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Histochemical study of larvae and freshly settled juveniles of the Caribbean tire sponge
Tedania ignis (Tedaniidae, Poecilosclerida) reveals evidence of serotonin-like
immuno-reactivity, a possible indication for the presence ofprecursors ofnerve cells in this
species. Already in the earliest stages of its life, T. ignis is made up of two discernable cell
types: monociliated cells arranged in quasi-epithelial fashion and covering the larva and the
developing settled organism, and mesohylal cells (archeocytes). In the adult sponge, several
mesohylal cell types can be distinguished which form a complex connective tissue.
Serotonin-like immuno-reactivity demonstrated by us occurs only in two cell types: in sorne
archeocytes ofthe parenchymella larvae, and in similar archeocytes and in a second, bipolar
cell type ofthe settled, juvenile sponge. The discovery ofa neuroactive substance in cells of
developing sponges before and after metamorphosis provides new insights into the origin
and evolution of nerve and muscle cells in the Eumetazoa. 0 Pori/era, histochemistry,
serotonin, Tedania ignis, larval development, evolution.
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Although sponges, one of the oldest metazoan
groups, possess the greatest diversity of
biologically active compounds of any marine
phylum, the neurotransmitter serotonin
(5-hydroxytryptamine, 5-HT) has been reported
only once, in myocyte-like cells of Sycon
ciliatum (Sycettidae, Calcarea) (Lenz, 1966).
Serotonin appeared early in the evolution of
eucaryotes. For example, it is used in chemical
signal chains in Protista where, in a species ofthe
ciliate Blepharisma, a serotonin-like substance is
known to function as a mating pheromone
(Haldane, 1954; Miyake, 1984). It has also been
shown that a number of lower organisms use
serotonin as an internai messenger in their neuro
transmitter-receptor systems (Carr et al., 1989)
and that sorne of these characteristics of
molecular structure that arose in unicellular
organisms may have been inherited and modified
bymetazoans(Mackie, 1990; Van Houten, 1990).

It seems obvious that nerve cells developed
gradual1y over a long period of time but the
sequences ofchanges that must have occurred are
difficult to establish. Being a primitive outgroup
of the Eumetazoa, Porifera do not have neurons
or myocytes that are present in organisms of
higher levels' of organisation. A common
phylogenetic hypothesis such as the Planula or

Phagocytella hypothesis (see Hyman, 1951;
Ivanov, 1988; Rieger et al., 1991; Ax, 1995)
encouraged the authors to search for precursors
of nerve and muscle cells in sponge larvae in
early developmental stages rather than in adults, a
neglected area ofresearch so far (Harrison & De
Vos, 1991; Woollacott & Pinto, 1995). Such
precursors of nerve cells and myocytes in
sponges could represent the first stage in the
evolution ofintegrative systems (e.g. Payans de
Ceccatty, 1974a, 1989; Mackie, 1990).

MATERIALS AND METHODS

Larvae of Tedania ignis (Durchassaing &
Michelotti) (Tedaniidae, Poecilosclerida, Demo
spongiae) were sampled in the laboratory
seawater system of the Smithsonian Coral Reef
Field Station at Carrie Bow Cay, Belize, in March
1994 and November 1995. Larval release was
induced in adult specimens collected in the
nearby mangrove ofTwin Cays (Rützler & Feller,
1996) and maintained in aerated seawater by
exposing them to natural sunlight fol1owing a
12-24hr period of dark adaptation (Woollacott,
1993). The larvae were kept in seawater-rinsed
glass dishes (lOcm diameter) and fixed
immediately after release and 80-100hrs after
attachment to the substrate. Ta pravide a
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substrate suitable for fixation and removal for
subsequent processing, the bottom of these
dishes was coated with polymerised epoxy resin
(Spurr).

Specimens were fixed in 4% paraform
aldehyde (PFA) in phosphate-buffered saline
(PBS; O.lM, pH 7.4) for 6-8hrs, rinsed in PBS,
and. treated with Triton X-IOO (0.2%, 1hr) to
permeabilise membranes. After labelling with
the primary antibody (rabbit anti-serotonin,
IMMUNOTECH 0601; 2.5%) ovemight at 4°C,
fluorescence-labelling was done for Ihr with a
tetrarhodamine-isothiocyanate-(TRITC)
conjugated secondary antibody (swine anti-rabbit;
DAKO, 1%) for 1hr. Specimens were then rinsed
in PBS, whole-mounted (Gelmount) on slides,
and examined under a REICHERT Polyvar
epifluorescence microscope. Incubation in
bovine-serum albumin-Triton (BSA-T) without
primary antibody was used as the control for
nonspecific binding of the secondary antibody.
Three larvae and three settled juvenile sponges
were sectioned (epoxy-embedded, 1J..lm thick,
stained with toluidin blue) and investigated in
detail. The immuno-staining of both larvae and
freshly settled sponges was carried out by the
labelled streptavidin-biotin method (LSAB kit;
DAKO). Histochemical staining of peroxidase
with amino-ethyl-carbazole (AEC, substrate
buffer) was used to enhance visibility of the
labelled cells.

RESULTS

Tedania ignis has a parenchymella larva
composed of two types of cells (Bergquist et al.,
1979). PeripheraIly, flagellated epithelium-like
cells coyer the organism. This "epithelium" is
monociliated and 10-25 J..lm high. The free
swimming larva exhibits coordinated ciliary
action. A distinct basal lamina and typical
eumetazoan apical junctional complexes are
apparently lacking (but see below). Interior, appar
ently motile mesenchymal cells (mesohyl ceIls)
are arranged beneath the epithelium-like sheath
(Woollacott, 1990, 1993; Amano & Hori, 1994)
(Fig. lA). The live larvae are ovoid and have a
size of 700-900J..lm long, 500-600J..lm wide, but
the necessary Triton X-100 treatment weakens
the cell membranes and larvae usually shrink and
collapse (Fig. lA, B). In the juvenile, settled
sponge to(}-- as in the' adult-the exopinacoderm
which covers the ectosome acts as the protective
layer. Inside the sponge, choanocyte chambers
connected by canals lined with endopinacocytes

lie embedded among mesohyl cells (Fig. 2A).
Using a whole-mount fluorescence technique,
we found serotonin-like immuno-reactivity in
special mesohyl cells ofboth larval andjuvenile
T. ignis. Spherical serotonergic cells appear to be
randomly distributed and occur alone or in
clusters (Figs lB, 2B). In one larva, for example,
6 clusters of such serotonin positive ceIls were
found, each composed of 2-4 single spherical
cells with a diameter of4-6J..lm. In some clusters
as weIl as in several single cells the nuclei are
clearly visible and appear as non-fluorescent
regions (Fig. lB).

In the juvenile, settled sponge, a few bipolar
cells were found in addition to the spherical cells
that superficially resemble bipolar neurons or
'myocyte-like' ceIls (actinocytes) reported by
Bagby (1966) (Fig. 2B, C). These bipolar cells
have a maximum length of20-50J..lm. Both types
ofserotonin-positive cells (spherical and bipolar)
appear to be located in the mesohyl as spicules
can be seen on top ofthe labelled cells (Fig. 2C).

No information is yet available on whether
interactions between these morphological types
ofserotonin-positive cells occur, nor do we know
whether the bipolar cells differentiate from the
spherical type. Ifthese serotonergic cells are part
of an integrative system, both cellular commun
ication at a distance (spherical ceIls) or cell-eell
contacts (bipolar ceIls) could be expected.

DISCUSSION

Our study is the tirst to report serotonergic cells
in Demospongiae, a spherical type in both larva
and post-metamorphosed sponge, and a second
bipolar cell type that is exclusive to the post
larval developing organism . Up to now,
serotonin was only demonstrated histo
chemically in myocyte-like cells ofCalcarea (see
below). Among the most primitive Eumetazoa,
serotonin is weIl known to act as a neuro
transmitter (e.g. in Anthozoa, Umbriaco et al.,
1990). ActuaIly, 5-HT has a wide range of
functions in invertebrates, such as control of
regeneration processes in Planaria (Kimmel &
Carlyon, 1990) and ofbeat ofcilia in echinoderm
embryo (Mogami et al., 1992), and as inhibitors
and activators of muscle of molluscs (Welsh,
1953; Twarog, 1988). As in Porifera, members of
the phylum Placozoa do not differentiate nerve or
muscle cells and are therefore counted among the
most primitive eumetazoans (GreIl, 1974; Ax,
1989; GreIl &, Ruthmann, 1991). Schuchert
(1993) demonstrated in Trichoplax adherens
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FIG. 1. Tedania ignis, histology of larva. A, Longitudinal section of an entire larva stained by toluidin blue
showing epithelial-like celllayer (e) and dark-staining cells (archaeocytes, arrow) in c1usters near the posterior
pole CP) (scale bar=l OOJlm). B, Serotonin-positive cells (s) are randomly distributed in the larval body; at least 6
c1usters of2-4 labelled cells are evident (one marked, asterisk). The nucleus in sorne ofthe cells is visible as a
non-fluorescent region (arrow). As control for non specifie binding of the secondary antibody specimen were
incubated in BSA-T without primary antibodies. (Scale bar=IOOJlm.) C, Nomarsky contrast view of the same
specimen as in Fig. lB. The collapsed and shrunk appearance is due to a necessary Triton X-I 00 treatment that
weakens the cell membranes. (Scale bar=IOOmJl.)

(Placozoa) bottle-shaped cells (2.7--4Jlm) that
stain specifically with the neuropeptide RF
amide. The author speculated about a possible
sensory function of the bottle-shaped cells
because the RF-amide positive cells were
10calised at the margin ofthe disc-like body of T.
adhaerens and the neuropeptide RF-amide is
regarded as functionally conservative in lower
invertebrates.

Much effort has been made toward identif)ring
attachment complexes between adjacent cells of
the pinacoderm in adult sponges, as this layer
controls the sponge's internaI milieu which
differs from the surrounding environment
(Ledger, 1975; for review see Harrison & De Vos,
1991). This altered chemical composition in the

tissue fluid of the sponge is regarded as a basic
precondition for the evolution ofnervous systems.
Bandshaped, (epithelial-type) apical cell
junctiona1 complexes seem to be present in adult
Porifera (e.g. apposed membrane junctions in
Bagby, 1970; simplejunctions in Ledger, 1975;
parallel membrane junctions in Green &
Bergquist, 1982; fig. 6 in Garonne & Lethias,
1990) in ultrastructural investigations ofTedania
ignis, comparable structures seem to be evident
(authors, unpublished). However, unequivoca1
clarification of the organisation of apical
junctiona1 complexes is still lacking in the
Porifera. It has been stated repeatedly that perm
anent junctiona1 complexes in epithelially
organised cells, if present, are different in
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& De Vos, 1991). The ability to contract or
condense in response to endogenous events or
extemal stimuli is a common feature in Calcarea
and Demospongiae. It results in a decrease in
body size and concurrent increase in number of
cel! contacts (review in Simpson, 1984;
Weissenfels, 1989). One can speculate whether
the increased number of cell contacts is only the
result of a reduced body volume or possibly
serves the intensification of 'signal transduction'
in the network of actinocytes. Frequent cell--eell
contacts between myocyte-like cells were also
observed in H communis (Pavans de Ceccatty et
al., 1970). According to Payans de Ceccatty
(1974a), the microfilament-colftaining
pinacocytes play an important role in this process,
both for cell contraction and cell communication.
Owing to the dynamic, 'loose' organisation of
cellular features (Pavans de Ceccatty, 1974b;
Bond, 1992) there are no nervous cells evident in
sponges, but one can expect temporary, fixed
pathways through connected mesohyl cells at the
points of stable intercellular connections. Lentz
(1966) reported acetylcholinesterase, monoamine
oxidase, epinephrine, norepinephrin, and 5HT
(serotonin) in 'myocyte-like' cells of Sycon
ciliatum. These observations along with the
association of cholinesterase and myofilaments
in myocyte-like cells and the report of actin
filaments in pinacocytes (Pavans de Ceccatty,
1989) may signif)r myoid and neuroid elements
from a common integrative system that is
coordinating 'tissue' contractions in sponges
although electrophysiological evidence of a
conducting mechanism is still lacking (Lawn,
1982).

In conclusion, we believe our findings of
serotonergic cells in the Parazoa suggest an
evolutionary specialisation ofserotonin, separate
from its function in Protists. We interpret our
observations as supporting the recently
emphasised sister-group relationship with the
Eumetazoa (Morris, 1993; Müller, 1995; Ax,
1995) by exhibiting the very first steps in the
evolutionary development of the integrative
system of the Metazoa. Further research
involving additional species and immuno
cytochemical, electrophysiological, and other
approaches is clearly needed.
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BIOCALCIFICATION IN THE INDO-PACIFIC
CORALLINE DEMOSPONGE ASTROSCLERA
WILLEYANA LISTER - THE ROLE OF
BASOPINACODERM. Memoirs ofthe Queensland
Museum 44: 666. 1999:- The aragonitic calcareous
basal skeleton of Astrosclera is composed of
20-60)lm-sized aragonitic spherulites, produced by a
combination of three processes. First, the spherulites
are formed in large vesicle cells (LVC's) inside large
vesjcles in the ectosome. In a second process, after
release from LVC's, basopinacocytes transport the
spherulites to the tips ofthe skeletal pillars, where they
fuse together by epitaxial growth; and in a third
process, during upward growth, the soft tissue is
slowly rejected from the lowermost-parts of the
skeletal cavities and the remaining spaces are
subsequently filled by epitaxially-grpwing aragonite
fibers. In the second and third process,
basopinacocytes produce either the insoluble
intracrystalline organic matrix, which does not consist
of collagen, as weil as the soluble intracrystalline
matrix, which consists of highly acidic Ca2+-binding
mucus substances. Basopinacocytes control speed and
direction of epitaxial growth in both of the latter two

biocalcification processes. It is hypothesized that
Astrosclera is able to control the rate ofcalcification by
the regulation of its bacterial population. The mean
growth rate ofAstrosclera was measured at 230)lm per
year. A detailed description ofsoft tissue ultrastructure
and its cellular composition has recently been
published by Worheide (1998). 0 Porifera,
Astrosclera, skeletal development, calcification
regulation, ultrastructure.
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