is_vbak	=	ms_vbak

								it_vbap	=	mt_vbap

								iv_sender_adrc	=	mv_sender_adrc

								iv_recipient_adrc	=	mv_recipient_adrc

						EXCEPTIONS

								formatting_error	=	1

								internal_error	=	2

								send_error	=	3

								user_canceled	=	4

								OTHERS	=	5.

To	test	Adobe,	we	need	something	similar.	First,	add	a	new	method,	print_adobe:

		METHOD	print_adobe.

				DATA:	ie_outputparams	TYPE	sfpoutputparams.

				DATA:	lv_funcname	TYPE	funcname.

				CALL	FUNCTION	'FP_JOB_OPEN'

						CHANGING

								ie_outputparams	=	ie_outputparams.

				TRY.

								CALL	FUNCTION	'FP_FUNCTION_MODULE_NAME'

										EXPORTING

												i_name	=	'ZMSA_05_AF_ADOBE'

										IMPORTING

												e_funcname	=	lv_funcname.

						CATCH	cx_fp_api_repository.

						CATCH	cx_fp_api_usage.

						CATCH	cx_fp_api_internal.

				ENDTRY.

		ENDMETHOD.

This	will	open	a	form	generation	JOB	and	retrieve	the	function's	module	name.
We	also	need	to	add	the	following	coding,	just	after	ENDTRY,	to	invoke	Adobe
object	logic:

	DATA:	ls_docparams	TYPE	sfpdocparams.

	DATA:	ls_formoutput	TYPE	fpformoutput.

				CALL	FUNCTION	lv_funcname

						EXPORTING

								/1bcdwb/docparams	=	ls_docparams

								is_vbak	=	ms_vbak

								it_vbap	=	mt_vbap

								iv_sender_adrc	=	mv_sender_adrc

								iv_recipient_adrc	=	mv_recipient_adrc

						IMPORTING

								/1bcdwb/formoutput	=	ls_formoutput

						EXCEPTIONS

								usage_error	=	1

								system_error	=	2

								internal_error	=	3.

Adobe	jobs	have	to	be	closed	after	the	form	is	generated.	To	do	that,	you	need	to
add	he	following	call	to	the	end	of	the	method:

		CALL	FUNCTION	'FP_JOB_CLOSE'

						EXCEPTIONS

								usage_error	=	1

								system_error	=	2

								internal_error	=	3

								OTHERS	=	4.

If	you	run	the	report,	you	should	be	able	to	see	something	that	looks	similar	to
the	original	template:

A	PDF	file	of	this	document	can	be	found	in	this	book's	GitHub	repository.	

Adobe	Forms
SAP	Interactive	Forms	by	Adobe	is	the	latest	approach	to	creating	printouts.	The
Adobe	package	has	been	an	integral	part	of	NetWeaver	since	its	2004	version,
but	it	is	also	a	separate	product	and	can	be	successfully	used	in	enterprises	that
do	not	use	SAP	software.	It	consists	of	a	LifeCycle	Designer	with	a	form	editor
and	the	Adobe	Document	Service,	a	server	that	interprets	calls	and	generates
printouts.

Adobe	Document	Service	works	on	Java	stacks,	which	means	you	need	to	have
Java	Stack	SAP	Web	Application	Server	installed.	This	is	not	the	only	difference
between	native	print	technologies	and	Adobe.	A	large	advantage	of	Adobe	is	the
ability	to	implement	interactive	solutions,	which,	for	example,	allow	users	to
enter	information	into	the	system.	Adobe	uses	two	languages	for	programming
FormCalc	logic	and	classic	JavaScript.	Examples	of	the	use	of	both	technologies
will	be	available	in	the	next	section.

Creating	our	first	Adobe	Form
In	this	example,	we	will	try	to	create	our	sales	document	using	Adobe
technology.	You	need	to	install	Adobe	LifeCycle	Designer	(available	on	the	SAP
Marketplace)	on	your	frontend	machine	before	taking	any	further	actions.	A	link
to	instructions	on	how	to	do	this	are	available	in	the	Further	reading	section	of
this	chapter.	The	creation	of	Adobe	Forms	takes	place	in	the	SFP	transaction:

On	the	main	screen,	you	will	see	two	options:	Form	is	an	Adobe	Form	object,
while	Interface	is	an	object	that	connects	two	worlds,	that	is,	SAP	and	Adobe.
We	will	start	by	creating	a	new	interface	called	ZMSA_05_AI_ADOBE.	Put	a	name	into
the	Interface	field	and	click	on	the	Create	button.	In	the	new	popup,	choose	a
description	and	Interface	Type,	and	then	click	Save:

On	the	next	screen,	you	will	see	some	similarities	to	the	SmartForm	transaction.
There	is	the	Code	Initialization	section,	the	Import	and	Export	parameters,	and
Global	Data:

Based	on	the	SmartForm	example,	we	know	what	import	parameters	we	will

need	here.	Click	on	the	add	button	and	add	the	following	rows:

Activate	the	interface	object	and	go	back	to	the	main	menu.	Now,	create	a	new
Adobe	Form	object:

In	the	popup	window,	set	a	Description	and	choose	the	Interface	we	just	created.
Then,	click	on	the	Save	button:

On	the	next	screen,	you	will	see	three	tabs.	Properties	are	just	basic	information
and	settings	related	to	the	form—date	of	creation,	author	user,	and	form
interface.	In	the	Context	menu,	you	will	see	two	main	sections.	On	the	left-hand
side,	you	have	the	Interface	section,	where	all	import	parameters	are	available.
On	the	right-hand	side,	there	is	the	Context	form.	This	is	the	place	where	we
connect	the	SAP	and	Adobe	worlds.	You	can	grab	any	parameters	from	ABAP
and	drop	them	into	the	Adobe	section.	This	will	allow	you	to	access	the	value
inside	the	printout.	We	need	to	have	pretty	much	everything.	Drag	and	drop
IS_VBAK	and	IT_VBAP:

For	the	address,	we	need	to	create	two	address	objects	(similar	to	what	we	did	in
SmartForm).	Click	on	the	main	folder	of	the	Context	section	and
choose	Create|Address:

If	you	click	on	the	address	object,	you	will	see	the	new	option,	just	below	the
context	section.	We	need	to	connect	the	Address	object	with	our	import
parameter.	You	can	input	the	name	of	the	import	parameter	manually
(IV_SENDER_ADRC)	or	drag	and	drop,	as	shown	in	the	following	screenshot:

Repeat	the	procedure	of	adding	the	address	for	the	IV_RECIPIENT_ADRC
parameter.	At	this	stage,	it	is	also	required	that	you	enter	the	country	in	the
Country	field.	It	can	be	made	dynamic	by	using	a	variable	or	static	if	the
company	works	on	the	territory	of	one	country.	We	also	need	to	deactivate	all	of
the	fields	that	aren't	needed	in	the	IT_VBAP	and	IS_VBAK	tables:

For	now,	all	of	this	is	in	the	Context	section.	Let's	go	to	the	Layout	tab:

Remember	that	you	need	to	install	LifeCycle	Designer	to	get	everything	working.

By	default,	on	the	left-hand	side,	you	have	a	hierarchy	panel	with	all	the
available	data.	In	the	middle,	you	have	the	form's	layout,	and	on	the	right-hand
side,	you	have	multiple	tabs	with	specific	parameters	set	for	the	Adobe	model.	If
a	panel	or	tab	is	missing,	you	can	turn	them	on	by	using	the	Palettes	menu	in	the
top	bar.	Let's	go	to	the	Data	View	tab	on	the	left-hand	panel.	Drag	and	drop
the	ADDRESS	object:

Set	all	of	the	necessary	settings	in	Object|Field,	as	follows:

Do	the	same	for	Layout:

Repeat	this	for	ADDRESS1.	Adjust	the	positions	to	make	them	look	like	they	do
on	our	template.	After	all	of	these	steps,	you	should	have	something	similar	to
the	following:

Now,	we	can	take	care	of	the	main	table	with	document	positions.	Drag	and	drop
the	table,	like	we	did	with	ADDRESS:

We	need	to	add	an	additional	column	for	the	total	sum,	but	to	do	this,	we	need	to
shrink	the	current	columns	to	make	some	space:

An	additional	row	has	to	be	added	to	the	bottom	of	the	table	to	make	space	for
the	total	sum	of	all	positions.	Don't	forget	to	add	a	Description:

You	have	to	play	around	with	the	layout,	add	a	background	color,	and	change	the
border's	layout.	These	settings	can	be	found	in	the	Borders	tab:

You	may	need	to	change	fonts	in	the	Font	tab:

The	paragraph	settings	can	be	found	in	the	Paragraph	tab:

We	will	use	the	same	technique	to	populate	the	Sum	and	totalSum	fields.	In
Adobe	Forms,	you	can	use	two	script	languages	–	FormCalc	and	JavaScript.
FormCalc	has	higher	performance	and	may	be	easier	for	non-programmers,	but
JavaScript	is	more	useful	for	creating	sophisticated	interactive	and	dynamic
forms.	It's	also	a	very	popular	programming	language,	so	it	will	be	quite	easy	for
a	programmer	to	jump	into	scripting.	This	script	can	be	assigned	to	form	a	layout
object	as	follows:

It's	very	important	to	understand	when	scripts	are	executed.	In	each	object,	the
script	is	divided	into	multiple	sections,	and	each	section	represents	different
events	of	the	form's	life	cycle.	In	our	case,	we	will	only	focus	on	the	calculate
event	from	the	process	events	category.	First,	we	will	create	two	scripts.	One
will	calculate	the	total	of	each	position,	while	the	other	will	calculate	the	total
value	of	the	document.	To	create	a	script,	open	the	Script	Editor:

It	will	be	above	Design	View	by	default:

To	start	working	with	the	script,	you	need	to	choose	an	object	that	allows	you	to
write	scripts.	In	our	case,	this	will	be	the	posSum	field	or	totalSum.	You	can	set
the	name	of	the	field	by	right-clicking	on	it	and	choosing	Rename	Object.	You
can	either	choose	an	object	from	the	Hierarchy	tab	or	from	the	Design	view:

Then,	choose	an	event	where	you	want	to	put	the	script	(calculate)	and	the
scripting	language	(JavaScript):

Inside	posSum,	calculate	the	event	by	using	the	following	code:

this.rawValue	=	xfa.resolveNode("Main.IT_VBAP.DATA["	+	this.parent.index	+	"].NETWR").rawValue	*	xfa.resolveNode("Main.IT_VBAP.DATA["	+	this.parent.index	+	"].KWMENG").rawValue;

This	refers	to	an	object	where	you	placed	the	script.	rawValue	is	an	attribute	where
raw	object	values	are	stored.	The	resolveNode	method	from	the	xfa	object	can
return	a	reference	to	any	node	of	a	form.	In	our	case,	we	need	to	get	the	value	of
the	quantity	field	and	net	price.	We	will	calculate	the	necessary	data	using

multiplication.	This	script	will	run	once	for	every	item	element.	For	the	totalSum
value,	we	will	put	following	script	in	the	totalSum	field:

var	num	=	0,	rowList	=	xfa.resolveNodes("Main.IT_VBAP.DATA[*]");

for	(var	i	=	0;	i	<	rowList.length;	i++){

if	(!rowList.item(i).posSum.isNull	&&	parseFloat(rowList.item(i).posSum.rawValue)	!=	0)	{

num	+=	parseFloat(rowList.item(i).posSum.rawValue);

}

}

this.rawValue	=	num;

This	is	pretty	similar	to	what	we	did	for	posSum.	First,	we	define	variables	and
resolve	nodes.	We	will	refer	to	every	item	in	our	tables.	Basically,	we	take	the
entire	posSum	column	and	add	each	value	to	the	num	variable.	We	also	check	that
the	value	in	posSum	is	not	null	and	can	be	parsed	to	a	float,	just	to	make	sure	that
no	exceptions	will	appear.	Finally,	we	will	insert	the	rawValue	attribute	of
the	totalSum	node.	So	far,	so	good.	Next,	we	will	take	care	of	the	graphic	element.
Go	back	to	the	Interface	object	and	create	Global	Data:

Go	to	the	Code	Initialization	section:

We	need	to	add	the	following	ABAP	code:
CALL	METHOD	cl_ssf_xsf_utilities=>get_bds_graphic_as_bmp

EXPORTING

p_object	=	'GRAPHICS'	"Name	of	object

p_name	=	'ZLOGO'	"Name	of	the	SE78	logo	inside	Quotes

p_id	=	'BMAP'	"BMAP

p_btype	=	'BCOL'	"'BCOL'	for	color,	'BMON'	for	Black	&	White

RECEIVING

p_bmp	=	g_logo	"v_field	and	g_logo	must	be	typed	xstring

EXCEPTIONS

not_found	=	1

internal_error	=	2

OTHERS	=	3.

This	code	will	read	the	ZLOGO	object	from	SE78	and	store	it	in	G_LOGO.	You	can	check
this	in	Appendix	A,	Assessments	for	more	information	on	how	to	upload	custom
images.	It's	also	important	to	set	the	Output	Parameters:

Save	and	active	everything	and	head	back	to	the	Context	tab	in	the	Adobe	Form
object.	Right-click	in	the	right-hand	section	and	choose	to	Create|Graphic:

In	the	graphics	object	attribute,	set	G_LOGO	as	the	source	and	MIME	Type	as
'IMAGE/BMP':

Now,	we	can	go	back	to	the	Layout	tab	and	use	a	new	graphic.	You	can	simply
grab	a	graphics	object	from	Data	View	and	drag	it	into	the	Design	View:

The	Graphic	is	ready,	so	now	we	need	to	take	care	of	the	footer.	Create	another
subform	in	Page1	and	inside	the	new	subform,	create	a	text	object:

Pass	the	following	text	into	the	text	object:

If	you	have	any	questions	about	this	purchase	order,	please	contact

Service	Desk	at	(257)	563-7401	or	service@lemonfoods.com

You	will	see	something	that	looks	similar	to	the	following	screenshot:

Now,	we	will	create	a	box	that	holds	the	main	information	of	the	document	(date
and	document	number).	Drag	and	drop	the	following	fields	from	DataView:

You	will	need	to	remove	Caption:

Then,	add	two	text	objects.	By	now,	you	should	have	four	objects:

Play	around	with	the	style	and	position	to	get	the	layout	close	to	the	template's:

By	the	way,	we	can	also	add	a	description	to	the	window	with	the	address.
Simply	create	another	test	element:

To	test	the	form,	you	can	simply	use	the	ZMSA_R_CHAPTER5_1	report	and	run	an	Adobe
example.	Try	and	play	around	with	the	layout	to	make	this	form	look	exactly	like
the	template.

Summary
I'm	glad	to	inform	you	that	you	are	ready	to	make	a	commercial	printout	project.
In	this	chapter,	you've	come	across	two	technologies	that	are	widely	used	in	the
SAP	ecosystem–SAP	Smart	Form	and	Interactive	Forms	by	Adobe.	Now	you
know	the	advantages	and	disadvantages	of	both	solutions	and	you	are	able	to
pre-form	the	form	according	to	the	requirements	of	the	clients.	You	should	also
have	a	basic	understanding	of	SAPScript	technology	and	its	historical	meaning.
You	also	know	that	printouts	are	not	only	for	technical	knowledge	but	also	for
aesthetics	and	accuracy.

In	the	next	chapter,	we	will	discuss	how	we	can	handle	XML	files	in	ABAP.	

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	object	is	used	in	SmartForm	as	an	ABAP	code	container?
2.	 On	the	printout	template,	there	are	multiple	empty	rows	in	the	position

table.	How	can	we	achieve	this	effect	in	SAP	SmartForm/Adobe	Forms?
3.	 What	two	languages	can	you	use	in	an	Adobe	Form	for	scripting?
4.	 What	transaction	should	you	use	if	you	want	to	upload	additional	graphics

to	the	server?
5.	 What's	the	difference	between	positioned	and	flowed	object	location?
6.	 What	mean	by	events	in	the	context	of	Adobe	Form	and	when	happen	in

each	of	event?
7.	 What	is	the	meaning	of	the	word	interactive	in	Interactive	Forms?

Further	reading
You	may	want	to	check	out	the	following	links	for	more	information	regarding
what	was	covered	in	this	chapter:

Adobe:	https://help.adobe.com/en_US/livecycle/10.0/DesignerScriptingBasics/index.h
tml

SmartForm:	https://help.sap.com/saphelp_nw70ehp1/helpdata/en/a5/de6838abce021ae1
0000009b38f842/frameset.htm

SAPScript:	https://help.sap.com/saphelp_nw70/helpdata/en/d6/0db8bb494511d182b7000
0e829fbfe/frameset.htm

https://help.adobe.com/en_US/livecycle/10.0/DesignerScriptingBasics/index.html
https://help.sap.com/saphelp_nw70ehp1/helpdata/en/a5/de6838abce021ae10000009b38f842/frameset.htm
https://help.sap.com/saphelp_nw70/helpdata/en/d6/0db8bb494511d182b70000e829fbfe/frameset.htm

ABAP	and	XML
Working	with	XML	files	is	a	common	task	in	any	SAP	project,	especially	where
we	have	multiple	systems	(SAP	or	non-SAP)	and	we	need	to	integrate	them	with
the	interface.	In	a	NetWeaver	environment,	there	are	multiple	approaches	to
handling	the	XML	format.	You	can	use	one	of	the	standard	classes	prepared	by
SAP,	or	create	your	own	transformation	using	an	SAP	declarative	language
called	Simple	Transformation	(ST).	On	the	basis	of	examples	prepared	in	this
chapter,	you	will	learn	how	to	apply	each	method	and	learn	about	their
advantages	and	disadvantages.

The	following	topics	will	be	covered	in	this	chapter:

Parsing	and	displaying	XML	files	into	the	CL_XML_DOCUMENT	class
Changing	the	content	of	an	XML	using	the	CL_XML_DOCUMENT	class
Introduction	to	ST
XML	serialization	and	deserialization	using	ST
JSON-XML	format	in	ABAP
Converting	XML	to	JSON	with	the	sXML	Library	

Technical	requirements
The	following	requirements	need	to	be	met	for	all	examples	from	this	chapter	to
work:

JSON-XML:	NetWeaver	system	of	at	least	version	releases	7.02	and
7.03/7.31	(Kernel	patch	116)

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter06.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter06

Using	the	CL_XML_DOCUMENT
class	for	XML
The	class	described	in	this	chapter	is	based	on	the	very	well	known	and
frequently	used	iXML	library.	The	integrated	XML	provides	a	full	spectrum
of	useful	tools	and	methods	to	read,	parse,	and	edit	the	XML	format.	We	will	use
the	following	XML	file	in	all	examples	in	this	chapter:

<?xml	version="1.0"	encoding="UTF-8"?>

<AIRLINES>

	<SCARR>

	<CARRID>A2</CARRID>

	<CARRNAME>Antarctica	Airlines</CARRNAME>

	<CURRCODE>AQD</CURRCODE>

	<URL>http://antarcticaairlines.aq</URL>

	</SCARR>

</AIRLINES>

The	following	XML	is	an	airline	and	booking	data	model	system	available	in
most	SAP	system	IDES	versions.	We	will	start	every	example	with	a	standard,
local	class—based	report.	You	can	find	this	template	in	Appendix	A,	Assessments.

Reading	and	parsing	XML	files	to
ABAP
This	example	shows	how	to	resolve	a	situation	where	we	have	an	external
system,	Y,	which	exports	airline	data	to	an	XML	file	and	uploads	it	onto	the	FTP
server.	The	ABAP	report	needs	to	read	those	files	and	store	them	in	a	database
table	in	SAP	ERP.	

Create	a	new	report:	ZMSA_R_CHAPTER6_01.	Delete	everything,	and	copy	and	paste	the
sample	report	template.	We	will	put	the	entire	logic	in	the	main	method	from	our
lcl_demo	class.	In	real	life,	we	should	always	follow	SOC	design	principles	and
create	a	separate	method	for	each	function,	but	this	is	just	for	demonstrative
purposes	and	creating	an	additional	method	may	cause	unnecessary	confusion.

Add	the	following	code	to	your	report:

CONSTANTS:	lv_filepath			TYPE	localfile	VALUE	'C:\temp\carr.xml'.

DATA:	lo_xml					TYPE	REF	TO	cl_xml_document.

	

CREATE	OBJECT	lo_xml.

	

lo_xml->import_from_file(filename	=	lv_filepath).

	

lo_xml->display().			

The	file	path	is	hardcoded	in	the	lv_filepath	constant,	but,	in	a	real	project,	you'll
use	an	additional	method,	for	example,	the	one	from	the	cl_gui_frontend_services
class	called	file_open_dialog,	to	choose	a	file	from	any	directory.	This	class	is
already	used	in	the	import_from_file	method	to	handle	file	reading	requests.	Keep
in	mind	that	this	is	a	frontend	scenario,	so	the	XML	will	be	uploaded	from	your
local	PC—after	running	your	code,	you	will	be	asked	for	authorization,	and	you
have	to	grant	it.	Be	sure	to	have	the	carr.xml	file	in	the	C:\temp\	directory	or,	if
needed,	change	the	path	in	the	constant	to	align	it	with	your	system.	Reading	the
file	from	the	local	PC	is	done	less	frequently	in	an	interface	scenario	than
reading	files	from	the	server,	but	is	perfect	as	a	starting	point	in	terms	of
becoming	familiar	with	the	generic	ideas	behind	XML.	Remember	to	test	your
code	every	time	you	do	make	changes.

There	is	nothing	complex	in	this	code.	We	create	a	constant	and	variable	and
initialize	both.	After	that	final	step,	you	call	the	import_from_file	method	and	load
the	XML	file	into	the	lo_xml	class.	The	last	line	is	required	to	display	XML	in	a
pop-up	window.	If	everything	went	well,	after	execution,	you	should	see	the
following	content	of	the	XML	file	we	just	created:

Changing	XML	data
This	example	shows	you	how	to	change	XML	data	when	it	turns	out	that	System
Y	uses	different	currency	code	than	the	SAP	customization.	After	reading	the
XML	file,	we	need	to	map	external	currency	codes	to	SAP	ERP	internal
ones.	Airlines	from	the	XML	file,	Antarctica	Airline,	use	Antarctica	dollars	as
currency	and	CURRCODE	in	external	system	use	AQD	acronym	in	context	of
	Antarctica	dollars	and	in	SAP	system	we	use	AQQ.	This	will	not	differ	from
our	previous	example,	so	you	can	simply	copy	the	ZMSA_R_CHAPTER6_01	report	into	a
new	ZMSA_R_CHAPTER6_02	file.	

We	need	to	access	a	currency	code	value	from	our	XML	structure	and	from
the	CURRCODE	node.	To	handle	such	requests,	we	have	to	use
the	find_simple_element	method	which	can	read	element	value:

CONSTANTS:	cv_currname	TYPE	string	VALUE	'CURRCODE'.

CONSTANTS:	cv_currcode_old	TYPE	string	VALUE	'AQD'.

CONSTANTS:	cv_currcode_new	TYPE	string	VALUE	'AQQ'.

	

DATA(lo_node)	=	lo_xml->find_node(EXPORTING	name	=	cv_currname).

WRITE:	lo_node->get_value().

We	have	three	constants.	cv_currname	is	the	name	of	the	node	we	would	like	to
find,	cv_currcode_old	is	the	currency	code,	and	we	need	to	map	to	our	new
currency	using	cv_currcode_new.	In	the	preceding	code,	we	call	the	find_node	method
and	put	the	result	in	the	lo_node	variable.	The	find_node	method	returns	an
implementation	of	the	if_ixml_node	interface.	This	gives	us	access	to	a	very	nice
method	called	get_value.	If	we	invoke	it,	we	will	be	able	to	read	values	from	our
current	node.	The	last	line	is	just	for	testing	purposes,	but,	if	you	like	to	test
code,	remember	to	comment	on	the	last	line	of	the	report	to	avoid	the
XML	popup	displaying	the	following:

*	lo_xml->display().			

The	final	step	is	to	change	the	value	in	our	node.	It's	very	simple.	We	just	need	to
call	the	set_value	method	on	the	node	object.	Of	course,	we	first	need	to	check
whether	that	is	the	currency	we	want	to	map,	so	an	additional	IF	condition	is
required.

Use	the	following	code	as	a	reference	for	what	you	should	have	at	this	stage:

				IF	lo_node->get_value()	=	cv_currcode_old.

								lo_node->set_value(value	=	cv_currcode_new).

				ENDIF.	

				lo_xml->display().

Remember	to	remove	the	line	with	the	write	command	and	uncomment	the
display	method	to	check	your	code.	You	should	see	new	values	in	the	XML
display	window:

At	this	point,	we	did	three	basic	operations—XML	read,	XML	display,	and
XML	change.	Those	are,	of	course,	only	basic	change	operations	and,	in	real
life,	we	will	have	to	do	something	more	sophisticated.	Cutting,	adding	the	whole
node,	changing	the	attribute,	or	even	transforming	entire	XML	structures	are
very	common	challenges	to	deal	with.	The	previous	examples	should	be	treated
as	a	starting	point	for	learning	more	about	the	cl_xml_document	class.

Simple	transformations	in	ABAP
ST	was	created	by	an	SAP	declarative	language	that	allows	serialization	and
deserialization	between	XML	formats	and	ABAP	data.	Most	SAP	developers
have	heard	about	ST	at	least	once,	but	only	a	few	have	chance	to	use	it	in	a	real
project.	This	is	probably	due	to	a	lack	of	working	examples	on	the	internet	and
some	additional	difficulties	described	in	this	chapter.	Before	using	ST,	you
should	take	into	consideration	the	following	constraints:

It's	only	allowed	to	transform	between	two	formats	of	ABAP	data	and	XML
but	not	between	XML,	and	XML,	or	ABAP	and	ABAP.
To	find	a	problem	in	ST,	you	have	to	use	an	ST	debugger.	This	is	much
more	limiting	compared	with	an	ABAP	debugger.
You	can	only	transform	value-based	data,	such	as	fields,	structures,	or
internal	tables.	You	are	not	able	to	work	with	references.

From	another	point	of	view,	using	ST	also	has	a	lot	of	advantages:

It's	a	declarative	language,	but	still	very	simple	to	use	and	understand.
Transformations	work	both	ways,	which	means	you	can	write	one
transformation	program	and	use	it	for	serialization	and	deserialization.
It	offers	nice	performance	due	to	serial	restriction	access	and	direct
addressing	of	the	ABAP	data.

You	can	create	an	ST	in	the	ABAP	Workbench	(Transaction	SE80)	and	the
Transformation	Editor	(Transaction	XSLT_TOOL),	which	is	a	common	tool	used	to
create	simple	transformation	and	extensible	stylesheet	language
transformations.	

Serialization	using	ST
This	example	shows	you	how	to	deal	with	a	situation	where	we	have	an	external
System	X,	which	requires	airline	data	from	SAP	ERP.	System	X	is	old	and	very
limited.	The	only	possible	way	to	exchange	data	between	System	X	and	SAP
ERP	is	to	export	the	table	into	an	XML	file	format	and	then	import	it	into
System	X's	database.

We	will	start	with	a	standard	class-based	executable	report	and	put	the	program
logic	in	the	main	method.	The	first	part	of	our	program	is	data	selection:

	DATA:	lt_carr	TYPE	TABLE	OF	scarr.

	DATA:	lv_xml	TYPE	xstring.

	SELECT	*

											FROM	scarr

											INTO	CORRESPONDING	FIELDS	OF	TABLE	@lt_carr.

The	next	step	is	to	create	an	ST.	We	will	use	a	dedicated	tool	for	that—the
Transformation	Editor	(Transaction	XSLT_TOOL).	On	the	main	screen,	fill	everything
in,	as	shown	in	the	following	screenshot:

Choose	a	name	and	click	on	Create.	Call	this	transformation	ZMSA_ST_CHAPTER6_3:

Fill	in	the	description	and	transformation	type.	Choose	S	Simple	Transformation.	We
will	discuss	XSLT	in	further	chapters.	An	ST	can	be	created	using	a	text-based
editor	or	graphically.	Both	approaches	will	be	covered	here.	Initially,	we	always
get	the	following	transformation	template:

<?sap.transform	simple?>

<tt:transform	xmlns:tt="http://www.sap.com/transformation-templates">

<tt:root	name="ROOT"/>

<tt:template>

</tt:template>

</tt:transform>

The	first	line	is	just	to	identify	the	type	of	transformation.	The	second	and	last
are	root	elements,	where	we	include	everything	else.	The	"ROOT"	element	is	an
interface	between	the	ABAP	program	and	the	ST.	One	root	element	is	obligatory
for	every	transformation.	The	last	two	tags	are	template	tags.	Every
transformation	needs	to	have	at	least	one	template,	but,	if	necessary,	you	can
have	a	few	of	them.	Every	template	must	have	a	unique	name	in	the	name
attribute.	You	can	always	check	the	descriptions	of	tags	in	the	tag	library;	it	can
be	invoked	by	using	the	keyboard	shortcut	Ctrl	+	F9.

To	switch	to	graphical	mode,	you	can	use	the	keyboard	shortcut	Ctrl	+	Shift	+
F11,	or	click	on	the	wand	icon.	If	you	did	everything	right,	you	should	see	the
graphical	editor	as	follows:

The	left	side	is	a	Data	roots	panel	where	you	have	ST	interface	data.	On	the	right
side	is	a	graphical	representation	of	an	ST.	Click	the	right	mouse	button	in	the
left	editor	panel	and	choose	the	Insert	new	root	option	from	the	context	menu:

Root-Name	is	the	name	of	the	transformation	input/output	parameter,	and	Type-
Name	is	an	ABAP	dictionary	type	used	with	this	parameter.	SCARR_TAB	is	the	table
type	of	the	SCARR	structure:

Drag	and	drop	the	AIRLINES	table	from	the	left	side	and	bring	it	over	to	the	right
side.	The	transformation	will	be	created	automatically.	We	can	now	clean	it	up	a
bit.	Delete	the	MANDT	field	from	the	transformation	side	and	the	ROOT	element	from
the	data	roots	side.	Save	and	activate	the	project	and	go	back	to	the	Source	Code
Editor;	you	should	see	something	along	the	lines	of	the	following:

<?sap.transform	simple?>

<tt:transform	xmlns:tt="http://www.sap.com/transformation-templates"	xmlns:ddic="http://www.sap.com/abapxml/types/dictionary"	xmlns:def="http://www.sap.com/abapxml/types/defined">

		<tt:root	name="AIRLINES"	type="ddic:SCARR_TAB"/>

		<tt:template>

				<AIRLINES>

						<tt:loop	ref=".AIRLINES">

								<SCARR>

										<CARRID	tt:value-ref="CARRID"/>

										<CARRNAME	tt:value-ref="CARRNAME"/>

										<CURRCODE	tt:value-ref="CURRCODE"/>

										<URL	tt:value-ref="URL"/>

								</SCARR>

						</tt:loop>

				</AIRLINES>

		</tt:template>

</tt:transform>

Let's	go	back	to	our	ABAP	report.	Put	in	the	CALL	TRASFORMATION	keyword	and	fill	in
the	parameters:

			CALL	TRANSFORMATION	zmsa_st_chapter6_3

																							SOURCE	airlines	=	lt_carr

																							RESULT	XML	lv_xml.

The	last	part	of	our	report	is	to	check	whether	everything	works	as	expected.	We
will	use	cl_demo_output	and	the	following	method:

			cl_demo_output=>write_xml(lv_xml).

			cl_demo_output=>display().

If	everything	goes	well,	you	will	see	the	following	popup,	which	is	in	XML
format:

Deserialization	using	ST
This	example	shows	you	how	to	read	XML	files	using	ST.	If	you	did	the
serialization	example,	you	are	halfway	done,	at	least	from	an	ST	perspective.	ST
works	both	ways,	so	it	can	be	used	both	for	serialization	and	deserialization.
Copy	the	previous	example	into	the	ZMSA_R_CHAPTER6_04	report	and	delete	everything
you	had	in	the	main	method.	

First,	we	need	to	read	a	file.	We	will	again	use	our	local	PC	as	a	starting	point.
We	will	use	the	cl_gui_frontend_services	and	gui_upload	methods.	Put	everything	in
the	main	method,	as	we	did	in	every	previous	example:

CONSTANTS:	lv_filepath			TYPE	string	VALUE	'C:\temp\carr.xml'.

	

DATA:	lt_carr	TYPE	TABLE	OF	scarr.

DATA:	lt_filetable				TYPE	STANDARD	TABLE	OF	string.

DATA:	lv_filecontent		TYPE	string.

	

					CALL	METHOD	cl_gui_frontend_services=>gui_upload

							EXPORTING

									filename																=	lv_filepath

							CHANGING

									data_tab																=	lt_filetable

							EXCEPTIONS

									file_open_error									=	1

									file_read_error									=	2

									no_batch																=	3

									gui_refuse_filetransfer	=	4

									invalid_type												=	5

									no_authority												=	6

									unknown_error											=	7

									bad_data_format									=	8

									header_not_allowed						=	9

									separator_not_allowed			=	10

									header_too_long									=	11

									unknown_dp_error								=	12

									access_denied											=	13

									dp_out_of_memory								=	14

									disk_full															=	15

									dp_timeout														=	16

									not_supported_by_gui				=	17

									error_no_gui												=	18

									OTHERS																		=	19.

	

					IF	sy-subrc	<>	0.

							MESSAGE	ID	sy-msgid	TYPE	sy-msgty	NUMBER	sy-msgno	WITH	sy-msgv1	sy-msgv2	sy-msgv3	sy

							RETURN.

					ENDIF.	

This	method	has	limitations,	and	file	content	is	imported	into	an	internal	table.

ST	requires	the	XML	content	to	be	stored	in	a	single	string.	You	can	use	the
following	code	to	concatenate	internal	table	lines	into	a	single	string:

CONCATENATE	LINES	OF	lt_filetable	INTO	lv_filecontent.	

Call	the	simple	transformation	we	created	in	example	6_3.	Note	that	we	changed
the	order	of	XML	SOURCE	and	the	airline	result	in	an	lt_carr	table.	The
transformation	calls	should	look	like	the	following	code	snippet:

CALL	TRANSFORMATION	zmsa_st_chapter6_3

																			SOURCE	XML	lv_filecontent

																			RESULT	airlines	=	lt_carr.	

The	final	step	is	to	check	out	the	code	and	test	the	results:

			cl_demo_output=>display(lt_carr).	

If	you	did	everything	according	to	the	instructions,	you	should	be	able	to	see	the
following	popup:

As	you	can	see,	there	is	an	additional	column,	MANDT.	This	is	because	we	used
the	SCARR	structure	as	a	reference	to	our	table.	You	can	change	it	by	creating	a
new	local	type	that	includes	only	necessary	columns.

sXML	library	for	XML	and	JSON
In	this	chapter,	we	will	handle	conversion	of	the	XML	format	to	JSON	format.
It's	become	much	easier	since	releases	7.02	and	7.03/7.31	(Kernelpatch	116),	as
JSON	is	now	natively	supported.	To	handle	JSON	format,	we	will	use	the	sXML
library.

Before	we	start,	there	are	a	few	important	things	to	mention:

In	SAP,	we	will	be	dealing	with	so-called	JSON-XML.	It's	a	special	XML
format	that	enables	JSON	data	to	be	described	using	an	XML
representation.
In	sXML,	JSON	is	handled	by	a	new	format	stored	behind	the	constant
value	of	the	sXML	interface,	IF_SXML=>CO_XT_JSON.

For	serialization	and	deserialization	we	will	be	using	transformation
with	identity	ID.

JSON-XML	format	is	required	because	ST	can't	interpret	JSON;	it	can	use	only
XML.	So,	the	trick	is	to	get	the	temporary	format	and	then	use	the	JSON	writer
class	to	convert	it	into	the	final	format.	So	as	to	have	a	better	understanding	of
what	the	JSON	format	is,	analyze	the	following	example:	

			//JSON

		{

			"CARRID":"A2",

			"CARRNAME":"Antarctica	Airlines,

			"CURRCODE":"AQD",

			"URL":"http://antarcticaairlines.aq"

		}

When	we	convert	it	into	JSON-XML	format,	we	see	something	similar	to	this:

			//JSON-XML

				<object>

								<str	name=”CARRID”>A2</str>

								<str	name=”CARRNAME”>Antarctica	Airlines</str>

								<str	name=”CURRCODE”>AQD</str>

								<str	name=”URL”>http://antarcticaairlines.aq</str>

				</object>

Here	are	some	basic	conversion	rules	for	JSON	and	JSON-XML	formats:

Type JSON JSON-XML

Character
data

"example" <str>abcde</str>

Numeric
data

1410 <num>1410</num>

Boolean
value

true <bool>true</bool>

Null
value

null[

"example"

1410

true

]

<null/>

Array
[

"example"

1410

true

]

<array>

			<str>abcde</str>

			<num>1.234e+5</num>

			<bool>true</bool>

</array>

Empty
array

[] <array/>

	Object
{

"example"

1410

true

}

<object>

<str	name="text">example</str>

<str	name="num">1410</str>

<str	name="bool">true</str>

</object>

Converting	XML	to	JSON
In	this	section,	we	will	be	focusing	on	how	to	export	SAP	ERP	database	records
into	a	JSON	file.	Such	a	file	can	be	used	as	an	SAPUI5	mockup.	

We	will	start	with	our	report	template.	You	can	copy	any	of	the	previous
examples	into	a	new	report	and	delete	the	content	of	the	main	method.	To	be
consistent,	name	your	report	ZMSA_R_CHAPTER6_5.	

We	will	start	by	creating	the	ty_carr	type	so	that	the	details	in	the	client	field	will
be	invisible.	Also,	we	need	to	create	variables	and	select	data	from	the	SCARR
table:

					TYPES:	BEGIN	OF	ty_carr,

													carrid	TYPE	s_carr_id,

													carrname	TYPE	s_carrname,

													currcode	TYPE	s_currcode,

													url	TYPE	s_carrurl,

											END	OF	ty_carr.

				DATA:	lt_carr	TYPE	TABLE	OF	ty_carr.

				DATA:	lv_result	TYPE	string.

				SELECT	*

											FROM	scarr

											INTO	CORRESPONDING	FIELDS	OF	TABLE	@lt_carr.

The	second	step	is	to	create	a	JSON	writer.	From	a	technical	perspective,	this	is
the	cl_sxml_string_writer	class	and	we	will	use	it	in	transformations.	Note	that	we
use	the	ID	standard	transformation:

	DATA(lo_json_writer_t)	=	cl_sxml_string_writer=>create(type	=	if_sxml=>co_xt_json).

	CALL	TRANSFORMATION	id	SOURCE	values	=	lt_carr

	RESULT	XML	lo_json_writer_t.			

Now	we	need	to	use	the	code	page	and	endian	conversion	classes.	This	will
result	in	getting	JSON	format	from	the	JSON	writer	class:

				cl_abap_conv_in_ce=>create()->convert(

						EXPORTING

								input	=	lo_json_writer_t->get_output()

						IMPORTING

								data	=	lv_result).

The	final	step	is	to	test	our	code.	We	will	use	the	write_json	method	and	then
the	display()	method	from	the	cl_demo_output	class:

cl_demo_output=>write_json(lv_result).

cl_demo_output=>display().

If	you	did	everything	right,	you	should	see	the	following	results:

Summary
Complex	landscapes	with	multiple	systems	aren't	rare.	To	get	the	most	out	of
such	landscapes,	systems	have	to	communicate	with	each	other	smoothly.	There
are	many	different	technologies	available	to	achieve	such	a	goal.	We	can	use,	for
example,	RFC,	ALE,	oData,	or	simple	text	files	as	an	interface.	In	order	to	avoid
problems	with	file	interfaces,	we	should	use	common,	standardized,	and	well-
described	data	formats.	One	such	format	is	XML.

In	the	next	chapter,	the	primary	focus	will	be	on	building	further	user	interfaces.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	method	is	used	to	parse	an	XML	stream	using	the	CL_XML_DOCUMENT
class?

2.	 What	does	the	DISPLAY	method	from	the	CL_XML_DOCUMENT	class	do?
3.	 What	constant	describes	JSON	format	in	the	sXML	library?
4.	 Are	you	allowed	to	use	regular	expressions	or	an	xPath	in	ST?
5.	 What	are	the	advantages	of	using	XSLT	over	ST?
6.	 Are	you	able	to	change	XML	structures	using	single	ST?
7.	 How	do	we	define	the	version	and	encoding	of	the	file	in	XML	format?

Further	reading
You	may	want	to	refer	to	the	following	for	additional	information:

XML	standard:	https://www.w3.org/standards/xml/
XSLT	standard:	https://www.w3.org/TR/xslt/all/
JSON	standard:	https://www.json.org/
xPath	standard:	https://www.w3.org/TR/1999/REC-xpath-19991116/
SAP	ST	documentation:	https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-U
S/abenabap_st.htm

SAP	XML	documentation:	https://help.sap.com/doc/abapdocu_752_index_htm/7.52/e
n-US/abenabap_xml.htm

JS	Regular	Expression,	by	Loiane	Groner	and	Gabriel	Manricks,	published
by	Packt	Publishing:	https://www.packtpub.com/web-development/javascript-regular-
expressions

https://www.w3.org/standards/xml/
https://www.w3.org/TR/xslt/all/
https://www.json.org/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abenabap_st.htm
https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abenabap_xml.htm
https://www.packtpub.com/web-development/javascript-regular-expressions

Building	User	Interfaces
In	Systems,	Applications,	Products	(SAP),	we	have	various	technologies	for
presenting	user	interfaces.	We	can	use	classic	DynPro,	which	we	will	focus	on	in
this	chapter.	This	is	based	on	the	SAP	GUI	and	is	almost	completely	integrated
with	ABAP	and	web-based	technologies	such	as	SAPUI5.

Classic	DynPro	is	divided	into	two	categories:

	Classic	DynPro
	Selection	screens

Despite	the	fact	that	these	two	categories	use	the	same	technology,	the	methods
for	programming	them	are	different.

Classic	DynPro	(named	screen)	needs	to	be	created	in	Screen	Painter	in	the
ABAP	Workbench,	as	well	as	being	called	in	CALL	SCREEN	statement.	The	selection
screen	can	be	defined	purely	in	ABAP	and	it	is	a	specific	classic	DynPro.

We	will	cover	the	following	topics:

Creating	a	selection	screen
Advanced	options	of	the	selection	screen
Creating	user	interfaces	based	on	DynPro
Creating	an	ABAP	List	Viewer	(ALV)	based	on	CL_GUI_ALV_GRID	with	a	few
additions
Creating	and	using	advanced	options	in	classic	DynPro

Technical	requirements
All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter07.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter07

Classic	DynPro
As	some	may	not	know	the	basics	of	classics	DynPro,	I	will	start	with	a	short
introduction	explaining	how	we	can	call	screens	or	types	of	screens.	If	you	have
some	knowledge	of	screens,	you	can	skip	this	part.

Firstly,	we	need	to	know	what	types	of	screens	exist.	The	classic	DynPro	screen
is	divided	into	four	different	types,	as	follows:

Normal
Subscreen
Modal	dialog	box
Selection	DynPro	(also	known	as	the	selection	screen)

Normal	is	a	regular	screen,	which	is	mostly	used	to	create	a	screen.	Subscreen	is
used	when	we	want	to	embed	another	one.	The	modal	dialog	box	is	a	screen	that
does	not	take	up	the	whole	screen,	like	a	popup.

As	previously	stated,	classic	DynPro	is	called	using	the	CALL	SCREEN.	All	screens
are	numbered	with	up	to	four	digits.	We	can	use	a	number	from	1	to	9999.	The
number	0	is	not	allowed.

When	we	click	on	CALL	SCREEN,	we	can	create	a	screen	using	a	number	of
our	choice.

For	example,	when	we	use	CALL	SCREEN	100,	we	are	asked	whether	we	want	to
create	a	screen;	if	we	click	YES,	we	will	see	the	following	window:

Screen	options

In	this	window,	we	can	define	values	such	as	a	short	description	(mandatory
field)	or	how	many	rows	and	columns	will	be	used.

In	the	next	tab,	we	can	see	all	elements	in	a	given	screen,	such	as	custom
containers	and	text.

The	third	tab	is	crucial	for	the	whole	process	of	screen	creation.	In	the	Flow
logic	tab,	we	can	define	Process	Before	Output	(PBO),	Process	After	Input

(PAI),	chains	and	field	behavior.	Field	behavior	serves	to,	for	example,	check
the	value	of	a	single	field,	while	chain	checks	look	at	the	values	of	multiple
fields.	Chains	are	used	to	set	the	order	when	checking	fields	and	modules.

PBO	is	a	process	that	happens	before	output	in	which	we	can	have	all
actions	defined	between	the	call	screen	and	output	screen.	For	example,	here	we
can	use	the	SELECT	statement	to	get	data	before	the	screens	are	shown.

PAI	is	a	process	that	occurs	after	input.	In	PAI,	we	can	define	what	happens
when	we	take	actions	on	the	screen,	such	as	clicking	a	button.

Screen	painter
To	open	a	screen	painter,	you	need	to	click	on	the	Layout	button	in	the	main
screen	window.	After	clicking,	a	window	appears:

Screen	painter

At	the	top	of	the	window,	there	are	several	icons.	Some	of	these	are	standard
icons	such	as	activate	or	test.	Here,	we	also	have	three	buttons	specific	to

DynPro:	Flow	logic,	Attributes,	and	Element	List.	These	buttons	are	used	to
move	us	to	corresponding	functionalities.	For	example,	when	we	click	Element
List,	we	get	a	list	of	all	elements	on	the	screen.	At	the	top,	we	also	have
the	Name	and	Text	input	fields.	All	of	the	UI	components	need	to	have	a	unique
name	and,	for	some	components,	we	also	need	to	put	some	text	on	them.

On	the	left	side	of	the	window,	we	can	see	all	of	the	UI	components	of	which	our
DynPro	can	be	composed.

The	components	that	can	be	used	are	as	follows:

Text	field:	This	is	a	non-dynamic	text	field	where	we	can	put	some	text.
Output/Input	field:	This	is	a	dynamic	text	field	where	we	can	input	some
text.	We	can	also	get	this	field	as	an	output	field.

Checkbox
Radiobutton
Pushbutton
Tabstrip
Tabstrip	(with	the	wizard).
Box.

Subscreen	arena:	This	is	an	arena	where	we	can	embed	a	subscreen.
Table	control.
Table	control	(with	the	wizard).

Custom	control:	We	can	embed	custom	containers,	which	are	used	to
embed	ALVs,	for	example	(more	information	on	that	later	in	the	chapter).
Status	icon:	This	describes	a	specific	output/input	field	with	icons.

Selection	screens
A	selection	screen	is	a	specific	type	of	screen	used	to	create	selections,	such
as	parameters,	and	to	select	queries	or	ranges.	To	create	a	selection	screen,	we
can	use	the	parameters	or	the	selection	option.

If	we	use	PARAMETERS,	we	can	create	a	single	input	field	to	put	values	in,	in	contrast
to	the	select-option,	where	we	get	two	input	fields;	the	first	is	a	lower	value	and
the	second	is	a	high	value	of	a	range.	Parameters	and	the	select-option	inherit
values	from	search-help	if	it	was	created	for	using	data	elements.

To	create	parameters,	we	can	use	the	following	statement:

PARAMETERS:	p_car	TYPE	s_carr_id.

To	create	select-option,	we	can	use	the	following	statement:

SELECT-OPTIONS	s_con	FOR	lv_connid.

Lv_connid	in	the	preceding	example	needs	to	be	declared	before	select-option	is
called.

The	following	example	shows	shortcode	in	which	we	can	see	how	to	use
parameters	and	the	select-option	in	the	SELECT	statement.	In	this	example,	we	use
a	parameter	to	select	the	values	of	carrid	and	select-options	to	select	connid:

	DATA:	lv_connid	TYPE	s_conn_id.

	

	PARAMETERS:	p_car	TYPE	s_carr_id.

	SELECT-OPTIONS:	s_con	FOR	lv_connid.

	

	SELECT	*

			FROM	spfli

			INTO	TABLE	@DATA(lt_spfli)

			WHERE	carrid	=	@p_car

					AND	connid	IN	@s_con.	

More	advanced	options	of	the
selection	screen
In	the	selection	screen,	we	also	have	some	more	advanced	options.	For	example,
we	can	group	elements	of	a	screen	or	add	elements	such	as	a	checkbox	or	radio
button.

Checkbox
To	create	a	checkbox	in	the	selection	screen,	we	can	use	the	AS	CHECKBOX	statement.
The	field	with	AS	CHECKBOX	needs	to	have	a	maximum	length	of	1:

PARAMETERS:	p_car	TYPE	c	AS	CHECKBOX.

When	a	checkbox	is	selected,	the	value	of	the	p_car	field	is	X,	otherwise,	values	of
the	field	are	required.

Radiobutton
To	create	a	list	of	radiobuttons,	we	can	use	the	RADIOBUTTON	GROUP	statement,	as
follows:

PARAMETERS:	p_car	TYPE	c	RADIOBUTTON	GROUP	rb1,

												p_con	TYPE	c	RADIOBUTTON	GROUP	rb1.

The	name	of	the	radiobutton	group	is	very	important	as	this	needs	to	be	the	same
in	one	group,	otherwise,	these	parameters	will	be	presented	like	radiobuttons,	but
without	the	main	radiobuttons	specifics,	which	makes	it	possible	to	select	only
one	at	a	time.

In	parameters,	we	also	have	the	following	capabilities:

Obligatory:	After	this	addition,	parameters	will	be	obligatory	to	fill.
No-display:	This	means	that	the	parameter	is	not	displayed	on	the	selection
screen.	We	can	use	this	if	we	need	to	have	this	parameter	in	the	interface,
but	this	will	only	be	used	when	we	SUBMIT	a	program.
Visible	length:	This	describes	a	parameter	where	we	can	define	the	length
of	the	input	field.

As	well	as	the	preceding	capabilities,	in	select-option,	we	also	have	a	few	more:

No-intervals:	When	we	use	this	addition,	the	select-option	will	be	created
without	a	second	input	field.	Intervals	can	still	be	selected	in	the	dialog	box
for	multiple	selections.
No-extension:	When	this	addition	is	used,	a	pushbutton	will	not	be	created
for	multiple	selections.
Default:	The	selected	option	will	be	started	with	some	initial	values.
Lower	case:	This	addition	prevents	the	content	of	character-like	fields	from
being	converted	into	uppercase	if	data	is	moved	from	Selection	Screen
(SS)	to	screen	and	vice	versa.
Matchcode	objects:	This	creates	the	association	with	search-help	defined
in	the	ABAP	dictionary.
Memory	ID:	After	inputting	any	value	to	the	field	with	this	addition,
values	from	the	field	will	be	moved	to	user	memory.

Blocks	in	selection	screens
We	can	also	create	a	block	in	selection	screens,	for	example,	if	we	want	to	create
the	screen	presented	here:

Selection	screen

We	can	use	the	following	code	to	display	the	screen:

DATA:	lv_connid	TYPE	s_conn_id.

	

	SELECTION-SCREEN	BEGIN	OF	BLOCK	b1	WITH	FRAME	TITLE	text-000.

	PARAMETERS:	p_car	TYPE	s_carr_id.

	SELECT-OPTIONS:	s_con	FOR	lv_connid.

	SELECTION-SCREEN	END	OF	BLOCK	b1.

	

	SELECTION-SCREEN	BEGIN	OF	BLOCK	b2	WITH	FRAME	TITLE	text-001.

	

	PARAMETERS:	p_dom	TYPE	c	RADIOBUTTON	GROUP	rb1,

													p_int	TYPE	c	RADIOBUTTON	GROUP	rb1.

	

	SELECTION-SCREEN	END	OF	BLOCK	b2.

When	we	need	to	create	text	for	a	field,	we	can	define	it	in	GOTO|TEXT
ELEMENTS.	After	clicking	on	this,	we	get	the	following	screen:

Selection	text

If	we	want	to	create	text,	we	can	put	our	text	in	the	input	field	or	we	can	use	the
reference	from	the	Data	Dictionary	(DDIC).

Selection	screen	event	model
On	the	selection	screen,	we	can	define	several	events.	These	events	are
processed	during	the	processing	of	the	selection	screen.

	A	list	of	selection	screen	events	is	provided	as	follows:

OUTPUT:	This	is	an	event	raised	during	the	PBO	of	the	selection	screen.	This	is
used	to	prepare	data	in	the	selection	screen	or	dynamic	modifications	of	a
screen.
ON:	This	is	an	event	raised	during	the	PAI	of	the	selection	screen.
ON	END	OF:	This	is	an	event	raised	after	the	selection	table	is	passed	to	the
program	and	after	user	action	in	the	dialog	box	for	multiple	selections	has
taken	place.	In	this	event,	entire	selections	can	be	checked.
ON	BLOCK:	This	is	an	event	raised	when	all	fields	in	a	block	are	filled	and
passed	to	the	ABAP	program.
ON	RADIOBUTTON	GROUP:	This	is	an	event	raised	when	data	from	radio	buttons	are
passed	to	an	ABAP	program.
ON	(HELP	REQUEST	|	VALUE	REQUEST)	FOR:	This	event	is	raised	in	a	Process	On
Help	Request	(POH)	and	Process	of	Values	Request	(POV),	when	F1
(help)	or	F4	(values)	is	called.	It	can	be	used	to	create	custom	help	and
overrides	the	help	from	the	ABAP	dictionary.
ON	EXIT	COMMAND:	This	event	is	raised	when	a	user	has	called	one	of	the	Back,
Exit,	or	Cancel	functions.	Any	cleanup	actions	can	be	executed	in	this	event
block.

One	of	the	most	common	uses	of	events	in	the	selection	screen	is	using	the
dynamic	modification	of	the	selection	screen.

First	of	all,	we	need	to	add	USER_COMMAND	and	MODIF	ID	to	the	corresponding	fields:

DATA:	lv_connid	TYPE	s_conn_id.

	

	SELECTION-SCREEN	BEGIN	OF	BLOCK	b1	WITH	FRAME	TITLE	text-000.

	PARAMETERS:	p_car	TYPE	s_carr_id.

	SELECT-OPTIONS:	s_con	FOR	lv_connid.

	PARAMETERS:	p_type	TYPE	c	AS	CHECKBOX	USER-COMMAND	uc1.

	SELECTION-SCREEN	END	OF	BLOCK	b1.

	

	SELECTION-SCREEN	BEGIN	OF	BLOCK	b2	WITH	FRAME	TITLE	text-001.

	

	PARAMETERS:	p_dom	TYPE	c	RADIOBUTTON	GROUP	rb1	MODIF	ID	b2,

													p_int	TYPE	c	RADIOBUTTON	GROUP	rb1	MODIF	ID	b2.

	

	SELECTION-SCREEN	END	OF	BLOCK	b2.

We	can	mark	the	p_type	parameter	here,	and	the	second	block	will	be	shown.

In	order	to	create	this	action,	we	need	to	assign	a	user	command	to	the	checkbox
and	create	a	corresponding	PAI	action.	Pressing	the	button	will	call	the	PAI
action	with	the	user	command	UC1	(this	action	will	do	nothing,	as	it	was	not
created)	and	then	the	PBO	will	be	launched.	In	the	PBO,	the	code	under	AT
SELECTION-SCREEN	OUTPUT	will	be	executed.	We	need	to	make	it	this	way	because	we
want	to	initially	get	the	screen	without	this	component	and	turn	it	on	only	when
the	special	condition	is	fulfilled.

For	changing	the	selection	screen,	we	also	need	to	assign	the	p_dom	and	p_int
parameters	to	a	modification	group	named	in	the	b2	example.	We	need	to	create
this	addition	to	indicate	which	field	should	be	changed:

AT	SELECTION-SCREEN	OUTPUT.

	

			LOOP	AT	SCREEN.

	

					IF	p_type	=	abap_true	AND	screen-group1	=	'B2'.

							screen-active	=	1.

					ELSEIF	p_type	=	abap_false	AND	screen-group1	=	'B2'.

							screen-active	=	0.

					ENDIF.

	

					MODIFY	SCREEN.

			ENDLOOP.

Right	after	defining	a	selection	screen,	we	can	add	the	preceding	piece	of	code.
In	this	code,	we	can	see	the	event	definition	(in	our	example,	this	is	the	output).
We	make	a	loop	at	the	screen	to	check	every	field	and	check	whether	or	not	our
condition	was	fulfilled.

We	also	need	to	remember	to	add	the	MODIFY	SCREEN	statement.	Without	this,	any
change	to	the	screen	will	not	be	visible.

ALV
In	this	section,	I	will	present	an	example	of	how	to	create	ALVs	in	two	ways.	In
the	same	example,	I	will	show	you	the	possibilities	of	ALVs,	also	using	the
selection	screen	created	before.

ALV	is	an	integrated	element	of	the	ABAP	objects	environment.	This	makes	it
possible	to	implement	the	display	of	structured	datasets.	We	can	display	simple
and	two-dimensional	tables,	hierarchical-sequential	lists,	and	tree	structures.

The	possibilities	of	these	two	methods	are	similar,	so	I	will	present	all	examples
based	on	the	CL_GUI_ALV_GRID	class	and	then	I	will	present	code	where	I	created	a
basic	ALV	by	using	SALV	classes.

Basics
If	we	want	to	create	an	ALV	first,	we	need	to	declare	a	local	variable	of	type
references	to	the	cl_gui_alv_grid	class,	a	variable	of	type	references	to
the	cl_gui_custom_container	class,	and	a	local	constant	with	the	name	of	the
container	and	the	table	where	we	store	data	that	will	be	shown	on	screen:

DATA:	lt_spfli						TYPE	TABLE	OF	spfli,

						lr_alv								TYPE	REF	TO	cl_gui_alv_grid,

						lr_ccontainer	TYPE	REF	TO	cl_gui_custome_container.

	

CONSTANTS:	lc_container_name	TYPE	scrfname	VALUE	'ALV'.

Then,	we	need	to	create	a	screen	and	two	modules—one	for	the	PBO	and	one	for
the	PAI.	In	this	example,	we	use	screen	100.

In	the	Flow	Logic	tab,	create	the	PBO	and	PAI	modules	as	follows:

Flow	logic	on	screen

It	is	really	important	to	create	a	module	right	after	PROCESS	BEFORE	OUTPUT	in	the	case
of	the	PBO	module,	and	after	PROCESS	AFTER	INPUT	for	the	PAI.	If	this	module	is	created
in	a	different	way,	for	example,	with	the	PBO	module	after	PROCESS	AFTER	INPUT,	this
module	will	be	considered	a	PAI	module	and	it	will	not	work	properly.

After	creating	a	screen,	we	get	two	new	modules:

&---

	*&						Module		PBO_100		OUTPUT

	&---

	*							text

	--

	MODULE	pbo_100	OUTPUT.

	*	SET	PF-STATUS	'xxxxxxxx'

	*	SET	TITLEBAR	'	xxx'.	

	ENDMODULE.																	"	PBO_100		OUTPUT

	&---

	*&						Module		PAI_100		INPUT

	&---

	*							text

	--

	MODULE	pai_100	INPUT.

	

	ENDMODULE.																	"	PAI_100		INPUT

In	pbo_100,	we	see	the	two	commented	rows.	In	the	first	of	them	is	PF_STATUS	and	in
the	second	is	TITLEBAR.

In	the	TITLEBAR,	we	can	establish	the	title	being	shown	on	the	screen.

Using	ON	PF-Status,	we	can	embed	an	action	to	an	icon	on	the	screen.	If	we	do	not
do	this,	any	icon	(including	back	or	cancel)	will	not	work.	Here	is	an	example	of
how	to	create	PF-STATUS	and	the	TITLEBAR:

MODULE	pbo_100	OUTPUT.

		SET	PF-STATUS	'STATUS_100'.

		SET	TITLEBAR	'TITLEBAR_100'.	

	ENDMODULE.

PF-STATUS	and	TITLEBAR	can	have	any	name.	In	our	example,	we	have	'STATUS_100'	as
PF-STATUS	and	'TITILEBAR_100'	as	the	titlebar.

Right	after	clicking	on	the	title,	a	window	is	shown.	In	the	title	input	field,	we
can	insert	text,	which	will	be	shown	on	the	screen:

Creating	a	title

After	clicking	on	OK,	a	title	will	be	created.	Next,	click	on	PF-STATUS	and	a

popup	will	appear:

Creating	a	status

When	this	pops	up,	input	some	short	text	and	choose	a	type	of	status.	We	mostly
use	Normal	Screen	here.	Dialog	Box	is	a	status	type	for	screens	without	a	menu
bar	and	Context	Menu	is	a	status	used	for	the	context	menu	only.

After	creating	PF_STATUS,	we	will	see	a	screen	where	we	can	define	buttons	in	the
menu	bar,	application	toolbar,	and	function	keys.

In	the	beginning,	we	should	define	at	least	three	buttons	(BACK,	CANCEL,	and	EXIT).	If
we	do	not	do	this,	we	cannot	move	back	after	creating	the	screen	and	we	can
only	create	a	new	session	and	turn	off	the	present	one.	We	can	also	create	more
than	these	three	buttons.	In	order	to	create	these	actions	on	screen,	we	can	fill	the
input	field	as	an	example	and	then	click	on	Activate:

Screen	status	option	

Next,	in	the	PAI	module	action,	we	should	determine	what	this	button	needs	to
do	and	code	what	will	be	executed.

To	do	this,	create	a	global	field	named,	for	example,	OK_CODE,	to	keep	the	name	of
action	assigned	to	the	button.	Then,	we	need	to	assign	this	field	to	a	variable	on
screen	in	the	element	list:

Element	list	on	the	screen

After	this,	we	need	to	insert	the	code	to	the	PAI	in	order	to	handle	these	actions:

MODULE	pai_100	INPUT.

	

			CASE	ok_code.

					WHEN	'BACK'.

							LEAVE	TO	SCREEN	0.

					WHEN	'CANCEL'.

							LEAVE	TO	SCREEN	0.

							LEAVE	PROGRAM.

					WHEN	'EXIT'.

							LEAVE	PROGRAM.

			ENDCASE.

	

	ENDMODULE.		

Every	action	on	the	PAI	can	be	handled	in	this	way.	Just	add	a	new	case	and
code	to	execute	it.

After	creating	basic	things	on	the	screen,	we	can	create	a	container	for	our	ALV.
To	do	this,	enter	Screen	Painter	and	click	on	Layout	to	enter	the	Screen
Painter|Layout	editor:

Screen	painter

Your	screen	should	look	the	same	as	the	preceding	screenshot.

To	add	the	element	to	the	screen,	we	can	just	click	on	an	interesting	element	in

the	left-hand	list	and	drag	and	drop	it	onto	the	screen.	In	our	case,	we	need	the
Custom	control	element,	so	search	for	Custom	control	and	drag	and	drop	this
onto	the	screen.	After	doing	this,	you	should	see	an	element	with	crossed	lines,
like	this:

Custom	control

This	is	the	Custom	control.	To	move	objects	on	screen,	we	can	drag	and	drop
them.	If	we	want	to	change	the	size	of	elements,	we	can	double-click	on	the
element	and	change	the	variables	named	Height	and	Vis.Length.	Alternatively,	we
can	simply	enlarge	or	decrease	elements	on	the	screen:

	Screen	painter—element	option

The	next	field	we	must	fill	in	is	Name	(for	all	of	the	elements	on	the
screen).	Custom	control	has	been	named	ALV.	We	need	to	remember	this	name
because	we	need	to	use	it	in	the	code.

As	we	have	created	a	Custom	control	box	in	the	screen,	we	can	create	an	ALV
and	display	it	in	the	Custom	control	box.

As	the	first	step,	we	need	to	create	the	lr_ccontainer	object	with	the	container
name	and	lr_alv,	which	is	defined	in	our	global	variable:

CREATE	OBJECT	lr_ccontainer

			EXPORTING

					container_name	=	lc_container_name.

	

	CREATE	OBJECT	lr_alv

			EXPORTING

					i_parent	=	lr_ccontainer.

The	name	of	the	container	needs	to	be	declared	in	Capital	Letters,	otherwise,	it
will	not	work,	as	all	of	the	letters	will	be	changed	to	capital	letters.

To	create	a	field	catalog,	we	can	use	two	methods—we	can	use	the	Data
Dictionary	(DDIC)	structure	or	create	a	custom	field	catalog.	In	the
first	example	of	an	ALV,	we	can	use	this	version.

If	we	want	to	create	a	custom	field,	add	them	to	the	field	catalog,	which	is	a
table	where	we	store	all	names	of	the	field	and	we	can	define	the	parameter	of
the	ALV	in	many	ways,	including	by	the	following:

Displayed	name
Size	of	the	column—width	counted	in	chars
Conversion	exit
Number	of	displayed	decimals

To	create	a	field	catalog,	we	need	to	use	a	variable	table	of	LVC_T_FCAT	type	and	a
structure	of	LVC_S_FCAT	type.

An	example	of	one	field	in	a	custom	field	catalog	is	as	follows:

ls_fcat-fieldname	=	'CARRID'.

ls_fcat-scrtext_s	=	'Airline	Code'.

ls_fcat-outputlen	=	4.

APPEND	ls_fcat	TO	lt_fcat.

CLEAR	ls_fcat.

To	display	the	field	in	the	ALV	grid,	we	need	to	add	it	to	the	field	catalog
first.	In	our	preceding	example,	we	add	a	field	with	the	name	CARRID	(fieldname).	In
the	ALV,	we	see	the	short	text	'Airline	code'	(scrtext).	We	also	add	a	parameter
specifying	the	length	of	the	field	(outputlen).		

To	display	the	table	on	the	screen,	use	the	set_table_for_first_display	method.	In
the	following	code,	we	have	the	most	basic	version	of	the	code	to	see	the	ALV:

CALL	METHOD	lr_alv->set_table_for_first_display

			EXPORTING

					i_structure_name	=	'SPFLI'

			CHANGING

					it_outtab								=	lt_spfli.

The	use	of	our	custom	field	catalog	is	depicted	in	the	following	example:

CALL	METHOD	lr_alv->set_table_for_first_display

			CHANGING

					it_outtab								=	lt_spfli

					it_fieldcatalog		=	lt_fcat.

Now,	we	can	see	the	differences	between	those	two	ALVs.

Here,	we	can	see	an	example	of	the	ALV	created	with	the	field	catalog	created
by	the	DDIC:

Results	of	the	DDIC	field	catalog

An	example	of	a	field	catalog	is	in	the	following	screenshot:

Results	of	a	custom	field	catalog

As	we	can	see,	the	example	of	the	DDIC	is	prettier.	the	ALV	automatically
transports	the	names	of	fields,	adjust	the	length	of	the	fields,	and	highlight	key
columns.	However,	if	we	create	a	field	catalog	on	our	own,	we	would	have	many
more	possibilities.	For	example,	if	we	create	a	field	catalog	on	our	own,	we	can
change	the	order	of	the	field.

Every	time	we	make	changes	on	screen	or	perform	a	PAI	action,	PBO	is
automatically	called	right	before	the	output	screen.	But	as	we	create	a	container,
ALV	instance,	and	field	catalog	and	initialize	ALV,	those	methods	need	some
time	to	complete.	If	we	do	not	need	to	create	this	again,	for	example,	when	we
only	need	to	change	displayed	data,	we	should	use	the
refresh_table_display	method.	Consequently,	we	can	check	whether	the	container

was	created.	If	so,	we	can	only	use	the	method	mentioned	previously.

Advanced	capabilities	of	ALV	sand
screens
ALVs	and	screens	also	have	many	more	advanced	possibilities.	We	will	look	at
the	most	commonly	used	in	this	section,	as	follows:

Zebra
Coloring
Events	on	the	ALV	in	an	example	of	a	button	click
ALV	icons	

Following	are	the	advanced	possibilities	of	screens:

Text	field	and	translations
Input/output	field
Radiobuttons
Buttons
Addition	of	dynamic	display	possibilities	for	individual	elements	and
groups,	and	examples	of	using	all	of	the	discussed	possibilities

Zebra
To	create	zebra	coloring	where	the	background	of	one	row	is	white	and	the	next
is	gray	and	so	on,	we	just	need	to	add	one	more	structure	to	the	ALV	called	a
layout	structure.

At	the	beginning	of	creating	a	zebra	pattern,	we	need	to	declare	a	variable
of	lvc_s_layo	type,	as	follows:

DATA:	ls_layout	TYPE	lvc_s_layo.

Of	course,	a	layout	structure	has	many	more	fields,	for	instance,	a	field
named	edit.	If	we	add	abap_true	to	this,	then	we	can	change	data	in	rows.	After
this,	we	just	need	to	fill	in	one	field	of	this	structure:

ls_layout-zebra	=	abap_true.

Add	this	structure	to	set_table_to_first_display	as	an	export	parameter:

CALL	METHOD	lr_alv->st_table_for_first_display

			EXPORTING

					is_layout							=	ls_layout

			CHANGING

					it_outtab							=	lt_spfli

					it_fieldcatalog	=	lt_fcat.

Coloring
To	color	an	entire	column,	we	can	use	the	Emphasize	option	of	the	field
catalog.	To	add	a	value,	we	need	to	follow	the	pattern,	C123,	where	the	following
applies:

C:	Constant
1:	Color	numbers
2:	Inverse	yes/no
3:	Intensified	on/off

A	list	of	possible	colors	of	columns	or	rows	is	provided	here:

Value	of	the	first	variable Color

1 Gray	or	Blue

2 Light	gray

3 Yellow

4 Blue	or	Green

5 Green

6 Red

7 Orange

	

You	need	to	add	the	following	piece	of	code	to	the	field	catalog	field	to	obtain
the	yellow	color	of	the	column:

ls_fcat-emphasize	=	'C300'.

Coloring	a	row	is	a	bit	more	complicated.	To	enable	coloring	rows,	you	should
add	an	additional	field	to	your	data	table.

First,	we	need	to	declare	the	structure	in	the	same	way	as	spfli,	with	an
additional	rowcolor	field	and	table	based	on	this	structure:

DATA:

			BEGIN	OF	ls_colouring_rows.

									INCLUDE	STRUCTURE	splfi.

	DATA:	rowcolor(4)	TYPE	c.

	DATA	END	OF	ls_colouring_rows.

	

	DATA:	lt_color	LIKE	TABLE	OF	ls_colouring_rows.

Now	we	need	to	add	the	information	about	the	name	of	the	column	where	the
information	about	the	color	is	stored.	To	do	this,	we	need	to	add	the	layout
structure	name	of	this	field.	For	example,	look	at	the	following	code	snippet:

ls_layout-info_fname	=	'ROWCOLOR'.

We	just	need	to	add	data	about	the	color	into	the	table	and	the	color	will	be
defined,	as	in	the	preceding	method.	In	our	example,	we	color	all	rows	where
carrid	=	'AA'	to	green:

LOOP	AT	lt_color	ASSIGNING	FIELD-SYMBOL(<fs_color>)	WHERE	carrid	=	'AA'.

			<fs_color>-rowcolor	=	'C500'.

	ENDLOOP.

For	coloring	purposes,	I	changed	the	results	table	to	lt_color.	Of	course,	the	table
in	the	set_table_for_first_display	method	also	needs	to	be	changed.		

If	we	want	to,	we	can	color	only	one	cell	in	the	ALV.	In	the	example	shown	in	an
image	named	Results	of	coloring,	I	colored	the	destination	cell	orange	only	for
flights	to	JFK.

First,	we	need	to	declare	the	structure	with	colors	in	a	table.	Right	now,	our
declaration	of	the	table	type	will	look	as	follows:

DATA:

			BEGIN	OF	ls_colouring_rows.

									INCLUDE	STRUCTURE	splfi.

	DATA	rowcolor(4)	TYPE	c.

	DATA	cellcolors	TYPE	lvc_s_scol.

	DATA	END	OF	ls_colouring_rows.

We	also	need	to	declare	structure	consistently	in	accordance	with	the	type	of
row	added	to	the	master	table:

DATA:	ls_ccolor	TYPE	lvc_s_scol.

We	also	need	to	inform	the	runtime,	that	we	will	pass	the	coloring	information.
This	can	be	done	by	providing	the	table	name	in	the	ctab_fname	attribute,	similar	to
the	following	screenshot:

ls_ccolor-ctab_fname	=	'CELLCOLORS'.

The	user	needs	to	make	a	loop	in	the	result	table	in	order	to	add	the	needed	value
and	change	the	colors:

LOOP	AT	lt_color	ASSIGNING	FIELD-SYMBOL(<fs_cellcolor>)	WHERE	airpto	=	'JFK'.

			ls_coolor-fname	=	'AIRPTO'.

			ls_ccolor-col	=	'7'.

			ls_ccolor-int	=	'1'.

			APPEND	ls_ccolor	TO	<fs_cellcolor>-cellcolors.

	ENDLOOP.

Let's	have	a	look	at	the	following	screenshot:

Results	of	coloring

If	all	of	the	colors	were	added	at	the	same	time,	the	result	of	this	would	be	the
preceding	screenshot.

Event	of	an	ALV,	exemplified	by	a
button	click	
To	create	an	event,	we	need	to	declare	a	method	of	handling	events.	The	method
in	the	example	presented	in	the	following	code	block	is	declared	as	a	local	class
but	can	be	declared	as	a	global	class	too	(more	about	the	global	and	local	class,
can	be	found	in	Chapter	13,	Advanced	Techniques	in	ABAP	Objects).

The	button	we	want	to	create	in	this	example	will	provide	a	popup	with
Mastering	ABAP	as	text.

To	create	class,	we	first	need	to	create	a	definition	and	implementation	of	a
method	to	handle	the	button	click:

CLASS	lcl_event_handler	DEFINITION.

			PUBLIC	SECTION.

					METHODS:	handle_button_click	FOR	EVENT	button_click	OF	cl_gui_alv_grid

							IMPORTING

									es_col_id	es_row_no.

	ENDCLASS.																				

	CLASS	lcl_event_handler	IMPLEMENTATION.

			METHOD	handle_button_click.

	

					CALL	FUNCTION	'POPUP_TO_DISPLAY_TEXT'

							EXPORTING

									textline1	=	'MASTERING	ABAP'.

	

			ENDMETHOD.																				

	ENDCLASS.		

It	is	also	required	to	declare	a	variable	with	reference	to	the	type	of	class
declared	in	the	preceding	code	snippet:

DATA:	lr_event_handler	TYPE	REF	TO	lcl_event_handler.

To	handle	the	method	and	register	an	event	on	the	ALV,	we	need	to	create	the
object	defined	previously	and	register	an	event	in	the	ALV	instance,	as	follows:

CREATE	OBJECT	lr_event_handler.

	

SET	HANDLER	lr_event_handler->handle_button_click	FOR	lr_alv.

The	mechanism	for	creating	an	event	is	pretty	much	the	same	for	all	events;	the

only	difference	is	the	creation	of	appropriate	methods	for	different	events.

We	need	to	create	a	button	on	the	ALV.	To	do	this,	we	create	the	following	field
on	the	table	structure:

DATA	button(5)	TYPE	c.

We	then	add	a	button	field	to	the	ALV	field	catalog:

ls_fcat-fieldname	=	'BUTTON'.

ls_fcat-scrtext_s	=	'Button'.

ls_fcat-outputlen	=	6.

APPEND	ls_fcat	TO	lt_fcat.

CLEAR	ls_fcat.

As	in	the	previous	example	(the	details	are	on	GitHub	at	https://github.com/PacktPub
lishing/Mastering-SAP-ABAP),	to	change	the	cell	to	a	button,	we	need	to	add	cell	style
to	the	layout	structure:

ls_layout-stylefname	=	'CELLSTYLES'.

In	our	ALV,	the	push	button	has	been	created	in	the	second	position:

https://github.com/PacktPublishing/Mastering-SAP-ABAP

The	button	on	ALV

After	clicking	on	the	button,	a	popup	will	appear,	as	follows:

Popup

Let's	move	on	to	our	next	topic	about	icons	in	the	ALV.

Icons	in	the	ALV
To	show	an	icon,	we	need	to	add	one	parameter	to	the	field	catalog	and	the
values	of	this	field	need	to	be	the	values	assigned	to	the	icon.	All	icons	can	be
seen	in	the	ICON	table.

For	example,	we	can	show	an	icon	based	on	the	values	in	the	charter.	When	
	appears,	a	flight	will	be	in	the	charter,	and	this	will	not	be	the	case	when	
	appears.

At	the	beginning	of	the	icon-creation	process,	we	need	to	add	a	field	to	the
resulting	table	structure:

DATA	icon	TYPE	icon_int.

Next,	we	need	to	make	changes	to	the	field	catalog.	This	parameter	indicates	that
this	field	is	an	icon	and	will	be	shown	as	one.	It	will	also	change	the	name	of	the
field	from	FLTYPE	to	ICON:

ls_fcat-fieldname	=	'ICON'.

ls_fcat-scrtext_s	=	'Charter?'.

ls_fcat-auto_value	=	'X'.

ls_fcat-icon	=	'X'.

APPEND	ls_fcat	TO	lt_fcat.

CLEAR	ls_fcat.

As	the	last	step	of	creating	an	icon,	we	need	to	add	an	icon	value	to	the
corresponding	field,	as	follows:	

LOOP	AT	lt_color	ASSIGNING	FIELD-SYMBOL(<ls_icon>).

				IF	<ls_icon>-fltype	=	'X'.

						<ls_icon>-icon	=	'@B_OKAY@'.

				ELSEIF	<ls_icon>-fltype	IS	INITIAL.

						<ls_icon>-icon	=	'@B_CANC@'.

				ENDIF.

ENDLOOP.

The	result	of	this	operation	is	demonstrated	in	the	following	screenshot:

Icons	in	the	ALV

Let's	have	a	look	at	another	such	example	in	the	following	screenshot:

Result	of	all	changes	made	in	the	ALV

Of	course,	we	can	mix	all	of	the	previous	changes	and	the	result	of	doing	so	is
presented	in	the	preceding	screenshot.

Text	fields	and	translations
To	create	text,	we	need	to	select	the	text	field	()	from	the	elements	on	the	left
in	Screen	Painter	and	drag	and	drop	it	onto	the	screen.

We	need	to	add	a	name	and	some	text.	The	name	is	the	name	of	the	field	and	the
text	is	the	text	shown	on	the	screen.	We	do	not	need	to	manually	adjust	the	size
of	the	text	field	as	this	will	be	adjusted	automatically:

Text	in	Screen	Painter

To	create	a	translation	of	a	field,	we	need	to	click	on	Goto	and	select	Translation
from	the	list.	After	locking	on	to	the	target	language	for	which	there	are
translations,	the	text	will	automatically	be	displayed	in	the	selected	language:

Selecting	a	language

On	the	pop-up	window,	in	the	Target	language	field,	select	the	desired	language
and	click	OK.

On	the	next	window,	we	can	add	translations	and	select	text-to-translation.	In
this	case,	the	text	will	be	divided	into	two	categories.	The	first	is	text	on	the
screen	and	the	second	is	for	headers:

Translation	screen

To	create	text	for	the	Screen	Painter,	for	example,	expand	the	list	<SRT4>
Screen	Painter	Texts	(PROG)	and	double-click	on	selected	rows.

Translation

Click	on	 	and	check	whether	any	proposals	exist.	If	not,	you	can
accept	this	translation	as	system-wide	after	clicking	 	.	Next,	go	back	to	the
previous	screen	and	save	the	translations.

Input/output	field

To	create	an	input	field/output	field,	we	need	to	click	on	the		 	icon	and	select
an	area	for	it.	After	creating	a	field,	we	need	to	add	a	name.	The	naming	of	fields
is	really	important.	This	is	because	if	we	create	a	field	with	the	same	name	as
something	else	in	a	program,	values	from	the	program	will
automatically	be	transmitted	to	screen	and	vice	versa.

In	the	input/output	field,	we	can	also	specify	some	parameters.	The	most
important	fields	are	listed	here:

On	the	Dict	tab,	there's	the	following:
Format	drop-down	menu:	The	user	can	select	the	field	format	from
the	list.	They	can	select	from	many	possibilities	such	as	CHAR	or	DEC.
From	dict	checkbox:	If	the	dict	checkbox	is	checked,	data	(such	as
format,	conversion	exit,	and	more	from	the	DDIC)	will	be
automatically	recovered.
Conv.Exit:	This	is	a	conversion	exit	which	is	automatically	applied	for
values	in	a	given	field.	
Search	help.
Case-sensitive	checkbox:	If	checked,	this	field	will	be	case	sensitive.
By	default,	fields	are	converted	into	capital	letters.	

On	the	Program	tab,	there's	the	following:
Checkbox	input	field:	If	this	checkbox	is	checked,	we	can	put	some
data	into	this	field.	If	not,	the	field	only	consists	of	output.
Input	dropdown:	We	can	select	this	if	filling	out	this	field	is	possible,
recommended,	or	even	required.
Output	field	checkbox:	If	this	checkbox	is	checked,	we	can	show
some	data	from	the	program	in	this	field.	If	not,	the	field	is	only	an
input	field:

Options	of	the	input/output	field

We	need	to	double-click	on	the	elements	of	the	list	shown	in	the	preceding
screenshot	in	order	to	get	a	window	in	which	these	values	can	be	put	in	order.

Radiobuttons	and	checkbox
Radiobuttons	and	checkboxes	are	created	by	clicking	the	 	button	for	a
checkbox	or	 	for	a	radiobutton	and	selecting	an	area	for	a	field.	Next,	we	need
to	input	a	name	for	this	field.	In	the	same	way	as	in	the	input/output	field,	if	we
name	this	field	identically	as	in	the	program,	data	will	be	transferred.

On	radiobuttons	and	checkboxes,	we	cannot	select	field	formats,	for	example.
This	is	specific	to	the	input/output	field.

To	create	a	group	of	radio	buttons,	we	need	to	mark	the	radio	buttons	that	are	to
be	in	one	group	and	right-click	them,	selecting	Radio	button	group	followed	by
define.

Button
The	button	is	created	by	clicking	the	 	button	in	the	list	and	selecting	an	area
for	this	field.

We	need	to	create	a	name	for	the	button,	but	in	this	case,	this	is	not	crucial.	In
the	button	attribute,	we	need	to	specify	the	function	code.	This	is	specified	after
clicking	a	button	on	the	PAI	module.	The	user	command	is	then	moved,	at	which
point	we	can	make	programming	actions.

In	our	example,	the	button	function	code	will	be	RES:

.

Options	in	the	button

All	of	the	fields	necessary	for	button	creation	are	shown	in	the	preceding
screenshot.

Dynamic	display	possibilities	for
individual	elements	and	groups
To	create	a	dynamic	display,	we	need	to	add	the	name	of	a	group	to	the	attributes
of	a	field.

In	our	example,	we	can	hide	or	display	two	radiobuttons	based	on	a	checkbox.
By	default,		these	two	radiobuttons	are	not	present,	but	if	we	check	the
checkbox,	this	makes	them	appear.	We	also	need	to	add	a	dummy	action	to	the
checkbox	to	process	the	PBO	and	change	the	screen.

After	doing	this,	the	screen	should	look	as	follows:

Screen	after	making	changes

We	need	to	create	global	fields	with	the	same	name	as	the	screen:

				gv_carrid								TYPE	s_carr_id,

				gv_connid								TYPE	s_conn_id,

				gv_type										TYPE	c,

				gv_domestic						TYPE	c,

				gv_international	TYPE	c,

				gv_dyn_where					TYPE	string	VALUE	'1	=	1'.	

Now,	all	values	from	fields	are	available	in	the	program.	Next,	we	need	to	write
a	piece	of	code:

WHEN	'RES'.

	

	IF	lv_dyn_where	IS	INITIAL.

			lv_dyn_where	=	'1	=	1'.

	ENDIF.

		

	IF	gv_carrid	IS	NOT	INITIAL.

	lv_dyn_where	=	|{	lv_dyn_where	}	and	carrid	=	'{	gv_carrid	}'|.

	ENDIF.

	

	IF	gv_connid	IS	NOT	INITIAL.

	lv_dyn_where	=	|{	lv_dyn_where	}	and	connid	=	'{	gv_connid	}'|.

	ENDIF.

	

	IF	gv_domestic	IS	NOT	INITIAL.

	lv_dyn_where	=	|{	lv_dyn_where	}	and	countryfr	EQ	s~countryto|.

	ENDIF.

	

	IF	gv_international	IS	NOT	INITIAL.

	lv_dyn_where	=	|{	lv_dyn_where	}	and	countryfr	NE	s~countryto|.

	ENDIF.	

	

	SELECT	carrid,	connid,

								countryfr,	cityfrom,	airpfrom,

								countryto,	cityto,	airpto,

								fltime,	deptime,	arrtime,	distance,

								distid,	fltype,	period

			FROM	spfli	AS	s

			WHERE	(lv_dyn_where)

			INTO	CORRESPONDING	FIELDS	OF	TABLE	@lt_color.	

	

	CLEAR	lv_dyn_where.

After	clicking	on	reselect,	data	is	reselected	based	on	the	value	input	to	the	fields
on	the	screen.

Summary
Classics	DynPro	and	the	ALV	are	essential	to	an	ABAP	programmer's	work	on	a
daily	basis.	Classic	DynPro	is	mostly	used	for	creating	reports	and	custom
transactions,	so	having	a	good	understanding	of	this	topic	is	crucial.	This	portion
of	ABAP	knowledge	is	one	of	the	first	things	that	we	need	to	understand.

In	the	next	chapter,	we	will	focus	on	further	options	for	creating	screens,	namely
SAPUI5.	

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 Which	two	categories	have	Classic	Dynpro	been	divided	into?
2.	 What	is	the	main	difference	between	Parameters	and	Select-options	on	the

Selection	screen?
3.	 What	do	you	need	to	remember	when	creating	the	custom	container	for

ALV?

Creating	Stunning	UI5	Interfaces
When	the	SAP	environment	was	created,	its	main	focus	was	on	delivering	the
most	reliable	and	efficient	functionalities.	As	a	result,	it	may	have	been	observed
that	the	user	interface	(UI)	was	somehow	neglected	when	considering	SAP
products.	There	were	some	efforts	to	improve	the	overall	visual	reception,	from
new	skins	(themes)	to	SAP	Graphical	User	Interface	(GUI),	WebDynPros,
SAP	Personas,	and	so	on,	but	these	were	rather	small	and	insufficient	steps.

Things	changed	significantly	once	a	completely	new	approach	arose—to	think
Fiori.	SAP	Fiori	had	its	origin	in	very	straightforward	ideas—make	the	interface
as	simple	as	possible	and	only	as	complicated	as	is	necessary,	make	it
responsive,	and,	most	importantly,	make	it	delightful.	This	approach	turns	away
from	overwhelming	transaction	screens,	with	plenty	of	options,	buttons,	popups,
tables,	and	lists,	and	tailors	the	application	to	fulfill	the	goal	of	a	single	process
without	any	distractions.	Furthermore,	this	application	should	only	be	offered	to
the	group	who	will	use	it.	Don't	make	a	single	multi-purpose	application	with	the
functionalities	designed	for	employees,	managers,	and	administrators—give
each	of	them	only	what	they	really	need.

This	idea,	although	very	simple	and	noble	in	its	goals,	couldn't	be	brought
quickly	and	efficiently	to	life	without	one	radical	step—to	abandon	cumbersome
SAP	GUI,	which	was	a	little	archaic,	and	go	completely	mobile.	The	most
flexible	way	to	achieve	this	was	to	focus	on	web	technologies	(as	they	are
available	for	both	mobile	and	stationary	users)	and	to	incorporate	them	into
reliable	business	processes	using	the	well-tested	and	publicly-available	libraries.
All	these	efforts	led	to	the	first	foundations	of	what	we	now	call	the	SAPUI5
libraries.

SAPUI5,	and	its	sister,	OpenUI5,	are	built	on	top	of	several	solid	technologies,
such	as	HTML5,	CSS3,	and	JavaScript,	and	some	pretty	convenient	and	mature
tools	and	libraries,	for	example	jQuery,	d3.js,	Crossroads.js,	and	many,	many
more.	The	SAPUI5	libraries	are	designed	and	considered	to	be	a	one-stop-shop
framework	and,	by	design,	don't	require	any	additional	configurations	and
installations	once	they	are	delivered.	There	is,	however,	one	thing	to	consider—

only	the	OpenUI5	libraries	are	open	source.	SAPUI5,	in	contrast,	is	a	part	of
several	SAP	products,	such	as	SAP	HANA,	SAP	Cloud	Platform,	and	SAP
NetWeaver,	but	is	delivered	without	any	additional	license.	Aside	from	the
licensing	difference,	in	OpenUI5	there	are	some	elements	missing,	which	are
designed	specifically	to	integrate	with	SAP	systems	and	products,	so	it	has	very
little	or	no	impact	on	the	core	functionalities	of	the	library.

The	following	topics	will	be	covered	in	this	chapter:

Development	tools
Layouts	and	floorplans
The	SAPUI5	library
Creating	your	first	mobile	app
Testing	SAPUI5	apps

Technical	requirements
It	is	recommended	that	you	use	one	of	the	following	integrated	development
environments	(IDEs):

Eclipse	JEE	(http://www.eclipse.org/downloads/eclipse-packages/)	with	SAPUI5
Tools	(https://tools.hana.ondemand.com/#sapui5).
WebIDE	Personal	Edition	(https://tools.hana.ondemand.com/#sapui5).
WebIDE	Cloud	Edition—this	requires	a	trial	account	at	SAP	Cloud
Platform	as	a	minimum	(https://cloudplatform.sap.com/index.html).

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter08.

http://www.eclipse.org/downloads/eclipse-packages/
https://tools.hana.ondemand.com/#sapui5
https://tools.hana.ondemand.com/#sapui5
https://cloudplatform.sap.com/index.html
https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter08

Development	tools
Together	with	the	new	way	of	thinking,	new	design	rules,	and	new	libraries,	SAP
has	started	to	develop	tools	that	allow	the	programmers	to	easily	develop	the
applications	in	the	new	technology,	but	also	to	integrate	them	with	the	existing
systems.	As	the	overall	policy	was	to	make	the	libraries	as	open	and	as	available
as	possible,	the	tool	should	be	made	publicly	available	as	well.	At	first,	the
choice	was	to	use	the	Eclipse	environment,	as	the	IDE,	which	is	available
publicly,	has	a	great	community	and	is	being	constantly	improved.	The	SAP
team	has	developed	several	plugins	for	the	Eclipse	IDE,	which	are	responsible
for	managing	the	SAPUI5	projects,	automating	the	applications	enhancing
process,	and	integrating	Eclipse	with	the	on-premise	SAP	systems,	its
repositories,	and	its	transport	management	system.

The	Eclipse	IDE	with	all	its	SAP	plugins	was	more	than	enough	to	create,
maintain,	and	deploy	the	SAPUI5	applications.	Although	the	plugins	are	still
available,	even	for	the	Neon	and	Oxygen	releases,	they	are	no	longer	improved
and,	at	present,	they	don't	offer	all	the	possibilities	that	are	delivered	with	other
tools.

Once	SAP	acknowledged	the	need	to	go	mobile,	it	was	expected	that,	sooner	or
later,	this	idea	will	be	found	in	more	and	more	aspects	of	the	whole	environment.
And,	eventually,	this	happened	to	the	development	tool	itself.	SAP	introduced
the	Web	IDE	in	two	editions,	Personal	and	Cloud,	and	it	is	now	the
recommended	tool	to	develop	the	SAPUI5	applications.

The	Web	IDE	Personal	Edition	is	a	standalone,	offline	tool,	yet	it	is	running	on
the	local	server	delivered	as	a	bundle,	and	so	it	is	accessed	through	web
browsers.	It	offers	all	the	tools	that	are	necessary	to	build	a	SAPUI5	application
either	from	scratch,	from	the	template,	or	as	an	extension	project	to	any	standard
Fiori	application.	Starting	from	the	graphical	layout	editor,	code	completion,	and
internationalization	maintenance,	through	built-in	Git	integration,	support	for
testing	frameworks	and	tools	(such	as	OPA	or	Sinon.JS),	and	easy	data	mocking,
even	to	integration	with	on-premise	systems	available	in	local	networks.	All
these	functionalities	are	available	without	any	license	or	fee	for	non-productive

scenarios.

Although	the	Web	IDE	Personal	Edition	seems	to	be	a	complete	tool	for	a
SAPUI5	developer,	it	can	still	be	considered	as	a	limited	version	of	what	is
available	in	the	Web	IDE	Cloud	version.	Due	to	the	biggest	advantage	of	the
Web	IDE	Cloud	version,	its	constant	improvement,	it	is	hard	to	list	all	of	the
functionalities	that	make	this	variant	superior	compared	to	any	other	tool.
Among	the	others,	the	most	important	one	is	the	Hybrid	Application	Toolkit
(HAT)	plugin	that	enables	the	possibility	to	pack	the	SAPUI5	web	apps	into
native	applications	for	mobile	devices	running	Android	or	iOS.	Another	useful
functionality	is	cloud-based,	community-driven	internationalization	automation,
which	utilizes	the	fact	that,	during	the	development	of	lots	of	applications,	some
texts,	labels,	or	headers	are	used	repeatedly	in	different	languages,	therefore	it
automatically	offers	translations	for	internationalization	files.	The	full-blown
cloud	version	for	productive	scenarios	requires	a	paid	license;	however,	the	trial
access	(unlimited	in	terms	of	functionalities	available	and	without	an	expiration
date)	is	available	for	everyone.

Another	very	convenient	tool,	which,	in	fact,	should	be	used	as	the	first	one	in
the	development	process,	is	SAP	Build,	also	known	as	Build.me.	It	is	a	very
easy-to-use	prototyping	application	for	User	Experience	(UX)	experts,	which
allows	you	to	create	interactive	models	of	the	SAPUI5-based	UI	without	a	single
line	of	code.	The	outcome	of	this	is	that	it	can	be	easily	used	to	deliver	several
prototypes	of	the	application	in	no	time,	and	can	adjust	them	in	the	low-cost
iterative	approach	before	getting	the	developers	involved.	The	final	model	can
be	then	exported	to	the	Web	IDE	(either	Personal	or	Cloud),	and	the	actual
application	logic	can	be	programmed	as	for	any	other	SAPUI5	application.

Layouts	and	floorplans
Keeping	in	mind	the	philosophy	of	making	simple,	responsive,	and	task-oriented
applications,	while	keeping	them	visually	consistent	and	appealing,	the	SAP
team	delivered	a	bundle	of	several	predefined	and	preconfigured	templates	and
frameworks	with	SAP	Fiori.	Depending	on	the	use	case	and	complexity	level,
the	bundle	can	be	described	in	three	categories—SAP	Fiori	elements,	layouts,
and	floorplans.	The	first	of	these	is	a	purpose-oriented	set	of	ready-to-use
templates,	whereas	layouts	and	floorplans	are	simple	designs	that	comply	with
the	Fiori	guidelines,	simultaneously	allowing	freedom	of	development.

SAP	Fiori	elements
The	increased	need	for	more	and	more	SAPUI5	applications,	which
accompanied	the	introduction	of	the	S/4	HANA	suite,	eventually	led	to	the
conclusion	that	most	of	them	share	some	similar	parts	and	concepts.	Thus,	it
seemed	inevitable	that	a	set	of	predefined	templates	should	be	developed,	which
can	be	used	almost	without	any	major	changes,	to	speed	up	the	application	build
process.	At	present,	there	are	already	five	of	these:

The	analytical	list	page
The	list	report
The	object	page
The	overview	page
The	worklist

Each	one	is	designed	to	serve	a	specific	purpose.

The	SAP	Fiori	elements	can	be	used	only	with	OData	services	that	support	annotations,	as
they	are	one	of	the	layout	building	blocks.

The	analytical	list	page
This	is	meant	to	be	used	for	analytical	tasks,	data	comparison,	and	root	cause
investigations.	The	analytical	list	page	is	recommended	whenever	there	is	a	need
to	present	aggregated	data	in	a	specific	way,	to	investigate	through	drill-down,
dynamically	apply	filters,	or	to	interact	with	both	tables	and	charts.

The	analytical	list	page	consists	of	three	main	sections—the	title,	header,	and
content.	Although	the	title	section	seems	to	be	self-explanatory,	it	serves	a
greater	purpose	than	just	showing	the	title.	It	is	the	main	entry	point	to	save	and
manage	page	variants	(that	is,	applied	filters,	grouping,	and	so	on),	it	shows
global	KPIs	and	allows	users	to	apply	some	global	visual	filters.	The	header
section's	main	feature	is	to	show	filtered	data	representation,	mainly	in	the	form
of	several	charts.	The	content	section	can	display	a	chart,	a	table,	or	both,	and	is
designed	to	operate	on	raw	data.

The	list	report
The	list	report	can	be	used	whenever	the	user	needs	to	work	on	large	datasets,
but	there	is	no	need	to	work	on	charts	and	tables	simultaneously,	or	if	drill-down
reporting	is	not	necessary,	but	it	is	crucial	to	work	on	multiple	items	at	once.
Similarly	to	the	analytical	list	page,	there	are	also	three	main	sections,	but	with
quite	different	meanings.	The	first	one,	the	header	title,	is	meant	to	display	the
page	title,	a	summary	of	filter	information,	and	some	global	action	buttons.	The
header	content	should	contain	all	necessary	filtering	options,	whereas	the	content
supports	simple	content	with	multiple	views.

The	object	page
The	object	page	is	designed	as	a	simple	information	sheet	and	should	be	used	for
single-item	managing	tasks	(create,	display,	or	edit).	The	three	main	building
blocks	are	the	snapping	header,	navigation	bar,	and	content	area.	The	header
contains	all	key	information	about	the	object	and	global	actions,	such	as	copying
or	deleting	the	object.	The	navigation	bar	is	used	to	navigate	within	the	object
page,	either	through	anchors	or	tabs.	The	content	area	arranges	sections	and
subsections	in	a	responsive	column	layout.	While	subsections	can	contain	any
control	and	any	data,	the	sections	are	only	meant	to	be	simple	containers	for
subsections,	giving	them	a	meaningful	title.

The	overview	page
This	application	type	serves	as	a	hub	gathering	data	from	several	other
applications	and	showing	them	in	one	place	in	forms	of	cards,	based	on	the
user's	role.	It	allows	the	user	to	react	to	information	from	more	than	one
application	shown	in	various	formats.	The	cards	are	entry	points	to	the
applications,	but,	what	is	more	important,	is	that	they	display	the	most	relevant
data	to	the	user	in	a	more	detailed	way	than	tiles	on	the	launch-pad	page—they
support	most	major	data	representations,	such	as	lists,	charts,	images,	tables,	or
information	sheets.

The	worklist
As	the	name	suggests,	the	worklist	is	intended	to	show	the	list	of	items	that	the
user	has	to	work	on.	It	supports	multiple	views	of	the	same	content	and	acts	as	a
single	entry	point	to	all	actions	on	the	work	items.

Layouts
Whenever	the	designer	decides	that	neither	of	the	SAP	Fiori	elements	can	fulfill
the	requirements,	or	there	are	some	technical	limitations	of	using	them	out	of	the
box,	there	are	still	several	recommendations	and	templates	that	can	be	used.
There	are	two	basic	layout	types	for	the	SAP	Fiori	applications	recommended	in
the	Fiori	design	guidelines—the	dynamic	page	layout	and	the	flexible	column
layout.	The	former	is	a	full-screen	application	with	a	header	title	and	a	single
content	area	with	a	footer,	whereas	the	latter	splits	the	content	area	into	a	master-
detail	or	master-detail-detail	scenario.	Each	of	them	supports	various	floorplans
that	can	be	embedded	in	the	content	area.

Floorplans
The	floorplan	is	a	general	term	to	describe	the	structure	of	the	controls	on	the
page,	or,	to	be	precise,	within	the	content	area	of	the	layout.	The	predefined
layouts	are	as	follows:

The	analytical	list	page	floorplan
The	initial	page	floorplan
The	list	report	floorplan
The	multi-instance	floorplan
The	object	page	floorplan
The	overview	page	floorplan
The	wizard	floorplan
The	worklist	floorplan

The	analytical	list	page,	list	report,	object	page,	overview	page,	and	worklist
floorplans	are	the	same	as	those	in	the	SAP	Fiori	elements;	however,	due	to	free
development,	they	support	more	different	options	and	controls.	The	remaining
ones	are	described	in	the	following	subsections.

The	initial	page	floorplan
This	is	the	most	simple	application	floorplan,	which	consists	only	of	a	single
input	field	to	search	with,	and	the	result	area.	It	is	useful	to	work	with	a	single
object	when	the	object	list	is	not	necessary.

The	multi-instance	floorplan
The	multi-instance	floorplan	is	a	natural	extension	to	the	object	page,	as	it
supports	working	with	multiple	objects	at	a	time,	using	convenient	tabs.

The	wizard	floorplan
This	floorplan	is	designed	to	be	used	in	multi-step	tasks.	This	helps	us	to
organize	all	data	inputs	and	user	interactions	into	subsequent	views,	with	the
indicator	of	steps	completed	and	remaining.

The	detailed	description	and	examples	of	each	layout	and	floorplan	can	be	found
in	the	SAP	Fiori	design	guidelines,	available	at	https://experience.sap.com/fiori-desi
gn-web/floorplan-overview/.

https://experience.sap.com/fiori-design-web/floorplan-overview/

Basic	templates
Apart	from	the	templates	recommended	by	the	SAP	Fiori	design	guidelines,	the
SAPUI5	library	suggests	the	use	of	three	simple	templates—Worklist,	Master-
Detail,	and	Basic,	which	are	more	or	less	simplified	versions	of	the	floorplans
already	covered	and	there	is	no	need	to	give	a	more	detailed	description.

The	SAPUI5	library
Once	the	top-level	view	of	the	application	is	already	designed,	it	is	time	to	get
familiar	with	the	actual	building	blocks	of	the	UI.	SAPUI5	is	already	a	mature
library	with	a	plethora	of	controls	and	elements.	In	order	to	get	a	quick	overview
of	most	of	them,	it	is	recommended	that	you	visit	https://sapui5.hana.ondemand.com/#
/controls,	which	contains	various	samples	and	use	cases	of	the	most	common
ones.

The	samples	are	ready	to	download	and	run	in	the	developer's	chosen	IDE,	or	simply	to	check
all	the	source	codes.

During	the	actual	development,	it	is	more	convenient	to	use	the	API	reference
than	to	check	sample	codes.	The	whole	documentation	of	every	single	control	is
available	at	https://sapui5.hana.ondemand.com/#/api	and	is	divided	into	several
libraries.	Although	from	the	technical	perspective,	all	the	libraries	are	written	in
the	same	language	and	should	be	compatible,	there	are	few	strong
recommendations	regarding	using	them	together,	and	violating	them	may	cause
the	application	to	crash.	There	are	three	groups,	as	follows:

sap.ui.comp,	sap.m,	sap.f,	sap.tnt,	sap.ea	(deprecated),	sap.me	(deprecated),
sap.suite.ui,	sap.ushell,	sap.uxap,	and	sap.gantt
sap.ui.commons	(deprecated),	sap.ui.richtexteditor,	sap.ui.suite,	and	sap.ui.ux3
(deprecated)
sap.ui.core,	sap.ui.layout,	sap.ui.unified,	sap.ui.table,	and	sap.viz

Groups	one	and	two	are	mutually	exclusive	and	cannot	be	used	together.	Group
three	can	be	used	both	with	one	and	two.	This	division	is	valid	for	SAPUI5
version	1.54.4,	and	it	may	vary	if	older	or	more	recent	versions	are	used.

https://sapui5.hana.ondemand.com/#/controls
https://sapui5.hana.ondemand.com/#/api

Control	documentation	page	and
inheritance
The	documentation	page	for	each	control	is	divided	into	several	sections—
contextual	info,	overview,	constructor,	properties,	associations,	aggregations,
events,	and	methods.

Contextual	info
This	is	placed	on	the	top	of	the	page	and	contains	basic	information	about	the
control's	visibility	(thus	whether	it	is	possible	to	use	it	directly	within	the
application,	or	it	is	used	only	by	other	controls),	the	library	version	from	which
the	control	is	available,	in	what	module	the	control	is	implemented,	what	object
it	extends,	or	what	other	controls	are	dependent.

Overview
This	presents	a	short	summary	of	the	control's	purpose,	where	it	should	and
where	it	should	not	be	used,	and	what	the	most	common	settings	and	methods
are.	In	case	the	control	is	deprecated,	there	is	also	information	about	possible
replacements.

Constructor
In	case	the	control	has	to	be	instantiated	programmatically	instead	of	statically,
the	constructor	section	contains	the	sample	JavaScript	code	to	create	the	new
instance,	alongside	the	description	of	its	arguments.

Properties
The	properties	section	contains	all	parameters	that	can	be	set	in	this	specific
control	using	standard	APIs.	Although	due	to	the	non-restrictive	nature	of	the
JavaScript	language,	it	is	possible	to	set	manually	any	single	property	of	the
control	that	is	not	listed	here,	there	is	no	guarantee	that	such	a	change	won't
break	the	control	or	even	the	application.	It	is	also	important	to	note	that	all	the
controls	are	inheriting	the	properties	from	their	superclasses	as	well	(look	at	the
Contextual	info	section),	so	their	properties	are	also	considered	as	a	part	of	the
API.	For	all	the	properties,	there	is	a	corresponding	get	and	set	(if	the	property	is
changeable)	method.	These	methods	should	be	used	to	set/get	the	properties
values	every	time,	except	for	the	object	instantiation.

Associations
This	section	contains	the	information	about	the	controls	that	are	associated	with
the	one	in	question	but	are	not	connected	to	its	life	cycle,	therefore,	there	is	no
guarantee	that	they	exist	when	the	control	is	created.

Aggregations
If	the	control	is	designed	as	a	container,	the	aggregations	sections	list	all	possible
controls	(or	types)	that	can	be	assigned	as	children	of	the	one	in	question.	In
many	cases,	the	type	listed	here	is	a	generic	one,	or	it	is	control	from	which	lots
of	others	inherit	and	can	be	used	as	well.

Events
User	actions	or	data	updates	cause	the	control	to	interact	with	the	JavaScript
code	through	events	and	handlers.	During	the	control	instantiation	(or	later
through	the	appropriate	methods)	the	developer	is	supposed	to	attach	handlers
(functions)	to	the	specified	events	and	perform	the	necessary	steps.

The	handler	function	receives	the	first	argument	of	the	sap.ui.base.Event	type,	with
the	information	about	the	parameters	dependent	on	the	event	type	and	about	the
event	source,	thus	allowing	the	usage	of	one	handler	method	for	several	controls
or	events.	The	events	from	the	controls	superclasses	(objects)	can	be	handled	as
well.

Methods
This	section	contains	all	the	information	about	the	methods	defined	for	the
object	in	question.	Among	the	ones	related	to	properties	(getters	and	setters),
there	are	also	a	lot	of	control-specific	methods	together	with	their	arguments	and
results.	It	should	be	noted	that,	similar	to	properties	and	events,	methods	are	also
inherited	from	the	superclasses,	and,	therefore,	all	of	them	are	perfectly	valid.

Inheritance
As	it	was	previously	mentioned,	the	UI	controls	are	not	completely	separated
objects	and	the	library	is	based	on	the	inheritance.	For	example,	the	button
control	from	the	sap.m	library	(sap.m.Button)	has	its	own	properties,	methods,	and
events	listed	on	the	documentation	page,	but	it	extends	sap.ui.core.Control,	which,
in	turn,	extends	sap.ui.core.Element,	and	then	sap.ui.base.ManagedObject,
sap.ui.base.EventProvider,	and,	eventually,	sap.ui.base.Object.	All	the	properties,
methods,	and	events	of	these	objects,	in	general,	can	be	used	with	sap.m.Button
objects.

Main	controls
The	SAPUI5	library	contains	several	hundred	controls.	Some	of	them	are	the	UI
controls	and	can	be	shown	on	the	screen	as	the	HTML	objects,	the	others	are
responsible	for	communication	with	the	data	providers.	To	simplify	the	building
of	the	application,	the	sap.m	library	was	introduced.	At	first,	it	was	designed	to
handle	the	interface	of	the	mobile	device,	but	eventually,	it	replaced	sap.ui.commons
on	the	desktop	devices	as	well	as	making	it	deprecated.	The	sap.m	library	is	now
considered	as	a	main	library	for	the	UI	and	should	be	used	as	a	first	choice	in
every	application.	Some	of	the	most	common	building	blocks	from	the	sap.m
library	are	as	follows:

sap.m.App/sap.m.SplitApp:	These	are	the	roots	of	the	SAPUI5	applications,	one
for	the	one-container	scenario	and	the	other	for	master-detail	applications.
sap.m.List/sap.m.Table:	These	are	the	most	common	mass-data-displaying
controls,	which	are	able	to	generate	several	repeatable	rows.	These	can	be
used	either	for	the	sole	purpose	of	displaying	data	or	to	perform	navigation
and	drill-down	scenarios.
sap.m.Button,	sap.m.Text,	sap.m.Label,	and	sap.m.Input:	These	are	basic
input/output	controls	for	interaction	with	the	user.
sap.m.Page	and	sap.m.Panel:	These	are	basic	grouping	containers;	sap.m.Page	is
required	as	a	top-most	node	in	sap.m.App/sap.m.SplitApp.
sap.m.Dialog,	sap.m.SelectDialog,	and	sap.m.Popover:	These	are	simple	controls	for
overlaying	information	and	dialog.

It	is	crucial	for	the	developer	to	be	able	to	swiftly	navigate	through	the
documentation	in	order	to	get	familiar	with	the	most	commonly-used	controls
and	at	least	get	a	glimpse	of	the	less	common	ones.	This	will	result	in	better
choices	when	building	the	application	and	less	custom	coding.

Custom	controls
Even	though	the	SAPUI5	library	is	vast	and	contains	various	controls,
sometimes	it	is	impossible	to	find	the	control	that	really	fits	the	requirements.	In
this	case,	the	developer	can	leverage	the	inheritance	model	and	the	elasticity
introduced	in	the	library.	Depending	on	the	actual	needs,	you	can	gather	the	few
existing	controls	into	a	new	one	implementing	some	additional	logic	and
automation,	or	extend	one	of	the	classes	(for	example	sap.ui.core.Control)
manually,	providing	appropriate	control	interface	properties,	rendering	methods,
events,	and	so	on.	Once	the	new	control	is	instantiated,	the	core	processor	will
take	care	of	its	life	cycle	and	event	processing	the	same	way	that	it	does	with	the
standard	ones.

Creating	our	first	mobile	app
Once	the	top-level	design	of	the	application	is	determined,	the	data	flow	is
designed,	and	the	interface	between	the	app	and	the	backend	system	is
confirmed,	it	is	time	to	start	the	development.	

A	simple	example	of	a	flight	searching	application	will	be	covered	in	the	next
sections.

Application	and	project	structure
The	SAPUI5	applications	are	supposed	to	follow	the	Model-View-Controller
(MVC)	paradigm	when	the	build	and	the	libraries	are	designed	to	support	it.	The
top-level	architecture	of	the	application	should	consist	of	JavaScript	controllers
responsible	for	any	application	logic,	data	services	to	provide	and	store
information	(either	as	.json	files,	Simple	Object	Access	Protocol	(SOAP)
services,	or	OData	Services)	attached	through	models,	and	views	defining	the
UI.	Although	there	is	a	technical	possibility	of	creating	views	using	JavaScript
files	or	JSON	objects,	it	is	highly	recommended	that	you	use	XML	files	instead.
The	MVC	paradigm	forces	the	separation	of	the	concerns	policy	and	makes	the
applications	easier	to	maintain	and	debug.

The	views	and	controllers	files	should	be	accompanied	with	internationalization
(i18n)	files	to	store	all	the	text	values	of	the	UI.	This	approach	allows	for	quick
and	easy	translations	of	the	interface,	without	the	need	to	scroll	through	all	other
files.

Regardless	of	the	development	tool	(Eclipse	with	plugins,	the	WebIDE	Personal
Edition,	or	the	WebIDE	Cloud	Edition),	once	the	new	project	is	created,	there
should	be	a	particular	structure	of	files	and	catalogs	in	it.	To	be	precise,	in	the
top-most	(usually	named	WebContent)	catalog,	you	should	find	the	index.html	file
(if	the	app	is	supposed	to	be	standalone),	Component.js,	and	manifest.json.	If	the
application	is	meant	to	be	accessed	through	the	Fiori	launchpad,	the	index.html
file	is	not	mandatory	in	the	deployment	process.	The	lower-level	structure	of	the
project	is	free	to	choose	from.

index.html
The	index	file	is	the	default	entry	point	to	every	web	page	on	the	internet.
Keeping	in	mind	that	the	SAPUI5	applications	are,	in	fact,	web	applications,
they	also	use	the	index	file	if	accessed	directly.	The	basic	structure	of	an	index
file	should	provide	references	both	to	the	SAPUI5	core	library	and	to	the
application	structure	itself.	The	example	file	is	listed	as	follows:

<!DOCTYPE	HTML>

<html>

				<head>

								<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

								<meta	http-equiv='Content-Type'	content='text/html;charset=UTF-8'/>

								<!--	SAPUI5	library	bootstrap	-->

												<script	src='[sap-ui-core.js	URL]'

																				id="sap-ui-bootstrap"

																				data-sap-ui-libs="sap.m"

																				data-sap-ui-theme="sap_belize"

																				data-sap-ui-bindingSyntax="complex"

																				data-sap-ui-resourceroots='{

																								"my.namespace":"./"

																				}'>

												</script>

												<script>

																sap.ui.getCore().attachInit(function(){

																				sap.ui.require([

																								"sap/m/Shell","sap/ui/core/ComponentContainer"

],	function(Shell,	ComponentContainer){

																								new	Shell({

																												id:	"shellId",

																												app:	new	ComponentContainer({

																																id:"componentId",

																																name:"componenName",

																																height:"100%"

																												})

																								}).placeAt("content");

																				});

																	});

												</script>

				</head>

				<body	class="sapUiBody"	role="application"	id="content"></body>

</html>

A	similar	file	is	automatically	generated	when	creating	a	new	project	in	any	of
the	development	tools	mentioned.	There	are	several	parts	of	this	file	with
different	functionalities	and	responsibilities,	and	these	will	be	explained	step	by
step.

Due	to	the	fact	that	the	libraries	are	based	on	modern	web	technologies,	we	need

to	ensure	that	some	older	browsers	are	also	supported.	In	this	particular	case,	the
following	line	ensures	that	Internet	Explorer	runs	the	application	with	the	most
recent	standards:

<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

The	next	part,	the	SAPUI5	library	bootstrap,	is	responsible	for	loading	the	whole
SAPUI5	framework	and	libraries	as	necessary.	There	are	several	ways	of	loading
the	library	core,	and	the	most	common	are	are	mentioned	in	the	following
sections.

The	standard	variant
This	is	the	most	common	way	of	bootstrapping	and	is	the	recommended	way.
The	src	value	should	point	directly	to	the	sap-ui-core.js	file.	This	loads	all	the
libraries	listed	in	data-sap-ui-libs	synchronously.

The	src	value	is	as	follows:

<script

				id="sap-ui-bootstrap"

				src="resources/sap-ui-core.js"

				data-sap-ui-libs="sap.m"

				data-sap-ui-theme="sap_belize">

</script>

The	content	delivery	network
The	content	delivery	network	(CDN)	variant	leverages	the	availability	of
several	web	servers	with	the	SAPUI5	libraries,	therefore	increasing	the	overall
performance	of	loading	the	application.	When	using	this	variant,	it	is	possible	to
choose	the	exact	version	of	the	SAPUI5	library	that	should	be	used	by	the
application.	For	the	OpenUI5	libraries,	you	should	use	the	openui5.hana.ondemand.com
host	instead.	The	src	value	is	shown	as	follows:

<script

				id="sap-ui-bootstrap"

				src="https://sapui5.hana.ondemand.com/[version]/resources/sap-ui-core.js"

				data-sap-ui-libs="sap.m"

				data-sap-ui-theme="sap_belize">

</script>

https://openui5.hana.ondemand.com/

The	miscellaneous	variants
If	the	SAPUI5	application	is	a	part	of	some	other	web	application,	and	jQuery	is
already	loaded,	you	can	use	the	special	non-jQuery	version	of	the	libraries	by
using	resources/sap-ui-core-nojQuery.js.	If,	due	to	performance	requirements,	there
are	some	specific	needs	regarding	libraries	preloading,	you	can	also	use	the
preload	variant,	which	is	described	in	detail	in	the	SAPUI5	documentation.	Let's
have	a	look	at	the	following	code	snippet:

data-sap-ui-bindingSyntaxt="complex"

data-sap-ui-resourceroots='{	"my.namespace":"./"	}'

The	two	remaining	lines	are	responsible	for	enabling	the	advanced	binding
syntax	in	views	and	specifies	the	naming	convention	in	the	application	structure
respectively.

The	JavaScript	coding	within	the	next	<script></script>	tags	is	launched	once	the
SAPUI5	core	is	loaded	and	initialized.	The	function	creates	a	new
sap.ui.core.ComponentContainer	with	sap.m.Shell	as	a	direct	child	node	and	places	it
inside	the	HTML	tag	with	id	as	content—in	this	case,	the	following	<body>	tag.

Component.js
The	Component.js	file	is	the	main	entry	point	to	the	application.	It	is	called	either
by	the	index.html	file	or	the	Fiori	launchpad	tile	and	contains	the	most	important
reference—to	the	application	manifest—and	the	initial	logic	for	the
application.	The	sample	file	is	listed	here:

sap.ui.define(["sap/ui/core/UIComponent"],	function(UIComponent){

		"use	strict";

		

		return	UIComponent.extend("my.namespace.Component",{

				metadata:{

						manifest:	"json"

				},

				

				init:	function(){

						UIComponent.prototype.init.apply(this,arguments);

						this.getRouter().initialize();

				}

		});

});

The	first	line	is	a	simple	statement	defining	what	the	content	of	the	file	is	in	a
form	that	the	SAPUI5	core	understands.	Have	a	look	at	the	following	code
snippet:

return	UIComponent.extend("my.namespace.Component",{		...

Then,	the	preceding	line	builds	a	custom	Component	object,	which	extends	the
standard	sap.ui.core.UIComponent	class	with	the	data	defined	in	the	following	JSON
object:

{

		metadata:{

				manifest:	"json"

		},

				

		init:	function(){

				UIComponent.prototype.init.apply(this,arguments);

				this.getRouter().initialize();

		}

}

metadata,	in	this	case,	only	points	to	the	manifest	file,	telling	the	parser	that	it	can
be	found	in	the	manifest.json	file.	The	init	section	performs	the	init	function	from
the	superclass,	and	additionally	initializes	the	router	to	handle	navigation	within

the	application.

manifest.json
The	manifest.json	file	is	the	main	descriptor	file	of	the	application.	Due	to	a	large
number	of	possible	settings,	only	the	most	relevant	parts	will	be	covered	here.	A
more	detailed	description	is	available	in	the	SAPUI5	reference.

Going	section	by	section,	as	it	is	a	large	JSON	object,	the	file	configures	the
application	in	several	ways.	The	"sap.app"	section	contains	basic	information
about	the	sources	to	which	the	application	refers—the	internationalization	(i18n)
files'	locations,	OData	services,	and	static	data	sources	(JSON	files).	The
application	name,	title,	id,	version,	and	others	can	also	be	listed.	The	sample
"sap.app"	part	with	a	basic	configuration	is	shown	as	follows:

		"sap.app":{

				"_version":"1.0.0",

				"id":"appId",

				"type":"application",

				"i18n":"i18n/i18n.properties",

				"dataSources":{

						"staticJSONSource":{

								"uri":"staticData/data.json",

								"type":"JSON"

						},

						"mainService":	{

								"uri":	"/sap/opu/odata/sap/ZODATA_SERVICE",

								"type":	"OData",

								"settings":	{

										"odataVersion":	"2.0"

								}

						}

				}

		},

The	"sap.ui"	section	contains	information	about	the	UI:	the	technology,	which
device	types	are	supported,	which	themes,	and	so	on.	The	simple	snippet	for	the
"sap.ui"	section	can	be	created	as	follows:

"sap.ui":{

				"_version":"1.0.0",

				"technology":"UI5",

				"deviceTypes":{

						"desktop":	true,

						"tablet":	true,

						"phone":	true

				}

		},

The	last	section,	"sap.ui5",	configures	the	application	itself.	"rootView"	points	to	the
view	file,	which	acts	as	a	top-most	and	will	be	considered	as	a	base	for	the
router.	The	"models"	section	initializes	specific	models,	based	on	the	"dataSources"
defined	in	"sap.app".	It	is	important	to	note	a	few	differences	between	them.	The
"i18n"	model	is	a	special	type	of	model,	designed	particularly	to	contain	text
values	of	the	UI	and	should	not	be	used	for	any	other	purposes.	The	""	model
(without	a	name)	is	considered	a	root	model.	It	is	possible	to	have	an	unlimited
number	of	models	with	names,	but	only	one	can	be	nameless.	An	example	of
the	"sap.ui5"	section	with	the	initialization	of	models	and	application	root
controls	is	shown	as	follows:

"sap.ui5":{

				"_version":	"1.0.0",

				"rootView":"my.namespace.view.MainView",

				"controlId":"app",

				"controlAggregation":"pages",

				"models":{

						"i18n":{

								"type":"sap.ui.model.resource.ResourceModel",

								"settings":{

										"bundleName":	"my.namespace.i18n.i18n"

								}

						},

						"staticModel":{

								"type":"sap.ui.model.json.JSONModel",

								"dataSource":"staticJSONSource"

						},

						"":	{

								"dataSource":	"mainService"

						}	

						

				},

				"routing":	{	.	.	.	}

		}

Finally,	there	is	the	"routing"	section.	It	contains	all	information	for	the	router
(pointed	in	"config"	>	"routerClass")	to	handle	the	navigation	between	views	in	the
application.	The	special	"bypassed"	property	is	used	whenever	the	router	doesn't
know	what	view	should	be	displayed.	In	the	"routes"	subsection,	you	can	define
the	URL	patterns	and	bind	them	with	the	targets.	It	is	important	to	know	that	the
patterns	are	checked	in	the	order	of	declaration	and	the	first	matching	one	is
applied.	That	means	that	more	general	patterns	should	be	placed	after	specific
ones.	The	targets,	in	turn,	point	to	specific	views	in	the	project	structure,	along
with	"viewLevel",	which	decides	whether	the	navigation	animation	should	be	"to"
the	view	or	"back".

"viewNames"	of	"targets"	are	resolved	against	"viewPath"	in	"routing"	>	"config",	therefore	there	is	no
need	to	write	the	full,	absolute	path	to	them.

The	simple	"routing"	section	with	one	route	and	two	targets	is	shown	as	follows:

"routing":{

						"config":{

								"routerClass":"sap.m.routing.Router",

								"viewType":"XML",

								"viewPath":"my.namespace.views",

								"controlId":"app",

								"controlAggregation":"pages",

								"clearTarget":false,

								"transition":"show",

								"bypassed":{

										"target":["invalid"]

								}	

						},

						"routes":[

								{

										"pattern":"search",

										"name":"search",

										"target":"search"

								}

],

						"targets":{

								"search":{

										"viewName":"SearchView",

										"viewLevel":1

								},

								"invalid":{

										"viewName":"NotFound",

										"viewLevel":1

								}

						}

				}

Views	and	controllers
In	the	very	simple	application	that	this	book	is	going	through,	the	files	structure
is	as	follows:

Two	views	are	created	in	the	views	folder,	with	corresponding	controllers	in	the
controller's	catalog.	Additionally,	the	data.json	file	is	created	inside	staticData	to
store	some	static	information,	which	can	be	used	by	the	application	and	is	loaded
at	the	application	start	into	the	staticModel	model	(as	shown	in	the	manifest.json
file).

NotFound.view.xml	is	a	fallback	for	the	router	when	it	doesn't	reach	any	specific
target,	therefore	the	focus	will	be	on	the	remaining	two	views.

MainView.view.xml
This	view	is	relatively	small	and	is	a	good	example	to	show	the	logic	and	the
notation:

<mvc:View

		controllerName="my.namespace.controllers.MainView"

		xmlns="sap.m"

		xmlns:mvc="sap.ui.core.mvc"

		displayBlock="true">

		<App	id="app"

				backgroundColor="#fff"

/>

</mvc:View>

The	top-most	XML	node	of	each	view	file	is	the	View	node.	As	for	every	other
XML	object	or	file,	the	first	node	must	define	all	the	namespaces	used	in	the
XML	tree.	In	this	case,	there	are	two	namespaces	declared—"sap.m"	for	tags
without	a	prefix,	and	"sap.ui.core.mvc"	with	mvc	prefixes.	The	built-in	XML	parser
resolves	these	names	into	the	SAPUI5	libraries	and	gets	the	appropriate
definitions	of	the	corresponding	objects.	The	obligatory	controllerName	parameter
points	to	the	controller	file,	which	has	to	be	loaded	alongside	the	view	to	handle
its	life	cycle	and	events.	Each	view	has	to	point	to	one	controller,	but	it	is
possible	to	use	the	same	controller	file	for	more	than	one	view	(keeping	in	mind
that	two	separate	instances	will	be	created	in	runtime).

This	particular	view	has	only	one	child	node—app	(sap.m.App).	This	node	is
referred	to	in	the	router	description	as	the	main	control	of	the	application,	and	all
the	navigation	will	take	place	within	this	control.

As	MainView	is	just	a	container	for	the	application,	there	is	no	specific	logic
implemented	in	its	controller,	just	its	simple	declaration:

sap.ui.define(["sap/ui/core/mvc/Controller"],function(Controller){

				return	Controller.extend("my.namespace.controllers.MainView",{})

});

SearchView.view.xml
This	simple	application's	sole	functionality	will	be	searching	for	a	flight	from	a
specific	location.	The	location	should	be	entered	by	the	user	and	then	confirmed
by	pressing	the	Search	button.

The	code	for	the	appropriate	view	is	listed	as	follows:

<mvc:View

		controllerName="my.namespace.controllers.SearchView"

		xmlns="sap.m"

		xmlns:mvc="sap.ui.core.mvc"

		xmlns:l="sap.ui.layout">

		<Page

				id="searchPage"

				title="{i18n>TTL_SearchPage}">

				<Panel

						expandable="false"

						expanded="true"

						headerText="{i18n>HDR_SearchPanel}">

						<l:Grid	defaultSpan="XL2	L3	M6	S12">

								<l:content>

										<Label	text="{i18n>LBL_Search}"/>

										<Input	id="searchInput"/>

										<Button	

												text="{i18n>BTN_Search}"

												press="searchButtonPressed"/>

								</l:content>

						</l:Grid>

				</Panel>

				<List

						id="flightsList"

						items="{filteredFlights>/FlightsSet/}">

						<items>

								<StandardListItem

										title="{filteredFlights>DestinationAirport}"

										description="{filteredFlights>FlightDate}"

										info="{filteredFlights>FlightTime}"

										/>

						</items>

				</List>

		</Page>

</mvc:View>

The	View	node	is	similar	to	the	previous	one—it	contains	information	about	the
controller	assigned	to	the	view	and	declares	all	namespaces	used	within	the	file.
The	first	child	node	of	the	view	is	Page,	the	default	container	used	in	navigation.
Its	property	title	refers	to	the	specific	entry	in	the	internationalization	file
through	the	i18n	model	instantiated	by	manifest.json.	The	page	consists	of	two
major	parts—the	panel	with	Label,	Input,	and	Button	arranged	in	Grid	and	List.

Using	the	Grid	control	allows	us	to	control	the	child's	control	dimensions	on
various	screen	sizes.	If	not	defined	otherwise	in	the	control,	defaultSpan
determines	how	many	columns	are	used.	The	size	of	Grid	is	divided	into	12	equal
columns.

The	"press"	property	of	the	button	is	declared	to	fire
the	"searchButtonPressed"	method	of	the	controller.	Once	the	user	presses	it,	the
controller	will	handle	all	the	necessary	logic.

The	"items"	property	of	the	list	is	bound	to	the	"filteredFlights"	model	and	to	the
FlightsSet	collection.	Once	there	are	any	contents	in	this	model,	the	template	used
inside	the	<items>	tag	will	be	copied	to	display	all	the	items.	The	template
itself,	StandardListItem,		binds	its	own	properties	to	specific	properties	of	the	items
from	the	FlightsSet	collection.	DestinationAirport	will	be	displayed	as	a	title
of	StandardListItem,	FlightDate	as	a	description,	and	FlightTime	as	information.	Any
control	that	inherits	from	sap.m.ListItemBase	can	be	used	instead	if	there	is	a	need
for	this.

SearchView.controller.js
This	time	there	is	some	logic	behind	the	screen—the	user	can	press	the	button
and	then	the	values	on	the	list	should	be	displayed.	The	sample	file	is	described
as	follows.

	

The	first	lines,	similar	to	MainView.controller.js,	are	a	simple	definition	of	the
controller.

	

sap.ui.define(["sap/ui/core/mvc/Controller"],function(Controller){

					return	Controller.extend("my.namespace.controllers.SearchView",{

Then,	within	the	JSON	object	that	extends	the	standard	controller,	the	onInit
function	is	defined.	It	is	triggered	right	after	the	same	function	from	the
superclass.	Here,	due	to	the	fact	that	View	is	bound	to	the	non-existent
"filteredFlights"	model,	the	model	is	created	and	set	on	View.	The	model's	sole
property	is	"FlightsSet",	and,	so	far,	it	is	an	empty	array:

onInit:function(){

		this.getView()

				.byId('flightsList')

				.setModel(

								new	sap.ui.model.json.JSONModel(

										{

												'FlightsSet':[]

										}

),

								'filteredFlights'

);

},

Later	on,	there	is	a	logic	for	handling	the	user's	interaction	with	the	button.	Once
it	is	pressed,	the	value	is	read	from	the	"searchInput"	control	and	the	call	to	the
OData	service	(assigned	to	the	nameless	model)	is	triggered.	The	call	consists	of
two	arguments—first,	the	OData	entity	collection	name,	"FlightsSet",	then	a
JSON	object	with	several	properties:

searchButtonPressed:function(oEvent){

						var	sValue	=	this.getView().byId('searchInput').getValue();

						this.getView().getModel().read('/FlightsSet',{

								filters:[new	sap.ui.model.Filter({

										path:	'DepartureAirport',

										operator:	sap.ui.model.FilterOperator.EQ,

										value1:	sValue

								})],

								success:jQuery.proxy(this.handleValuesFetched,this),

								error:jQuery.proxy(this.handleError,this)

						});

				}

The	properties	passed	to	the	call	are	as	follows:

Filter	with	the	value	taken	from	"searchInput"
Success	handler—the	controller's	method	fired	when	the	call	is	completed
successfully
Error	handler—called	when	there	is	any	error	during	the	call

Note	that	the	success	and	error	handler	is	wrapped	with	a	jQuery.proxy	statement.	Due	to	the
asynchronous	nature	of	the	Ajax	calls,	sometimes	the	reference	to	a	this	object	can	be	lost
causing	the	application	to	crash.	Using	this	proxy	statement	ensures	that	the	callbacks	are
triggered	within	the	proper	this	context.

The	success	handler	puts	all	the	fetched	results	into	the	JSON	model	instantiated
in	the	onInit	function.	The	exact	coding	of	this	handler	is	shown	as	follows:

handleValuesFetched:	function(data){

				this.getView()

								.getModel('filteredFlights')

												.setProperty('/FlightsSet',data.results);

},

The	simple	error	handling—for	developing	purposes	only—writes	the	whole
error	object	into	the	browser's	console.	This	way	of	showing	errors	is	very
convenient	during	development;	however,	it	should	not	be	used	in	productive
scenarios.	The	code	used	is	as	follows:

handleError:	function(error){

				console.error(error);

				}	

		})

});

i18n.properties
The	one	thing	that	left	is	the	internationalization	file.	By	default,	the	library	core
looks	for	the	i18n_xx.properties	file,	where	xx	contains	the	user's	language	code.
When	there	is	no	specific	i18n	file	for	this	language,	the	default	i18n.properties	file
is	used,	and,	therefore,	it	is	the	only	one	that	is	actually	required.	This	simple
application	doesn't	have	many	text	fields,	so	the	file	is	rather	short:

TTL_SearchPage=Flights	search	engine

HDR_SearchPanel=Enter	filter

LBL_Search=Departure	Airport

BTN_Search=Search	flights!

Once	the	application	grows	bigger	and	bigger	it	is	wise	to	stick	to	one	naming
convention	and	group	the	text	properties.	This	is	automatically	handled	when
using	the	SAP	Web	IDE	as	a	development	tool	but	has	to	be	maintained
manually	in	the	Eclipse	environment.

Testing	SAPUI5	apps
Every	SAPUI5	application—either	small	and	simple	or	very	complex—should
be	considered	a	software	project.	The	nature	of	software	projects	is	that,
sometimes,	they	can	cause	problems	or	errors,	especially	when	changes	are
introduced	quickly,	the	developing	team	changes,	or	simply	due	to	typos	or	non-
straightforward	logic.	In	order	to	avoid	or	at	least	minimize	the	risk,	all	projects
should	be	tested.	The	SAPUI5	supports	several	ways	of	testing,	but	the	most
general	is	mocking	data	with	Mock	Servers,	unit	tests,	and	integration	tests.
These	three	techniques	will	be	covered	in	the	following	sections.	It	is
recommended	to	write	a	separate	index-like	file	in	the	test	folder,	to	separate
testing	area	from	development.

Mock	Server
The	Mock	Server	is	used	to	perform	simple	testing	with	dummy	data,	when	the
backend	service	is	not	yet	implemented	or	simply	not	reachable.	As	the	SAPUI5
applications	are	data-driven	rather	than	completely	standalone,	it	is	crucial	to
have	at	least	fake	data	to	test	their	behavior.	In	order	to	implement	the	Mock
Server	functionality,	several	changes	are	necessary	to	the	.html	file.

Let's	assume	that	the	testing	area	is	created	in	the	project	structure	and	the
launching	page,	mockServer.html,	is	placed	in	the	test	catalog:

Then,	the	initial	.html	file	must	be	enhanced	as	follows:

.	.	.

sap.ui.getCore().attachInit(function(){

		sap.ui.require([

				"my/namespace/localService/mockServer",

				"sap/m/Shell",

				"sap/ui/core/ComponentContainer"],	function(mockserver,	Shell,	ComponentContainer){

		mockserver.init()

		new	Shell({

		.	.	.

Then,	the	actual	server	must	be	created	in	the	mockserver.js	file:

sap.ui.define(["sap/ui/core/util/MockServer"],	function(MockServer){

		"use	strict";

		return	{

				init:	function(){

						var	oMockServer	=	new	MockServer({

								rootUri:	"/sap/opu/odata/sap/ZODATA_SERVICE/"

						});

						

						oMockServer.simulate("../localService/metadata.xml",	{

								sMockdataBaseUrl:	"../localService/mockdata",

								bGenerateMissingMockData:	true

						});

					

						oMockServer.start();

				}

		}

}

This	simple	snippet	creates	a	virtual	server	that	servers	the	data	according	to	its
definition	in	the	metadata.xml	file.	It	uses	the	.json	files	stored	in
localService/mockdata,	or,	thanks	to	bGenerateMissingMockData	flag,	generates	missing
values	if	there	are	no	appropriate	.json	files.	As	a	rule,	the	.json	files	should	be
named	as	the	entity	collections	in	OData	service,	and	their	structure	should
reflect	the	entity	properties.

The	metadata.xml	file	is	a	simple	OData	metadata	file	available	in	an	OData
service.	Provided	that	this	file	describes	the	same	structure	as	the	target	service,
the	application	will	work	with	both	the	mock	server	and	the	real	one.		

The	server,	although	already	working,	has	some	limitations	if	kept	in	the	current
form.	It	will	not	handle	any	custom	parameter	in	the	request	call	and	does	not
recognize	function	imports.	To	achieve	this,	more	advanced	configuration	and
coding	is	required.	Details	can	be	found	in	the	SAPUI5	documentation.

Unit	tests
When	the	project	grows	and	new	functionalities	are	added,	it	will	be	necessary	to
be	able	to	quickly	check	whether	each	and	every	part	still	works	as	expected.	For
this	purpose,	the	SAPUI5	libraries	support	unit	tests	with	the	use	of	the	QUnit
framework.	To	set	up	a	simple	unit	testing	module,	first,	it	is	necessary	to	create
the	test	launcher	site,	unitTests.qunit.html.	The	file	should	be	placed	in	the	test/unit
catalog:

A	short	snippet	of	the	launcher	file	is	shown	as	follows:

<!DOCTYPE	html>

<html>

		<head>

				...

				<script	id="sap-ui-bootstrap"

						<!--	SAPUI5	core	bootstrap	-->

						...	>

				</script>

				<script>

						jQuery.sap.require("sap.ui.qunit.qunit-css");

						jQuery.sap.require("sap.ui.thirdparty.qunit");

						jQuery.sap.require("sap.ui.qunit.qunit-junit");

						jQuery.sap.require("sap.ui.qunit.qunit-coverage");

						

						QUnit.config.autostart	=	false;

						sap.ui.require(

								["test/unit/testModules"],

								function(){

										QUnit.start();

								}

);

				</script>

		</head>

		<body>

				<ol	id="qunit-tests">

				<div	id="qunit-fixture"></div>

		</body>

</html>

At	first,	the	SAPUI5	core	library	is	loaded	by	standard	bootstrap.	Then,	through
jQuery.sap.require,	QUnit	modules	and	the	QUnit.start	fires	test	that	is	declared	in
the	test/unit/testModules	file	are	loaded:

sap.ui.define([

				"test/unit/simpleTest",

				"test/unit/simpleTest2"],	function(){

				"use	strict";

});

All	test	files	defined	through	sap.ui.define	will	be	loaded	and	executed	once	they
are	called	through	the	launcher	site.

The	test	files	themselves	are	written	in	the	following	structure	(this	time,	some
pseudo-code	is	used):

sap.ui.require([

				"path/to/file/tested1",

				"path/to/file/tested2",

				.	.	.

],

		function(file1,	file2,	...){

		"use	strict";

		

		QUnit.module("Simple	module");	

		

		function	testCase(assert,	argument,	expected){

				var	result	=	file1.method1(argument);

				assert.stricEqual(result,	expected,	"Correct	result");

		}

		

		QUnit.test("Name	of	the	test	case",	function(assert){

				testCase.call(this,	assert,	"testArgument1",	"expectedValue");

		});

		

		.	.	.

});

The	algorithm	is	as	follows—load	the	JavaScript	files	with	the	code	to	be	tested
by	the	sap.ui.require	command,	define	a	function	with	a	call	to	the	method	in
question	with	at	least	one	assertion,	and	finally,	write	the	test	cases	with

appropriate	arguments	and	expected	values.

Once	the	tests	are	created,	there	is	no	need	to	check	all	possible	values	and
outcomes	manually.

Integration	tests
The	integration	tests	are	used	to	efficiently	check	whether	or	not	the	new
functionalities	interfere	with	the	existing	ones.	In	SAPUI5,	the	integration	tests
are	executed	with	the	One	Page	Acceptance	5	(OPA5)	tool,	which	is	suitable
for	any	SAPUI5	application	that	works	in	a	single	HTML	page.	The	OPA	tests
scenarios	are	called	journeys	and	are	automated	executions	of	the	user's
interaction	with	the	application.	The	core	of	this	tool	simply	mimics	pushing
buttons,	entering	values,	navigating	through	views,	and	so	on,	following	the
programmed	scenarios.

Similar	to	unit	tests,	integration	tests	also	need	a	launching	page,
integrationTests.qunit.html,	and	it	should	be	placed	in	the	test/integration	catalog:

The	launching	page	structure	is	as	follows:

<!DOCTYPE	html>

<html>

		<head>

				.	.	.

				<script	id="sap-ui-bootstrap"

						<!--	SAPUI5	core	bootstrap	-->

						.	.	.>

				</script>

				<script>

						jQuery.sap.require("my.namespace.test.integration.Journeys");

				</script>

		</head>

		<body>

				<div	id="qunit"></div>

				<div	id="qunit-fixture"></div>

		</body>

</html>

Similar	to	unit	tests,	this	launching	page	also	refers	to	a	single	file	that	stores	all
testing	scenarios.	The	Journeys.js	file	is	built	in	the	following	way:

jQuery.sap.require("sap.ui.qunit-css");

jQUery.sap.require("sap.ui.thirdparty.qunit");

jQuery.sap.require("sap.ui.qunit.qunit-junit");

Qunit.config.autostart	=	false;

sap.ui.require([

		"sap/ui/test/Opa5",

		"my/namespace/test/integration/pages/BasicArrangements",

		“my/namespace/test/integration/pages/SearchView

		...],	function(Opa5,	Arrangements){

				"use	strict";

				Opa5.extendConfig({

						arrangements:	new	Arrangements(),

						viewNamespaece:	"my.namespace.views",

						autoWait:	true

				});

				

				sap.ui.require([

						"my/namespace/test/integration/SearchViewJourney"

],	function(){

						QUnit.start();

				});

		});

The	script	loads	the	standard	testing	module	(OPA5)	together	with	a	common
arrangements	file—it	is	useful	to	move	the	arrangements	that	are	used	in	many
scenarios	to	a	separate	file.	The	BasicArrangement	file	is	explained	as	follows:

1.	 Firstly,	the	main	testing	module	is	loaded:

sap.ui.define(["sap/ui/test/Opa5"],	

		function(Opa5){	

				"use	strict";

2.	 Then,	the	helper	method	to	create	a	valid	URL	from	a	hash	and	parameters
are	defined	as	follows:

function	getFrameUrl(sHash,	sUrlParameters){

						sHash	=	sHash	||	"";

						var	sUrl	=	jQuery.sap.getResourcePath("my/namespace/test/mockServer",".html");

						if(sUrlParameters){

								sUrlParameters	=	"?"	+	sUrlParameters;

						}

						return	sUrl	+	sUrlParameters	+	"#"	+	sHash;

				}

3.	 Then,	the	OPA5	object	is	extended	to	define	BasicArrangements,	with	several
additional	simple	methods:

return	Opa5.extend("my/namespace/test/integration/pages/BasicArrangements",{

						constructor:	function(oConfig){

								Opa5.apply(this,arguments);

								this._oConfig	=	oConfig;

						},

						

						iStartMyApp:	function(oOptions){

								var	sUrlParameters;

								oOptions	=	oOptions	||	{	delay:	0	};

								sUrlParameters	=	"serverDelay="	+	oOptions.delay;

								this.iStartMyAppInAFrame(getFrameUrl(oOptions.hash,sUrlParamters));

						},

						

						iLookAtTheScreen:	function(){

								return	this;

						},

				}

		});

4.	 Once	the	common	file	is	created,	the	view-specific	one	is	required	with	all
its	arrangements.	SearchView.js	is	as	follows:

sap.ui.require([

				'sap/ui/test/Opa5',

				'sap/ui/test/actions/EnterText',

				'my/namespace/test/integration/pages/BasicArrangements'

],

		function	(Opa5,	EnterText,	BasicArrangements)	{

				"use	strict";

5.	 Then,	all	needed	modules	are	loaded	and	the	new	page	object	is	created
within	Opa5,	named	onTheFlightsPage.	This	page	object	extends	BasicArrangements,
and	therefore	inherits	all	the	methods	defined	in	its	body:

Opa5.createPageObjects({

						onTheFlightsPage:	{

								baseClass:	BasicArrangements,

6.	 For	this	simple	case,	the	only	requirement	is	to	check	whether	it	is	possible
to	enter	a	value	into	the	"searchInput"	field,	therefore,	the	EnterText	action	is
triggered,	and,	if	successful,	the	assertion	is	evaluated	to	true:

								assertions:	{

										theTextShouldBeEntered:	function	()	{

												return	this.waitFor({

														id:	"searchInput",

														viewName:	"SearchView",

														actions:	new	EnterText({

																clearTextFirst:	true,

																text:	"New	York"

														}),

														success:	function	()	{

																Opa5.assert.ok(true,	"Text	is	entered");

														},

														errorMessage:	"Failed	to	enter	text"

												});

										}

								}

						}

				});

		});

7.	 Once	the	page	object	is	defined,	it	is	possible	to	define	the	steps	in	the
SearchViewJourney.js	file:

sap.ui.require(["sap/ui/test/opaQunit"],

		function(opaTest){}

				"use	strict";

				QUnit.module("Simple	test");

				opaTest("Should	be	able	to	enter	value",	function(Given,	When,	Then){

						Given.iStartMyApp();

						When.onTheFlightsPage.iLookAtScreen();

						Then.onTheFlightsPage.theTextShouldBeEntered();

				});

);

It	is	easy	to	see	why	the	scenarios	are	called	journeys—the	whole	interaction	is
written	in	the	form	of	a	story,	or	a	journey,	that	the	user	is	participating	in.

Summary
The	introduction	of	the	SAPUI5	libraries	finally	separated	the	powerful	and
efficient	backend	logic	of	the	SAP	systems	from	the	UI.	This	decision	allowed
greater	flexibility	in	creating	new	applications	with	the	use	of	modern
technologies.	Thanks	to	the	fact	that	the	libraries	are	based	on	well-known	and
well-tested	modules,	they	are	compatible	with	all	major	modern	browsers	and
have	mature	development	and	testing	tools.	Together	with	samples	and
templates,	SAPUI5	authors	created	several	guidelines,	recommendations,	and
project	structures,	which	were	introduced	in	the	previous	sections.	The	SAPUI5-
based	applications	are	currently	the	most	recent	UI	technology	in	the	SAP
environment;	therefore,	this	chapter	is	the	last	one	covering	the	topic	of	UIs.	In
the	next	chapter,	the	main	focus	will	be	placed	on	more	business-oriented	logic
and	possibilities	available	in	the	Business	Object	Processing	Framework.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	tools	are	recommended	for	use	in	UI5	app	development?
2.	 How	can	the	SAPUI5	application	be	translated?
3.	 What	is	MVC	and	why	should	it	be	used?
4.	 What	tools	are	provided	for	testing	UI5	applications?

Further	reading
More	detailed	examples	of	testing	and	more	samples	and	cases	are	available	in
the	official	documentation	of	the	SAPUI5	library:	https://sapui5.hana.ondemand.com/#
/topic

https://sapui5.hana.ondemand.com/#/topic

Business	Object	Processing
Framework
Every	ABAP	programmer	during	their	carrier	will	have	to	(sooner	or	later)
create	a	fully	customized	solution	from	scratch.	In	a	large	development
environment,	we	will	have	to	work	with	a	database,	create	appropriate	structures
for	our	business	objects,	separate	individual	development	fragments	into	layers,
implement	a	lock	mechanism,	and	handle	error	logs.	We	can	create	all	of	these
things	manually,	but	this	will	require	a	lot	of	work	and	will	only	be	understood
by	developers	who	create	this	solution.	The	Business	Object	Processing
Framework	(BOPF)	allows	you	to	speed	up	development	and	increase	its
quality.	

In	this	chapter,	we	will	cover	the	following	topics:

An	introduction	to	BOPF
The	components	of	BOPF
The	elements	of	the	BOPF	programming	model
BOPF	developer	tools
Using	BOPF

Technical	requirements
In	order	to	get	this	chapter's	examples	working,	you	need	to	meet	the	following
requirements:

BOPF:	SAP	Business	Suite	EHP5	SP11,	SAP	Business	Suite	EHP6	SP05,
and	SAP	Business	Suite	EHP7,	starting	with	the	SAP	NetWeaver
7.50	release	as	the	SAP	BASIS	layer

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter09.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter09

An	introduction	to	BOPF
BOPF	is	widely	used	in	SAP	standard	modules	(that	is,	transportation
management,	environment,	and	health	and	safety).	As	we	mentioned	in	this
chapter's	introduction,	we	can	also	use	this	framework	in	our	custom
development.	BOPF	handles	the	most	common	development	features,	such	as
authorization	control,	low-level	transaction	handling,	buffer	management,
provisioning	of	the	consumer	API,	and	business	logic	orchestration.	It's	well-
integrated	with	a	wide	range	of	SAP	components.	From	an	interface	and
consumption	perspective,	it	is	integrated	with	SAPUI5,	Classic	DynPro,	Web
DynPro,	and	Gateway	and	Business	Object	Layer	(BOL).	From	an
infrastructure	perspective,	it	is	integrated	with	Archive	Development	Kit
(ADK),	Change	Document,	Application	Log,	BRF+,	and	Enterprise	Search.	This
makes	BOPF	a	powerful	solution	that	every	ABAP	developer	should	know
about.

Transaction
Working	with	BOPF	can	take	different	forms.	We	can	expand	existing	objects,
use	standard	objects	in	our	transactions,	or	create	completely	new	things	from
scratch.	Regardless	of	what	we	do,	our	work	is	limited	to	just	a	few	transactions
that	have	been	presented	in	this	chapter.	The	following	list	provides	basic
information	on	this	topic:

	BOPF	is	an	internal	SAP	transaction	where	you	can	see	all	standard
Business	Objects	(BOs):

Business	Object	Builder	(BOB)	is	a	transaction	where	you	can	create	a
custom	BO	from	scratch:

Business	Object	Builder	eXpert	(BOBX)	is	the	recommended	transaction
for	standard	business	object	enhancement:

The	logic	and	development	are	encapsulated	in	Business	Objects.	You	can	open
any	BO	by	choosing	it	from	the	hierarchy	on	the	left-hand	side	and	double-
clicking	on	its	name.	Let's	check	out	/BOBF/DEMO_SALES_ORDER:

On	the	next	screen,	you	will	see	a	hierarchy	panel	on	the	right-hand	side	and
node-specific	options	on	the	left-hand	side.	Every	BO	is	represented	with	such	a
hierarchy:

If	you	choose	the	main	element,	you	will	see	basic	information,	business	object
settings,	transactional	behaviors,	test	data,	and	so	on.	There	is	a	very	important
constant	interface	called	/BOBF/IF_PRODUCT_C	in	the	BO	Settings	section	that	we	will
use	in	the	following	example.	The	individual	elements	of	the	left-hand	side
hierarchy	are	described	in	the	next	chapter.

Nodes	and	entities
Every	BO	contains	multiple	entities.	There	are	several	types	of	entity	that	can	be
used.	The	following	list	describes	each	of	them:

Nodes:	These	are	basic	entity	types	that	are	used	for	the	data	models	of	our
business	objects.	Nodes	are	attributes	that	describe	the	features	of	a
business	object.	They	can	be	divided	into	two	types:	a	persistent	node,	to
keep	data	taken	from	a	database,	and	a	transient	node,	to	keep	data	loaded
on	demand.

Actions:	These	are	operations	that	are	performed	on	a	node.	An	action	is
always	triggered	by	the	user	through	the	user	interface.	It	can	be	anything
your	user	wants	to	do	with	an	object,	such	as	save	or	archive	it,	or	even
something	a	bit	closer	to	business,	such	as	deliver	a	sales	order	or	post	an
invoice.	Actions	are	an	implementation	of	the	/BOPF/IF_FRW_ACTION	interface.
Determinations:	These	are	close	to	actions,	but	happen	deeper	inside
development.	Determinations	are	triggered	when	certain	conditions	are
fulfilled;	therefore,	a	determination	can	be	compared	to	database	triggers.
From	a	technical	perspective,	it's	just	the	implementation	of
the	/BOBF/IF_FRW_DETERMINATOIN	interface.
Associations:	It's	not	easy	to	imagine	a	situation	where	one	business	object
is	just	a	totally	hermetic	standalone	component	and	doesn't	have	any
relation	with	other	business	parts.	The	association	entity	allows	you	to
create	a	relation	between	your	BO	and	another	BO.
Validations:	These	give	you	the	opportunity	to	check	whether	something	is
right.	There	are	two	types	of	validation:	the	first	is	related	to	the	action
entity,	where	you	can	implement	and	check	whatever	action	can	be	carried
out.	The	second	checks	the	consistency	of	the	object.	In	order	to	create	a
validation,	you	need	to	implement	the	/BOBF/IF_BR_VALIDATION	interface.
Queries:	These	are	nothing	more	than	searches	for	specific	BO	instances.
You	can	have	node	attribute	queries	(for	example,	searching	for	a	sales
order	with	its	number)	or	custom	queries	that	can	be	implemented	using
/BOPF/IF_FRW_QUERY.	There	is	one	last	thing	that	has	to	be	explained	before
jumping	into	programming.	When	working	with	BOPF,	we	will	use	a
number	of	classes	that	form	the	BOPF	API:

/BOBF/IF_TRA_TRANSACTION_MGR:	This	is	a	class	that	takes	care	of	all	the
transactions	on	the	object.	It	can	be	either	a	single	modification	of	the
nodes	or	a	bundle	of	changes	that	are	generated	in	multiple	steps.
/BOBF/IF_TRA_SERVICE_MANAGER:	This	class	is	dedicated	to	handling
validation	and	performing	actions	on	our	business	object.	It's	also
where	queries	and	retrieve	actions	are	taken.
/BOBF/IF_FRW_CONFIGURATION:	This	class	provides	information	pertaining	to
the	basic	metadata	of	business	objects.	

All	of	these	classes	have	separate	factory	classes,	all	of	the	which	will	be	shown
in	the	upcoming	example.	This	is	caused	by	the	generic	nature	of	the	BOPF
framework.

First	BOPF	example	
In	this	section,	we	will	try	to	play	around	with	one	of	standard	BOs	to	get	a
better	understanding	of	how	individual	elements	interact	with	each	other.	This
example	uses	a	standard	object	called	/BOBF/DEMO_PRODUCT,	which	represents	the
product.	

Creating	the	object
Create	a	new	report	called	ZMSA_R_CHAPTER9_1	in	the	ABAP	Workbench	and	pass	the
report	template	from	the	Appendix.	We	will	start	by	adding	class	attributes,	that	is,
the	three	main	BOPF	API	classes	I	mentioned	previously.	Put	the	following	code
into	a	private	section	of	the	lcl_demo	class	definition:

DATA:	mo_transaction_mgr	TYPE	REF	TO	/bobf/if_tra_transaction_mgr.

DATA:	mo_service_manager	TYPE	REF	TO	/bobf/if_tra_service_manager.

DATA:	mo_configuration	TYPE	REF	TO	/bobf/if_frw_configuration.

We	also	need	a	specific	constructor	definition:

METHODS:

constructor	RAISING	/bobf/cx_frw.	

The	custom	constructor	initializes	all	of	the	variables.	For	this,	we	will	use
factory	classes	and	their	corresponding	factory	methods.	Put	the	following	code
into	the	constructor:

mo_transaction_mgr	=	/bobf/cl_tra_trans_mgr_factory=>get_transaction_manager().

mo_service_manager	=	/bobf/cl_tra_serv_mgr_factory=>get_service_manager(

				/bobf/if_demo_product_c=>sc_bo_key).

mo_configuration	=	/bobf/cl_frw_factory=>get_configuration(/bobf/if_demo_product_c=>sc_bo_key).

As	you	can	see,	we	are	using	the	constant	interface	that	we	mentioned	previously
to	get	the	BO	key.	In	our	example,	we	will	try	to	create,	query,	and	display
the	product	object.	Let's	start	by	creating	the	function.	Add	a	new	method
definition:

create_product.

Inside	the	CREATE_PRODUCT	method,	insert	the	following	code:

"Modification	variables	used	to	make	change	on	object

DATA:	lt_modification	TYPE	/bobf/t_frw_modification.

FIELD-SYMBOLS:	<ls_modification>	TYPE	/bobf/s_frw_modification.

DATA:	lo_change	TYPE	REF	TO	/bobf/if_tra_change.

"This	part	is	related	to	errors	and	success	message	handling

DATA:	lo_message	TYPE	REF	TO	/bobf/if_frw_message.

DATA:	lv_issue	TYPE	boolean.

DATA:	lo_exception	TYPE	REF	TO	/bobf/cx_frw.

DATA:	lv_err_return	TYPE	string.

DATA:	lv_rejected	TYPE	boolean.

"Combined	data	model	structure,	fields	of	product	BO

DATA:	lr_product_hdr	TYPE	REF	TO	/bobf/s_demo_product_hdr_k.

DATA:	lr_short_text	TYPE	REF	TO	/bobf/s_demo_short_text_k.

This	is	everything	we	need	from	a	data	declaration	perspective.	Next,	we	will
need	to	fill	in	all	the	necessary	fields	and	add	a	modification	request	to	the
modification	table,	first	for	the	product	header	data:

"Create	product	header	data

CREATE	DATA	lr_product_hdr.

lr_product_hdr->key	=	/bobf/cl_frw_factory=>get_new_key().

lr_product_hdr->product_id	=	'101'.

lr_product_hdr->product_type	=	'FOOD'.

lr_product_hdr->base_uom	=	'KG'.

lr_product_hdr->buy_price	=	1.

lr_product_hdr->buy_price_curr	=	'USD'.

lr_product_hdr->sell_price	=	2.

lr_product_hdr->sell_price_curr	=	'USD'.

"Add	product	header	to	modification	table

APPEND	INITIAL	LINE	TO	lt_modification	ASSIGNING	<ls_modification>.

<ls_modification>-node	=	/bobf/if_demo_product_c=>sc_node-root.

<ls_modification>-change_mode	=	/bobf/if_frw_c=>sc_modify_create.

<ls_modification>-key	=	lr_product_hdr->key.

<ls_modification>-data	=	lr_product_hdr.

Now,	we	will	do	the	same	for	the	short	text	data:

"Create	short	text	data

CREATE	DATA	lr_short_text.

lr_short_text->key	=	/bobf/cl_frw_factory=>get_new_key().

lr_short_text->language	=	sy-langu.

lr_short_text->text	=	'Banana'.

"Add	short	text	data	to	modification	table

APPEND	INITIAL	LINE	TO	lt_modification	ASSIGNING	<ls_modification>.

<ls_modification>-node	=	/bobf/if_demo_product_c=>sc_node-root_text.

<ls_modification>-change_mode	=	/bobf/if_frw_c=>sc_modify_create.

<ls_modification>-source_node	=	/bobf/if_demo_product_c=>sc_node-root.

<ls_modification>-association	=	/bobf/if_demo_product_c=>sc_association-root-root_text.

<ls_modification>-key	=	lr_short_text->key.

<ls_modification>-source_key	=	lr_product_hdr->key.

<ls_modification>-data	=	lr_short_text.

Now,	you	need	to	call	the	modify	method	from	the	service	manager.	This	will	put
the	data	into	the	stage	area.	It	hasn't	yet	been	saved	into	the	database.	Place	the
following	code	after	the	table's	modification:

me->mo_service_manager->modify(

EXPORTING

it_modification	=	lt_modification

IMPORTING

eo_change	=	lo_change	"	Interface	of	Change	Object

eo_message	=	lo_message	"	Interface	of	Message	Object

).

Before	we	make	any	commits	to	the	database,	we	will	display	a	message	that's
returned	by	the	service	manager.	All	of	this	information	is	stored	in	the	lo_change
and	lo_message	objects.	We	will	need	another	method	to	display	these	messages.
Put	the	following	code	into	the	class	definition	section:

display_message	IMPORTING	io_message	TYPE	REF	TO	/bobf/if_frw_message.

In	the	display_message	method's	implementation,	we	will	get	messages	from
the	io_message	object,	which	we	will	put	on	screen	using	the	simple	WRITE	keyword.
Every	io_message	can	have	multiple	messages,	so	we	have	to	make	a	loop	for	that:

METHOD	display_message.

DATA:	lt_messages	TYPE	/bobf/t_frw_message_k.

FIELD-SYMBOLS:	<ls_message>	TYPE	/bobf/s_frw_message_k.

IF	io_message	IS	BOUND.

io_message->get_messages(importing	et_message	=	lt_messages).

LOOP	AT	lt_messages	ASSIGNING	<ls_message>.

				WRITE:	<ls_message>-message->get_text().

ENDLOOP.

ENDIF.

ENDMETHOD.

Then,	we	will	call	the	display_message	method	inside	the	create_product	method:

				IF	lo_message	IS	BOUND.

						IF	lo_message->check()	EQ	abap_true.

								me->display_message(lo_message).

								RETURN.

						ENDIF.

				ENDIF.

These	changes	aren't	in	the	database	yet,	so	you	will	need	to	call	the	save	method
from	the	transaction	manager.	After	that,	we	will	call	the	display	method	once	more:

CALL	METHOD	me->mo_transaction_mgr->save

				IMPORTING

								ev_rejected	=	lv_rejected

								eo_message	=	lo_message.

IF	lv_rejected	EQ	abap_true.

			me->display_message(lo_message).

			RETURN.

ENDIF.

The	final	step	to	take	to	get	this	example	working	is	just	to	put	the	following
code	in	the	main	method:

DATA:	lo_demo	TYPE	REF	TO	lcl_demo.

DATA:	lo_cx	TYPE	REF	TO	/bobf/cx_frw.

TRY.

CREATE	OBJECT	lo_demo.

lo_demo->create_product().

CATCH	/bobf/cx_frw	INTO	lo_cx.

				WRITE	lo_cx->get_text().	

ENDTRY.

After	running	your	program,	you	can	go	to	transaction	se16n	and	check	the
content	of	the	/BOBF/DM_PRD_HDR	table:

You	should	be	able	to	see	the	following	values	after	hitting	F8:

There	is	also	a	check	/BOBF/DM_PRD_HDT	table	for	the	text	node:

Of	course,	we	hardcoded	every	value	for	our	product.	After	running	the	program
again,	you	will	get	the	following	exception:

To	prevent	this,	we	will	create	an	additional	select	screen	that	allows	the	user	to
fill	every	value	by	hand.	Incorporate	the	following	code	before	the	lcl_demo
definition:

PARAMETERS:	p_prd_id	TYPE	/bobf/demo_product_id	OBLIGATORY.

PARAMETERS:	p_price	TYPE	/bobf/demo_buying_price.

PARAMETERS:	p_text	TYPE	/bobf/demo_product_id.

Put	in	some	new	class	attributes:

DATA:	mv_price	TYPE	/bobf/demo_buying_price.

DATA:	mv_prd_id	TYPE	/bobf/demo_product_id.

DATA:	mv_text	TYPE	/bobf/demo_description.

You	will	also	need	to	change	the	following	lines	in	the	create_product	method:

lr_product_hdr->product_id	=	'101'.

lr_product_hdr->buy_price	=	'1'.

lr_product_hdr->sell_price	=	2.

lr_short_text->text	=	'Banana'.

The	following	code	snippet	shows	how	we	do	this:

lr_product_hdr->product_id	=	mv_prd_id.

lr_product_hdr->buy_price	=	mv_price.

lr_short_text->text	=	mv_text.

lr_product_hdr->sell_price	=	lr_product_hdr->buy_price	*	'1.2'.	

Change	the	main	method	definition	to	accept	selection	screen	parameters:

CLASS-METHODS	

main	IMPORTING	

								iv_prd_id	TYPE	/bobf/demo_product_id

								iv_price	TYPE	/bobf/demo_buying_price

								iv_text	TYPE	/bobf/demo_description

Do	the	same	for	the	constructor:

constructor	IMPORTING

												iv_prod_id	TYPE	/bobf/demo_product_id

												iv_price	TYPE	/bobf/demo_buying_price

												iv_text	TYPE	/bobf/demo_description

																		RAISING	/bobf/cx_frw.

In	the	constructor,	we	need	to	populate	new	attributes:

				mv_price	=	iv_price.

				mv_prod_id	=	iv_prod_id.

				mv_text	=	iv_text.

The	main	method	call	in	START-OF-SELECTION	needs	to	be	adjusted:

		lcl_demo=>main(

				iv_prd_id	=	p_prd_id

				iv_price	=	p_price

				iv_text	=	p_text

).

The	final	step	is	to	change	the	main	method	implementation.	Only	CREATE	OBJECT

has	to	be	changed:

CREATE	OBJECT	lo_demo	EXPORTING	iv_price	=	iv_price	iv_prod_id	=	iv_prd_id	iv_text	=	iv_text.

Take	care	of	the	selection	screen	text	by	choosing	Goto|Text	Elements.	If	you
run	this	report,	you	will	be	able	to	set	those	three	main	parameters.

Displaying	an	object
This	example	is	a	continuation	of	the	previous	example,	so	please	complete	that
if	you	haven't	already.	We	will	add	some	functionality	that	enables	the	user	to
choose	whatever	they	want	to	display	in	relation	to	the	product.	You	need	an
extend	selection	screen	with	the	following	parameters:

SELECTION-SCREEN	BEGIN	OF	BLOCK	bl1	WITH	FRAME.

PARAMETERS:	p_crt	RADIOBUTTON	GROUP	gr1	DEFAULT	'X'.

PARAMETERS:	p_dsp	RADIOBUTTON	GROUP	gr1.

SELECTION-SCREEN	END	OF	BLOCK	bl1.

Add	the	following	to	the	main	method	definition.	We	can	only	take	one	radio
button	since	those	parameters	work	in	a	group:

CLASS-METHODS	

main	IMPORTING	

								iv_prd_id	TYPE	/bobf/demo_product_id

								iv_price	TYPE	/bobf/demo_buying_price

								iv_text	TYPE	/bobf/demo_description

								iv_disp	TYPE	boolean.

Enhance	the	main	method	call	with	a	new	parameter,	p_dsp:

		lcl_demo=>main(

				iv_prd_id	=	p_prd_id

				iv_price	=	p_price

				iv_text	=	p_text

				iv_disp	=	p_dsp

).

All	the	BOPF	data	is	stored	in	typical	database	tables	so,	in	theory,		you	could
use	the	select	statement	against	the	product	table	to	get	all	the	data	that	you
require.	However,	this	isn't	recommended	and	against	BOPF	standards.	To	select
data,	we	will	be	using	the	query	function.	Create	a	new	method
called	get_product_node	and	incorporate	the	following	code	into	its	implementation:

DATA:	lr_t_data	TYPE	REF	TO	data.

DATA:	lt_parameters	TYPE	/bobf/t_frw_query_selparam.

DATA:	lt_product_keys	TYPE	/bobf/t_frw_key.

DATA:	ls_node_conf	TYPE	/bobf/s_confro_node.

DATA:	lo_change	TYPE	REF	TO	/bobf/if_tra_change.

DATA:	lo_message	TYPE	REF	TO	/bobf/if_frw_message.

FIELD-SYMBOLS	<lt_data>	TYPE	INDEX	TABLE.

FIELD-SYMBOLS	<ls_parameter>	LIKE	LINE	OF	lt_parameters.

FIELD-SYMBOLS	<ls_product_key>	LIKE	LINE	OF	lt_product_keys.

FIELD-SYMBOLS	<ls_row>	TYPE	any.

APPEND	INITIAL	LINE	TO	lt_parameters	ASSIGNING	<ls_parameter>.

<ls_parameter>-attribute_name	=

/bobf/if_demo_product_c=>sc_query_attribute-root-select_by_elements-product_id.

<ls_parameter>-sign	=	'I'.

<ls_parameter>-option	=	'EQ'.

<ls_parameter>-low	=	mv_prod_id.

CALL	METHOD	me->mo_service_manager->query

EXPORTING

iv_query_key	=	/bobf/if_demo_product_c=>sc_query-root-select_by_elements

it_selection_parameters	=	lt_parameters

IMPORTING

et_key	=	lt_product_keys.

CALL	METHOD	me->mo_configuration->get_node

EXPORTING

iv_node_key	=	/bobf/if_demo_product_c=>sc_node-root

IMPORTING

es_node	=	ls_node_conf.

CREATE	DATA	lr_t_data	TYPE	(ls_node_conf-data_table_type).

ASSIGN	lr_t_data->*	TO	<lt_data>.

CALL	METHOD	me->mo_service_manager->retrieve

EXPORTING

iv_node_key	=	/bobf/if_demo_product_c=>sc_node-root

it_key	=	lt_product_keys

IMPORTING

eo_message	=	lo_message

eo_change	=	lo_change

et_data	=	<lt_data>.

READ	TABLE	<lt_data>	INDEX	1	ASSIGNING	<ls_row>.

IF	sy-subrc	EQ	0.

GET	REFERENCE	OF	<ls_row>	INTO	ro_data.

ENDIF.

This	is	a	lot	of	code,	but	it's	actually	quite	easy.	We	use	the	product	ID	with
the	query	method	to	get	the	object	key.	Then,	we	need	to	use	this	key	with	the
retrieve	method	to	get	data.	What	makes	this	code	a	bit	complicated	is	that	we
need	to	create	dynamic	data	using	get_node	and	a	configuration	structure	that	we
get	from	this	call.	We	also	need	a	get_text_node	method,	which	will	take	care	of
data	that	is	stored	in	the	text	node:

	DATA	lr_t_data	TYPE	REF	TO	data.

	DATA	lt_key	TYPE	/bobf/t_frw_key.

	DATA	ls_node_conf	TYPE	/bobf/s_confro_node.

	DATA	ls_association	TYPE	/bobf/s_confro_assoc.

	DATA	lo_change	TYPE	REF	TO	/bobf/if_tra_change.

	DATA	lo_message	TYPE	REF	TO	/bobf/if_frw_message.

FIELD-SYMBOLS	<lt_data>	TYPE	INDEX	TABLE.

FIELD-SYMBOLS	<ls_row>	TYPE	any.

FIELD-SYMBOLS	<ls_key>	LIKE	LINE	OF	lt_key.

CALL	METHOD	me->mo_configuration->get_assoc

						EXPORTING

					iv_assoc_key	=	/bobf/if_demo_product_c=>sc_association-root-root_text

					iv_node_key	=	/bobf/if_demo_product_c=>sc_node-root

						IMPORTING

								es_assoc	=	ls_association.

ls_node_conf	=	ls_association-target_node->*.

CREATE	DATA	lr_t_data	TYPE	(ls_node_conf-data_table_type).

ASSIGN	lr_t_data->*	TO	<lt_data>.

APPEND	INITIAL	LINE	TO	lt_key	ASSIGNING	<ls_key>.

<ls_key>-key	=	iv_key.

CALL	METHOD	me->mo_service_manager->retrieve_by_association

						EXPORTING

								iv_node_key	=	

												/bobf/if_demo_product_c=>sc_node-root

								it_key	=	lt_key

								iv_association	=	/bobf/if_demo_product_c=>sc_association-root-root_text

								iv_fill_data	=	abap_true

						IMPORTING

								eo_message	=	lo_message

								eo_change	=	lo_change

								et_data	=	<lt_data>.

				IF	lo_message	IS	BOUND.

						IF	lo_message->check()	EQ	abap_true.

								display_message(lo_message).

						ENDIF.

				ENDIF.

				ASSIGN	lr_t_data->*	TO	<lt_data>.

				READ	TABLE	<lt_data>	INDEX	1	ASSIGNING	<ls_row>.

				IF	sy-subrc	EQ	0.

						GET	REFERENCE	OF	<ls_row>	INTO	ro_data.

				ENDIF.

To	display	actual	information,	we	will	create	a	display_product	method	and	insert
the	following	code	there:

DATA	lx_bopf_ex	TYPE	REF	TO	/bobf/cx_frw.

DATA	lx_bopf_dac	TYPE	REF	TO	/bobf/cx_dac.

DATA	lv_err_msg	TYPE	string.

DATA	lr_s_root	TYPE	REF	TO	/bobf/s_demo_product_hdr_k.

DATA	lr_s_text	TYPE	REF	TO	/bobf/s_demo_short_text_k.

TRY.

lr_s_root	?=	me->get_product_node().

lr_s_text	?=	me->get_text_node(lr_s_root->key).

WRITE:	/	'Product	#',	lr_s_root->product_id.

WRITE:	/	'Product',	lr_s_text->text.

WRITE:	/	'Buy	Price',	lr_s_root->buy_price	LEFT-JUSTIFIED.

WRITE:	/	'Sell	Price',	lr_s_root->sell_price	LEFT-JUSTIFIED.

CATCH	/bobf/cx_frw	INTO	lx_bopf_ex.

lv_err_msg	=	lx_bopf_ex->get_text().

WRITE:	/	lv_err_msg.

ENDTRY.

All	of	these	methods	require	new	definitions:

METHODS:

get_product_node	

RETURNING	VALUE(ro_data)	TYPE	REF	TO	data,

get_text_node	

IMPORTING	iv_key	TYPE	/bobf/conf_key	RETURNING	VALUE(ro_data)	TYPE	REF	TO	data,

display_product.

Also,	remember	to	make	the	following	adjustment	in	the	main	method:

DATA:	lo_demo	TYPE	REF	TO	lcl_demo.

DATA:	lo_cx	TYPE	REF	TO	/bobf/cx_frw.

TRY.

CREATE	OBJECT	lo_demo	EXPORTING	iv_price	=	iv_price	iv_prod_id	=	iv_prd_id	iv_text	=	iv_text.

IF	iv_disp	=	abap_true.

lo_demo->display_product().

ELSE.

lo_demo->create_product().

ENDIF.

CATCH	/bobf/cx_frw	INTO	lo_cx.

WRITE	lo_cx->get_text().

ENDTRY.

Now,	if	you	run	your	program	with	product	ID	101,	you	will	receive	the
following	output:

Summary
By	completing	this	chapter,	you	can	proudly	say	that	you	know	how	to	use
BOPF	and	how	to	create	big	standardized	ABAP	solutions	from	scratch.	You
don't	have	to	bother	with	creating	tables,	structures,	implementing	locking
mechanisms,	or	application	log	wrappers.	It's	all	there,	just	waiting	for	you	to
use	it.	I	highly	recommended	checking	all	the	other	functionality	that	BOPF
gives	you	for	free.	Try	to	implement	validation	or	a	change	object	method.	You
can	even	try	to	create	your	own	BOPF	object	from	scratch	and	play	around	with
the	entire	complex	business	process.

In	the	following	chapters,	the	primary	focus	will	be	on	modification	and
customization	of	different	techniques.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	BOPF	transaction	is	used	to	enhance	standard	BO?
2.	 What	BOPF	transaction	is	used	only	for	SAP	internal	use?
3.	 What	type	of	entity	is	used	to	create	a	relation	with	two	BOPF	objects?
4.	 What	type	of	association	exists	in	BOPF?
5.	 What	BOPF	technical	object	is	used	to	save	data	in	a	database?
6.	 What	main	exception	is	thrown	from	BOPF	methods?
7.	 What	technical	object	can	you	use	to	get	BO	metadata?

Further	reading
You	may	also	want	to	check	out	BOPF	at	https://help.sap.com/viewer/aa7fc5c3c152484
4b811735b9373252a/7.5.3/en-US/e5ea9085cfe2494faacae415ff8131da.html.

https://help.sap.com/viewer/aa7fc5c3c1524844b811735b9373252a/7.5.3/en-US/e5ea9085cfe2494faacae415ff8131da.html

Modification	and	Customization
Techniques
SAP	software	is	a	so-called	out-of-the-box	type	of	product.	This	means	that
companies	should	be	able	to	use	every	functionality	immediately	after
installation.	Of	course,	you	need	to	customize	some	basic	information	about
your	business,	but	accounting	and	logistic	processes	are	part	of	the	system	from
the	very	outset.	For	many	years,	SAP	has	been	developing	its	software	in
cooperation	with	its	clients	and	partners.	Most	transactions	are	prepared	in	such
a	way	that	they	can	be	adapted	to	business	without	the	need	for	programming	or
installing	anything	extra.	However,	every	enterprise	is	unique,	and	not
everything	can	be	provided	from	the	offset.	To	solve	this	problem,	SAP	gives
every	customer	a	rich	number	of	abilities	to	modify	processes	using	various
extension	technologies.	This	is	the	place	where	ABAP	developers	are	needed.
It's	impossible	to	be	an	ABAP	developer	without	knowing	about	what's	included
in	this	chapter.

The	following	topics	will	be	covered	in	this	chapter:

Legacy	ways	of	changing	the	standard
The	Enhancement	Framework	and	its	components

Technical	requirements
Some	of	the	techniques	that	are	presented	in	this	chapter	require	NetWeaver
version	7.0.	Strong	integration	of	the	individual	examples	in	this	chapter	with
business	logic	may	require	additional	customization	in	Sap	Project	Reference
Object	(SPRO).

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter10.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter10

Legacy	ways	of	changing	the
standard
The	idea	of	enhancements	is	to	give	SAP	consultants	the	ability	to	use	the	SAP
system	in	every	business	scenario	without	exception	and	to	guarantee	the
stability	of	the	system's	operation.	Enhancements	are	given	result	of	a	gap
between	SAP	standard	functionality	and	the	customer	business	model.	Given
this,	almost	every	example	in	this	chapter	is	closely	related	to	a	business	process.
This	is	something	far	more	complicated	than	the	technical	level	example	we
provided	in	previous	chapters.	Here,	we	added	an	additional	business	layer	that
we	need	to	understand.	Let's	provide	some	examples	of	where	enhancements
may	be	needed.	We	have	customer	master	data	stored	in	the	SAP	system	(from	a
technical	perspective,	this	means	that	we	have	records	in	a	few	database	tables,
for	example,	KNA1).	SAP	gives	us	lots	of	standard	fields,	such	as	names,
addresses,	tax	details,	payment	information,	and	so	on.	Those	fields	cover	a	large
part	of	a	business,	but	you	also	have	a	unique	field	that	hasn't	been	implemented
in	the	standard,	or	you	have	a	custom	Single	Euro	Payments	Area	(SEPA)
reference	structure	that	can't	be	achieved	by	customizing.	For	all	such	cases,	we
can	use	enhancement.	There	are	many	possibilities	that	can	be	realized	by	using
an	enhancement	technique.	It's	very	important	to	understand	the	difference
between	enhancements,	modification,	and	customizing.	Customizing	is
everything	that	we	can	do	in	an	SPRO	transaction,	that	is,	the	configuration	of
the	available	options	and	parameters.	The	term	customizing	is	also	used	in	the
context	of	standalone	z-development	from	scratch,	where	we	build	a	customized
solution	that	fits	our	model.	Enhancements	are	techniques	that	can	be	used	to
extend	standard	SAP	functionality	that's	been	created	by	SAP	itself.	These
include	customer	exits,	Business	Add-In	(BAdI),	Business	Data	Toolset
(BDT),	Business	Transaction	Event	(BTE),	FQEVENTS,	and	implicit	and
explicit	enhancements.	The	final	category	of	SAP	functionality	adjustment	is
modifications.	Modifications	change	SAP	standard	code.	You	need	to	use	an
object	key	to	modify	any	standard	object.	Modifications	are	not	recommended
because	they	are	overwritten	during	system	upgrades.

SAP	has	been	changing	its	approach	to	enhancements	over	the	years.	Separate

solutions	were	implemented	for	different	modules	at	different	times.	Due	to
backward	compatibility,	all	of	these	extensions	still	exist	and	can	be	used	to
achieve	client	business	goals.	In	this	chapter,	we	will	go	through	the	most
important	techniques	that	can	be	useful	for	a	daily	ABAP	developer.
Descriptions	of	BAdIs	and	the	Enhancement	Framework	will	be	provided	in
brief	due	to	the	fact	that	these	are	comprehensive	topics	that	will	be	talked	about
in	separate	chapters.	Some	extension	techniques,	such	as	Web	Dynpro,	BSP,	or
Fiori	enhancement,	are	not	part	of	this	book.	To	read	about	those,	please	go	to
the	Further	reading	section	at	the	end	of	this	chapter.

Customer	Exits
Customer	Exits	are	a	type	of	enhancement	that	can	extend	the	programs,	screens,
and	menus	of	standard	applications.	From	a	technical	perspective,	Customer
Exits	are	just	hooks	and	do	not	contain	any	functionality	in	themselves.	You	can
attach	your	own	function	modules	to	a	Customer	Exit.	The	entire	functionality	is
stored	in	the	attached	function	module.	Customer	Exits	refer	to	most	SAP
modules	(MM,	SD,	PP,	FICO,	and	many	other	modules),	but	can	only	be	used	in
predefined	places	–	not	on	every	screen	or	with	every	program.	The	main
advantages	of	Customer	Exits	is	that	they	don't	affect	standard	code	and	software
updates.	There	are	four	types	of	customer	exits,	as	follows:

Function	Exits	are	used	to	extend	standard	functionality	on	data	(that	is,
add	a	default	value,	validate	a	field,	and	so	on).
Screen	Exits	are	used	to	extend	standard	screen	functionality	(to	display
additional	data,	for	example).
Menu	Exits	are	used	to	extend	menu	options.
Table	Exits	are	used	to	extend	a	standard	table	by	a	new	field;	they	are
always	connected	to	a	Function	Exit.

	

In	this	example,	we	will	extend	customer	transaction	functionality
(XD01/XD02/XD03).	Customer	Exits	implementation	is	stored	in	a	container
called	Enhancement	Projects.	You	can	store	lots	of	Customer	Exits	in	one
enhancement	project.	To	start,	we	have	to	create	Enhancement	Projects.	Go	to
the	Customer	Exits	(CMOD)	transaction	and	create	a	new	project	called
ZMSA0001:

The	following	screenshot	shows	an	overview	of	this	project.	Save	your	work	by
clicking	on	the	Disk	button	on	the	toolbar:

You	need	to	know	exactly	which	process	and	which	enhancement	you	want	to
change.	You	can	find	this	by	searching	the	report	source	code	for	CALL	CUSTOMER,	or
by	debugging	your	transaction	and	setting	the	CALL	CUSTOMER	keyword	breakpoint.
If	you	don't	know	the	name	of	the	report,	you	can	find	it	based	on	the	transaction
code	in	SE93.	If	you	have	an	enhancement	name	but	you	don't	know	the	exit
name,	you	can	find	it	in	the	MODSAP	table.	As	we	stated	previously,	we	will	be
extending	the	customer	object.	Here,	we	need	to	verify	additional	fields	based	on
the	customer's	country.	Customer	data	can	be	changed	in	SAPMF02D.	You	have
access	to	most	of	the	customer	data	(everything	that	is	stored	in	the	KNA1	and	KNB1
tables).	Click	on	the	Enhancement	assignments	button	and	choose	the
enhancement	you	want	to	use:

Then,	click	the	Components	button,	as	shown	in	the	following	screenshot:

You	will	be	redirected	to	a	screen	that	shows	details	of	the	enhancement.
Double-click	on	the	Function	exit	named	EXIT_SAPLBPX0_005:

We	need	to	implement	z	in	this	function	module.	Click	on	INCLUDE:

You	will	be	warned	that	ZXF04U01	is	in	a	reserved	namespace.	This	means	that
such	a	name	is	only	used	for	the	implementation	of	user	exits.	Hit	ENTER:

You	will	be	asked	if	you	really	want	to	create	this	include.	Click	Yes:

This	will	create	a	new	include	and	move	you	to	ABAP	Editor:	Change	Include
ZXF04U01:

We	can	write	our	own	logic	here,	but	keep	in	mind	that	we	only	have	access	to
data	from	function	module	parameters.	It's	also	recommended	to	create	and
attach	another	Z	include	for	better	separation	of	concepts.	For	example,	it	could
be	ZMSAF04U01	where	we	put	all	of	our	logic.	Put	the	following	code	in	the	include
before	saving	and	activating	it:

CONSTANTS:	lv_land1	TYPE	land1	VALUE	'DE'.

IF	i_kna1-land1	<>	lv_land1	AND	i_kna1-stceg	IS	INITIAL.

MESSAGE	'VAT	number	for	this	country	is	obligatory'	TYPE	'E'.

ENDIF.

Click	the	Back	button	twice	(F3)	and	head	to	the	screen	where	the	enhancement
details	are—you	can	see	it	in	the	following.	Click	on	the	Active	button	to	make
the	enhancement	work.	You	should	have	three	green	squares	in	the	third	column,
as	shown	in	the	following	screenshot:

The	last	thing	we	need	to	do	is	test	our	new	development.	Head	to	the	XD01
transaction,	choose	any	Account	group,	and	click	the	green	check	mark:

Fill	in	all	the	obligatory	data	on	the	first	screen	and	click	Save:

You	will	get	the	message	that	we	implemented	earlier:

When	you	change	the	country	or	fill	in	a	tax	number,	you	will	be	able	to	save	the
customer.

Using	BTE	to	extend	FI	functionality
BTE	is	a	technique	that	allows	the	developer	to	extend	the	functionality	of
(mostly,	but	not	only!)	financial	accounting	modules.	BTE	is	also	called	Open	FI
and	works	more	like	FQEVENTS	in	Contract	Accounting,	or	BAdIs	in	all	other
modules.	Open	FI	uses	function	module	objects	to	enhance	standard
functionality.	Basically,	you	have	predefined	hooks	in	standard	code	that	you	can
assign	to	your	implemented	function	module.	The	main	BTE	transaction	is	FIBF.

You	can	access	it	in	SAP	IMG	under	Financial	Accounting	(New)	|	Financial
Accounting	Global	Settings	(New)	|	Tools	|	Customer	Enhancements	|	Business
Transaction	Events.	There	are	two	types	of	BTE:	publish	and	subscribe,	and
processes.	The	former	is	used	to	invoke	external	processes.	You	don't	have
control	over	what	is	changed.	However,	the	processes	interface	provides	both
import	and	changing	parameter	values	so	that	you	can	influence	process	data.
From	a	technical	perspective,	the	process	of	implementing	is	identical	for	both.
Each	type	of	BTE	has	three	different	types:	For	SAP,	For	SAP	partner,	and	For
customer.	We	will	focus	on	the	last	one	since	it's	the	only	one	that	can	be
enhanced	by	customers.	BTE	can	be	used	to	invoke	other	processes,	too,	such	as
sending	Intermediate	Documents	(IDOCs),	clearing	data,	and	sending
notifications.	Here,	we	will	implement	a	notification	mechanism	that	will	inform
the	manager	of	the	FI	department	every	time	a	document	is	posted	on	an	amount
that's	higher	than	€10,000.

The	first	problem	to	solve	is	how	to	find	the	corresponding	BTE	event.	You	can
try	to	find	this	information	by	searching	for	the	BF_FUNCTIONS_FIND	function	module.
All	the	BTEs	related	to	it	will	be	called	in	the	FM.	You	can	also	check
transactions	in	the	Business	Event	Repository	(BERE)	and	BERP.	For	our
requirements,	we	will	use	BTE	event	1030.	The	sample	function	module	for	this
event	is	SAMPLE_INTERFACE_00001030.	Let's	go	to	the	transaction	FIBF.	First,	we	need
to	create	a	product.	This	product	will	be	a	container	for	your	custom
functionality.	Choose	Settings	|	Products	|	...	of	a	customer	from	the	top	menu:

On	the	next	screen,	you	will	see	some	other	Customer	Products	that	have	been
created.	Click	New	Entries:

Fill	in	Text	with	a	description	of	the	product.	It's	important	that	you	mark	the
checkbox	in	the	last	column	as	this	will	activate	your	product:

Go	back	to	the	main	screen	of	FIBF.	Now,	choose	Settings	|	P/S	Modules	|	...	of	a
customer:

On	the	next	screen,	click	the	Create	Entire	button	and	fillin	all	the	necessary
data.	The	event	number	is	something	that	we	need	to	know	or	find	using	the
debugging	technique	we	described	earlier.	The	Product	is	the	object	we	just
created.	The	next	two	columns,	Country	and	Application,	are	just	for	the	purpose
of	separation	of	concerns.	You	can	only	filter	a	process	to	a	specific	country	or
application.	The	last	column	allows	you	to	fill	in	the	name	of	the	function
module	that	we	will	soon	create:

Go	to	transaction	SE37.	We	need	to	create	a	function	module	that	will	be
connected	to	the	BTE	event.	This	object	needs	to	have	the	same	interfaces	as	the
sample	BTE	function	module	event.	The	easiest	way	to	achieve	this	is	to	just
copy	the	standard	module,	SAMPLE_INTERFACE_00001030	(analogous	to	other	events).
Make	a	copy	using	the	copy	button:

Now,	open	the	new	function	module	and	pass	in	the	following	source	code:

		DATA:	ls_mailsubject	TYPE	sodocchgi1.

		DATA:	lt_mailrecipients	TYPE	STANDARD	TABLE	OF	somlrec90	.

		DATA:	ls_mailrecipients	TYPE	somlrec90.

		DATA:	lt_mailtxt	TYPE	STANDARD	TABLE	OF	soli.

		DATA:	lv_mailtxt	TYPE	soli.

		DATA:	lv_content	TYPE	string.

		FIELD-SYMBOLS:	<ls_bseg>	TYPE	bseg.

		LOOP	AT	t_bseg	ASSIGNING	<ls_bseg>	WHERE	dmbtr	>	10000.

				IF	<ls_bseg>-dmbtr	>	10000.

						CONCATENATE	lv_content	'Check	position'	<ls_bseg>-buzei	'from	document'	<ls_bseg>-belnr	'
'	INTO	lv_content	SEPARATED	BY	space.

				ENDIF.

		ENDLOOP.

		CHECK	lv_content	IS	NOT	INITIAL.

		CONCATENATE	'<HTML><BODY><H1>'	lv_content	'</H1></BODY></HTML>'	INTO	lv_content	SEPARATED	BY	space.

		lv_mailtxt	=	lv_content.

		ls_mailrecipients-rec_type	=	'B'.

		ls_mailrecipients-receiver	=	sy-uname.

		APPEND	ls_mailrecipients	TO	lt_mailrecipients.

		ls_mailsubject-obj_name	=	'Notification	Email'.

		ls_mailsubject-obj_langu	=	sy-langu.

		ls_mailsubject-obj_descr	=	'High	Amount	Document	Posted!'.

		APPEND	lv_mailtxt	TO	lt_mailtxt.

		CALL	FUNCTION	'SO_NEW_DOCUMENT_SEND_API1'

				EXPORTING

						document_data	=	ls_mailsubject

						document_type	=	'HTM'

				TABLES

						object_content	=	lt_mailtxt

						receivers	=	lt_mailrecipients

				EXCEPTIONS

						too_many_receivers	=	1

						document_not_sent	=	2

						document_type_not_exist	=	3

						operation_no_authorization	=	4

						parameter_error	=	5

						x_error	=	6

						enqueue_error	=	7

						OTHERS	=	8.

This	code	checks	for	a	position	where	an	amount	is	higher	than	€10,000	and
sends	a	notification	to	sy-uname.	This	variable	can	be	easily	replaced	with	a
customizing	table,	which	would	make	more	business	sense.	Save	and	activate
everything.	We	can	test	this	enhancement	in	transaction	FB01	(document	posting).
Open	FB01	and	fill	in	all	the	fields	in	accordance	with	what's	shown	in	the
following	screenshot:

It	is	highly	likely	that	you	will	have	other	accounts,	posting	codes,	and	control
on	your	system.	Please	ask	your	functional	consultant	for	specific	data.	Click
Enter	and	incorporate	the	following	data	into	the	next	screen:

Again,	click	Enter,	fill	in	the	last	screen,	and	click	Save:

This	should	post	a	financial	document	and	run	our	implementation.	If	you	go	to
the	SAP	Business	Workplace	(SBWP)	transaction,	you	will	see	a	message
notification	stating	that	a	high	amount	of	documents	have	been	posted:

Modifications
Modifications	are	changes	that	are	made	to	the	SAP	standard	core	code.	In	order
to	implement	any	modifications,	it	is	necessary	to	generate	the	access	key	for	the
object.	It	isn't	recommended	that	you	use	modifications.	The	main	disadvantage
of	modifications	is	that	they	are	overwritten	during	a	system	upgrade.	You	can
change	any	SAP	standard	coding	using	this	method,	but	it	can	lead	to
unpredictable	system	behavior.	Let's	say	you	change	the	function	module	to
achieve	specific	business	requirements,	but	this	function	module	can	be	used	in
other	parts	of	SAP	for	other	processes.	It's	really	hard	to	predict	the	impact	of
your	changes	on	the	operation	of	the	system	as	a	whole.

To	solve	this	problem,	SAP	has	prepared	an	enhancement	approach	called	user
exits.	It's	a	type	of	modification,	but	it's	used	in	predefined	places	so	that
possible	consequences	are	easier	to	predict.	User	exits	are	represented	from	a
technical	perspective	as	FORM	subroutines,	and	so	on	these	types	of	modifications
are	also	called	FORM	exits.	In	the	following	example,	we	will	modify	the	SAP
standard	using	one	of	the	user	exits.	From	a	business	perspective,	this
modification	will	refer	to	the	SD	module.	SD	is	the	only	module	where	user
exits	are	present.	To	implement	user	exits,	go	to	SE80	and	open	the	VMOD	package:

This	package	contains	every	user	exit.	Open	any	of	them	and	you	will	see	a
bunch	of	form	subroutines.	SAP	took	care	of	describing	most	of	the	subroutines.
This	makes	it	very	easy	for	you	to	find	the	right	item	to	modify.	Modifications
are	available	for	areas	such	as	a	sales	order,	delivery,	billing,	and	pricing.	As	an
example,	open	MV45AFZZ,	in	which	you	will	find	the	USEREXIT_FIELD_MODIFICATION
subroutine.	This	can	be	used	to	modify	the	fields	of	an	SD	transaction.	You	can
turn	off	certain	fields	or	fill	in	a	field	with	data.	To	create	your	user-exit
implementation,	switch	the	ABAP	workbench	to	edit	mode.	After	hitting	the
Display/Change	button,	you	will	see	the	following	screen:

This	is	the	Access	key	popup.	In	general,	in	order	to	modify	any	SAP	standard
development	object,	you	need	to	register	this	modification	on	the	SAP	Support
Portal.	This	key	can	be	requested	by	the	system	administrator.	This	mechanism
was	created	to	protect	the	system	against	too	many	modifications	and	to	make
sure	that	all	modifications	are	registered	in	one	central	place.

After	getting	the	access	key	from	the	BASIS	team	and	putting	it	in	the	previous
window,	you	will	see	another	popup:

This	window	informs	you	that	you	have	entered	Modification	Assistant	mode.
Modification	Assistant	guides	you	when	you	make	modifications	by	putting
additional	comments	in	the	ABAP	code.	It's	not	recommended,	but	you	can
switch	this	mode	off	by	going	to	Edit	|	Modification	Operations	|	Switch	Off
Assistant:

In	Modification	Assistant	mode,	you	have	four	options	to	choose	from:

Insert	allows	you	to	add	new	code.	With	Replace,	you	can	change	the	standard
SAP	code.	If	you	need	to	delete	some	standard	code,	you	can	use	the	Delete
option.	Last	but	not	least,	Undo	will	take	you	back	a	step	if	you	have	made	a
mistake.	In	this	example,	we	will	use	the	Insert	option.	Clicking	Insert	will
create	the	following	code:

You	can	put	any	code	in-between	inserted	comments	based	on	your	customer
requirements.	In	this	specific	subroutine,	we	could	do	something	like	this:

		CONSTANTS:	cv_augru	TYPE	C	length	10	VALUE	'VBAK-AUGRU'.

			CONSTANTS:	cv_tcode	TYPE	C	LENGTH	4	VALUE	'VA01'.

				IF	sy-tcode	=	cv_tcode.

						CASE	screen-name.

								WHEN	cv_augru.

										IF	vbak-augru	IS	INITIAL.

												vbak-augru	=	'001'.

										ENDIF.

						ENDCASE.

				ENDIF.

This	will	cause	a	change	in	standard	field	behavior	and	set	a	default	value	in	our
code	field.	From	a	business	perspective,	this	will	set	a	service	call	as	a	sales
order	reason	for	all	the	orders	that	are	created	in	the	VA01	transaction.

FQEVENTS
Events	is	another	type	of	enhancement	that	can	be	applied	to	SAP	standard
behavior.	From	a	technical	perspective,	they	are	very	similar	to	Customer	Exits,
and	are	also	represented	by	a	function	module.	Events	are	used	in	the	FI-CA
module	and	other	modules	that	are	integrated	into	contract	accounting,	such	as
convergent	Invoicing.

You	can	implement	this	type	of	enhancement	in	the	FQEVENTS	transaction:

On	the	left,	you	can	see	the	navigation	menu,	where	you	can	find	any	predefined
event.	Try	to	search	by	description	or	by	area.	A	typical	business	requirement	is
to	implement	additional	logic	for	the	FI-CA	posting	header	field.	Go	to	Event	|
60	(Posting:	Check	Document	Header).	For	every	event,	there	is	very	clear
Documentation	that	explains	where	this	event	is	triggered	and	how	to	use	it:

Every	event	also	has	a	sample	function	module	that	the	developer	should	copy	in
order	to	provide	perfect	interface	compatibility	with	function	modules:

Click	on	the	copy	icon:

Give	a	new	name	to	the	function	module	copy	and	set	your	function	group.	It's
highly	recommended	that	you	create	a	dedicated	function	group	(or	a	few	of
them)	just	for	events	in	the	Function	Module:

Add	a	new	function	module	to	the	Installation-Specific	Function	Modules	area
by	clicking	on	the	pencil	icon:

On	the	next	screen,	you	have	to	click	on	the	New	entries	button:

As	you	can	see,	for	each	event,	it's	possible	to	add	a	few	function	modules.
Sequence	Number	determines	the	order	of	execution.	We	will	add
ZFKK_FM_EVENT_0060	here:

Save	your	changes	and	go	back	to	the	main	screen	of	the	FQEVENTS	transaction.

Click	on	the	white-blue	icon:

This	will	bring	you	to	the	function	module	editor,	where	you	can	insert	any	valid
ABAP	code.	You	can	use	something	like	this:

		IF	i_fkkko-blart	=	'06'	and	i_fkkko-abgrd	IS	INITIAL.

				MESSAGE	'For	returns	documents	return	reason	is	obligatory'	type	'E'.

		ENDIF.

Now,	every	time	someone	creates	an	FI-CA	document	of	type	06	(returns)	and
forgets	to	fill	in	the	return	reason	field,	they	will	be	informed	via	an	error
message.

Appends
Appends	are	a	very	important	concept	and	are	present	in	almost	every
modification	project.	Appends	are	used	to	expand	dictionary	objects,	such	as
tables,	data	element	text,	and	search	for	help.	In	this	section,	you	will	learn	how
to	extend	a	standard	SAP	table	so	that	you	can	store	additional	client-specific
information.	Go	to	transaction	SE11	and	open	the	KNA1	table	(you	can	use	any	other
table	if	you	so	desire).	This	table	stores	General	data	in	Customer	Master:

The	client	wants	to	have	information	about	customer	nationality	so	that	they	can
adapt	their	offers	to	their	customers.	This	isn't	part	of	the	standard,	so	we	need	to
extend	this	KNA1	table.	Click	on	Goto	|	Append	Structure:

In	the	popup	that	appears,	choose	a	name.	It's	recommended	by	SAP	to	start	the
append	structure	with	double	Z.	In	the	case	of	appends,	a	single	Z	is	reserved	for
SAP	development:

Put	in	a	Nationality	field	as	a	field	type	and	activate	append:

After	the	activation	of	the	new	field	and	the	new	append,	additional	information
will	be	shown	in	the	table:

This	chapter	only	covers	the	append	technique,	which	is	nothing	more	than	a
placeholder	for	data.	To	be	able	to	see	this	field	on	the	screen	and	add	some
sophisticated	logic,	you	will	have	to	read	about	the	other	enhancement
techniques	such	as	BAdI,	that	are	presented	in	this	chapter.

Classical	BAdl
Business	Add-Ins	(BAdIs)	are	a	very	useful	approach	when	you	want	to	extend
the	standard	functionality	of	SAP	systems.	BAdI	can	be	understood	as	an
interface	awaiting	implementation,	and	is	placed	in	standard	SAP	transactions
that	are	prepared	by	SAP.	There	are	two	types	of	BAdI:	classic	BAdIs,	which
were	introduced	in	the	early	4.6	versions,	and	the	new	BAdI	(also	called	kernel
BAdIs),	which	were	introduced	in	NetWeaver	7.0	(along	with	the	enhancement
framework	and	switch	framework).	There	are	three	important	differences
between	the	new	and	old	BAdIs.	A	new	BAdIs	object	is	created	using	the	GET	BAdI
statement	(because	of	that,	they	are	called	Kernel	BAdIs);	old	BAdIs	are
initialized	using	the	get_instance	factory	method	from	the	cl_exithandler	class.	In
the	case	of	the	classic	BAdI,	a	new	object	is	always	created	in	a	factory	method,
whereas	kernel	BAdIs	already	provide	an	initialized	instance.	This	difference	is
also	noticeable	in	the	filtering	mechanism.	The	classic	BAdI	passes	a	filter	value
to	the	method	call,	whereas	in	kernel	BAdIs,	filtering	is	executed	in	the	GET	BAdI
level.	There	are	also	significant	differences	between	the	management	of	calls.
The	old	approach	only	allowed	one	BAdI	call,	and	call	positions	were	registered
centrally.

In	the	new	kernel	approach,	multiple	calls	are	possible,	and	the	call	positions	are
not	registered	centrally.	Always	use	the	kernel	BAdI	if	possible—in	addition	to
the	aforementioned	advantages,	they	are	also	much	faster.	In	this	example,	we
will	implement	the	CTS_REQUEST_CHECK	BAdI,	which	is	capable	of	extending
transport	request	functionality.	Go	to	SE18	and	enter	a	name	in	BAdI	Name	and
click	the	Display	button:

On	the	BAdI	definition	screen,	choose	Implementation	|	Create:

A	popup	will	appear	where	you	have	to	choose	an	enhancement	name.	Then,
click	on	the	green	checkmark:

On	the	next	screen,	enter	Implementation	Short	Text.	Then,	click	the	Activate
button:

During	this	process,	a	new	class	called	ZCL_IM_EH_CTS_REQUEST_CHCK	will	be	generated
automatically.	Go	to	the	CHECK_BEFORE_CREATION	method	of	this	class	and	insert	the
following	code:

				CASE	text+0(3).

						WHEN	'FI:'	OR	'SD:'	OR	'MM:'.

						WHEN	OTHERS.

								MESSAGE	'Name	should	start	from	module	name	(FI:,	SD:,	MM:)'	TYPE	'E'.

				ENDCASE.

The	CHECK_BEFORE_CREATION	method	is	always	executed	when	someone	creates	a	new
transport	request.	To	achieve	proper	naming	conventions,	we	will	add	an
additional	check	and	inform	the	user	that	the	description	is	incorrect.	You	can
test	this	development	in	transaction	SE10—just	try	and	create	a	new	transport
request.

Enhancement	framework	and	its
components
The	Enhancement	Framework,	sometimes	referred	to	as	New	Enhancement,	is	a
concept	that	was	presented	in	version	2004	of	the	SAP	system	that	provides	a
new,	modification-free	approach	to	extending	standard	SAP	functionality.	It's	the
best	way	to	extend	development	objects,	such	as	function	modules,	global
classes,	programs,	and	Web	Dynpro	components.	The	Enhancement	Framework
is	also	integrated	with	the	new	kernel	BAdI	enhancement	technology,	which
gives	developers	a	wide	and	clear	tool	for	extending	SAP.	There	are	a	couple	of
benefits	of	using	the	Entity	Framework	(EF).	For	example,	enhancements	can
now	be	grouped	together	and	integrated	for	specific	industry	solutions.	You	can
also	switch	any	enhancement	on	and	off	using	the	switch	framework	mechanism.
You	also	have	better	support	during	system	upgrades.	The	downside	of	EF	is	that
some	functionality	may	require	old	technology	to	get	the	full	scope	of	client
requirements	(for	example,	table	appends).

There	are	two	general	types	of	enhancement	supported	by	the	Enhancement
Framework:	explicated	and	implicated	enhancement.	Explicated	enhancements
are	provided	by	SAP	and	divided	into	the	ENHANCEMENT-POINT	and	ENHANCEMENT-SECTION
types.	The	main	difference	between	section	and	point	is	that	section	contains
some	default	code,	whereas	point	is	empty.	Implicit	enhancements	are	similar	to
Enhancement-Point	since	they	are	implicit	in	some	specific	places,	which	will	be
described	later	in	this	chapter.

Enhancement	sections	and
Enhancement	points
To	work	with	new	enhancements,	you	need	to	use	the	enhancement	builder,
which	is	part	of	the	ABAP	development	workbench	transaction	SE80.	If	you
don't	know	the	name	of	the	ENHANCMENT,	try	to	debug	the	program	you	want	to
modify.	In	this	section,	we	will	focus	on	the	BAPI_SALESORDER_CREATEFROMDAT1	function
module.	If	you	open	this	function,	you	will	find	ENHANCMENT-POINT:

There	are	two	additional	options	that	can	be	used	both	with	section	and	points.
STATIC,	which	is	shown	in	the	preceding	screenshot,	will	make	the
implementation	static,	which	is	good	for	data	declaration.	Assigning	a	switch	to
Enhancements	will	change	its	behavior.	Even	static	enhancement	will	work	on
the	switch	status.	For	non-static	enhancement,	the	switch	is	obligatory.	Turn	on
EF	by	clicking	on	the	spiral	button:

Put	the	cursor	on	the	ENHANCMENT-POINT	line:

Choose	Edit	|	Enhancement	Operations	|	Create	Implementation:

You	will	get	a	popup	that	shows	all	the	enhancement	implementations.	Click	on
the	new	icon	at	the	bottom	of	the	window:

You	will	see	a	popup	where	you	need	to	insert	an	enhancement	name	and
description:

This	will	create	a	new	section,	where	you	can	add	specific	customer	code:

This	could	be	an	additional	check,	additional	business	logic,	or	other	additional
information.	In	our	case,	we	will	fill	in	some	short	text	with	a	material	name

every	time	this	field	is	empty:

FIELD-SYMBOLS:	<ls_order_items_in>	TYPE	bapiitemin.

LOOP	AT	order_items_in[]	ASSIGNING	<ls_order_items_in>	WHERE	short_text	IS	INITIAL.

		SELECT	SINGLE	maktx	FROM	makt	INTO	<ls_order_items_in>-SHORT_TEXT	WHERE	matnr	=	<ls_order_items_in>-material	AND	spras	=	'E'.

ENDLOOP.

Every	enhancement	has	to	be	activated	in	the	same	way	you	would	activate	an
ABAP	program	or	include:

Now,	every	time	you	use	BAPI_SALESORDER_CREATEFROMDAT1,	your	additional	logic	will
be	executed.

Implicit	enhancements
Implicit	enhancements	are	spots	where	you	can	create	your	own	source	code.
Those	spots	are	automatically	created	in	pre-defined	places.	You	can	find
implicit	enhancements	at	the	end	and	beginning	of	most	ABAP	development
objects	(Includes,	Reports,	Function	pool,	Module	pool,	and	Function	modules).
Implicit	enhancements	are	also	available	at	the	beginning	and	end	of	FORM
subroutines,	the	methods	of	all	classes,	and	the	visibility	areas	(public,	protected,
and	private)	of	the	local	class.	To	check	all	the	implicit	options	that	are	available
in	the	source	code,	go	to	the	ABAP	workbench	(transaction	SE80)	and	choose
any	of	the	objects	we	mentioned	previously:

Choose	Edit	|	Enhancement	Operations	|	Show	Implicit	Enhancement	option
from	the	editor:

You	will	be	able	to	see	additional	lines	in	the	Function	module	|	Source	code:

Let's	try	to	implement	implicit	enhancement.	The	BAPI	we	just	created	is	used
to	post	financial	documents.	It's	the	equivalent	of	transaction	FB01.	Click	on	the
enhance	icon	from	the	toolbar	menu:

New	options	will	be	shown	on	the	toolbar	(Create,	Change,	Replace,	and	so	on):

Right-click	on	the	first	line	of	code	and	choose	Enhancements	Operations	|
Create	Implementation:

On	the	next	screen,	you	will	be	asked	to	Choose	Enhancement	Mode:

The	declaration	type	is	used	for	static	code,	such	as	data	declaration,	forms,	and

local	class	definitions.	The	declaration	is	client	independent.	On	the	other	hand,
the	code	type	is	used	for	dynamic	enhancements	and	can	be	switched	on	and	off
using	the	switch	framework.	The	declaration	type	of	an	implicit	enhancement
doesn't	provide	the	same	performance	as	the	code	type.	Click	on	the	Declaration
button:

Composite	Enhancement	Implementation	is	a	higher	abstract	structuring
approach	for	development.	It's	similar	to	package	subpackage.	Fill	in	the	boxes,
just	like	I	have	in	the	following	screenshot:

Click	on	the	green	check	mark	button.	You	should	be	back	inside	editor,	where
you	can	insert	the	ABAP	code:

You	can	put	any	code	here,	for	example,	the	code	from	the	BTE	example	(with
some	minor	modification)	and	get	almost	the	same	result	with	an	entirely
different	enhancement	technology.

Summary
In	this	chapter,	you	learned	about	extending	standard	SAP	system	functionality.
This	multiplicity	of	options	is	due	to	long	history	of	SAP	software	and	various
approaches	to	development	over	the	years.	As	a	developer,	you	should	always
try	to	use	the	latest	approach	whenever	possible.	In	spite	of	such	broad
knowledge,	not	all	areas	have	been	described.	The	new	HANA	and
SAPUI5/Fiori	technologies	also	have	their	own	extension	techniques,	and	they
are	used	more	and	more	often.	Having	acquired	the	knowledge	from	this	chapter,
you	should	be	able	to	implement	even	the	most	complex	requirements	of	an	end
customer.	In	the	next	chapter,	we	will	discuss	how	do	handle	exceptions	in
ABAP	programming.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 Which	of	the	listed	technologies	in	this	chapter	is	not	recommended	for
use?

2.	 What	is	the	switch	mechanism	used	for?
3.	 What	is	the	difference	between	classical	BAdI	and	kernel	BAdI?
4.	 Which	module	is	used	to	extend	FQEVENT	transactions?
5.	 What	is	the	difference	between	the	enhancement	point	and	the	enhancement

section?
6.	 What	does	the	INCLUDE	BOUND	option	do?
7.	 What	technical	object	is	used	in	customer	exit	implementation?

Further	reading
Enhancement	techniques	for	SAP	Fiori:	https://wiki.scn.sap.com/wiki/displa
y/Fiori/SAP+Fiori+-+Extensibility

Business	Data	Toolset	(BDT):	https://help.sap.com/erp2005_ehp_02/helpdata/en/4
4/bd8d5377a0ec23e10000000a174cb4/frameset.htm

Enhancing	WebDynpro:	https://wiki.scn.sap.com/wiki/display/WDABAP/Enhancing+
the+WebDynpro+Component+and+Methods

https://wiki.scn.sap.com/wiki/display/Fiori/SAP+Fiori+-+Extensibility
https://help.sap.com/erp2005_ehp_02/helpdata/en/44/bd8d5377a0ec23e10000000a174cb4/frameset.htm
https://wiki.scn.sap.com/wiki/display/WDABAP/Enhancing+the+WebDynpro+Component+and+Methods

Handling	Exceptions	in	ABAP
In	a	perfect	world,	perfect	programs	would	always	behave	the	way	they	were
intended	to.	All	the	data	would	be	consistent,	the	users	would	always	act
properly,	and	there	would	be	no	unexpected	conditions.	Unfortunately,	the
perfect	world	does	not	exist	and	even	the	most	elaborate	programs	may
sometimes	fail.	To	minimize	losses	and	prevent	damage	from	spreading	any
further,	developers,	users,	and	system	administrators	should	react	to	any
unexpected	circumstances.

This	chapter	will	also	describe	the	classic	exception.	The	information	pertaining
to	the	classic	exception	for	the	program	is	important	because,	in	older
implementations,	they	can	come	across	this	solution.			

This	philosophy	was	also	incorporated	in	the	Systems	Applications	and
Products	in	Data	Processing	(SAP)	system,	through	the	use	of	several	tools,
concepts,	and	syntax	statements.	This	chapter	will	describe	how	to	handle
improper	runtime	behavior,	both	at	the	programming	level	and	error	root	causes
analysis	level.

The	following	topics	will	be	covered	in	this	chapter:

Classic	exception	handling
Class-based	exceptions
Assertions
Runtime	errors
ABAP	dump	analysis	tool

Technical	requirements
All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter11.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-SAP-ABAP

Classic	exception	handling
As	was	mentioned	in	the	introduction,	when	working	with	the	SAP	system,	it	is
rather	inevitable	to	find	some	old	code,	and	it	was	most	likely	created	with
classic	exceptions.	Although	it	is	not	recommended,	and	even	discouraged,	to
use	them	on	a	regular	basis	in	a	new	development,	there	are	still	several	cases
where	it	is	the	only	way	to	communicate	and	handle	the	unexpected	behavior	of
the	program.

Handling
Prior	to	the	introduction	of	class-based,	object-oriented	programming	in	SAP
systems,	one	of	the	methods	of	code	modularization	was	function	modules.	The
reusable	code	components	with	a	particular	task	to	do	were	wrapped	into	pretty
simple	function	calls,	and	the	modules	were	bundled	into	function	groups.	The
function	modules—despite	the	fact	that	they	were	mostly	superseded	by	the
classes	and	methods—are	still	necessary	when	using	Remote	Function	Call
(RFCs).

Even	if	the	code	is	well	thought	out	and	well	written,	it	is	still	necessary	to
ensure	that	the	system	will	not	fail	if	something	unexpected	happens.	What	is
even	more	important,	it	is	required	to	prevent	the	database	from	having
inconsistent	data,	even	if	processing	is	interrupted	abruptly.	To	solve	this
problem,	developers	were	given	the	appropriate	mechanism	of	communicating
failures	or	problems	to	anyone	using	their	modules—including	the	EXCEPTIONS
section	in	the	function	module	interface	shown	in	the	following	code	snippet:

CALL	FUNCTION	'SAMPLE_FUNCTION'

				EXPORTING

								…

				IMPORTING

								…

				TABLES

								…

				CHANGING

								…

				EXCEPTIONS

								…

The	EXCEPTIONS	section	of	the	call	is	built	along	similar	lines	to	the	preceding	ones
—it	is	a	list	of	possible	exceptions	returned	by	the	function	modules,	followed
by	the	assignment	of	a	number	in	the	0-65535	range.	A	simple	list	is	presented
here:

CALL	FUNCTION	'SAMPLE_FUNCTION'

				some_defined_exception			=	1

				some_other_exception					=	2

				yet_another_exception				=	3

As	it	is	possible	for	the	function	module	to	have	a	long	list	of	possible
exceptions—and	not	all	of	them	can	be	handled	in	a	meaningful	way—we	can

use	a	keyword,	OTHERS,	to	assign	a	single	number	to	all	handleable	exceptions	not
mentioned	by	name.	Refer	to	the	following	code	snippet:

CALL	FUNCTION	'SAPMLE_FUNCTION'

				EXCEPTIONS

								some_defined_exception	=	1

								OTHERS																	=	2.

It	is	important	to	observe	that	omitting	the	OTHERS	keyword	while	not	assigning	a	number	to	an
exception	will	lead	to	a	runtime	error	when	this	particular	exception	occurs.

Once	the	function	module	is	executed	and	the	program	flow	goes	back	to	the
caller,	the	sy-subrc	system	variable	is	set.	By	default,	if	the	flow	was	not
interrupted	by	any	exception,	the	sy-subrc	value	is	set	to	0.	In	any	other	situation,
the	value	is	set	according	to	the	number	specified	in	the	EXCEPTIONS	section	thus
letting	the	developer	act	accordingly.

The	classic	exceptions	are	the	natural	extension	of	the	function	modules
interface,	but	they	can	also	be	incorporated	into	the	class	methods	(although	it	is
not	recommended).	For	the	local	classes,	the	exceptions	are	also	defined	in	a
dedicated	section	as	shown	here:

CLASS	lcl_class	DEFINITION.

				METHODS

								sample_method

												RETURNING	value(arg)	TYPE	I

												EXCEPTIONS	some_exception	another_exception	yet_another_exception

ENDCLASS.

When	defining	global	classes	using	the	Class	Builder,	the	exceptions	are	defined
on	the	corresponding	screen,	accessible	via	the	Exceptions	button:

On	the	new	subscreen,	the	classic	exceptions	are	created	simply	by	declaring

their	name	and	adding	a	meaningful	description.	As	the	classic	exceptions	and
class-based	exceptions	(described	further	in	this	chapter)	are	mutually	exclusive,
the	Exception	Classes	checkbox	needs	to	be	left	unmarked,	as	follows:

Similar	to	function	modules,	when	calling	the	method	containing	the	EXCEPTIONS
section,	the	developer	is	responsible	for	assigning	appropriate	codes	(numbers)
to	all	the	exceptions	declared,	similar	to	the	following	code	snippet:

DATA	lr_ref	TYPE	REF	TO	lcl_class.

DATA	lv_result	TYPE	I.

				…

CREATE	OBJECT	lr_ref.

lr_ref->some_method(

				RECEIVING	

								arg	=	lv_result

				EXCEPTIONS	

								some_exception								=	1

								another_exception					=	2

								yet_another_exception	=	3).

Once	again,	should	the	exception	happen	while	not	declared	in	the	call
statement,	the	runtime	error	will	occur	and	the	program	will	be	terminated
immediately.

After	the	method	call	is	completed,	the	sy-subrc	variable	is	set	to	0	for	success	or
to	any	number	assigned	to	the	exception	that	was	raised	during	the	execution.

Raising
Classic	exceptions	should	not	be	considered	the	exceptions	originating	from	the
system	core.	They	are	rather	a	short	explanation,	or	the	reason	for	the	premature
termination	of	the	method	or	a	function	call.	Such	termination	can	be	the	result
of	preventive	steps	to	avoid	system	failure,	but	also—and	probably	more	likely
—it	is	a	simple	message	stipulating	that	for	some	reason,	the	code	logic	deviates
from	the	designed	flow	and	the	valid	results	cannot	be	provided.

Due	to	their	logic-specific	nature,	classic	exceptions	need	to	be	raised	manually
in	places	where	they	are	actually	needed.	Regardless	of	whether	you're	defining
a	new	function	module	or	new	class	method,	there	are	two	ways	of	raising	a
classic	exception—the	first	is	with	the	RAISE	statement:

RAISE	some_exception.

The	second	one	is	an	addition	to	the	MESSAGE	statement:

MESSAGE	'Some	error	message'		TYPE	'E'	RAISING	some_exception.

Both	statements	result	in	the	immediate	termination	of	the	current	processing
block.	This	termination	may	have	several	outcomes,	depending	on	the	context.	If
any	of	these	two	statements	is	executed	within	the	function	module	or	class
method,	and	the	caller	provided	an	appropriate	EXCEPTIONS	assignment,	the
program	flow	resumes	right	after	the	call.	If	they	are	executed	within	a
subroutine,	the	interpreter	searches	the	call	stack	for	the	first	method	or	function
module	that	wraps	the	current	context.

If	there	is	neither	the	former	nor	the	latter,	the	RAISE	statement	causes	a	runtime
error,	whereas	MESSAGE-RAISING	behaves	like	the	standard	MESSAGE	statement.
Otherwise,	if	either	function	module	or	class	method	is	found,	its	interface	is
checked	for	the	definition	of	the	exception.	Provided	the	definition	is	present,	the
execution	flow	is	resumed	after	the	call.	In	other	cases,	where	the	definition	is
not	available,	RAISE	results	in	a	runtime	error	and	MESSAGE-RAISING	produces	a
message.

The	aforementioned	outcomes	lead	to	a	recommendation—when	the	classic

exception	is	required	to	be	raised,	it	is	preferable	to	use	the	MESSAGE-RAISING	clause
as	it	may	carry	a	bit	more	information	(a	message)	than	the	RAISING	clause	alone.

Classic	exceptions	cannot	be	used	alongside	class-based	exceptions	within	the
same	processing	block.

Class-based	exceptions
As	the	object-oriented	programming	philosophy	was	incorporated	into	ABAP
programming,	the	exceptions	concept	had	to	evolve	as	well.	As	programs	grew
and	used	more	classes	and	objects,	the	exceptions	were	eventually	migrated	to
class-based	programming.	There	was	also	a	more	practical	reason	for	this	move-
defining	exception,	since	an	object	allows	for	passing	more	detailed	information
on	what	happened	to	the	caller,	thereby	letting	the	developer	define	better-
tailored	reactions.

The	newly	created	exception	objects—either	standard	or	custom	ones—are
children	of	the	same	master	abstract	class,	CX_ROOT,	and	therefore	all	have
common	attributes:	TEXTID,	PREVIOUS,	and	IS_RESUMABLE,	and	the	common
methods,	GET_TEXT,	GET_LONGTEXT,	and	GET_SOURCE_POSITION.

The	CX_ROOT	class	is	the	most	general	exception	class	and,	as	such,	contains	very
little	information	about	the	specific	causes	of	the	exception.	Thus,	there	is	a
whole	hierarchy	of	subclasses	grouped	into	three	elements	that	make	up	the	first
tier	—CX_STATIC_CHECK,	CX_DYNAMIC_CHECK,	and	CX_NO_CHECK.	This	separation	of	the
inheritance	tree	is	done	as	per	the	requirements	in	the	declaration	and	checks	are
performed.

The	requirements	mentioned—as	well	as	short	recommendations	on	usage—are
as	follows:

Exceptions	based	on	CX_STATIC_CHECK	and	its	subclasses	need	to	be	declared	in
the	method	interface.	The	syntax	checks	checks	whether	the	caller	wrapped
the	call	with	the	appropriate	TRY-CATCH	block	to	catch	the	exception.	This	type
of	exception	should	be	used	when	there	is	no	way	to	prevent	the	exception
and	it	needs	to	be	forced	to	handle	the	exception	by	the	caller	explicitly.
The	exceptions	originating	from	CX_DYNAMIC_CHECK	and	its	children	need	to	be
declared	in	the	interface	as	well.	However,	there	is	no	syntax	check	when
defining	the	method	call.	These	exceptions	should	be	raised	if	the	cause	is
somehow	prevented	by	other	means	in	the	application	flow,	and	therefore
there	is	no	need	to	explicitly	tell	the	caller	that	the	exception	needs	to	be
handled.	More	detailed	subclasses	of	this	group	are,	for	example,

CX_SY_ARITHMETIC_ERROR,	CX_SY_CONVERSION_ERROR,	or	CX_SY_ASSIGN_ERROR.

The	usage	of	CX_NO_CHECK	and	its	subclasses—as	the	name	suggests—results
in	exceptions	that	are	not	supposed	to	be	declared	in	the	interface	but	are
always	propagated.	It	represents	the	exceptions	that	can	happen	any	time
and	cannot	be	prevented	in	any	other	way.	This	group	contains,	for
example,	CX_SY_REMOTE_CALL_ERROR	or	CX_BADI	subgroups,	and	CX_SY_ILLEGAL_HANDLER
or	CX_SY_NO_HANDLER	classes.

Although	the	introduction	of	standard	exception	classes	is	a	natural	outcome	of
migrating	the	ABAP	language	to	object-oriented	programming,	it	is	the
possibility	of	creating	custom	exception	classes	that	make	it	a	powerful	tool.	The
custom	exception	classes	can	be	created	either	locally	or	by	using	the	Class
Builder.

The	main	difference	between	the	custom	exception	classes	and	ordinary	classes
is	that	the	former	must	be	defined	as	the	subclasses	of	any	of	the	three	tier	one
exception	classes	(CX_STATIC_CHECK,	CX_DYNAMIC_CHECK,	and	CX_NO_CHECK).	Apart	from	this
requirement,	they	can	be	freely	extended	with	the	properties	and	methods
needed.

Handling
Unlike	classic	exceptions,	class-based	exceptions	are	not	a	part	of	the	method
call.	This	is	partly	due	to	the	separation	between	CX_STATIC_CHECK,	CX_DYNAMIC_CHECK,
and	CX_NO_CHECK—not	all	of	them	are	required	to	be	handled	every	time.	Similar	to
other	object-oriented	languages	with	the	exception	mechanism,	class-based
exceptions	are	caught	with	the	TRY-CATCH	block.	In	ABAP,	however,	the
aforementioned	block	is	further	enhanced	with	several	optional	context-control
statements,	shown	in	the	following	code	snippet:

TRY.

				...execute	standard	program	flow	here...

CATCH	[BEFORE	UNWIND]	some_exception	another_exception	[INTO	oref].

				...react	to	the	exception	here...

[CLEANUP	[INTO	oref].]

				...cleanup	here	before	passing	the	exception...

ENDTRY.

The	simplest	possible	declaration	of	the	TRY-CATCH	block	includes	only	the
following	statements	with	the	exception	name:

TRY.

				...execute	standard	program	flow	here...

CATCH	some_exception.

				...react	to	the	exception	here...

ENDTRY.

Although	this	straightforward	example	is	sufficient	to	pass	the	syntax	check	and
avoid	runtime	errors	caused	by	some_exception,	it	is	most	likely	not	enough	for
proper	handling	in	terms	of	business	context	or	application	logs.	In	order	to	get
more	information	from	the	exception,	the	INTO	oref	addition	can	be	used:

TRY.

				...execute	standard	program	flow	here...

CATCH	some_exception	another_exception	INTO	oref.

				...react	to	the	exception	here...

CATCH	yet_another_exception.

				...react	to	the	exception	here...

ENDTRY.

This	addition	causes	the	exception	object	thrown	to	be	stored	in	the	oref	variable.
Keep	in	mind	the	hierarchical	structure	of	the	exception	classes;	the	oref
variable's	type	must	be	a	superclass	of	all	the	exceptions	declared	in	the	CATCH
statement.	Alternatively,	it	is	possible	to	use	DATA(oref)	instead,	letting	the	code

interpreter	decide	the	variable's	type.

The	type	of	the	oref	variable	declared	with	DATA(oref)	in	the	INTO	clause	will	be	the	lowest
common	superclass	of	all	the	exceptions	declared	in	the	CATCH	statement.

Once	the	exception	object	is	stored	in	the	variable,	it	is	possible	to	access	its
public	properties	and	methods	when	reacting	to	the	exception.	The	exact
properties	and	methods	are	dependent	on	the	type	of	the	exception	and	can	be
freely	defined	when	the	custom	exception	classes	are	used.

If	the	standard	execution	block	can	raise	multiple	exceptions,	and	the	reaction
for	any	of	them	must	differ,	it	is	possible	to	use	several	CATCH	statements	within
one	TRY-ENDTRY	section,	as	was	also	shown	in	the	previous	code	snippet.

The	exceptions	mechanism	in	ABAP	is	designed	this	way,	so	when	the	exception
is	raised	and	the	flow	control	is	passed	to	the	CATCH	statement,	the	context	in
which	it	was	raised	is	lost	by	default.	Although	not	so	common,	there	are	some
situations	that	require	the	preservation	of	the	raising	context	when	executing	the
reaction	block.	One	particular	example	is	when	the	exception	is	thrown	is
resumable	and	the	flow	is	indeed	supposed	to	be	resumed.	For	these	purposes,
the	BEFORE	UNWIND	addition	was	introduced:

TRY

				...execute	standard	flow	here...

CATCH	BEFORE	UNWIND	some_exception	INTO	oref.

				...react	to	the	exception	here...

				RESUME.

ENDTRY.

One	more	option	for	flow	control	when	handling	exceptions	can	be	added	with
the	CLEANUP	statement.	This	optional	keyword	can	be	used	when	the	exception
raised	is	not	handled	directly	by	the	same	TRY-CATCH	block,	but	by	some	other
surrounding	block,	as	in	the	following	code	snippet:

TRY.

				TRY.

								...execute	standard	flow	here…

								...some_other_exception	is	raised…

				CATCH	some_exception.

								...react	to	some_exception...

				CLEANUP.

								...cleanup	section…

				ENDTRY.

CATCH	some_other_exception.

				…react	to	some_other_exception…

ENDTRY.

When	some_other_exception	is	raised,	it	is	not	caught	by	the	innermost	TRY-CATCH
section,	but	by	the	outermost,	so	the	structure	is	syntactically	correct.	The	CLEANUP
section	is	executed	immediately	after	the	raising	context	is	deleted	and	before
the	outermost	CATCH	section.

If	the	catching	statement	is	supplied	with	the	BEFORE	UNWIND	addition,	the	CLEANUP
section	is	executed	after	the	CATCH	section,	or,	if	there	is	a	RESUME	statement	in	the
CATCH	clause,	it	is	not	executed	at	all.

Similar	to	the	CATCH	statement,	the	CLEANUP	section	can	be	further	supplied	with
the	INTO	oref	addition	to	get	a	reference	to	the	exception	object.	This	time,
however,	oref	is	always	of	the	CX_ROOT	type.

Raising
Raising	class-based	exceptions	is	only	a	little	bit	more	complicated	than	classic
exceptions.	In	this	case,	the	RAISE	EXCEPTION	statement	should	be	used,	with
appropriate	additions	and	options	when	needed.

The	appropriate	syntax	for	raising	this	kind	of	exception	depends	on	whether	the
exception	object	variable	was	declared	prior	to	raising.	In	the	first	scenario,	the
following	syntax	is	valid:

CLASS	lcx_exception	DEFINITION	INHERITING	FROM	cx_static_check.

ENDCLASS.

...

DATA	lx_exception	TYPE	REF	TO	lcx_exception.

...

CREATE	OBJECT	lx_exception.

RAISE	EXCEPTION	lx_exception.

If	the	object	was	not	declared,	the	RAISE	statement	should	have	the	TYPE	keyword
and	should	refer	to	the	type	instead	of	the	variable,	as	in	the	following	code
snippet:

CLASS	lcx_exception	DEFINITION	INHERITING	FROM	cx_static_check.

ENDCLASS.

...

RAISE	EXCEPTION	TYPE	lcx_exception.

The	actual	values	of	the	exception	parameters	need	to	be	passed	to	the	exception
object	during	its	creation	(either	with	CREATE	OBJECT	or	RAISE	EXCEPTION	TYPE)	through
the	EXPORTING	clause:

RAISE	EXCEPTION	TYPE	custom_exception_class

				EXPORTING

								param1	=	value	1

								param2	=	value	2

								...

.

The	values	passed	here	will	be	accessible	within	the	CATCH	statement	of	the	first
surrounding	TRY-CATCH	block,	suitable	for	catching	this	type	of	exception.

If	the	exception	thrown	is	not	meant	to	stop	the	execution	flow—and	it	should	be
possible	to	resume	it	when	the	exception	is	handled—the	optional	RESUMABLE

clause	can	be	used:

RAISE	RESUMABLE	EXCEPTION	TYPE	custom_exception_class.

The	appropriate	CATCH	BEFORE	UNWIND	block	may	contain	the	RESUME	statement.

Many	programs	in	the	ABAP	environment	utilize	messages	as	a	way	to
communicate	their	current	state	and	issues	to	the	user,	or	to	store	information	in
logs.	Thus,	class-based	exceptions	are	also	prepared	to	use	this	mechanism.	As
long	as	the	exception	class	is	declared	with	either	the	IF_T100_DYN_MSG	or
IF_T100_MESSAGE	interface,	the	MESSAGE	addition	can	be	used.

When	constructing	custom	exception	classes,	these	interfaces	are	included
automatically	when	the	following	checkbox	is	checked:

The	resulting	interfaces	tab	is	as	follows:

Using	the	MESSAGE	clause	similar	to	the	following	code	snippet	will	result	in	the
exception	object	with	the	fields	populated	according	to	the	interface	rules,	with
the	whole	message	accessible	through	the	get_text()	method:

RAISE	EXCEPTION	TYPE	sample_exception_class

				MESSAGE

								ID	sy-msgid

								TYPE	sy-msgty

								NUMBER	sy-msgno

								WITH	sy-msgv1	sy-msgv2	sy-msgv3	sy-msgv4.

Assertions
ABAP	programs,	as	well	as	pretty	much	every	other	program,	are	more	or	less
based	on	certain	assumptions.	For	example,	the	data	provided	to	a	method	or	a
function	is	consistent,	that	the	program	behaves	as	designed,	or	that	the	outcome
of	data	processing	follows	some	kind	of	scheme.

In	most	cases,	these	assumptions	are	so	obvious	that	the	developer	is	not	even
aware	of	them	when	writing	a	piece	of	code.	Sometimes,	however,	it	may	be
more	important	to	check	whether	a	certain	condition	is	fulfilled	before
proceeding	further.	Using	the	standard	IF-ELSE	statement	for	this	purpose	is
sufficient	and	will	do	exactly	what	is	needed.	However,	there	is	another	shorter
and	more	controlled	way	of	achieving	this—with	assertions.

The	assertion	in	ABAP	code	is	a	simple	statement	saying	assert	that	something
fulfills	a	condition.	There	is	no	need	to	use	any	sophisticated	syntax	or	build
nested	IF	structures	for	several	conditions.	What's	more,	the	assertion	mechanism
is	remotely	controlled—particular	groups	of	assertions	can	be	turned	on	or	off
when	needed	(without	altering	the	source	code)	and	several	different	actions	can
be	performed	if	the	assertion	fails.

Building	a	checkpoint	group
The	best	way	to	start	working	with	assertions	is	to	run	the	Checkpoints	that
Can	Be	Activated	(SAAB)	transaction	and	create	a	new	checkpoint	group:

Assign	the	new	group	to	the	appropriate	package	and	transport	request.	This
object	should	advance	to	the	productive	system	to	handle	failed	assertions	there
as	well.

The	resulting	checkpoint	group	is	ready	to	be	used	and	the	preview	shows	the
screen	as	follows:

The	preceding	screenshot	shows	that	the	information	about	the	settings	is	very
clear.	The	user	can	set	them	in	a	simple	way.	They	are	also	grouped	by	their
characteristics.

Defining	assertions
Once	the	checkpoint	group	is	created,	it	is	time	to	set	up	some	assertions	in	the
code.	To	to	this,	the	following	syntax	is	used:

ASSERT	[[ID	groupID	[SUBKEY	key]]	[FIELDS	field	1	…]	CONDITION]	expression

The	ID	addition	is	used	to	assign	the	assertion	to	the	group	defined	in	the	SAAB
transaction	and	control	it	remotely.	Although	it	is	possible	to	omit	this	addition
(resulting	in	an	assertion	that	is	always	active),	should	the	assertion	fail,	the
runtime	error	will	be	triggered	by	the	non-handleable	ASSERTION_FAILED	exception.
The	ID	clause	can	be	further	specified	with	the	SUBKEY	addition—it	can	be
followed	by	any	character	string	and	is	used	to	easier	identify	assertions	in	the
program.

The	optional	FIELDS	addition	is	used	to	provide	a	list	of	fields	(variables)	that
should	be	passed	to	the	assertion	log	if	the	assertion	fails.

The	CONDITION	clause	is	required	if	either	ID	or	FIELDS	clauses	are	used.	After	the
CONDITION,	one	defines	the	logical	expression	to	be	checked	at	runtime.

Using	the	checkpoint	group	defined	in	SAAB,	a	simple	assertion	example	may
appear,	similar	to	the	following	code	snippet:

ASSERT	ID	ZSAMPLE_ASSERT	SUBKEY	'date	assertion'	FIELDS	sy-datum	sy-uzeit	CONDITION	sy-datum	<	'19990101'.

As	the	year	1999	is	obviously	in	the	past,	this	assertion	is	meant	to	fail.

Using	assertions
Provided	assertions	included	in	the	code	are	assigned	to	the	checkpoint	group
using	the	ID	addition,	they	are	inactive	by	default.	Using	the	SAAB
transaction	again,	these	assertions	can	be	activated	temporarily	and	the	required
action	can	be	defined.	You	can	choose	from	four	options	for	foreground
processing:

Inactive:	The	assertions	are	not	checked	at	all.
Break:	Failed	assertions	open	the	debugger	window.
Log:	The	values	of	variables	specified	in	the	FIELDS	addition	are	logged	if
the	assertion	fails.
Abort:	The	ASSERTION_FAILED	exception	is	thrown	when	the	condition	is	not
met	and	the	program	is	terminated	immediately.

The	available	options	are	also	shown	in	the	following	screenshot:

ABAP	programs	can	be	executed	as	background	processes,	for	which	the	debugger	cannot	be
opened.	Choosing	the	Break	option	requires	additional	decisions	as	to	whether	background
processing	should	log	the	assertion	failure	or	whether	to	abort	processing	with	ASSERTION_FAILED.

Once	the	decision	is	made	and	the	save	icon	is	pressed,	the	user	is	prompted	to
choose	an	activation	period.	The	assertions	from	within	the	checkpoint	group
will	automatically	turn	inactive	after	the	specified	time.

Executing	the	code	with	the	assertion	in	Log	mode	results	in	a	new	entry	on	the
Log	tab:

Drilling	down	the	tree	eventually	shows	the	details	of	this	particular	assertion
failure	and	the	values	of	variables	defined	in	the	FIELDS	clause:

Well-written	assertions	allow	for	quick	and	easy	root	cause	analysis	of	errors	and
failures	without	the	need	to	use	debuggers	in	a	productive	environment.

The	checkpoint	group	created	with	SAAB	has	the	option	to	activate	and
deactivate	BREAK-POINT	and	LOG-POINT,		both	assigned	to	it.	The	behavior	of	the
former	is	similar	to	the	assertion	in	Break	mode,	and	the	latter	to	the	assertion	in
Log	mode,	but	they	don't	specify	additional	conditions.

Runtime	errors
A	runtime	error	in	an	SAP	system	can	have	many	causes.	A	runtime	error	is	a
problem	whose	effect	is	interrupting	the	program.	The	most	common	reasons	for
this	are	as	follows:

Non-handled	exceptions.
A	handleable	exception	was	not	handled.
A	non-handleable	exception	was	raised.
An	exit	message	was	sent.
An	assertion	failed	(assertion	in	ABORT	mode).

The	database	table	SNAPTID	lists	all	existing	runtime	errors—in	total,	around	2,000.

ABAP	dump	analysis	tool
ABAP	Dump	Analysis	is	used	to	analyze	execution	errors	in	the	SAP	system.	It
is	a	very	powerful	tool	often	displayed	by	developers.	The	user	can	run	this	tool
with	the	ST22	transaction.		The	tool	provides	a	lot	of	information	that	is	necessary
to	repair	the	existing	situation.	The	selection	screen	is	shown	after	starting
the	ST22	transaction.	The	selection	screen	is	shown	as	follows:

Searching	for	a	specific	error	becomes	easier	when	the	developer	has	as	much
information	as	possible;	this	can	narrow	down	the	search	area.

The	following	code	will	result	in	a	short	dump	since	the	division	by	0	has	not
been	handled:

	REPORT	ztestdump.

	

	DATA	:	lv_count	TYPE	i	VALUE	4,

								lv_div			TYPE	i,

								lv_denom	TYPE	i	VALUE	0.

	

	lv_div	=	lv_count	/	lv_denom.

The	previous	code	was	presented	for	demonstration	purposes.	The	error
simulated	in	this	program	will	help	the	reader	understand	the	ABAP	Dump
Analysis	tool	in	the	SAP	system.

Error	log
The	resulting	error	log	can	be	analyzed	in	the	transaction	described
previously.	The	error	log	is	divided	into	a	tree	structure;	its	main	nodes	are
composed	of	the	following:

System	Environment
User	View
ABAP	Developer	View
BASIS	Developer	View

Each	of	the	preceding	nodes	contains	subnodes	containing	important	information
related	to	the	problem.	

System	environment
There	are	two	subnodes	in	the	System	Environment	node:	User	and	Transaction
and	System	Environment.	The	first	contains	technical	information	about	the
system;	there	is	also	information	about	memory	usage.	In	the	second	section,	the
user	will	find	information	about	the	User	and	Transaction.	In	this	subnode,	the
user	can	find	out	which	user	caused	the	error	and	on	which	mandate	they	were
logged	in.		

User	View
In	this	part,	the	system	informs	the	user	what	happened	in	the	system	at	the	time
of	the	error.	There	is	also	a	suggested	way	to	solve	the	problem,	but	this
information	is	not	usually	sufficient	for	repair.	The	sample	data	provided	by	the
SAP	system	is	shown	as	follows:

The	preceding	screenshot	shows	that	the	information	is	very	general.	It	is	rare
that	this	is	sufficient	to	take	appropriate	action	to	repair	the	system.	However,
the	information	provides	a	general	picture	of	the	problem,	which	is	useful.

ABAP	developer	View
The	first	set	of	information	contains	a	brief	description	of	the	error.	This
information	(as	in	this	case)	is	often	sufficient	to	locate	the	source	of	the
problem.	An	example	message	is	shown	here:

The	next	set	of	information	is	more	detailed.	It	contains	detailed	information
about	what	has	happened	and	in	which	program.	Often,	there	is	also	information
about	the	exception	that	should	be	used:

Information	on	where	terminated	gives	information	about	where	the	error
occurred	and	in	which	line	of	code	the	program	was	aborted.	The	developer	also
has	access	to	the	data	included	in	the	system	variables.	Sample	information
about	the	system	variables	is	shown	in	the	following	screenshot:

Some	of	the	most	important	information	provided	by	this	tool	is	How	to	correct
the	error.	This	tells	you	what	can	be	done	to	fix	the	error.	This	is	to	avoid
repeating	problems	when	using	the	program.	In	the	following	example,	the
system	determines	which	classes	to	use	to	handle	the	exception.	This
information	is	important	for	both	experienced	programmers	and	beginners	alike.
Often,	the	information	contained	in	this	section	allows	you	to	eliminate	the	error.
The	use	of	the	exception	class	is	also	described	in	this	chapter.	An	example
screen	is	shown	in	the	following	screenshot:

All	parts	of	the	tool	shown	here	are	valid,	but	rarely	give	sufficient	information
for	repair.	The	next	point,	however,	is	the	most	useful	for	everyday	work.	Users
have	access	to	information	about	the	code	in	which	the	error	occurred.	After
double-clicking,	you	can	go	to	the	place	where	it	will	be	modified	if	the	user	has

permission.	The	following	screenshot	shows	what	it	looks	like:

The	preceding	screenshot,	along	with	the	code,	proves	that	the	tool	allows	you	to
easily	find	the	problem	in	the	code.

BASIS	developer	View
This	section	describes	the	problems	with	BASIS.	This	is	very	helpful	when	the
error	is	related	to	malfunctions	on	the	kernel	side.	The	user	gets	information
about	which	program	was	started	during	the	error.	This	information	is	rarely
important	to	the	programmer,	because	in	most	cases,	the	problem	is
programming	and	the	solution	consists	of	modifying	the	existing	code.	The
sample	information	is	shown	as	follows:

The	preceding	screenshot	shows	that	the	information	in	this	section	is	relatively
short.	However,	it	offers	useful	data	that	the	BASIS	team	can	use	when	the
problem	and	error	are	on	their	side.

Summary
This	chapter	covered	the	testing	exceptions	concept	of	ABAP,	types	of
exceptions	that	have	existed	from	the	beginning,	and	the	types	we	have	now.	It
also	offered	recommendations	on	the	proper	way	of	handling	exceptions,	and
those	situations	when	situations	it	is	strongly	required	and	in	which	it	is	not
recommended.

The	next	chapter	describes	testing	applications	written	in	the	ABAP
language.	This	information	is	vital	for	every	programmer	and	for	technical
consultants	who	work	with	the	SAP	system.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 How	do	we	implement	the	exception	class?
2.	 What	is	the	checkpoint	group?
3.	 What	is	the	ABAP	Dump	Analysis	tool	for?
4.	 What	transaction	triggers	the	ABAP	dump	analysis	tool?
5.	 Why	should	programmers	use	error	handlers?

Testing	ABAP	programs
Testing	is	an	inherent	element	of	software	development.	You	can	risk	saying	that
your	software	will	contain	smaller	or	larger	errors	without	performing	the
relevant	tests.	There	is	very	common	law	about	this,	called	Lubarsky's	Law.

There's	always	one	more	bug.
–	Lubarsky's	Law

Fortunately,	the	SAP	environment	is	equipped	with	a	number	of	tools	that	allow
for	convenient	work	with	both	automated	tests	and	static	code	quality	testing.
While	the	ABAP	language	itself	has	built-in	mechanisms	for	creating	unit	tests,
SAP	has	also	equipped	us	with	a	powerful	extended	Computer	Aided	Test	Tool
(eCATT)	to	create	complex	test	scenarios	that	allow	the	automation	of
functional	tests.

The	availability	of	this	type	of	tool	is	very	important	in	a	solution	that	is
constantly	being	developed,	and	subsequent	changes	may	disturb	its	stability.
Rapid	regression	tests	are	the	foundation	of	a	modern	software	development
process.	In	this	chapter,	we	will	go	through	all	the	important	techniques	and
tools	that	the	technical	consultant	has	at	their	disposal	in	the	SAP	environment.	

The	following	topics	will	be	covered	in	this	chapter:

Static	testing	with	Code	Inspector
ABAP	Testing	Cockpit	(ATC)
ABAP	Memory	Inspector
Advanced	ABAP	Debugger	techniques
Testing	with	eCATT

Technical	requirements
The	following	requirements	need	to	be	met	to	ensure	that	all	examples	from	this
chapter	will	work:

ATC:	Available	with	EhP2	for	SAP	NetWeaver	7.0	support	package	stack
12	(SAP	Basis	7.02,	SAP	Kernel	7.20)	and	EhP3	for	SAP	NetWeaver	7.0
support	package	stack	5	(SAP	Basis	7.31,	SAP	Kernel	7.20).
Debugger	scripting:	NetWeaver	7.0	EHP2.
eCATT:

Web	Application	Server	(WAS)	6.20	or	above
SAPGUI	6.20	or	above
R/3	4.6C	or	above	(the	target	system	must	have	a	sufficient	support
package	level–details	available	in	SAP	Note	519858–or	SAP	R/3
Enterprise	Release	4.7)

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter12.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter12

Testing	the	quality	of	code
Ensuring	the	high	quality	of	development	is	much	more	important	than	getting
things	done	quickly	and	cheaply.	In	this	chapter,	you	will	learn	the	possibilities
that	SAP	can	offer	to	provide	better	quality	code.

Static	testing	with	Code	Inspector
and	ABAP	Test	Cockpit
Static	testing	is	a	technique	by	which	we	can	check	the	defects	in	software
without	actually	executing	it.	Many	of	the	mistakes	made	by	developers	are
repeated	from	one	project	to	another.	SAP	created	a	mechanism	and
implemented	a	number	of	test	variants,	which	allows	us	to	check	the	overall
code	quality	and	avoid	certain	common	mistakes.	Static	tests	allow	you	to	check
the	name	convention,	detect	potential	performance	problems,	and	find	uncaught
exceptions.

If	you	do	not	find	a	ready	variant	for	the	repeated	problem	that	you	have
identified,	SAP	also	provides	the	option	to	create	your	own	implementation:

1.	 For	test	purposes,	we	will	create	new	ZMSA_R_CHAPTER12_1	report	from	a	report
template.	In	the	main	section,	declare	the	following	variables:

				DATA:	lt_bkpf_users	TYPE	TABLE	OF	bkpf.

				DATA:	users_tab	TYPE	TABLE	OF	usr02.

				DATA:	users_structure	TYPE	usr02.

				DATA:	lv_message	TYPE	char128.

2.	 After	the	variable	has	been	declared,	add	the	following	logic:

	SELECT	DISTINCT	usnam	FROM	bkpf	INTO	CORRESPONDING	FIELDS	OF	TABLE	lt_bkpf_users	WHERE	bldat	=	sy-datum.

				SELECT	*	FROM	usr02	APPENDING	TABLE	users_tab

						FOR	ALL	ENTRIES	IN	lt_bkpf_users

						WHERE	bname	=	lt_bkpf_users-usnam.

				LOOP	AT	users_tab	INTO	users_structure.

						CONCATENATE	'Hello	financial	team	member,	your	last	login	was	at'	users_structure-trdat	users_structure-ltime

						INTO	lv_message	SEPARATED	BY	space.

						CALL	FUNCTION	'TH_POPUP'

								EXPORTING

										client	=	sy-mandt

										user	=	users_structure-bname

										message	=	lv_message.

				ENDLOOP.

3.	 This	logic	takes	all	users	that	created	financial	documents	and	sends	a
notification	to	them.	Now,	choose	Program	|	Check	|	Code	Inspector	from
the	top	menu:

4.	 Code	Inspector	will	give	you	an	overall	report	of	the	tests:

5.	 We	have	two	errors,	one	warning	error	and	one	information	error,	and	that
is	just	for	a	default	set	of	rules.	If	you	extend	the	directory	tree,	you	will	see
exactly	what	the	problem	is:

Errors	will	very	often	end	up	with	a	short	dump,	so	you	never	should	ignore
them.	Warnings	and	information	errors	are	less	dangerous	and	the	effects	are
gentler,	but	they	may	still	cause	some	performance	problems	and,	in	general,
they	indicate	that	the	quality	of	the	code	can	be	improved.	Code	Inspector	is	cool
and	has	a	lot	of	features,	but	there	is	an	even	better	test	tool.	ATC	has	a	powerful
functionality	that	not	only	allows	you	to	check	the	code	more	widely,	but	it	also
facilitates	the	implementation	of	the	testing	process	in	to	your	daily	workflow.

Code	Inspector	is	integrated	into	ATC,	so	you	can	limit	yourself	to	this	tool	as
follows:

1.	 To	run	ATC,	simply	choose	Program	|	Check	|	ABAP	Test	Cockpit	(ATC):

2.	 This	will	run	the	ATC	report	with	a	default	set	of	checks.	On	the	next
screen,	you	will	see	a	similar	report	to	the	one	from	Code	Inspector:

3.	 To	run	a	custom	set	of	tests,	you	can	choose	Program	|	Check	|	ABAP	Test
Cockpit	(ATC)	as	shown	in	the	following	screenshot:

4.	 You	can	now	choose	a	Check	Variant	option	prepared	by	SAP.	You	have	a
few	of	these	that	are	related	to	performance,	security,	high-performance
analytic	appliance	(HANA)	readiness,	and,	of	course,	a	bunch	of	generic
code	checks	that	include	best	practices.	To	get	even	more	from	ATC,	you
can	go	to	the	ATC	transaction	itself.	You	can	find	tons	of	useful	options
here,	but	probably	the	most	important	part	is	the	managing	of	Check
Variant.	Click	on	Mange	Check	Variants:

5.	 This	is	actually	Code	Inspector	integrated	into	ATC.	You	can	not	only
modify	existing	variants,	but	also	create	your	own	based	on	the	best
practices	of	your	company	or	customer	requirements.	Click	on	the	copy
button,	as	highlighted	in	the	following	screenshot:

6.	 Call	a	new	ZEVENBETTERDEFAULT	variant:

7.	 Now,	click	on	the	modification	button,	as	highlighted	in	the	following
screenshot:

8.	 You	can	change	from	a	local	to	a	global	check	variant	on	the	next	screen.
The	global	variant	will	be	available	for	all	users:

You	can	activate	or	deactivate	specific	variants/checks	here.	You	can	also
change	the	configuration.	You	can	ask	yourself	why	we	need	a
configuration	for	a	single	check,	but	the	answer	is	very	simple.	Some
checks	are	client-specific;	this	could	be,	for	example,	a	variable	naming
convention.	It's	difficult	to	find	two	customers	that	use	the	same
convention	for	every	object.

Activate	the	Naming	Convention	checks	and	click	on	the	configurations
button,	as	highlighted	in	the	following	screenshot:

9.	 You	will	see	tons	of	options	here,	but	the	default	settings	are	sufficient	for
this	example:

10.	 Go	back	to	your	report	and	choose	Program	|	Check	|	ABAP	Test	Cockpit
(ATC)	with	ZEVENBETTERDEFAULT.	There	will	be	new	warnings	related	to	the
naming	conversion:

In	this	subsection,	only	the	basic	functionalities	of	ATC	have	been	presented.
Detailed	information	and	advanced	settings	can	be	found	on	the	links	included	in
the	Further	reading	section.

Testing	and	troubleshooting
This	section	is	dedicated	to	all	those	moments	when,	despite	quality	checks	and
the	developer's	best	efforts,	a	bug	has	arisen.	The	two	techniques	presented	in
this	section	will	allow	you	to	more	easily	solve	some	of	the	most	frequently
encountered	problems.

ABAP	Memory	Inspector
ABAP	Memory	Inspector	is	another	tool	in	the	developer's	toolkit.	Its	main
purpose,	as	you	may	guess,	is	related	to	memory.	Finding	memory	leaks	and
predicting	memory	consumption	on	the	production	system	may	be	crucial	if	you
have	a	system	with	an	enormous	amount	of	data.	For	this	example,	we	need	to
create	a	new	ZMSA_R_CHAPTER12_2	report	with	the	following	code:

REPORT	zmsa_r_chapter12_2.

TABLES	sscrfields.

DATA:	gt_usr	TYPE	TABLE	OF	usr02.

SELECTION-SCREEN:

				PUSHBUTTON	2(10)	but1	USER-COMMAND	load.

INITIALIZATION.

		but1	=	'Load	Data'.

AT	SELECTION-SCREEN.

		CASE	sscrfields.

				WHEN	'LOAD'.

						SELECT	*	FROM	usr02	APPENDING	CORRESPONDING	FIELDS	OF	TABLE	gt_usr.

		ENDCASE.

START-OF-SELECTION.

"do	nothing

Before	we	start	playing	around	with	ABAP	Memory	Inspector,	we	have	to	create
a	memory	snapshot	by	choosing	System	|	Utilities	|	Memory	Analysis	|	Create
Memory	Snapshot	from	the	top	menu:

	In	any	transaction,	enter	/hmusa	in	the	command	field:

You	can	also	use	the	CL_ABAP_MEMORY_UTILITIES	class	in	your	report	and	simply	call
the	WRITE_MEMORY_CONSUMPTION_FILE	static	method.	We	will	use	both	options,	but	first,
we	have	to	run	our	report.	On	the	main	screen,	click	the	Load	Data	button
multiple	times,	then	use	method	number	one.	Click	on	Load	Data	a	few	more
times	and	save	the	Memory	Snapshot	again.	Go	to	Memory	Inspector
(the	S_MEMORY_INSPECTOR	transaction)	and	you	will	be	able	to	see	your	snapshots:

In	the	bottom	section,	you	can	choose,	for	example,	Roll	Area	|	Tables	in	order
to	look	at	some	information	about	the	Tables	memory	consumption.	To	compare
snapshot	one	with	snapshot	two,	simply	choose	t_1	–	t_0:

This	recalculates	the	values	in	the	bottom	section	and	displays	those	parts	that
have	any	differences.	As	you	would	already	suspect,	there	are	differences	in	the
new	content	of	GT_USR	table	as	compared	to	the	GT_USR	table	in	the	old	snapshot:

In	each	column,	you	can	see	what	exactly	has	changed.	For	example,	in
the	Lines	column	in	the	preceding	screenshot,	you	can	see	how	many	rows	were
added	in	the	GT_USR	table	between	the	first	and	second	memory	snapshots.	

Advanced	ABAP	debugger	techniques
In	this	section,	we	will	present	the	operation	of	one	of	the	more	advanced
techniques	when	using	the	debugger.	The	debugger	allows	you	to	solve	problems
detected	by	testers.	We	will	need	a	new	ZMSA_R_CHAPTER12_3	report	for	this	section.

Create	a	new	report	from	the	report	template	using	the	following	steps:

1.	 Put	the	following	variable	declarations	in	the	main	method:

				DATA:	lt_usr	TYPE	TABLE	OF	usr02.

				DATA:	ls_usr	TYPE	usr02.

				DATA:	lv_monday	TYPE	datum.

				DATA:	lv_sunday	TYPE	datum.

2.	 After	the	variable	has	been	declared,	add	the	following	program	logic:

				SELECT	*	FROM	usr41	INNER	JOIN	usr02	ON	usr41~bname	=	usr02~bname

							APPENDING	CORRESPONDING	FIELDS	OF	TABLE	lt_usr.

				LOOP	AT	lt_usr	INTO	ls_usr.

						IF	ls_usr-bname	<>	sy-uname.

												CHECK	ls_usr-pwdlgndate	IS	NOT	INITIAL.

										CALL	FUNCTION	'GET_WEEK_INFO_BASED_ON_DATE'

												EXPORTING

														date	=	sy-datum

												IMPORTING

														monday	=	lv_monday

														sunday	=	lv_sunday.

										IF	ls_usr-pwdlgndate	>=	lv_monday	AND	ls_usr-pwdlgndate	<=	lv_sunday.	.

												WRITE	/:	'This	user	last	password	change	was	within	this	week:',	ls_usr-bname	.

This	report	reads	the	currently	active	user	on	the	system	and	reports
when	they	last	changed	their	password.	It	may	be	difficult	to	test	this
program,	due	to	the	fact	that	you	may	be	the	only	one	on	the	system	and
the	user	may	never	change	their	password.

3.	 To	test	this,	we	need	to	somehow	manipulate	the	data.	To	test	the	report,	we
will	create	a	debugger	script	that	will	edit	values	for	us.	First,	we	need	to
set	up	a	breakpoint	by	clicking	on	the	marked	line:

4.	 Now,	run	the	report.	The	debugger	will	start	immediately.	Go	to	the	Script
tab	and	click	on	the	Create	Script	button:

5.	 On	the	next	popup,	fill	in	the	description	and	name	of	the	script.	By	default,
the	script	source	is	set	to	the	database,	but	you	could	also	set	the	local	file
and	save	everything	on	the	frontend	PC.	This	will	allow	you	to	move	the
script	from	one	system	to	another.	We	will	create	our	script	by	using	the

script	wizard.	Click	on	the	Script	Wizard	button:

6.	 On	the	next	screen,	choose	the	Append	Table	Row	script:

This	will	add	the	following	code	template:

CALL	METHOD	CL_TPDA_SCRIPT_TABLEDESCR=>APPEND_LINE

				EXPORTING

								P_NEW_VALUES_IT	=	

								P_TABLE_NAME	=

								.

7.	 P_NEW_VALUES_IT	is	the	table	of	values	that	we	want	to	add,	and	p_table_name	is
the	name	of	the	internal	table	we	want	to	modify.	Change	the	code	to	get
the	following:

DATA:	lt_values	TYPE	tpda_scr_change_itab_it.

				DATA:	ls_values	TYPE	LINE	OF	tpda_scr_change_itab_it.

				ls_values-compnr	=	2.

				ls_values-value	=	'TESTUSR1'.

				APPEND	ls_values	TO	lt_values.

				ls_values-compnr	=	39.

				ls_values-value	=	sy-datum.

				APPEND	ls_values	TO	lt_values.

				TRY.

								CALL	METHOD	cl_tpda_script_tabledescr=>append_line

										EXPORTING

												p_new_values_it	=	lt_values

												p_table_name	=	'LT_USR'.

						CATCH	cx_tpda_sys_symb	.

						CATCH	cx_tpda_sys_auth	.

				ENDTRY.

8.	 Column	number	2	refers	to	the	user-name	and	will	have	a	'TESTUSR1'	value.
Column	39	refers	to	the	password	change	date.	We	need	to	change	the
trigger	to	Execute	Directly	and	then	we	can	start	the	script:

9.	 If	you	go	to	the	Desktop	tab	and	check	the	values	of	the	lt_usr	table,	you
should	now	see	an	additional	row:

10.	 If	you	double-click	on	the	row	counts,	you	will	see	the	exact	values	that	we
have	added:

11.	 If	you	click	on	the	Continue	button	(or	use	the	keyboard	shortcut,	F8),	you
will	see	the	following	results:

This	basic	example	should	give	you	a	basic	understanding	of	debugger	scripting,
and	this	technique	will	now	be	another	useful	tool	for	testing	your	applications.

Testing	with	eCATT
eCATT	is	another	tool	for	testing	our	software.	It	is	used	to	automate	functional
tests	and	create	test	scripts,	so	it	is	closer	to	business	than	technology	than	it	was
in	the	two	previous	cases.	Thanks	to	eCATT,	we	can	simulate	user	behavior.

In	this	section,	we	will	create	a	simple	example	of	using	eCATT	for	our	reports
using	the	following	steps:

1.	 First,	create	a	new	ZMSA_R_CHAPTER12_4	report	and	add	the	following	parameter
and	variables'	declaration:

REPORT	zmsa_r_chapter12_4.

DATA:	lv_result	TYPE	string.

PARAMETERS:	p_num1	TYPE	int4.

PARAMETERS:	p_num2	TYPE	int4	.

PARAMETERS:	p_radio1	RADIOBUTTON	GROUP	rad1.

PARAMETERS:	p_radio2	RADIOBUTTON	GROUP	rad1.

PARAMETERS:	p_radio3	RADIOBUTTON	GROUP	rad1.

PARAMETERS:	p_radio4	RADIOBUTTON	GROUP	rad1.

PARAMETERS:	p_result	TYPE	string	NO-DISPLAY.

2.	 In	the	AT	SELECTION-SCREEN	section,	add	the	following	arithmetical	operations:

AT	SELECTION-SCREEN.

						CLEAR:	p_result.

						CASE	abap_true.

								WHEN	p_radio1.

										p_result	=	p_num1	+	p_num2.

								WHEN	p_radio2.

										p_result	=	p_num1	-	p_num2.

								WHEN	p_radio3.

										p_result	=	p_num1	*	p_num2.

								WHEN	p_radio4.

										IF	p_num2	IS	INITIAL	OR	p_num2	=	0.

												p_result	=	'N/A'.

										ELSE.

												p_result	=	p_num1	/	p_num2.

										ENDIF.

								WHEN	OTHERS.

						ENDCASE.

						MESSAGE	p_result	TYPE	'S'.

3.	 Don't	forget	to	add	the	parameter's	text	in	the	Text	Symbols	menu:

4.	 We	also	need	to	create	a	transaction	code.	Go	to	Maintain	Transaction
(transaction	SE93),	choose	the	Transaction	Code	of	your	choice,	and	click	on
the	Create	button:

5.	 In	pop-up	window,	set	Short	text	and	click	the	green	checkmark	button	to
save:

6.	 Fill	in	the	Program	name	and	screen	number	on	the	Create	Dialog
Transaction	screen:

7.	 Save	everything	and	go	to	eCATT	(transaction	SECATT):

8.	 We	need	to	create	a	test	script	to	test	the	calculator	function.	We	would	like
to	check	every	Calculator	function,	such	as	adding	and	subtracting.	Name
the	Test	Script	as	ZCALTEST	and	hit	the	Create	button.	On	the	next	screen,
choose	Title	and	Application	Component,	then	click	on	the	save	button
highlighted	in	the	following	screenshot:

9.	 Now,	we	need	to	use	Pattern	to	create	a	Test	Script:

10.	 In	the	next	popup,	fill	in	the	fields	as	follows:

11.	 Provide	the	number	parameters	and	click	on	the	Execute	button:

12.	 A	new	popup	will	appear.	This	popup	is	generated	by	eCATT	and	asks	you
whether	you	want	to	use	your	recording	in	eCATT.	Click	Yes:

13.	 In	the	main	screen,	click	on	the	ZCAL_1	interface	name	on	the	left-hand
side	of	the	screen.	This	will	open	the	records	for	you	in	the	middle	section.
Navigate	to	the	following	section:

14.	 We	need	to	modify	some	parts	of	the	screen	to	make	it	more	useful.	As	a
start,	we	will	define	all	of	our	fields	dynamically.	This	concerns	the
customization	of	the	number	field	values	and	radiobuttons.	First,	change	the
static	value	for	the	parameter	name	of	the	P_NUM1	field:

15.	 You	will	be	asked	to	create	a	parameter:

16.	 Repeat	the	same	steps	for	P_NUM2	and	the	NAME	of	P_RADIO1:

We	will	have	three	input	parameters,	but	we	need	to	create	something	for
the	results.	Click	on	the	create	button	highlighted	in	the	following
screenshot,	and	add	the	following	line:

We	also	need	to	add	the	following	coding	just	below	the	TCD	record:

17.	 This	will	compare	the	output	message	of	our	calculator	with	the	expected
result.	We	can	test	our	script	now.	Save	everything	and	click	on	the	execute
button	highlighted	in	the	following	screenshot:

On	the	next	screen,	we	need	to	go	to	the	Parameters	tab	and	fill	in
the	Parameter	Value:

18.	 Again,	click	on	the	execute	button,	and	you	will	see	the	test	results:

19.	 The	green	square	icon	close	to	CHEVAR	means	that	the	test	was	passed.	So	far,
so	good,	but	we	would	like	to	create	multiple	test	examples	to	automatically
test	all	the	other	variants.	Go	back	to	the	main	eCATT	screen	and	create	a
new	Test	Configuration:

On	the	first	Test	Configuration	screen,	fill	in	the	description	and	area:

20.	 Switch	to	the	Configuration	tab	and	fill	in	your	Test	Script	name:

21.	 Now,	switch	to	the	Variants	tab	and	add	as	many	examples	as	you	need:

Save	everything	and	execute	Test	Configuration.	On	the	next	screen,	go
to	the	Variant	tab	and	make	sure	that	new	variants	are	active:

Now,	you	can	execute	the	test	(press	F8)	and	check	the	results:

As	you	can	see,	this	tool	gives	you	a	very	transparent	report	about	the	current
application	status.	Implementing	this	type	of	testing	will	allow	you	to	avoid	a	lot
of	stress	and	frustration	on	systems	that	are	already	in	the	production	phase.	

Summary
In	this	chapter,	you	have	learned	why	the	most	important	elements	of	software
development	are	quality	and	the	ability	to	analyze	errors	and	problems.	SAP
provides	a	broad	base	of	tools	to	ensure	the	quality	(Code	Inspector	and	ATC)
and	test	your	software	and	speed	up	the	error	repair	process	(eCATT,	Debugger
Scripting,	and	ABAP	Memory	Inspector).	In	the	next	chapter,	you	will	learn
about	the	advanced	techniques	in	ABAP	Objects.	

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	is	the	name	of	the	ATC	variant	that	checks	whether	the	code	will
work	on	S4/HANA?

2.	 Which	ATC	variant	would	you	use	to	check	code	performance?
3.	 Which	ABAP	command	can	you	use	in	code	to	turn	off	the	ATC	checks?
4.	 What	method	can	you	use	to	add	a	line	to	a	table	in	the	debugger	script?
5.	 A	debugger	script	can	be	executed	directly	or	after	a	debugger	step.	What

debugger	steps	are	available	for	this	purpose?
6.	 What	type	of	command	is	used	to	record	the	transaction	flow	in	eCATT?
7.	 What	types	of	dynamic	parameters	are	available	for	eCATT?

Further	reading
You	may	also	want	to	check	out	the	following:

Debugger	scripting:	https://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9bbb62
be34d2eaac1c5d3ccd2ba48/content.htm?no_cache=true

ATC:	https://help.sap.com/viewer/ba879a6e2ea04d9bb94c7ccd7cdac446/7.51.4/en-US/491
aa66f87041903e10000000a42189c.html

eCatt:	https://www.sap.com/documents/2015/07/eac23283-527c-0010-82c7-eda71af511fa.h
tml

https://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9bbb62be34d2eaac1c5d3ccd2ba48/content.htm?no_cache=true
https://help.sap.com/viewer/ba879a6e2ea04d9bb94c7ccd7cdac446/7.51.4/en-US/491aa66f87041903e10000000a42189c.html
https://www.sap.com/documents/2015/07/eac23283-527c-0010-82c7-eda71af511fa.html

Advanced	Techniques	in	ABAP
Objects
Object-oriented	programming	(OOP)	refers	to	the	process	of	programming	by
defining	objects,	which	combines	state	and	behavior	(combined	data	and
procedures—in	this	case,	methods).	An	object	program	is	created	as	a	collection
of	these	objects,	which	communicate	with	each	other.	This	approach	is	different
than	procedural	programming,	where	data	and	procedures	are	not	connected.
OOP	is	useful	when	writing	application	and	code	maintenance.	With	OOP,	you
can	use	the	same	piece	of	code	(a	method)	in	order	to	program	actions	that	are
repeated	in	the	code.

The	biggest	asset	of	OOP	is	its	compatibility	with	the	human	brain's	way	of
perceiving	things,	which	naturally	combines	objects	with	actions.

We	will	cover	the	following	topics	in	this	chapter:

Technical	requirements
The	creation	of	global	and	local	classes	in	ABAP
The	differences	between	static	and	instance	methods	and	attributes
The	creation	of	a	nested	class
The	event	concept
ABAP	Objects	design	patterns

Technical	requirements
ABAP	Objects	was	introduced	by	SAP	as	an	extension	of	the	ABAP	on	SAP
Basis	Release	4.5.	In	the	4.6	release,	SAP	provided	the	complete	version	of
ABAP	Objects	by	introducing	inheritance.

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter13.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter13

Global	versus	local	classes
In	ABAP,	we	can	create	classes	in	two	ways:	locally	or	globally.	The	main
differences	are	that	local	classes	can	be	used	only	in	the	program	in	which	the
class	is	created,	while	a	global	class	can	be	used	in	every	program	or	function
module.	Also,	the	ways	in	which	these	classes	are	created	are	different.	In	a	local
class,	we	need	to	create	a	definition	and	implementation	of	the	class	in	the
program,	and,	in	a	global	class,	the	definition	and	implementation	are	created	in
the	class	builder.

We	create	global	classes	more	often	than	local	classes	because	it's	possible	to
reuse	them.	If	we	want	to	use	a	local	class	in	a	different	program,	we	need	to
create	the	same	local	class	in	that	program,	which	is	not	necessary	for	a	global
class.

Creating	a	local	class
To	create	a	class,	first	we	need	to	create	a	definition	of	it.	In	this	definition,	we
can	create	types,	data,	class	data,	and	methods	and	inheritance.

It	is	necessary	to	explain	the	differences	between	data	and	class	data.	Along	with
the	creation	of	data,	an	instance	attribute	is	created.	Analogically,	with	class
data,	a	static	attribute	in	a	class	is	created.

In	the	following	example,	there	are	two	different	visibility	sections:	public	and
private.		In	general,	there	are	three	visibility	options	in	ABAP:

Public:	Public	methods	and	public	attributes	are	visible	outside	the	class,
and	the	parameters	can	also	be	changed	from	the	outside.
Protected:	Protected	methods	or	attributes	are	visible	outside	of	the	class
but	the	values	cannot	be	modified.
Private:	Private	methods	or	attributes	are	neither	visible	outside	of	the
class,	nor	can	they	be	modified.

To	create	a	definition	of	a	class,	we	use	CLASS	name_of_class	DEFINITION.

An	example	of	the	definition	for	the	class	named	cl_auto	is	as	follows:

--

	*							CLASS	cl_auto	DEFINITION

	--

	*

	--

	CLASS	cl_auto	DEFINITION.

			PUBLIC	SECTION.

					TYPES:	t_fuel	TYPE	i,

												t_brand		TYPE	char20,

												t_model		TYPE	char20.

					CONSTANTS:	tank_cap	TYPE	t_fuel	VALUE	70.

					DATA:	brand	TYPE	t_brand.

	

					CLASS-DATA:	numb_of_cars	TYPE	i.

	

					METHODS:	refuel	IMPORTING	iv_fuel	TYPE	t_fuel

																					EXCEPTIONS	no_space,

														constructor	IMPORTING	iv_brand	TYPE	t_brand,

														get_fuel_status	EXPORTING	ev_fuel	TYPE	t_fuel.

	

			PRIVATE	SECTION.

					DATA:	fuel	TYPE	t_fuel.

					METHODS:	check_space	IMPORTING	iv_fuel	TYPE	t_fuel

																														RETURNING	value(available_space)	TYPE	t_fuel.

	

	ENDCLASS.																				"cl_auto	DEFINITION

In	the	preceding	definition,	in	the	PUBLIC	section,	there	are	three	types:	one
constant,	one	instance	attribute,	one	static	attribute,	and	three	methods.	In	the
PRIVATE	section,	there	is	one	instance	attribute	and	one	method.

However,	the	definition	is	only	one	part	of	the	class.	Equally	important	is	its
implementation.	To	create	an	implementation,	we	use	the	IMPLEMENTATION	keyword,
as	shown	in	the	following	code	block,	which	is	an	example	of	the
implementation	of	the	cl_auto	class.

Here	is	an	example	of	the	implementation	of	the	cl_auto	class:

--

	*							CLASS	cl_auto	IMPLEMENTATION

	--

	*

	--

	CLASS	cl_auto	IMPLEMENTATION.

			METHOD	constructor.

					brand	=	iv_brand.

					ADD	1	TO	numb_of_cars.

			ENDMETHOD.																				"constructor

			METHOD	check_space.

					available_space	=	tank_cap	-	fuel.

			ENDMETHOD.																				"check_space

			METHOD	refuel.

					IF	check_space(iv_fuel)	>=	iv_fuel.

							ADD	iv_fuel	TO	fuel.

					ELSE.

							RAISE	no_space.

					ENDIF.

			ENDMETHOD.																				"refuel

	

			METHOD	get_fuel_status.

					ev_fuel	=	fuel.

			ENDMETHOD.																				"get_fuel_status

	ENDCLASS.																				"cl_auto	IMPLEMENTATION

As	presented	in	the	preceding	code	block,	during	the	implementation,	only	the
implementation	of	the	method	is	being	created,	meaning	pieces	of	code	will	be
executed	after	calling	methods.

In	this	process,	no	additions	(such	as	the	visibility	of	methods)	are	needed.	All	of	the
parameters	are	in	the	definition.

Creating	a	global	class
A	global	class	can	be	created	in	an	SE24	transaction.

The	initial	screen	of	this	transaction	looks	as	follows:
	

In	Object	Type,	we	can	pass	the	name	of	the	class	that	will	be	created,	or	pass
the	name	of	a	class	that	has	already	been	created	in	order	to	edit	it.	If	we	want	to
create	the	same	cl_auto	class,	we	need	to	rename	it,	as	global	classes	need	to	be
created	with	a	Z	or	Y	prefix.	In	our	example,	the	class	will	be	named	ZCL_AUTO.

After	typing	the	name	of	the	class,	we	have	to	choose	whether	we	want	to	create
a	class	or	an	interface.

This	selection	will	be	made	in	the	next	pop-up	window,	as	presented	in	the
following	example.	Choose	Class	and	click	on	the	OK	button	(interfaces	will	be
discussed	later	in	this	chapter):

In	the	next	window,	we	need	to	add	a	Description	and	choose	the	Class	Type:

On	this	screen,	inheritance	can	also	be	chosen	and/or	a	class	can	be	made	a	Final
class.	This	subject	will	be	covered	in	detail	later	in	this	chapter	while	discussing
nesting.	Also,	we	can	choose	the	Class	Type,	but	we'll	only	discuss	Usual	ABAP
Class;	other	types	of	classes	will	be	explained	later.	Once	all	the	obligatory	values
have	been	defined,	you	can	click	on	Save.	Then,	you	need	to	choose	package
and	transport	or	local	object	and	a	new	class	will	be	created.

The	next	screen	looks	as	follows:

Now,	create	the	Attributes,	Methods,	and	Types.	

After	the	class	has	been	created,	the	screens	will	look	like	the	following
examples.

An	example	of	Attributes	is	as	follows:

An	example	of	Methods	is	as	follows:

An	example	of	Types	is	as	follows:

Furthermore,	an	example	of	parameters	in	the	REFUEL	method	is	as	follows.
This	can	be	shown	after	selecting	the	method	and	clicking	on	Parameter:

As	you	can	see	in	the	preceding	screenshots,	all	of	the	properties,	such	as	the
type	of	the	parameters	or	the	level	of	a	variable,	are	defined	in	this	tool.	In	SE24,
we	can	define	all	of	the	things	that	were	previously	defined	in	the	local	class's
definition.

When	we	want	to	create	an	implementation	of	a	method,	we	can	double-click	on
the	name	of	the	method.	In	the	following	example,	we	can	see	the
implementation	of	the	REFUEL	method:

One	very	useful	advantage	of	the	class	builder	is	also	showing	all	of	the
parameters	and	exceptions	of	the	displayed	method,	but	that	can	be	toggled
on/off	by	the	Signature	button.

The	static	method	versus	the	instance
method
When	we	want	to	create	our	software	in	ABAP	OOP	technology,	we	need	to
know	the	differences	between	static	and	instance	methods	as	well.	The	same	is
applicable	for	attributes.

Why	are	these	differences	so	important?	Imagine	we	have	a	car	and	we	want	to
accelerate	by	10	km/h.	In	this	case,	we	would	need	to	press	the	gas	pedal	for	the
car	to	accelerate.	In	Objects,	we	can	describe	this	as	using	the
Accelerate	method,	which	changes	the	SPEED	instance	attribute	in	the	instance	of	the
CAR	class.		This	example	shows	us	that	an	action	should	not	be	made	without
reference	to	something.

When	we	speak	about	static	attributes,	these	can	be	changed	without	reference	to
any	object.	Also,	a	static	method	can	be	executed	without	any	reference.
Instance	attributes	or	an	instance	method	can	be	used	only	with	reference	to	the
object	on	which	the	operation	is	to	be	performed.

Instances	of	the	same	class	can	be	created	multiple	times	during	runtime,	but
static	attributes	can	be	created	only	once.	To	call	a	static	method	or	access	a
static	attribute	with	its	class	name	directly,	we	can	use	the	=>	operator.

For	example,	if	we	want	to	call	the	CHECK	static	method	of	the	ZCL_CLASS	class
without	any	parameters	or	exceptions,	the	code	would	look	as	follows:

	ZCL_CLASS=>CHECK().

Alternatively,	it	would	look	like	this	to	change	the	NAME	static	attribute	in	the	same
class:

ZCL_CLASS=>NAME	=	"Mastering	ABAP".

However,	if	we	want	to	change	a	static	attribute	in	an	object	or	call	a	static
method	in	an	object,	we	need	to	use	the	->	operator.

The	following	example	is	a	call	for	a	static	method	in	the	GR_OBJECT	object.	For
the	CHECK	method,	this	would	look	as	follows:

GR_OBJECT->CHECK().

The	code	for	changing	the	NAME	attribute	is	shown	as	follows:

GR_OBJECT->NAME	=	"Mastering	ABAP".

If	we	wanted	to	perform	the	same	operation	on	instance	attributes,	the	code
would	look	similar,	but	the	first	example,	with	the	direct	call	for	a	method	of	a
class,	would	not	be	able	to	proceed,	as	we	need	to	make	that	call	with	reference
to	the	object.

For	example,	if	we	wanted	to	call	the	instance	method,	we	would	use	the
following:

GR_OBJECT->INSTANCE_CHECK().

Before	using	objects,	we	need	to	create	an	object	with	reference	to	the	class
using	a	CREATE	OBJECT	statement.	As	an	example	of	using	this	operation,	we	can	use
a	class	from	Creating	a	global	class	section:

		DATA:	lo_auto1	TYPE	REF	TO	zcl_auto,

									lv_fuel	TYPE	i.

	

			CREATE	OBJECT	lo_auto1

					EXPORTING

							iv_brand	=	'AUDI'.

	

			WRITE:	'Name	of	car:',	lo_auto1->brand.

			NEW-LINE.

			WRITE:	'Number	of	cars	in	class	CL_AUTO:',	zcl_auto=>numb_of_cars."

			NEW-LINE.

			CALL	METHOD	lo_auto1->refuel

					EXPORTING

							iv_fuel			=	50

					EXCEPTIONS

							no_space	=	1.

	

			IF	sy-subrc	=	0.

					WRITE:	'Car	refuelled'.

					lo_auto1->get_fuel_status(IMPORTING	ev_fuel	=	lv_fuel).

					NEW-LINE.

					WRITE:	'Amount	of	fuel:',	lv_fuel.

			ELSE.

					WRITE:	'No	space	in	the	tank'.

			ENDIF.

In	the	preceding	example,	we	created	an	object	with	reference	to

the	zcl_auto	class	and	using	all	of	the	defined	methods.

Understanding	the	differences	between	the	static	and	instance	methods	and
attributes	is	one	of	the	most	important	aspects	of	OOP,	which	helps	to	correctly
use	the	possibilities	that	object-oriented	writing	offers	us.

Nested	classes
In	ABAP	OOP,	we	can	nest	classes	in	three	ways:	

A	class	as	an	attribute	of	the	class
Inheritance
Using	interfaces

Interfaces	are	not	really	a	full	class.	This	is	due	to	the	fact	that,	in	interfaces,	we
have	only	a	definition	of	a	class	without	any	implementation.	This	is	important
because	interfaces	in	ABAP	allow	us	to	implement	multi-inheritance.	However,
we'll	turn	to	that	in	a	moment,	in	the	Inheritance	and	Interfaces	section.

All	examples	will	be	shown	as	a	global	class	created	in	SE24.

A	class	as	an	attribute	of	the	class
We	can	create	a	class	as	an	attribute	of	the	class.	To	create	that	attribute,	we	need
to	add	an	attribute,	which	is	typed	as	TYPE	REF	TO.	In	our	example,	we'll	create	an
attribute	as	a	reference	to	the	ZCL_ENGINE	class:

In	the	preceding	example,	we	created	an	attribute	named	GR_ENGINE	as	an	attribute
of	the	ZCL_AUTO	class.	After	the	instantiation	of	ZCL_AUTO	and	the	initialization	of	its
GR_ENGINE	attribute,	a	new	object	of	the	ZCL_ENGINE	class	is	created	inside	ZCL_AUTO.
Then,	the	GR_ENGINE	reference	can	be	freely	used	inside	the	ZCL_AUTO	class's
methods,	and—if	the	property	is	defined	as	public—outside	of	it.

The	ZCL_ENGINE	object	is	tightly	bound	to	ZCL_AUTO	and	its	lifecycle	is	limited	to	the
existence	of	the	ZCL_AUTO	object—once	ZCL_AUTO	is	destroyed,	so	is	ZCL_ENGINE.

Inheritance
First	of	all,	we	need	to	speak	about	what	inheritance	is.	Inheritance	is	one	of	the
features	of	the	OOP	paradigm.	According	to	the	paradigm,	inheritance	organizes
and	supports	polymorphism	and	encapsulation,	facilitating	the	definition	and
creation	of	a	specialized	object	based	on	a	more	general	one.

As	an	example,	I	used	one	of	the	most	commonly	used	examples	of	a	class
named	ZCL_CAR.	All	vehicles	have	wheels,	an	engine,	and	a	fuel	tank.	But,	if	we
speak	about	a	more	specific	vehicle,	for	example,	a	truck,	we	also	want	to	know
how	much	of	a	load	that	truck	can	carry.	So,	to	create	a	class	for	the	truck,	we
can	call	it	ZCL_TRUCK,	and	we	can	inherit	the	ZCL_CAR	class,	as	we	have	some
parameters	that	the	truck	also	has.	We	also	inherited	attributes	of	the	class	and
methods.

But,	remember:	we	inherited	only	attributes	and	methods	that	have	a	visibility	status	that	is
not	private.

We	can	also	use	the	ZCL_CAR	class	multiple	times.	For	example,	if	we	want	to
create	the	ZCL_BUS	class,	an	attribute	that	is	important,	is	how	many	passengers	the
bus	will	accommodate.	We	can	inherit	the	ZCL_CAR	class	and	add	this	attribute	to
the	class	attributes.

Many	classes	can	inherit	from	another	class,	but	a	class	can	inherit	from	only	one	class	at	a
time.	

To	allow	inheritance,	when	we	create	the	class,	we	need	to	unmark	the
Final	checkbox.	If	the	final	checkbox	is	checked,	this	class	cannot	be	inherited:

In	the	ZCL_CAR	class,	attributes	look	like	the	following:

To	create	inheritance,	we	need	to	click	on	the	button	within	the	red	box	in	the
following	screenshot:

The	pop-up	window	should	look	like	the	following	example,	wherein	the	name
of	the	inherited	class	has	been	entered	into	the	Superclass	box:

After	clicking	on	Save,	we	can	see	our	class:

Attributes	written	in	blue	are	inherited	from	the	ZCL_CAR	class	and	are	now	parts	of
the	ZCL_TRUCK	class,	which	means	we	can	directly	use	them	in	the	ZCL_TRUCK	class.

Also,	methods	are	inherited.	If	we	want	to	redefine	methods,	we	need	to	click	on
Redefine	Method	 .

For	example,	for	the	truck,	we	need	to	do	something	more	than	for	a	regular	car.
After	clicking	on	Redefine	Method,	we	have	two	possibilities.	We	can	define	a
whole	new	method	or	we	can	use	the	code	from	the	superclass.	To	call	the
method	from	the	superclass,	we	need	to	use
the	super|name_of_method	statement.

In	the	following	example,	we	can	see	the	method	from	the	superclass,	as
follows:

METHOD	start_engine.

			CALL	METHOD	super->start_engine.

ENDMETHOD.

Interfaces
As	I	mentioned	previously,	interfaces	are	a	special	type	of	class,	possessing	only
definition	parts	(attributes,	the	names	of	methods,	and	the	parameters	of
methods,	but	without	the	implementation	of	those	methods).

Interfaces	are	important	in	ABAP	OOP	because,	with	them,	we	can	perform
some	sort	of	multi-inheritance,	which	is	not	possible	using	just	inheritance,
described	in	the	previous	section.

To	create	an	interface,	we	need	to	put	the	name	of	the	interface	in	an	SE24
transaction	(in	our	example,	ZIF_AUTO),	and,	in	the	pop-up	window,	we	need	to
choose	the	following:

After	clicking	on	OK,	we	need	to	choose	a	Description,	for	example,	as	shown
in	the	following	screenshot,	and	click	Save:

After	selecting	package	and	transport	or	a	local	package,	we	get	a	screen	like
this:

In	here,	we	can	define	all	elements	as	in	a	class,	but	the	implementation	cannot
be	created.

If	we	want	to	add	interfaces	to	a	class,	we	need	to	move	into	the	SE24	main
window	in	the	class,	to	the	Interfaces	sub-tab,	and	enter	the	name	of	the
interface,	as	shown	here:

After	pressing	the	ENTER	button,	you	can	see	the	method	of	this	interface	in	the
Method	tab:

Right	now,	we	can	implement	something	in	this	method,	as	in	a	normal	method.

Here,	I	need	to	mention	aliases	in	classes.	The	names	of	interfaces	and	the
methods	of	those	interfaces	can	be	really	long.	In	order	to	avoid	using	long
names	in	code,	we	can	use	aliases.	To	change	them,	we	need	to	go	to	the	Aliases
tab	and	choose	a	name.

In	the	following	example,	I	use	the	name	CHECK_BRAND,	and	when	I	want	to	use	this
method,	I	can	call	it	by	using	the	name	CHECK_BRAND	instead	of	ZIF_AUTO~CHECK_BRAND:

Now,	let's	have	a	look	at	the	concept	of	an	event	in	the	next	section.

The	event	concept
Events	in	ABAP	are	characterized	by	occurring	at	a	specified	point	of	time.	An
event	can	be	executed,	for,	example	when	we	create	a	new	account	or	post	a
document,	and,	if	the	event	includes	changing	the	status	of	an	object,	another
interested	object	will	be	informed	of	the	situation.

To	every	event,	we	can	assign	a	method,	which	will	be	called	when	the	event	is
raised.	We	can	also	assign	the	same	event	handler	to	a	different	object	and,
thanks	to	that,	the	object	will	be	able	to	react	when	an	event	is	raised.	In	contrast
to	methods	that	affect	only	the	process	in	which	they	are	called,	an	event	can
cause	any	number	of	event	handlers	to	be	called	globally.

If	several	event	handlers	are	registered	for	one	event,	these	are	called	in	the
sequence	in	which	they	were	registered.	An	event	can	also	have	output
parameters,	which	are	defined	using	the	normal	method.	Event	handlers	can	also
be	called	directly.	This	is	helpful	when	you	want	an	event	handler	to	handle	an
event	without	being	registered.

To	create	an	event,	we	have	to	create	it	in	the	Events	tab	in	SE24.

In	the	example,	we	have	an	event	named	BROKE	in	the	ZCL_CAR	class:

To	create	a	method	called	when	the	BROKE	event	is	called,	we	need	to	create	a
method	or	use	an	existing	method.	In	the	preceding	example,	a	method
named	BROKE_CAR	is	created.	

The	names	of	a	method	and	an	event	cannot	be	the	same!

To	register	this	method	as	a	method	that's	called	when	the	event	is	raised,	we

need	to	click	on	the	Go	to	Properties		 	icon.

In	the	pop-up	window,	we	need	to	check	the	Event	Handler	for	checkbox.	In	the
next	step,	specify	the	event	name	and	Class/interface	name	and	click	on	Change.

In	our	example,	the	properties	of	the	method	will	look	as	follows:

After	clicking	the	Change	button,	the	method	will	be	registered	as	a	method
called	after	the	event.

Last	but	not	least,	is	registering	the	event.	To	register	the	event,	we	need	to	use
the	SET	HANDLER	statement.

For	instance,	this	statement	is	as	follows:

SET	HANDLER	gr_car->broke_car	FOR	gr_car.

But,	if	we	have	a	class	event,	the	event	is	registered	as	follows:

SET	HANDLER	zcl_auto=>broke_car	.

When	a	handler	is	created,	the	event	can	be	raised	and	the	class	to	which	it	was
set	will	react	by	calling	the	method	assigned	to	the	event.

To	raise	the	event,	use	the	RAISE	statement,	for	example:

RAISE	EVENT	broke_car.

ABAP	Objects	design	patterns
One	of	the	most	important	things	when	speaking	about	OOP	is	design	patterns.
But	what	are	design	patterns?	A	design	pattern	is	a	universal,	tested-in-practice
guide	for	frequently	occurring,	repetitive	design	issues.

Design	patterns	are	a	description	of	a	solution,	not	the	implementation	of	a	solution.

Design	patterns	can	be	described	using	four	basic	elements:

The	name	of	the	pattern
Problem:	How	to	recognize	situations	when	we	should	use	a	particular
pattern	to	ensure	the	use	of	a	pattern	is	justified
Solution:	Describes	elements	of	a	solution,	their	relations,	connections,	and
duties
Consequences:	A	list	of	advantages	and	disadvantages	of	a	pattern

Design	patterns	can	be	divided	into	three	sets	according	to	their	purpose:

Creational:	Describes	the	process	of	creating	a	new	object,	the
initialization,	and	the	configuration	of	objects	or	classes
Structural:	Describes	the	structure	of	related	objects
Behavioral:	Describes	the	behavior	of	cooperating	objects

Over	the	next	few	pages,	I	will	describe	two	design	patterns	of	each	type
presented	above.

Prototype	-	creation	pattern
The	purpose	of	the	Prototype	Pattern	is	to	offer	the	option	of	creating	multiple
classes	based	on	one	class:	a	prototype.	This	pattern	can	be	created	when	we
want	a	large	number	of	objects	of	the	same	type	or	when	we	need	to	create	a
collection	of	almost	the	same	object.

Here's	an	example	implementation	of	a	prototype	in	ABAP:

The	zcl_car	class	is	the	class	that	creates	an	abstract	definition	of	new	cars:

CLASS	zcl_car	DEFINITION	ABSTRACT.

				PUBLIC	SECTION.

						METHODS:

								clone	ABSTRACT

										IMPORTING

																				iv_color									TYPE	string

										RETURNING	VALUE(ro_object)	TYPE	REF	TO	zcl_car.

		ENDCLASS.																				"zcl_car_data	DEFINITION	

In	the	following	class,	is	the	definition	of	every	prototype	with	the
implementation	of	how	a	car	should	be	built:

CLASS	zcl_car_detail	DEFINITION	INHERITING	FROM	zcl_car.

				PUBLIC	SECTION.

		

						METHODS:	clone	REDEFINITION.

						METHODS:	constructor

								IMPORTING	iv_type	TYPE	string.

		

						DATA:	type_of_car	TYPE	string,

												color_car			TYPE	string.

		

		ENDCLASS.																				"zcl_car_Detail	DEFINITION

		

		CLASS	zcl_car_detail	IMPLEMENTATION.

				METHOD	constructor.

		

						super->constructor().

						type_of_car	=	iv_type.

		

				ENDMETHOD.																				"create_car

				METHOD	clone.

		

						DATA:	lr_car	TYPE	REF	TO	zcl_car_detail.

						CREATE	OBJECT	lr_car

								EXPORTING

										iv_type	=	me->type_of_car.

		

						lr_car->color_car	=	iv_color.

						ro_object	=	lr_car.

		

				ENDMETHOD.																				"clone

		ENDCLASS.																				"zcl_car_detail	IMPLEMENTATION

What	follows	here	is	the	implementation	of	the	factory	class.	This	class	produces
a	new	car	from	the	definition	of	the	zcl_car_detail	class:

CLASS	zcl_factory	DEFINITION.

				PUBLIC	SECTION.

						METHODS:

								get_car

										IMPORTING	iv_name							TYPE	string

																				iv_color						TYPE	string

										RETURNING	VALUE(rv_car)	TYPE	REF	TO	zcl_car,

								constructor.

				PRIVATE	SECTION.

						TYPES:

								BEGIN	OF	ts_prototype,

										name						TYPE	string,

										prototype	TYPE	REF	TO	zcl_car,

								END	OF	ts_prototype,

								tt_prototypes	TYPE	STANDARD	TABLE	OF	ts_prototype.

						DATA	lt_prototypes	TYPE	tt_prototypes.

		ENDCLASS.																				"zcl_factory	DEFINITION

		

		CLASS	zcl_factory	IMPLEMENTATION.

				METHOD	constructor.

						DATA	ls_prototype	TYPE	ts_prototype.

						ls_prototype-name	=	'Car1'.

						CREATE	OBJECT	ls_prototype-prototype	TYPE	zcl_car_detail

								EXPORTING

										iv_type	=	'Car1'.

						APPEND	ls_prototype	TO	lt_prototypes.

				ENDMETHOD.

		

				METHOD	get_car.

						READ	TABLE	lt_prototypes	WITH	KEY	name	=	iv_name	ASSIGNING	FIELD-SYMBOL(<fs_prototype>).

						IF	sy-subrc	=	0.

								rv_car	=	<fs_prototype>-prototype->clone(iv_color).

						ENDIF.

				ENDMETHOD.

		

		ENDCLASS.																				"zcl_factory	IMPLEMENTATION

The	main	program	to	use	the	factory	class	is	presented	here:

	START-OF-SELECTION.

			DATA:	lr_factory	TYPE	REF	TO	zcl_factory,

									lr_car					TYPE	REF	TO	zcl_car.

			CREATE	OBJECT	lr_factory.

			lr_car	=	lr_factory->get_car(EXPORTING	iv_name	=	'Car1'	iv_color	=	'Blue').	

The	following	are	the	advantages	of	the	Prototype	Pattern:

New	instances	are	created	more	quickly.

Code	is	more	organized	and	easier	to	read.

The	following	are	the	disadvantages	of	the	Prototype	Pattern:

Excessive	use	of	this	pattern	may	cause	the	linking	of	objects	that	are	not
connected.
There	is	no	easy	way	to	modify	the	output	of	objects.

Singleton	-	creation	pattern
The	Singleton	Pattern	is	a	creational	pattern	used	for	creating	one	instance	of	a
class	and	to	use	that	instance	as	a	global	point	of	access.	This	means	that	the
instance	of	this	class	cannot	be	created	more	than	once.	If	we	want	to	create	a
new	instance	of	this	class,	we	first	need	to	destroy	the	previous	instance.

But,	sometimes,	the	Singleton	pattern	is	treated	as	an	anti-pattern.	Why?
Singleton	as	a	pattern	is	not	a	problem	but	it	is	often	badly	used.	Programmers
use	singleton	like	a	global	variable.	Singleton	also	makes	code	harder	to	refactor
and	maintain.	Sometimes,	we	find	out	that	we	need	more	than	one	instance,	but
we	cannot	create	them	because	a	Singleton	Pattern	has	been	used.	In	that	case,	it
may	turn	out	that	it	is	necessary	to	redesign	the	whole	program	in	order	to
implement	the	desired	change.

To	create	a	singleton	class,	we	need	to	avoid	initiating	the	class	outside	of	a
class.	How	can	we	achieve	that?

We	need	to	create	a	private	instance	constructor.	So,	if	a	developer	wanted	to	use
this	constructor,	it	would	be	impossible,	as	this	method	is	private	and	can	be
used	only	inside	this	class.	But	that's	not	everything.	To	create	an	instance	of	this
class,	we	also	need	a	static	constructor.	As	we	know,	a	static	constructor	is	run
only	once	at	runtime,	when	any	static	method	of	a	class	is	called.	So,	we	need	to
call	an	instance	constructor	inside	of	the	static	constructor.

An	example	of	implementing	the	Singleton	pattern	in	ABAP	is	as	follows:

CLASS	zcl_singleton	DEFINITION	CREATE	PRIVATE.

	PUBLIC	SECTION.

	

	CLASS-DATA:	lr_singleton	TYPE	REF	TO	zcl_singleton.

	

	CLASS-METHODS:	class_constructor,

	run.

	

	PRIVATE	SECTION.

	METHODS	constructor.

	

	ENDCLASS.

	

	CLASS	zcl_singleton	IMPLEMENTATION.

	METHOD	class_constructor.

				IF	zcl_singleton=>lr_singleton	IS	NOT	BOUND.

						CREATE	OBJECT	zcl_singleton=>lr_singleton.

					ENDIF.

	ENDMETHOD.

	

	METHOD	run.

	ENDMETHOD.

	

	METHOD	constructor.

	WRITE:	'Singleton	instances	created'.

	ENDMETHOD.

	ENDCLASS.

	

	START-OF-SELECTION.

	zcl_singleton=>run().	

The	following	are	the	advantages	of	the	singleton	pattern:

The	user	is	neither	involved	nor	responsible	for	creating	a	class	instance.
Instance	creation	is	done	only	once,	which	saves	time	if	the	procedure	is
time-consuming.
The	number	of	instances	is	controlled	by	the	class	itself.

The	following	are	the	disadvantages	of	the	Singleton	Pattern:

Testing	singleton	is	sometimes	troublesome
Code	pieces	are	linked	together	more,	which	may	contradict	the	separation
of	concerns	rule.
It	binds	together	instance	management	and	business	process	handling.
It	is	often	misused	as	a	global	variable	in	the	form	of	a	class.

Facade	-	structural	pattern
The	Facade	pattern	can	be	used	to	create	a	single	point	of	access	to	a	complex
system	by	issuing	a	simplified,	structured	programming	interface	that	facilitates
its	use.	It	is	frequently	used	when	we	want	to	hide	some	part	of	implementation
from	the	user,	for	example,	when	they	want	to	create	an	order.

The	user	sees	only	the	interface	used	to	create	orders,	but	in	the	backend,	classes
and	methods	are	necessary	to	process	this	order,	for	example,	as	follows:	

Checking	the	availability	of	the	product
Filling	in	the	form
Paying	the	check
Creating	data	for	the	delivery

The	facade	pattern	is	built	with	these	three	elements:

A	complex	system:	In	our	example,	this	is	a	system	to	create	an	order.
Facade:	A	class	whose	one	and	only	purpose	is	to	communicate	with	other
classes	via	the	backend,	which	has	references	to	those	classes.
Client:	Any	code	interested	in	using	a	complex	system.

An	example	of	the	facade	pattern	in	ABAP	follows	here:

1.	 The	interface	is	created.	This	interface	will	be	used	by	the	facade	to	connect
with	the	classes	behind	the	facade:

INTERFACE	lif_order.

				METHODS:	create_order.

ENDINTERFACE.

2.	 Create	a	definition	of	the	classes	that	will	be	using	the	interface	and	aliases,
in	order	to	shorten	the	interface	methods'	names:

CLASS	zcl_check	DEFINITION.

				PUBLIC	SECTION.

						INTERFACES:	lif_order.

		

						ALIASES:	create_order	FOR	lif_order~create_order.

		ENDCLASS.

		

		CLASS	zcl_fill_form	DEFINITION.

				PUBLIC	SECTION.

						INTERFACES:	lif_order.

		

						ALIASES:	create_order	FOR	lif_order~create_order.

		ENDCLASS.

		

		CLASS	zcl_pay	DEFINITION.

				PUBLIC	SECTION.

						INTERFACES:	lif_order.

		

						ALIASES:	create_order	FOR	lif_order~create_order.

		ENDCLASS.

		

		CLASS	zcl_create_delivery	DEFINITION.

				PUBLIC	SECTION.

						INTERFACES:	lif_order.

		

						ALIASES:	create_order	FOR	lif_order~create_order.

		ENDCLASS.

3.	 The	following	code	shows	the	definition	of	the	facade	itself:

CLASS	zcl_facade	DEFINITION.

				PUBLIC	SECTION.

						METHODS:	process_order.

		

				PRIVATE	SECTION.

						DATA:	lr_check	TYPE	REF	TO	zcl_check,

												lr_fill		TYPE	REF	TO	zcl_fill_form,

												lr_pay			TYPE	REF	TO	zcl_pay,

												lr_deliv	TYPE	REF	TO	zcl_create_delivery.

		ENDCLASS.

4.	 The	next	code	block	is	an	example	of	the	implementation	of	methods	that
the	facade	is	connected	to:

CLASS	zcl_check	IMPLEMENTATION.

				METHOD	lif_order~create_order.

						WRITE:	/	'Check	availability	of	product:	OK	'.

				ENDMETHOD.

		ENDCLASS.

		CLASS	zcl_fill_form	IMPLEMENTATION.

				METHOD	lif_order~create_order.

						WRITE:	/	'Filling	the	form:	OK'.

				ENDMETHOD.

		ENDCLASS.

		CLASS	zcl_pay	IMPLEMENTATION.

				METHOD	lif_order~create_order.

						WRITE:	/	'Pay	the	check:	OK'.

				ENDMETHOD.

		ENDCLASS.

		CLASS	zcl_create_delivery	IMPLEMENTATION.

				METHOD	lif_order~create_order.

						WRITE:	/	'Create	data	for	delivery:	OK'.

				ENDMETHOD.

		ENDCLASS.

5.	 The	implementation	of	the	main	facade	class	is	as	follows:

CLASS	zcl_facade	IMPLEMENTATION.

				METHOD	process_order.

		

						CREATE	OBJECT:	lr_check,	lr_fill,	lr_pay,	lr_deliv.

		

						lr_check->create_order().

						lr_fill->create_order().

						lr_pay->create_order().

						lr_deliv->create_order().

		

				ENDMETHOD.

		ENDCLASS.

6.	 An	example	of	implementing	the	main	app	using	facade	is	as	follows:

START-OF-SELECTION.

			DATA:	gr_facade	TYPE	REF	TO	zcl_facade.

			CREATE	OBJECT	gr_facade.

			gr_facade->process_order().	

The	following	are	the	advantages	of	the	facade	pattern:

It	separates	the	user	from	the	complex	implementation	of	the	system;	the
user	does	not	directly	use	any	of	the	system	elements,	thanks	to	making	the
connection	easier	to	maintain.
It	separates	applications	into	layers,	limiting	the	dependencies	between
them.
It	may	prevent	the	unintended	use	of	sensitive	parts	of	the	system.

The	following	is	a	disadvantage	of	the	facade	pattern:

Failure	of	the	interface	(caused,	for	example,	by	high	load)	can	make	the
whole	system	unusable.	There	are,	however,	protective	measures	against
this.

Decorator	-	structural	pattern
The	Decorator	design	pattern	allows	the	dynamic	assignment	of	new	behaviors
to	a	given	object.	Decorators	give	flexibility	similar	to	that	offered	by
inheritance,	but	they	provide	much-extended	functionality.	When	used,
inheritance	objects	can	be	changed	only	before	running	a	program.	However,	the
decorator	can	change	an	object	during	runtime,	because	the	decorator	can	change
the	operations	of	any	component	by	using	the	additional	code	in	relation	to	the
decorated	object	being	called.

The	following	is	an	example	of	decorator	implementation.

1.	 Define	the	abstract	definition	of	a	document:

CLASS	doc_output	DEFINITION	ABSTRACT.

			PUBLIC	SECTION.

					METHODS:

							doc_output	ABSTRACT.

		ENDCLASS.

2.	 In	the	following	fragment	of	code	is	the	definition	and	implementation	of
the	standard	SD	document:

CLASS	sd_doc_output	DEFINITION	INHERITING	FROM	doc_output.

			PUBLIC	SECTION.

					METHODS:

							doc_output	REDEFINITION.

		ENDCLASS.

		

		CLASS	sd_doc_output	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Standard	SD	doc	output'.

			ENDMETHOD.

		ENDCLASS.

3.	 In	the	following	code	block,	we	are	creating	the	definition	and
implementation	of	the	decorator:

CLASS	zcl_decorator	DEFINITION	INHERITING	FROM	doc_output.

			PUBLIC	SECTION.

					METHODS:

							constructor

									IMPORTING	ir_decorator	TYPE	REF	TO	doc_output,

		

							doc_output	REDEFINITION.

		

			PRIVATE	SECTION.

		

					DATA:	lr_decorator	TYPE	REF	TO	doc_output.

		ENDCLASS.

		

		

		CLASS	zcl_decorator	IMPLEMENTATION.

		

			METHOD	constructor.

					super->constructor().

					me->lr_decorator	=	ir_decorator.

			ENDMETHOD.

		

			METHOD	doc_output.

					CHECK	lr_decorator	IS	BOUND.

					lr_decorator->doc_output().

		

			ENDMETHOD.

		

		ENDCLASS.

4.	 Now	create	the	first	decorated	class,	as	follows:

CLASS	zcl_inquiry	DEFINITION	INHERITING	FROM	zcl_decorator.

		

			PUBLIC	SECTION.

					METHODS:	doc_output	REDEFINITION.

		

		ENDCLASS.

		

		CLASS	zcl_inquiry	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Generating	Inquiry'.

			ENDMETHOD.

		ENDCLASS.

5.	 And	now	create	the	rest	of	the	decorated	classes	(created	in	a	similar	way	to
the	first	one),	as	follows:

CLASS	zcl_contract	DEFINITION	INHERITING	FROM	zcl_decorator.

		

			PUBLIC	SECTION.

					METHODS:	doc_output	REDEFINITION.

		

		ENDCLASS.

		

		CLASS	zcl_contract	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Generating	Contract'.

			ENDMETHOD.

		ENDCLASS.

		

			CLASS	zcl_sched_agree	DEFINITION	INHERITING	FROM	zcl_decorator.

		

			PUBLIC	SECTION.

					METHODS:	doc_output	REDEFINITION.

		

		ENDCLASS.

		

		CLASS	zcl_sched_agree	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Generating	Scheduling	Agreements'.

			ENDMETHOD.

		ENDCLASS.

		

		CLASS	zcl_sales_order	DEFINITION	INHERITING	FROM	zcl_decorator.

		

			PUBLIC	SECTION.

					METHODS:	doc_output	REDEFINITION.

		

		ENDCLASS.

		

		CLASS	zcl_sales_order	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Generating	Sales	Order'.

			ENDMETHOD.

		ENDCLASS.

		

		CLASS		zcl_deliv_doc	DEFINITION	INHERITING	FROM	zcl_decorator.

		

			PUBLIC	SECTION.

					METHODS:	doc_output	REDEFINITION.

		

		ENDCLASS.

		

		CLASS	zcl_deliv_doc	IMPLEMENTATION.

			METHOD	doc_output.

					WRITE:	/	'Generating	Delivery	document'.

			ENDMETHOD.

		ENDCLASS.

6.	 The	following	code	shows	the	definition	and	implementation	of	the	main
class,	where	all	of	the	decorated	classes	are	created:

CLASS	zcl_main	DEFINITION.

			PUBLIC	SECTION.

					CLASS-METHODS:

							run.

		ENDCLASS.

		

		CLASS	zcl_main	IMPLEMENTATION.

			METHOD	run.

		

					DATA:	lr_decorator							TYPE	REF	TO	doc_output,

											lr_decorator_inq			TYPE	REF	TO	doc_output,

											lr_decorator_cont		TYPE	REF	TO	doc_output,

											lr_decorator_sched	TYPE	REF	TO	doc_output,

											lr_decorator_sales	TYPE	REF	TO	doc_output,

											lr_decorator_deliv	TYPE	REF	TO	doc_output.

		

					CREATE	OBJECT	lr_decorator	TYPE	sd_doc_output.

		

					CREATE	OBJECT	lr_decorator_inq	TYPE	zcl_inquiry

							EXPORTING

									ir_decorator	=	lr_decorator.

		

					CREATE	OBJECT	lr_decorator_cont	TYPE	zcl_contract

							EXPORTING

									ir_decorator	=	lr_decorator.

		

					CREATE	OBJECT	lr_decorator_sched	TYPE	zcl_sched_agree

							EXPORTING

									ir_decorator	=	lr_decorator.

		

					CREATE	OBJECT	lr_decorator_sales	TYPE	zcl_sales_order

							EXPORTING

									ir_decorator	=	lr_decorator.

		

					CREATE	OBJECT	lr_decorator_deliv	TYPE	zcl_deliv_doc

							EXPORTING

									ir_decorator	=	lr_decorator.

		

					lr_decorator->doc_output().

					lr_decorator_inq->doc_output().

					lr_decorator_cont->doc_output().

					lr_decorator_sched->doc_output().

					lr_decorator_sales->doc_output().

					lr_decorator_deliv->doc_output().

		

			ENDMETHOD.

		ENDCLASS.

7.	 Finally,	the	following	fragment	of	code	is	used	to	start	the	main	class:

START-OF-SELECTION.

		zcl_main=>run().	

The	following	are	the	advantages	of	the	Decorator	pattern:

This	approach	is	more	flexible	than	inheritance,	as	decorators	may	be
applied	dynamically	on	demand.
It	breaks	up	functionality	into	separate	classes,	which	makes	coding
simpler.

The	following	are	the	disadvantages	of	the	Decorator	pattern:

It	results	in	a	great	number	of	small	objects,	similar	to	each	other.	This	may
lead	to	problems	with	understanding	the	relations	between	them.
It	becomes	difficult,	or	even	impossible,	to	compare	decorated	objects,	as
the	result	of	decoration	is	different	than	the	source	object.

Observer	-	behavioral	pattern
The	observer	pattern	consists	of	an	object	that	we	call	the	observed	object,	and	a
number	of	observer	objects.	There	is	a	one-to-many	relationship	here.	The	object
is	observed	by	the	data	manager,	who	informs	all	the	observers	about	changes	in
the	data	that	it	contains.	It	is	the	only	rightful	owner	of	this	data.

When	observers	get	information	that	the	data	has	changed,	they	collect	it	from
the	observed	object	and	update	the	data	of	the	observers.	The	observer	itself	can
decide	whether	it	wants	to	continue	observing	an	object,	but	the	observed	object
can	also	remove	it	from	the	list	of	observers.	The	observer	does	not	know	any
other	observers;	they	are	independent	of	each	other.	Any	modification	of	one
observer	does	not	affect	the	others.

The	pattern	is	characterized	by	the	ease	with	which	new	followers	can	be	added.
We'll	create	a	new	class	that	will	implement	the	observer	interface.	The
observing	object	itself	can	be	observed	(composition).

The	observer	pattern	works	wherever	the	state	of	one	object	depends	on	the	state
of	another	object.

An	example	of	observer	implementation	in	ABAP	is	presented	below	and	starts
with	the	definition	of	the	application	simulation:

CLASS	zcl_app	DEFINITION.

				PUBLIC	SECTION.

						CLASS-METHODS:	run.

		ENDCLASS.

The	definition	of	observer	is	shown	here:

CLASS	zcl_observer	DEFINITION.

				PUBLIC	SECTION.

		

						TYPES:

								BEGIN	OF	t_user,

										username	TYPE	string,

								END	OF	t_user,

		

								tt_user	TYPE	TABLE	OF	t_user.

		

						DATA:	lt_user	TYPE	tt_user.

		

						METHODS:	create_doc	IMPORTING	doc_type	TYPE	string,

								constructor.

		

						EVENTS:	new_document_created	EXPORTING	VALUE(doc_type)	TYPE	string.

		ENDCLASS.

In	the	following	fragment	of	code	is	the	abstract	definition	of	users:

CLASS	zcl_user	DEFINITION	ABSTRACT.

				PUBLIC	SECTION.

		

						METHODS:	on_notification_received	ABSTRACT	FOR	EVENT	new_document_created	OF	zcl_observer

								IMPORTING	doc_type.

		

		ENDCLASS.

The	next	code	block	defines	two	separate	classes	for	creating	users:

CLASS	zcl_user1	DEFINITION	INHERITING	FROM	zcl_user.

				PUBLIC	SECTION.

						METHODS	on_notification_received	REDEFINITION	.

		ENDCLASS.

		

		CLASS	zcl_user2	DEFINITION	INHERITING	FROM	zcl_user.

				PUBLIC	SECTION.

						METHODS	on_notification_received	REDEFINITION.

		ENDCLASS.

The	implementation	of	the	observer	class	is	presented	in	the	following	code:

CLASS	zcl_observer	IMPLEMENTATION.

			METHOD	create_doc.

					RAISE	EVENT	new_document_created	EXPORTING	doc_type	=	doc_type.

			ENDMETHOD.

			METHOD	constructor.

	

					DATA:	ls_user	TYPE	t_user.

	

					CLEAR	ls_user.

					ls_user-username	=	'user1'.

					APPEND	ls_user	TO	lt_user.

	

					CLEAR	ls_user.

					ls_user-username	=	'user2'.

					APPEND	ls_user	TO	lt_user.

	

			ENDMETHOD.

	ENDCLASS.

The	implementation	of	the	first	and	second	classes	for	creating	users	is	as
follows:

CLASS	zcl_user1	IMPLEMENTATION.

				METHOD	on_notification_received.

		

						WRITE:	/	'Notification	User1	-	New	document',	doc_type	.

		

				ENDMETHOD.

		ENDCLASS.

		

		CLASS		zcl_user2	IMPLEMENTATION.

				METHOD	on_notification_received.

		

						WRITE:	/	'Notification	User2	-	New	document',	doc_type.

		

				ENDMETHOD.

		ENDCLASS.

The	following	fragment	is	the	penultimate	step	–	the	implementation	of	the
simulation	app:

CLASS	zcl_app	IMPLEMENTATION.

				METHOD	run.

		

						DATA:	lr_observer	TYPE	REF	TO	zcl_observer,

												lr_user1				TYPE	REF	TO	zcl_user1,

												lr_user2				TYPE	REF	TO	zcl_user2.

		

						CREATE	OBJECT:	lr_observer.

						CREATE	OBJECT:	lr_user1.

						CREATE	OBJECT:	lr_user2.

		

						SET	HANDLER	lr_user1->on_notification_received	FOR	lr_observer.

						SET	HANDLER	lr_user2->on_notification_received	FOR	lr_observer.

		

						lr_observer->create_doc('Order').

						lr_observer->create_doc('Invoice').

		

				ENDMETHOD.

		ENDCLASS.

And	last	but	not	least,	here's	the	fragment	of	code	to	start	the	app:

START-OF-SELECTION.

	

			zcl_app=>run().	

The	following	are	the	advantages	of	the	observer	pattern:

The	observer	and	observed	object	are	not	tightly	coupled;	they	can	be
extended	independently.
The	assignment	of	the	observer	to	the	observed	object	is	created
dynamically	at	runtime.
The	observed	object	does	not	need	to	implement	an	additional	subscription
mechanism.

The	following	is	the	disadvantage	of	the	observer	pattern:

Observers	are	created	independently	and	are	not	aware	of	each	other.	This

may	lead	to	unexpected	side	effects.

Strategy	-	behavioral	pattern
The	strategy	pattern	is	a	family	of	algorithms.	The	algorithms	are	created	as
separate	program	classes,	fully	interchangeable	during	runtime.	At	the	top,	we
have	a	class	that	chooses	an	algorithm	(but	only	one),	which	will	be	executed.
When	using	this	pattern,	adding	a	new	algorithm	is	as	simple	as	creating	a	new
implementation	of	the	interface.	

Modifying	the	algorithm	just	involves	a	modification	of	the	proper	method,	as
all	algorithms	are	encapsulated	into	one	method	per	algorithm.	The	strategy	does
not	use	inheritance,	but	only	the	implementation	of	the	interface,	so	unnecessary
linking	is	not	created	between	the	algorithm	and	methods	using	the
algorithm.		Using	this	method	of	behavior	modification,	the	factory	pattern	is
very	useful	for	creating	a	proper	class.

The	strategy	can	be	used	whenever	we	need	to	solve	a	problem	in	many	different
ways.

The	following	is	an	example	implementation.

Firstly,	create	an	interface,	which	will	be	implemented	in	a	strategy:

INTERFACE	lif_vat.

	

			TYPES:	t_price	TYPE	p	LENGTH	10	DECIMALS	2.

	

			METHODS:	calculate_vat

					IMPORTING

															iv_price														TYPE	t_price

					RETURNING	VALUE(rv_gross_price)	TYPE	t_price.

	ENDINTERFACE.

	

Now	create	a	definition	and	implementation	of	material,	for	which	VAT	will	be
calculated	using	various	strategies:

	CLASS	zcl_material	DEFINITION.

	

			PUBLIC	SECTION.

	

					TYPES:	t_price	TYPE	p	LENGTH	10	DECIMALS	2.

	

					METHODS:	constructor

							IMPORTING	iv_vat	TYPE	REF	TO	lif_vat.

	

	ENDCLASS.

	

	CLASS	zcl_material	IMPLEMENTATION.

			METHOD	constructor.

	

					DATA:	lv_gross_price	TYPE	t_price.

	

					lv_gross_price	=	iv_vat->calculate_vat(iv_price	=	1000).

	

					WRITE:	/	'Material	gross	price:',	lv_gross_price.

	

			ENDMETHOD.

	ENDCLASS.

The	definition	and	implementation	of	the	first	strategy	are	as	follows:

CLASS	zcl_vat7	DEFINITION.

		PUBLIC	SECTION.

	

				INTERFACES	lif_vat.

	

				ALIASES:	calculate_vat	FOR	lif_vat~calculate_vat.

	

ENDCLASS.

	

CLASS	zcl_vat7	IMPLEMENTATION.

		METHOD	calculate_vat.

	

				rv_gross_price	=	iv_price	+	(iv_price	*	'0.07').

		ENDMETHOD.

ENDCLASS.	

The	second	strategy	can	be	defined	and	implemented	as	follows:

	CLASS	zcl_vat32	DEFINITION.

	

			PUBLIC	SECTION.

	

					INTERFACES	lif_vat.

	

					ALIASES:	calculate_vat	FOR	lif_vat~calculate_vat.

	

	ENDCLASS.

	

	CLASS	zcl_vat32	IMPLEMENTATION.

			METHOD	calculate_vat.

	

					rv_gross_price	=	iv_price	+	(iv_price	*	'0.32').

	

			ENDMETHOD.

	ENDCLASS.

The	following	fragment	of	code	creates	a	definition	and	implementation	of	the

main	application:

CLASS	zcl_mainapp	DEFINITION.

			PUBLIC	SECTION.

					CLASS-METHODS	run.

	ENDCLASS.

	

	CLASS	zcl_mainapp	IMPLEMENTATION.

			METHOD	run.

	

					DATA:	lr_vat7						TYPE	REF	TO	zcl_vat7,

											lr_vat32					TYPE	REF	TO	zcl_vat32,

											lr_material1	TYPE	REF	TO	zcl_material,

											lr_material2	TYPE	REF	TO	zcl_material.

	

					CREATE	OBJECT:	lr_vat7,

																				lr_vat32.

	

					CREATE	OBJECT	lr_material1

							EXPORTING

									iv_vat	=	lr_vat7.

	

					CREATE	OBJECT	lr_material2

							EXPORTING

									iv_vat	=	lr_vat32.

	

			ENDMETHOD.

	ENDCLASS.

The	last	step	is	to	start	the	main	application,	as	follows:

START-OF-SELECTION.

	

			zcl_mainapp=>run().	

The	following	are	the	advantages	of	the	strategy	pattern:

Less	conditional	programming.
Implementation	is	determined	at	runtime.
It	simplifies	the	process	of	adding	new	implementations.
It	allows	the	debugging	of	each	strategy,	making	it	easier	to	test	them.

The	following	are	the	disadvantages	of	the	strategy	pattern:

It	adds	another	layer	of	complexity.
The	implementation	of	a	single	functionality	is	spread	over	several	objects.

Summary
Using	ABAP	Objects	can	be	really	helpful	in	day-to-day	work.		This	way	of
programming	offers	the	possibility	of	creating	code	in	small	functional	parts,
which	can	be	helpful	when	code	needs	to	be	refactored	or	when	the	code	will	be
reused	in	many	different	places.	In	this	chapter,	we	learned	all	about	how	to
create	different	classes	in	ABAP,	the	differences	between	static	and	instance
methods	and	attributes,	the	concept	of	an	event,	and	ABAP	Objects	design
patterns.

In	the	next	chapter,	we	will	focus	on	how	to	integrate	SAP	systems	into	third-
party	systems.

Questions
The	following	questions	will	allow	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 What	are	the	main	differences	between	global	and	local	classes?
2.	 What	are	the	differences	between	a	class	and	an	interface?
3.	 What	are	design	patterns?

Integrating	SAP	with	Third-Party
Systems
This	chapter	focuses	on	how	to	build	a	stable	and	error-free	connection	of
a	Systems	Applications	and	Products	in	Data	Processing	(SAP)	system	using
non-SAP	software.	The	method	of	solving	this	task	may	vary	significantly
depending	on	multiple	factors,	from	the	number	of	funds	available	to	the
customer	to	the	level	of	the	developer's	proficiency.	Here,	we	will	try	to	clarify
the	range	of	options	that	a	typical	developer	has.

The	following	topics	will	be	covered	in	this	chapter:

Ways	of	connecting	with	legacy	systems
The	Intermediate	Document	(IDoc)	in	SAP:

Differences	between	IDoc	and	Electronic	Data	Interchange	(EDI)
The	Application	Link	Enable	(ALE)	framework

Running	programs	remotely	through	the	Business	Application
Programming	Interface	(BAPI)
SAP	Gateway
Open	Data	Protocol	(OData)	
Developing	our	first	OData	application

Technical	requirements
The	following	requirements	need	to	be	met	to	get	all	of	the	examples	in	this
chapter	to	work:

For	working	with	OData	services:	You	will	require	SAP	NetWeaver
Gateway,	which	is	included	in	SAP	NetWeaver	7.40+	(the	minimum
components	are	SAP_GWFND	or	GW_CORE	with	IW_FND)
For	IDoc:	IDocs	from	SAP	systems	Release	3.1x	or	higher	is	supported
For	ALE:	ALE	is	available	with	SAP	Release	3.0

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter14.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter14

IDoc	
In	this	section,	we	will	describe	a	very	important	part	of	the	SAP	system—IDoc.
IDoc	is	frequently	used	with	the	SAP	system;	it	is	a	very	friendly	technology	that
does	not	cause	many	difficulties	during	implementation.	There	are	also	other
integration	possibilities	that	will	be	described	later	in	this	chapter.	A	user	of	the
SAP	system	must	be	familiar	with	IDoc	because	it	is	likely	that	they	will
encounter	this	solution	on	a	daily	basis.

IDoc	overview
IDoc	is	a	standard	data	structure	that	is	used	to	exchange	information	between
any	two	processes	in	SAP	system	applications	and	external	systems.	IDocs	are
used	for	asynchronous	transactions.	The	structure	of	an	IDoc	structure	is	very
similar	to	XML.	An	IDoc	can	be	triggered	in	the	EDI	subsystem	or	in	the	SAP
system.	In	the	case	of	the	inbound	process,	EDI	converts	data	and	the	IDoc	is
created	in	SAP.	When	the	process	is	successful,	IDoc	is	available	for	other	types
of	processing	in	an	SAP	system.	An	Outbound	IDoc	is	triggered	in	SAP	and	is
sent	to	the	EDI	subsystem.	Once	there,	it	is	usually	converted	to	XML	format.
Then,	the	EDI	subsystem	sends	a	message	to	the	target	system.

The	construction	of	IDoc
An	IDoc	consists	of	three	blocks,	as	follows:

The	Control	Record
The	Data	Record
The	Status	Record

The	Control	Record	contains	information	such	as	the	type	of	IDoc,	the	port	of
the	partner,	the	type	of	message,	the	sender	and	receiver,	and	more.	The	Data
Record	is	a	block	that	contains	the	application	data.	The	Status	Record	gives
data	about	the	status	of	the	IDoc	(for	example,	the	IDoc	created,	and	whether	the
recipient	exists).

The	structure	of	IDoc	is	displayed	in	the	following	diagram:

The	structure	that	is	shown	in	the	preceding	diagram	is	very	well	designed	and
can	be	widely	used	for	business	processes.	If	you	need	to	expand	the	structure,
then	the	designer	does	not	have	to	learn	about	a	very	complex	and	scattered
object.	This	is	a	big	advantage	of	using	IDoc.

The	EDI	system
The	EDI	system	is	used	to	exchange	business	documents.	EDI	reduces	errors
and	processing	time	when	transferring	data	between	two	systems.

ALE
ALE	is	a	tool	that	is	used	for	exchanging	data	between	the	SAP	R/3	system	and
an	external	system.	This	functionality	consists	of	three	layers:

The	application	layer
The	distribution	layer
The	communications	layer

Here,	the	application	layer	provides	an	interface	in	which	to	initiate	and
receive	data	from	or	to	other	systems.

The	distribution	layer	restricts	and	changes	data	based	on	rulesets.	Rulesets	can
be	custom	configurations	or	predefined;	this	is	sometimes	needed	in	order	to
connect	to	different	versions	of	the	SAP	system.

In	the	communications	layer,	ALE	communication	can	be	synchronous	and
asynchronous.	This	layer	performs	a	Remote	Function	Call	(RFC).	It	uses	the
RFC	destination	defined	by	the	client	model	and	port	for	this	purpose.

Differentiating	ALE	from	EDI
Both	ALE	and	EDI	technologies	are	used	to	support	data	transfer.	ALE	is	SAP's
most	frequently	used	technology	for	transferring	data	between	SAP	systems.
EDI	is	a	widely	available	technology	that	can	be	used	to	connect	a	SAP	system
with	an	external	system.	The	main	difference	between	the	two	is	that	EDI	is	used
for	external	communication,	while	ALE	is	used	for	internal	connections.	From	a
technical	point	of	view,	EDI	transfers	data	using	file	ports,	whereas	ALE	uses
memory	buffers	to	transfer	the	data.	

BAPI
BAPI	is	a	standard	interface	that	is	available	in	every	SAP	system.	This	interface
has	been	designed	to	access	data	from	the	third	system	(SAP	ERP,	SAP	CRM,
other	systems).	BAPI	is	a	remotely	activated	function	module	and	can	be	called
by	applications	that	are	implemented,	for	example,	in	Java.	Additionally,	the
BAPI	architecture	allows	the	use	of	business	logic,	validation,	and	checking
permissions,	which	are	available	in	the	business	object	level.	BAPI	is
registered	in	the	Business	Object	Repository	(BOR).

Implementing	BAPI
BAPI	is	relatively	easy	to	implement.	However,	the	programmer	must	remember
some	important	rules	when	creating	the	interface.	We	will	describe	these	rules
next.

The	first	step	of	implementing	BAPI	is	to	create	a	function	module	in	SE37	Tcode
(transaction	code).	To	do	this,	navigate	to	Function	module	|	Attributes,	and
select	the	options	that	are	displayed	in	the	following	screenshot:

If	a	user	requires	input	data	for	the	correct	operation	of	business	logic,	then	the

developer	can	add	it	in	the	Import	tab:

Correct	entry	of	information	about	the	input	data	requires	checking	the	Pass	value	checkbox.

An	example	of	an	import	table	is	shown	in	the	preceding	screenshot.	BAPIRET2
is	a	standard	structure	that	is	available	in	every	SAP	system.	A	structure	could
include	warning	and	error	messages—this	helps	us	find	the	cause	of	the	error.
On	the	other	hand,	it	can	be	used	to	get	success	information	to	confirm	the
accuracy	of	program	results	as	follows:

A	developer	must	declare	what	data	will	be	returned	by	the	BAPI	module.	In	this
example,	it	will	be	a	table,	as	demonstrated	in	the	following	screenshot:

To	be	able	to	declare	an	output	table,	its	type	must	always	start	with	ZBAPI.	This	rule	is,	by
default,	not	validated	at	this	step,	but	it	will	be	verified	later,	preventing	the	successful
creation	of	BAPI.

In	the	Source	code	tab,	we	implement	the	appropriate	code.	An	example	code	is
shown	in	the	following	code	snippet.	The	user	also	has	the	option	of	using
modern	techniques	based	on	object-oriented	programming:

	FUNCTION	zbapi_demo.

	*"--

	""Local	Interface:

	*"		IMPORTING

	*"					VALUE(CARRID)	TYPE		ZBAPISFLIGHT-PLANETYPE

	*"		EXPORTING

	*"					VALUE(RETURN)	TYPE		BAPIRET2

	*"		TABLES

	*"						ZSFLIGHT	STRUCTURE		ZBAPISFLIGHT

	*"--

	

			CLEAR	zsflight	.

			SELECT	planetype	seatsmax_b	seatsocc_b	seatsmax_f	seatsocc_f

					FROM	sflight	INTO	TABLE	zsflight

					WHERE	carrid	EQ	carrid.

	

			IF	sy-subrc	NE	0.

					CLEAR	zsflight	.

			ENDIF.

	

	

	ENDFUNCTION.	

Enabling	Release	will	make	it	possible	for	you	to	use	the	function	module	in
BAPI.	To	do	this,	you	must	pass	the	following	path	(Function	Module	|	Release	|
Release):

The	next	step	is	to	create	a	business	object	in	SW01	Tcode,	as	follows:

In	the	resulting	screen,	click	on	the	Utilities	drop-down	menu	and	check	what
methods	are	provided	by	default.	There	should	be	two	methods	that	are	available
when	creating	the	BAPI.	Next,	navigate	to	Utilities	|	API	Methods	|	Add
Method:

In	the	next	window	that	appears,	enter	the	name	of	the	method	created	in	the
previous	steps:

Then,	set	Object	Type	to	the	To	implemented	status,	as	demonstrated	in	the
following	screenshot:

Next,	set	the	Object	Type	component	to	the	To	modeled	status:

Finally,	generate	a	BAPI	that	will	be	visible	to	external	sites,	as	demonstrated	in
the	following	screenshot:

This	preceding	BAPI	example	shows	that	the	implementation	is	not	difficult.
Similar	types	of	implementation	are	very	frequently	used	in	project	work	and,	as

a	result,	each	programmer	should	have	a	basic	knowledge	of	BAPI
implementations,	at	the	very	least.	

SAP	Gateway
In	the	previous	sections,	we	covered	several	efficient	and	reliable	ways	of
connecting	to	and	from	external	systems.	However,	all	of	these	methods	share
one	major	flaw	–	they	each	require	you	to	expose	your	system	containing
business-critical	data	to	third-party	systems.	Assuming	that	any	system,	which	is
administered	by	some	other	entity,	will	behave	according	to	your	established
rules	of	privacy	and	security	is	neither	recommended	nor	safe.	In	order	to
address	this	issue	and	separate	the	most	vital	part	of	the	landscape	from	a
potentially	dangerous	environment,	SAP	introduced	a	middleware	solution
called	SAP	NetWeaver	Gateway	(which	is	available	in	SAP	NetWeaver	7.0	or
later	releases).

Deployment	variants
For	older	versions	(that	is,	below	7.4)	of	SAP	NetWeaver,	the	Gateway	solution
consists	of	three	core	parts:	GW_CORE,	IW_FND,	and	IW_BEP.	Since	version	7.4,	all	of
these	components	have	been	bundled	into	one–SAP_GWFND–thereby,	reducing	the
effort	of	installation.	Due	to	its	middleware	nature	and	its	component-based
architecture,	the	SAP	Gateway	can	be	deployed	in	SAP	landscape	in	several
ways,	depending	on	the	infrastructure	and	the	system's	ability.	We	describe	the
three	standard	variants	in	the	following	sections.

Embedded
The	most	straightforward	way	of	deploying	SAP	Gateway	is	to	simply	install	all
the	components	inside	the	core	system.	This	is	the	simplest	way	to	utilize	all	the
tools	that	have	been	delivered	with	the	solution	without	the	need	for	investing	in
infrastructure.	However,	this	variant	does	not	scale	up	well.	Other	drawbacks	are
that	all	processing	and	connections	are	handled	by	the	core	system	itself,	which
increases	the	system	load	and	the	security	increase	is	not	significant.	On	the
other	hand,	this	is	the	fastest	solution,	as	all	the	required	data	is	in	place	and
there	is	no	need	to	redirect	any	requests	or	calls.

Hub
The	recommended	way	of	deploying	SAP	NetWeaver	Gateway	is	the	hub
infrastructure.	In	this	scenario,	Gateway	is	split	into	two	systems–the	backend
server,	containing	all	the	business	data	and	processing	logic	(with	IW_BEP	or
SAP_GWFND	installed),	and	the	frontend	server	for	registering	services	and	acting	as
a	single	point	of	entry	(with	GW_CORE	and	IW_FND,	or	SAP_GWFND	installed).	Using	a
separate	application	server	for	Gateway	purposes	has	significant	advantages	over
the	embedded	solution.	First	of	all,	it	introduces	an	additional	layer	of	security
between	external	systems	and	business-sensitive	data.	The	core	system	is	not
exposed	to	the	non-governed	environment	and	all	the	incoming	calls	are
guaranteed	to	be	preprocessed	and	inspected.	The	frontend	server	reduces	the
core	system	load	as	well,	thanks	to	the	prehandling	of	authorizations.	It	requests
preprocessing	and	rejects	invalid	ones	even	before	they	hit	their	destination.	It
also	introduces	the	ease	of	scalability	through	the	very	simple	registration	of
another	SAP	system	with	their	own	services	and	allows	a	separate	maintenance
cycle	for	each	and	every	system.	It	does,	however,	extend	the	call	processing
time	slightly,	as	it	needs	to	pass	the	additional	system	twice.

Hub	(with	development)
In	some	special	cases,	it	may	be	impossible	to	deploy	the	IW_BEP	(or	SAP_GWFND)
component	to	the	backend	system,	due	to	restrictive	policies,	or	even	system
incompatibility.	In	such	situations,	the	hub	variant	can	be	modified	by
transferring	the	processing	logic	to	the	frontend	server	and	calling	the	backend
system	with	backward-compatible	methods	(for	example,	RFC	calls).	This
modification	keeps	the	security	and	load-reduction	benefits,	but	requires	a	bigger
development	and	maintenance	effort,	as	the	frontend	server	is	not	aware	of	the
backend's	dictionary	entries,	which	must	be	in	sync.

Regardless	of	the	deployment	variant	selected,	the	core	functionality	of	SAP
Gateway	are	services	that	use	the	OData	protocol.	The	protocol	itself	and	how	to
build	an	OData	service	in	SAP	Gateway	will	be	described	in	more	detail	in	the
following	sections.

Another	communication	interface	introduced	by	SAP	NetWeaver	Gateway	is	WebSocket,	and
its	more	general	implementation–TCP/IP	socket.	Neither	of	these,	however,	are	covered	in	this
book.

Main	tools
SAP	NetWeaver	Gateway	is	not	just	another	system	in	the	landscape,	with	some
additional	classes,	interfaces,	and	dictionary	entries,	but	it	also	consists	of	a	set
of	tools	that	can	be	used	to	administer	core	functionalities.	These	tools	are
available	both	through	transactions	and	SAP	Project	Reference	Object	(SPRO)
entries.	We	will	discuss	several	of	these	tools	in	the	following	sections.

Gateway	Service	Maintenance
The	central	service	maintenance	tool	is	available	after	running
the	/IWFND/MAINT_SERVICE	transaction,	or	by	navigating	to	SAP	Netweaver	|	SAP
Gateway	|	OData	Channel	|	Administration	|	General	Settings	|	Activate	and
Maintain	Services	in	SPRO.	Once	the	application	is	launched,	it	offers	various
functionalities,	either	directly	from	the	cockpit,	or	by	direct	navigation	to
separate	tools.

The	majority	of	the	screen	lists	all	of	the	services	that	are	registered	in	the
system,	as	shown	in	the	following	screenshot:

Once	the	chosen	service	is	selected,	the	bottom	part	of	the	screen	displays
registration	details	such	as	the	type	of	service	(for	example,	OData	or	SData)	or
remote	systems	to	which	the	incoming	requests	are	passed.	The	buttons	ribbon	at
the	top	of	the	screen	allows	you	to	check	the	details	of	the	service,	load
metadata,	check	service	consistency	and	availability,	and	more.

Gateway	Client
In	order	to	test	any	of	the	registered	services,	or	call	external	systems	using
HTTP	calls,	you	can	use	the	/IWDNF/GW_CLIENT	transaction,	as	shown	in	the
following	screenshot:

Provided	that	the	URI	field	is	supplied	with	a	relative	path	(for	services	on	the
Gateway	system)	or	an	absolute	path	(for	external	services)	and	all	the	request
parameters	are	set	(namely,	Protocol,	HTTP	Method,	and	headers),	pressing
Execute	sends	the	request	body	(which	is	defined	in	the	left-hand	side)	and	the
result	is	displayed	in	the	right-hand	side.	The	Gateway	Client	is	particularly
useful	when	the	system	is	isolated	from	any	external	REST-testing	tools,	as	it
allows	you	to	check	the	consistency	of	the	services	directly	in	the	SAP	system
environment.

This	tool	is	also	accessible	directly	from	the	Service	Maintenance	cockpit	by	selecting	the
desired	service	and	clicking	on	the	Gateway	Client	button.	Entering	a	transaction	this	way
causes	the	URI	field	to	be	prepopulated	with	the	appropriate	value.

Error	Log
Since	even	well-written	programs	can	occasionally	lead	to	some	errors,	it	is
necessary	to	keep	track	of	them	in	order	to	analyze	and	repair	the	code.	The
same	rule	applies	to	the	SAP	Gateway,	but	also	there	is	another	threat	–
incoming	requests	from	external	sources	may	sometimes	be	malformed,	or
missing	some	important	data.	In	order	to	distinguish	backend-related	errors	and
front-facing	ones,	there	are	two	separate	dashboards	that	you	can
use.	/iwbep/error_log	is	used	on	the	backend	system,	whereas	/iwfnd/error_log	is
used	on	the	frontend	system	(although	they	may	be	available	on	both):

Depending	on	the	log	security	level,	the	dashboards	contain	a	list	of	errors	with
variably	detailed	descriptions	(on	productive	systems,	the	logs	are	most	likely	set
to	hide	any	business-critical	data).	Apart	from	that,	basic	information	such	as
username,	date	and	time,	error	type,	and	service	name	are	always	visible.

Gateway	Service	Builder
Although	services	can	be	built	manually	from	scratch,	there	is	also	a	dedicated
tool	that	can	be	used	to	make	this	process	faster,	easier,	and	more	reliable.
Known	as	Gateway	Service	Builder,	it	is	accessible	through	the	SEGW	transaction:

A	more	detailed	description	of	this	tool	is	presented	in	the	Developing	our	first

OData	application	section.	But	to	summarize	its	purpose,	it	allows	you	to	create
and	edit	OData	services	using	automated	procedures,	check	for	consistency	of
provided	configuration,	and	finally,	register	the	service.

The	OData	protocol
The	natural	consequence	of	the	release	of	SAP	NetWeaver	Gateway	was	a	need
to	choose	a	communication	protocol	that	could	be	handled	by	the	new	system.
Since	the	main	idea	behind	the	Gateway	was	to	enable	non-SAP	solutions	to
easily	communicate	with	the	SAP	system,	without	knowledge	of	Advanced
Business	Application	Programming	Objects	(ABAP)	coding	or	the	database
structure,	the	protocol	had	to	be	light,	fast,	and	accessible.	Coincidentally,
parallel	to	the	development	of	the	Gateway,	the	first	version	of	Microsoft's
Astoria	project	was	also	introduced,	which	fit	these	needs.	SAP	joined	the	efforts
with	Microsoft	and	several	other	companies	in	an	attempt	to	improve	this
standard,	and	eventually,	this	led	to	what	is	now	known	as	OData.	The	OData
protocol	was	then	submitted	to	the	Organization	for	the	Advancement	of
Structured	Information	Standards	(OASIS)	consortium,	which	is	now
responsible	for	its	development	and	the	currently	released	version,	4.01.

The	OData	protocol	is	a	RESTful	protocol,	which	allows	you	to	query	services
without	needing	to	consider	request	structures	and	headers.	Because	of	their
RESTful	nature,	these	services	are	not	expected	to	keep	track	of	ongoing
sessions	and	previous	requests	–	each	and	every	call	is	treated	as	a	completely
independent	one.	Therefore,	the	limitation	of	having	concurrent	sessions	running
has	a	smaller	impact	on	the	overall	efficiency,	compared	to	RESTless	protocols.

Characteristics
The	OData	protocol,	in	its	simplest	implementation,	supports	four	basic	Create,
Read,	Update,	and	Delete	(CRUD)	methods.		Each	of	these	represent	the
respective	HTTP	methods:	POST,	GET,	PUT/MERGE,	and	DELETE.	Furthermore,	each
resource,	which	can	be	manipulated	by	the	aforementioned	methods,	is	uniquely
identified	by	the	Unique	Resource	Identifier	(URI).	Both	the	request	and
response	bodies	can	be	either	in	XML	or	in	JSON	format	(the	former	may
contain	more	information,	whereas	the	latter	is	much	lighter).	Some	simple
requests	using	this	protocol	are	presented	in	the	following	code	snippet.

The	following	code	snippet	results	in	the	creation	of	a	new	flight
from	London	to	Paris:

POST	/Flights

{

				"Destination":"London",

				"Departure":"Paris"

}

The	following	code	snippet	returns	the	complete	list	of	Flights:

GET	/Flights

The	following	code	snippet	returns	the	details	of	a	particular	flight:

GET	/Flights(id='000001')

The	following	code	snippet	changes	a	single	property	(Destination)	of	a	chosen
flight:

PUT	/Flights(id='000001')

{

				"Destination":"London"

}

The	following	code	snippet	removes	the	flight	specified:

DELETE	/Flights(id='000002')

As	you	can	see,	the	resources	are	identified	by	a	collection	name,	Flights,	and	a
key	id	property.	Depending	on	the	needs,	the	resources	can	be	identified	by	more

than	one	key	property.	However,	if	defined,	then	all	key	properties	need	to	be
supplied	in	order	to	manipulate	a	single	entry.	If	there	is	a	need	to	fetch	more
than	one	entry	that	fulfills	a	specific	condition,	then	the	$filter	addition	can	be
used:

GET	/Flights?$filter=Destination	eq	'London'

The	preceding	code	returns	all	flights	that	are	scheduled	to	land	in	London.

Additional	options	for	manipulating	the	results	are	as	follows:

$orderby:	To	set	sorting
$top	and	$skip:	To	fetch	a	specific	range	of	the	records
$count:	To	obtain	only	the	number	of	records	instead	of	the	full	data
$select:	To	choose	which	properties	of	the	record	should	be	transferred
$search:	To	return	the	records	matching	a	certain	condition	(the	result	is
highly	dependent	upon	the	specific	implementation)
$expand:	To	allow	the	fetching	of	additional	nested	data,	which	is	in	line	with
the	main	results

As	mentioned	previously,	it	is	possible	to	define	the	service	with	a	nested
structure	of	related	information.	For	example,	in	the	case	of	a	unique	flight,	it
may	be	useful	to	identify	the	crew	assigned	to	it.	In	order	to	fetch	all	flights	with
their	corresponding	crews,	the	following	query	can	be	used:

GET	/Flights?$expand=Crew

Additionally,	the	following	query	can	be	used	to	obtain	only	the	crew	of	the
single	flight	(without	the	flight	details):

GET	/Flights(id='000001')/Crew

The	service	definition
The	OData	protocol	is	a	highly	standardized	protocol,	and	so	is	the	definition	of
the	service.	In	order	to	consume	the	service,	there	is	actually	no	need	to	go
through	sophisticated	documentation	containing	lots	of	nuances.	All	the
information	that	is	required	is	available	with	one	simple	call:

GET	/$metadata

The	response	to	this	call	includes	the	full	list	of	available	collections,	properties,
associations,	navigation,	and	more.	A	short	example	of	such	a	response	(from	the
SAP	system)	is	presented	in	the	following	screenshot:

As	you	can	see	here,	the	SAP	OData	implementation	returns	the	metadata	file	in
a	certain	structure.	First,	there	is	a	definition	of	each	and	every	entity	with	all	its
properties	(including	key,	navigation,	and	ordinary	properties).	Then,	it	defines

the	associations	between	the	entities.	Additionally,	in	EntityContainer,	there	is	a	list
of	collections	named	EntitySets,	collection	associations	(AssociationSets),	and
function	imports,	which	are	additional	custom	actions	that	cannot	be	described
using	the	typical	structure.

OData	services	in	SAP	follow	the	http://schemas.microsoft.com/ado/2008/09/edm	schema,	which
relates	to	the	Entity	Data	Model	(EDM).	In	general,	OData	services	are	based	on	AtomPub,
therefore,	other	naming	conventions	and	schemas	can	be	used.

In	the	next	section,	we	will	demonstrate	how	you	can	use	the	SAP	system	to
generate	metadata	file	that	describes	the	service,	and	how	to	handle	simple
requests.

Developing	our	first	OData
application
In	Chapter	8,	Creating	Stunning	UI5	Interfaces,	there	is	a	short	introduction	to
SAPUI5	application	development.	The	integral	part	of	such	an	application	is	a
connection	to	some	sort	of	data	storage,	where	the	business	information	is	saved,
and	it	is	being	read	from	and	manipulated.	For	these	applications,	the	most
common	data	storage	is	the	SAP	system	and	the	data	exchange	is	handled	by	the
OData	services.	In	the	previous	example,	the	application	was	designed	to	use	the
OData	service	named	ZODATA_SERVICE.	Now,	we	will	demonstrate	how
you	can	create	it.

Design	time
The	first	step	in	the	creation	of	any	OData	service	is	a	good	design.	The	better
the	service	is	modeled	before	the	initial	draft,	the	less	complicated	the	coding
will	be.	What	is	important	to	remember	during	the	design	phase	is	that	each	and
every	piece	of	information	has	to	be	uniquely	identified	with	the	key,	and	nested
structures	inherit	the	key	of	the	parent,	simultaneously	adding	their	own.	This
will	be	demonstrated	in	the	following	examples.

The	ZODATA_SERVICE	service,	which	is	used	in	the	sample	SAPUI5	application,
needs	to	have	at	least	one	collection	(entity	set)	available	at	/FlightsSet.
Additionally,	it	has	to	be	filterable	with	the	DepartureAirport	property,	and	the
following	properties	should	be	provided	for	display	purposes:	DestinationAirport,
FlightDate,	and	FlightTime.	While	it	is	more	convenient	to	pass	the	date	and	time
values	together	as	a	timestamp,	in	order	to	display	values	more	clearly,	two
separate	fields	will	be	used.

Even	though	the	sole	purpose	of	this	service	is	to	serve	data	to	the	SAPUI5
application,	there	is	no	limitation	to	its	interface,	as	it	can	be	consumed	by	any
number	of	different	applications	or,	more	generally,	clients.	Therefore,	the
service	will	be	extended	to	also	show	the	crew,	which	is	assigned	to	the	specific
flight.	The	crew	details	will	consist	of	simple	FirstName	and	LastName	properties,
followed	by	Role	to	indicate	the	actual	responsibilities	of	the	crew	during	the
flight.

Having	designed	the	service	shape,	the	SEGW	transaction	can	be	launched,	and
modeling	can	be	started.	First,	using	the	New	Project	button,	instantiate	the
project	and	assign	it	to	the	appropriate	transport	request:

The	empty	tree	structure	is	shown,	as	demonstrated	in	the	following	screenshot:

In	many	cases	–	including	this	one	–	the	service	has	to	be	built	from	scratch.
There	are,	however,	situations	when	an	automated	process	can	be	used.	By
clicking	on	the	right	mouse	button	on	the	Data	Model	node	of	the	tree,	you	can
import	premodeled	data	from	file,	make	a	clone	of	the	existing	project,	and
generate	a	new	one	that	is	based	on	the	RFC	or	BOR	interface.

Using	the	right	mouse	button	on	the	Entity	Types	node,	press	Create,	and	a	new
entity	can	be	created.	In	this	scenario,	two	entity	types	are	needed:	Flight	and
CrewMember.	By	checking	Create	Related	Entity	Set,	the	collections
of	Flight	and	CrewMember	can	be	created	in	parallel:

Following	this,	you	will	be	required	to	provide	the	ABAP	Structure	field	for
each	row.	The	Flight	entity	can	be	supplied	with	the	SFLIGHT_T	structure,	whereas
the	CrewMember	entity	requires	a	custom	structure,	using	the	CARRID	(S_CARR_ID),
CONNID	(S_CONN_ID),	FLDATE	(S_DATE),	MEMBERID	(CHAR10),	FIRSTNAME	(AD_FNAME),	and	LASTNAME
(AD_LNAME)	fields.

Using	the	right	mouse	button	on	the	CrewMember	and	Flight	nodes	of	the	tree,
import	the	relevant	properties	of	the	ABAP	structures	into	the	OData	services.
Bear	in	mind	that,	while	this	is	a	very	useful	automation	tool,	these	structures
can	sometimes	be	very	long	and	not	all	values	are	required.

That	said,	as	a	creator,	you	are	allowed	to	define	key	fields,	rename	the

properties,	and	change	the	descriptions.	The	target	properties
for	CrewMember	are	as	follows:

Additionally,	the	target	properties	for	Flight	are	as	follows:

There	is	still	one	section,	which	has	not	been	maintained	yet	–	the	Creatable,
Updatable,	Sortable,	Nullable,	and	Filterable	columns.	Apart	from	the
Nullable	column,	which	has	to	be	unchecked	for	key	properties,	all	can	be	freely
set	and	have	a	purely	informational	role.	It	is,	however,	good	practice,	to	set
them	accordingly	in	order	to	inform	the	service	consumer	about	their
capabilities.	As	this	simple	service	will	not	have	many	functionalities,	check	the
Filterable	checkbox	at	DepartureAirport	so	that	it	is	kept	in	line	with	the
SAPUI5	application.

During	the	design	time,	a	decision	about	showing	the	flight's	crew	was	made.
Therefore,	we	need	to	create	a	navigation	from	the	flight	to	the	crew	members
subset.	In	order	to	achieve	this,	we	need	to	set	the	association	between	Flight	and

CrewMember	by	using	the	right	mouse	button	on	Associations	and	pressing
Create.	In	the	pop-up	window,	Principal	Entity	and	Dependent	Entity	need	to	be
pointed	to,	and	an	Association	Name	defined.	As	the	flight	cannot	be	started
without	at	least	a	pilot,	the	Cardinality	1..n	is	the	most	suitable:

Then,	in	the	subsequent	popup,	align	the	keys	of	the	entities.	This	is	where	you
can	clearly	see	that	the	dependent	(nested)	entities	need	to	have	the	whole
parent's	key	and	at	least	one	unique	key	property.

In	the	third	window,	the	corresponding	association	set	is	created.

Once	the	association	is	ready,	the	Flight	entity	is	enhanced	using	Navigation
Properties,	as	shown	in	the	following	screenshot:

At	this	moment,	the	service	model	can	be	validated	using	the	Scale	button	(the
fifth	from	the	left)	in	order	to	check	its	consistency

As	the	OData	service	works	with	EDM	types	on	one	side	and	SAP	dictionary	types	on	the
other,	it	is	sometimes	impossible	to	match	them	exactly.	This	is	why	it	is	quite	common	to	see	a
list	of	warnings	during	the	validation	process.	At	this	stage,	it	is	the	designer's	and
developer's	responsibility	to	decide	whether	the	warning	can	be	neglected.

Successful	validation	allows	the	generation	of	runtime	objects	using	the
Generate	Runtime	Objects	button.	When	the	process	is	started	for	the	first	time,
the	pop-up	window	is	shown,	asking	for	the	names	of	the	classes	to	be
generated,	the	model	name,	and	the	service	name.	Automatically	generated	class
names	are	usually	a	good	choice	unless	a	specific	naming	convention	is	required.
However,	Technical	Service	Name	(even	in	the	simplest	scenario)	is	mapped
directly	to	External	Service	Name,	therefore,	it	is	a	good	idea	to	give	it	a
meaningful	name.

The	pop-up	window	asks	for	two	classes	for	Model	Provider	and	two	classes	for	Data
Provider.	This	is	due	to	the	SEGW	extensibility	for	the	custom	code.	The	base	classes	are
directly	affected	every	time	the	runtime	objects	are	re-generated,	therefore	custom	coding
should	not	be	performed	within	their	bodies.	The	*_EXT	classes,	on	the	other	hand,	are	open	for
manual	extending	and	enhancing.

Once	the	generation	is	completed,	the	project	tree	is	filled	with	new	entries
under	the	Runtime	Artifacts	node:

Now,	using	the	/IWFND/MAIN_SERVICE	transaction	and	the	Add	Service	button,	the
newly	generated	service	can	be	registered	and	published,	as	follows:

Then,	the	metadata	file	can	be	opened	calling	the	following	code:

[hostname]/sap/opu/odata/sap/ZODATA_SERVICE/$metadata

Alternatively,	it	can	be	called	through	/IWFND/GW_CLIENT.

Providing	data
During	the	service	creation,	a	Data	Provider	class	was	generated
called	ZCL_ZODATA_SERVICE_DPC_EXT.	Double-clicking	on	its	name	in	SEGW	results	in
opening	the	class	editor,	allowing	the	implementation	of	custom	coding.	By
default,	the	generated	class	has	methods	inherited	from	eight	interfaces,	and	four
CRUD	methods	for	each	entity	type	defined.	The	methods	are	actually	defined
in	the	superclass	and	their	definition	there	should	not	be	modified.	Instead,	the
redefinition	in	the	EXT	class	is	recommended,	so	that	the	custom	code	is	not
overwritten	if	the	runtime	objects	are	generated	once	again.	For	this	case,
the	FLIGHTSET_GET_ENTITYSET	and	CREW_GET_ENTITYSET	methods	need	to	be	redefined.

Depending	on	the	actual	needs,	this	is	the	place	where	any	custom	logic	can	be
implemented.	It	is,	however,	important	to	know	where	are	all	the	relevant
parameters	are	stored.	Although	few	of	the	parameters	of	the	methods	interfaces
are	already	marked	as	obsolete	(they	are	accessible	directly	with
the	io_tech_request_context	methods),	they	can	be	found	in	already	deployed
services.	The	parameters	are	as	follows:

IV_ENTITY_NAME:	This	contains	the	name	of	the	entity.
IV_ENTITY_SET_NAME:	This	contains	the	collection	name.
IT_FILTER_SELECT_OPTIONS:	This	contains	a	table	similar	to	SELECT-OPTIONS	of	filter
parameters	passed	with	the	URI.
IS_PAGING:	This	contains	the	values	of	the	$top	and	$skip	parameters.
IT_KEY_TAB:	This	contains	all	the	key	property	values.
IT_ORDER:	This	contains	the	$orderby	information.

All	of	the	properties	are	accessible	through	their	corresponding	methods:

io_tech_request_context->get_entity_type_name().

io_tech_request_context->get_entity_set_name().

io_tech_request_context->get_filter().	"returns	filter	object

io_tech_request_context->get_top().

io_tech_request_context->get_skip().

io_tech_request_context->->get_source_keys()

io_tech_request_context->->get_converted_source_keys()

io_tech_request_context->get_orderby().

Once	the	appropriate	data	fetching,	storing,	or	updating	has	taken	place,	the

relevant	data	needs	to	be	returned	with	ET_ENTITYSET,	or	ES_ENTITY	(for	single	rows).
These	ABAP	table	and	structure	are	then	processed	by	SAP	Gateway	OData
framework	and	converted	to	appropriate	response	sent	to	the	caller,	for	example,
the	SAPUI5	application.

Summary
In	this	chapter,	we	learned	the	most	commonly	used	ways	to	integrate	SAP	with
third-party	systems.	In	short,	combining	the	SAP	system	with	other	systems	is	a
very	important	issue.	There	are	many	ways	in	which	to	connect	SAP	with	other
systems.	The	information	contained	in	this	chapter	allows	for	the	exchange	of
information	and	data	in	the	SAP	system.	It	is	important	for	the	user	to	be	aware
of	the	situation	in	which	the	particular	technology	should	be	used.	

The	next	chapter	describes	the	possibilities	of	using	background	jobs.	This	is	an
important	topic	for	anyone	who	currently	works	with	or	will	work	with	the	SAP
system.

Questions
The	following	questions	allow	you	to	consolidate	the	information	contained	in
this	chapter:

1.	 What	are	the	ways	to	connect	with	other	systems	in	SAP?
2.	 How	does	the	OData	service	work?
3.	 What	is	the	difference	between	ALE	and	EDI?

The	Background	Processing	of	ABAP
Programs
This	chapter	uncovers	all	the	ins	and	outs	of	background	data	processing	in
Systems	Applications	and	Products	in	Data	Processing	(SAP)	that	you	can
face	and	the	approaches	that	you	can	use	to	handle	them.	This	technique	is
mainly	used	for	transferring	data	from	non-SAP	systems	to	SAP	systems,	or
between	SAP	systems	that	have	no	direct	link	to	each	other.	Additionally,	it	can
be	applied	to	the	mass	processing	of	data	in	any	transaction.	This	chapter
describes	tools	that	are	very	important	in	everyday	work.	A	lot	of	processes	are
based	on	background	work	and,	for	the	most	part,	they	are	the	foundation	of	a
well-functioning	enterprise.

The	following	topics	will	be	covered	in	this	chapter:

Background	processing	in	SAP
Recording	batch	input	sessions

Technical	requirements
The	information	presented	in	this	chapter	requires	the	SAP	system.	Basic
programming	knowledge	is	also	required,	which	will	facilitate	the	understanding
of	the	described	solutions.

All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter15.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter15

Background	processing	in	SAP
The	SAP	system	was	production	management,	through	to	human	resources	and
financial	accounting,	and	up	to	customer	relationship	management	and	data
analytics.	While	the	areas	where	the	SAP	system	is	useful	and	able	to	handle	the
majority	of	tasks	are	vast,	sometimes,	another	tool	is	already	deployed	in	the
enterprise	environment	and,	from	a	business	perspective,	it	is	not	advised	to
replace	it.	In	such	cases,	there	appears	to	be	no	other	option	than	to	integrate	the
SAP	system	with	a	third-party	solution.

There	are	many	different	scenarios	that	involve	integration,	including	overnight
data	exchanges,	synchronizations,	reacting	to	live	events,	and	more.	Eventually,
most	of	these	scenarios	will	require	some	data	to	be	imported	to	the	SAP	system.
The	optimistic	scenario	is	pretty	straightforward;	that	is,	the	data	can	be	sent
through	any	available	interface	and	then	simply	propagated	to	an	appropriate
SAP	internal	table;	however,	this	rarely	occurs.

It	is	more	likely	that	the	external	system	will	have	some	data	in	its	structure.
However,	from	the	SAP	perspective,	even	a	single	record	may	need	to	be	stored
in	several	tables,	lots	of	events	may	need	to	be	triggered,	and	some	additional
values	might	need	to	be	calculated.	While	it	is	possible	to	write	an	appropriate
program,	the	development	effort	can	easily	become	overwhelming	compared	to
the	potential	profits.

Fortunately,	if	there	is	a	suitable	transaction	in	the	SAP	system,	which	could
handle	most	of	the	logic,	then	it	is	very	tempting	to	use	this	as	a	quick	start,	and
then	do	the	final	polish	with	some	custom	development.	This	will	ensure	that	all
the	data	is	well	propagated	with	the	currently	implemented	rules	in	the	SAP
system	and	that	all	the	required	events	are	triggered	accordingly.

There	is,	however,	another	hurdle	when	using	transactions.	Most	transactions	are
designed	to	handle	a	single	entry	and	each	record	needs	to	be	processed
separately.	The	manual	import	of	a	large	dataset,	with	all	the	necessary
processing,	can	take	lots	of	time,	effectively	blocking	the	user	from	performing
any	other	action.

When	integration	is	launched	for	the	first	time,	an	initial	data	load	is	usually
required,	which	tends	to	be	in	the	form	of	a	large	dataset.	Running	transactions
on	each	and	every	record	can	be	tedious	work,	but	running	a	custom	ABAP
report	can	also	lead	to	a	dead	end,	as	the	processing	of	hundreds	or	thousands	of
records	can	take	so	much	time	that	it	exceeds	the	internal	limit	for	a	standard
user.	There	is,	however,	a	specially	designed	set	of	tools	that	can	overcome	all	of
these	issues.

The	first	problem	to	be	tackled	is	the	execution	time	limit.	Because	the	SAP
system	is	designed	as	a	transaction-based	system	and	there	are	a	limited	number
of	sessions	running	in	parallel,	the	single-transaction	execution	time	limit	is	a
natural	consequence	of	keeping	the	system	stable	and	responsive.	Therefore,	by
using	reports	and	transactions	through	SAP	GUI,	users	are	prevented	from
keeping	the	system	busy	for	too	long	at	once.	There	is,	however,	a	specially
delegated	set	of	threads	for	launching	long-running	processes	without
consuming	the	daily	resources	of	the	system.	These	are	called	background	jobs
and	they	can	be	triggered	in	a	number	of	ways.

Background	remote	function	call
Provided	that	the	logic	that	needs	to	be	executed	is	wrapped	in	a	remote-enabled
function	module	(RFC),	you	can	use	a	dedicated	API	for	the	background
processing	of	Remote	Function	Calls	(RFCs).	As	the	descendant	of	the
transactional	RFC	(tRFC)	and	its	successor,	the	queued	RFC	(qRFC),
Background	Remote	Function	Call	(bgRFC)	provides	a	method	of	executing
code	using	units	and	queue	mechanisms.	These	queues,	as	the	name	suggests,
are	meant	to	keep	an	order	of	the	execution	of	units.	These	units	are	logically
connected	bundles	of	function	calls	and	they	are	somewhat	similar	(but	not
necessarily	identical)	to	Logical	Units	of	Works	(LUWs).	There	are	several
options	available	for	developers	when	using	bgRFC.

Notably,	you	must	decide	between	two	different	unit	types:	T-type	units	and		Q-
type	units.	T-type	units	are	similar	to	tRFCs,	in	that	the	units	are	processed
without	preserving	the	calling	order;	in	comparison	to	this,	Q-type	units	are
more	like	qRFCs,	in	that	the	units	are	guaranteed	to	be	processed	in	the	calling
order.	The	exact	moment	of	unit	execution	is	not	known;	it	depends	on	the	queue
scheduler,	which	is	responsible	for	maintaining	the	unit's	dependencies	and
optimization,	and	for	launching	the	execution	itself.

There	are	also	two	queue	types	that	use	separate	schedulers:	the	inbound	queue
(with	the	inbound	scheduler)	and	the	outbound	queue	(with	the	outbound
scheduler).	The	key	difference	between	the	two	is	that	the	inbound	queue	is
designed	to	be	executed	in	the	local	system	(leveraging	the	possibility	of
parallelization	and	load	balancing	between	the	application	servers),	whereas	the
outbound	queue	is	meant	to	be	executed	on	remote	systems	(where	it	can	be	used
to	dispatch	the	data	to	several	systems).

The	type	of	queue	(and,	thus,	the	scheduler)	is	dependent	on	the	destination
defined,	as	one	destination	can	only	have	one	type	of	scheduler	assigned.

Apart	from	the	configuration	of	the	schedulers	and	destinations	(which	is
administrative	work	and	is	beyond	the	scope	of	this	book),	the	development
process	is	rather	straightforward.	The	only	limitation	is	that	there	cannot	be

explicit	or	implicit	COMMIT	WORK	within	the	code	that	is	executed	as	a	unit.	Some
basic	examples	of	bgRFC	usage	are	displayed	in	the	following	two	code
snippets.

The	following	code	block	calls	the	Q	bgRFC	type	on	an	inbound	queue:

DATA:	lr_destination	TYPE	REF	TO	if_bgrfc_destination_inbound,

						lr_unit	TYPE	REF	TO	if_qrfc_unit_inbound,

						lv_qname	TYPE	qrfc_queue_name,	

						lv_destination_name	TYPE	bgrfc_destination_inbound.

lv_Destination_name	=	'SAMPLE_DESTINATION'.

lr_destination	=	cl_bgrfc_destination_inbound=>create(lv_destination_name).

lr_unit	=	lr_destination->create_qrfc_unit().

TRY.

				CALL	FUNCTION	'SAMPLE_RFC_FUNCTION'	IN	BACKGROUND	UNIT	lr_unit.

				CALL	FUNCTION	'ANOTHER_RFC_FUNCTION'	IN	BACKGROUND	UNIT	lr_unit.

				lr_unit->add_queue_name_inbound('QUEUENAME').

				COMMIT	WORK.

				CATCH	cx_bgrfc_error	INTO	DATA(lx_error).

ENDTRY.

The	following	code	block	calls	the	T	bgRFC	type	on	an	outbound	queue:

DATA:	lr_destination	TYPE	REF	TO	if_bgrfc_destination_outbound,

						lr_unit	TYPE	REF	TO	if_trfc_unit_outbound,

						lv_destination_name	TYPE	bgrfc_dest_name_outbound.

lv_destination_name	=	'SAMPLE_DESTINATION'.

lr_destination	=	cl_bgrfc_destination_outbound=>create(lv_destination_name).

lr_unit	=	lr_destination->create_trfc_unit().

CALL	FUNCTION	'FUNCTION_1'	IN	BACKGROUND_UNIT	lr_unit.

CALL	FUNCTION	'FUNCTION_2'	IN	BACKGROUND_UNIT	lr_unit.

COMMIT	WORK.

As	you	can	see	in	the	previous	two	code	snippets,	calling	either	unit	type	in
either	queue	is	relatively	simple.	In	both	cases,	you	are	required	to	create	an
instance	of	the	appropriate	destination,	and	then	create	at	least	one	unit	that
the	CALL	FUNCTION	statement	will	refer	to.	For	Q-type	units,	there	is	an	additional
requirement	to	provide	at	least	one	queue	name	in	which	the	unit	is	supposed	to
be	processed.	It	is	also	possible	to	provide	more	than	one	queue	name	to	a	single
unit.

In	these	instances,	the	scheduler	will	dispatch	all	the	calls	registered	to	the	unit
between	the	available	queues,	while	keeping	the	dependencies	(that	is,	order)
between	each	and	every	call.

When	the	administrator	creates	a	bgRFC	destination,	one	part	of	the	process	is	to	define	the
name	prefixes	that	are	allowed	for	queues.	In	order	to	check	what	prefixes	are	allowed	for	a
specific	destination,	you	can	use	the	SBGRFCCONF	transaction.

While	monitoring	and	maintaining	queues	are	not	within	the	scope	of	this
chapter,	developers	may	also	need	to	check	what	the	current	state	of	a	specific
queue	is	in	order	to	see	whether	there	are	any	locks	that	prevent	the	units
processing.	In	order	to	do	this,	there	is	a	dedicated	monitoring	tool,	which	is
available	in	the	SBGRFCMON	transaction:	

In	the	left-hand	pane	of	the	tool,	you	can	see	that	there	is	a	tree	that	shows	all	the
queues	that	are	currently	being	processed.	After	selecting	a	queue,	the	right-hand
pane	shows	the	units	that	are	registered	in	this	specific	queue,	with
corresponding	information	about	the	function	module	that	needs	to	be	launched.
If	there	is	any	problem	with	the	unit	processing	(for	example,	if	the	unit	contains
a	function	module	that	is	not	remote-enabled),	then	the	locked	queue	will	be
highlighted	with	a	red	icon	and	an	explanation	of	the	lock.

Scheduling	background	jobs
Background	processing	using	the	bgRFC	framework	is	both	powerful	and	simple
to	use.	However,	it	still	requires	user	interaction	in	order	to	launch	the	code	that
registers	the	calls	in	the	queues.	Another	drawback	is	that	only	remote-enabled
function	modules	can	be	used	in	this	scenario,	so	not	every	piece	of	code	can	be
executed	this	way.	If	either	of	these	obstacles	is	thrown	into	the	development
process,	there	is	another	mechanism	provided	by	SAP	that	removes	both
problems	–	the	background	job	scheduler.

Creating	a	background	job
Background	jobs	can	be	created	using	the	SM36	transaction.

A	batch	job	in	SAP	is	a	scheduled	background	program.	It	is	used	when	the	user
wants	to	perform	a	task	that	requires	a	large	number	of	resources.	To	create
a	batch	job	(definition	scheduled	background	program),	the	user	must	use	the
SM36	transaction.	After	using	this	transaction,	the	following	screen	will	appear:

Note	that	there	is	no	naming	convention	regulated	by	SAP:	the	job	name	can	be

any	suitable	or	descriptive	text.	The	Job	class	parameter	defines	the	priority	of
execution	and	Exec.	Target	(execution	target;	this	is	optional),	as	the	name
suggests,	is	the	name	of	the	SAP	instance	that	the	job	should	be	run	from.	Once
the	fields	are	filled,	the	initiator	of	the	job	needs	to	be	defined	in	the	pop-up
screen	that	opens	after	pressing	the	Start	Condition	button:

Background	jobs	are	grouped	into	three	categories,	as	follows:

High/critical	priority:	The	tasks	specified	in	this	class	have	a	higher
priority.	The	user	must	carefully	choose	this	category	because	overly	large
layers	of	this	type	of	process	can	be	problematic.	The	tasks	of	this	class	are
carried	out	first.	This	refers	to	jobs	with	high	priority	whose	execution	is
absolutely	necessary	for	further	processing.
Medium	priority:	When	all	the	tasks	of	the	highest	class	are	carried	out,
then	the	processes	of	the	medium	class	are	carried	out.	It	has	been	assumed
that	the	tasks	of	this	class	are	carried	out	cyclically.
Low	priority:	The	tasks	in	this	class	have	the	lowest	priority.	They	will
only	be	executed	if	all	the	remaining	task	classes	are	empty.	This	priority	is
the	default	class.

To	set	the	high	and	medium	priorities,	the	user	must	have	the	appropriate	permissions.	The
authorization	object	is	being	checked(background	processing,	background	administrator).

There	is	also	a	distinction	between	the	statuses	that	the	tasks	are	currently	in.
These	statuses	are	as	follows:

Schedule:	This	is	the	initial	status	of	creating	a	batch	job.	It	means	that	the
task	creation	process	was	initiated.
Released:	In	this	status,	all	criteria	have	been	correctly	filled	out.	The	task
is	ready	to	be	run	by	the	user;	it	will	not	be	launched.
Ready:	This	status	means	that	the	task	scheduler	puts	the	job	in	the	queue
as	it	waits	for	the	job	to	be	released	in	the	background.
Active:	This	informs	you	that	the	process	is	being	done	in	the	background.
It	is	not	possible	to	change	the	status	at	this	stage.
Finish:	This	informs	you	that	the	task	was	completed	without	errors.
Canceled:	This	informs	you	that	the	background	process	was	interrupted
due	to	an	error,	or	that	the	administrator	was	forced	to	terminate	without
success.

Creating	a	new	Background	Job	is	very	simple,	despite	the	extensive	features.
First,	determine	the	name	of	the	process,	and	then	enter	the	name	in	the	Job
Name	field.	Next,	navigate	to	the	Step	menu;	the	location	of	this	menu	button	is
shown	in	the	following	screenshot:

The	SAP	system	calls	a	window	in	which	the	process	creator	can	determine	what
tasks	will	be	performed	in	the	background.	It	has	three	options,	as	follows:

ABAP	programs
External	commands
External	programs

In	order	to	demonstrate	how	to	use	this	tool	to	run	in	the	background	of	ABAP
programs,	we	have	written	the	following	line	of	code.	This	is	a	simple	update	of
the	data	contained	in	the	sflight	table.	Programs	that	are	launched	in	the
background	can	be	more	extensive.	The	program	code	shown	below	takes	a	line
from	the	sflight	table	for	the	carrid	and	connid	conditions.	The	program	will	then
change	the	price	and	will	update	the	database.		

	REPORT	zbackround_job.

	

	DATA:	lt_line	TYPE	TABLE	OF	sflight,

							ls_line	LIKE	LINE	OF	lt_line.

	

	SELECT	SINGLE	*	FROM	sflight	INTO	ls_line	WHERE	carrid	EQ	'AA'	AND		connid	EQ	'0017'.

	IF	sy-subrc	EQ	0.

			ls_line-price	=	700.

			UPDATE	sflight	FROM	ls_line.

	ENDIF.	

It	is	natural	that	the	implemented	program	must	be	activated	in	order	to	be	able	to	use	it.

Returning	to	creating	a	process	in	the	background,	users	must	enter	the	name	of
the	program	to	be	executed,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	you	can	see	that	we	need	to	provide	a	User	name	on
whose	behalf	the	job	will	be	executed,	as	well	as	the	type	and	corresponding
parameters.	For	ABAP	Programs,	the	suitable	parameters	are,	for	example,
simple	reports,	with,	optionally,	a	Variant	or	Language	value	provided.
Additionally,	if	the	ABAP	report	needs	to	print	any	data,	there	is	an	additional
Print	specifications	button	that	can	be	used.	This	function	allows	for	defining	an
appropriate	printing	device	to	be	used	in	this	particular	step.	The	External
Command	and	External	Program	sections	are	related	to	host	operating	system
methods	and	commands,	and	they	are	not	supposed	to	be	used	by	ABAP
developers.	This	section	should	be	managed	by	system	administrators.

With	the	Check	button,	the	user	can	check	whether	the	entered	data	is	correct.	It
can	also	introduce	variants	depending	on	the	needs	of	the	process.	If	there	is	no
error,	then	the	creator	should	save	the	setting	(that	is,	click	on	the	save	button).
After	successfully	saving,	a	list	of	processes	in	a	job	is	displayed.	The
information	on	this	list	helps	you	determine	what	will	happen	in	the	background.
An	exemplary	Step	List	Overview	example	is	shown	in	the	following
screenshot:

It	is	very	important	to	determine	under	what	circumstances	the	system	is	to
trigger	the	background	process.	There	are	many	possible	variants	of
commissioning,	depending	on	the	business	and	technical	requirements.	The
following	scheduling	options	are	available:

Immediate
Date/Time
After	Job
After	Event

At	operation	mode

For	the	example	shown,	the	program	will	be	executed	for	a	specific	date.	Then,
you	can	decide	whether	the	job	should	be	scheduled	to	start	immediately	after
saving	(that	is,	as	soon	as	the	required	resources	are	available	for	the	job	with	a
defined	priority),	at	a	defined	date	and	time,	after	another	job,	and	so	on.

In	addition	to	this,	the	job	can	be	scheduled	to	be	launched	at	specific	intervals
(using	the	Periodic	Job	checkbox	and	the	Period	values	button),	which	is	another
advantage	over	bgRFCs.	The	job	start	condition	can	be	further	restricted	(using
the	Restrictions	button),	for	example,	to	cancel	execution	on	Sundays	or	other
holidays.	An	example	of	the	execution	time	setting	can	be	seen	in	the	following
screenshot:

After	entering	the	correct	data,	you	should	save	the	task.	At	this	point,	the	status
of	the	task	changes	and	will	be	performed	in	the	future.	As	mentioned	before,	a
job	can	take	many	steps.	You	can	also	see	information	on	how	many	steps	are
included	in	the	scheduled	task,	as	shown	in	the	following	screenshot:

When	working	with	the	SAP	system,	it	is	very	important	to	check	if	and	how	the
tasks	in	the	background	have	been	performed.	The	system	offers	the	appropriate
transactions	indicating	what	planned	processes	have	taken	place	in	the
background.	To	call	the	program	that	was	previously	described,	the	user	must
run	SM37	transactions.	After	starting	this	transaction,	the	system	shows	the
selection	window.

In	the	selection	screen,	you	can	select	the	name	of	the	program	and	the	user	who
launched	the	background	activity.	If	you	enter	*,	all	the	entries	will	be	found,	by
default,	for	the	SAP	system.	A	helpful	selection	criterion	is	the	ability	to	filter
according	to	the	status	of	tasks.	You	can	also	search	for	the	date	range,	and	the
name	of	the	program	that	can	be	executed	in	any	of	the	steps:

After	completing	the	appropriate	criteria,	press	the	F8	button.	The	system	then
routes	the	user	to	a	window	describing	the	processes	carried	out.	For	the

preceding	example,	the	system	generated	the	following	list:

The	information	provided	by	the	system	is	very	useful	for	everyday	work.	There
is	information	about	the	time	the	task	was	started,	and	the	status	of	the	process
execution.	The	tool	can	also	be	used	to	test	system	performance.	The	last	column
contains	information	about	the	time	the	task	was	completed.	Pressing	the	Job	log
button	will	cause,	the	system	will	show	the	logs	generated	during	the	task
execution.	An	example	log	is	shown	in	the	following	screenshot:

Naturally,	in	complex	business	processes,	the	logs	are	much	more	extensive.	

Recording	batch	input	sessions
At	the	beginning	of	this	chapter,	we	mentioned	that	using	transactions	to	enter
data	has	its	advantages	(they	allow	triggering	of	all	system	logic)	and
disadvantages	(they	are	mostly	designed	to	enter	one	record	at	a	time).

There	is,	however,	a	possibility	of	leveraging	the	good	sides	of	a	transaction	and,
by	doing	so,	limiting	the	drawbacks.	By	good	side,	we	mean	that	transactions
can	be	automated.	In	the	SAP	system,	there	is	a	dedicated	toolset	named	Batch
Data	Collection	(BDC),	which	allows	for	recording	the	transaction's	usage,	and
then	replaying	it	on	a	suitable	dataset,	without	the	need	of	user	interaction	on
each	and	every	screen.	The	recording	tool	is	available	as	a	SHDB	transaction,	or	by
navigating	to	System	|	Services	|	Batch	Input	|	Recorder:

The	tool's	main	list	displays	the	recording	that	is	currently	present	(that	is,	saved)
on	the	system.	In	order	to	create	a	new	one,	you	can	click	on	the	New
recording	button	and	the	following	pop-up	box	appears:

There	are	several	fields	and	options	that	need	to	be	filled	before	starting	the
recording	process.	First,	the	recording	name	needs	to	be	provided;	note	that	there
are	no	particular	naming	rules.	Then,	the	starting	Transaction	code	field	needs	to
be	provided.	It	is	possible	to	record	more	than	one	transaction	during	the
recording	as	the	Transaction	code	input	field	requires	only	the	first	one's	name.
After	providing	this	basic	information,	further	configuration	is	possible.

Next,	the	update	mode	can	be	set,	and	there	are	three	options	available:

Asynchronous	(default):	Update	function	modules	are	executed	in	the
"update"	work	process	(UPD).	
Synchronous:	Similar	to	asynchronous,	but	all	COMMIT	WORK	statements	are
treated	like	COMMIT	WORK	AND	WAIT.

Local:	Update	function	modules	are	executed	in	the	same	work	process	as
the	main	program	(similar	to	the	SET	UPDATE	TASK	LOCAL	directive).

By	default,	the	recording	stops	when	the	COMMIT	WORK	statement	is	reached.
Marking	the	"Cont.	after	commit"	checkbox	overrides	this	rule,	allowing	you	to
make	multiple	commit	recordings.	The	Simulate	Background	Mode	option	calls
an	additional	check	for	using	the	recording	in	the	background	mode	–	this	option
is	relevant	for	this	chapter.

Pressing	the	Start	recording	button	launches	the	transaction	specified	in
Transaction	code.	Then,	the	whole	process	of	entering	data	into	the	transaction
has	to	be	executed	by	the	user	with	one	restriction:	pressing	the	back	button	will
stop	the	recording.

Once	the	execution	is	complete,	pressing	the	back	button	will	stop	the	recording,
and	you	will	be	presented	with	the	list	of	all	the	values	provided	on	each
subsequent	screen,	as	shown	in	the	following	screenshot:

This	scenario	can	be	adjusted,	if	necessary,	by	simply	editing	it	or	using	the
Export/Import	options.	Once	it	is	ready	and	saved,	there	are	a	number	of	options
available	for	further	processing	using	the	corresponding	buttons:

Session:	This	generates	the	batch	input	session	based	on	the	data	provided,
for	example,	for	test	purposes.
Program:	This	generates	an	ABAP	report	to	be	launched	with	the	data
from	the	recording	(then,	it	needs	to	be	modified	to	use	variable	data),	or

with	the	data	from	a	file;	all	the	required	OPEN,	READ,	and	CLOSE	statements	are
generated	automatically	as	well.
Test	data:	This	generates	a	sample	file	with	a	single	record	(based	on	the
data	provided	during	the	recording)	with	all	relevant	data,	which	can	be
used	to	create	tests.
Function	module:	This	generates	a	function	module	with	all	the	relevant
fields	so	that	it	can	be	used	for	data	imports,	for	example,	from	an	external
system	as	an	RFC.

Summary
This	chapter	revealed	all	the	ins	and	outs	of	background	data	processing	in	SAP
that	you	can	face,	along	with	the	approaches	that	are	used	to	handle	with	them.
This	technique	is	used	mainly	for	transferring	data	from	non-SAP	systems	to
SAP	systems,	or	between	SAP	systems	without	any	direct	link	to	each	other.
Additionally,	it	can	be	applied	to	the	mass	processing	of	data	in	any	transaction.

In	the	next	chapter,	we	will	describe	the	performance	and	optimization	of	the
ABAP	code.	These	themes	will	make	working	with	the	system	easier	and	the
code	that	is	created	more	efficient.

Questions
The	following	list	contains	questions	that	will	help	the	reader	to	consolidate
knowledge.

1.	 What	transaction	can	a	user	use	to	schedule	the	job	in	the	background?
2.	 What	status	must	a	job	be	in	for	it	to	be	done	in	the	background?
3.	 When	can	the	user	set	a	higher	priority	for	a	background	job?

Performance	and	Optimization	of
ABAP	Code
The	SAP	system,	in	its	out-of-the-box	variant,	is	a	complex	environment	built	to
run	various	types	of	industries.	This	complexity	and	all	custom	adjustments
developed	to	tailor	the	system	to	customer	specific	needs,	if	not	handled
properly,	may	lead	to	low	performance	and	thus	make	users	frustrated	because	of
long-running	processes.

Software	should	be	created	in	such	a	way	as	to	waste	as	few	resources	as
possible.	Implementing	the	code	in	this	way	allows	the	user	to	easily	add	new
functionalities.	To	help	them	with	this	mission,	there	are	several	tools
(SAT,	SE30,	ST12)	that	allow	for	easy,	yet	detailed	analysis	of	the	program's
flow	and	efficiency.

This	chapter	will	cover	the	following	topics:

Ways	of	measuring	ABAP	programs	performance
ABAP	runtime	analysis
ABAP	trace	analysis
ABAP	SAT	transactions
Best	practice	techniques

Technical	requirements
All	the	code	used	in	this	chapter	can	be	downloaded	from	the	following	GitHub
link:	https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter16.

https://github.com/PacktPublishing/Mastering-SAP-ABAP/tree/master/Chapter16

Ways	of	measuring	ABAP	programs
performance
As	you	can	easily	imagine,	poorly	written	code	is	sometimes	clearly	visible	at
first	glance.	Making	loops	with	repeated	access	to	the	database	or	reading	plenty
of	data	while	using	only	a	minute	part	of	it	is	something	that	a	mature	developer
avoids	intuitively.	However,	sometimes,	the	performance	bottlenecks	and
memory	management	issues	are	not	that	obvious.

In	complex,	multi-level	transactions,	with	various	events,	nested	calls,	and	tens
of	screens	and	subroutines,	it	is	nearly	impossible	to	point	out	the	root	cause	of
performance	problems	by	simply	looking	at	the	code	or	debugging	the	code	step
by	step.	Moreover,	when	the	code	is	developed	by	someone	else	and	the	logic	is
not	clearly	documented,	it	may	turn	out	that	the	issue	is	in	a	completely	different
part	of	the	program.

The	process	of	analyzing	the	program	flow,	without	tedious	debugging	and
checking	which	part	of	the	code	calls	another	part,	can	be	automated	by	using
several	tools	delivered	with	the	SAP	system.	In	this	chapter,	three	of	them	will
be	covered	in	detail:	the	old	ABAP	Runtime	Analysis	(SE30),	ABAP	Trace
Analysis	(ST12)	and	the	new	ABAP	Runtime	Analysis	(SAT).	Although	the
first	one,	in	terms	of	functionality,	is	replaced	by	the	SAT	transaction,	for	the
sake	of	backward	compatibility,	you	should	be	familiar	with	it	as	well.

The	aforementioned	tools	are	designed	to	deliver	as	much	information	about	the
execution	runtime	as	possible,	starting	from	the	listing	of	consecutive	calls	to
functions	and	subroutines,	through	internal	tables	and	memory	variables	usage,
down	to	database	operations	or	kernel	methods	execution.	Equipped	with	this	set
of	transactions,	it	can	become	relatively	easy	to	track	and	eliminate	problems
that	make	programs	run	slowly	or	to	identify	when	and	where	the	particular
methods	are	called	to	check	if	they	are	suitable	extension	points.

ABAP	runtime	analysis
The	first	tool,	which	is	shown	in	the	following	screenshot,	is	ABAP	Runtime
Analysis,	available	as	a	transaction	SE30.	Since	NetWeaver	7.0,	when	accessing
this	t-code,	the	user	is	prompted	that	there	is	a	new	transaction	(SAT)	serving	the
same	purpose	and	that	should	be	used	instead.	This	new	SAT	transaction	will	be
described	later	in	this	chapter,	and	here,	for	backward-compatibility,	the	old	one
is	described.

The	initial	screen	after	launching	the	transaction	shows	several	parameters,	as
shown	in	the	following	screenshot:

Firstly,	the	user	can	provide	a	short	description	that	will	identify	the

measurement	and	thus	make	it	easy	to	find	afterward.	Then,	in	the	Measurement
Restrictions	section,	you	can	define	the	Variant	of	execution.	The	variant	can
limit	(or	extend)	the	results	in	several	ways.	At	first,	the	measurement	can	be
limited	to	particular	programs	or	subroutines	by	listing	them,	as	shown	in	the
following	screenshot:

The	checkboxes	toggle	the	following	options:

Measure	Called	Functionality:	This	tells	the	tool	to	show	not	only	calls

performed	directly	by	the	analyzed	tool,	but	also	makes	a	drill-down
analysis	of	sub-calls	on	deeper	levels.
Particular	Units:	This	option	leaves	the	measurement	execution	start	and
end	in	the	hands	of	the	user;	the	measurement	has	to	be	triggered	either	by
using	/ron	(and	stopped	by	/roff)	or	by	the	menu	option	in	transaction.	This
can	be	particularly	handy	if	only	one	specific	section	of	the	program	flow
needs	to	be	analyzed.
RFC,	Update:	This	indicates	whether	RFC	calls	should	be	analyzed	as	well.
If	the	calls	are	executed	in	different	application	servers,	the	results	will	be
stored	on	these	servers.

On	the	second	tab,	Statements,	the	series	of	checkboxes	defines	which	hotspots
of	the	program	should	be	registered	and	analyzed.	This	list	allows	for	fine-tuning
of	the	analysis,	so	that	only	the	parts	of	interest	are	transferred	to	the	result	log.
The	available	hotspots	are	bundled	into	seven	groups,	namely:	Modularization
Units,	Screen,	Internal	tables,	Database	accesses,	Data	transfer,
Generation/Loading,	and	Miscellaneous.

For	easier	analysis,	the	checkboxes	should	be	marked	only	next	to	the	element
that	is	in	fact	needed.	This	will	keep	the	analysis	results	smaller	and	more
focused	on	the	actual	target.	The	available	list	is	shown	in	the	following
screenshot:

As	mentioned	previously,	the	user	can	freely	select	what	parts	of	the	executed
code	should	be	analyzed.	In	the	case	of	complex	programs	with	various	calls,	the
resulting	file	can	very	easily	grow	to	a	huge	volume	or	can	take	a	lot	of	time.
The	third	tab,	shown	in	the	following	screenshot,	is	there	to	address	this	issue.	It
is	possible	to	define	both	the	maximum	file	size	(Max.	size	of	file)	and
Maximum	runtime:

The	Aggregation	section	informs	the	tool	whether	to	aggregate	(Per	Call
Position)	the	results,	so	that	each	call	will	be	presented	once,	even	if	it	is	called
several	times;	or	not	(None).	The	Full	option	is	obsolete	and	should	not	be	used.
The	checkbox	on	the	bottom—With	memory	use	(if	aggretation	not	used)—adds
memory	usage	statistics	on	the	results	screen	and	can	be	used	only	when	no
aggregation	is	used.

Once	the	execution	variant	is	defined,	back	on	the	first	screen,	there	are	three
ways	of	triggering	the	measurement.	The	first	option—located	in	section	named
In	Dialog—launches	a	specific	transaction,	program,	or	function	module	directly
in	the	same	session	and	gathers	data	for	analysis	until	the	execution	ends	(unless
the	Particular	Units	checkbox	was	marked	in	the	Variant).

The	second	option	is	available	via	the	Switch	On/Switch	Off	button,	which
allows	you	to	make	a	measurement	in	the	In	Parallel	Session	section,	and	allows
you	to	make	a	measurement	on	the	work	process	running	in	a	different	session
on	the	same	Application	Server.	This	option	can	be	used	for	finding	potential
problems	in	long-running	background	processes.	After	pressing	this	button,	the
list	of	active	work	processes	is	shown.	By	selecting	a	specific	row	and	pressing
the	preceding	buttons,	the	measurement	can	be	started	and	ended	manually.

The	third	option,	the	For	User/Service	in	Schedule	section,	allows
for	measurement	scheduling	to	be	triggered	for	a	specific	user,	session	number,
process	category,	and	object.	Once	scheduled	(with	expiration	date	and	time),	the
measurement	will	take	place	as	soon	as	the	conditions	are	met.

Regardless	of	the	execution	type,	the	measurement	results	are	stored	in	separate
files	and	are	accessible	at	the	bottom	of	the	initial	screen:

Using	the	Other	File	button,	you	can	select	the	interesting	measurement	results,
and	then	go	to	the	preview	by	using	the	Evaluate	button	(or	remove	using
Delete).

The	overview	screen	of	the	evaluation	shows	the	summary	of	execution,	with	the
chart	showing	the	distribution	of	the	runtime	between	ABAP	code,	database
access,	and	system	procedures:

Depending	on	the	defined	variant,	the	detailed	results	can	be	shown	in	several
ways,	using	the	buttons	at	the	top	of	the	screen:

Hit	list:	This	shows	a	plain	list	of	all	hotspots.
Group	hit	list:	This	shows	a	list	of	all	hotspots	grouped	by	type:

Database	hit	list:	This	shows	list	of	database	tables	accessed	during	the
measurement:

Class	hit	list:	This	shows	a	list	of	classes	used	during	the	measurement,	and
can	be	further	broken	down	into	static	methods	and	events:

Instance	hit	list:	This	shows	all	objects	used	during	execution,	and	can	be
further	broken	down	into	instance	methods	used	and	events	fired:

Method	hit	list:	This	show	static	class	method	calls:

Events	hit	list:	This	shows	events	fired	during	runtime:

Internal	table	hit	list:	This	shows	internal	table	accesses:

Call	hierarchy:	This	shows	a	list	of	all	the	hotspots,	structured	into	a	nested
tree	of	calls	to	track	the	program	flow:

Statistics:	This	shows	summarized	data	for	different	hotspot	groups.

On	most	of	the	screens,	there	is	a	button	that	opens	the	source	code	of	the
specific	call;	therefore,	it	can	easily	guide	the	developer	where	to	make	changes
in	the	code.

ABAP	trace	analysis
The	next	tool	available	for	trace	analysis	is	Single	Transaction	Analysis,
available	at	the	ST12	transaction.	Similarly	to	ABAP	Runtime	Analysis,
described	in	the	previous	part,	this	transaction	also	welcomes	the	user	with	a
configuration	screen,	containing	several	parameters,	as	shown	the	following
screenshot:

The	main	section,	namely	Trace	for,	is	suitable	for	defining	the	target	of	the	trace
with	four	categories:

User/Tasks:	This	allows	for	enabling	a	trace	for	a	specific	user,	on	a	specific
server,	optionally	limiting	the	scope	to	a	specific	task	type—Dialog,	Batch
job,	Update,	Incoming	RFC	call,	HTTP	request/BSP,	SMTP	request,	or
Shared	obj.	area	contr.
Workprocess:	This	allows	the	user	to	trace	a	particular	work	process
currently	running	on	the	system
Current	mode:	This	runs	a	particular	transaction	or	program	with	a	trace
enabled;	tracing	ends	simultaneously	with	the	transaction.

Schedule:	This	allows	scheduling	the	trace	for	a	specific	timeframe;	the
scheduled	trace	can	be	enabled	for	background	jobs,	work	processes,	or	for
a	particular	user	and	task	type,	therefore	running	it	when	it	is	actually
useful.

Selecting	one	of	the	first	three	options,	you	are	presented	with	further	options	of
what	is	meant	to	be	collected—it	should	be	either		ABAP	trace,	Performance
trace,	or	both.	The	exposed	parameters	for	the	former	include	the	following:

Options:	This	determines	whether	the	trace	should	be	for	particular	units,
and	whether	to	collect	internal	tables	information	as	well.
Size&Duration:	This	limits	the	output	file	to	a	specific	size,	or	the	trace
time.
Clock	type:	This	sets	the	interval	for	collecting	data.

The	Further	ABAP	trace	options	button	opens	the	pop-up	dialog,	shown	in	the
following	screenshot,	with	additional	limitation	options	to	make	the	trace
contain	only	relevant	information:

The	available	options	for	Performance	traces	configuration	cover	whether	or	not
to	collect	the	following	information:

SQL:	Database	accesses
RFC:	Remote	function	calls
Enqueue:	Database	table	enqueues	and	dequeues

Once	the	user	has	decided	what	to	collect,	the	trace	collection	will	start	after
pressing	the	Start	trace	button,	and	will	continue	until	the	trace	size	or	the
execution	time	is	exceeded.	The	user	ends	it	manually	or	leaves	the	transaction

(in	Current	mode).	Then,	the	asynchronous	collection	of	the	trace	takes	place
and	the	list	of	all	collected	traces	is	shown	on	the	main	screen:

Choosing	the	trace	that	is	of	interest	to	the	user,	and	pressing	one	of	the	buttons
on	the	bottom,	leads	to	the	trace	results.	The	available	results	types	are	as
follows:

ABAP	trace
Performance	traces
SQL	summary
Stat.	records

The	ABAP	trace,	by	default,	shows	the	list	of	calls	in	order	of	their	execution,	as
shown	in	the	following	screenshot:

Using	the	buttons	at	the	top	of	the	screen,	you	can	switch	the	view	to	see	the
results	grouped	into	modularization	units,	see	the	bottom-up	call	hierarchy,	or
the	top-down	tree	for	a	chosen	entry.	The	available	hierarchies	show	the	same
information	in	different	ways,	therefore	making	it	easier	to	find	the	required
information.

The	ABAP	trace	is	particularly	useful	for	identifying	all	custom	code	logic	that	is	executed
with	the	main	programs.

The	Performance	trace	shows	database	calls	alongside	the	results	(number	of
records	made)	and	the	duration	of	the	processing,	therefore	allowing	the
identification	of	database	or	time	intensive	calls,	or	checking	from	what	tables
the	transaction	takes	the	information.	The	results	are	presented	as	a	simple	list,
as	shown	in	the	following	screenshot:

The	buttons	at	top	of	the	screen	allow	for	quick	navigation	to	Data
Dictionary	(DDIC)	information	about	the	objects	or	to	a	particular	ABAP
statement	in	the	source	code.

The	SQL	summary	contains	detailed	information	about	database	operations	with
detailed	explanations	about	how	the	statement	was	resolved	internally	by	the
database,	as	shown	in	the	following	screenshot:

ABAP	SAT	transactions
The	SAP	system	provides	improved	programming	tools	with	new	versions.	Also,
the	topic	of	performance	is	not	treated	indifferently.	In	the	NetWeaver	7.0	EhP2
version,	a	new	tool	named	SAT	has	been	added.	The	transaction	that	runs	this
runtime	analysis	is	also	SAT.	SAT	is	a	developed	and	improved	version	of	the
SE30	program.

It	is	a	tool	that	allows	you	to	run	any	programs,	function	modules	and
transactions	to	evaluate	the	analysis.	This	allows	for	better	optimization	and
allows	you	to	find	the	causes	of	errors.	Using	this	tool	allows	you	to	constantly
improve	programs,	and	increase	the	business	suitability	of	the	process	by
accelerating	it.

After	starting	the	SAT	transaction,	the	user	will	see	the	following	screen:

As	you	can	see,	the	tool	at	the	beginning	seems	complicated	because	it	has	a	lot
of	options.	However,	using	it	is	easy.	A	very	big	advantage	of	this	tool	is	the
storage	of	measurement	results	in	the	database.	This	means	that	it	is	possible	to
examine	traces	from	any	application	server	in	the	system.

The	Data	Formatting	checkbox	allows	for	the	presentation	of	measurement
results	in	the	internal	table.	The	measurement	variant	is	available	in	the	Settings
area.	This	is	a	very	important	part	of	working	with	the	SAT	transaction.	The
basic	variant	should	not	be	used;	the	user	should	always	create	his	own	variant.
To	do	this,	click	on	creating.	It	is	important	that	Explicit	Switching	On	and	Off

Measurement	is	selected	in	the	window.	The	system	will	open	a	new	screen,	in
which	the	user	can	define	a	variant.	This	screen	is	as	follows:	

The	use	of	the	appropriate	variant	is	intended	to	obtain	the	necessary	tracking
data	while	limiting	the	use	of	memory.	This	is	of	great	importance	in	the	study	of
complex	processes.	One	way	to	reduce	the	size	of	the	trace	file	can	be	found	on
the	Duration	and	type	tab	by	setting	the	appropriate	aggregation.

It	is	also	good	practice	to	limit	the	variant	for	specific	classes,	function	groups,
and	programs.	The	user	can	set	it	in	the	Program	Parts	section,	and	check	the

Limitation	on	Program	Components	box.	An	example	window	is	as	follows:

Also	important	are	the	settings	in	the	Statements	tab,	which	show	what	should	be
examined:

To	run	real-time	tests,	press	the	following	button:

After	starting,	the	user	can	follow	what	program	is	being	executed.	This	allows
the	user	to	find	problems	in	the	code,	such	as	infinite	loops.	An	example	is
shown	here:

To	run	the	SAT	for	a	specific	program,	a	standard	SAPBC_DATA_GENERATOR	program	is
used.	Go	to	the	menu,	as	shown	in	the	following	screenshot:

An	example	of	a	trace	result	is	shown	in	the	following	screenshot:

Best	practice	techniques
Using	best	practices	allows	the	programmer	to	create	modern	code.	Programs
become	optimal	and	the	product	life	cycle	is	extended.	This	part	of	the	chapter
will	describe	techniques	that	help	create	high-quality	code.

The	first	topic	is	the	proper	naming	of	all	objects	while	creating	and	modifying
business	processes.	The	exact	rules	are	described	in	this	book	in	previous
chapters.	Using	an	appropriate	naming	makes	it	easier	in	the	future	to	expand
programs	and	look	for	errors	in	them.

The	next	point	is	to	clean	variables	using	the	clear	function.	A	program	that	has
been	used	many	times	may	not	always	return	the	variables	to	the	correct	state.
Clearing	the	content	allows	you	to	be	sure	that	incompatible	data	will	not	be
transmitted.	After	many	operations,	such	as	reading	from	the	database	or	reading
the	table,	check	the	sy-subrc	system	variable.	If	it	is	not	equal	to	0,	it	means	that
there	is	no	data	that	the	program	has	asked	for.	There	is	no	need	to	execute
further	parts	of	the	code	that	uses	the	downloaded	data.

In	order	to	speed	up	the	search	from	the	database	and	improve	performance,	you
can	use	the	secondary	index.	In	select	queries,	you	also	need	to	maximize	the
where	statements.

Using	the	field	symbol	speeds	up	the	operation	of	the	program.	It	is	a	very
convenient	form	of	variable	storage.	If	an	internal	table	with	a	large	number	of
records	is	used	during	the	process,	the	program	should	use	a	binary	search	to
find	records.	This	is	due	to	the	specific	operation	of	a	binary	search.	To
maximize	performance	before	the	binary	search	operation,	table	sorting	should
be	performed.

In	every	language,	the	program	weighs	well-formatted	code.	Also	in	the	SAP
environment,	the	programmer	should	take	care	that	their	code	is	well	formed.
What's	more,	the	ABAP	editor	offers	a	Pretty	Printer	tool	that	automatically
adjusts	the	code.	The	programmer	can	adapt	it	to	his	own	needs	and
requirements	defined	by	the	company's	policy.	

To	configure	the	tool,	the	user	must	enter	the	Settings	menu	in	the	edited
program.	The	access	path	is	shown	in	the	following	screenshot:

Next,	in	the	window,	select	ABAP	Editor	and	Pretty	Printer.	This	choice	is
shown	in	the	following	screenshot:

As	shown	in	the	preceding	screenshot,	there	are	options	for	how	the	code	should
behave	after	using	this	tool.	The	programmer	can	determine	when	uppercase
letters	will	be	used	and	add	automatic	indents.	Launching	this	tool	during	the
code	implementation	is	done	by	using	the	Pretty	Printer	button	or	the	Shift	+	F1

shortcut.

It	is	used	to	compare	possible	implementations.	To	use	it,	use	the	SE80
transaction	and	then	move	the	combination,	as	follows:

The	user	gets	sample	code	comparisons.	After	they	are	done,	the	Measure
runtime	button	will	get	information	about	the	time	of	the	execution.	An	example
window	is	shown	in	the	following	screenshot:

The	tool	can	be	useful	for	both	novice	programmers,	as	well	as	those
experienced	users	who	want	to	use	the	results	to	improve	performance.

Summary
This	chapter	provided	a	thorough	review	of	the	available	ABAP	toolset	for
testing	the	performance	of	ABAP	apps	and	tuning	their	execution.	It	also	gave
some	best	practice	tips	and	tricks	for	internal	ABAP	statements,	and	focuses	on
tracing	and	tuning	OpenSQL	selections.	After	reading	this	chapter,	you	should
know	how	to	check	the	various	parameters	of	your	ABAP	programs,	find
performance	bottlenecks,	spot	extensive	database	usage,	and	be	able	to	correct
these	issues.

Questions
The	following	questions	will	help	you	to	consolidate	the	information	contained
in	this	chapter:

1.	 Which	transaction	is	better:	SE30	or	SAT?	Why?
2.	 What	can	be	examined	by	means	of	SAT	transactions?
3.	 What	are	the	results	available	for	ABAP	Trace	Analysis?
4.	 What	can	be	set	in	the	Statement	tab	in	the	SAT	transaction?
5.	 What	are	the	available	options	for	performance	trace	configuration?
6.	 What	does	the	internal	table	hit	list	show?
7.	 What	is	the	transaction	for	ABAP	Trace	Analysis?

Assessments

Answers
This	chapter	contains	the	answers	to	the	questions	that	are	at	the	end	of	each
chapter.	These	answers	will	help	the	reader	to	test	their	knowledge	of	each
chapter.	Understanding	the	content	of	the	chapters	is	very	important	for	further
development	and	working	with	the	SAP	system.

Chapter	1	-	Creating	Custom	Code
1.	 Working	with	Agile	speeds	up	product	creation	and	organizes	the	creation

process.	It	determines	what	is	important	in	the	project.	In	this	approach,
people	are	very	important.

2.	 The	following	are	the	principals	of	the	Agile	Manifesto:
1.	 Individuals	and	interactions	over	processes	and	tools
2.	 Working	software	over	comprehensive	documentation
3.	 Customer	collaboration	over	contract	negotiation
4.	 Responding	to	change	over	following	a	plan

3.	 The	logical	model	contains	information	on	data	storage,	but	there	is	no
information	on	how	it	will	be	stored.	The	physical	data	design	model
includes	changing	the	logical	database	design	to	a	physical	layer.

4.	 Enhancement	and	custom	development.
5.	 The	motto	is	doing,	not	talking.	It	is	coherent	because	design	thinking	is

about	testing	real	prototypes,	instead	of	just	talking	about	them.
6.	 The	categories	are	as	follows:

Documentation	on	the	high-level	architecture
Documentation	where	we	have	to	describe	the	whole	system,	from	the
high-level	architecture	to	the	smallest	details

7.	 There	are	various	aspects.	The	ones	that	apply	to	SAP	development	include
comprehensibility,	conciseness,	consistency,	maintainability,	testability,
reliability,	and	security.

8.	 Loose	coupling	allows	for	easier	maintenance.

Chapter	2	-	The	Basic	Structures	of
ABAP
1.	 They	must	start	with	the	Z	or	Y	characters.
2.	 A	field	symbol	is	an	instrument	in	which	applications	are	created	with

elasticity.	Field	symbols	do	not	have	any	memory;	instead,	they	point	to	a
memory	location.

3.	 The	elementary	types	in	the	SAP	system	are	C,	N,	D,	T,	I,	F,	P,	STRING,
and	XSTRING.

Chapter	3	-	Database	Access	in	ABAP
1.	 You	need	a	list	of	the	selected	fields,	the	tables	from	which	data	will	be

selected,	and	the	names	of	the	variables	to	where	data	will	be	downloaded.
2.	 The	three	ways	are:	FOR	ALL	ENTRIES,	SELECT...ENDSELECT,	and	JOIN.
3.	 The	ways	to	read	data	from	tables	are	as	follows:

Get	only	the	required	rows	from	a	table.
Get	only	the	required	columns	from	a	table.
Do	not	use	more	reads	than	necessary.
Use	local	buffers	and	indexes.

Chapter	4	-	Import	and	Export	to
Document	Formats
1.	 You	can	use	CL_GUI_FRONTEND_SERVICES	to	upload	files	from	the	presentation

layer	to	the	application	layer.
2.	 The	setting	of	a	multiselection	parameter	controls	whether	the	user	can

choose	one	or	more	files.

3.	 The	ARCHIVFILE_CLIENT_TO_SERVER	function	can	upload	files	from	the	presentation
layer	to	the	application	server.

4.	 The	purpose	of	the	parameters	is	as	follows:

ASC:	data	will	be	transferred	as	ASCII	text.
BIN:	data	should	be	transferred	unconverted	in	binary	format.
DAT:	data	will	be	transported	as	unconverted	ASCII	text,	where	the
different	columns	are	separated	by	the	tabulator.

1.	 The	CG3Z	transaction	allows	the	user	to	upload	a	file	to	the	application	server.
2.	 The	file	will	be	saved	in	the	default	root	folder,	DIR_SAPUSERS.
3.	 The	two	languages	are:	Desktop	Office	Integration	or	Object	Linking	and

Embedding.
4.	 The	ole2incl	type-pool	needs	to	be	included.

Chapter	5	-	Exposing	Data	to	Print
Forms
1.	 The	container	for	ABAP	code	is	Command	Lines.
2.	 In	Smartform,	you	have	to	add	empty	rows	using	Command	Lines.	In

Adobe	Form,	you	can	set	a	minimum	number	of	rows	in	the	table	settings.
3.	 Adobe	Forms	supports	FormCalc	and	JavaScript.
4.	 Transaction	SE78	allows	the	uploading	of	additional	graphics	to	the	server.
5.	 When	an	object	is	set	to	a	position,	it	will	stay	in	the	same	place,	no	matter

what.	The	object	status	will	be	placed	according	to	the	available	space.
6.	 Changes	to	the	structure	of	the	form	are	not	allowed	(except	for	the	form

field	and	data	values).
7.	 Adobe	can	get	input	from	a	user	and	store	that	information	in	a	system.

Chapter	6	-	ABAP	and	XML
1.	 The	import_from_file	method	will	parse	the	XML	stream.
2.	 The	Display	method	prints	an	XML	file	onscreen.
3.	 The	constant	that	describes	the	JSON	format	can	be	found	in	the	IF_SXML

interface,	in	the	CO_XT_JSON	attribute.

4.	 No,	it's	not	possible	to	do	that.
5.	 ST	supports	only	XML	to	ABAP	and	ABAP	to	XML;	XSLT	supports	any

XML	transformation.
6.	 No,	it's	possible	only	using	XSLT.
7.	 Put	the	following	tag	at	the	beginning	of	the	file:	<?xml	version="1.0"

encoding="UTF-8"?>.

Chapter	7	-	Building	User	Interfaces
1.	 The	two	categories	are	Selection	Screen	and	Classic	DynPro.
2.	 In	Parameters,	you	have	the	ability	to	input	only	one	values,	and	in	Select-

Options,	you	can	input	multiple	values.
3.	 The	name	of	the	Custom	Container	needs	to	be	written	in	capital	letters,	and

needs	to	be	exactly	the	same	onscreen	and	in	the	code.

Chapter	8	-	Creating	Stunning	UI5
Interfaces
1.	 Although	there	are	available	tools	for	Eclipse	IDE,	it	is	recommended	to

use	WebIDE	from	SAP	(either	the	Cloud	or	Personal	editions).
2.	 According	to	the	development	rules,	all	texts	displayed	in	the	applications

should	be	stored	in	an	i18n	file.	Then,	the	translation	process	requires	only
the	generation	of	a	new	i18n	file,	with	appropriate	language	suffix	and
translated	texts	inside.	When	using	a	fully	integrated	cloud	version	of
WebIDE,	this	can	be	performed	with	the	use	of	Translation	Hub.

3.	 MVC	is	a	paradigm	that	introduces	the	separation	of	concerns	in
applications.	It	states	that	the	model	(M),	view	(V),	and	controller	(C)	should
be	maintained	separately,	making	the	whole	process	of	development	and
maintenance	easier	and	cheaper.

4.	 The	toolset	includes	mock	servers,	OPA5	for	intergration	tests,	and	QUnit
for	unit	tests.

Chapter	9	-	Business	Object
Processing	Framework
1.	 To	enhance	the	BO	standard,	you	can	use	a	BOBX	transaction.
2.	 The	BOBF	transaction	is	used	for	SAP	internal	uses.
3.	 The	association's	entity	is	used	to	create	a	relation	between	two	BOPF	objects.
4.	 There	are	two	different	types	of	association:	general	and	composite.
5.	 To	save	data	to	the	database,	we	have	to	use	Transaction	Manager.
6.	 	The	main	BOPF	exception	is	/bopf/cx_frw.
7.	 The	configuration	object	is	used	to	get	BO	metadata.

Chapter	10	-	Modification	and
Customization	Techniques
1.	 The	techniques	are	Changes	and	modification.
2.	 With	the	switch	mechanism,	you	can	switch	enhancement	on	and

off	without	making	any	change	to	the	code.
3.	 Classical:	objects	are	created	by	the	factory	method;	filters	are	passed	into

implementation;	classical	BAdI	can	be	called	only	once;	and	the	calling
position	is	registered	centrally.
New:	This	is	created	by	GET	BADI;	filters	are	used	when	an	object	is	created;
and	multiple	calls	are	possible	and	are	not	centrally	registered.

4.	 It's	used	for	the	FICA	module.
5.	 A	SECTION	contains	default	code	and	POINT	does	not.
6.	 If	INCLUDE	BOUND	is	used,	the	enhancement	will	be	called	from	every	main

program	that	uses	this	include	method.
7.	 For	customer	exit	implementation,	we	use	function	modules.

Chapter	11	-	Handling	Exceptions	in
ABAP
1.	 Exception	classes	are	implemented	in	the	Class	Builder	just	like	usual

classes.	The	difference	is	that	it	has	to	be	marked	as	an	exception	class,	and
it	must	inherit	from	one	of	the	standard	exception	classes.

2.	 It	is	an	object	that	groups	breakpoints	and	assertions	in	order	to	manage
them	centrally.	It	allows	for	quick	activation/deactivation,	behavior
configuration,	and	log	checks.

3.	 ABAP	Dump	Analysis	is	used	to	analyze	execution	errors	in	the	SAP
system.

4.	 ABAP	Dump	Analysis	is	launched	after	using	the	st22	transaction.
5.	 Despite	the	exception,	the	program	does	not	end	its	work	in	an	unexpected

way.	Dumps	will	not	appear.

Chapter	12	-	Testing	ABAP	Programs
1.	 This	variant	is	called	S4HANA_READINESS.
2.	 PERFORMANCE_CHECKLIST	can	be	used	to	check	code	performance.
3.	 Using	SET	EXTENDED	CHECK	OFF	will	turn	off	extended	checks.
4.	 You	can	use	append_line	from	cl_tpda_script_tabledescr.
5.	 Those	steps	are:	Debugger	Single	Step,	Breakpoint	Reached,	and

Watchpoint	Reached.
6.	 To	record,	the	TCD	REC	transaction	can	be	used.
7.	 Either	the	Local,	Import,	or	Export	parameters.

Chapter	13	-	Advanced	Techniques	in
ABAP	Objects
1.	 The	global	class	can	be	used	in	the	code	all	over	the	system.	The	local	class

can	be	used	only	in	the	code	where	it	is	defined.
2.	 Interfaces	cannot	have	an	implementation	of	methods.	Only	definitions	are

allowed.
3.	 Design	patterns	are	universal,	tested	in	practice	for	frequently	occurring	and

repetitive	design	issues.

Chapter	14	-	Integrating	SAP	with
Third-Party	Systems
1.	 The	user	can	connect	with	other	systems	using	the	following	technologies:

IDoc,	EDI/ALE,	BAPI,	OData,	or	Gateway.
2.	 The	OData	service	works	as	a	RESTful	service,	offering	basic	CRUD

methods.	From	the	consumer’s	perspective,	it	provides	uniquely	identified
data	according	to	the	OData	specification.	From	the	system’s	perspective,	it
usually	consists	of	model-provider	classes	and	data-provider	classes,	where
the	latter	is	responsible	for	business	logic	implementation.

3.	 The	main	difference	between	the	two	is	that	EDI	is	used	for	external
communication,	while	ALE	is	used	for	internal	connections.	From	a
technical	point	of	view,	EDI	transfers	data	using	file	ports,	whereas	ALE
uses	memory	buffers	to	transfer	the	data.

Chapter	15	-	Background	Processing
of	ABAP	Programs
1.	 Users	can	schedule	the	job	in	the	background	with	the	SM36	transaction.
2.	 Ready:	This	status	means	that	the	task	scheduler	puts	the	job	in	the	queue

while	it	waits	for	the	job	to	be	released	in	the	background.
3.	 To	set	the	High	and	Medium	priorities,	the	user	must	have	the

appropriate	permissions.	

Chapter	16	-	Performance	and
Optimization	of	ABAP	Code
1.	 SAT–it	is	a	modern	replacement	of	SE30	offering	better	configuration	options

and	more	transparent	result	analysis
2.	 Using	this	tool	allows	you	to	constantly	improve	programs	and	increase	the

business	suitability	of	the	process	by	accelerating	it.
3.	 The	ABAP	Trace	Analysis	offers	the	list	of	calls	executed	during	runtime,

alongside	the	execution	times	and	counters.

4.	 In	the	Statement	tab,	the	user	can	set	what	should	be	checked	during	the
operation	of	the	ABAP	SAT	Transaction	tool.

5.	 Users	can	decide	whether	to	collect	information	about	database	accesses,
remote	function	calls,	and	enqueues/dequeues	on	database	tables.

6.	 It	shows	accesses	to	internal	tables	during	program	execution.
7.	 SAP	Trace	Analysis	runs	through	ST12	transactions.

Additional	tutorials
This	part	contains	additional	tutorials	that	can	help	the	reader	to	learn	and	work
with	the	system.	These	tutorials	lead	the	reader	through	the	creation	of
functionality,	step	by	step.

Creating	a	report	from	the	template
This	tutorial	shows	how	to	create	a	report	from	a	template.	The	following	steps
will	guide	the	reader	through	the	creation	process:

1.	 Go	to	ABAP	Workbench	(transaction	SE80),	choose	Program	from	the
development	object	list,	and	choose	a	name.	We've	used	ZMSA_R_CHAPTER0_0:

2.	 You	will	be	asked	whatever	you	want	to	create	new	object.	Click	Yes	on	the
popups	that	will	appear:

3.	 Give	a	program	name	and	click	the	green	check	mark	on	the	popups	that
will	appear:

4.	 	Add	the	following	code	into	the	editor	window	and	activate	reporting:

CLASS	lcl_demo	DEFINITION	CREATE	PRIVATE.

		PUBLIC	SECTION.

				CLASS-METHODS	main.

		PRIVATE	SECTION.

ENDCLASS.

CLASS	lcl_demo	IMPLEMENTATION.

		METHOD	main.	

		ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

lcl_demo=>main().

Uploading	graphics	to	SE78
The	SAP	system	allows	you	to	upload	images.	This	is	a	useful	functionality	used
for	many	purposes	(such	as	SmartForms).	The	following	is	a	tutorial	that	shows
how	to	add	a	picture	to	the	SAP	system:

1.	 Go	to	Administration	of	Form	Graphics	(transaction	SE78).	Choose	the	BMP
folder	from	the	tree	on	the	left-hand	panel	and	enter	a	new	image	name:

2.	 Choose	Import	from	the	Graphic	menu:

3.	 In	the	popup,	fill	in	the	Description	and	enter	the	path	in	the	File	name	field
of	the	image	file:

4.	 After	clicking	the	green	check	mark,	the	image	will	be	uploaded	to	the
server.

At	the	time	of	writing,	you	can	use	the	ZLOGO	image	in	all	forms	and	in	all
transactions	that	require	it.	

Another	Book	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	this	book	by	Packt:

SAP	Business	Intelligence	Quick	Start	Guide
Vinay	Singh

ISBN:	9781789346206

Work	with	various	tools	to	create	interactive	data	visualization	and	analysis
Query,	report,	and	analyze	with	SAP	Business	Objects	Web	Intelligence
Create	a	report	in	SAP	Crystal	Reports	for	Enterprise
Visualize	and	manipulate	data	using	an	SAP	Lumira	Storyboard
Deep	dive	into	the	workings	of	the	SAP	predictive	analytics	tool
Deploy	and	configure	SAP	BO	Intelligence	platform	4.2

https://www.packtpub.com/big-data-and-business-intelligence/sap-business-intelligence-quick-start-guide

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Mastering SAP ABAP

	Dedication
	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the authors
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Code in action
	Conventions used

	Get in touch
	Reviews

	Creating Custom Code
	Technical requirements
	Making changes
	Design thinking
	BDUF/LDUF
	Designing for quality and use
	Designing the UI
	Designing services
	Designing the business logic
	Designing the database
	Agile principles
	DevOps
	Continuous delivery
	Summary
	Questions

	The Basic Structure of ABAP
	Technical requirements
	The Data Dictionary
	Domains
	Data elements
	Structures
	Search helps
	Table types

	Databases
	Data declaration
	Field symbol

	Summary
	Questions

	Database Access in ABAP
	Technical requirements
	Starting with OpenSQL
	Basics
	Possibilities with SELECT - the first part of the SQL statement
	Possibilities with INTO - the third part of the SQL statement
	The WHERE condition

	How to see data selected from a database
	More advanced possibilities in OpenSQL
	WHERE conditions
	Dynamic SELECT in WHERE
	SINGLE FOR UPDATE
	GROUP BY
	ORDER BY
	UP TO and ROWS
	SELECT and ENDSELECT
	FOR ALL ENTRIES
	Subqueries

	Reading data from several tables
	Identifying and saving the changes
	Creating datasets
	Updating datasets
	Deleting datasets

	The optimization of reading big datasets
	The new SQL syntax
	Inline declaration
	SQL expression

	Using the SQL Trace tool for performance analysis
	Summary
	Questions

	Import and Export to Document Formats
	Technical requirements
	Client-side file processing
	Reading files from the local PC using gui_upload
	Writing files to the local PC using gui_download

	Server-side file processing
	Basic transactions related to server-side files
	Writing files to the application server
	Reading files from the application server

	Working with Microsoft Office files
	Reading data from Microsoft Excel
	Saving a table to a Microsoft Excel file
	Working with Microsoft Word
	Using DOI to integrate Microsoft Office applications into ABAP reports

	Summary
	Questions
	Further reading

	Exposing Data to Print Forms
	Technical requirements
	Introduction to printouts in SAP
	SAPScript - the great-grandfather of all printouts
	Creating our first SmartForm

	Adobe Forms
	Creating our first Adobe Form

	Summary
	Questions
	Further reading

	ABAP and XML
	Technical requirements
	Using the CL_XML_DOCUMENT class for XML
	Reading and parsing XML files to ABAP
	Changing XML data

	Simple transformations in ABAP
	Serialization using ST
	Deserialization using ST

	sXML library for XML and JSON
	Converting XML to JSON

	Summary
	Questions
	Further reading

	Building User Interfaces
	Technical requirements
	Classic DynPro
	Screen painter
	Selection screens
	More advanced options of the selection screen
	Checkbox
	Radiobutton
	Blocks in selection screens

	Selection screen event model

	ALV
	Basics
	Advanced capabilities of ALV sand screens
	Zebra
	Coloring
	Event of an ALV, exemplified by a button click
	Icons in the ALV
	Text fields and translations
	Input/output field
	Radiobuttons and checkbox
	Button
	Dynamic display possibilities for individual elements and groups

	Summary
	Questions

	Creating Stunning UI5 Interfaces
	Technical requirements
	Development tools
	Layouts and floorplans
	SAP Fiori elements
	The analytical list page
	The list report
	The object page
	The overview page
	The worklist

	Layouts
	Floorplans
	The initial page floorplan
	The multi-instance floorplan
	The wizard floorplan

	Basic templates

	The SAPUI5 library
	Control documentation page and inheritance
	Contextual info
	Overview
	Constructor
	Properties
	Associations
	Aggregations
	Events
	Methods
	Inheritance

	Main controls
	Custom controls

	Creating our first mobile app
	Application and project structure
	index.html
	The standard variant
	The content delivery network
	The miscellaneous variants

	Component.js
	manifest.json

	Views and controllers
	MainView.view.xml
	SearchView.view.xml
	SearchView.controller.js
	i18n.properties

	Testing SAPUI5 apps
	Mock Server
	Unit tests
	Integration tests

	Summary
	Questions
	Further reading

	Business Object Processing Framework
	Technical requirements
	An introduction to BOPF
	Transaction
	Nodes and entities

	First BOPF example
	Creating the object
	Displaying an object

	Summary
	Questions
	Further reading

	Modification and Customization Techniques
	Technical requirements
	Legacy ways of changing the standard
	Customer Exits
	Using BTE to extend FI functionality
	Modifications
	FQEVENTS
	Appends
	Classical BAdl

	Enhancement framework and its components
	Enhancement sections and Enhancement points
	Implicit enhancements

	Summary
	Questions
	Further reading

	Handling Exceptions in ABAP
	Technical requirements
	Classic exception handling
	Handling
	Raising

	Class-based exceptions
	Handling
	Raising

	Assertions
	Building a checkpoint group
	Defining assertions
	Using assertions

	Runtime errors
	ABAP dump analysis tool
	Error log
	System environment
	User View
	ABAP developer View
	BASIS developer View

	Summary
	Questions

	Testing ABAP programs
	Technical requirements
	Testing the quality of code
	Static testing with Code Inspector and ABAP Test Cockpit

	Testing and troubleshooting
	ABAP Memory Inspector
	Advanced ABAP debugger techniques
	Testing with eCATT

	Summary
	Questions
	Further reading

	Advanced Techniques in ABAP Objects
	Technical requirements
	Global versus local classes
	Creating a local class
	Creating a global class

	The static method versus the instance method
	Nested classes
	A class as an attribute of the class
	Inheritance
	Interfaces

	The event concept
	ABAP Objects design patterns
	Prototype - creation pattern
	Singleton - creation pattern
	Facade - structural pattern
	Decorator - structural pattern
	Observer - behavioral pattern
	Strategy - behavioral pattern

	Summary
	Questions

	Integrating SAP with Third-Party Systems
	Technical requirements
	IDoc
	IDoc overview
	The construction of IDoc
	The EDI system
	ALE
	Differentiating ALE from EDI

	BAPI
	Implementing BAPI

	SAP Gateway
	Deployment variants
	Embedded
	Hub
	Hub (with development)

	Main tools
	Gateway Service Maintenance
	Gateway Client
	Error Log
	Gateway Service Builder

	The OData protocol
	Characteristics
	The service definition

	Developing our first OData application
	Design time
	Providing data

	Summary
	Questions

	The Background Processing of ABAP Programs
	Technical requirements
	Background processing in SAP
	Background remote function call
	Scheduling background jobs
	Creating a background job

	Recording batch input sessions
	Summary
	Questions

	Performance and Optimization of ABAP Code
	Technical requirements
	Ways of measuring ABAP programs performance
	ABAP runtime analysis
	ABAP trace analysis
	ABAP SAT transactions
	Best practice techniques
	Summary
	Questions

	Assessments
	Answers
	Chapter 1 - Creating Custom Code
	Chapter 2 - The Basic Structures of ABAP
	Chapter 3 - Database Access in ABAP
	Chapter 4 - Import and Export to Document Formats
	Chapter 5 - Exposing Data to Print Forms
	Chapter 6 - ABAP and XML
	Chapter 7 - Building User Interfaces
	Chapter 8 - Creating Stunning UI5 Interfaces
	Chapter 9 - Business Object Processing Framework
	Chapter 10 - Modification and Customization Techniques
	Chapter 11 - Handling Exceptions in ABAP
	Chapter 12 - Testing ABAP Programs
	Chapter 13 - Advanced Techniques in ABAP Objects
	Chapter 14 - Integrating SAP with Third-Party Systems
	Chapter 15 - Background Processing of ABAP Programs
	Chapter 16 - Performance and Optimization of ABAP Code

	Additional tutorials
	Creating a report from the template
	Uploading graphics to SE78

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

