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INTRODUCTION 
 
Third edition 
The third edition of this unified framework for non-
parametric analysis of multivariate data, underlying 
the PRIMER software package, has the same form 
and similar chapter headings to its predecessor (with 
an additional chapter). However, the text has been 
much expanded to include full cover of methods that 
were implemented in PRIMER v6 but only described 
in the PRIMER v6 User Manual, and also the entire 
range of new methods contained in PRIMER v7.  

Whilst text has been altered throughout, PRIMER v6 
users familiar with the 2nd edition, who just want to 
locate the new material, will find it below:  
Table 0.1.  Manual pages primarily covering new material 

Topics Pages 

Additions to the framework 1-9 to 13 
Missing data and variable weightings 2-9 to 10 
Similarity profile tests (SIMPROF) of 

clusters on sample dendrograms 
3-6 to 10 

Unconstrained binary divisive (UNCTREE) 
and fixed group (k-R) clustering 

3-10 to 14 

More nMDS diagnostics (MST, similarity 
joins, 3-d cluster on MDS, scree plots)  

5-7, 5-11, 
5-13  

Metric MDS (mMDS), threshold MDS 5-14 to 17   
Combined MDS (‘fix collapse’ by nMDS + 

mMDS, composite biotic/abiotic nMDS) 
5-18 to 20 

ANOSIM for ordered factors 6-14 to 17 
3-way ANOSIM designs 6-18 to 26 
Species Analyses (new chapter, in effect): 

SIMPROF on species (coherent curves)  
 
7-1 to 7 

   Shade plots (+dendrograms, axes orders) 7-7 to 14 
   Bubble plots (for groups, segmented)  7-17 to 20 
Testing curves (dominance/particle/growth) 8-13 to 15 
Analysing multiple diversity indices 8-15 to 16 
Dispersion weighting  9-5 to 10 
Vector plots in PCA and MDS 11-2, 11-5 
Global BEST test (allowing for selection) 
   and constrained BEST analyses 

11-10 to 12  

Linkage trees: binary clusters, constrained 
by abiotic ‘explanations’ (LINKTREE)  

11-13 to 16 

Model matrices, RELATE tests of seriation 
and cyclicity, constrained RELATE  

15-10 to 14 

Second-stage analysis (2STAGE) 
Zero-adjusted Bray-Curtis for sparse data 
Defining and comparing resemblances 
Second-stage ‘interaction’ plots  

 
16-7 to 9 
16-10 to 13 
16-14 to 18 

Taxonomic (relatedness-based) dissimilarity  17-18 to 20 
Means plots & ‘bootstrap average’ regions 18-1 to 8 

Attribution (and responsibility for queries) 
These new sections have all been authored by KRC 
but build heavily on collaborations, joint publications 
and novel algorithmic and computer coding work 
with/by PJS and RNG. In the retained material from 
the 2nd edition (authored by KRC and RMW), KRC 
was largely responsible for Chapters 1-7, 9, 11 and 16 
and RMW for 10 and 12-14, with the responsibility 
for Chapters 8, 15 and 17 shared between them.  

Purpose 

This manual accompanies the computer software 
package PRIMER (Plymouth Routines In Multivariate 
Ecological Research), obtainable from PRIMER-E 
Ltd, Plymouth (see www.primer-e.com).  Its scope is 
the analysis of data arising in community ecology and 
environmental science which is multivariate in character 
(many species, multiple environmental variables), and 
it is intended for use by ecologists with no more than a 
minimal background in statistics. As such, this methods 
manual complements the PRIMER user manual, by 
giving the background to the statistical techniques 
employed by the analysis programs (Table 0.2), at a 
level of detail which should allow the scientist to 
understand the output from the programs, be able to 
describe the results in a non-technical way to others 
and have confidence that the right methods are being 
used for the right problem. 

This may seem a tall order, in an area of statistics 
(primarily multivariate analysis) which has a reputation 
as esoteric and mathematically complex!  However, 
whilst it is true that the computational details of some 
of the core techniques described here (for example, 
non-metric multidimensional scaling) are decidedly non- 
trivial, we maintain that all of the methods that have 
been adopted or developed within PRIMER are so 
conceptually straightforward as to be amenable to 
simple explanation and transparent interpretation.  In 
fact, the adoption of non-parametric and permutation 
approaches for display and testing of multivariate data 
requires, paradoxically, a lower level of statistical 
sophistication on the part of the user than does a satis-
factory exposition of classic (parametric) hypothesis 
testing in the univariate case.   

One primary aim of this manual is therefore to describe 
a coherent strategy for the interpretation of data on 
community structure, namely values of abundance, 
biomass, % cover, presence/absence etc. for a set of 
‘species’  variables and one or more replicate samples 
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Table 0.2.  Chapters in this manual in which the methods under-

lying specific PRIMER routines are principally found.¶ 

Routines Chapters 

Resemblance 
   (Dis)similarity/distance for samples 
   Association index for species 
   Dummy variables (zero-adjusted coefficient) 
   Taxonomic dissimilarities 

 
2 

2,7 
16 
17 

Cluster 
   CLUSTER (hierarchical: agglomerative) 
   LINKTREE (      “         :constrained divisive) 
   UNCTREE (       “     :unconstrained divisive) 
   kRCLUSTER (non-hierarchical) 
   Clustering variables (species) 

 
3 

11 
3 
3 
7 

SIMPROF 
   tests for sample groups from Cluster 
   tests for species groups 
   Coherence plots (Line plots) 

 
3,11 

7 
7 

PCA (+ Vector plot) 4,11 
MDS 
   Non-metric, Metric, Combined, Fix collapse 
   Shepard diagram, Scree plot 
   Overlay clusters, trajectory, MST, join pairs 
   Vector plot 
   Bubble plots (groups, multiple) 

 
5 
5 
5 

7,11 
6,7,11 

ANOSIM (1/2/3-way, crossed/nested, ordered) 6 
SIMPER 7 
Shade Plot (Matrix display) 7 
Diversity indices 
   DIVERSE 
   CASWELL, Geometric Class Plots 
   Dominance Plots, DOMDIS 
   Species Accumulation Plots 
   TAXDTEST, histogram/funnel/ellipse plots 

 
8,17 

8 
8 

17 
17 

Pre-treatment 
   Transform, Standardise 
   Normalise Variables    
   Cumulate Samples    
   Dispersion Weighting, Variability Weighting 

 
2,7,9 

2,4,11 
8 
9 

Aggregate 10,16 
BEST 
   BIO-ENV, Draftsman Plot  
   Constrained BEST (Within factor levels) 
   BVSTEP, Global BEST test 

 
11 
11 

11,16 
MVDISP 15 
RELATE (Seriation, Cyclicity, Model Matrix) 
2STAGE (Single and Multiple matrices)  

15 
16 

Bootstrap Averages 18 

¶PRIMER has a range of other data manipulation and plotting 
routines: Select, Edit, Summary stats, Average, Sum, Transpose, 
Rank, Merge, Missing data and Bar/Box/Means/Scatter/Surface/ 
Histogram Plots, etc – see the PRIMER User Manual/Tutorial.  

which are taken: 
a) at a number of sites at one time (spatial analysis); 
b) at the same site at a number of times (temporal 

analysis); 
c) for a community subject to different uncontrolled 

or controlled manipulative ‘treatments’; 
or some combination of these. 

These species-by-samples arrays are typically quite 
large, and usually involve many variables (p species, 
say) so that the total number (n) of observed samples 
can be considered to be n points in high-dimensional 
(p-dimensional) space. Classical statistical methods, 
based on multivariate normality are often impossible 
to reconcile with abundance values which are pre-
dominantly zero for many species in most samples, 
making their distributions highly right-skewed. Even 
worse, classic methods require that n is much larger 
than p in order to have any hope of estimating the 
parameters (unknown constants, such as means and 
variances for each species, and correlations between 
species) on which such parametric models are based.  

Statistical testing therefore requires methods which 
can represent high-dimensional relationships among 
samples through similarity measures between them, 
and test hypotheses without such model assumptions 
(non-parametrically within PRIMER by permutation). 
A key feature is that testing must be carried out on 
the similarities, which represent the true relationships 
among samples (in the high-d space), rather than on 
some lower-dimensional approximation to this high-d 
space, such as a 2- or 3-d ‘ordination’. 

Data visualisation, however, makes good use of such 
low-dimensional ordinations to view the approximate 
biological relationships among samples, in the form 
of a ‘map’ in 2- or 3-d. Patterns of distance between 
sample points in that map should then reflect, as 
closely as possible, the patterns of biological dis-
similarity among samples. Testing and visualisation 
are therefore used in conjunction to identify and 
characterise changes in community structure in time 
or space, and in relation to changing environmental or 
experimental conditions.  

Scope of techniques 

It should be made clear at the outset that the title 
‘Change in Marine Communities’ does not in any 
way reflect a restriction in the scope of the techniques 
in the PRIMER package to the marine environment.  
The first edition of this manual was intended primarily 
for a marine audience and, given that the examples 
and rationale are still largely set around the literature 
of marine ecology, and some of the original chapters 
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in this context have been retained, it seems sensible 
to retain the historic continuity of title. However, it 
will soon be evident to the reader that there is rather 
little in the methods of the following pages that is 
exclusively marine or even confined to ecology. In 
fact, the PRIMER package is now not only used in 
over 120 countries world-wide (and in all US states) 
for a wide range of marine community surveys and 
experiments, of benthic fauna, algae, fish, plankton, 
corals, dietary data etc, but is also commonly found 
in freshwater & terrestrial ecology, palaeontology, 
agriculture, vegetation & soil science, forestry, bio-
informatics and genetics, microbiology, physical 
(remote sensing, sedimentary, hydrological) and 
chemical/biochemical studies, geology, biogeography 
and even in epidemiology, medicine, environmental 
economics, social sciences (questionnaire returns), on 
ecosystem box model outputs, archaeology, and so on¶.  

Indeed, it is relevant to any context in which multiple 
measurement variables are recorded from each sample 
unit (the definition of multivariate data) and classical 
multivariate statistics is unavailable, i.e. especially (as 
intimated above) where there are a large number of 
variables in relation to the number of samples (and in 
microbial/genetic studies there can be many thousands 
of bands with intensities measured, from each sample), 
or characterised by a presence/absence structure in 
which the information is contained at least partly in 
pattern of the presences of non-zero readings, as well 
as their actual values (in other words, data for which 
zero is a ‘special’ number).   

As a result of the authors’ own research interests and 
the widespread use of community data in pollution 
monitoring, a major thrust of the manual is the biological 
effects of contaminants but, again, most of the methods 
are much more generally applicable. This is reflected 
in a range of more fundamental ecological studies 
among the real data sets exemplified here. 

¶ The list seems endless: the most recent attempt to look at which 
papers have cited at least one of  the PRIMER manuals, or a highly 
cited paper (Clarke 1993) which lays out the philosophy and some 
core methods in the PRIMER approach, was in August 2012, and 
resulted in 8370 citations in refereed journals (SCI-listed), from 
773(!) different journal titles. Of course, there is no guarantee that 
a paper citing the PRIMER manuals has used PRIMER – though 
most will have – but, equally, there are several score of PRIMER 
methods papers that may have been cited in place of the manuals, 
especially for the many PRIMER developments that have taken 
place since the Clarke (1993) paper,  so the above citation total is 
likely to be a significant underestimate. A listing of these journals, 
and their  frequency of PRIMER-citing papers, together with the 
reference list of the 8370 citing papers, can be downloaded from 
the PRIMER-E web site, www.primer-e.com. This list can have a 
function in searching for past PRIMER-citing papers in the user’s 
own discipline, a support question often asked of PRIMER-E staff. 

The literature contains a large array of sophisticated 
statistical techniques for handling species-by-samples 
matrices, ranging from their reduction to simple diver-
sity indices, through curvilinear or distributional 
representations of richness, dominance, evenness etc., 
to a plethora of multivariate approaches involving 
clustering or ordination methods.  This manual does 
not attempt to give an overview of all the options.  
Instead it presents a strategy which has evolved over 
decades within the Community Ecology/Biodiversity 
groups at Plymouth Marine Laboratory (PML), and 
subsequently within the ‘spin-out’ PRIMER-E Ltd 
company, and which has now been tested for ease of 
understanding and relevance to analysis requirements 
at well over 100 practical 1-week training workshops.  

The workshop content has continued to evolve, in 
line with development of the software, and the utility 
of the methods in interpreting a range of community 
data can be seen from the references listed under 
Clarke, Warwick, Somerfield or Gorley in Appendix 3, 
which between them have amassed a total of >20,000 
citations in SCI journals. The analyses and displays in 
these papers, and certainly in this manual, have very 
largely been accomplished with routines available in 
PRIMER (though in many cases annotations etc have 
been edited by simply copying and pasting into graphics 
presentation software such as Microsoft Powerpoint).  

Note also that, whilst other software packages will 
not encompass this specific combination of routines, 
several of the individual techniques (though by no 
means all) can be found elsewhere. For example, the 
core clustering and ordination methods described 
here are available in many mainstream statistical 
packages, and there are at least two other specialised 
statistical programs (CANOCO and PC-ORD) which 
tackle essentially similar problems, though usually 
employing different techniques and strategies; other 
authors have produced freely-downloadable routines 
in the R statistical framework, covering some of these 
methods.  

This manual does not cover the PERMANOVA+ 
routines, which are available as an add-on to the 
PRIMER package. The PERMANOVA+ software has 
been further developed and fully coded by PRIMER-
E (in the Microsoft Windows ‘.Net’ framework of all 
recent PRIMER versions)  in very close collaboration 
with their instigator, Prof Marti Anderson (Massey 
University, NZ). These methods complement those in 
PRIMER, utilising the same graphical/data-handling 
environment, moving the emphasis away from non-
parametric to semi-parametric (but still permutation 
based and thus distribution-free) techniques, which 
are able to extend hypothesis testing for data with 
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more complex, higher-way designs (allowing, for 
example, for concepts of fixed vs random effects, and 
factor partitioning into main effect and interaction 
terms). This, and several other analyses which more 
closely parallel those available in classical univariate 
contexts, but are handled by permutation testing, are 
fully described in the combined Methods and User 
manual for PERMANOVA+, Anderson (2008).  

Example data sets 

Throughout the manual, extensive use is made of data 
sets from the published literature to illustrate the tech-
niques.  Appendix 1 gives the original literature source 
for each of these 40 data sets and an index to all the 
pages on which they are analysed.  Each data set is 
allocated a single letter designation (upper or lower 
case) and, to avoid confusion, referred to in the text 
of the manual by that letter, placed in curly brackets 
(e.g. {A} = Amoco-Cadiz oil spill, macrofauna; {B} = 
Bristol Channel, zooplankton; {C} = Celtic Sea, 
zooplankton, {c} = Creran Loch, macrobenthos etc). 
Many of these data sets (though not all) are made 
available automatically with the PRIMER software. 
 
Literature citation 

Appendix 2 lists some background papers appropriate 
to each chapter, including the source of analyses and 
figures, and a full listing of references cited is given 
in Appendix 3. Since this manual is effectively a book, 
not accessible within the refereed literature, referral to 
the methods it describes should probably be by citing 
the primary papers for these methods (this will not 
always be possible, however, since some of the new 
routines in PRIMER v7 are being described here for 
the first time). Summaries of the early core methods 
in PRIMER for multivariate and univariate/graphical 
analyses are given respectively in Clarke (1993) and 
Warwick (1993). Some primary techniques papers 
are: Field et al (1982), for clustering, MDS; Warwick 
(1986) and Clarke (1990), ABC and dominance plots; 
Clarke and Green (1988), 1-way ANOSIM, transfor-
mation; Warwick (1988b) and Olsgard et al (1997), 
aggregation; Clarke and Ainsworth (1993), BEST/ 
Bio-Env; Clarke (1993) and Clarke and Warwick 
(1994), 2-way ANOSIM with and without replicates, 
similarity percentages; Clarke et al (1993), seriation; 
Warwick and Clarke (1993b), multivariate dispersion; 
Clarke and Warwick (1998a), structural redundancy, 
BEST/BVStep; Somerfield and Clarke (1995) and 
Clarke et al (2006b), second-stage analyses; Warwick 
and Clarke (1995, 1998, 2001), Clarke and Warwick 
(1998b, 2001), taxonomic distinctness; Clarke et al 
(2006a), dispersion weighting; (2006c), resemblances 

and sparsity; (2008), similarity profiles and linkage 
trees; (2014), shade plots; and Somerfield and Clarke 
(2013), coherent species curves.   
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CHAPTER 1: A FRAMEWORK FOR STUDYING CHANGES IN 
COMMUNITY STRUCTURE 

 
 
The purpose of this opening chapter is twofold: 

a) to introduce some of the data sets which are used 
extensively, as illustrations of techniques, through-
out the manual; 

b) to outline a framework for the various possible 
stages in a community analysis¶. 

Examples are given of some core elements of the 
recommended approaches, foreshadowing the analyses 
explained in detail later and referring forward to the 
relevant chapters.  Though, at this stage, the details 
are likely to remain mystifying, the intention is that 
this opening chapter should give the reader some feel 
for where the various techniques are leading and how 
they slot together.  As such, it is intended to serve 
both as an introduction and a summary. 

Stages 

It is convenient to categorise possible analyses broadly 
into four main stages. 

1) Representing communities by graphical description 
of the relationships between the biota in the various 
samples.  This is thought of as pure description, 
rather than explanation or testing, and the emphasis 
is on reducing the complexity of the multivariate 
information in typical species/samples matrices, to 
obtain some form of low-dimensional picture of 
how the biological samples interrelate. 

2) Discriminating sites/conditions on the basis of their 
biotic composition.  The paradigm here is that of 
the hypothesis test, examining whether there are 
‘proven’ community differences between groups of 
samples identified a priori, for example demon-
strating differences between control and putatively 
impacted sites, establishing before/after impact 
differences at a single site, etc. A different type of 
test is required for groups identified a posteriori. 

3) Determining levels of stress or disturbance, by 
attempting to construct biological measures from the 
community data which are indicative of disturbed 
conditions.  These may be absolute measures (“this 
observed structural feature is indicative of pollution”) 

¶ The term community is used throughout the manual, somewhat 
loosely, to refer to any assemblage data (samples leading to counts, 
biomass, % cover, etc. for a range of species); the usage does not 
necessarily imply internal structuring of the species composition, 
for example by competitive interactions. 

or relative criteria (‘under impact, this coefficient 
is expected to decrease in comparison with control 
levels’). Note the contrast with the previous stage, 
which is restricted to demonstrating differences 
between groups of samples, not ascribing direct-
ional change (e.g. deleterious consequence). 

4) Linking to environmental variables and examining 
issues of causality of any changes.  Having allowed 
the biological information to ‘tell its own story’, 
any associated physical or chemical variables 
matched to the same set of samples can be examined 
for their own structure and its relation to the biotic 
pattern (its ‘explanatory power’).  The extent to 
which identified environmental differences are 
actually causal to observed community changes 
can only really be determined by manipulative 
experiments, either in the field or through laboratory 
/mesocosm studies. 

Techniques 

The spread of methods for extracting workable repres-
entations and summaries of the biological data can be 
grouped into three categories. 

1) Univariate methods collapse the full set of species 
counts for a sample into a single coefficient, for 
example a species diversity index.  This might be 
some measure of the numbers of different species 
(species richness), perhaps for a given number of 
individuals, or the extent to which the community 
counts are dominated by a small number of species 
(dominance/evenness index), or some combination 
of these.  Also included are biodiversity indices that 
measure the degree to which species or organisms 
in a sample are taxonomically or phylogenetically 
related to each other.  Clearly, the a priori selection 
of a single taxon as an indicator species, amenable 
to specific inferences about its response to a partic-
ular environmental gradient, also gives rise to a 
univariate analysis. 

2) Distributional techniques, also termed graphical 
or curvilinear plots (when they are not strictly 
distributional), are a class of methods which 
summarise the set of species counts for a single 
sample by a curve or histogram.  One example is k-
dominance curves (Lambshead et al, 1983), which 
rank the species in decreasing order of abundance, 
convert the values to percentage abundance relative 
to the total number of individuals in the sample, 
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and plot the cumulated percentages against the 
species rank.  This, and the analogous plot based 
on species biomass, are superimposed to define 
ABC (abundance-biomass comparison) curves 
(Warwick, 1986), which have proved a useful con-
struct in investigating disturbance effects.  Another 
example is the species abundance distribution 
(sometimes termed SAD curves or the distribution 
of individuals amongst species), in which the 
species are categorised into geometrically-scaled 
abundance classes and a histogram plotted of the 
number of species falling in each abundance range 
(e.g. Gray and Pearson, 1982).  It is then argued, 
again from empirical evidence, that there are 
certain characteristic changes in this distribution 
associated with community disturbance. 

Such distributional techniques relax the constraint 
in the previous category that the summary from 
each sample should be a single variable; here the 
emphasis is more on diversity curves than single 
diversity indices, but note that both these categories 
share the property that comparisons between samp-
les are not based on particular species identities: 
two samples can have exactly the same diversity or 
distributional structure without possessing a single 
species in common. 

3) Multivariate methods are characterised by the fact 
that they base their comparisons of two (or more) 
samples on the extent to which these samples share 
particular species, at comparable levels of abund-
ance.  Either explicitly or implicitly, all multivariate 
techniques are founded on such similarity coeffic-
ients, calculated between every pair of samples.  
These then facilitate a classification or clustering¶ 
of  samples into groups which are mutually  similar, 

  or an ordination plot in which, for example, the 
samples are ‘mapped’ (usually in two or three 
dimensions) in such a way that the distances 
between pairs of samples reflect their relative 
dissimilarity of species composition. 

Methods of this type in the manual include: hierarch-
ical agglomerative clustering (see Everitt, 1980) in 
which samples are successively fused into larger 
groups; binary divisive clustering, in which groups 
are successively split; and two types of ordination 
method, principal components analysis (PCA, e.g. 
Chatfield and Collins, 1980) and non-metric/metric 
multi-dimensional scaling (nMDS/mMDS, the former 
often shortened to MDS, Kruskal and Wish, 1978). 

For each broad category of analysis, the techniques 
appropriate to each stage are now discussed, and 
pointers given to the relevant chapters. 
 
UNIVARIATE TECHNIQUES 

For diversity indices and other single-variable 
extractions from the data matrix, standard statistical 
methods are usually applicable and the reader is 
referred to one of the many excellent general 
statistics texts (e.g. Sokal and Rohlf, 1981).  The 
requisite techniques for each stage are summarised in 
Table 1.1.  For example, when samples have the 
structure of a number of replicates taken at each of a 
number of sites (or times, or conditions), computing 
the means and 95% confidence intervals gives an 
appropriate representation of the Shannon diversity 
(say) at each site, with discrimination between sites 
being demonstrated by one-way analysis of variance 
(ANOVA), which is a test of the null hypothesis that 
there are no differences in mean diversity between

Table 1.1.  Univariate techniques.  Summary of analyses for the four stages. 

                                                                          Univariate examples 

Stages       Diversity indices (Ch 8)         Indicator taxa       Biodiversity indices (Ch 17) 

1) Representing 
 communities 

                    Means and 95% confidence intervals for each site/condition (Ch 8, 9, 17) 

2) Discriminating 
 sites/conditions 

       1-way analysis of variance, ANOVA, Ch 6 (collectively, multivariate tests can be used, Ch 6) 

3) Determining 
 stress levels 

          By reference to historical data for sites (Ch 14, 15) and regional ‘species pool’ (Ch 17) 
Ultimately a decrease in diversity    Initial increase in opportunists    Loss of taxonomic distinctness 

4) Linking to 
 environment 

Regression techniques, Ch 11 (collectively, BEST, Ch 11);  for causality issues see Ch 12    

_____________________________________________________________ 
¶These terms tend to be used interchangeably by ecologists, so we will do that also, but in statistical language the methods given here are 
all clustering techniques, classification usually being reserved for classifying unknown new samples into known prior group structures. 
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sites.  Linking to the environment is then also relat-
ively straightforward, particularly if the environmental 
variables can  be condensed into one (or a small number 
of) key summary statistics.  Simple or multiple regress-
ion of Shannon diversity as the dependent variable, 
against the environmental descriptors as independent 
variables, is then technically feasible, though rarely 
very informative in practice, given the over-condensed 
nature of the information utilised. § 

For impact studies, much has been written about the 
effect of pollution or disturbance on diversity measures: 
whilst the response is not necessarily undirectional 
(under the hypothesis of Huston, 1979, diversity is 
expected to rise at intermediate disturbance levels 
before its strong decline with gross disturbance), 
there is a sense in which determining stress levels is 
possible, through relation to historical diversity patterns 
for particular environmental gradients.  Similarly, 
empirical evidence may exist that particular indicator 
taxa (e.g. Capitellids) change in abundance along 
specific pollution gradients (e.g. of organic enrichment).  
Note though that, unlike the diversity measures con-
structed from abundances across species, averaged in 
some way¶, indicator species levels will not initially 
satisfy the assumptions necessary for routine statistical 
analysis. Log transforms of such counts will help but, 
for most individual species, abundance across the set 
of samples is likely to be a poorly-behaved variable, 
statistically speaking.  Typically, a species will be 
absent from many of the samples and, when present, 
the counts are often highly variable, with abundance 
probability distribution heavily right-skewed†.  Thus, 
for all but the most common individual species, trans-
formation is no real help and parametric statistical 
analyses cannot be applied to the counts, in any form.  
In any case, it is not valid to ‘snoop’ in a large data 
matrix, of typically 100–250 taxa, for one or more 

§ Though most of this chapter assumes that diversity indices will 
be treated independently (hence ANOVA and regression models), 
an underused possibility is illustrated at the end of Chapter 8, 
that a set of differing univariate diversity measures be treated as 
a multivariate data matrix, with ‘dissimilarity’ defined as normal-
ised Euclidean distance, and input to the same tools as used for 
multivariate community data (thus ANOSIM and BEST analyses).  
¶ And thus subject to the central limit theorem, which will tend to 
induce statistical normality. 
† It is the authors' experience, certainly in the study of benthic 
communities, that the individuals of a species are not distributed 
at random in space (a Poisson process) but are often highly clust-
ered, either through local variation in forcing environmental 
variables or mechanisms of recruitment, mortality and community 
interactions. This leads to counts which are statistically known as 
over-dispersed (see p9-5 on dispersion weighting), combined with 
a high prevalence of zeros, causing major problems in attempting 
parametric modelling by categorical/log-linear methods. 

‘interesting’ species to analyse by univariate techn-
iques (any indicator or keystone species selection must 
be done a priori).  Such arguments lead to the tenets 
underlying this manual: 
a) community data are usually highly multivariate 

(large numbers of species, each subject to high 
statistical noise) and need to be analysed en masse 
in order to elicit the important biological signal 
and its relation to the environment; 

b) standard parametric modelling is totally invalid. 

Thus, throughout, little emphasis is given to represent-
ing communities by univariate measures, though some 
definitions of indices can be found at the start of 
Chapter 8, some brief remarks on hypothesis testing 
(ANOVA) at the start of Chapter 6, a discussion of 
transformations (to approximate normality and constant 
variance) at the start of Chapter 9, an example given 
of a univariate regression between biota and environ-
ment in Chapter 11, and a more extensive discussion 
of sampling properties of diversity indices, and bio-
diversity measures based on taxonomic relatedness, 
makes up Chapter 17.  Finally, Chapter 14 gives a 
series of detailed comparisons of univariate with 
distributional and multivariate techniques, in order to 
gauge their relative sensitivities and merits in a range 
of practical studies. 

EXAMPLE: Frierfjord macrofauna 

The first example is from the IOC/GEEP practical 
workshop on biological effects of pollutants (Bayne 
et al, 1988), held at the University of Oslo, August 
1986.  This attempted to contrast a range of biochemical, 
cellular, physiological and community analyses, applied 
to field samples from potentially contaminated and 
control sites, in a fjordic complex (Frierfjord/Lang-
esundfjord) linked to Oslofjord ({F}, Fig. 1.1).  For 
the benthic macrofaunal component of this study 
(Gray et al, 1988), four replicate 0.1m2 Day grab 
samples were taken at each of six sites (A-E and G, 
Fig 1.1) and, for each sample, organisms retained on 
a 1.0 mm sieve were identified and counted.  Wet 
weights were determined for each species in each 
sample, by pooling individuals within species. 

Part of the resulting data matrix can be seen in Table 
1.2: in total there were 110 different taxa categorised 
from the 24 samples.  Such matrices (abundance, A, 
and/or biomass, B) are the starting point for the biotic 
analyses of this manual, and this example is typical in 
respect of the relatively high ratio of species to samples 
(always >> 1) and the prevalence of zeros.  Here, as 
elsewhere, even an undesirable reduction to the 30 
‘most important’ species (see Chapter 2) leaves more  
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Fig. 1.1.  Frierfjord, Norway {F}.  Benthic community sampling 

sites (A-G) for the IOC/GEEP Oslo Workshop; site F omitted 
for macrobenthos. 
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Fig. 1.2.  Frierfjord macrofauna {F}.  Means and 95% 

confidence intervals for Shannon diversity (H'), from four 
replicates at each of six sites (A-E, G). 

than 50% of the matrix consisting of zeros.  Standard 
multivariate normal analyses (e.g. Mardia et al, 1979) 
of these counts are clearly ruled out; they require both 
that the number of species (variables) be small in 
relation to the number of samples, and that the abund-
ance or biomass values are transformable to approx-
imate normality: neither is possible. 

As discussed above, one easy route to simplification 
of this high-dimensional (multi-species) complexity 
is to reduce each matrix column (sample) to a  single  

Table 1.2.  Frierfjord macrofauna {F}.  Abundance and biomass 
matrices (part only) for the 110 species in 24 samples (four rep-
licates at each of six sites A-E, G); abundance in numbers per 
0.1m2, biomass in mg per 0.1m2. 

Species 
Samples 

A1 A2 A3 A4 B1 B2 B3 B4 
Abundance         
Cerianthus lloydi 0 0 0 0 0 0 0 0 
Halicryptus sp. 0 0 0 1 0 0 0 0 
Onchnesoma 0 0 0 0 0 0 0 0 
Phascolion strombi 0 0 0 1 0 0 1 0 
Golfingia sp. 0 0 0 0 0 0 0 0 
Holothuroidea 0 0 0 0 0 0 0 0 
Nemertina, indet. 12 6 8 6 40 6 19 7 
Polycaeta, indet. 5 0 0 0 0 0 1 0 
Amaena trilobata 1 1 1 0 0 0 0 0 
Amphicteis gunneri 0 0 0 0 4 0 0 0 
Ampharetidae 0 0 0 0 1 0 0 0 
Anaitides groenl. 0 0 0 1 1 0 0 0 
Anaitides sp. 0 0 0 0 0 0 0 0 
. . . .          

Biomass         
Cerianthus lloydi 0 0 0 0 0 0 0 0 
Halicryptus sp. 0 0 0 26 0 0 0 0 
Onchnesoma 0 0 0 0 0 0 0 0 
Phascolion strombi 0 0 0 6 0 0 2 0 
Golfingia sp. 0 0 0 0 0 0 0 0 
Holothuroidea 0 0 0 0 0 0 0 0 
Nemertina, indet. 1 41 391 1 5 1 2 1 
Polycaeta, indet. 9 0 0 0 0 0 0 0 
Amaena trilobata 144 14 234 0 0 0 0 0 
Amphicteis gunneri 0 0 0 0 45 0 0 0 
Ampharetidae 0 0 0 0 0 0 0 0 
Anaitides groenl. 0 0 0 7 11 0 0 0 
Anaitides sp. 0 0 0 0 0 0 0 0 
. . . .         

 

univariate description.  Fig. 1.2 shows the results of 
computing the Shannon diversity (H', see Chapter 8) 
of each sample¶, and plotting for each site the mean 
diversity and its 95% confidence interval, based on a 
pooled estimate of variance across all sites from the 
ANOVA table, Chapter 6.  (An analysis of the type 
outlined in Chapter 9 shows that prior transformation 
of H' is not required; it already has approximately 
constant variance across the sites, a necessary prerequis-
ite for standard ANOVA).  The most obvious feature 
of Fig. 1.2 is the relatively higher diversity at the 
control/reference location, A. 

¶ Using the PRIMER DIVERSE routine. 
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Table 1.3.  Distributional techniques.  Summary of analyses for the four stages. 

 Distributional examples 

Stages      k-dominance or ABC curves (Ch 8)                           Species abundance distributions (Ch 8) 

1) Representing 
 communities 
 

Curves for each site/condition (or preferably replicate) 

2) Discriminating 
 sites/conditions 
 
 

                                        ANOVA on univariate summaries, e.g. W (Ch 8)  
   ANOSIM test (Ch 6) on distances                   Test for commonality of distributions 
   between every pair of curves (DOMDIS)                (e.g. chi-squared) or ANOSIM on curves 

3) Determining 
 stress levels 
 

   Biomass curve drops below                Species abundance distribution has 
   numbers curve under disturbance               longer tail with disturbance & less J-shaped 

4) Linking to 
 environment 
 

                                 For univariate summaries of the curve(s), by regression 
(Causality: see Ch 12) 

 

DISTRIBUTIONAL TECHNIQUES 

A less condensed form of diversity summary for each 
sample is offered by distributional/graphical methods, 
outlined for the four stages in Table 1.3. 

Representation is by curves or histograms (Chapter 
8), either plotted for each replicate sample separately 
or for pooled data within sites or conditions.  The former 
permits a visual judgement of the sampling variation 
in the curves and, as with diversity indices, replication 
is required to discriminate sites, i.e. test the null hypoth-
esis that two or more sites (/conditions etc.) have the 
same curvilinear structure. One approach to testing is 
to summarise each replicate curve by a single statistic 
and apply ANOVA as before: for the ABC method the 
W statistic (Chapter 8) measures the extent to which 
the biomass curve ‘dominates’ the abundance curve, 
or vice-versa. This is simply one more diversity index 
but it can be an effective supplement to the standard 
suite (richness, evenness etc), because it is seen to 
capture a ‘different axis’ of information in a multi-
variate treatment of multiple diversity indices (see the 
end of Chapter 8). For k-dominance or SAD curves, 
pairwise distance between replicate curves† can turn 
testing into exactly the same problem as that for fully 
multivariate data and the ANOSIM tests of Chapter 6 
can then be used.  

† This uses the PRIMER DOMDIS routine for k-dominance plots, 
p8-13, as in Clarke (1990), with a similar idea applicable to SAD 
curves or other histogram or cumulative frequency data. This will 
be generally more valid than Kolmogorov-Smirnov or χ2 type 
tests because of the lack of independence of species in a single 
sample. A valid alternative is again to calculate a univariate 
summary from each distribution (location or spread or skewness), 
and test as with any other diversity index, by ANOVA tests. 

The distributional and graphical techniques have been 
proposed specifically as a way of determining stress 
levels. For the ABC method, the strongly polluted 
(/disturbed) state is indicated if the abundance k-dom-
inance curve falls above the biomass curve throughout 
its length (e.g. Fig. 1.4): the phenomenon is linked to 
the loss of large-bodied ‘climax’ species and the rise of 
small-bodied opportunists. Note that the ABC method 
claims to give an absolute measure, in the way that 
disturbance status is indicated on the basis of samples 
from a single site; in practice, however, it is always 
wise to design collection from (matched) impacted 
and control sites to confirm that the control condition 
exhibits the undisturbed ABC pattern (biomass curve 
above the abundance curve, throughout). 

Similarly, the species abundance distribution has 
features characteristic of disturbed status (e.g. see the 
middle plots in Fig. 1.6), namely a move to a less J-
shaped distribution by a reduction in the first one or 
two abundance classes (loss of rarer species), 
combined with the gain of some higher abundance 
classes (very numerous opportunist species). 

The distributional and graphical methods may thus 
have particular merits in allowing stressed conditions 
to be recognised, but they are limited in sensitivity to 
detect environmental change (Chapter 14). This is 
also true of linking to environmental data, which 
needs the curve(s) for each sample to be reduced to a 
summary statistic (e.g. W), single statistics then being 
linked to an environmental set by multiple regression.¶ 

¶ As for the discussion on diversity indices (Table 1.1), if such 
univariate summaries from curves are added to other diversity 
indices then all could be entered into multivariate ANOSIM and 
BEST/linkage analyses,  as for community data (Chapters 6, 11). 
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Table 1.4.  Loch Linnhe macrofauna {L}.  Abundance/biomass matrix (part only); one (pooled) set of values per year (1963–1973). 

 1963 1964 1965       1966      . . . 

          Species A       B A        B A       B A       B 

Scutopus ventrolineatus 0 0 0 0 11 0.05 0 0 
Nucula tenuis 2 0.01 13 0.07 16 0.10 6 0.04 
Mytilus edulis 0 0 0 0 5 0.09 0 0 
Modiolus sp. indet. 0 0 0 0 0 0 0 0 
Thyasira flexuosa 93 3.57 210 7.98 28 1.06 137 5.17 
Myrtea spinifera 214 27.39 136 17.41 2 0.26 282 36.10 
Lucinoma borealis 12 0.39 26 1.72 0 0 22 0.73 
Montacuta ferruginosa 1 0 0 0 4 0.02 0 0 
Mysella bidentata 0 0 0 0 0 0 0 0 
Abra sp. indet. 0 0 0 0 12 0.26 0 0 
Corbula gibba 2 0.13 8 0.54 9 0.27 2 0.13 
Thracia sp. indet. 0 0 0 0 0 0 0 0 
. . .           
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Fig. 1.3.  Loch Linnhe and Loch Eil, Scotland {L}.  Map of site 

34 (Linnhe) and site 2 (Eil), sampled annually over 1963–1973. 

 
EXAMPLE: Loch Linnhe macrofauna 

Pearson (1975) describes a time series of macrobenthic 
community samples, taken over the period 1963–1973 
inclusive, at two sites in a sea loch system on the 
west coast of Scotland ({L}, Fig. 1.3.)  Pooling to a 
single sample for each of the 11 years resulted in 
abundance and biomass matrices of 111 rows (species) 
and 11 columns (samples), a small part of which is 
shown in Table 1.4.¶   Starting in 1966, pulp-mill 
effluent was discharged to the sea lochs (Fig. 1.3), 

¶ It is displayed in this form purely for illustration; this is not a 
valid file format for PRIMER, which requires the abundance and 
biomass information to be in separate (same-shape) arrays. 

with the rate increasing in 1970 and a significant 
reduction taking place in 1972 (Pearson, 1975).  The 
top left-hand plot of Fig 1.4 shows the Shannon divers-
ity of the macrobenthic samples over this period, and 
the remaining plots the ABC curves for each year.†  
There appears to be a consistent change of structure 
from one in which the biomass curve dominates the 
abundance curve in the early years, to the curves cross-
ing, reversing altogether and then finally reverting to 
their original form. 
 
EXAMPLE: Garroch Head macrofauna 

Pearson and Blackstock (1984) describe the sampling 
of a transect of 12 sites across the sewage-sludge 
disposal ground at Garroch Head in the Firth of Clyde, 
SW Scotland ({G}, Fig. 1.5).  The samples considered 
here were taken during 1983 and consisted of abund-
ance and biomass values of 84 macrobenthic species, 
together with associated contaminant data on the extent 
of organic enrichment and the concentrations of heavy 
metals in the sediments.  Fig. 1.6 shows the resulting 
species abundance distributions for the twelve sites, 
i.e. at site 1, twelve species were represented by a 
single individual, two species by 2–3 individuals, three 
species by 4–7 individuals, etc. (Gray and Pearson, 
1982).  For the middle sites close to the dump centre, 
the hypothesised loss of less-abundant species, and 
gain of a few species in the higher geometric classes, 
can clearly be seen. 

† Computed from the PRIMER Dominance Plot routine. 
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Fig. 1.4.  Loch Linnhe macro-

fauna {L}.  Top left: Shannon 
diversity over the 11 annual 
samples, also indicating timing 
of start of effluent discharge 
and a later increase and de-
crease in level; remaining plots 
show ABC curves for the sep-
arate years 1963–1973 (B = 
biomass, thin line; A = abund-
ance, thick line). 

MULTIVARIATE TECHNIQUES 

Table 1.5 summarises some multivariate methods for 
the four stages, starting with three descriptive tools: 
hierarchical clustering (agglomerative or divisive), 
multi-dimensional scaling (MDS, usually non-metric) 
and principal components analysis (PCA). 

The first two of these start explicitly from a triangular 
matrix of similarity coefficients computed between 
every pair of samples (e.g. Table 1.6).  The coefficient 
is usually some simple algebraic measure (Chapter 2) 
of how close the abundance levels are for each species, 
averaged over all species, and defined such that 100% 
represents total similarity and 0% complete dissimilar-
ity.  There is a range of properties that such a coeff-
icient should possess but still some flexibility in its 
choice: it is important to realise that the definition of 

what constitutes similarity of two communities may 
vary, depending on the biological question under con-
sideration.  As with the earlier methods, a multivariate 
analysis too will attempt to reduce the complexity of 
the community data by taking a particular ‘view’ of 
the structure it exhibits. One in which the emphasis is 
on the pattern of occurrence of rare species will be 
different than a view in which the emphasis is wholly 
on the species that are numerically dominant. One 
convenient way of providing this spectrum of choice, 
is to restrict attention to a single coefficient†, that of 
Bray and Curtis, 1957, which has several desirable 
properties, but allow a choice of prior transformation 
of the data.  A useful transformation continuum (see 
Chapter 9) ranges through: no transform, square root, 

† Though PRIMER offers nearly 50 of the (dis)similarity/distance 
measures that have been proposed in the literature  
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fourth root, logarithmic and finally, reduction of the 
sample information to the recording only of presence 
or absence for each species.¶  At the former end of the 
spectrum all attention will be focused on dominant 
counts, at the latter end on the rarer species. 

For the clustering technique, representation of the 
communities for each sample is by a dendrogram (e.g. 
Fig. 1.7a), linking the samples in hierarchical groups 
on the basis of some definition of similarity between 
each cluster (Chapter 3).  This is a particularly relevant  
 

1

7
12

Dumpsite

Arran

Bute

Cumbrae

Ayrshire

2 3 4 5 6 8 9 10 11

Firth of Clyde 5 km

 
Fig. 1.5.  Garroch Head, Scotland {G}.  Location of sewage sludge 

dump ground and position of sampling sites (1–12); the dump 
centre is at site 6. 

representation in cases where the samples are expected 
to divide into well-defined groups, perhaps structured 
by some clear-cut environmental distinctions.  Where, 
on the other hand, the community pattern is responding 
to abiotic gradients which are more continuous, then 
representation by an ordination is usually more approp-
riate.  The method of non-metric MDS (Chapter 5) 
attempts to place the samples on a ‘map’, usually in 
two dimensions (e.g. see Fig. 1.7b), in such a way that 
the rank order of the distances between samples on 
the map exactly agrees with the rank order of the match-
ing (dis)similarities, taken from the triangular similarity 
matrix.  If successful, and success is measured by a 
stress coefficient which reflects lack of agreement in 
the two sets of ranks, the ordination gives a simple 
and compelling visual representation of ‘closeness’ of 
the species composition for any two samples. 
 
The PCA technique (Chapter 4) takes a different start-
ing position, and makes rather different assumptions 
about the definition of (dis)similarity of two samples, 
but again ends up with an ordination plot, often in 
two or three dimensions (though it could be more), 
which approximates the continuum of relationships 
among samples (e.g. Fig. 1.8).  In fact, PCA is a rather 
unsatisfactory procedure for most species-by-samples 
matrices, for at least two reasons: 
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¶  The PRIMER routines automatically offer this set of transformation choices, applied to the whole 
data matrix, but also cater for more selective transformations of particular sets of variables, as is 
often appropriate to environmental rather than species data.  

 
 

 

 

 

 

 

 

 

 

Fig. 1.6.  Garroch Head 
macrofauna {G},  Plots of 
number of species against 
number of individuals per 
species in ×2 geometric 
classes, for the 12 sampling 
sites of Fig. 1.5. 
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Table 1.5.  Multivariate techniques.  Summary of analyses for the four stages. 

 Multivariate examples 

 Stages   Hierarchical clustering (Ch 2, 3)    MDS ordination (Ch 5)          PCA ordination (Ch 4) 

1) Representing 
 communities 
 

Sample dendrogram (with posterior     Configuration plot of samples (usually 2- or 3-dimensional) 
‘confirmation’ by SIMPROF, Ch 3)  

2) Discriminating 
 sites/conditions 
 

                  ANOSIM on sample similarity matrix (Ch 6)  
Shade plots, similarity percentage breakdowns (SIMPER) 
and bubble plots (Ch 7) indicate species responsible 

 ANOSIM on Euclidean 
 distances (or multinormal 
 tests, rarely valid) 

3) Determining 
 stress levels 
 

                   Meta-analyses, variability measures, breakdown of seriation (Ch 15) 
[Multivariate methods excellent at detecting change, but less able to characterise as ‘good/bad’] 

4) Linking to 
 environment 
 
 
 

       Visual: bubble (or vector) plots of environmental variables on biotic ordinations (Ch 11) 
Analytical: subset of abiotic variables whose multivariate pattern ‘best matches’ the biotic pattern 
             (BEST/Bio-Env/BVStep, Ch 11 & 16); constrained divisive clustering (LINKTREE, Ch 11) 

 (Causality: see Ch 12) 

 
Table 1.6.  Frierfjord macrofauna {F}.  Bray-Curtis similarities, 

after √√-transformation of counts, for every pair of replicate 
samples from sites A, B, C only (four replicates per site). 

 A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 
A1 –            
A2 61 –           
A3 69 60 –          
A4 65 61 66 –         
B1 37 28 37 35 –        
B2 42 34 31 32 55 –       
B3 45 39 39 44 66 66 –      
B4 37 29 29 37 59 63 60 –     
C1 35 31 27 25 28 56 40 34 –    
C2 40 34 26 29 48 69 62 56 56 –   
C3 40 31 37 39 59 61 67 53 40 66 –  
C4 36 28 34 37 65 55 69 55 38 64 74  – 

 
a) it defines dissimilarity of samples in an inflexible 

way (Euclidean distance in the full-dimensional 
species space, Chapter 4), not well-suited to the 
rather special nature of species abundance data, with 
its predominance of zero values; 

b) it uses a projection from the higher-dimensional to 
lower-d space which does not aim to preserve the 
relative values of these Euclidean distances in the 
low-d plot, cf MDS, which has that rationale. 

However, a description of the operation of PCA is 
included here because it is an historically important 
technique, the first ordination method to be devised 
and one which is still commonly encountered†, and 

† Other ordination techniques in common use include: Principal 
Co-ordinates Analysis, PCO; Detrended Correspondence Analysis, 
DCA. Chapter 5 has some brief remarks on their relation to PCA 
and nMDS/mMDS but this manual concentrates on PCA and 
MDS, found in PRIMER; PCO is available in PERMANOVA+. 

because it comes into its own in the analysis of envir-
onmental samples. Abiotic variables (e.g. physical or 
contaminant readings) are usually relatively few in 
number, continuously scaled, and their distributions 
can be transformed so that (normalised) Euclidean 
distances are appropriate ways of describing the inter-
relationships among samples. PCA is then a more 
satisfactory low-dimensional summary (albeit still a 
projection), and even has an advantage over MDS of 
providing an interpretation of the plot axes (which are 
linear in the abiotic variables). 

Discriminating sites/conditions from a multivariate 
analysis requires non-classical hypothesis testing 
ideas, since it is totally invalid to make the standard 
assumptions of normality (which in this case would 
need to be multivariate normality of the sometimes 
hundreds or even thousands of different species!). 
Instead, Chapter 6 describes a simple permutation or 
randomisation test (of the type first developed by 
Mantel, 1967), which makes very few assumptions 
about the data and is therefore widely applicable.  In 
Fig. 1.7b for example, it is clear without further testing 
that site A has a different community composition 
across its replicates than the groups (E, G) or (B, C, 
D). Much less clear is whether there is any statistical 
evidence of a distinction between the B, C and D sites.  
A non-parametric test of the null hypothesis of ‘no 
site differences between B, C and D’ could be 
constructed by defining a statistic which contrasts 
among-site and within-site distances, which is then 
recomputed for all possible permutations of the 12 
labels (4 Bs, 4 Cs and 4 Ds) among the 12 locations 
on the MDS.  If these arbitrary site relabellings can 
generate  values of the test statistic which are  similar  
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Fig. 1.7.  Frierfjord macrofauna {F}.  a) Dendrogram for hier-
archical clustering (group-average linking); b) non-metric multi-
dimensional scaling (MDS) ordination in two dimensions; both 
computed for the four replicates from each of the six sites (A–E, 
G), using the similarity matrix partially shown in Table 1.4 (2-d 
MDS stress = 0.08) 

To the value for the real labelling, then there is clearly 
little evidence that the sites are biologically disting-
uishable.  This idea is formalised and extended to more 
complex sample designs in Chapter 6. For reasons 
which are described there it is preferable to compute 
an ‘among versus within site’ summary statistic 
directly from the (rank) similarity matrix rather than 
the distances on the MDS plot.  This, and the analogy 
with ANOVA, suggests the term ANOSIM for the 
test  (Analysis of Similarities,  Clarke and Green, 1988; 
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Fig. 1.8.  Loch Linnhe macrofauna {L}.  2-dimensional principal 

components analysis (PCA) ordination of the √√-transformed 
abundances from the 11 years 1963–1973 (% of variance 
explained only 57%, and not an ideal technique for such data).  

 
Clarke, 1993).¶  It is possible to employ the same test 
in connection with PCA, using an underlying dissimil-
arity matrix of Euclidean distances, though when the 
ordination is of a relatively small number of environ-
mental variables, which can be transformed into approx-
imate multivariate normality, then abiotic differences 
between sites can use a classical test (MANOVA, e.g. 
Mardia et al, 1979), a generalisation of ANOVA. 

Part of the process of discriminating sites, times, treat-
ments etc., where successful, is the ability to identify 
the species that are principally responsible for these 
distinctions: it is all too easy to lose sight of the basic 
data matrix in a welter of sophisticated multivariate 
analyses of samples.† Similarly, as a result of cluster 
analyses and associated a posteriori tests for the sig-
nificance of the groups of sites/times etc obtained 
(SIMPROF, Chapter 3), one would want to identify 
the species mainly responsible for distinguishing the 
clusters from each other. Note the distinction here 
between a priori groups, identified before examination 
of the data, for which ANOSIM tests are appropriate 
(Chapter 6), and a posteriori groups with membership 
identified as a result of looking at the data, for which 
ANOSIM is definitely invalid; they need SIMPROF. 

¶ PRIMER now performs tests for all 1-, 2- and 3-way crossed and/ 
or nested combinations of factors in its ANOSIM routine, also 
including a more indirect test, with a different form of statistic, 
for factors (with sufficient levels) which do not have replication 
within their levels. These are all robust, non-parametric (rank-
based) tests and therefore do not permit the (metric) partition of 
overall effects into ‘main’ and ‘interaction’ components. Within a 
semi-parametric framework (and still by permutation testing), 
such partitions are achieved by the PERMANOVA routine within 
the PERMANOVA+ add-on to PRIMER, Anderson et al (2008). 
† This has been rectified in PRIMER 7, with its greater emphasis 
on species analyses, such as Shade plots, SIMPROF tests for 
coherent species groups, segmented bubble plots etc (Chapter 7). 
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Fig. 1.9.  Frierfjord macrofauna {F}. Shade plot of 4th-root transformed species (rows) × samples (columns) matrix of abundances for 

the 4 replicate samples at each of 6 sites (Fig. 1.1, Table 1.2). The (linear) grey scale is shown in the key with back-transformed counts.  

Species analyses and displays are pursued in Chapter 7, 
and Fig. 1.9 gives a Shade Plot for the ‘most important’ 
∼50 species from the 110 recorded from the 24 samples 
of the Frierfjord macrobenthic abundance data of Table 
1.2. (‘Most important’ is here defined as all the species 
which account for at least 1% of the total abundance in 
one or more of the samples). The shade plot is a visual 
representation of the data matrix, after it has been 4th-
root transformed, in which white denotes absence and 
black the largest (transformed) abundance in the data. 
Importantly, the species axis has been re-ordered in 
line with a (displayed) cluster analysis of the species, 
utilising Whittaker’s Index of Association to give the 
among-species similarities, see Chapters 2 and 7. The 
pattern of differences between samples from the differ-
ing sites is clearly apparent, at least for the three main 
groups seen in the MDS plot of Fig. 1.7, viz. A, (B-D), 
(E-G). Such plots are also very useful in visualising the 
effects of different transformations on the data matrix, 
prior to similarity computation (see Clarke et al, 2014 
and Chapter 9). Without transformation, the shade plot 
would be largely white space with only a handful of 
species even visible (and thus contributing).  

Since ANOSIM indicates statistical significance and 
pairwise tests give particular site differences (Chapter 
6), a ranking of species contributions to the dissimilar-
ity between any specific pair of groups can be obtained 

from a similarity percentage breakdown (the SIMPER 
routine, Clarke 1993), see Chapter 7¶.  

The clustering of species in shade plots such as Fig. 1.9 
can be taken one stage further, to determine statistical 
significance of species groupings (a Type 3 SIMPROF 
test, see Chapter 7). This identifies groups of species 
within which the species have statistically indistingui-
shable patterns of abundance across the set of samples, 
and between which the patterns do differ significantly. 
Fig. 1.10 shows simple line plots for the standardised 
abundance of 51 species (those accounting for > 1% of 
the total abundance in any one year) over the 11 years 
of the Loch Linnhe sampling of Table 1.4 and Fig. 1.8. 
SIMPROF tests give 7 groups of species (one omitted 
contains just a single species found only in 1973). The 
standardisation puts each species on an equal footing, 
with its values summing to 100% across all samples. It 
can be seen how some species start to disappear, and 
others arrive, at the initial levels of disturbance, in the 
mid-years – some of the latter dying out as pollution 
increases in the later years – with further opportunists 
(Capitellids etc) flourishing at that point, and then 
declining with the improvement in conditions in 1973. 

¶ SIMPER in PRIMER first tabulates species contributions to the 
average similarity of samples within each group then of average 
dissimilarity between all pairs of groups. Two-way and (squared) 
Euclidean distance options are given, the latter for abiotic data.  
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Fig. 1.10.  Loch Linnhe macrofauna {L}. Line plots of the 11-

year time series for the ‘most important’ 51 species (see text), 
with y axis the standardised counts for each species, i.e. all 
species add to 100% across years. The 6 species groups (A-F), 
and a 7th consisting of a single species found in only one year, 
have internally indistinguishable curves (‘coherent species’) but 
the sets differ significantly from each other, by SIMPROF tests. 

In the determination of stress levels, whilst the multi-
variate techniques are sensitive (Chapter 14) and well-
suited to establishing community differences associated 
with different sites/times/treatments etc., their species-
specific basis would appear to make them unsuitable 
for drawing general inferences about the pollution 
status of an isolated group of samples.  Even in comp-
arative studies, on the face of it there is not a clear 
sense of directionality of change when it is established 
that communities at putatively impacted sites differ 
from those at control or reference sites in space or 
time (is the change ‘good’ or ‘bad’?).  Nonetheless, 
there are a few ways in which directionality has been 
asserted in published studies, whilst retaining a multi-
variate form of analysis (Chapter 15): 

a) a meta-analysis: a combined ordination of data 
from NE Atlantic shelf waters, at a coarse level of 
taxonomic discrimination (the effects of taxonomic 
aggregation are discussed in Chapter 10), suggests 
a common directional change in the balance of taxa 
under a variety of types of pollution or disturbance 
(Warwick and Clarke, 1993a); 

b) a number of studies demonstrate increased multi-
variate dispersion among replicates under impacted 
conditions, in comparison to controls (Warwick 
and Clarke, 1993b); 

c) another feature of disturbance, demonstrated in a 
spatial coral community study (but with wider 
applicability to other spatial and temporal patterns), 
is a loss of smooth seriation along transects of 
increasing depth, again in comparison to reference 
data in time and space (Clarke et al, 1993). 

Methods which link multivariate biotic patterns to 
environmental variables are explored in Chapter 11; 
these are illustrated here by the Garroch Head dump-
ground study described earlier (Fig. 1.5).  The MDS  
of the macrofaunal communities from the 12 sites is 
shown in Fig. 1.11a; this is based on Bray-Curtis simil-
arities computed from (transformed) species  biomass
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Fig. 1.11.  Garroch Head macrofauna {G}.  a) MDS ordination of Bray-Curtis similarities from √-transformed species biomass data for 

the sites shown in Fig. 1.5; b) the same MDS but with superimposed circles of increasing size, representing increasing carbon concentrat-
ions in matched sediment samples; c) ordination of (log-transformed) carbon, nitrogen and cadmium concentrations in the sediments at 
the 12 sites (2-d MDS stress = 0.05). 
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values.‡  Steady change in the community is apparent 
as the dump centre (site 6) is approached along the 
western arm of the transect (sites 1 to 6), then with a 
mirrored structure along the eastern arm (sites 6 to 
12), so that the samples from the two ends of the 
transect have similar species composition. That this 
biotic pattern correlates with the organic loading of 
the sediments can best be seen by superimposing the 
values for a single environmental variable, such as 
Carbon concentration, on the MDS configuration.  The 
bubble plot of Fig. 1.11b represents C values by circles 
of differing diameter, placed at the corresponding site 
locations on the MDS, and the pattern across sites of 
the 11 available environmental variables (sediment 
concentrations of C, N, Cu, Cd, Zn, Ni, etc.) can be 
viewed in this way (Chapter 11). This either uses a 
single abiotic variable at a time or displays several at 
once, as vectors – usually unsatisfactorily because it 
assumes a linear relationship of  the variable to the 
biotic ordination points – or (more satisfactorily) by 
segmented bubble plots in which each variable is only 
a circle segment, of different sizes but at the same 
position on the circle (of the type seen in Figs. 7.14-
16; see also Purcell et al 2014).§ 

Where bubble plots are not adequate, because the 2- 
or 3-d MDS is a poor approximation (high stress) to 
the biotic similarity matrix, an alternative technique 
is that of linkage trees (multivariate regression trees), 
which carry out constrained binary divisive clustering 
on the biotic similarities, each division of the samples 
(into ever smaller groups) being permitted only where 
it has an ‘explanation’ in terms of an inequality on 
one of the abiotic variables (Chapter 11), e.g. “group 
A splits into B and C  because all sites in group B 
have salinity > 20ppt but all in group C have salinity 
< 20ppt” and this gives the maximal separation of site 
A communities into two groups. Stopping the search 
for new divisions uses the SIMPROF tests that were 
mentioned earlier, in relation to unconstrained cluster 
methods (for a LINKTREE example see Fig. 11.14).  

A different approach is required in order to answer 
questions about combinations of environmental var-
iables, for example to what extent the biotic pattern 
can be ‘explained’ by knowledge of the full set, or a 
subset, of the abiotic variables.  Though there is clearly 

‡ Chapter 13, and the meta-analysis section in Chapter 15, discuss 
the relative merits and drawbacks of using species abundance or 
biomass when both are available; in fact, Chapter 13 is a wider 
discussion of the advantages of sampling particular components of 
the marine biota, for a study on the effects of pollutants. 
§ The PRIMER ‘bubble plot’ overlay can be on any ordination 
type, in 2- or 3-d, and has flexible colour/scaling options, as well 
as some scope for using a supplied image as the overlay. 

one strong underlying gradient in Fig. 1.11a (horizontal 
axis), corresponding to an increasing level of organic 
enrichment, there are nonetheless secondary community 
differences (e.g. on the vertical axis) which may be 
amenable to explanation by metal concentration diff-
erences, for example.  The heuristic approach adopted 
here is to display the multivariate pattern of the environ-
mental data, ask to what extent it matches the between-
site relationships observed in the biota, and then max-
imise some matching coefficient between the two, by 
examining possible subsets of the abiotic variables 
(the BEST procedure, Chapters 11 and 16).¶ 

Fig. 1.11c is based on this optimal subset for the Garroch 
Head sediment variables, namely (C, N, Cd).  It is an 
MDS plot, using Euclidean distance for its dissimilar-
ities,† and is seen to replicate the pattern in Fig. 1.11a 
rather closely. In fact, the optimal match is determined 
by correlating the underlying dissimilarity matrices 
rather than the ordinations themselves, in parallel with 
the reasoning behind the ANOSIM tests, seen earlier. 

The suggestion is therefore that the biotic pattern of 
the Garroch Head sites is associated not just with an 
organic enrichment gradient but also with a particular 
heavy metal.  It is important, however, to realise the 
limitations of such an ‘explanation’.  Firstly, there are 
usually other combinations of abiotic variables which 
will correlate nearly as well with the biotic pattern, 
particularly as here when the environmental variables 
are strongly inter-correlated amongst themselves.  
Secondly, there can be no direct implication of causality 
of the link between these abiotic variables and the 
community structure, based solely on field survey 
data: the real driving factors could be unmeasured but 
happen to correlate highly with the variables identified 
as producing the optimal match.  This is a general 
feature of inference from purely observational studies 
and can only be avoided formally by ‘randomising 
out’ effects of unmeasured variables; this requires 
random allocation of treatments to observational units 
for field or laboratory-based community experiments 
(Chapter 12).  

¶ The BEST/Bio-Env option in PRIMER optimises the match by 
examining all combinations of abiotic variables.  Where this is not 
computationally feasible, the BEST/BVStep option performs a 
stepwise search, adding (or subtracting) single abiotic variables at 
each step, much as in stepwise multiple regression.  Avoidance of a 
full search permits a generalisation to pattern-matching scenarios 
other than abiotic-to-biotic, e.g. BVStep can select a subset of 
species whose multivariate structure matches, to a high degree, 
the pattern for the full set of species (Chapter 16), thus indicating 
influential species or potential surrogates for the full community.  
† It is, though, virtually indistinguishable in this case from a PCA, 
because of the small number of variables and the implicit use of 
the same dissimilarity matrix for both techniques. 
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Table 1.7.  Nutrient enrichment experiment, Solbergstrand mesocosm, Norway {N}.  Meiofaunal abundances (shown for copepods only) 

from four replicate boxes for each of three treatments (Control, Low and High levels of added nutrients). 

 Control Low dose High dose 

            Species C1 C2 C3 C4 L1 L2 L3 L4 H1 H2 H3 H4 
             

Halectinosoma gothiceps 0 0 1 1 16 23 8 16 0 1 0 0 
Danielssania fusiformis 1 1 1 1 1 3 8 5 1 0 0 3 
Tisbe sp.1(gracilis group) 0 0 0 0 0 0 0 0 2 27 119 31 
Tisbe sp. 2 0 0 0 0 45 22 39 25 6 0 3 32 
Tisbe sp. 3 0 0 0 0 86 83 88 0 5 29 0 20 
Tisbe sp. 4 0 0 0 0 151 249 264 87 8 0 0 34 
Tisbe sp. 5 0 0 0 0 129 0 0 115 4 0 1 40 
Typhlamphiascus typhlops 4 2 2 4 5 8 4 3 0 0 0 0 
Bulpamphiascus imus 1 0 0 2 0 0 0 0 0 0 0 0 
Stenhelia reflexa 3 1 0 1 2 0 0 0 0 0 0 0 
Amphiascus tenuiremis 1 0 0 0 0 0 2 6 0 0 0 0 
Ameira parvula 0 0 0 0 4 2 3 2 2 0 1 2 
Proameira simplex 0 0 0 0 0 2 0 5 0 0 0 0 
Leptopsyllus paratypicus 0 0 1 0 0 0 0 0 0 0 0 0 
Enhydrosoma longifurcatum 2 2 1 2 3 1 0 0 0 0 0 0 
Laophontidae indet. 0 0 0 0 0 0 1 0 0 0 0 0 
Ancorabolis mirabilis 3 0 4 4 2 18 3 3 27 3 1 0 
Unidentified Copepodites 0 0 1 0 1 1 1 3 0 1 0 0 
 . . .             
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Fig. 1.12.  Nutrient enrichment experiment {N}.  Separate MDS 

ordinations of √√-transformed abundances for copepod and 
nematode species, in four replicate boxes from each of three 
treatments: Control, Low, High. (2-d MDS stresses: 0.09, 0.18) 

EXAMPLE: Nutrient enrichment 
experiment, Solbergstrand 

An example is given in Table 1.7 of meiofaunal comm-
unity data from a nutrient enrichment experiment in 
the Solbergstrand mesocosm, Norway {N}, in which 
12 undisturbed box cores of sediment were transferred 
into the mesocosm basins and separately dosed with 
two levels of increased nutrients (low, L, and high, H), 

 
with some boxes remaining undosed (control, C). Fig. 
1.12 shows the MDS plots of the four replicate boxes 
from each treatment, separately for the copepod and 
nematode components of the meiofaunal communities 
(see also Chapter 12).  For the copepods, there is a 
clear imputation of a (causal) response to the treat-
ment, though this is less apparent for the nematodes, 
and requires a test of the null hypothesis of ‘no treat-
ment effect’, using the ANOSIM test of Chapter 6. 

 
SUMMARY 

A framework has been outlined of three categories of 
technique (univariate, graphical/distributional and 
multivariate) and four analysis stages (representing 
communities, discriminating sites/conditions, deter-
mining levels of stress and linking to environmental 
variables).  The most powerful tools are in the multi-
variate category, and those that underlie the PRIMER 
routines are now examined from first principles.  
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CHAPTER 2: SIMPLE MEASURES OF SIMILARITY OF SPECIES 
‘ABUNDANCE’ BETWEEN SAMPLES 

 
SIMILARITY FOR QUANTITATIVE 
DATA MATRICES 

Data matrix 

The available biological data is assumed to consist of 
an array of p rows (species) and n columns (samples), 
whose entries are counts or densities of each species 
for each sample, or the total biomass of all individ-
uals, or their percentage cover, or some other quantity 
of each species in each sample, which we will typically 
refer to as abundance. This includes the special case 
where only presence (1) or absence (0) of each species 
is known.  For the moment nothing further is assumed 
about the structure of the samples.  They might consist 
of one or more replicates (repeated samples) from a 
number of different sites, times or experimental treat-
ments but this information is not used in the initial 
analysis.  The strategy outlined in Chapter 1 is to 
observe any pattern of similarities and differences 
across the samples (i.e. let the biology ‘tell its own 
story’) and then compare this with known or a priori 
hypothesised inter-relations between the samples based 
on environmental or experimental factors. 

Similarity coefficient 

The starting point for many of the analyses that follow 
is the concept of similarity (S) between any pair of 
samples, in terms of the biological communities they 
contain.  Inevitably, because the information for each 
sample is multivariate (many species), there are many 
ways of defining similarity, each giving different weight 
to different aspects of the community.  For example, 
some definitions might concentrate on the similarity 
in abundance of the few commonest species whereas 
others pay more attention to rarer species. 

The data matrix itself may first be modified; there are 
three main possibilities. 

a) The absolute numbers (/biomass/cover), i.e. the 
fully quantitative data observed for each species, 
are most commonly used.  In this case, two samples 
are considered perfectly similar only if they contain 
the same species in exactly the same abundance. 

b) The relative numbers (/biomass/cover) are some-
times used, i.e. the data is standardised to give the 
percentage of total abundance (over all species) 
that is accounted for by each species.  Thus each 
matrix entry is divided by its column total (and 

multiplied by 100) to form the new array.  Such 
standardisation will be essential if, for example, 
differing and unknown volumes of sediment or 
water are sampled, so that absolute numbers of 
individuals are not comparable between samples.  
Even if sample volumes are the same (or, if different 
and known, abundances are adjusted to a unit sample 
volume, to define densities), it may still sometimes 
be biologically relevant to define two samples as 
being perfectly similar when they have the same % 
composition of species, fluctuations in total abund-
ance being of no interest. (An example might be 
fish dietary data on the predated assemblage in the 
gut, where it is the fish doing the sampling and no 
control of total gut content is possible, of course.)  

c) A reduction to simple presence or absence of each 
species may be all that is justifiable, e.g. sampling 
artefacts may make quantitative counts unreliable, 
or concepts of abundance may be difficult to define 
for some important faunal components. 

A similarity coefficient S is conventionally defined to 
take values in the range (0, 100%), or alternatively 
(0, 1), with the ends of the range representing the 
extreme possibilities: 
S = 100% (or 1) if two samples are totally similar; 
S = 0 if two samples are totally dissimilar. 
Dissimilarity (δ) is defined simply as 100 – S, the 
“opposite side of the coin” to similarity.  

What constitutes total similarity, and particularly total 
dissimilarity, of two samples depends on the specific 
similarity coefficient adopted but there are clearly 
some properties that it would be desirable for a biol-
ogically-based coefficient to possess. Full discussion 
of these is given in Clarke et al (2006c), e.g. most 
ecologists would feel that S should equal zero when 
two samples have no species in common and S must 
equal 100% if two samples have identical entries 
(after modification, in cases b and c above). Such 
guidelines lead to a small set of coefficients termed 
the Bray-Curtis family by Clarke et al (2006c).  

Similarity matrix 

Similarities are calculated between every pair of 
samples and it is conventional to set these n(n–1)/2 
values out in a lower triangular matrix.  This is a 
square array, with row and column labels being the 
sample numbers 1 to n, but it is not necessary to fill 

 



 Chapter 2   
 page 2–2  
 
in either the diagonals (similarity of sample j with 
itself is always 100%!) or the upper right triangle (the 
similarity of sample j to sample k is the same as the 
similarity of sample k to sample j, of course). 

Similarity matrices are the basis (explicitly or implicitly) 
of many multivariate methods, both in the representation 
given by a clustering or ordination analysis and in some 
associated statistical tests.  A similarity matrix can be 
used to: 

a) discriminate sites (or times) from each other, by 
noting that similarities between replicates within a 
site are consistently higher than similarities between 
replicates at different sites (ANOSIM test, Chapter 
6); 

b) cluster sites into groups that have similar comm-
unities, so that similarities within each group of 
sites are usually higher than those between groups 
(Clustering, Chapter 3); 

c) allow a gradation of sites to be represented graph-
ically, in the case where site A has some similarity 
with site B, B with C, C with D but A and C are 
less similar, A and D even less so etc. (Ordination, 
Chapter 4). 

 
Species similarity matrix 

In a complementary way, the original data matrix can 
be thought of as describing the pattern of occurrences 
of each species across the given set of samples, and a 
matching triangular array of similarities can be con-
structed between every pair of species.  Two species 
are similar (S΄ near 100 or 1) if they have significant 
representation at the same set of sites, and totally 
dissimilar (S΄ = 0) if they never co-occur.  Species 
similarities are discussed later in this chapter, and the 
resulting clustering diagrams in Chapter 7 but, in most 
of this manual, ‘similarity’ refers to between-sample 
similarity. 
 
Bray-Curtis coefficient 

Of the numerous similarity measures that have been 
suggested over the years¶, one has become particularly 
common in ecology, usually referred to as the Bray-
Curtis coefficient, since Bray and Curtis (1957) were 
primarily responsible for introducing this coefficient 
into ecological work.  The similarity between the jth 

¶ Legendre and Legendre 1998 (& 2012), in their invaluable text on 
Numerical Ecology, give very many definitions of similarity, dis-
similarity and distance coefficients, and PRIMER follows their 
suggestion of the collective term resemblance to cover any such 
measure and, where possible, uses their numbering system. 

and kth samples, Sjk, has two definitions (they are 
entirely equivalent, as can be seen from some simple 
algebra or by calculating a few examples): 
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Here yij represents the entry in the ith row and jth 
column of the data matrix, i.e. the abundance for the ith 
species in the jth sample (i = 1, 2, ..., p; j = 1, 2, ..., n).  
Similarly, yik  is the count for the ith species in the kth 
sample.  ... represents the absolute value of the 
difference (the sign is ignored) and min(.,.) the 
minimum of the two counts; the separate sums in the 
numerator and denominator are both over all rows 
(species) in the matrix. 
 
EXAMPLE: Loch Linnhe macrofauna 

A trivial example, used in this and the following chapter 
to illustrate simple manual computation of similarities 
and hierarchical clusters, is provided by extracting six 
species and four years from the Loch Linnhe macro-
fauna data {L} of Pearson (1975), seen already in Fig. 
1.3 and Table 1.4.  (Of course, arbitrary extraction of 
‘interesting’ species and years is not a legitimate 
procedure in a real application; it is done here simply 
as a means of showing the computational steps.) 

Table 2.1.  Loch Linnhe macrofauna {L} subset.  (a) Abundance 
(unstransformed) for some selected species and years.  (b) The 
resulting Bray-Curtis similarities between every pair of samples. 

(a) Year: 64 68 71 73      (b)     
(Sample: 1  2  3   4) Sample 1 2 3 4 
Species          1 –    
Echinoca. 9 0 0 0      2 8 –   
Myrioche. 19 0 0 3      3 0 42 –  
Labidopl. 9 37 0 10      4 39 21 4 – 
Amaeana 0 12 144 9      
Capitella 0 128 344 2      
Mytilus 0 0 0 0      

 
Table 2.1a shows the data matrix of counts and Table 
2.1b the resulting lower triangular matrix of Bray-Curtis 
similarity coefficients.  For example, using the first 
form of equation (2.1), the similarity between samples 
1 and 4 (years 1964 and 1973) is: 
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The second form of equation (2.1) can be seen to give 
the same result: 

 3.39
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Computation is therefore simple and it is easy to verify 
that the coefficient possesses the following desirable 
properties. 

a) S = 0 if the two samples have no species in common, 
since min (yij, yik) = 0 for all i (e.g. samples 1 and 3 
of Table 2.1a).  Of course, S = 100 if two samples 
are identical, since |yij – yik| = 0 for all i. 

b) A scale change in the measurements does not change 
S.  For example, biomass could be expressed in g 
rather than mg or abundance changed from numbers 
per cm2 of sediment surface to numbers per m2; all 
y values are simply multiplied by the same constant 
and this cancels in the numerator and denominator 
terms of equation (2.1). 

c) ‘Joint absences’ also have no effect on S.  In Table 
2.1a the last species is absent in all samples; omitting 
this species clearly makes no difference to the two 
summations in equation (2.1).  That similarity should 
depend on species which are present in one or other 
(or both) samples, and not on species which are 
absent from both, is usually a desirable property.  
As Field et al (1982) put it: "taking account of joint 
absences has the effect of saying that estuarine and 
abyssal samples are similar because both lack outer-
shelf species”.  Note that a lack of dependence on 
joint absences is by no means a property shared by 
all similarity coefficients. 

 
Transformation of raw data 

In one or two ways, the similarities of Table 2.1b are 
not a good reflection of the overall match between the 
samples, taking all species into account.  To start with, 
the similarities all appear too low; samples 2 and 3 
would seem to deserve a similarity rating higher than 
50%.  As will be seen later, this is not an important 
consideration since most of the multivariate methods in 
this manual depend only on the relative order (ranking) 
of the similarities in the triangular matrix, rather than 
their absolute values.  More importantly, the similar-
ities of Table 2.1b are unduly dominated by counts 
for the two most abundant species (4 and 5), as can 
be seen from studying the form of equation (2.1): 

terms involving species 4 and 5 will dominate the 
sums in both numerator and denominator.  Yet the 
larger abundances in the original data matrix will often 
be extremely variable in replicate samples (the issue of 
variance structures in community data is returned to 
in Chapter 9) and it is usually undesirable to base an 
assessment of similarity of two communities only on 
the counts for a handful of very abundant species. 

The answer is to transform the original y values (the 
counts, biomass, % cover or whatever) before computing 
the Bray-Curtis similarities.  Two useful transformations 
are the root transform, √y, and the double root (or 4th 
root) transform, √√y.  There is more on the effects of 
transformation later, in Chapter 9; for now it is only 
necessary to note that the root transform, √y, has the 
effect of down-weighting the importance of the highly 
abundant species, so that similarities depend not only 
on their values but also those of less common (‘mid-
range’) species.  The 4th root transform, √√y, takes 
this process further, with a more severe down-weighting 
of the abundant species, allowing not only the mid-
range but also the rarer species to exert some influence 
on the calculation of similarity.  An alternative severe 
transformation, with very similar effect to the 4th root, 
is the log transform, log(1+y). 

The result of the 4th root transform for the previous 
example is shown in Table 2.2a, and the Bray-Curtis 
similarities computed from these transformed abund-
ances, using equation (2.1), are given in Table 2.2b.¶ 
There is a general increase in similarity levels but, of 
more importance, the rank order of similarities is no 
longer the same as in Table 2.1b (e.g. S24 > S14 and  
S34 > S12 now), showing that transformations can have 
a significant effect on the final multivariate display. 

Table 2.2.  Loch Linnhe macrofauna {L} subset.  (a) √√-trans-
formed abundance for the four years and six species of Table 2.1.  
(b) Resulting Bray-Curtis similarity matrix. 

(a) Year: 64 68 71 73      (b)     
(Sample: 1  2  3   4) Sample 1 2 3 4 
Species          1 –    
Echinoca. 1.7 0 0 0      2 26 –   
Myrioche. 2.1 0 0 1.3      3 0 68 –  
Labidopl. 1.7 2.5 0 1.8      4 52 68 42 – 
Amaeana 0 1.9 3.5 1.7      
Capitella 0 3.4 4.3 1.2      
Mytilus 0 0 0 0      

¶ After a range of Pre-treatment options (including transformat-
ion) Bray-Curtis is the default coefficient in the PRIMER Resem-
blance routine, on data defined as type Abundance (or Biomass), 
but PRIMER also offers nearly 50 other resemblance measures.  
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In fact, choice of transformation can be more important 
than level of taxonomic identification (see Chapter 16) 
especially when abundances are extreme, such as for 
highly-clumped or schooling species, when dispersion 
weighting, in place of (or prior to) transformation can 
be an effective strategy, see Chapter 9. 

Canberra coefficient 

An alternative which also reduces variability and may 
sometimes eliminate the need for transformation¶ is to 
select a similarity measure that automatically balances 
the weighting given to each species when computed on 
original counts. One such possibility, the Stephenson et 
al (1972) form of the so-called Canberra coefficient 
of Lance and Williams (1967), defines the similarity 
between samples j and k as: 
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This is another member of the ‘Bray-Curtis family’, 
bearing a strong likeness to (2.1), but the absolute 
differences in counts for each species are separately 
scaled, i.e. the denominator scaling term is inside not 
outside the summation over species.  For example, 
from Table 2.1a, the Canberra similarity between 
samples 1 and 4 is: 
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Note that joint absences have no effect here because 
they are deliberately excluded (since 0/0 is undefined) 
and p is reset to be the number of species that are present 
in at least one of the two samples under consideration, 
an important step for a number of biological measures. 

The separate scaling constrains each species to make 
equal contribution (potentially) to the similarity between 
two samples.  However abundant a species is, its 
contribution to S can never be more than 100/p, and a 
rare species with a single individual in each of the two 
samples contributes the same as a common species 
with 1000 individuals in each.  Whilst there may be 
circumstances in which this is desirable, more often it 
leads to overdomination of the pattern by a large number 
of rare species, of no real significance.  (Often the 
sampling strategy is incapable of adequately quantifying 
the rarer species, so that they are distributed arbitrarily, 
to some degree, across the samples.) 

¶ This removes all differences across species in terms of absolute 
mean abundance but does not address erratic differences within 
species resulting from schooled or clumped arrivals over the 
samples. The converse is true of dispersion weighting.  

Correlation coefficient 

A common statistical means of assessing the relation-
ship between two columns of data (samples j and k 
here) is the standard product moment, or Pearson, 
correlation coefficient: 
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where jy⋅  is defined as the mean value over all species 
for the jth sample.  In this form it is not a similarity 
coefficient, since it takes values in the range (–1, 1), 
not (0, 100), with positive correlation (r near +1) if high 
counts in one sample match high counts in the other, 
and negative correlation (r < 0) if high counts match 
absences.  There are a number of ways of converting 
r to a similarity coefficient, the most obvious for 
community data being S = 50(1+r). 

Whilst correlation is sometimes used as a similarity 
coefficient, it is not particularly suitable for much 
biological community data, with its plethora of zero 
values. For example, it violates the criterion that S 
should not depend on joint absences; here two 
columns are more highly positively correlated (and 
give S nearer 100) if species are added which have 
zero counts for both samples.  If correlation is to be 
used a measure of similarity, it makes good sense to 
transform the data initially, exactly as for the Bray-
Curtis computation, so that large counts or biomass 
do not totally dominate the coefficient. 

General suitability of Bray-Curtis 

The ‘Bray-Curtis family’ is defined by Clarke et al 
(2006c) as any similarity which satisfies all of the 
following desirable, ecologically-oriented guidelines† 

a) takes the value 100 when two samples are identical 
(applies to most coefficients); 

b) takes the value 0 when two samples have no species 
in common (this is a much tougher condition and 
most coefficients do not obey it); 

† They are not, of course, universally accepted as desirable! In non-
ecological contexts there may be no concept of zero as a ‘special’ 
number, which must be preserved under transformation because it 
indicates absence of a species (and ecological work is often concerned 
as much with the balance of species that are present or absent, as it is 
with the numbers of individuals found). Even in ecological contexts, 
some authors prefer not to use a coefficient which has a finite limit 
(100% = perfect dissimilarity), in part because of technical difficulties 
this may cause for parametric or semi-parametric modelling when 
there are many samples with no species in common. These technical 
issues do not arise for the flexible rank-based methods advocated here 
(such as non-metric multi-dimensional scaling ordination).  
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c) a change of measurement unit does not affect its value 
(most coefficients obey this one); 

d) value is unchanged by inclusion or exclusion of a 
species which is jointly absent from the two samples 
(another difficult condition to satisfy, and many 
coefficients do not obey this one); 

e) inclusion (or exclusion) of a third sample, C, in the 
data array makes no difference to the similarity 
between samples A and B (several coefficients do 
not obey this, because they depend on some form 
of standardisation carried out for each species, by 
the species total or maximum across all samples); 

f) has the flexibility to register differences in total 
abundance for two samples as a less-than-perfect 
similarity when the relative abundances for all species 
are identical (some coefficients standardise auto-
matically by sample totals, so cannot reflect this 
component of similarity/difference). 

In addition, Faith et al (1987) use a simulation study 
to look at the robustness of various similarity coeff-
icients in reconstructing a (non-linear) ecological 
response gradient.  They find that Bray-Curtis and a 
very closely-related modification (also in the Bray-
Curtis family), the Kulczynski coefficient  
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(Kulczynski 1928), perform most satisfactorily¶. 

Coefficients other than Bray-Curtis, which satisfy all 
of the above conditions, tend either to have counter-
balancing drawbacks, such as the Canberra measure’s 
forced equal weighting of rare and common species, 
or to be so closely related to Bray-Curtis as to make 
little practical difference to  most analyses, such as 
the  Kulczynski coefficient, which clearly reverts to 
Bray-Curtis exactly for standardised samples (when 
sample totals are all 100).   

¶ This is simply the second form of the Bray-Curtis definition in 
(2.1), with the denominator terms of the arithmetic mean of the 
two sample totals across species, (f+g)/2, being replaced with a 
harmonic mean, 2/(f-1+g-1). In the current authors’ experience, 
this behaves slightly less well than Bray-Curtis because of the 
way a harmonic mean is strongly dragged towards the smallest of 
the totals f and g. Clarke et al (2006c) define an intermediate 
option (also therefore in the Bray-Curtis family) which has a 
geometric mean divisor (fg)0.5. This is termed quantitative Ochiai 
because it reduces to a well-known measure (Ochiai 1957) when 
the data are only of presences or absences. The serious point here 
is that it is sufficiently easy to produce new, sensible similarity 
coefficients that some means of summarising their ‘similarity’ to 
each other, in terms of their effects on a multivariate analysis, is 
essential. This is deferred until the 2nd stage plots of Chapter 16. 

PRESENCE/ABSENCE DATA 

As discussed at the beginning of this chapter, quantit-
ative uncertainty may make it desirable to reduce the 
data simply to presence or absence of each species in 
each sample, or this may be the only feasible or cost-
effective option for data collection in the first place.  
Alternatively, reduction to presence/absence may be 
thought of as the ultimate in severe transformation of 
counts; the data matrix (e.g. in Table 2.1a) is replaced 
by 1 (presence) or 0 (absence) and Bray-Curtis similarity 
(say) computed. This will have the effect of giving 
potentially equal weight to all species, whether rare 
or abundant (and will thus have somewhat similar effect 
to the Canberra coefficient, a suggestion confirmed 
by the comparative analysis in Chapter 16). 

Many similarity coefficients have been proposed based 
on (0, 1) data arrays; see for example, Sneath and 
Sokal (1973) or Legendre and Legendre (1998).  When 
computing similarity between samples j and k, the 
two columns of data can be reduced to the following 
four summary statistics without any loss of relevant 
information: 
a = the number of species which are present in both 

samples; 
b = the number of species present in sample j but absent 

from sample k; 
c = the number of species present in sample k but absent 

from sample j; 
d = the number of species absent from both samples. 

For example, when comparing samples 1 and 4 from 
Table 2.1a, these frequencies are: 

  Sample 4:    1    0 
Sample 1: 1  a = 2 b = 1 
 0  c = 2 d = 1 

In fact, because of the symmetry, coefficients must be 
a symmetric function of b and c, otherwise S14 will not 
equal S41. Also, similarity measures not affected by 
joint absences will not contain d.  The following are 
some of the more commonly advocated coefficients. 

The simple matching similarity between samples j 
and k is defined as: 

     Sjk = 100[(a + d)/(a + b + c + d)]  (2.5) 

so called because it represents the probability (×100) 
of a single species picked at random (from the full 
species list) being present in both samples or absent 
in both samples. Note that S is a function of d here, 
and thus depends on joint absences. 

 

                                                           



 Chapter 2   
 page 2–6  
 
If the simple matching coefficient is adjusted, by first 
removing all species which are jointly absent from 
samples j and k, one obtains the Jaccard coefficient: 

     Sjk = 100[a/(a + b + c)]   (2.6) 

i.e. S is the probability (×100) that a single species 
picked at random (from the reduced species list) will 
be present in both samples. 

A popular coefficient found under several names, 
commonly Sørensen or Dice, is 

     Sjk = 100[2a/(2a + b + c)]   (2.7) 

Note that this is identical to the Bray-Curtis coeff-
icient when the latter is calculated on (0, 1) presence 
/absence data, as can be seen most clearly from the 
second form of equation (2.1).¶  For example, reducing 
Table 2.1a to (0, 1) data, and comparing samples 1 and 
4 as previously, equation (2.1) gives: 
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This is clearly the same construction as substituting 
a = 2, b = 1, c = 2 into equation (2.7). 

Several other coefficients have been proposed; Legendre 
and Legendre (1998) list at least 15, but only one further 
measure is given here. In the light of the earlier discuss-
ion on coefficients satisfying desirable, biologically-
motivated criteria, note that there is a presence/absence 
form of the Kulczynski coefficient (2.4), a close relative 
of Bray-Curtis/Sørensen, namely: 
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RECOMMENDATIONS 

1) In most ecological studies, some intuitive axioms 
for desirable behaviour of a similarity coefficient 
lead to the use of the Bray-Curtis coefficient (or a 
closely-related measure such as Kulczynski). 

2) Similarities calculated on original abundance (or 
biomass) values can often be over-dominated by a 
small number of highly abundant (or large-bodied) 
species, so that they fail to reflect similarity of overall 
community composition. 

¶ Thus the Sorensen coefficient can be obtained in two ways in 
the PRIMER Resemblance routine, either by taking S8 Sorensen 
in the P/A list or by transforming the data to presence/absence and 
selecting Bray-Curtis similarity. 

3) Some coefficients (such as Canberra and that of 
Gower 1971, see later), which separately scale the 
contribution of each species to adjust for this, have 
a tendency to over-compensate, i.e. rare species, 
which may be arbitrarily distributed across the 
samples, are given equal weight to abundant ones.  
The same criticism applies to reduction of the data 
matrix to simple presence/absence of each species. 
In addition, the latter loses potentially valuable 
information about the approximate numbers of a 
species (0: absent, 1: singleton, 2: present only as a 
handful of individuals, 3: in modest numbers, 4: in 
sizeable numbers; 5: abundant; 6: highly abundant. 
This apparently crude scale can often be just as 
effective as analysing the precise counts in a multi-
variate analysis, which typically extracts a little 
information from a lot of species). 

4) A balanced compromise is often to apply the Bray-
Curtis similarity to counts (or biomass, area cover 
etc) which have been moderately, √y, or fairly 
severely transformed, log(1+y) or √√y (i.e. y0.25). 
Most species then tend to contribute something to 
the definition of similarity, whilst the retention of 
some information on species numbers ensures that 
the more abundant species are given greater weight 
than the rare ones. A good way of assessing where 
this balance lies – how much of the matrix is being 
used for any specific transformation – is to view 
shade plots of the data matrix, as seen in Figs. 7.7 
to 7.10 and 9.5 and 9.6.  

5) Pre-treating the data, prior to transformation, by 
standardisation of samples is sometimes desirable, 
depending on  the context. This divides each count 
by the total abundance of all species in that sample 
and multiplies up by 100 to give a percent comp-
osition (or perhaps standardises by the maximum 
abundance). Worries that this somehow makes the 
species variables non-independent, since they must 
now add to 100, are misplaced: species variables 
are always non-independent – that is the point of 
multivariate analysis! Without sample standardisat-
ion, the Bray-Curtis coefficient will reflect both 
compositional differences among samples and (to a 
weak extent after transformation) changing total 
abundance at the different sites/times/treatments.†  

† The latter is usually thought necessary, by marine benthic ecol-
ogists at least: if everything becomes half as abundant they want 
to know about it! However, much depends on the sampling device 
and the patchiness of biota; plankton ecologists usually do stand-
ardise, as will kick-samplers in freshwater, where there is much 
less control of ‘sample volume’. Standardisation removes any 
contribution from totals but it does not remove the subsequent 
need to transform, in order to achieve a better balance of the 
abundant and rarer species. 
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SPECIES SIMILARITIES 

Starting with the original data matrix of abundances 
(or biomass, area cover etc), the similarity between 
any pair of species can be defined in an analogous 
way to that for samples, but this time involving 
comparison of the ith and lth row (species) across all 
j = 1, ..., n columns (samples). 

Bray-Curtis coefficient 

The Bray-Curtis similarity between species i and l is: 

     












+

−
−=′

∑
∑

=

=
n
j ljij

n
j ljij

il
yy

yy
S

1

1

)(
1100   (2.9) 

The extreme values are (0, 100) as previously: 
S′ = 0 if two species have no samples in common (i.e. 

are never found at the same sites) 
S′ = 100 if the y values for two species are the same at 

all sites 
However, different initial treatment of the data is 
required, in two respects. 

1) Similarities between rare species have little meaning; 
very often such species have single occurrences, 
distributed more or less arbitrarily across the sites, 
so that S′ is usually zero (or occasionally 100).  If 
these values are left in the similarity matrix they 
will tend to confuse and disrupt the patterns in any 
subsequent multivariate analysis; the rarer species 
should thus be omitted from the data matrix before 
computing species similarities. 

2) A different form of standardisation (species standard-
isation) of the data matrix is relevant and, in contrast 
to the samples analysis, it usually makes sense to 
carry this out routinely, usually in place of a trans-
formation¶. Two species could have quite different 
mean levels of abundance yet  be perfectly similar 
in the sense that their counts are in strict ratio to 
each other across the samples.  One species might be 
of much larger body size, and thus tend to have 
smaller counts, for example; or there might be a 
direct host-parasite relationship between the two 
species.  It is therefore appropriate to standardise the 
original data by dividing each entry by its species 
total over samples, and multiplying by 100: 

¶ Species standardisation will remove the typically large overall 
abundance differences between species (which is one reason we 
needed transformation for a samples analysis, which dilutes this 
effect without removing it altogether) but it does not address the 
issue of large outliers for single species across samples. Trans-
formations might help here but, in that case, they should be done 
before the species standardisation.  

         ∑ ==′ n
k ikijij yyy 1100              (2.10) 

before computing the similarities (S′).  The effect 
of this can be seen from the artificial example in the 
following table, for three species and five samples.  
For the original matrix, the Bray-Curtis similarity 
between species 1 and 2, for example, is only S′ = 
33% but the two species are found in strict proportion 
to each other across the samples so that, after row 
standardisation, they have a more realistic similarity 
of S′ = 100%.   

  Counts    Similarities   
Sample 1 2   3 4 5  Species 1 2 3 
Species       1 –   

1 2 0 0 4 4  2 33 –  
2 10 0 0 20 20  3 20 7 – 
3 0 4 4 1 1      
  

↓ Standardise 
    

Sample 1 2   3 4 5  Species 1 2 3 
Species       1 –   

1 20 0 0 40 40  2 100 –  
2 20 0 0 40 40  3 20 20 – 
3 0 40 40 10 10      

Correlation coefficient 

The standard product moment correlation coefficient 
defined in equation (2.3), and subsequently modified 
to a similarity, is perhaps more appropriate for defining 
species similarities than it was for samples, in that it 
automatically incorporates a type of row standardisation.  
In fact, this is a full normalisation (subtracting the 
row mean from each count and dividing by the row 
standard deviation) and it is less appropriate than the 
simple row standardisation above. One of the effects 
of normalisation here is to replace zeros in the matrix 
with largish negative values which differ from species 
to species – the presence/absence structure is entirely 
lost. The previous argument about the effect of joint 
absences is equally appropriate to species similarities: 
an inter-tidal species is no more similar to a deep-sea 
species because neither is found in shelf samples.  A 
correlation coefficient will again be a function of joint 
absences; the Bray-Curtis coefficient will not. 

RECOMMENDATION 

For species similarities, a coefficient such as Bray-
Curtis calculated on row-standardised and untrans-
formed data seems most appropriate.  The rarer species 
(often at least half of the species set) should first be 
removed from the matrix, to have any chance of an 
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interpretable multivariate clustering or other analysis.  
There are several ways of doing this, all of them 
arbitrary to some degree.  Field et al (1982) suggest 
removal of all species that never constitute more than 
q% of the total abundance (/biomass/cover) of any 
sample, where q is chosen to retain around 50 or 60 
species (typically q = 1 to 3%, for benthic macrofauna 
samples).  This is preferable to simply retaining the 
50 or 60 species with the highest total abundance 
over all samples, since the latter strategy may result 
in omitting several species which are key constituents 
of a site which is characterised by a low total number 
of individuals.¶  It is important to note, however, that 
this inevitably arbitrary process of omitting species is 
not necessary for the more usual between-sample 
similarity calculations.  There the computation of the 
Bray-Curtis coefficient downweights the contribut-
ions of the less common species in an entirely natural 
and continuous fashion (the rarer the species the less 
it contributes, on average), and all species should be 
retained in those calculations. 

DISSIMILARITY COEFFICIENTS 

The converse concept to similarity is that of dissimil-
arity, the degree to which two samples are unlike each 
other. As previously stated, similarities (S) can be 
turned into dissimilarities (δ), simply by:   

      δ  = 100 – S (2.11) 

which of course has limits δ  = 0 (no dissimilarity) 
and δ  = 100 (total dissimilarity). δ is a more natural 
starting point than S when constructing ordinations, in 
which dissimilarities between pairs of samples are 
turned into distances (d) between sample locations on 
a ‘map’ – the highest dissimilarity implying, naturally, 
that the samples should be placed furthest apart. 

Bray-Curtis dissimilarity is thus defined by (2.1) as: 
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¶ The PRIMER Resemblance routine will compute Bray-Curtis 
species similarities, though you need to have previously species- 
standardised the matrix (by totals) in the Pre-treatment routine. An 
alternative is to directly calculate Whittaker’s Index of Association on 
the species, see (7.1), since this is the same calculation except that it 
includes the standardisation step as part of the coefficient definition.  
(As Chapter 7 shows, if you are planning on using the SIMPROF test 
on species, described there, species standardisation is still needed). 
Prior to this, the Select Variables option allows reduction of the 
number of species, by retaining those that contribute q% or more 
to at least one of the samples, or by specifying the number n of 
‘most important’ species to retain. The latter uses the same q% 
criterion but gradually increases q until only n species are left. 

However, rather than conversion from similarities, 
other important measures arise in the first place as 
dissimilarities, or more often distances, the key diff-
erence between the latter being that distances are not 
limited to a finite range but defined over (0, ∞). They 
may be calculated explicitly or have an implicit role 
as the distance measure underlying a specific ordin-
ation method, e.g. as Euclidean distance is for PCA 
(Principal Components Analysis, Chapter 4) or chi-
squared distance for CA (Correspondence Analysis).  

Euclidean distance 

The natural distance between any two points in space 
is referred to as Euclidean distance (from classical or 
Euclidean geometry).  In the context of a species abund-
ance matrix, the Euclidean distance between samples 
j and k is defined algebraically as: 
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This can best be understood, geometrically, by taking 
the special case where there are only two species so that 
samples can be represented by points in 2-dimensional 
space, namely their position on the two axes of Species 1 
and Species 2 counts.  This is illustrated below for a 
simple two samples by two species abundance matrix.  
The co-ordinate points (2, 3) and (5, 1) on the (Sp. 1, 
Sp. 2) axes are the two samples j and k.  The direct 
distance djk between them of √[(2–5)2 + (3–1)2] (from 
Pythagoras) clearly corresponds to equation (2.13). 

Sample: j k

Sp 1 2 5
Sp 2 3 1

3

1

2 5

Sp 2

Sp 1

Euclidean
Manhatten

j

k

 
It is easy to envisage the extension of this to a matrix 
with three species; the two points are now simply 
located on 3-dimensional species axes and their straight 
line distance apart is a natural geometric concept.  
Algebraically, it is the root of the sums of squared 
distances apart along the three axes, equation (2.13) –
Pythogoras applies in any number of dimensions!  
Extension to four and higher numbers of species (dimen-
sions) is harder to envisage geometrically, in our 3-
dimensionsal world, but the concept remains unchanged 
and the algebra is no more difficult to understand in 
higher dimensions than three: additional squared dist-
ances apart on each new species axis are added to the 
summation under the square root in (2.13).  In fact, 
this concept of representing a species-by-samples 
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matrix as points in high-dimensional species space is 
a very fundamental and important one and will be met 
again in Chapter 4, where it is crucial to an under-
standing of Principal Components Analysis. 

Manhattan distance 

Euclidean distance is not the only way of defining dist-
ance apart of two samples in species space; an altern-
ative is to sum the distances along each species axis: 

     ∑ = −= p
i ikijjk yyd 1  (2.14) 

This is often referred to as Manhattan (or city-block) 
distance because in two dimensions it corresponds to 
the distance you would have to travel to get between 
any two locations in a city whose streets are laid out 
in a rectangular grid.  It is illustrated in the simple 
figure above by the dashed lines.  Manhattan distance is 
of interest here because of its obvious close affinity 
to Bray-Curtis dissimilarity, equation (2.12). In fact, 
when a data matrix has initially been sample standard-
ised (but not transformed), Bray-Curtis dissimilarity 
is just (half) the Manhattan distance, since the sum-
mation in the bottom line of (2.12) then always takes 
the value 200. 

In passing, it is worth noting a point of terminology, 
though not of any great practical consequence for us. 
Euclidean and Manhattan measures, (2.13) and (2.14), 
are known as metrics because they obey the triangle 
inequality, i.e. for any three samples j, k, r: 

     djk + dkr ≥  djr (2.15) 

Bray-Curtis dissimilarity does not, in general, satisfy 
the triangle inequality, so should not be called a metric.  
However, many other useful coefficients are also not 
metric distances.  For example, the square of Euclidean 
distance (i.e. equation (2.13) without the √ sign) is 
another natural definition of ‘distance’ which is not a 
metric, yet the values from this would have the same 
rank order as those from Euclidean distance and thus 
give rise, for example, to identical MDS ordinations 
(Chapter 5).  It follows that whether a dissimilarity 
coefficient is, or is not, a metric is likely to be of no 
practical significance for the non-parametric (rank-
based) strategy that this manual generally advocates.¶   
 
MORE ON RESEMBLANCE MEASURES 

On the grounds that it is better to walk before you try 
running, discussion of comparisons between specific 

¶ Though it is of slightly more consequence for the Principal Co-
ordinates Analysis ordination, PCO, and the semi-parametric 
modelling framework of the add-on PERMANOVA+ routines to 
PRIMER, see Anderson (2008), page 110. 

similarity, dissimilarity and distance coefficients, that 
the PRIMER software refers to generally by the term 
resemblance measures, is left until after presentation 
of a useful suite of multivariate analyses that can be 
generated from a given set of sample resemblances, 
and then how such sets of resemblances themselves 
can be compared (second-stage analysis, Chapter 16). 
One topic can realistically be addressed here, though.  

Missing data and resemblance calculation  

Missing data in this context does not mean missing 
whole samples (e.g. the intention was to collect five 
replicates but at one location only four were taken). 
The latter is better described as unbalanced sampling 
design and is handled automatically, and without 
difficulty, by most of the methods in this manual (an 
exception is when trying to link the biotic assemblage 
at a site to a set of measured environmental variables, 
e.g. in the BEST routine of Chapter 11, where a full 
match is required). Missing data here means missing 
values for only some of the combinations of variables 
(species) and samples. As such, it is more likely to 
occur for environmental-type variables or – to take an 
entirely different type of data – questionnaire returns. 
There, the variables are the different questions and 
the samples the people completing the questionnaire, 
and missing answers to questions are commonplace. 

Of course, one solution is to omit some combination 
of variables and samples such that a complete matrix 
results, but this might throw away a great deal of the 
data. Separately for each sample pair whose resem-
blance is being calculated, one could eliminate any 
variables with a missing value in either sample (this 
is known as pairwise elimination of missing values). 
But this can be biased for some coefficients, e.g. the 
Euclidean distance (2.13) sums the (squared) contrib-
utions from each variable; if several variables have to 
be omitted for one distance calculation, but none are 
left out for a second distance, then the latter will be 
an (artefactually) larger distance, inevitably. The 
same will be true of, for example, Manhattan distance 
but not of some other measures, such as Bray-Curtis 
or average Euclidean (which divides the Euclidean 
distance by p’, the fluctuating number of terms being 
summed over) – in fact for anything which behaves 
more like an average of contributions rather than a  
sum. An approximate correction for this crude bias 
can be made for all coefficients, where necessary.† 

† Earlier PRIMER versions did not offer this, but v7 makes this bias 
correction for all coefficients that need it, e.g. for standard Euclidean 
distance, the pairwise-eliminated distance is multiplied by √(p/p’), 
where p is the (fixed) number of variables in the matrix and p’ the 
(differing) number of retained pairs for each specific distance. Man-
hattan uses factor (p/p’) but the Bray-Curtis family does not need it.  
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Variable weighting in resemblance calculation 

We have already mentioned the effects of transform-
ation on the outcome of a resemblance calculation 
and Chapter 9 discusses this in more detail, ending 
with a description of another  important pre-treatment 
method, as an alternative to (or precursor of) trans-
forming abundances, viz. the differential weighting of 
species by dispersion weighting. This down-weights 
species whose counts are shown to be unreliable in 
replicates of the same site/time/condition, i.e. they 
have a high variance-to-mean ratio (dispersion index) 
over such replicates. The solution, in a quite general 
way, is to downweight each species contribution by 
the dispersion index, averaged over replicates. In a 
rather similar idea, variables can be subjected to 
variability weighting, in which downweighting is not 
by the index of dispersion (suitable for species count 
data) but by the average standard deviation¶ over 
replicates. This is relevant to variables like indices 
(of diversity, health etc, see Hallett et al, 2012) and 
results in more weight being given to indices which 
are more reliable in repeated measurement. A final 
possibility in PRIMER is just to weight variables 
according to some pre-defined scale, e.g. in studies of 
coral communities by amateur divers, Mumby and 
Clarke (1993) give an example in which some species 
are often misidentified, with known rates calibrated 
against professional assessments; these species are 
thus downweighted in the resemblance calculation.  

RECOMMENDATION 

Thus, depending on the type of data, there are a 
variety of means to generate a resemblance matrix 
(similarity, dissimilarity or distance) to input to the 
next stage of a multivariate analysis, which might be 
either a clustering or ordination of samples, Fig. 2.1.  
For comparative purposes it may sometimes be of 
interest to use Euclidean distance in the species space 
as input to a cluster analysis (an example is given 
later in Fig. 5.5) but, in general, the recommendation 
remains unchanged: Bray-Curtis similarity/dissim-
ilarity, computed after suitable transformation, will 
often be a satisfactory coefficient for biological data 
of community structure. That is, use Bray-Curtis, or 
one of the closely related coefficients  satisfying the 
criteria given on page 2-4 (the ‘Bray-Curtis family’ of 
Clarke et al, 2006c) for data in which it is important 
to capture the structure of presences and absences in 
the samples in addition to the quantitative counts (or 
density/biomass/area cover etc) of the species which 
are present. Background physical or chemical data is a 
different matter since it is usually of a rather different 
type, and Chapter 11 shows the usefulness of the idea 
of linking to environmental variable space, assessed 
by Euclidean distance on normalised data. The first 
step though is to calculate resemblances for the biotic 
data on its own, followed by a cluster analysis or 
ordination (Fig. 2.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1.  Stages in a multivariate 
analysis based on (dis)simil-
arity coefficients. 

 
  

¶ The PRIMER Pre-treatment menu, under Variability Weighting, offers the choice between dividing each species through by its average 
replicate range, inter-quartile (IQ) range, standard deviation (SD) or pooled SD (as would be calculated in ANOVA from a common variance 
estimate, then square rooted). Note that this weighting uses only variability within factor levels not across the whole sample set, as in 
normalisation (dividing by overall SD). Clearly, variability weighting is only applicable when there are replicate samples, and these must be 
genuinely independent of each other, properly capturing the variability at each factor level, for the technique to be meaningful.  
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CHAPTER 3: CLUSTERING METHODS 
 

CLUSTER ANALYSIS 

The previous chapter has shown how to replace the 
original data matrix with pairwise similarities, chosen 
to reflect the particular aspect of community similarity 
of interest for that study (similarity in counts of abund-
ant species, similarity in location of rare species etc). 
Typically, the number of pairwise similarities is large, 
n(n–1)/2 for n samples, and it is difficult visually to 
detect a pattern in the triangular similarity matrix.  
Table 3.1  illustrates this for just part (roughly a quarter) 
of the similarity matrix for the Frierfjord macrofauna 
data {F}. Close examination shows that the replicates 
within site A generally have higher within-site similar-
ities than do pairs of replicates within sites B and C, or 
between-site samples, but the pattern is far from clear.  
What is needed is a graphical display linking samples 
that have mutually high levels of similarity. 

Table 3.1.  Frierfjord macrofauna counts {F}.  Bray-Curtis sim-
ilarities, on √√-transformed counts, for every pair of replicate 
samples from sites A, B, C only (four replicate samples per site). 

 A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 
A1 –            
A2 61 –           
A3 69 60 –          
A4 65 61 66 –         
B1 37 28 37 35 –        
B2 42 34 31 32 55 –       
B3 45 39 39 44 66 66 –      
B4 37 29 29 37 59 63 60 –     
C1 35 31 27 25 28 56 40 34 –    
C2 40 34 26 29 48 69 62 56 56 –   
C3 40 31 37 39 59 61 67 53 40 66 –  
C4 36 28 34 37 65 55 69 55 38 64 74 – 

Cluster analysis (or classification, see footnote on 
terminology on p1-2) aims to find natural groupings 
of samples such that samples within a group are more 
similar to each other, generally, than samples in diff-
erent groups. Cluster analysis is used in the present 
context in the following ways. 

a) Different sites (or different times at the same site) 
can be seen to have differing community composi-
tions by noting that replicate samples within a site 
form a cluster that is distinct from replicates within 
other sites.  This can be an important hurdle to over-
come in any analysis; if replicates for a site are 
clustered more or less randomly with replicates from 
every other site then further interpretation is likely 
to be dangerous.  (A more formal statistical test for 
distinguishing sites is the subject of Chapter 6). 

b) When it is established that sites can be distinguished 
from one another (or, when replicates are not taken, 
it is assumed that a single sample is representative 
of that site or time), sites or times can be partitioned 
into groups with similar community structure. 

c) Cluster analysis of the species similarity matrix can 
be used to define species assemblages, i.e. groups of 
species that tend to co-occur in a parallel manner 
across sites. 

Range of methods 

Literally hundreds of clustering methods exist, some 
of them operating on similarity/dissimilarity matrices 
whilst others are based on the original data.  Everitt 
(1980) and Cormack (1971) give excellent and readable 
reviews.  Clifford and Stephenson (1975) is another 
well-established text from an ecological viewpoint. 

Five classes of clustering methods can be distinguished, 
following the categories of Cormack (1971). 
1) Hierarchical methods. Samples are grouped and 

the groups themselves form clusters at lower levels 
of similarity. 

2) Optimising techniques. A single set of mutually 
exclusive groups (usually a pre-specified number) 
is formed by optimising some clustering criterion, 
for example minimising a within-cluster distance 
measure in the species space. 

3) Mode-seeking methods. These are based on consider-
ations of density of samples in the neighbourhood 
of other samples, again in the species space. 

4) Clumping techniques.  The term ‘clumping’ is 
reserved for methods in which samples can be placed 
in more than one cluster. 

5) Miscellaneous techniques. 

Cormack (1971) also warned against the indiscriminate 
use of cluster analysis: “availability of … classification 
techniques has led to the waste of more valuable scient-
ific time than any other ‘statistical’ innovation”.  The 
ever larger number of techniques and their increasing 
accessibility on modern computer systems makes this 
warning no less pertinent today.  The policy adopted 
here is to concentrate on a single technique that has 
been found to be of widespread utility in ecological 
studies, whilst emphasising the potential arbitrariness 
in all classification methods and stressing the need to 
perform a cluster analysis in conjunction with a range 
of other techniques (e.g. ordination, statistical testing) 
to obtain balanced and reliable conclusions.  
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HIERARCHICAL AGGLOMERATIVE 
CLUSTERING 

The most commonly used clustering techniques are 
the hierarchical agglomerative methods.  These usually 
take a similarity matrix as their starting point and succ-
essively fuse the samples into groups and the groups 
into larger clusters, starting with the highest mutual 
similarities then lowering the similarity level at which 
groups are formed, ending when all samples are in a 
single cluster. Hierarchical divisive methods perform 
the opposite sequence, starting with a single cluster and 
splitting it to form successively smaller groups. 

The result of a hierarchical clustering is represented 
by a tree diagram or dendrogram, with the x axis 
representing the full set of samples and the y axis 
defining a similarity level at which two samples or 
groups are considered to have fused.  There is no firm 
convention for which way up the dendrogram should 
be portrayed (increasing or decreasing y axis values) 
or even whether the tree can be placed on its side; all 
three possibilities can be found in this manual. 

Fig. 3.1 shows a dendrogram for the similarity matrix 
from the Frierfjord macrofauna, a subset of which is 
in Table 3.1.  It can be seen that all four replicates 
from sites A, D, E and G fuse with each other to form 
distinct site groups before they amalgamate with 
samples from any other site; that, conversely, site B 
and C replicates are not distinguished, and that A, E 
and G do not link to B, C and D until quite low levels 
of between-group similarities are reached. 
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Fig. 3.1. Frierfjord macrofauna counts {F}.  Dendrogram for 

hierarchical clustering (using group-average linking) of four 
replicate samples from each of sites A-E, G, based on the Bray- 
Curtis similarity matrix shown (in part) in Table 3.1.   

The mechanism by which Fig. 3.1 is extracted from 
the similarity matrix, including the various options 
for defining what is meant by the similarity of two 
groups of samples, is best described for a simpler 
example. 

Construction of dendrogram 

Table 3.2 shows the steps in the successive fusing of 
samples, for the subset of Loch Linnhe macrofaunal 
abundances used as an example in the previous chap-
ter. The data matrix has been √√-transformed, and the 
first triangular array is the Bray-Curtis similarity of 
Table 2.2. 

Samples 2 and 4 are seen to have the highest similar-
ity (underlined) so they are combined, at similarity 
level 68.1%. (Above this level there are considered to 
be four clusters, simply the four separate samples.)  A 
new similarity matrix is then computed, now contain-
ing three clusters: 1, 2&4 and 3.  The similarity 
between cluster 1 and cluster 3 is unchanged at 0.0 of 
course but what is an appropriate definition of 
similarity S(1, 2&4) between clusters 1 and 2&4, for 
example?  This will be some function of the simil-
arities S(1,2), between samples 1 and 2, and S(1,4), 
between 1 and 4; there are three main possibilities 
here. 

a) Single linkage.  S(1, 2&4) is the maximum of S(1, 2) 
and S(1, 4), i.e. 52.2%. 

b) Complete linkage.  S(1, 2&4) is the minimum of 
S(1, 2) and S(1, 4), i.e. 25.6%. 

c) Group-average link.  S(1, 2&4) is the average of 
S(1, 2) and S(1, 4), i.e. 38.9%. 

Table 3.2 adopts group-average linking, hence 

S(2&4, 3)  =  [S(2, 3) + S(4, 3)]/2  =  55.0 

The new matrix is again examined for the highest 
similarity, defining the next fusing; here this is bet-
ween 2&4 and 3, at similarity level 55.0%.  The 
matrix is again reformed for the two new clusters 1 
and 2&3&4 and there is only a single similarity, 
S(1, 2&3&4), to define.  For group-average linking, 
this is the mean of S(1, 2&4) and S(1, 3) but it must 
be a weighted mean, allowing for the fact that there 
are twice as many samples in cluster 2&4 as in cluster 
3.  Here: 

S(1, 2&3&4)  =  [2 × S(1, 2&4) + 1 × S(1, 3)]/3 

           =  (2 × 38.9 + 1 × 0)/3  =  25.9 

Though it is computationally efficient to form each 
successive similarity matrix by taking weighted aver-
ages of the similarities in the previous matrix (known 
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Table 3.2. Loch Linnhe macrofauna {L} subset. Abundance array after √√-transform, the resulting Bray-Curtis similarity matrix and 
the successively fused similarity matrices from a hierarchical clustering, using group average linking.  

Year: 64 68 71 73                
Sample: 1 2 3 4  Sample 1 2 3 4  Sample 1 2&4 3  Sample 1 2&3&4 
Species      1 –     1 –    1 –  
Echinoca. 1.7 0 0 0   → 2 25.6 –   → 2&4 38.9 –  → 2&3&4 25.9      – 
Myrioche. 2.1 0 0 1.3  3  0.0 67.9 –   3 0.0 55.0 –     
Labidopl. 1.7 2.5 0 1.8  4 52.2 68.1 42.0 –          
Amaeana 0 1.9 3.5 1.7                
Capitella 0 3.4 4.3 1.2                
Mytilus 0 0 0 0                

 
as combinatorial computation), an alternative which 
is entirely equivalent, and perhaps conceptually 
simpler, is to define the similarity between the two 
groups as the simple (unweighted) average of all 
between-group similarities in the initial triangular 
matrix (hence the terminology Unweighted Pair 
Group Method with Arithmetic mean, UPGMA¶). So: 

S(1, 2&3&4)  =  [S(1, 2) + S(1, 3) + S(1, 4)]/3  

           =  (25.6 + 0.0 + 52.2)/3  =  25.9, 

the same answer as above. 

The final merge of all samples into a single group 
therefore takes place at similarity level 25.9%, and 
the clustering process for the group-average linking 
shown in Table 3.2 can be displayed in the following 
dendrogram.  
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Dendrogram features 

This example raises a number of more general points 
about the use and appearance of dendrograms. 

1) Samples need to be re-ordered along the x axis, for 
clear presentation of the dendrogram; it is always 
possible to arrange samples in such an order that 
none of the dendrogram branches cross each other. 

¶ The terminology is inevitably a little confusing therefore! UPGMA 
is an unweighted mean of the original (dis)similarities among 
samples but this gives a weighted average among group dissimilar-
ities from the previous merges. Conversely, WPGMA (also known 
as McQuitty linkage) is defined as an unweighted average of group 
dissimilarities, leading to a weighted average of the original sample 
dissimilarities (hence WPGMA). 

2) The resulting order of samples on the x axis is not 
unique.  A simple analogy would be with an 
artist’s ‘mobile’; the vertical lines are strings and 
the horizontal lines rigid bars.  When the structure 
is suspended by the top string, the bars can rotate 
freely, generating many possible re-arrangements 
of samples on the x axis. For example, in the above 
figure, samples 2 and 4 could switch places (new 
sequence 4, 2, 3, 1) or sample 1 move to the opposite 
side of the diagram (new sequence 1, 2, 4, 3), but a 
sequence such as 1, 2, 3, 4 is not possible.  It follows 
that to use the x axis sequence as an ordering of 
samples is misleading. 

3) Cluster analysis attempts to group samples into dis-
crete clusters, not display their inter-relations on a 
continuous scale; the latter is the province of 
ordination and this would be preferable for the 
simple example above.  Clustering imposes a rather 
arbitrary grouping on what appears to be a contin-
uum of change from an unpolluted year (1964), 
through steadily increasing impact (loss of some 
species, increase in abundance of opportunists such 
as Capitella), to the start of a reversion to an 
improved condition in 1973.  Of course it is unwise 
and unnecessary to attempt serious interpretation 
of such a small subset of data but, even so, the 
equivalent MDS ordination for this subset (met in 
Chapter 5) contrasts well with the relatively un-
helpful information in the above dendrogram.   

4) The hierarchical nature of this clustering procedure 
dictates that, once a sample is grouped with others, 
it will never be separated from them in a later stage 
of the process.  Thus, early borderline decisions 
which may be somewhat arbitrary are perpetuated 
through the analysis and may sometimes have a 
significant effect on the shape of the final dendro-
gram.  For example, similarities S(2, 3) and S(2, 4) 
above are very nearly equal.  Had S(2, 3) been just 
greater than S(2, 4), rather than the other way round, 
the final picture would have been a little different.  
In fact, the reader can verify that had S(1, 4) been 

 

                                                           



 Chapter 3   
 page 3–4  
 

around 56% (say), the same marginal shift in the 
values of S(2, 4) and S(2, 3) would have had radical 
consequences, the final dendrogram now grouping 
2 with 3 and 1 with 4 before these two groups come 
together in a single cluster.  From being the first to 
be joined, samples 2 and 4 now only link up at the 
final step.  Such situations are certain to arise if, as 
here, one is trying to force what is essentially a 
steadily changing pattern into discrete clusters. 

 
Dissimilarities 

Exactly the converse operations are needed when 
clustering from a dissimilarity rather than a similarity 
matrix.  The two samples or groups with the lowest 
dissimilarity at each stage are fused.  The single link-
age definition of dissimilarity of two groups is the 
minimum dissimilarity over all pairs of samples bet-
ween groups; complete linkage selects the maximum 
dissimilarity and group-average linking involves just 
an unweighted mean dissimilarity. 
 
Linkage options 

The differing consequences of the three linkage options 
presented earlier† are most easily seen for the special 
case used in Chapter 2, where there are only two 
species (rows) in the original data matrix.  Samples 
are then points in the species space, with the (x,y) axes 
representing abundances of (Sp.1, Sp.2) respectively.  
Consider also the case where dissimilarity between 
two samples is defined simply as their (Euclidean) 
distance apart in this plot. 

† PRIMER v7 offers single, complete and group average linking, 
but also the flexible beta method of Lance and Williams (1967), in 
which the dissimilarity of a group (C) to two merged groups (A 
and B) is defined as δC,AB = (1 – β)[(δCA + δCB)/2] + βδAB.  If 
β = 0 this is WPGMA, (δCA+δCB)/2, the unweighted average of 
the two group dissimilarities. Only negative values of β, in the 
range (-1, 0), make much sense in theory; Lance and Williams 
suggest β = -0.25 (for which the flexible beta has affinities with 
Gower’s median method) but PRIMER computes a range of β 
values and chooses that which maximises the cophenetic correl-
ation. The latter is a Pearson matrix correlation between original 
dissimilarity and the (vertical) distance through a dendrogram 
between the corresponding pair of samples; a dendrogram is a 
good representation of the dissimilarity matrix if cophenetic 
correlation is close to 1. Matrix correlation is a concept used in 
many later chapters, first defined on page 6-14, though there 
(and usually) with a Spearman rank correlation; however the 
Pearson matrix correlation is available in PRIMER 7’s RELATE 
routine, and can be carried out on the cophenetic distance matrix 
available from CLUSTER. (It is also listed in the results window 
from a CLUSTER run). In practice, judged  on the cophenetic 
criterion, an optimum flexible beta solution is usually inferior to 
group average linkage (perhaps as a result of its failure to weight 
δCA and δCB appropriately when averaging ‘noisy’ data). 

Sp 2

Sp 1

Samples

Single link

Complete link

Group 1
Group 2

 

In the above diagram, the single link dissimilarity 
between Groups 1 and 2 is then simply the minimum 
distance apart of the two groups, giving rise to an 
alternative name for the single linkage, namely near-
est neighbour clustering.  Complete linkage dissimil-
arity is clearly the maximum distance apart of any two 
samples in the different groups, namely furthest neigh-
bour clustering.  Group-average dissimilarity is the 
mean distance apart of the two groups, averaging over 
all between-group pairs.  

Single and complete linkage have some attractive theor-
etical properties.  For example, they are effectively 
non-metric.  Suppose that the Bray-Curtis (say) simil-
arities in the original triangular matrix are replaced 
by their ranks, i.e. the highest similarity is given the 
value 1, the next highest 2, down to the lowest simil-
arity with rank n(n–1)/2 for n samples. Then a single 
(or complete) link clustering of the ranked matrix will 
have the exactly the same structure as that based on 
the original similarities (though the y axis similarity 
scale in the dendrogram will be transformed in some 
non-linear way).  This is a desirable feature since the 
precise similarity  values will not often have any direct 
significance; what matters is their relationship to each 
other and any non-linear (monotonic) rescaling of the 
similarities would ideally not affect the analysis.  This 
is also the stance taken for the preferred ordination 
technique in this manual’s strategy, the method of 
non-metric multi-dimensional scaling (MDS, see 
Chapter 5). 

However, in practice, single link clustering has a 
tendency to produce chains of linked samples, with 
each successive stage just adding another single 
sample onto a large group.  Complete linkage will 
tend to have the opposite effect, with an emphasis on 
small clusters at the early stages.  (These character-
istics can be reproduced by experimenting with the 
special case above, generating nearest and furthest 
neighbours in a 2-dimensional species space).  
Group-averaging, on the other hand, is often found 
empirically to strike a balance in which a moderate 
number of medium-sized clusters are produced, and 
only grouped together at a later stage. 
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Fig. 3.2  Bristol Channel zooplankton {B}. Sampling sites.  

 
EXAMPLE: Bristol Channel zooplankton 

Collins and Williams (1982) perform hierarchical 
cluster analyses of zooplankton samples, collected by 
double oblique net hauls at 57 sites in the Bristol 
Channel UK, for three different seasons in 1974 {B}.  
This was not a pollution study but a baseline survey 
carried out  by the Plymouth laboratory, as part of a 
major programme to understand and model the eco-
system of the estuary.  Fig. 3.2 is a map of the sample 
locations, sites 1-58 (site 30 not sampled). 

Fig. 3.3 shows the results of a hierarchical clustering 
using group-average linking of the 57 sites. The raw 
data were expressed as numbers per cubic metre for 
each of 24 holozooplankton species, and Bray-Curtis 
similarities calculated on √√-transformed densities.  
From the resulting dendrogram, Collins and Williams 
select the four groups determined at a 55% similarity 
level and characterise these as true estuarine (sites 1-
8, 10, 12), estuarine and marine (9, 11, 13-27, 29), 
euryhaline marine (28, 31, 33-35, 42-44, 47-50, 53-
55) and stenohaline marine (32, 36-41, 45, 46, 51, 52, 
56-58).  A corresponding clustering of species and a 
re-ordering of the rows and columns of the original 
data matrix allows the identification of a number of 
species groups characterising these main site clusters, 
as is seen later (Chapter 7). 

The dendrogram provides a sequence of fairly con-
vincing groups; once each of the four main groups has 
formed it remains separate from other groups over a 
relatively large drop in similarity.  Even so, a cluster 
analysis gives an incomplete and disjointed picture of 
the sample pattern.  Remembering the analogy of the 
‘mobile’, it is not clear from the dendrogram alone 
whether there is any natural sequence of community 
change across the four main clusters (implicit in the 
designations true estuarine, estuarine and marine, 
euryhaline marine, stenohaline marine).  For example, 
the stenohaline marine group could just as correctly 
have been rotated to lie between the estuarine and 
marine and euryhaline marine groups.  In fact, there is 
a strong (and more-or-less continuous) gradient of 
community change across the region, associated with 
the changing salinity levels.  This is best seen in an 
ordination of the 57 samples on which are superimposed 
the salinity levels at each site; this example is there-
fore returned to in Chapter 11. 

RECOMMENDATIONS 

1) Hierarchical clustering with group-average linking, 
based on sample similarities or dissimilarities such 
as Bray-Curtis, has proved a useful technique in a 
number of ecological studies of the past half-century.  
It is appropriate for delineating groups of sites with
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Fig. 3.3. Bristol Channel zooplankton {B}.  Dendrogram for hierarchical clustering of the 57 sites, using group-average linking of 

Bray-Curtis similarities calculated on √√-transformed abundance data. The three groups produced by an (arbitrary) threshold 
similarity of 50% are shown.  

distinct community structure (this is not to imply 
that groups have no species in common, of course, 
but that different characteristic patterns of abundance 
are found consistently in different groups). 

2) Clustering is less useful (and could sometimes be 
misleading) where there is a steady gradation in 
community structure across sites, perhaps in response 
to strong environmental  forcing (e.g. large range 
of salinity, sediment grain size,  depth of water 
column, etc). Ordination is preferable in these 
situations. 

3) Even for samples which are strongly grouped, 
cluster analysis is often best used in conjunction 
with ordination.  Superimposition of the clusters 
(at various levels of similarity) on an ordination 
plot will allow any relationship between the groups 
to be more informatively displayed, and it will be 
seen later (Chapter 5) that agreement between the 
two representations strengthens belief in the 
adequacy of both.  

4) Historically, in order to define clusters, it was 
necessary to specify a threshold similarity level (or 
levels) at which to ‘cut’ the dendrogram (Fig. 3.3 
shows a division for a threshold of 50%). This 
seems arbitrary, and usually is:  it is unwise to take 
the absolute values of similarity too seriously since 
these vary with standardisation, transformation, 
taxonomic identification level, choice of coeffic-
ient etc. Most of the methods of this manual are a 
function only of the relative similarities among a 
set of samples. Nonetheless, it is still an intriguing 
question to ask how strong the evidence is for the 
community structure differing between several of 
the observed groups in a dendrogram. Note the 
difference between this a posteriori hypothesis and 

the equivalent a priori test from Fig. 3.1, namely 
examining the evidence for different communities 
at (pre-defined) sites A, B, C, etc. A priori groups 
need the ANOSIM test of Chapter 6; a posteriori 
ones can be tackled by the similarity profile test 
(SIMPROF) described below. This test also has an 
important role in identifying meaningful clusters of 
species (those which behave in a coherent fashion 
across samples, see Chapter 7) and in the context 
of two further (divisive) clustering techniques. The 
unconstrained form of the latter is described later 
in this chapter, and its constrained alternative (a 
linkage tree, ‘explaining’ a biotic clustering by its 
possible environmental drivers) is in Chapter 11.  

SIMILARITY PROFILES (SIMPROF) 

Given the form of the dendrogram in Fig. 3.3, with 
high similarities in apparently tightly defined groups 
and low similarities among groups, there can be little 
doubt that some genuine clustering of the samples 
exists for this data set. However, a statistical demo-
nstration of this would be helpful, and it is much less 
clear, for example, that we have licence to interpret 
the sub-structure within any of the four apparent main 
groups. The purpose of the SIMPROF test is thus, for 
a given set of samples, to test the hypothesis that 
within that set there is no genuine evidence of multi-
variate structure (and though SIMPROF is primarily 
used in clustering contexts, multivariate structure 
could include seriation of samples, as seen in Chapter 
10). Failure to reject this ‘null’ hypothesis debars us 
from further examination, e.g. for finer-level clusters, 
and is a useful safeguard to over-interpretation. Thus, 
here, the SIMPROF test is used successively on the 
nodes of a dendrogram, from the top downwards.  
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Fig. 3.4. Simple example of construction of a similarity profile 
from 5 samples (1-5) of 8 species (A-H), for the original matrix 
(left-hand column) and in a permuted form (right-hand column).   
 
Construction of a single SIMPROF test 

The SIMPROF technique is based on the realisation 
that there is a duality between structure in samples 
and correlation (association) in species, and Fig. 3.4 
demonstrates this for a simple example. The original 
matrix, in the left-hand column, appears to have a 
structure of three clusters (samples 1 and 2, samples 3 
and 4, and sample 5), driven by, or driving, species 
sets with high internal associations (A-C, D-F and G-
H). This results in some high similarities within the 
clusters (80, 83.3) and low similarities between the 
clusters (0, 8, 8.3, 13.8) and few intermediate simil-
arities, in this case none at all. Here, the Bray-Curtis 
coefficient is used but the argument applies equally to 
other appropriate resemblance measures. When the 
triangular similarity matrix is unravelled and the full 
set of similarities ordered from smallest to largest and 
plotted on the y axis against that order (the numbers 
1, 2, 3, …) on the x axis, a relatively steep similarity 
profile is therefore obtained (bottom left of Fig. 3.4). 

In contrast, when there are no positive or negative 
associations amongst species, there is no genuinely 
multivariate structure in the samples and no basis for 
clustering the samples into groups (or, indeed, ident-
ifying other multivariate structures such as gradients 
of species turnover). This is illustrated in the right-
hand column of Fig. 3.4, where the counts for each 
row of the matrix have been randomly permuted over 
the 5 samples, independently for each species. There 
can now be no genuine association amongst species – 
we have destroyed it by the randomisation – and the 
similarities in the triangular matrix will now tend to 
be all rather more intermediate, for example there are 
no really high similarities and many fewer zeros. This 
is seen in the corresponding similarity profile which, 
though it must always increase from left to right, as 
the similarities are placed in increasing order, is a 
relatively flatter curve (bottom right, Fig. 3.4). 

This illustration suggests the basis for an effective 
test of multivariate structure within a given group of 
samples: a schematic of the stages in the SIMPROF 
permutation test is shown in Fig. 3.5, for a group of 7 
samples. The similarity profile for the real matrix 
needs to be compared with a large set of profiles that 
would be expected to occur under the null hypothesis 
that there is no multivariate structure in that group. 
Examples of the latter are generated by permutation: 
the independent random re-arrangement of values 
within rows of the matrix, illustrated once in Fig. 3.4, 
is repeated (say) 1000 times, each time calculating 
the full set of similarities and their similarity profile. 
The bundle of ‘random’ profiles that result are shown 
in Fig. 3.5 by their mean profile (light, continuous 
line) and their 99% limits (dashed line). The latter are 
defined as intervals such that, at each point on the x 
axis, only 5 of the 1000 permuted profiles fall above, 
and 5 below, the dashed line. Under the null hypoth-
esis, the real profile (bold line) should appear no 
different than the other 1000 profiles calculated. Fig. 
3.5 illustrates a profile which is not at all in keeping 
with the randomised profiles and should lead to the 
null hypothesis being rejected, i.e. providing strong 
evidence for meaningful clustering (or other multi-
variate structure) within these 7 samples.  

A formal test requires definition of a test statistic and 
SIMPROF uses the average absolute departure π of 
the real profile from the mean of the permuted ones 
(i.e. positive and negative deviations are all counted 
as positive). The null distribution for π  is created by 
calculating its value for 999 (say) further random 
permutations of the original matrix, comparing those 
random profiles to the mean from the original set of 
1000.   There are therefore 1000 values of π, of which  
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Fig. 3.5. Schematic diagram of 

construction of similarity profile 
(SIMPROF) and testing of null 
hypothesis of no multivariate 
structure in a group of samples, 
by permuting species values. 
(This is referred to as a Type 1 
SIMPROF test, if it needs to be 
distinguished from Type 2 and  
3 tests of species similarities – 
see Chapter 7. If no Type is 
mentioned, Type 1 is assumed).  

  

999 represent the null hypothesis conditions and one 
is for the real profile. If the real π is larger than any 
of the 999 random ones, as would certainly be the 
case in the schematic of Fig. 3.4, the null hypothesis 
could be rejected at least at the p < 0.1% significance 
level. In less clear-cut cases, the % significance level 
is calculated as 100(t+1)/(T+1)%, where t of the T 
permuted values of π are greater than or equal to the 
observed π. For example, if not more than 49 of the 
999 randomised values exceed or equal the real π 
then the hypothesis of no structure can be rejected at 
the 5% level. 

SIMPROF for Bristol Channel zooplankton data  

Though a SIMPROF test could be used in isolation, 
e.g. on all samples as justification for starting a multi-
variate analysis at all, its main use is for a sequence 
of tests on a hierarchical group structure established 
by an agglomerative (or divisive) cluster analysis. 
Using the Bristol Channel zooplankton dendrogram 
(Fig. 3.3) as an illustration, the first SIMPROF test 
would be on all 57 sites, to establish that there are at 
least some interpretable clusters within these. The 
similarity profile diagram and the resulting histogram 

of the null distribution for π are given in the two left-
hand plots of Fig. 3.6. Among the (57 × 56)/2 = 1596 
similarities, there are clearly many more large and 
small, and fewer mid-range ones, than is compatible 
with a hypothesis of no structure in these samples. 
(Note that the large number of similarities ensures 
that the 99% limits hug the mean of the random 
profiles rather closely.) The real π of 6.4 is seen to be 
so far from the null distribution as to be significant at 
any specified level, effectively.  

As is demonstrated in Fig. 3.7, we now drop to the 
next two levels in the dendrogram. On the left, what 
evidence is there now for clustering structure within 
the group of samples {1-8,10,12}? This SIMPROF 
test is shown in the two right-hand plots of Fig. 3.6: 
here the real profile lies within the 99% limits over 
most of its length and, more importantly, the real π of 
2.4 falls within the null distribution (though in its 
right tail), giving a significance level p of about 7%. 
This is marginal, and would not normally be treated 
as evidence to reject the null hypothesis, especially 
bearing in mind that multiple significance tests are 
being carried out.  

 

 
Fig. 3.6. Bristol Channel zooplankton {B}.  Similarity profiles and the corresponding histogram for the SIMPROF test, in the case of 

(left pair) all 57 sites and (right pair) the first group of 10 sites identified in the dendrogram of Fig. 3.3  
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Fig. 3.7. Bristol Channel zooplankton {B}.  Dendrogram as in Fig. 3.4 but showing the results of successive SIMPROF tests on nodes of 

the tree, starting at the top. Only the first three tests showed significant multivariate structure in the samples below that point (bold 
dots), so there is no evidence from SIMPROF for the detailed clustering structure (grey dashed lines) within each of the 4 main groups.  

The conclusion is therefore that there is no clear evid-
ence to allow interpretation of further clusters within 
the group of samples 1-8,10,12 and this is considered 
a homogenous set. The remaining 47 samples show 
strong evidence of heterogeneity in their SIMPROF 
test (not shown, π = 3.4, way off the top of the null 
distribution), so the process drops through to the next 
level of the dendrogram, where the left-hand group is 
deemed homogeneous and the right hand group again 
splits, and so on. The procedure stops quickly in this 
case, with only four main groups identified as signif-
icantly different from each other. The sub-structure of 
clusters within the four main groups, produced by the 
hierarchical procedure, therefore has no statistical 
support and is shown in grey dashed lines in Fig 3.7. 

Features of the SIMPROF test  

These are discussed more extensively in the primary 
paper on SIMPROF (Clarke et al, 2008) but some 
important attributes of the test are worth noting here. 

1) A key feature of permutation tests, which are 
exploited many times in this manual, is that the 
distribution of abundances (or biomass, area cover 
etc) for each species remains exactly the same under 
the random permutations, and is therefore fully 
realistic. Some species are highly abundant whilst 
some are much rarer, some species have very right-
skewed values, some much less so, and so on. All of 
this is represented faithfully in the permuted values 
for each species, since they are exactly the same 
counts. There is no need to assume specific probab-
ility distributions for the test statistics (as in classic 
statistical tests) or to invoke particular probability 
distributions for the observations, from which to 
create matrices simulating the original data (as in 

Monte Carlo testing). The original data is simply re-
used, but in a way that is consistent with the null 
hypothesis being tested. This makes permutation 
tests, for hypotheses where they can be exploited, 
extraordinarily general and powerful, as well as 
simple to understand and interpret. 

2) There are at least two asymmetries in the interpret-
ation of a sequence of SIMPROF tests from a cluster 
hierarchy. Firstly, they provide a ‘stopping rule’ for 
how far down a dendrogram structure may be inter-
preted which is not a constant similarity ‘slice’ over 
the hierarchy: some branches may contain more 
samples exhibiting more detailed structure, which is 
validly interpretable at higher similarity levels than 
other branches. Secondly, in cases where the test 
sequence justifies interpreting a rather fine-scale 
group structure (which it would therefore be unwise 
to interpret at an even more detailed level), it may 
still be perfectly sensible to choose a coarser sample 
grouping, by slicing at a lower similarity. SIMPROF 
gives limits to detailed interpretation but the groups 
it can identify as differing statistically may be too 
trivially different to be operationally useful. 

3) There can be a good deal of multiple testing in a 
sequence of SIMPROF tests. Some adjustment for 
this could be made by Bonferroni corrections. Thus, 
for the dendrogram of Fig. 3.7, a total of 7 tests are 
performed. This might suggest repeating the process 
with individual significance levels of 5/7 = 0.7%, 
but that is over-precise. What would be informative 
is to re-run the SIMPROF sequence with a range of 
significance levels (say 5%, 1%, 0.1%), to see how 
stable the final grouping is to choice of level. (But 
scale up your numbers of permutations at higher 
significance levels, e.g. use at least 9999 for 0.1% 
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level tests; 999 would simply fail to find any signif-
icance!). In fact, you are highly likely to find that 
tinkering with the precise significance levels makes 
little difference to such a sequence of tests; only a 
small percentage of the cases will be borderline, the 
rest being clear-cut in one or other direction. In Fig. 
3.7 for example, all four groups are maintained at 
more stringent significance levels than 5%, until un-
reasonable levels of 0.01% are reached, when the 
third and fourth groups (right side of plot) merge. 

4) The discussion of more stringent p values naturally 
raises the issue of  power of SIMPROF tests. Power 
is a difficult concept to formalise in a multivariate 
context since it requires a precise definition of the 
alternative to the null hypothesis here of ‘no multi-
variate structure’, when in fact there are an infinite 
number of viable alternatives. (These issues are 
mentioned again in Chapters 6 and 10, and see also 
Somerfield et al, 2002). However, in a general sense 
it is plausible that, all else being equal, SIMPROF 
will be increasingly likely to detect structure in a 
group of samples as the group size increases. This is 
evident if only from the case of just two samples: all 
random and independent permutations of the species 
entries over those two samples will lead to exactly 
the same similarity, hence the real similarity profile 
(a point) will be at the same position as all the 
random profiles and could never lead to rejection of 
the null hypothesis – groups of two are never split. 
Surprisingly often, though, there is enough evidence 
to split groups of three into a singleton and pair, an 
example being for samples 3, 4 and 5 of Fig. 3.4.  

5) The number of species will also (and perhaps more 
clearly) contribute to the power of the test, as can be 
seen from the obvious fact that if there is just one 
species, the test has no power at all to identify 
clusters (or any other structure) among the samples. 
It does not work by exploring the spacing of samples 
along a single axis, for example to infer the presence 
of mixture distributions, a process highly sensitive 
to distributional assumptions. Instead, it robustly 
(without such assumptions) exploits associations 
among species to infer sample structure (as seen in 
Fig 3.3), and it seems clear that greater numbers of 
species should give greater power to that inference. 
It might therefore be thought that adding a rather 
unimportant (low abundance, low presence) species 
to the list, highly associated with an existing taxon, 
will automatically generate significant sample 
structure, hence of little practical consequence. But 
that is to miss the subtlety of the SIMPROF test 
statistic here. It is not  constructed from similarities 
(associations) among species but sample similar-

ities, which will reflect only those species which 
have sufficient presence or abundance to impact on 
those similarity calculations (under whatever pre-
treatment options of standardising or transforming 
samples has been chosen as relevant to the context). 
In other words, for a priori unstructured samples, 
the test exploits only species associations (either 
intrinsic or driven by differing environments) that 
matter to the definition of community patterns, and 
it is precisely the presence of such associations that 
define meaningful assemblage structure in that case.  

One final point to emphasise. It will be clear to those 
already familiar with the ANOSIM and RELATE 
tests of Chapters 6 and 10 that SIMPROF is a very 
different type of permutation test. ANOSIM starts 
from a known a priori structure of groups of samples 
(different sites, times, treatments etc, as in Fig. 3.1), 
containing replicate samples of each group, and tests 
for evidence that this imposed group structure is 
reflected in real differences in similarities calculated 
among and within groups. If there is such an a priori 
structure then it is best utilised: though SIMPROF is 
not invalid in this case, the non-parametric ANOSIM 
test, or the semi-parametric PERMANOVA test (see 
the Anderson et al manual, 2008) are the correct and 
better tests. If there is no such prior structuring of 
samples into groups, and the idea is to provide some 
rigour to the exploratory nature of cluster analysis, 
then a sequence of SIMPROF tests is likely to be an 
appropriate choice: ANOSIM would definitely be 
invalid in this case. Defining groups by a cluster 
analysis and then using the same data to test those 
groups by ANOSIM, as if they were a priori defined, 
is one of the most heinous crimes in the misuse of 
PRIMER, occasionally encountered in the literature! 
 
BINARY DIVISIVE CLUSTERING 

All discussion so far has been in terms of hierarchical 
agglomerative clustering, in which samples start in 
separate groups and are successively merged until, at 
some level of similarity, all are considered to belong 
to a single group. Hierarchical divisive clustering 
does the converse operation: samples start in a single 
group and are successively divided into two sub-
groups, which may be of quite unequal size, each of 
those being further sub-divided into two (i.e. binary 
division), and so on. Ultimately, all samples become 
singleton groups unless (preferably) some criterion 
‘kicks in’ to stop further sub-division of any specific 
group. Such a stopping rule is provided naturally here 
by the SIMPROF test: if there is no demonstrable 
structure within a group, i.e. the null hypothesis for a 
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SIMPROF test cannot be rejected, then that group is 
not further sub-divided. 

Binary divisive methods are thought to be advantag-
eous for some clustering situations: they take a top-
down view of the samples, so that the initial binary 
splits should (in theory) be better able to respect any 
major groupings in the data, since these are found 
first (though as with all hierarchical methods, once a 
sample has been placed within one initial group it 
cannot jump to another at a later stage). In contrast, 
agglomerative methods are bottom-up and ‘see’ only 
the nearby points throughout much of the process; 
when reaching the top of the dendrogram there is no 
possibility of taking a different view of the main 
merged groups that have formed. However, it is not 
clear that divisive methods will always produce better 
solutions in practice and there is a counterbalancing 
downside to their algorithm: it can be computation-
ally more intensive and complex. The agglomerative 
approach is simple and entirely determined, requiring 
at each stage (for group average linkage, say) just the 
calculation of average (dis)similarities between every 
pair of groups, many of which are known from the 
previous stage (see the simple example of Table 3.2).  

In contrast the divisive approach needs, for each of 
the current groups, a (binary) flat clustering, a basic 
idea we meet again below in the context of k-means 
clustering. That is, we need to look, ideally, at all 
ways of dividing the n samples of that group into two 
sub-groups, to determine which is optimal under 
some criterion. There are 2n-1 – 1 possibilities and for 
even quite modest n (say >25) evaluating all of them 
quickly becomes prohibitive. This necessitates an 
iterative search algorithm, using different starting 
allocations of samples to the two sub-groups, whose 
members are then re-allocated iteratively until con-
vergence is reached. The ‘best’ of the divisions from 
the different random restarts is then selected as likely, 
though not guaranteed, to be the optimal solution. (A 
similar idea is met in Chapter 5, for MDS solutions.) 

The criterion for quantifying a good binary division is 
clearly central. Classically, ordinary distance (Euclid-
ean) is regarded as the relevant resemblance measure, 
and Fig. 3.8 (left) shows in 2-d how the total sums of 
squared distances of all points about the grand mean 
(overall centroid) is partitioned into a combination of 
sums of squares within the two groups about their 
group centroids, and that between the group centroids 
about the overall centroid (the same principle applies 
to higher dimensions and more groups). By minimis-
ing the within-group sums of squares we maximise 
that between groups, since the total sums of squares 
is fixed. For each group, Huygens theorem (e.g. see 

 
Fig. 3.8. Left: partitioning total sums of squared distances about 

centroid (d2) into within- and between-group d2. Right: within-
group d2 determined by among-point d2, Huygen’s theorem.  

Anderson et al, 2008) expresses those within-group 
sums of squares as simply the sum of the squared 
Euclidean distances between every pair of points in 
the group (Fig. 3.8, right), divided by that number of 
points. In other words, the classic criterion minimises 
a weighted combination of within group resembl-
ances, defined as squared Euclidean distances. Whilst 
this may be a useful procedure for analysing normal-
ised environmental variables (see Chapter 11), where 
Euclidean distance (squared) might be a reasonable 
resemblance choice, for community analyses we need 
to replace that by Bray-Curtis or other dissimilarities 
(Chapter 2), and partitioning sums of squares is no 
longer a possibility. Instead, we need another suitably 
scaled way of relating dissimilarities between groups 
to those within groups, which we can maximise by 
iterative search over different splits of the samples. 

There is a simple answer to this, a natural generalis-
ation of the classic approach, met in equation (6.1), 
where we define the ANOSIM R statistic as: 

 ( )
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namely the difference between the average of the 
rank dissimilarities between the (two) groups and 
within the groups. This is suitably scaled by a divisor 
of M/2, where M = n(n-1)/2 is the total number of 
dissimilarities calculated between all the n samples 
currently being split. This divisor ensures that R takes 
its maximum value of 1 when the two groups are 
perfectly separated, defined as all between-group 
dissimilarities being larger than any within-group 
ones. R will be approximately zero when there is no 
separation of groups at all but this will never occur in 
this context, since we will be choosing the groups to 
maximise the value of R.  

There is an important point not to be missed here: R 
is in no way being used as a test statistic, the reason 
for its development in Chapter 6 (for a test of no 
differences between a priori defined groups, R=0).  
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Fig. 3.9. Bristol Channel zooplankton {B}. Unconstrained divisive clustering of 57 sites (PRIMER’s UNCTREE routine, maximising R 
at each binary split), from Bray-Curtis on √√-transformed abundances. As with the agglomerative dendrogram (Fig. 3.7), continuous 
lines indicate tree structure which is supported by SIMPROF tests; this again divides the data into only four groups.   

Instead, we are exploiting its value as a pure measure 
of separation of groups of points represented by the 
high-dimensional structure of the resemblances (here 
perhaps Bray-Curtis, but any coefficient can be used 
with R, including Euclidean distance). And in that 
context it has some notable advantages: it provides 
the universal scaling we need of between vs. within 
group dissimilarities/distances (whatever their meas-
urement scale) through their reduction to simple 
ranks, and this non-parametric use of dissimilarities is 
coherent with other techniques in our approach: non-
metric MDS plots, ANOSIM and RELATE tests etc. 

To recap: the binary divisive procedure starts with all 
samples in a single group, and if a SIMPROF test 
provides evidence that the group has structure which 
can be further examined, we search for an optimal 
split of those samples into two groups, maximising R, 
which could produce anything from splitting off a 
singleton sample through to an even balance of the 
sub-group sizes. The SIMPROF test is then repeated 
for each sub-group and this may justify a further split, 
again based on maximising R, but now calculated 
having re-ranked the dissimilarities in that sub-group. 
The process repeats until SIMPROF cannot justify 
further binary division on any branch: groups of two 
are therefore never split (see the earlier discussion). 

Bristol Channel zooplankton example 

The tree diagram which results from the Bray-Curtis 
resemblances for the 57 Bristol Channel zooplankton 
samples is given in Fig 3.9. As with the comparative 
agglomerative clustering, Fig 3.7, it is convenient to 
represent all splits down to single points, but the grey 
dashed lines indicate divisions where SIMPROF 
provides no support for that sub-structure. Visual 
comparison of two such trees is not particularly easy, 
though they have been manually rotated to aid this 

(remember that a dendrogram is only defined down to 
arbitrary rotations of its branches, in the manner of a 
‘mobile’). Clearly, however, only four groups have 
been identified by the SIMPROF tests in both cases, 
and the group constitutions have much in common, 
though are not identical. This is more readily seen 
from Figs. 3.10 a & b, which use a non-metric MDS 
plot (for MDS method see Chapter 5) to represent the 
community sample relationships in 2-d ordination 
space. These are identical plots, but demonstrate the 
agglomerative and divisive clustering results by the 
use of differing symbols to denote the 4 groups (A-D) 
produced by the respective trees. The numbering on 
Fig. 3.10a is that of the sites, shown in Fig. 3.2 (and 
on Fig. 3.10b the mean salinity at those sites, discret-
ised into salinity scores, see equation 11.2). It is clear 
that only sites 9, 23 and 24 change groups between 
the two clustering methods and these all appear at the 
edges of their groups in both plots, which are thus 
reassuringly consistent (bear in mind also that a 2-d 
MDS plot gives only an approximation to the true 
sample relationships in higher dimensions, the MDS 
stress of 0.11 here being low but not negligible). 

PRIMER v7 implements this unconstrained binary 
divisive clustering in its UNCTREE routine. This 
terminology reflects a contrast with the PRIMER (v6/ 
v7) LINKTREE routine for constrained binary divis-
ive clustering, in which the biotic samples are linked 
to environmental information which is considered to 
be driving, or at least associated with, the community 
patterns. Linkage trees, also known as multivariate 
regression trees,  are returned to again in Chapter 11. 
They perform the same binary divisive clustering of 
the biotic samples, using the same criterion of optim-
ising R, but the only splits that can be made are those 
which have an ‘explanation’ in terms of an inequality 
on one of the environmental variables. Applied to the 
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Fig. 3.10. Bristol Channel zooplankton {B}. Non-metric MDS 

ordination (Chapter 5) of the 57 sites, from Bray-Curtis on √√-
transformed abundances. Symbols indicate the groups found by 
SIMPROF tests (four in each case, as it happens) for each of 
three clustering methods: a) agglomerative hierarchical, b) div-
isive hierarchical, c) k-R non-hierarchical. Sample labels are: 
a) & c) site numbers (as in Fig. 3.2), b) site salinity scores (on a 
9-point scale, 1: <26.3, …, 9: > 35.1 ppt, see equation 11.2). 

Bristol Channel zooplankton data, this might involve 
constraining the splits to those for which all samples 
in one sub-cluster have a higher salinity score than all 
samples in the other sub-cluster (better examples for 
more, and more continuous, environmental variables 
are given in Chapter 11 and Clarke et al, 2008). By 
imposing threshold constraints of this type we greatly 
reduce the number of possible ways in which splits 
can be made; evaluation of all possibilities is now 
viable so an iterative search algorithm is not required. 
LINKTREE gives an interesting capacity to ‘explain’ 
any clustering produced, in terms of thresholds on 
environmental values, but it is clear from Fig. 3.10b 

that its deterministic approach is quite likely to miss 
natural clusterings of the data: the C and D groups 
cannot be split up on the basis of an inequality on the 
salinity score (e.g. ≤6, ≥7) because this is not obeyed 
by sites 37 and 47.  

For both the unconstrained or constrained forms of 
divisive clustering, PRIMER offers a choice of y axis 
scale between equi-spaced steps at each subsequent 
split (A% scale) and one which attempts to reflect the 
magnitude of divisions involved (B%), in terms of the 
generally decreasing dissimilarities between sub-
groups as the procedure moves to finer distinctions. 
Clarke et al (2008) define the B% scale in terms of 
average between-group ranks based on the originally 
ranked resemblance matrix, and that is used in Fig. 
3.9. The A% scale generally makes for a more easily 
viewable plot, but the y axis positions at which ident-
ifiable groups are initiated cannot be compared.  

k-R CLUSTERING (non-hierarchical) 

Another major class of clustering techniques is non-
hierarchical, referred to above as flat clustering. The 
desired number of clusters (k) must be specified in 
advance, and an iterative search attempts to divide the 
samples in an optimal way into k groups, in one oper-
ation rather than incrementally. The classic method, 
the idea of which was outlined in the two-group case 
above, is k-means clustering, which seeks to minim-
ise within-group sums of squares about the k group 
centroids. This is equivalent to minimising some 
weighted combination of within-group resemblances 
between pairs of samples, as measured by a squared 
Euclidean distance coefficient (you can visualise this 
by adding additional groups to Fig. 3.8). The idea can 
again be generalised to apply to any resemblance 
measure, e.g. Bray-Curtis, by maximising ANOSIM 
R, which measures (non-parametrically) the degree of 
overall separation of the k groups, formed from the 
ranks in the full resemblance matrix. (Note that we 
defined equation (3.1) as if it applied only to two 
groups, but the definition of R is exactly the same for 
the k-group case, equation (6.1)). By analogy with k-
means clustering, the principle of maximising R to 
obtain a k-group division of the samples is referred to 
as k-R clustering, and it will again involve an iterat-
ive search, from several different random starting 
allocations of samples to the k groups.  

Experience with k-means clustering suggests that a 
flat clustering of the k-R type should sometimes have 
slight advantages over a hierarchical (agglomerative 
or divisive) method, since samples are able to move 
between different groups during the iterative process. 
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The k-group solution will not, of course, simply split 
one of the groups in the (k-1)-group solution: there 
could be a widescale rearrangement of many of the 
points into different groups. A widely perceived dis-
advantage of the k-means idea is the need to specify k 
before entering the routine, or if it is re-run for many 
different k values, the absence of a convenient visual-
isation of the clustering structure for differing values 
of k, analogous to a dendrogram. This has tended to 
restrict its use to cases where there is a clear a priori  
idea of the approximate number of groups required, 
perhaps for operational reasons (e.g. in a quality 
classification system). However, the SIMPROF test 
can also come to the rescue here, to provide a choice 
of k which is objective. Starting from a low value for 
k (say 2) the two groups produced by k-R clustering 
are tested for evidence of within-group structure by 
SIMPROF. If either of the tests are significant, the 
routine increments k (to 3), finds the 3-group solution 
and retests those groups by SIMPROF. The procedure 
is repeated until a value for k is reached in which 
none of the k groups generates significance in their 
SIMPROF test, and the process terminates with that 
group structure regarded as the best solution. (This 
will not, in general, correspond to the maximum R 
when these optima for each k are compared across all 
possible k; e.g. R must increase to its maximum of 1 
as k approaches n, the number of samples.)  

Fig. 3.10c shows the optimum grouping produced by 
k-R clustering, superimposed on the same MDS plot 
as for Figs. 3.10 a & b. The SIMPROF routine has 
again terminated the procedure with k=4 groups (A to 
D), which are very similar to those for the two hier-
archical methods, but with the three sites 9, 23 and 24 
allocated to the four groups in yet a third way. This 
appears to be at least as convincing an allocation as 
for either of the hierarchical plots (though do not lose 
sight of the fact that the MDS itself is only an approx-
imation to the real inter-sample resemblances).  

Average rank form of flat clustering 

A variation of this flat-clustering procedure does not 
use R but a closely related statistic, arising from the 
concept of group-average linking met earlier in Table 
3.2. For a pre-specified number of groups (k), every 
stage of the iterative process involves removing each 
sample in turn and then allocating it to one of the k−1 
other groups currently defined, or returning it to its 
original group. In k-R clustering it is re-allocated to 
the group yielding the highest R for the resulting full 
set of groups. In the group average rank variation, 
the sample is re-allocated to the group with which it 
has greatest (rank) similarity, defined as the average 

of the pairwise values (from the ranked form of the 
original similarity matrix) between it and all members 
of that group – or all of the remaining members, in 
the case of its original group. The process is iterated 
until it converges and repeated a fair number of times 
from different random starting allocations to groups, 
as before. The choice of k uses the same SIMPROF 
procedure as previously, and it is interesting to note 
that, for the Bristol Channel zooplankton data, this 
group-average variation of k-R clustering produces 
exactly the same four groups as seen in Fig 3.10c. 
This will not always be the case because the statistic 
here is subtly different than the ANOSIM R statistic, 
but both exploit the same non-parametric form of the 
resemblance matrix so it should be expected that the 
two variations will give closer solutions to each other 
than to the hierarchical methods.  

In conclusion 

A ‘take-home’ message from Fig. 3.10 is that cluster-
ing rarely escapes a degree of arbitrariness: the data 
simply may not represent clearly separated clusters. 
For the Bristol Channel sites, where there certainly 
are plausible groups but within a more or less contin-
uous gradation of change in plankton communities 
(strongly correlated with increased average salinity of 
the sites), different methods must be expected to chop 
this continuum up in slightly different ways. Use of a 
specific grouping from an agglomerative hierarchy 
should probably be viewed operationally as little 
worse (or better) than that from a divisive hierarchy 
or from the non-hierarchical k-R clustering, in either 
form; it is reassuring here that SIMPROF supports 
four very similar groups for all these methods. In fact, 
especially in cases where a low-dimensional MDS 
plot is not at all reliable because of high stress (see 
Chapter 5), the plurality of clustering methods does 
provide some insight into the robustness of conclus-
ions that can be drawn about group structures from 
the ‘high-dimensional’ resemblance matrix. Such  
comparisons of differing clustering methods need to 
‘start from the same place’, namely using the same 
resemblance matrix, otherwise an inferred lack of a 
stable group structure could be due to the differing 
assumptions being made about how the (dis)similarity 
between two samples is defined (e.g. Bray-Curtis vs 
squared Euclidean distance). This is also a point to 
bear in mind in the following chapters on competing 
ordination methods: a primary difference between 
them is often not the way they choose to represent 
high-dimensional information in lower dimensional 
space but how they define that higher-dimensional 
information differently, in their choice of explicit or 
implicit resemblance measure.  
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CHAPTER 4: ORDINATION OF SAMPLES BY PRINCIPAL COMPONENTS 
ANALYSIS (PCA) 

 

ORDINATIONS 

An ordination is a map of the samples, usually in two 
or three dimensions, in which the placement of samples, 
rather than representing their location in space (or 
time), reflects the similarity of their biological 
communities. To be more precise, distances between 
samples on the ordination attempt to match the corr-
esponding dissimilarities in community structure: 
nearby points have very similar communities, samples 
which are far apart have few species in common or 
the same species at very different levels of abundance 
(or biomass).  The word ‘attempt’ is important here 
since there is no uniquely defined way in which this 
can be achieved.  Indeed, when a large number of 
species fluctuate in abundance in response to a wide 
variety of environmental variables, with many species 
being affected in different ways, the community 
structure is essentially high-dimensional and it may be 
impossible to obtain a useful two or three-dimension-
al representation. 

So, as with cluster analysis, several methods have been 
proposed, each using different forms of the original 
data and varying in their technique for approximating 
high-dimensional information in low-dimensional plots.  
They include: 

a) Principal Components Analysis, PCA (see, for 
example, Chatfield and Collins, 1980); 

b) Principal Co-ordinates Analysis, PCO (Gower, 
1966); 

c) Correspondence Analysis and Detrended Corres-
pondence Analysis, DECORANA (Hill and Gauch, 
1980); 

d) Multi-Dimensional Scaling, MDS; in particular 
non-metric MDS (see, for example, Kruskal and 
Wish, 1978). 

A comprehensive survey of ordination methods is 
outside the scope of this manual. As with clustering 
methods, detailed explanation is given only of the 
techniques required for the analysis strategy adopted 
throughout the manual.  This is not to deny the validity 
of other methods but simply to affirm the importance 
of applying, with understanding, one or two techniques 
of proven utility.  The two ordination methods selected 

are therefore (arguably) the simplest of the various 
options, at least in concept. 

a) PCA is the longest-established method, though the 
relative inflexibility of its definition limits its prac-
tical usefulness more to multivariate analysis of 
environmental data rather than species abundances 
or biomass; nonetheless it is still widely encountered 
and is of fundamental importance. 

b) Non-metric MDS does not have quite such a long 
history (though the key paper, by Kruskal, is from 
1964!). Its clever and subtle algorithm , some years 
ahead of its time, could have been contemplated 
only in an era in which significant computational 
power was foreseen (it was scarcely practical at its 
time of inception, making Kruskal’s achievement 
even more remarkable). However, its rationale can 
be very simply described and understood, and 
many would argue that the need to make few (if 
any) assumptions about the data make it the most 
widely applicable and effective method available. 

PRINCIPAL COMPONENTS ANALYSIS 

The starting point for PCA is the original data matrix 
rather than a derived similarity matrix (though there 
is an implicit dissimilarity matrix underlying PCA, 
that of Euclidean distance).  The data array is thought 
of as defining the positions of samples in relation to 
axes representing the full set of species, one axis for 
each species.  This is the very important concept intro-
duced in Chapter 2, following equation (2.13).  Typic-
ally, there are many species so the samples are points 
in a very high-dimensional space. 

A simple 2-dimensional example 

It helps to visualise the process by again considering 
an (artificial) example in which there are only two 
species (and nine samples). 

Sample 1 2 3 4 5 6 7 8 9 

Abundance Sp.1 6 0 5 7 11 10 15 18 14 
 Sp.2 2 0 8 6 6 10 8 14 14 

The nine samples are therefore points in two dimensions, 
and labelling these points with the sample number gives: 
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This is an ordination already, of 2-dimensional data 
on a 2-dimensional map, and it summarises pictorially 
all the relationships between the samples, without 
needing to discard any information at all.  However, 
suppose for the sake of example that a 1-dimensional 
ordination is required, in which the original data is 
reduced to a genuine ordering of samples along a 
line.  How do we best place the samples in order?  
One possibility (though a rather poor one!) is simply 
to ignore altogether the counts for one of the species, 
say Species 2.  The Species 1 axis then automatically 
gives the 1-dimensional ordination (Sp.1 counts are 
again labelled by sample number):   

Sample 2 314 65 97  8 
Sp. 1 
counts  0 5 10 15 20 

(Think of this as projecting the points in the 2-dimen-
sional space down onto the Sp.1 axis).  Not surprisingly, 
this is a rather inaccurate 1-dimensional summary of 
the sample relationships in the full 2-dimensional data, 
e.g. samples 7 and 9 are rather too close together, certain 
samples seem to be in the wrong order (9 should be 
closer to 8 than 7 is, 1 should be closer to 2 than 3 is) 
etc.  More intuitively obvious would be to choose the 
1-dimensional picture as the (perpendicular) projection 
of points onto the line of ‘best fit’ in the 2-dimensional 
plot. 
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The 1-dimensional ordination, called the first principal 
component axis (PC1), is then:  

Sample 2 1 34 5 6 7 9 8  

          PC1 

and this picture is a much more realistic approximation 
to the 2-dimenensional sample relationships (e.g. 1 is 
now closer to 2 than 3 is, 7, 9 and 8 are more equally 
spaced and in the ‘right’ sequence etc). 

The second principal component axis (PC2) is defined 
as the axis perpendicular to PC1, and a full principal 
component analysis then consists simply of a rotation 
of the original 2-dimensional plot: 
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to give the following principal component plot. 
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Obviously the (PC1, PC2) plot contains exactly the 
same information as the original (Sp.1, Sp.2) graph.  
The whole point of the procedure though is that, as in 
the current example, we may be able to dispense with 
the second principal component (PC2): the points in 
the (PC1, PC2) space are projected onto the PC1 axis 
and relatively little information about the sample 
relationships is lost in this reduction of dimensionality. 
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Definition of PC1 axis 

Up to now we have been rather vague about what is 
meant by the ‘best fitting’ line through the sample 
points in 2-dimensional species space.  There are two 
natural definitions.  The first chooses the PC1 axis as 
the line which minimises the sum of squared perpend-
icular distances of the points from the line.¶   The 
second approach comes from noting in the above 
example that the biggest differences between samples 
take place along the PC1 axis, with relatively small 
changes in the PC2 direction.  The PC1 axis is there-
fore defined as that direction in which the variance of 
sample points projected perpendicularly onto the axis 

¶ This idea may be familiar from ordinary linear regression, except 
that this is formulated asymmetrically: regression of y on x minim-
ises the sum of squared vertical distances of points from the line. 
Here x and y are symmetric and could be plotted on either axis.   
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is maximised.  In fact, these two separate definitions 
of the PC1 axis turn out to be totally equivalent† and 
one can use whichever concept is easier to visualise. 
 
Extensions to 3-dimensional data 

Suppose that the simple example above is extended to 
the following matrix of counts for three species. 
 

Sample 1 2 3 4 5 6 7 8 9 

Abundance Sp.1 6 0 5 7 11 10 15 18 14 

 Sp.2 2 0 8 6 6 10 8 14 14 

 Sp.3 3 1 6 6 9 11 10 16 15 

 
Samples are now points in three dimensions (Sp.1, 
Sp.2 and Sp.3 axes) and there are therefore three 
principal component axes, again simply a rotation of 
the three species axes.  The definition of the (PC1, 
PC2, PC3) axes generalises the 2-dimensional case in 
a natural way: 

PC1 is the axis which maximises the variance of points 
projected perpendicularly onto it; 

PC2 is constrained to be perpendicular to PC1, but is 
then again chosen as the direction in which the 
variance of points projected perpendicularly onto 
it is maximised; 

PC3 is the axis perpendicular to both PC1 and PC2 
(there is no choice remaining here). 

 

† The explanation for this is straightforward. As  is about to be 
seen in (4.2), the total variance of the data, var(Sp1) + var (Sp2), 
is preserved under any rotation of the (perpendicular) axes, so it 
equals the sum of the variances along the two PC axes, var(PC1) 
+  var(PC2). If the rotation is chosen to maximise var(PC1), and 
var(PC1) + var(PC2) is fixed (the total variance) then var(PC2) 
must be minimised. But what is var(PC2)? It is simply the sum of 
squares of the PC2 values round about their mean (divided by a 
constant), in other words, the sum of squares of the perpendicular 
projections of each point on to the PC1 axis. But minimising this 
sums of squares is just the definition given of ‘best fitting line’.  

An equivalent way of visualising this is again in terms 
of ‘best fit’: PC1 is the best fitting line to the sample 
points and, together, the PC1 and PC2 axes define a 
plane (grey in the above diagram) which is the best 
fitting plane. 
 
Algebraic definition 

The above geometric formulation can be expressed 
algebraically.  The three new variables (PCs) are just 
linear combinations of the old variables (species), 
such that PC1, PC2 and PC3 are uncorrelated.  In the 
above example: 

PC1 =   0.62× Sp.1 + 0.52× Sp.2 + 0.58× Sp.3 
PC2 = –0.73× Sp.1 + 0.65× Sp.2 + 0.20× Sp.3  (4.1) 
PC3 =   0.28× Sp.1 + 0.55× Sp.2  – 0.79× Sp.3 

The principal components are therefore interpretable 
(in theory) in terms of the counts for each original 
species axis. Thus PC1 is a sum of roughly equal (and 
positive) contributions from each of the species; it is 
essentially ordering the samples from low to high 
total abundance.  At a more subtle level, for samples 
with the same total abundance, PC2 then mainly dis-
tinguishes relatively high counts of Sp.2 (and low 
Sp.1) from low Sp.2 (and high Sp.1); Sp.3 values do 
not feature strongly in PC2 because the corresponding 
coefficient is small.  Similarly the PC3 axis mainly 
contrasts Sp.3 and Sp.2 counts. 
 
Variance explained by each PC 

The definition of principal components given above 
is in terms of successively maximising the variance of 
sample points projected along each axis, with the 
variance therefore decreasing from PC1 to PC2 to 
PC3.  It is thus natural to quote the values of these 
variances (in relation to their total) as a measure of 
the amount of information contained in each axis.  
And the total of the variances along all PC axes equals 
the total variance of points projected successively onto 
each of the original species axes, total variance being 
unchanged under a simple rotation. That is, letting 
var(PCi) denote variance of samples on the ith PC 
axis and var(Sp.i) denote variance of points on the ith 
species axis (i = 1, 2, 3): 

       ∑∑ =
ii

iSpvarPCivar ).()(    (4.2) 

Thus, the relative variation of points along the ith PC 
axis (as a percentage of the total), namely  

      
∑∑

==
ii

i var(Sp.i)
PCivar

var(PCi)
PCivarP )(100)(100      (4.3) 
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has a useful interpretation as the % of the original total 
variance explained by the ith PC.  For the simple 3-
dimensional example above, PC1 explains 93%, PC2 
explains 6% and PC3 only 1% of the variance in the 
original samples. 

Ordination plane 

This brings us back finally to the reason for rotating 
the original three species axes to three new principal 
component axes.  The first two PCs represent a plane 
of ‘best fit’, encompassing the maximum amount of 
variation in the sample points.  The % variance explain-
ed by PC3 may be small and we can dispense with 
this third axis, projecting all points perpendicularly 
onto the (PC1, PC2) plane to give the 2-dimensional 
ordination plane that we have been seeking.  For the 
above example this is: 
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and it is almost a perfect 2-dimensional summary of 
the 3-dimensional data, since PC1 and PC2 account 
for 99% of the total variation.  In effect, the points lie 
on a plane (in fact, nearly on a line!) in the original 
species space, so it is no surprise to find that this PCA 
ordination differs negligibly from that for the initial 
2-species example: the counts added for the third 
species were highly correlated with those for the first 
two species. 

Higher-dimensional data 

Of course there are many more species than three in a 
normal species by samples array, let us say 50, but the 
approach to defining principal components and an 
ordination plane is the same.  Samples are now points in 
(say) a 50-dimensional species space¶ and the best 
fitting 2-dimensional plane is found and samples 
projected onto it to give the 2-dimensional PCA 
ordination.  The full set of PC axes are the perpend-
icular directions in this high-dimensional space along 
which the variances of the points are (successively) 
maximised.  The degree to which a 2-dimensional 
PCA succeeds in representing the information in the 
full space is seen in the percentage of total variance 
explained by the first two principal components.  

¶ If there are, say, only 25 samples then all 50 dimensions are not 
necessary to exactly represent the distances among the 25 samples 
– 24 dimensions will do (any two points fit on a line, any three 
points fit in a plane, any four points in 3-d space, etc). But a 2-d 
representation still has to approximate a 24-d picture!  

Often PC1 and PC2 may not explain more than 40-
50% of the total variation, and a 2-dimensional PCA 
ordination then gives an inadequate and potentially 
misleading picture of the relationship between the 
samples.  A 3-dimensional sample ordination, using 
the first three PC axes, may give a fuller picture or it 
may be necessary to invoke PC4, PC5 etc. before a 
reasonable percentage of the total variation is en-
compassed.  Guidelines for an acceptable level of ‘% 
variance explained’ are difficult to set, since they 
depend on the objectives of the study, the number of 
species and samples etc., but an empirical rule-of-
thumb might be that a picture which accounts for as 
much as 70-75% of the original variation is likely to 
describe the overall structure rather well. 

The geometric concepts of fitting planes and projecting 
points in high-dimensional space are not ones that 
most people are comfortable with (!) so it is important 
to realise that, algebraically, the central ideas are no 
more complex than in three dimensions.  Equations 
like (4.1) simply extend to p principal components, 
each a linear function of the p species counts.  The 
‘perpendicularity’ (orthogonality) of the principal 
component axes is reflected in the zero values for all 
sums of cross-products of coefficients (and this is what 
defines the PCs as statistically uncorrelated with each 
other), e.g. for equation (4.1):  

    (0.62)×(-0.73) + (0.52)×(0.65) + (0.58)×(0.20) = 0 

    (0.62)×(0.28) + (0.52)×(0.55) + (0.58)×(-0.79) = 0 
    etc., 

The coefficients are also scaled so that their sum of 
squares adds to one – an axis only defines a direction 
not a length so this (arbitrarily) scales the values, i.e.  

  (0.62)2 + (0.52)2 + (0.58)2 = 1 

 (-0.73)2 + (0.65)2 + (0.20)2 = 1 
 etc. 

There is clearly no difficulty in extending such relations 
to 4, 5 or any number of coefficients. 

The algebraic construction of coefficients satisfying 
these conditions but also defining which perpend-
icular directions maximise variation of the samples in 
the species space, is outside the scope of this manual. It 
involves calculating eigenvalues and eigenvectors of 
a p by p matrix, see Chatfield and Collins (1980), for 
example.  (Note that a knowledge of matrix algebra is 
essential to understanding this construction). The 
advice to the reader is to hang on to the geometric 
picture:  all the essential ideas of PCA are present in 
visualising the construction of a 2-dimensional 
ordination plot from a 3-dimensional species space. 
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(Non-)applicability of PCA to species data 

The historical background to PCA is one of multi-
variate normal models for the individual variables, 
i.e. individual species abundances being normally 
distributed, each defined by a mean and symmetric 
variability around that mean, with dependence among 
species determined by correlation coefficients, which 
are measures of linearly increasing or decreasing 
relationships. Though transformation can reduce the 
right-skewness of typical species abundance/biomass 
distributions they can do little about the dominance of 
zero values (absence of most species in most of the 
samples). Worse still, classical multivariate methods 
require the parameters of these models (the means, 
variances and correlations) to be estimated from the 
entries in the data matrix. But for the Garroch Head 
macrofaunal biomass data introduced on page 1-6, 
which is typical of much community data, there are 
p=84 species and only n=12 samples. Thus, even 
fitting a single multivariate normal distribution to 
these 12 samples requires estimation of 84 means, 84 
variances and 84C2 = 84×83/2 = 3486 correlations! It 
is, of course, impossible to estimate over 3500 para-
meters from a matrix with only 12×86 = 1032 entries, 
and herein lies much of the difficulty of applying 
classical testing techniques which rely on normality, 
such as MANOVA, Fisher’s linear discriminant 
analysis, multivariate multiple regression etc, to 
typical species matrices.  

Whilst some significance tests associated with PCA 
also require normality (e.g. sphericity tests for how 
many eigenvalues can be considered significantly 
greater than zero, attempting to establish the ‘true 
dimensionality’ of the data), as it has just been simply 
outlined, PCA has a sensible rationale outside multi-
normal modelling and can be more widely applied. 
However, it will always work best with data which 
are closest to that model. E.g. right skewness will 
produce outliers which will always be given an 
inordinate weight in determining the direction of the 
main PC axes, because the failure of an axis to pass 
through those points will lead to large residuals, and 
these will dominate the sum of squared residuals that 
is being minimised. Also, the implicit way in which 
dissimilarity between samples is assessed is simply 
Euclidean distance, which we shall see now (and 
again much later when dissimilarity measures are 
examined in more detail in Chapter 16) is a poor 
descriptor of dissimilarity for species communities. 
This is primarily because Euclidean distance pays no 
special attention to the role that zeros play in defining 
the presence/absence structure of a community. In 
fact, PCA is most often used on variables which have 

been normalised (subtracting the mean and dividing 
by the standard deviation, for each variable), leading 
to what is termed correlation-based PCA (as opposed 
to covariance-based PCA, when non-normalised data 
is submitted to PCA). After normalising, the zeros are 
replaced by different (largish) negative values for 
each species, and the concept of zero representing 
absence has disappeared. Even if normalisation is 
avoided, Euclidean distance (and thus PCA) is what 
is termed ‘invariant to a location change’ applied 
throughout the data matrix, whereas biological sense 
dictates that this should not be the case, if it is to be a 
useful method for species data. (Add 10 to all the 
counts in Table 2.1 and ask yourself whether it now 
carries the same biological meaning. To Euclidean 
distance nothing has changed; to an ecologist the data 
are telling you a very different story!)  

Another historical difficulty with applying PCA to 
community matrices was computational issues with 
eigen-analyses on matrices with large numbers of 
variables, especially when there is parameter indet-
erminacy in the solution, from matrices having a 
greater number of species than samples (p > n). 
However, modern computing power has long since 
banished such issues, and very quick and efficient 
algorithms can now generate a PCA solution (with 
n−1 non-zero eigenvalues in the p > n case), so that it 
is not necessary, for example, to arbitrarily reduce the 
number of species to p < n before entering PCA. 

EXAMPLE: Garroch Head macrofauna  

Fig. 4.1 shows the result of applying PCA to square-
root transformed macrofaunal biomass data from the 
65 species¶ found in subtidal sediments at 12 sites 
(1-12) along an E-W transect in the Firth of Clyde, 
Scotland ({G}, map at Fig. 1.5). A central site of the 
transect (site 6) is an accumulating sewage-sludge 
dump-ground and is subject to strong impacts of 
organic enrichment and heavy metal concentrations. 

It makes sense to transform the biomass values, for 
much the same reasons as for the cluster analyses of 
Chapter 3, so that analysis is not dominated by large 
biomass values from a small number of species; here 
a mild square-root transform was adequate to avoid 
the PCA becoming over-dependent on a few outliers. 
There is also no need to normalise species variables: 
they are on comparable and meaningful measurement 
scales (of biomass), so PCA will naturally give more 
weight to species with larger  (transformed)  biomass. 

¶ Later analysis of the count data from this study uses 84 species; 
19 of them were too small-bodied to have a weighable biomass.    
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Fig. 4.1.  Garroch Head macrofauna {G}. 2-dimensional PCA 

ordination of square-root transformed biomass of 65 species at 
12 sites (1-12) along a transect over the sludge disposal ground 
at site 6; points joined in transect order (see map in Fig. 1.5).  

A total of 11 PC’s are sufficient to capture all the 
information in this sample matrix, because there are 
only n=12 samples. (Had n been greater than p, then p 
PCs would theoretically have been needed to do this, 
the full PCA then being simply a rotation of the orig-
inal 65 species axes). However, many fewer than 11 
axes are needed to ‘capture’ much of the variability in 
samples here, the first two axes in Fig. 4.1 explaining 
62% of the total variance (a third and fourth would 
have added another 20% but made no fundamental 
changes to the broad pattern of this ordination).  

There is a puzzling feature to this pattern: the PCA 
points are joined in their transect order and a natural 
and interpretable progression of community structure 
is seen on approach to the dumpsite (1-5) and also on 
leaving it (7-12). However, site 6 (the dumpsite itself) 
appears close to sites 1 and 9-12 at the extremes of 
the transect, suggesting some commonality of the 
assemblages. Yet examination of the original biomass 
matrix shows that site 6 has no species in common at 
all with sites 1 and 9-12! And examination of the 
environmental data for these sites (on organics, heavy 
metals and water depth), seen in the later Table 11.1, 
confirms the expected pattern of contaminant levels 
in the sediments being greatest at site 6, and least at 
the transect end-points. The issue here is not that a 2-
dimensional PCA is an inadequate description, and 
that in higher dimensions site 6 would appear well 
separated from the transect end-points − it does not 
do so − but that the implicit dissimilarity measure that 
PCA uses is Euclidean distance, and that is a poor 
descriptor of differences in biological communities.  
In other words, the ordination technique itself may 
not, in some cases, be an inherently defective one, if a 

high percentage of the original variance is explained 
in the low-d picture, but the problem is that it starts in 
the wrong place − with a defective measure of comm-
unity dissimilarity.  The reasons for this are covered 
in much more detail later, when Euclidean and other 
resemblance measures are compared for this (and 
other) data, e.g. Fig. 16.10 on page 16-12.  

PCA FOR ENVIRONMENTAL DATA 

The above example makes it clear that PCA is an un-
satisfactory ordination method for biological data.  
However, PCA is a much more useful in the multi-
variate analysis of environmental rather than species 
data¶. Here variables are perhaps a mix of physical 
parameters (grain size, salinity, water depth etc) and 
chemical contaminants (nutrients, PAHs etc). Patterns 
in environmental data across samples can be examined 
in an analogous way to species data, by multivariate 
ordination, and tools for linking biotic and environ-
mental summaries are fully discussed in Chapter 11. 

PCA is more appropriate to environmental variables 
because of the form of the data: there are no large 
blocks of zero counts; it is no longer necessary to 
select a dissimilarity coefficient which ignores joint 
absences, etc. and Euclidean distance thus makes more 
sense for abiotic data. However, a crucial difference 
between species and environmental data is that the 
latter will usually have a complete mix of measurement 
scales (salinity in ‰, grain size in φ units, depth in m, 
etc). In a multi-dimensional visualisation of environ-
mental data, samples are points referred to environ-
mental axes rather than species axes, but what does it 
mean now to talk about (Euclidean) distance between 
two sample points in the environmental variable 
space?  If the units on each axis differ, and have no 
natural connection with each other, then point A can 
be made to appear closer to point B than point C, or 
closer to point C than point B, simply by a change of 
scale on one of the axes (e.g. measuring PCBs in µg/g 

¶ An environmental data matrix can be input to PRIMER in the 
same way as a species matrix, though it is helpful to identify its 
Data type as ‘Environmental’ (other choices are ‘Abundance’, 
‘Biomass’ or ‘Other’) because PRIMER then offers sensible 
default options for each type, e.g. in the selection of Resemblance 
coefficient. In statistics texts, the data matrix is usually described 
as having n rows (samples) by p columns (variables) whereas the 
biological matrices we have seen so far have always had species 
variables as rows (the reason for this convention in biological 
contexts is clear: p is often larger than n, and binomial species 
names are much more neatly displayed as row than column labels!).  
It is not necessary to transpose either matrix type before entry into 
PRIMER: in the Open dialog, simply select whether the input matrix 
has samples as rows or columns, or amend that information later (on 
the Edit>Properties menu) if it has been incorrectly entered initially. 
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not ng/g).  Obviously it would be entirely wrong for 
the PCA ordination to vary with such arbitrary scale 
changes. There is one natural solution to this: carry 
out a correlation-based PCA, i.e. normalise all the 
variable axes (after transformations, if any) so that 
they have comparable, dimensionless scales. 

The problem does not generally arise for species data, 
of course, because though a scale change might be 
made (e.g. from numbers of individuals per core to 
densities per m2 of sediment surface), the same scale 
change is made on each axis and the PCA ordination 
will be unaffected. If PCA is to be used for biotic as 
well as abiotic analysis, the default position would be 
to use correlation-based PCA for environmental data 
and covariance-based PCA for species data (but much 
better still, use an alternative ordination method such 
as MDS for species, starting from a more appropriate 
dissimilarity matrix, such as Bray-Curtis!). For both  
biotic or abiotic matrices, prior transformation is 
likely to be beneficial. Different transformations may 
be desirable for different variables in the abiotic 
analysis, e.g. contaminant concentrations will often 
be right-skewed (and require, say, a log transform) 
but salinity might be left-skewed and need a reverse 
log transform, see equation (11.2), or no transform at 
all. The transform issues are returned to in Chapter 9. 
 
PCA STRENGTHS 

1) PCA is conceptually simple.  Whilst the algebraic 
basis of the PCA algorithm requires a facility with 
matrix algebra for its understanding, the geometric 
concepts of a best-fitting plane in the species 
space, and perpendicular projection of samples 
onto that plane, are relatively easily grasped. Some 
of the more recently proposed ordination methods, 
which either extend or supplant PCA (e.g. Principal 
Co-ordinates Analysis, Detrended Correspondence 
Analysis) can be harder to understand for practit-
ioners without a mathematical background. 

2) It is computationally straightforward, and thus 
fast in execution. Software is widely available to 
carry out the necessary eigenvalue extraction for 
PCA. Unlike the simplest cluster analysis methods, 
e.g. the group average UPGMA, which could be 
accomplished manually in the pre-computer era, 
the simplest ordination technique, PCA, has always 
realistically needed computer calculation. But on 
modern machines it can take small fractions of a 
second processing time for small to medium sized 
matrices. Computation time, however, will tend to 
scale with the number of variables, whereas with 
MDS, clustering etc, which are based on sample 

resemblances (and which have lost all knowledge 
of the species which generated these) computing 
time tends to scale with (squared) sample numbers.  

3) Ordination axes are interpretable.  The PC axes 
are simple linear combinations of the values for 
each variable, as in equation (4.1), so have good 
potential for interpretation, e.g. see the Garroch 
Head environmental data analysis in Chapter 11, 
Fig. 11.1 and equation (11.1). In fact, PCA is a tool 
best reserved for abiotic data and this Clyde data set 
is thus examined in much more detail in Chapter 11.  

 
PCA WEAKNESSES 

1) There is little flexibility in defining dissimilarity.  
An ordination is essentially a technique for converting 
dissimilarities of community composition between 
samples into (Euclidean) distances between these 
samples in a 2- or higher-dimensional ordination 
plot.  Implicitly, PCA defines dissimilarity between 
two samples as their Euclidean distance apart in 
the full p-dimensional species space; however, as 
has been emphasised, this is rather a poor way of 
defining sample dissimilarity: something like a 
Bray-Curtis coefficient would be preferred but 
standard PCA cannot accommodate this.  The only 
flexibility it has is in transforming (and/or normal-
ising) the species axes so that dissimilarity is defined 
as Euclidean distance on these new scales. 

2) Its distance-preserving properties are poor.  Having 
defined dissimilarity as distance in the p-dimensional 
species space, PCA converts these distances by 
projection of the samples onto the 2-dimensional 
ordination plane.  This may distort some distances 
rather badly.  Taking the usual visual analogy of a 
2-dimensional ordination from three species, it can 
be seen that samples which are relatively far apart 
on the PC3 axis can end up being co-incident when 
projected (perhaps from ‘opposite sides’) onto the 
(PC1, PC2) plane. 
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EXAMPLE: Dosing experiment, 
Solbergstrand mesocosm 

An example of this final point for a real data set can 
be seen in Fig. 4.2.  This is of nematode data for the 
dosing experiment {D} in the Solbergstrand mesocosms, 
at the GEEP Oslo Workshop (Bayne et al 1988). Box 
core samples were collected from Oslofjord and held 
for three months under four dosing regimes: control, 
low, medium, high doses of a hydrocarbon and Cu 
contaminant mixture, continuously dosed to the basin 
waters.  Four replicate box cores were subjected to 
each treatment and at the end of the period cores for 
all 16 boxes were examined for nematode commun-
ities (amongst other faunistic components).  Fig. 4.2 
shows the resulting PCA, based on log-transformed 
counts for 26 nematode genera. The interest here, of 
course, is in whether all replicates from one of the four 
treatments separate out from other treatments, which 
might indicate a change in community composition 
attributable to a directly causal effect of the PAH and 
Cu contaminant dosing.  A cursory glance suggests 
that the high dose replicates (H) may indeed do this.  
However, closer study shows that the % of variance 
explained by the first two PC axes is very low: 22% 
for PC1 and 15% for PC2.  The picture is likely to be 
very unreliable therefore, and an examination of the 
third and higher PCs confirms the distortion: some of 
the H replicates are much further apart in the full 
species space than this projection into two dimen-
sions would imply.  For example, the right-hand H 
sample is actually closer to the nearest M sample than 
it is to other H samples.  The distances in the full 
species space are therefore poorly-preserved in the 2-
dimensional ordination. 
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Fig. 4.2. Dosing experiment, Solbergstrand {D}.  2-dimensional 

PCA ordination of log-transformed nematode abundances from 
16 box cores (4 replicates from each of control, low, medium 
and high doses of a hydrocarbon and Cu contaminant mixture).  
PC1 and PC2 account for 37% of the total variance. 

This example is returned to again in Chapter 5, Fig. 5.5, 
where it is seen that an MDS of the same data under a 
more appropriate Bray-Curtis dissimilarity makes a 
better job of ‘dissimilarity preservation’, though the 
data is such that no method will find it easy to 
represent in two dimensions.  The moral here is clear: 

a) be very wary of interpreting any PCA plot which 
explains so little of the total variability in the original 
data; 

b) statements about apparent differences in a multi-
variate community analysis of one site (or time or 
treatment) from another should be backed-up by 
appropriate statistical tests; this is the subject of 
Chapter 6. 
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CHAPTER 5: ORDINATION OF SAMPLES BY MULTI-DIMENSIONAL 
SCALING (MDS) 

 

OTHER ORDINATION METHODS 

Principal Co-ordinates Analysis 

The two main weaknesses of PCA, identified at the end 
of Chapter 4, are its inflexibility of dissimilarity measure 
and its poor distance-preservation.  The first problem 
is addressed in an important paper by Gower (1966), 
describing an extension to PCA termed Principal Co-
ordinates Analysis (PCO), also sometimes referred to 
as classical scaling.  This allows a wider definition of 
distance than simple Euclidean distance in the species 
space (the basis of PCA), but was initially restricted to a 
specific class of resemblance measures for which the 
samples could be represented by points in some recon-
figured high-dimensional (real) space, in which Euclid-
ean distance between two points is just the (non-Euclid-
ean) resemblance between those samples.  Effectively 
none of the most useful biological resemblance coeffic-
ients fall into this class – the high-d space representing 
those dissimilarities has both real and imaginary axes – 
but it has become clearer in the intervening decades that 
much useful inference can still be performed in this 
complex space, e.g. McArdle and Anderson (2001), 
Anderson (2001a&b). (This is essentially the space in 
which the PERMANOVA+ add-on routines to the  
PRIMER software carry out their core analyses). PCO 
can thus be applied completely generally to any resemb-
lance measure but the final step is again a projection 
onto a low-dimensional ordination space (e.g. a 2-
dimensional plane), as in ordinary PCA. It follows 
that PCA is just a special case of PCO, when the 
original dissimilarity is just Euclidean distance, but 
note that PCO is still subject to the second criticism 
of PCA: its lack of emphasis on distance-preservation 
when the information is difficult to represent in a low 
number of dimensions. 

Detrended Correspondence Analysis 

Correspondence analyses are a class of ordination 
methods originally featuring strongly in French data-
analysis literature (for an early review in English see 
Greenacre, 1984).  Key papers in ecology are Hill 
(1973a) and Hill and Gauch (1980), who introduced 
detrended correspondence analysis (DECORANA).  
The methods start from the data matrix, rather than a 
resemblance measure, so are rather inflexible in their 
definition of sample dissimilarity; in effect, multinomial 
assumptions generate an implicit dissimilarity measure 
of chi-squared distance (Chapter 16). Correspond-

ence analysis (CA) has its genesis in a particular 
model of unimodal species response to underlying 
(unmeasured) environmental gradients. Description is 
outside the scope of this manual but good accounts of 
CA can be found in the works of Cajo ter Braak (e.g. 
in Jongman et al, 1987), who has contributed a great 
deal in this area, not least CCA, Canonical Corresp-
ondence Analysis (ter Braak, 1986).¶ 

The DECORANA version of CA, widely used in earlier 
decades, has a primary motivation of straightening out 
an arch effect in a CA ordination, which is expected on 
theoretical grounds if species abundances have uni-
modal (Guassian) responses along a single strong 
environmental gradient.  Where such models are not 
appropriate, it is unclear what artefacts the algorithms 
may introduce into the final picture.  In the Hill and 
Gauch (1980) procedure, the detrending is essentially 
carried out by first splitting the ordination space into 
segments, stretching or shrinking the scale in each 
segment and then realigning the segments to remove 
wide-scale curvature.  For some people, this is un-
comfortably close to attacking the data with scissors 
and glue and, though the method is not as subjective 
as this would imply, some arbitrary decisions about 
where and how the segmentation and rescaling are 
defined are hidden from the user in the software code.  
Thus Pielou (1984) and others criticized DECORANA 
for its ‘overzealous’ manipulation of the data.  It is 
also unfortunate that the multivariate methods which 
were historically applied in ecology were often either 
poorly suited to the data or were based on conceptually 
complex algorithms (e.g. DECORANA and TWINS-
PAN, Hill 1979a, b), erecting a communication 
barrier between data analyst and ecologist. 

The ordination technique which is adopted in this 
manual’s strategy, non-metric MDS, is itself a com-
plex numerical algorithm but it will be argued that it 
is conceptually simple.  It makes few (if any) model 
assumptions about the form of the data, and the link 
between the final picture and the user’s original data 
is relatively transparent and easy to explain.  Import-
antly, it addresses both the major criticisms of PCA 
made earlier: it has great flexibility both in the defin-
ition and conversion of dissimilarity to distance and 
its rationale is the preservation of these relationships 
in the low-dimensional ordination space. 

¶ A convenient way of carrying out CA-related routines is to use 
the excellent CANOCO package, ter Braak and Smilauer (2002). 
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NON-METRIC MULTIDIMENSIONAL 
SCALING (MDS) 

The method of non-metric MDS was introduced by 
Shepard (1962) and Kruskal (1964), for application to 
problems in psychology; a useful introductory text is 
Kruskal and Wish (1978), though the applications given 
are not ecological. Generally, we use the term MDS 
to refer to Kruskal’s non-metric procedure (though if 
there is any risk of confusion, nMDS is used).  Metric 
MDS (always mMDS) is generally less useful but  will 
be discussed in specific contexts later in the chapter.  

The starting point is the resemblance matrix among 
samples (Chapter 2).  This can be whatever similarity 
matrix is biologically relevant to the questions being 
asked of the data.  Through choice of coefficient and 
possible transformation or standardisation, one can 
choose whether to ignore joint absences, emphasise 
similarity in common or rare species, compare only % 
composition or allow sample totals to play a part, etc.  
In fact, the flexibility of (n)MDS goes beyond this.  It 
recognises the essential arbitrariness of absolute sim-
ilarity values: Chapter 2 shows that the range of 
values taken can alter dramatically with transform-
ation (often, the more severe the transformation, the 
higher and more compressed the similarity values 
become). There is no clear interpretation of a state-
ment like ‘the similarity of samples 1 and 2 is 25 less 
than, or half that of, samples 1 and 3’. A transparent 
interpretation, however, is in terms of the rank values 
of similarity to each other, e.g. simply that ‘sample 1 
is more similar to sample 2 than it is to sample 3’.  
This is an intuitively appealing and very generally 
applicable base from which to build a graphical 
representation of the sample patterns and, in effect, 
the ranks of the similarities are the only information 
used by a non-metric MDS ordination. 

The purpose of MDS can thus be simply stated: it 
constructs a ‘map’ or configuration of the samples, 
in a specified number of dimensions, which attempts 
to satisfy all the conditions imposed by the rank 
(dis)similarity matrix, e.g. if sample 1 has higher 
similarity to sample 2 than it does to sample 3 then 
sample 1 will be placed closer on the map to sample 2 
than it is to sample 3. 

EXAMPLE: Loch Linnhe macrofauna 

This is illustrated in Table 5.1 for the subset of the 
Loch Linnhe macrofauna data used to show hierarch-
ical clustering (Table 3.2).  Similarities between √√-
transformed counts of the four year samples are given 

by Bray-Curtis similarity coefficients, and Table 5.1 
then shows the corresponding rank similarities. (The 
highest similarity has the lowest rank, 1, and the low-
est similarity the highest rank, n(n-1)/2.)  The MDS 
configuration is constructed to preserve the similarity 
ranking as Euclidean distances in the 2-dimensional 
plot: samples 2 and 4 are closest, 2 and 3 next closest, 
then 1 and 4, 3 and 4, 1 and 2, and finally, 1 and 3 are  
furthest apart.  The resulting figure is a more inform-
ative summary than the corresponding dendrogram in 
Chapter 3, showing, as it does, a gradation of change 
from clean (1) to progressively more impacted years 
(2 and 3) then a reversal of the trend, though not 
complete recovery to the initial position (4). 

Though the mechanism for constructing such MDS 
plots has not yet been described, two general features 
of MDS can already be noted: 

1) MDS plots can be arbitrarily scaled, located, rotated 
or inverted.  Clearly, rank order information about 
which samples are most or least similar can say 
nothing about which direction in the MDS plot is 
up or down, or the absolute distance apart of two 
samples: what is interpretable is relative distances 
apart, in whatever direction. 

2) It is not difficult in the above example to see that 
four points could be placed in two dimensions in 
such a way as to satisfy the similarity ranking perf-
ectly.¶  For more realistic data sets, though, this 
will not usually be possible and there will be some 
distortion (stress) between the similarity ranks and 
the corresponding distance ranks in the ordination. 
This motivates the principle of the MDS algorithm: 
to choose a configuration of points which minimises 
this degree of stress, appropriately measured. 

EXAMPLE: Exe estuary nematodes 

The construction of an MDS plot is illustrated with 
data collected by Warwick (1971) and subsequently 
analysed in this way by Field et al (1982). A total of 
19 sites from different locations and tide-levels in the 
Exe estuary, UK, were sampled bi-monthly at low 
spring tides over the course of a year, between 
October 1966 and September 1967. 

¶ In fact, there are rather too many ways of satisfying it and the 
algorithm described in this chapter will find slightly different 
solutions each time it is run, all of them equally correct.  However, 
this is not a problem in genuine applications with (say) six or 
more points.  The number of similarities increases roughly with 
the square of the number of samples and a position is reached very 
quickly in which not all rank orders can be preserved and this 
particular indeterminacy disappears. 
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Table 5.1.  Loch Linnhe macrofauna {L} subset.  Abundance array after √√-transform, the Bray-Curtis similarities (as in Table 3.2), 
the rank similarity matrix and the resulting 2-dimensional MDS ordination. 

                         Year:   64   68   71   73                     
Sample: 1 2 3 4  Sample 1 2 3 4  Sample 1 2 3 4         

Species      1 –     1 –           3  
Echinoca. 1.7 0 0 0  → 2 25.6 –       → 2 5 –   →     2   
Myrioche. 2.1 0 0 1.3  3 0.0 67.9 –   3 6 2 –    1   4    
Labidopl. 1.7 2.5 0 1.8  4 52.2 68.1 42.0 –  4 3 1 4 –         
Amaeana 0 1.9 3.5 1.7                     
Capitella 0 3.4 4.3 1.2                     
Mytilus 0 0 0 0                     

 
Three replicate sediment cores were taken for meio-
faunal analysis on each occasion, and nematodes 
identified and counted.  This analysis here considers 
only the mean nematode abundances across replicates 
and season (seasonal variation was minimal) and the 
matrix consists of 140 species found at the 19 sites. 

This is not an example of a pollution study: the Exe 
estuary is a relatively pristine environment. The aim 
here is to display the biological relationships among 
the 19 stations and later to link these to the environ-
mental variables (granulometry, interstitial salinity 
etc.) measured at these sites, to reveal potential deter-
minants of nematode community structure.  Fig. 5.1 
shows the 2-dimensional MDS ordination of the 19 
samples, based on √√-transformed abundances and a 
Bray-Curtis similarity matrix.  Distinct clusters of 
sites emerge (in agreement with those from a matching 
cluster analysis), bearing no clear-cut relationship to 
geographical position or tidal level of the samples. 
Instead, they appear to relate to sediment characterist-
ics and these links are discussed in Chapter 11.  For 
now the question is: what are stages in the construct-
ion of Fig. 5.1? 

 
Fig. 5.1. Exe estuary nematodes {X}.  MDS ordination of the 19 

sites based on √√-transformed abundances and Bray-Curtis 
similarities (stress = 0.05). 

MDS ALGORITHM 

The non-metric MDS algorithm, as first employed in 
Kruskal’s original MDSCAL program for example, is 
an iterative procedure, constructing the MDS plot by 
successively refining the positions of the points until 
they satisfy, as closely as possible, the dissimilarity 
relations between samples.† It has the following steps. 

1) Specify the number of dimensions (m) required in 
the final ordination. If, as will usually be desirable, 
one wishes to compare configurations in different 
dimensions then they have to be constructed one at 
a time.  For the moment think of m as 2. 

2) Construct a starting configuration of the n samples.  
This could be the result of an ordination by another 
method, for example PCA or PCO, but there are 
advantages in using just a random set of n points in 
m (=2) dimensions. 

3) Regress the interpoint distances from this plot on 
the corresponding dissimilarities.  Let {djk} denote 
the distance between the jth and kth sample points 
on the current ordination plot, and {δjk} the corres-
ponding dissimilarity in the original dissimilarity 
matrix (e.g. of Bray-Curtis coefficients, or whatever 
resemblance measure is relevant to the context). A 
scatter plot is then drawn of distance against dis-
similarity for all n(n–1)/2 such pairs of values.  This 
is termed a Shepard diagram and Fig. 5.2 shows 
the type of graph that results. (In fact, Fig. 5.2 is at 
a late stage of the iteration, corresponding to the 
final 2-dimensional configuration of Fig. 5.1; at 
earlier stages the graph will appear similar though 
with a greater degree of scatter).  The decision that 
characterises different ordination procedures must 
now be made: how does one define the underlying 
relation between distance in the plot and the 
original dissimilarity?   

† This is also the algorithm used in the PRIMER nMDS routine.  
The required input is a similarity matrix, either as calculated in 
PRIMER or read in directly from Excel, for example. 
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Fig. 5.2.  Exe estuary nematodes {X}.  Shepard diagram of the 

distances (d) in the MDS plot (Fig. 5.1) against the dissimilar-
ities (δ) in the Bray-Curtis matrix.  The line is the fitted non-
parametric regression; stress (=0.05) is a measure of scatter 
about the line in the vertical direction. 

There are two main approaches. 
a) Fit a standard linear regression of d on δ, so that 
final distance is constrained to be proportional to 
original dissimilarity. This is metric MDS (mMDS). 
(More flexible would be to fit some form of curvi-
linear regression model, termed parametric MDS, 
though this is rarely seen.) 
b) Perform a non-parametric regression of d on δ 
giving rise to non-metric MDS.  Fig. 5.2 illustrates 
the non-parametric (monotonic) regression line. 
This is a ‘best-fitting’ step function which moulds 
itself to the shape of the scatter plot, and at each new 
point on the x axis is always constrained to either 
remain constant or step up.  The relative success of 
non-metric MDS, in preserving the sample relation-
ships in the distances of the ordination plot, comes 
from the flexibility in shape of this non-parametric 
regression line. A perfect MDS was defined before 
as one in which the rank order of dissimilarities was 
fully preserved in the rank order of distances. Indiv-
idual points on the Shepard plot must then all be 
monotonic increasing: the larger a dissimilarity, the 
larger (or equal) the corresponding distance, and the 
non-parametric regression line is a perfect fit. The 
extent to which the scatter points deviate from the 
line measures the failure to match the rank order 
dissimilarities, motivating the following. 

4) Measure goodness-of-fit of the regression by a 
stress coefficient (Kruskal’s stress formula 1):  

     ∑ ∑∑ ∑ −= j k jkj k jkjk dddStress 22)ˆ(  (5.1) 

where jkd̂  is the distance predicted from the fitted 
regression line corresponding to dissimilarity δjk.  
If jkjk dd ˆ=  for all the n(n–1)/2 distances in this 
summation, the stress is zero.  Large scatter clearly 
leads to large stress and this can be thought of as 
measuring the difficulty involved in compressing 
the sample relationships into two (or a small number) 
of dimensions.  Note that the denominator is simply 
a scaling term: distances in the final plot have only 
relative not absolute meaning and the squared 
distance term in the denominator makes sure that 
stress is a dimensionless quality. 

5) Perturb the current configuration in a direction 
of decreasing stress. This is perhaps the most diff-
icult part of the algorithm to visualise and will not 
be detailed; it is based on established techniques of 
numerical optimisation, in particular the method of 
steepest descent. The key idea is that the regression 
relation is used to calculate the way stress changes 
for small changes in the position of individual 
points on the ordination, and points are then moved 
to new positions in directions which look like they 
will decrease the stress most rapidly. 

6) Repeat steps 3 to 5 until convergence is achieved.  
The iteration now cycles around the two stages of a 
new regression of distance on dissimilarity for the 
new ordination positions, then further perturbation 
of the positions in directions of decreasing stress.  
The cycle stops when adjustment of points leads to 
no further improvement in stress¶ (or when, say, 
100 such regression/steepest descent/regression/… 
cycles have been performed without convergence).  

Features of the algorithm 

Local minima. Like all iterative processes, especially 
ones this complex, things can go wrong! By a series 
of minor adjustments to the parameters at its disposal 
(the co-ordinate positions in the configuration), the 
method gradually finds its way down to a minimum 
of the stress function.  This is most easily envisaged 
in three dimensions, with just a two-dimensional 
parameter space (the x, y plane) and the vertical axis 
(z) denoting the stress at each (x, y) point. In reality 
the stress surface is a function of more parameters 
than this of course, but we have seen before how 
useful it can be to visualise high-dimensional algebra 
in terms of three-dimensional geometry. A relevant 
analogy is to imagine a rambler walking across a 
range of hills in a thick fog, attempting to find the 

¶ PRIMER7 has an animation option which allows the user to 
watch this iteration take place,  from random starting positions.  
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lowest point within an encircling range of high peaks.  
A good strategy is always to walk in the direction in 
which the ground slopes away most steeply (the 
method of steepest descent, in fact) but there is no 
guarantee that this strategy will necessarily find the 
lowest point overall, i.e. the global minimum of the 
stress function. The rambler may reach a low point 
from which the ground rises in all directions (and 
thus the steepest descent algorithm converges) but 
there may be an even lower point on the other side of 
an adjacent hill.  He is then trapped in a local minimum 
of the stress function.  Whether he finds the global or 
a local minimum depends very much on where he 
starts the walk, i.e. the starting configuration of 
points in the ordination plot. 

Such local minima do occur routinely in all MDS 
analyses, usually corresponding to configurations of 
sample points which are only slightly different to 
each other.  Sometimes this may be because there are 
one or two points which bear little relation to any of 
the other samples and there is a choice as to where 
they may best be placed, or perhaps they have a more 
complex relationship with other samples and may be 
difficult to fit into (say) a 2-dimensional picture.   

There is no guaranteed method of ensuring that a 
global minimum of the stress function has been 
reached; the practical solution is therefore to repeat 
the MDS analysis several times starting with different 
random positions of samples in the initial configuration 
(step 2 above). If the same (lowest stress) solution re-
appears from a number of different starts then there is 
a strong assurance, though never a guarantee, that this 
is indeed the best solution. Note that the easiest way 
to determine whether the same solution has been 
reached as in a previous attempt is simply to check 
for equality of the stress values; remember that the 
configurations themselves could be arbitrarily rotated 
or reflected with respect to each other.¶  In genuine 
applications, converged stress values are rarely pre-
cisely the same if configurations differ. (Outputting 
stress values to 3 d.p. can help with this, though 
solutions which are the same to 2 d.p. will be telling 
you the same story, in practice).  

¶ The arbitrariness of orientation needs to be borne in mind when 
comparing different ordinations of the same sample labels; the 
PRIMER MDS routine helps by automatically rotating the MDS 
co-ordinates to principal axes (this is not the same thing as PCA 
applied to the original data matrix!) but it may still require either 
or both axes to be reflected to match the plots. This is easily 
accomplished manually in PRIMER but, in cases where there may 
be less agreement (e.g. visually matching ordination plots from 
biota and environmental variables), PRIMER v7 also implements 
an automatic rotation/reflection/rescaling routine (Align graph), 
using Gower’s (1971) Procrustes analysis (see also Chapter 11).  

Degenerate solutions can also occur, in which groups 
of samples collapse to the same point (even though 
they are not 100% similar), or to the vertices of a 
triangle, or strung out round a circle. In these cases 
the stress may go to zero. (This is akin to our rambler 
starting his walk outside the encircling hills, so that 
he sets off in totally the wrong direction and ends up 
at the sea!). Artefactual solutions of this sort are relat-
ively rare and easily seen in the MDS plot and the 
Shepard diagram (the latter may have just a single 
step at one end): repetition from different random 
starts will find many solutions which are sensible.  
(In fact, a more likely cause of a plot in which points 
tend to be placed around the circumference of a circle 
is that the input matrix is of similarities when the 
program has been told to expect dissimilarities, or 
vice-versa; in such cases the stress will be very high.) 

A much more common form of degenerate solution is 
repeatable and is a genuine result of a disjunction in 
the data. For example, if the data split into two well-
separated groups for which dissimilarities between the 
groups are much larger than any within either group, 
then there may be no yardstick within our rank-based 
approach for determining how far apart the groups 
should be placed in the MDS plot. Any solution which 
places the groups ‘far enough’ apart to satisfy the 
conditions may be equally good, and the algorithm 
can then iterate to a point where the two groups are 
infinitely far apart, i.e. the group members collapse 
on top of each other, even though they are not 100% 
similar (a commonly met special case is when one of 
the two groups consists of a single outlying point). 
There are two solutions: 
a) split the data and carry out an MDS separately on 
the two groups (e.g. use ‘MDS subset’ in PRIMER); 
b) neater is to mix mostly non-metric MDS with a 
small contribution of metric MDS. The ‘Fix collapse’ 
option in the PRIMER v7 MDS routine offers this, 
with the stress defined as a default of (0.95 nMDS 
stress + 0.05 mMDS stress). The ordination then 
retains the flexibility of the rank-based solution, but a 
very small amount of metric stress is usually enough 
to pin down the relative positions of the two groups 
(in terms of the metric dissimilarity between groups 
to that within them); the process does not appear to 
be at all sensitive to the precise mixing proportions. 
An example is given later in this chapter.  

Distance preservation. Another feature mentioned 
earlier is that in MDS, unlike PCA, there is not any 
direct relationship between ordinations in different 
numbers of dimensions.  In PCA, the 2-dimensional 
picture is just a projection of the 3-dimensional one, 
and all PC axes can be generated in a single analysis. 
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With MDS, the minimisation of stress is clearly a 
quite different optimisation problem for each 
ordination of different dimensionality; indeed, this 
explains the greater success of MDS in distance-
preservation.  Samples that are in the same position 
with respect to (PC1, PC2) axes, though are far apart 
on the PC3 axis, will be projected on top of each 
other in a 2-dimensional PCA but they will remain 
separate, to some degree, in a 2-dimensional as well 
as a 3-dimensional MDS.   

Even though the ultimate aim is usually to find an 
MDS configuration in 2- or 3-dimensions it may 
sometimes be worth generating higher-dimensional 
solutions¶: this is one of several ways in which the 
advisability of viewing a lower-dimensional MDS can 
be assessed. The comparison typically takes the form 
of a scree plot, a line plot in which the stress (y axis) 
is plotted as a function of the number of dimensions 
(x axis). This and other diagnostic tools for reliability 
of MDS ordinations are now considered.  

DIAGNOSTICS: ADEQUACY OF MDS 
REPRESENTATION 

1) Is the stress value small? By definition, stress 
reduces with increasing dimensionality of the 
ordination; it is always easier to satisfy the full set 
of rank order relationships among samples if there 
is more space to display them. The scree plot of 
best stress values in 2, 3, 4,.. dimensions therefore 
always declines. Conventional wisdom is to look 
for a ‘shoulder’ in this plot, indicating a sudden 
improvement once the ‘correct’ dimensionality is 
found, but this rarely happens. It is also to miss the 
point about MDS plots: they are always approxim-
ations to the true sample relationships expressed in 
the resemblance matrix. So for testing and many 
other purposes in this manual’s approach we will 
use the full resemblance matrix. The 2-d and 3-d 
MDS ordinations are potentially useful to give an 
idea of the main features of the high dimensional 
structure, so the valid question is whether they are 
a usable approximation or likely to be misleading. 

¶ The PRIMER v7 MDS routine permits a large range of dimens-
ions to be calculated in one run; a comparison not just of the 
stress values (scree plot) but also of the changing nature of the 
Shepard plots can be instructive. For each dimension, the default 
is now to calculate 50 random restarts, independently of solutions 
in other dimensions; this is a change from PRIMER v6 where the 
first 2 axes of the 3-d solution were used to start the 2-d search. 
Whilst this reduced computation time, it could over-restrict the 
breadth of search area; ever increasing computer power makes 
this a sensible change. The results window gives the stress values 
for all repeats, and the co-ordinates of the best (lowest stress) 
solutions for each dimension can be sent to new worksheets.  

One answer to this is through empirical evidence and 
simulation studies of stress values. Stress increases 
not only with reducing dimensionality but also with 
increasing quantity of data, but a rough rule-of-
thumb, using the stress formula (5.1), is as follows.†   

Stress <0.05 gives an excellent representation with no 
prospect of misinterpretation (a perfect representation 
would probably be one with stress <0.01 since 
numerical iteration procedures often terminate 
when stress reduces below this value‡). 

Stress <0.1 corresponds to a good ordination with no 
real prospect of a misleading interpretation; higher-
dimensional solutions will probably not add any 
additional information about the overall structure 
(though the fine structure of any compact groups 
may bear closer examination). 

Stress <0.2 still gives a potentially useful 2-dimensional 
picture, though for values at the upper end of this 
range little reliance should be placed on the detail 
of the plot. A cross-check of any conclusions should 
be made against those from an alternative method 
(e.g. the superimposition of cluster groups suggested 
in point 5 below), higher-dimensional solutions 
examined or ways founds of reducing the number 
of samples whose inter-relationships are being 
represented, by averaging over replicates, times, 
sites etc or by selection of subsets of samples to 
examine separately, in turn.  

Stress >0.3 indicates that the points are close to being 
arbitrarily placed in the ordination space. In fact, 
the totally random positions used as a starting 
configuration for the iteration usually give a stress 
around 0.35–0.45. Values of stress in the range 
0.2–0.3 should therefore be treated with a great 
deal of scepticism and certainly discarded in the 
upper half of this range.  Other techniques will be 
certain to highlight inconsistencies. 

2) Does the Shepard diagram appear satisfactory?  
The stress value totals the scatter around the regress-
ion line in a Shepard diagram, for example the low 
stress of 0.05 for Fig. 5.1 is reflected in the low  
scatter in Fig. 5.2.  Outlying points in the plot could  

† There are alternative definitions of stress, for example the stress 
formula 2 option provided in the MDSCAL and KYST programs. 
This differs only in the denominator scaling term in (5.1) but is 
believed to increase the risk of finding local minima and to be 
more appropriate for other forms of multivariate scaling, e.g. 
multidimensional unfolding, which are outside the scope of this 
manual. 
‡ This is under user control with the PRIMER routine, for 
example, but the default is 0.01. 
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be identified with the samples involved; often there 
are a range of outliers all involving dissimilarities 
with a particular sample and this can indicate a 
point which really needs a higher-dimensional 
representation for accurate placement, or simply 
corresponds to a major error in the data matrix.  

3) Is there distortion when similar samples are con-
nected in the ordination plot? One simple check 
on the success of the ordination in dissimilarity-
preservation is to specify an arbitrary similarity 
threshold (in practice try a series of thresholds) and 
join all samples in the ordination whose similarity 
is greater than this threshold. This is shown for the 
Exe data in Fig. 5.3a, at a similarity level of 30% 
and indicates no strong inconsistencies of the MDS 
distances with the similarity matrix (e.g. the group 
5,10 is further from 6,11 than the latter is from 
7,8,9, and clearly of greater dissimilarity). How-
ever, though low, the stress is not zero, and it is 
clear that some of this comes from representation 
of the detailed structure of the (looser) 12-19 
group. For example, Fig. 5.3a shows that sample 
15 is more similar to 16 than it is to either 18 or 17, 
which is not the picture seen from the 2-d MDS.  

4) Is the ‘minimum spanning tree’ consistent with 
the ordination picture? A similar idea to the above 
is to construct the minimum spanning tree (MST, 
Gower and Ross, 1969). All samples are connected 
on the MDS plot by a single line which is allowed 
to branch but does not form a closed loop, such 
that the sum along this line of the relevant pairwise 
dissimilarities is minimised (again, this is taken 
from the original dissimilarity matrix not the 
distance matrix from the ordination points, note). 
Inadequacy is again indicated by connections 
which look unnatural in the context of placement 
of samples in the MDS configuration. The MST is 
shown for the Exe data in Fig. 5.3b and the same 
point about stress in the 2-d MDS for samples 15-
18 can be seen. Similarly, there is clearly higher-
dimensional structure than can be seen here among 
samples 12-14 and their relation with 19, since the 
MST shows that 12 is more similar to 13 than it is 
to the apparently intermediate point 14, and the 
MST does not take the apparently shortest route to 
sample 19. A lower stress must be obtained for a  
3-d MDS (it drops a little to 0.03 here), and Fig. 
5.3c of the 3-d MDS does show, for example, that  
points 12,13 are close and 14 a little separated, as 
Figs. 5.3a, 5.3b and the cluster analysis Fig. 5.4  
would all suggest. (Viewing 3-d pictures in 2-d is 
not always easy but can be very much clearer with 
dynamic  rotation of the 3-d plot,  which is allowed 

 
Fig. 5.3. Exe estuary nematodes {X}. a) & b) Two-dimensional 

MDS configuration, as in Fig. 5.1 (stress = 0.05), with: 
 a) samples >30% similar (by Bray-Curtis) joined by grey lines; 
b) the minimum spanning tree through the dissimilarity matrix 
indicated by the continuous line.  
c) Three-dimensional MDS configuration (stress = 0.03). 
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Fig. 5.4.  Exe estuary nemat-

odes {X}. Dendrogram of the 
19 sites, using group-average 
clustering from Bray-Curtis 
similarities on √√-transform-
ed abundances. The four site 
groups (1 to 4) identified by 
Field et al (1982) at a 17.5% 
similarity threshold are indic-
ated by a dashed line (they 
also split the two tightly clust-
ered sub-groups in group 1). 
A 35% slice is also shown.  

 
Fig. 5.5. Exe estuary nematodes {X}. Two-dimensional MDS 

configuration, as in Fig. 5.1 (stress = 0.05), with clusters ident-
ified from Fig. 5.4 at similarity levels of 35% (continuous line) 
and 17.5% (dashed line).  

in PRIMER as with many other plotting programs). 
When 2-d stress is as low, as it is here, the extra 
difficulty of displaying a 3-d solution for such a 
marginal improvement must be of doubtful utility, 
but in many cases there will be real interpretational 
gains in moving to a 3-d MDS solution.  

5) Do superimposed groups from a cluster analysis 
distort the ordination plot? The combination of 
clustering and ordination analyses can also be an 
effective way of checking the adequacy and mutual 
consistency of both representations. Slicing the 
dendrogram of Fig. 5.4 at two (or more) arbitrary 
similarity levels determines groupings which can be 
identified on the 2-d ordination by a closed region 
around the points. (PRIMER uses its own ‘nail and 
string’ algorithm to produce smoothed convex hulls 

of the points in each cluster, where the degree of 
smoothing is under user control, with a smoothing 
parameter of zero resulting in the convex hull). Here 
the approximately 17.5% similarity used by the 
original Field et al (1982) paper is shown by the 
dashed line in Figs. 5.4 and 5.5, and a continuous 
line shows the clusters produced from slicing the 
dendrogram between about 30-45% similarity. It is 
clear that the agreement between the MDS and the 
cluster analysis is excellent: the clusters are well 
defined and would be determined in much the same 
way if one were to select clusters by eye from the 2-
dimensional ordination alone. One is not always as 
fortunate as this, and a more revealing example of 
the benefits of viewing clustering and ordination in 
combination is provided by the data of Fig. 4.2.¶  

EXAMPLE: Dosing experiment, 
Solbergstrand 

The nematode abundance data from the dosing experim-
ent {D} at the GEEP Oslo Workshop was previously 
analysed by PCA, see Fig. 4.2 and accompanying 
text.  The analysis was likely to be unsatisfactory, 
since the % of variance explained by the first two 
principal components was very low, at 37%.  Fig. 
5.6c shows the MDS ordination from the same data, 
and in order to make a fair comparison with the PCA 
the data matrix was treated in exactly the same way    

¶ One option within PRIMER is to run CLUSTER on the ranks of 
the similarities rather than the similarities themselves.  Whilst not 
of any real merit in itself (and not the default option), Clarke 
(1993) argues that this could have marginal benefit when performing 
a group-average cluster analysis solely to see how well the clusters 
agree with the MDS plot: the argument is that the information 
utilised by both techniques is then made even more comparable. 
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Fig. 5.6.  Dosing experiment, 
Solbergstrand mesocosm {D}.  
Nematode abundances for 
four replicates from each of 
four treatments (control, low, 
medium and high dose of 
hydrocarbons and Cu) after 
species reduction and log 
transformation as in Fig. 4.2. 
a), c) Group-averaged clust-
ering from Bray-Curtis simil-
arities; clusters formed at two 
arbitrary levels are superim-
posed on the 2-dimensional 
MDS obtained from the same 
similarities (stress = 0.16).  
b), d) Group-average cluster-
ing from Euclidean distances; 
clusters from two levels are 
superimposed on the 2-dimen-
sional PCA of Fig. 4.2.  Note 
the greater degree of distortion 
in the latter. (Contours drawn 
by hand, note, not in PRIMER 
which only allows convexity 
of such contours). 

prior to analysis. (The same 26 species were used and 
a log transform applied before computation of Bray-
Curtis similarities). The stress for the 2-dimensional 
MDS configuration is moderately high (at 0.16), 
indicating some difficulty in displaying the relation-
ships between these 16 samples in two dimensions. 
However, the PCA was positively misleading in its 
apparent separation of the four high dose (H) replicates 
in the 2-dimensional space; by contrast the MDS does 
provide a usable summary which would probably not 
lead to serious misinterpretation (the interpretation is 
that nothing very much is happening!).  This can be 
seen by superimposing the corresponding cluster 
analysis results, Fig. 5.6a, onto the MDS.  Two 
similarity thresholds have been chosen in Fig. 5.6a 
such that they (arbitrarily) divide the samples into 5 
and 10 groups, the corresponding hierarchy of 
clusters being indicated in Fig. 5.6c by thin and thick 
lines respectively. Whilst it is clear that there are no 
natural groupings of the samples in the MDS plot, 
and the groupings provided by the cluster analysis 
must therefore be regarded with great caution, the 
two analyses are not markedly inconsistent. 

In contrast, the parallel operation for the PCA ordination 
clearly illustrates the poorer distance-preserving 
properties of this method.  Fig. 5.6d repeats the 2-
dimensional PCA of Fig. 4.2 but with superimposed 
groups from a cluster analysis of the Euclidean distance

 matrix (the implicit distance for a PCA) between the 
16 samples (Fig. 5.6b). With the same division into 
five clusters (thin lines) and ten clusters (thick lines), 
a much more distorted picture results, with samples 
that are virtually coincident in the PCA plot being 
placed in separate groups and samples appearing 
distant from each other forming a common group. 

The outcome that would be expected on theoretical 
grounds is therefore apparent in practice here: MDS 
(with a relevant similarity matrix for species data,  
Bray-Curtis) can provide a more realistic picture in 
situations where PCA (on Euclidean distance) gives a 
distorted representation of the those distance relation-
ships among samples, because of the projection step: 
the H samples are not clustered together in the dend-
rogram. In fact, the biological conclusion from this 
particular study is entirely negative: the ANOSIM 
test (Chapter 6) shows that there are no statistically 
significant differences in community structure among 
any of the four dosing levels in this experiment. 

EXAMPLE: Celtic Sea zooplankton 

In situations where the samples are strongly grouped, 
as in Figs. 5.4 and 5.5, both clustering and ordination 
analyses will demonstrate this, usually in equally 
adequate fashion. The strength of ordination is in dis-
playing a gradation of community composition over  
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Fig. 5.7. Celtic Sea zooplankton {C}. MDS plot for night (boxed) 

and day time samples (dashed lines) from 14 depths (5 to 70m, 
denoted A,B,...,N), taken at a single site during September 1978. 

a set of samples. An example is provided by Fig. 5.7, 
of zooplankton data from the Celtic Sea {C}. Samples 
were collected from 14 depths, separately for day and 
night time studies at a single site. The changing 
community composition with depth can be traced on 
the resulting MDS plot (from Bray-Curtis similar-
ities). There is a greater degree of variability in 
community structure of the near-surface samples, 
with a marked change in composition at about 20-
25m; deeper than this the changes are steady but less 
pronounced and they step in parallel for day and night 
time samples.§ Another obvious feature is the strong 
difference in community composition between day  
and  night near-surface samples, contrasted with their 
relatively higher similarity at greater depth. Cluster 
analysis of the same data would clearly not permit the 
accuracy and subtlety of interpretation that is possible 
from ordination of such a gradually changing comm-
unity pattern.  

Common examples of the same point can be found 
for time series data, where the construction of a time 
trajectory by connecting points on an ordination 
(sometimes, as above, with multiple trajectories on 
the same plot, e.g. contrasting time sequences at 
reference and impacted conditions) can be a powerful 
tool in the interpretational armoury from multivariate 
analysis, and another example of this point follows.   

§ The precise relationships between the day and night samples for 
the larger depths (F-N) would now best be examined by an MDS 
of that data alone, the greater precision resulting from the MDS 
then not needing to cater, in the same 2-d picture, for the relation-
ships to (and between) the A-E samples. This re-analysis of 
subsets should be a commonly-used strategy in the constant battle 
to display high-dimensional information in low dimensions. 

EXAMPLE: Amoco-Cadiz oil spill, Morlaix 

Benthic macrofaunal abundances of 251 species were 
sampled by Dauvin (1984) at 21 times between April 
1977 and February 1982 (approximately quarterly), at 
station ‘Pierre Noire’ in the Bay of Morlaix. Ten grab 
samples (1m²) of sediment were collected on each 
occasion and pooled, thus substantially reducing the 
contribution of local-scale spatial variability to the 
ensuing multivariate analysis, which should allow 
temporal patterns to be seen more clearly. The time-
series spanned the period of the ‘Amoco-Cadiz’ oil 
tanker disaster of March 1978; the sampling site was 
some 40km from the initial tanker break-up but major 
coastal oil slicks reached the Bay of Morlaix, {A}. 

The 2-d MDS from Bray-Curtis similarities computed 
on 4th-root transformed abundances is seen in Fig. 
5.8a, and has succeeded in reducing the 251-d species 
data to a 2-d plot with only modest stress (=0.09). It 
neatly shows: a) the scale of the seasonal cycle prior 
to the oil-spill (times A to E); b) marked community 
change immediately following the spill (time F), and 
further changes over the next year or so (G-K); c) a 
move towards greater stability, with a suggestion that 
the community is returning towards the region of its 
initial state, though it has certainly not achieved that 
by the end of the 5-year period; and d) the re-establ-
ishment of the seasonal cycle in this latter phase (J-
M, N-Q, R-U).  

In fact, this is an astonishingly succinct and meaning-
ful summary of the main pattern of change in a very 
speciose data set, and shows well the power of MDS 
ordinations to capture continuous change rather than 
groupings of samples, which is all that a dendrogram 
displays. The latter is seen in the differing symbols in 
Fig 5.8a, used for SIMPROF groups (Chapter 3) from 
agglomerative clustering (Fig. 5.8b): eight groups are 
identified and they do split samples before and after 
the spill, and also by season, between winter+spring 
and summer+autumn periods, even in the last two 
years overriding inter-annual differences. The except-
ion to that is over the immediate post-spill year, in 
which seasonal differences are not apparent. All of 
this makes sense and demonstrates the power of ord-
ination and clustering methods together (literally, for 
the rotatable Fig. 8.5c, another PRIMER7 option). On 
their own, however, in a case where a time course of 
change is expected, the supremacy of ordination over 
cluster analysis is clear (contrast Figs. 5.8 a and b). A 
simple dendrogram gives weak interpretation since it 
lacks ordering, i.e. has no way of associating clusters 
with a temporal or spatial gradient (though see the 
discussion on dendrograms in shade plots, Chapter 7). 
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Fig. 5.8. Amoco-Cadiz oil spill {A}. Morlaix macrobenthos at 21 

times (A to N). For Bray-Curtis on 4th-root transformed abund-
ances: a) 2-d nMDS; b) agglomerative cluster analysis, both 
using symbols identifying the 8 groups given by SIMPROF tests; 
c) 2-d MDS as in (a) with SIMPROF groups identified and the 
dendrogram from (b) displayed in the 3rd dimension.  

MDS STRENGTHS 

1) MDS is simple in concept.  The numerical algorithm 
is undeniably complex, but it is always clear what 
non-metric MDS is setting out to achieve: the 
construction of a sample map whose inter-point 
distances have the same rank order as the corresp-
onding dissimilarities between samples. 

2) It is based on the relevant sample information.  
MDS works on the sample dissimilarity matrix not 
on the original data array, so that there is complete 
freedom of choice to define similarity of commun-
ity composition in whatever terms are biologically 
most meaningful. 

3) Species deletions are unnecessary.  Another advant-
age of starting from the sample dissimilarity matrix 
is that the number of species on which it was based 
is largely irrelevant to the amount of calculation 
required. Of course, if the original matrix contained 
many species whose patterns of abundance across 
samples varied widely, and prior transformation (or 
choice of similarity coefficient) dictated that all 
species were given rather equal weight, then the 
structure in the sample dissimilarities is likely to 
be more difficult to represent in a low number of 
dimensions. More usually, the similarity measure 
will automatically down-weight the contribution of 
species that are rarer (and thus more prone to 
random and uninterpretable fluctuations). There is 
then no necessity to delete species, either to obtain 
reliable low-dimensional ordinations or to make 
the calculations viable; the computational scale is 
determined solely by the number of samples. 

4) MDS is generally applicable. MDS can validly be 
used in a wide variety of situations; fewer assumpt-
ions are made about the nature and quality of the 
data when using non-metric MDS than (arguably) 
for any other ordination method. It seems difficult 
to imagine a more parsimonious position than 
stating that all that should be relied on is the rank 
order of similarities (though of course this still 
depends on the data transformation and similarity 
coefficient chosen). The step to considering only 
rank order of similarities, rather than their actual 
values, is not as potentially inefficient as it might 
at first appear, in cases where the resemblances are 
genuine Euclidean distances. Provided the number 
of points in the ordination is not too small (nMDS 
struggles when there are only 4 or 5, thus few 
dissimilarities to rank), nMDS will effectively 
reconstruct those Euclidean distances solely from 
their rank orders so that metric MDS (mMDS) and 
nMDS solutions will appear identical. The great 
advantage of nMDS, of course, is that it can cope 
equally well with very non-Euclidean resemblance 
matrices, commonplace in biological contexts.  

5) The algorithm is able to cope with a certain level 
of ‘missing’ similarities. This is not a point of 
great practical importance because resemblances 
are generally calculated from a data matrix. If that 
has a missing sample then this results in missing 
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values for all the similarities involving that sample, 
and MDS could not be expected to ‘make up’ a 
sensible place to locate that point in the ordination! 
Occasionally, however, data arrives directly as a 
similarity matrix and then MDS can cleverly stitch 
together an ordination from incomplete sets of 
similarities, e.g. knowing the similarities A to (B, 
C, D) and B to (C, D) tells you quite a lot about the 
missing similarity of C to D. And if, as noted 
above, there are a reasonable number of points, so 
a fairly rich set of ranks, even nMDS (as found in 
PRIMER) would handle such missing similarities.  

MDS WEAKNESSES 

1) MDS can be computationally demanding. The 
vastly improved computing power of the last two 
decades has made it comfortable to produce MDS 
plots for several hundred samples, with numerous 
random restarts (by default PRIMER now does 50), 
in a matter of a few seconds. However, for n in the 
thousands, it is still a challenging computation 
(processor time increases roughly proportional to 
n2). It should be appreciated, though, that larger 
sample sizes generally bring increasing complexity 
of the sample relationships, and a 2 or 3-dimensional 
representation is unlikely to be adequate in any 
case. (Of course this last point is just as true, if not 
more true, for other ordination methods). Even 
where it is of reasonably low stress, it becomes 
extremely difficult to label or make sense of an 
MDS plot containing thousands of points. This 
scenario was touched on in Chapter 4 and in the 
discussion of Fig. 5.7, where it was suggested that 
data sets will often benefit by being sub-divided by 
the levels of a factor, or on the basis of subsets 
from a cluster analysis, and the groups analysed 
separately by MDS (agglomerative clustering is 
very fast, for large numbers of samples§). Averages 
for each level might then be input to another MDS 
to display the large-scale structure across groups. It 
is the authors’ experience that, far too often, users 
produce ordination plots from all their (replicate) 
samples and are then surprised that the ordination, 

§ PRIMER has no explicit constraint on the size of matrices that it 
can handle; the constraints are mainly those of available RAM. 
On a typical laptop PC it is possible to perform sample analyses 
on matrices with tens of thousands of variables (species or OTUs) 
and hundreds of samples without difficulty; once the resemblance 
matrix is computed most calculations are then a function of the 
number of samples (n), and cluster analysis on hundreds of 
samples is virtually instantaneous. (The same is not true of the 
SIMPROF procedure, note, since it works by permuting the data 
matrix and is highly compute-intensive; v7 does however make 
good use of multi-core processors where these are available).  

containing many points, has high stress and little 
apparent pattern. Not enough use is made of aver-
aging, whether of the transformed data matrix, the 
similarities, or the centroids from PCO (Anderson 
et al, 2008), taken over replicates, over sites for 
each time, over times for each site etc, and entering 
those averages into MDS ordinations. In univariate 
analysis, it is rare to produce a scatter plot of the 
replicates themselves: we are much more likely to 
plot the means for each group, or the main effects 
of times and sites etc (for each factor, averaging 
over the other factors), and the situation should be 
no different for multivariate data.  

2) Convergence to the global minimum of stress is 
not guaranteed. As we have seen, the iterative 
nature of the MDS algorithm makes it necessary to 
repeat each analysis many times, from different 
starting configurations, to be fairly confident that a 
solution that re-appears several times (with the 
lowest observed stress) is indeed the global minimum 
of the stress function. Generally, the higher the 
stress, the greater the likelihood of non-optimal 
solutions, so a larger number of repeats is required, 
adding to the computational burden. However, the 
necessity for a search algorithm with no guarantee 
of the optimal solution (by comparison with the 
more deterministic algorithm of a PCA) should not 
be seen, as it sometimes has, as a defect of MDS 
vis-à-vis PCA. Remember that an ordination is 
only ever an approximation to the high-dimension-
al truth (the resemblance matrix) and it is much 
better to seek an approximate answer to the right 
problem (MDS on Bray-Curtis similarity, say) 
rather than attack the wrong problem altogether 
(PCA on Euclidean distance), however determin-
istic the computation is for the latter.  

3) The algorithm places most weight on the large 
distances.  A common feature of most ordination 
methods (including MDS and PCA) is that more 
attention is given to correct representation of the 
overall structure of the samples than their local 
structure. For MDS, it is clear from the form of 
equation (5.1) that the largest contributions to 
stress will come from incorrect placement of 
samples which are very distant from each other.  
Where distances are small, the sum of squared 
difference terms will also be relatively small and 
the minimisation process will not be as sensitive to 
incorrect positioning.  This is another reason therefore 
for repeating the ordination within each large cluster: 
it will lead to a more accurate display of the fine 
structure, if this is important to interpretation. An 
example is given later in Figs. 6.2a  and 6.3,  and is 
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Fig. 5.9. Amoco-Cadiz oil spill 
{A}. a) Scree plot of stress for 
nMDS solutions in 2-d to 10-d 
(data matrix as in Fig. 5.8); 
b) 3-d nMDS plot for the 21 
times; c) & d) Shepard plots 
for the 2-d (Fig 5.8) and 3-d 
MDS ordinations showing the 
decreasing scatter about the 
monotonic regression (stress).

typical of the generally minor differences that 
result: the subset of points are given more freedom 
to expand in a particular direction but their relative 
positions are usually only marginally changed. 

FURTHER nMDS/mMDS DEVELOPMENTS 

Higher dimensional solutions  

MDS solutions can be sought in higher dimensions 
and we noted previously that the stress will naturally 
decrease as the dimension increases. Fig 5.9a shows 
the scree plot of this decreasing stress (y axis) against 
the increasing number of dimensions, for the Amoco-
Cadiz oil spill data of Fig. 5.8. There is a suggestion 
of a ‘shoulder’ in this line plot as the stress drops 
from 2-d to 3-d, thereafter declining steadily. The 2-d 
stress is already a rather satisfactory 0.09 but drops 
quite strongly to about 0.05 with the extra dimension, 
now in our category of an excellent representation, 
and so should certainly be further examined. Figs. 
5.9c and d show the 2- and 3-d Shepard plots, and it 
is clear that the stress (scatter about the fitted mono-
tonic regression line) has reduced quite sharply. Fig. 
5.9b shows the 3-d nMDS itself, with the box rotated 
to highlight, in the vertical direction (z), the third 
MDS axis (as defined by the automatic rotation of the 
configuration to principal axes). The seasonal cycle is 
clearly expressed by changes along this axis, which is 

orthogonal to the main inter-annual changes seen in 
the x, y plane (the latter is very likely to be the effect 
of the oil spill and partial recovery, though it is im-
possible of course to infer that with full confidence, 
given the absence of any sort of reference conditions 
for the natural inter-annual variation). This example 
suggest that, even in cases with acceptable 2-d stress, 
at least the 3-d solution should be calculated and then 
rotated to see if it offers further insight¶. Here, for 
example, the apparent synchrony in direction of the 
seasonal cycle between the start (A-E) and end (R-U) 
years of this time course, seen in the 2-d plot (Fig. 
5.8a), is confirmed in the 3-d plot (Fig. 5.9b) with its 
more complete separation of season and year. The 3-d 
plot gives us greater confidence in this case that the 
2-d plot (with its perfectly acceptable stress level) in 
no way misleads. Of course, for static displays, one 
would then always prefer the 2-d plot, as a suitable 
approximation to the high-dimensional structure.  

¶ PRIMER v7 also offers a dynamic display of the ‘evolution’ of a 
community in 3-d MDS space, typically over a time course. This 
is unnecessary for Fig 5.9b because there are only 21 points and 
they do not tread similar paths at later times, but the continued 
study of the macrobenthos at station ‘Pierre Noire’ in Morlaix 
Bay over three decades has given rise to a data set of nearly 200 
time steps and a complex, multi-layered 3-d plot; it is then 
fascinating to watch the evolving trajectory of newer samples 
over the fading background of older community samples, and 
thus to set the potential oil-spill effects in the context of longer-
term inter-annual patterns.  
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(Non-)linearity of the Shepard diagram 

Shepard diagrams for the 2-d and 3-d non-metric 
MDS ordinations for Morlaix were seen in Figs. 5.9c 
and 5.9d; note how relatively restricted the range of 
(dis)similarities is, by comparison with the equivalent 
plot (Fig. 5.2) for the (spatial) Exe nematode study. 
The latter exemplifies a long baseline of community 
change: there are pairs of sites with no species in 
common, thus dissimilarities at the extreme of their 
range (100). For the (temporal) Morlaix study, the 
baseline of change is relatively much shorter, nearly 
all dissimilarities being between 20 and 50: there is 
no complete turnover of species composition through 
time, nor anything approaching it. This difference 
results in a (commonly observed) effect of greater 
linearity of the relationship between original dis-
similarity and final distance in the MDS plots, as seen 
in Figs. 5.9c&d. It is linear regression of the Shepard 
plot distances vs. dissimilarities, through the origin, 
which is the basis of a less-commonly used technique 
for MDS, metric multidimensional scaling (mMDS), 
in which dissimilarities are treated as if they are, in 
reality, distances. Through the origin is an important 
caveat here and it is clear that Figs. 5.9c&d would not 
be well-fitted by such a regression – the natural line 
through these points passes through distance y = 0 at 
about a dissimilarity of x = 20. Thus the flexible 
nMDS fits instead more of a threshold relationship, in 
which the linearity tails off smoothly in a compressed 
set of distances for the smallest dissimilarities. 

Metric multi-dimensional scaling (mMDS)  

The above example will be returned to later, but there 
are situations in which a simple linear regression on 
the Shepard plot is certainly appropriate, e.g. when 
the resemblance coefficient is Euclidean distance, as 
would be the case for analysis of (normalised) envir-
onmental variables. Then mMDS becomes a viable 
alternative to PCA (which also uses distances that are 
Euclidean) but with the great advantage of ordination 
which does not resort to a projection of the higher-
dimensional data but sets out to preserve the high-d 
distances in the low-d plot, as closely as it can. This 
lack of distance preservation was one of the two main 
objections to PCA discussed at the end of Chapter 4.  

The metric MDS algorithm is in principle that earlier 
described for nMDS, replacing the step involving 
monotonic regression with simple linear regression 
through the origin. This allows the distances on the 
mMDS plot to be scaled in the same units as the input 
resemblance matrix (usually a distance measure), and 
there are now therefore measurement scales on the 
axes of the plot.   Orientation and reflection are  again  

Table. 5.2. World map {W}.  a) Distance (in miles) between pairs 
of ‘European’ cities; b) rank distances (1= closest, 21 = furthest)  

(a) London Madrid Moscow Oslo Paris Rome 
London       
Madrid 774 

     Moscow 1565 2126 
    Oslo 723 1474 1012 

   Paris 215 641 1542 822 
  Rome 908 844 1491 1253 689 

 Vienna 791 1122 1033 848 648 477 
 

(b) London Madrid Moscow Oslo Paris Rome 
London       
Madrid 7 

     Moscow 20 21 
    Oslo 6 17 13 

   Paris 1 3 19 9 
  Rome 12 10 18 16 5 

 Vienna 8 15 14 11 4 2 

arbitrary (though usually the convention is adopted as 
for nMDS, of rotating co-ordinates to principal axes). 

A simple example illustrates metric MDS well, that 
of recreating a map of cities from a triangular matrix 
of the road/rail/air distances (or perhaps travel times) 
between every pair of them, {W} ¶. Table 5.2a gives 
the great-circle distances between only 7 cities (called 
European for brevity though they include Moscow). 
The negligible curvature of the earth over the range 
of about 2000 miles makes it clear that this distance 
matrix should be enough to locate these cities on a 2-
dimensional map near-perfectly, and Fig. 5.10a shows 
the result of the metric MDS. As can be seen from 
Fig. 5.10c, the Shepard diagram is now precisely a 
linear fit through the origin, with no scatter and thus 
zero stress (stress is defined exactly as for nMDS, 
equation 5.1). The mMDS has been manually rotated 
to align with the conventional N-S direction for such 
a map, though that is clearly arbitrary; the axis scales 
are in miles since the fully metric information is used. 

Perhaps more striking is the equivalent nMDS, Fig. 
5.10b, which is more or less identical. Though the 
Shepard diagram, Fig. 5.10d, is given in terms of 
distance in the ordination against the input resembl-
ances (city distances), the monotonic regression fit 
ensures that all that matters to the stress (see equation 
5.1) are the y axis values of ordination distances, and 
their departure from the fitted step function (also zero

¶ Such examples are very useful in explaining the purpose and 
interpretation of ordinations to the non-specialist and are quite 
commonly found (e.g. Everitt, 1978 starts from a road distance 
matrix for UK cities; Clarke, 1993 uses the example in this 
chapter of great-circle distances between  world cities, taken 
from the Reader’s Digest Great World Atlas of 1962).  
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Fig. 5.10. World map {W}. For 
the distance matrix Table 5.2a 
&b from 7 ‘European’ cities: 
a&c) metric MDS and its ass-
ociated Shepard plot; b&d) 
non-metric MDS and Shepard 
plot (stress = 0 in all cases) 

throughout). Points on the x axis could be stretched 
and squeezed differentially along its length, and the 
step function would stretch and squeeze with them, 
thus leaving the stress unchanged (zero, here). In 
other words, the only information used by the nMDS 
is the rank orders of city distances in Table 5.2b. And 
that is actually quite remarkable: a near-perfect map 
has been obtained solely from all possible statements 
of the form ‘Oslo is closer to Paris than Madrid is to 
Rome’. The general suitability of nMDS comes from 
the fact that it can accommodate not just very non-
linear Shepard diagrams but, also, where a straight 
line is the best relationship (and there are more than a 
minimal number of relationships to work with) nMDS 
should find it: the points in Fig. 5.10d do effectively 
fall on a straight line through the origin. What the 
monotonic regression loses is the link to the original 
measurements: the y axis scale is in arbitrary standard 
deviation units, and nMDS plots have no axis scales 
that can be related to the original distances. 

This example becomes more interesting still when we 
expand the data to 34 cities from all around the globe, 
again utilising the great-circle (‘direct flight’) inter-
city distances from the same atlas source. Fig. 5.11a 
shows the nMDS solution in 3-d, and it is again near-
perfect, with zero stress. There is one subtlety here 
that should not be missed: the supplied great-circle 
distances are not the same as the direct (‘through the 
earth’) distances between cities, represented in the 
nMDS plot, and the relationship between the two is 
not linear. This is clear from the Shepard diagram, 
Fig. 5.11d: nMDS is able to preserve the rank orders 
of great-circle distances perfectly in the final 3-d 
direct distances only if it can non-linearly transform 

the supplied distance scale, i.e. ‘squash up’ the larger 
distances, where the earth’s curvature matters more 
than for the smaller distances within a region. It has 
not been told how to do this, it does not use any form 
of parametric relationship to do it – it simply uses the 
flexibility of fitting an increasing step function to 
mould itself to a shape that will ‘square this particular 
circle’, and thus reduce the stress (to zero, here). In 
comparison, mMDS will also make a reasonable job 
of this ordination (the final plot is not very different 
than Fig 5.11a) but, because it must fit a straight line 
to the Shepard plot, the stress is not zero but 0.07.  

In addition to turning ‘distance’ matrices into ‘maps’, 
the other crucial role for ordination methods is, of 
course, dimensionality-reduction. This can be well 
illustrated by seeking a 2-d MDS of the great-circle 
distances. Figs. 5.11b&e show the mMDS plot and 
associated Shepard diagram. The stress is, naturally, 
higher, at about 0.15. (The nMDS ‘map’, given by 
Clarke, 1993, looks very similar because the Shepard 
plot is close to linearity in this case, and has a slightly 
lower stress of 0.14). We previously categorised such 
stress values as ‘potentially useful but with detail not 
always accurate’, and this is an apt description of the 
2-d approximation in plot b) to the true 3-d map of a). 
The placement within most regions (denoted by diff-
erent symbols on the map) is accurate, as can be seen 
from the tight scatter in the Shepard plot for smaller 
distances, but the MDS has trouble placing cities like 
San Francisco – it cannot be put on the extreme left 
of the plot since that implies that the largest distances 
in the original matrix are from there to the far-eastern 
cities of  Beijing, Tokyo, Sydney etc, which is clearly 
untrue.  So the n/mMDS drags San Francisco towards 
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Fig. 5.11. World map {W}. a&d) 3-d non-metric MDS from great-circle distances between every pair of 34 world cities, and associated 
Shepard plot of (‘through the earth’) distances in the 3-d plot, y, against original great-circle distances, x (stress = 0); and for the same 
data: b&e) 2-d metric MDS and Shepard plot (stress = 0.15); c&f) 2-d PCO and Shepard plot (stress undefined for this technique, 
since not based on a modelled distance vs. resemblance relation, but the scatter is clearly greater for plot f than plot e). 

those cities whilst keeping it away from eastern USA 
and Europe, which can only ever partly succeed – it is 
no surprise to observe therefore that the worst outliers 
on the Shepard plot involve San Francisco. 

Nonetheless, the mMDS does give a reasonably fair 
2-d map of the world and the advantage it can have 
over its natural competitor, Principal Co-ordinates 
(PCO) is well illustrated in the PCO ordination, Fig. 
5.11c. PCO does its dimensionality reduction here by 
projecting from the 3-d space to the ‘best’ 2-d plane 
(‘squashing the earth flat’, in effect). San Francisco is 
now uncomfortably close to Lagos and the generally 
poor distance preservation is evident from a Shepard 
plot, Fig. 5.11f ¶, for which the most extreme outliers 
are, not surprisingly, between San Francisco and the 
African cities. In defence of PCO, it does not set out 
to preserve distances. Its strengths lie elsewhere, in 
attempting to partition meaningful structure, seen on 
the primary axes, from meaningless residual variab-
ility, which it assumes will appear on the higher axes 

¶ Note that, though a Shepard diagram is not normally produced 
by a PCO, it can be created in PRIMER7 (with PERMANOVA+) 
by saving the 2-d PCO co-ordinates to a worksheet, calculating 
the Euclidean distances, using Unravel to generate a single y axis 
column, and likewise for the original distances (x), and running a 
Scatter Plot of y on x. Note also that PCO looks close to being 
PCA here, but is not – great-circle distances are not Euclidean.  

and thus be ‘flattened’ by the projection. However, 
this example is a salutary one if the main motivation 
is to display all of the high-dimensional structure of a 
resemblance matrix in the best possible way in low-
dimensional space. 

mMDS for Amoco-Cadiz oil-spill data  

Fig. 5.12a shows the result of metric MDS for the 
Morlaix macrofauna data of Figs. 5.8 and 5.9. Whilst 
the metric ordination plot shares the same features as 
its non-metric counterpart, the stress value is much 
higher (at 0.23).  Fig. 5.12c shows why: the linear 
regression through the origin, the basis of mMDS, is 
a very poor fit. In spite of the way mMDS is seeking 
to force the Bray-Curtis dissimilarities to be inter-
preted exactly as distances, the data resolutely refuses 
to go along with this! It maintains its own linear 
relationship (not through the origin) as the solution 
which best minimises the overall stress; this explains 
the retention of a similar-looking ordination in spite 
of the high stress. But the conflict between the fitted 
model and the data carries a price: it does not result 
in an adequate 2-d representation. For example, it 
suggests that the apparent ‘recovery’ towards the pre-
spill year is better than is justified by the similarities. 
Also the only significant advantage of a successful 
mMDS here, that the axis scales could then be read as  

 

                                                           



 Chapter 5   
page 5–17  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5.12. Amoco-Cadiz oil-
spill {A}. a&c) mMDS for 21 
sampling times (data as Fig. 
5.8) and Shepard plot (stress 
0.23); b&d) threshold mMDS 
and Shepard plot (stress 0.12) 

Bray-Curtis dissimilarities, is entirely nullified. The 
ordination scale suggests that times G and O (the first 
week of August in 1978 and 1980) are separated by a 
distance (=dissimilarity) of nearly 70, yet the real 
value is around 50; this is a direct result of the way 
the points form a steeper gradient than the fitted line 
in Fig. 5.12c. What this figure strongly suggests, in 
fact, is that we can retain a linear relationship of dist-
ance with dissimilarity, using what we shall term a 
threshold metric MDS (tmMDS), by fitting a linear 
regression to the Shepard plot but with a non-zero 
intercept (this is an option in PRIMER7’s mMDS). 

The resulting tmMDS and Shepard plot are shown in 
Fig. 5.12 b&d. The model is seen to fit very well and 
the stress greatly reduces, to a very acceptable 0.12, 
(not much higher than the vastly more flexible step 
function of nMDS, with stress 0.09).  The resulting 
ordination is now virtually identical to the 2-d nMDS, 
Fig. 5.8a, and because the linear threshold model in 
Fig. 5.12d fits the dissimilarities so accurately and 
tightly, we are justified in interpreting the distance 
scales on the mMDS axes as dissimilarities, after one 
adjustment. Dissimilarities of about 20, the intercept 
on the x axis in the Shepard plot, are represented in 
the ordination by zero distance, i.e. the points for 
those samples would effectively coincide (samples B 
and C are a case in point, with dissimilarity of 17, the 
lowest in the matrix). Points G and O are now separ-
ated by about 30 units on the mMDS axes, so their 

dissimilarity is represented as being 20+30 = 50 (and 
their true dissimilarity is a slightly fortuitous 49.9!) 

Reference was made earlier to the way PCO and PCA 
hope to display meaningful structure on the first few 
axes and remove smaller-scale sampling variation by 
projecting across the higher PCs. nMDS can achieve 
this in a different way, by compression of the scale of 
smaller dissimilarities, smoothly ‘tailing in’ samples 
below a certain dissimilarity to be represented by 
points closer together on the plot than could happen 
under standard mMDS, where the linearity demands 
that only points of zero dissimilarity are coincident. 
Threshold mMDS, using liner regression not through 
the origin, is thus a combination of metric and non-
metric ideas: points below some fitted threshold of 
dissimilarity (20 here) are literally placed on top of 
each other, so what could be just sampling variation 
(e.g. among replicates at the same point in space or 
time or treatment combination) is eliminated in that 
way. Above the threshold, strict linearity is enforced, 
so such a threshold mMDS is not well-suited to many 
cases which have long baseline gradients of assembl-
age change (such as Fig. 5.2) where samples have few 
or no species in common and dissimilarities abut 100. 
Where the Shepard plot shows them to be accurate 
models, with low stress, mMDS and threshold mMDS 
bring the advantage of interpretable axis scales for 
the MDS plot; where they are less accurate, nMDS is 
usually much preferable. 
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Combined nMDS and mMDS ordinations 

The combination of non-metric and metric concepts  
can be taken one logical step further¶, to tackle a 
problem raised on page 5-5, which can occur with 
nMDS, that of degenerate solutions with zero stress 
arising from the collapse of the ordination into two 
(or a small number of) groups, in cases where among- 
group dissimilarities are all uniformly larger than any 
within-group ones. The non-metric algorithm can 
then place such groups infinitely far apart (in effect) 
and the display of any real within-group structure is 
lost as they collapse to points. The problem does not 
arise at all for standard mMDS (or PCO/PCA) since 
positioning of the most distant samples is constrained 
by the simple linear relation with smaller distances. 

In cases of collapse where there are very few points 
in the ordination in the first place, an mMDS solution 
is an obvious place to start. In an extreme case, e.g. 
when ordinating only 3 points, nMDS will not run at 
all (the only data available to it are the three ranks 1, 
2, 3!). Such cases are not pathological – they arise 
very naturally when looking at the equivalent of 
‘means plots’ for multivariate analyses. Just as in 
univariate analyses, where an ANOVA is followed by 
plots of the means, e.g. ‘main effects’ of a factor, so 
in multivariate analysis, ANOSIM or PERMANOVA 
tests are followed by ordinations of the averages or 
centroids of the factor levels, to interpret the relation-
ships among groups that have been demonstrated by 
tests at the replicate level. Such plots can sometimes 
have very few points and mMDS can then provide an 
effective, low stress, solution to displaying them.     

However, for less trivial numbers of points, and in the 
common cases where Shepard plots are non-linear 
and the flexibility of nMDS is required, an effective 
solution to ‘collapsing plots’ is to combine mMDS 

¶ Though not implemented in the same way as in the PRIMER7 
‘Fix Collapse’ option, and with different motivation, the hybrid 
scaling (HS) technique of Faith et al (1987), and the semi-strong 
hybrid scaling (SHS) of Belbin (1991), introduced this combin-
ation idea into ecology in the PATN software. Briefly, using the 
original Kruskal, Young and Seer software (KYST), which allows 
combined stress function optimisation, HS mixes mMDS for all 
dissimilarities below a specified value with nMDS on the full set 
of dissimilarities. SHS also uses mMDS below a specified value 
but mixes that with nMDS above that value (and also substitutes 
Guttman’s algorithm for Kruskal’s). The primary motivation is in 
reconstruction of ecological gradients driven environmentally on 
a transect or grid and the methods do not appear to be  optimal 
for a ‘collapsing MDS’ problem, since neither applies a direct 
constraint to dissimilarities greater than the threshold. (E.g. they 
would not stop the collapse for two well-separated groups whose 
between-group dissimilarities all exceeded that threshold.) The 
approach of this section achieves this by the common metric scale 
imposed (very mildly) on the largest distances by smaller ones. 

and nMDS stress functions over all dissimilarities, in 
mixing proportions of (say) 0.05 and 0.95.  

EXAMPLE: Okura estuary macrofauna 

Anderson et al (2004) describe macrofauna samples 
from the Okura estuary {O}, on the northern fringes 
of urban Auckland, NZ, taken inter-tidally at 2 times 
in each of 3 seasons under 3 sedimentary regimes 
(High, Medium and Low sedimentation levels), each 
regime represented by 5 sites, with 6 cores taken per 
site at each time. Taking averages§ of log(x+1) trans-
formed abundances over the sets of 30 site × replicate 
samples gives a very robust estimate of the commun-
ity structure at each of the 18 time × sedimentation 
levels. However, calculating Bray-Curtis similarities 
then leads to the collapsed nMDS plot of Fig. 5.13a, 
since all dissimilarities between the highest and lower 
sedimentation levels (H compared with L and M) are 
greater than 40 and those within either of these two 
groups are all less than 30. The two sub-plots can be 
extracted, as shown in insets to Fig. 5.13a (simply 
achieved in PRIMER by drawing a box round each 
collapsed point and taking the ‘MDS subset’ routine), 
but it is more instructive to retain these averages on 
the same ordination. Just a small amount of metric 
stress here (5%, though the solution is robust to a 
wide range of values for the mixing proportion) is 
enough to calibrate the relative dissimilarities bet-
ween the two sedimentation regimes (H and L/M) to 
those within them, Fig. 5.13b. The Shepard plots (c 
and d) show the contrast between a solution which is 
degenerate and a valid nMDS ordination: the dis-
junction in dissimilarities which forced the original 
collapse is very clear in both plots. As emphasised by 
Anderson et al (2008) the advantage of the single 
ordination is seen in the way the seasonal ordering 
(1=winter/spring, 2=spring/summer, 3=late summer) 
is matched, across the (large) sedimentation divide.  

Combining data sets 

Another context in which we might want to combine 
MDS solutions into a single ordination, which optim-
ises their combined stress function, arises when there  

§ This example is taken from the PERMANOVA+ manual, Ander-
son et al (2008). There, the ‘averages’ are the  (theoretically 
more correct) centroids in the high-dimensional ‘Bray-Curtis 
space’ from the full 540 samples, i.e. averaging is performed 
after similarity calculation not before. Whilst data averages are 
not the same as centroids from dissimilarity space (e.g. an aver-
aged assemblage may not be ‘central’ to individual samples, 
since it will usually have higher species richness), it is commonly 
found that the relationship amongst averages can be very similar 
to the relationship amongst centroids, as is seen here when 
comparing Fig. 5.13a with the Anderson et al PCO of Fig. 3.13.  
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Fig. 5.13. Okura macrofauna 
{O}. a&c) Collapsed nMDS 
and associated Shepard plot 
from Bray-Curtis similarities 
on averages over 30 samples 
of log transformed abund-
ances of 73 taxa, for 2 times 
in each season (1-3: Winter-
Spring, Spring-Summer and 
Late Summer) and 3 levels of 
sedimentation (High, Medium, 
Low). Stress→ 0 for collapsed 
nMDS; subset nMDS plots for 
H and L/M separately (insets 
in a) have stress = 0.04, 0.07. 
b&d) nMDS for Fix Collapse 
option (stress defined as mix 
0.95×nMDS + 0.05×mMDS), 
and the Shepard plot for that 
nMDS, with stress 0.04. 

is no clear way of merging two data sets with exactly 
the same sample labels (same times, sites, treatments 
etc) but of very different type. For example, in rocky 
shores, counts might be made of motile species but 
area cover of sessile or colonial organisms, and it 
may be hard to reconcile those two types of measure-
ment in a single array. The classic solution to mixed 
measurement scales is to normalise variables but this 
gives each species an equal contribution in defining 
resemblance, irrespective of their total counts or area 
cover, and this may be very undesirable (it can add a 
great deal of ‘noise’ from rare species); it is much 
better to keep the natural internal weightings for each 
species. Perhaps the best solution is to convert both 
matrices onto a common scale (such as biomass or 
‘equivalent area cover’) and merge them into a single 
array, but an alternative worth considering is to run a 
combined nMDS (an option under PRIMER7) which 
fits separate Shepard plots for each matrix to common 
ordination co-ordinates, minimising the average of 
the two stress values. The result is an equal mix of 
the two sets of information on sample relationships. 

Note that it is inevitable that the resulting stress value 
will be higher than for either of the separate nMDS 
ordinations, since it must represent a compromise of 
two potentially conflicting sets of relationships; it can 
only come close to the stress in the separate plots if 
they have effectively identical patterns. (The same is 
not true of merging the two matrices into a single 
array, of course, because there the compromise is 
effected in the calculation of the resemblances).   

An example of where a merged matrix is usually not 
possible but a combined nMDS is a viable solution is 
where the matrices to combine require very different 
dissimilarity measures, such as for assemblage counts 
(e.g. Bray-Curtis) and environmental variables which 
may be driving those counts (e.g. Euclidean distance). 
Arguably, there are few convincing examples of why 
a compromise MDS is a desirable output here (rather 
than adopting the approach in Chapter 11 that we let 
the two components ‘speak for themselves’ and then 
seek variables, or sets of variables, which ‘explain’ 
the biotic patterns) but an example is given below of 
the result of a combined MDS, were it to be needed. 

EXAMPLE: Messolongi lagoon diatoms 

Danielidis (1991) sampled 17 lagoons in E Central 
Greece for diatom communities (193 species), and 
also recorded a suite of 12 water-column variables: 
temperature, salinity, DO2, pH, PO4, total P, NH3, 
NO2, NO3, inorganic N and SiO2. After global square 
root transformations and Bray-Curtis dissimilarities 
are calculated on the species densities, and selective 
log transforms (of the nutrients) and Euclidean dist-
ances are calculated on the environmental variables, 
Fig. 5.14a&b display the resulting separate nMDS 
ordinations. In this case, there is a remarkable degree 
of uniformity in the way these two independent sets 
of variables describe the sample patterns, suggesting 
that the structuring environmental variables for these 
communities have been correctly identified (and this 
idea leads into the BEST technique in Chapter 11 for  
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Fig. 5.14. Messolongi diatoms {m}. nMDS plots for17 lagoon 
sites based on: a) 193 species (from Bray-Curtis dissimilarities), 
b) 12 water-column variables (normalised Euclidean distances), 
c) combined nMDS, the configuration simultaneously minimising 
average stress from the biotic and abiotic Shepard diagrams. 
Stress: a) 0.09, b) 0.08, c) 0.13. 

further refinement of ‘structuring variable’ selection). 
A combined nMDS of the two resemblance matrices 
is given in Fig. 5.14c. The 2-d stress of 0.13, c.f. 0.09 
and 0.08 for the separate biotic and abiotic plots, 
shows that one must expect an increased stress even 
when agreement is very good. 

RECOMMENDATIONS 

1) Non-metric MDS can be recommended as the best 
general ordination technique available (e.g. Everitt, 
1978). Important early studies comparing ordination 
methods for community data gave nMDS a high 
rating (e.g. Kenkel and Orloci, 1986) and improve-
ments in computing power since those early studies 
have made it even more attractive. In comparison 
with (even) older techniques such as PCA, nMDS 

has a number of practical advantages stemming from 
its flexibility and lack of assumptions. 

2) When the inter-sample relationships are relatively 
simple, e.g. there are some strong clusters or strong 
gradient of change across all samples, several ord-
ination methods will perform adequately and give 
comparable pictures. The main advantage of nMDS 
is its greater ability, by comparison with projection-
based methods such as PCA or PCO to better repres-
ent relations accurately in low-dimensional space. 
It outcompetes its metric form, mMDS, and also 
PCO, especially in cases where biological coeffic-
ients such as Bray-Curtis are used and there is a 
strong turnover of species across the sites, times, 
treatments etc, such that a fair number of samples 
have few or no species in common. Then, the 
dissimilarity scale becomes strongly compressed in 
the region of 100% (with many values at 100, 
perhaps, as can be seen for the Exe Shepard plot in 
Fig. 5.2) and the ability of the monotonic regress-
ion to expand this tight range of dissimilarities to 
wider-spaced distances is the key to a successful 
ordination. In contrast, where the Shepard diagram 
is fairly linear through the origin, nMDS, mMDS 
and PCO will often produce similar ordinations.  

3) If the stress is low (say <0.1), an MDS ordination 
is generally a more useful representation than a 
cluster analysis: when the samples are strongly 
grouped the MDS will reveal this anyway, and 
when there is a more gradual continuum of change, 
or some interest in the placement of major groups 
with respect to each other, MDS will display this 
in a way that a cluster analysis is quite incapable of 
doing.  For higher values of stress, the techniques 
should be thought of as complementary to each 
other; neither may present the full picture so the 
recommendation is to perform both and view them 
in combination. This may make it clear which 
points on the MDS are problematic to position 
(examining some of the local minimum solutions 
can help here¶, as can animation of the iterative 
procedure), and an ordination in a higher dim-
ension may prove more consistent with the cluster 
groupings.  Conversely, the MDS plots may make 
it clear that some groups in the cluster analysis are 
arbitrary subdivisions of a natural continuum. 

¶ For example, run the PRIMER MDS routine several times, with 
a single random starting position on each occasion, and examine 
the plots that give a higher stress than the ‘optimal’ one found. In 
PRIMER7, run the MDS animation for a number of restarts. Also, 
outliers on the Shepard diagram can be identified by clicking on 
the appropriate point on the plot.  
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CHAPTER 6: TESTING FOR DIFFERENCES BETWEEN GROUPS OF 
SAMPLES 

 
Many community data sets possess some a priori 
defined structure within the set of samples, for example 
there may be replicates from a number of different 
sites (and/or times).  A pre-requisite to interpreting 
community differences between sites should be a 
demonstration that there are statistically significant 
differences to interpret. 
 

UNIVARIATE TESTS 

When the species abundance (or biomass) information 
in a sample is reduced to a single index, such as 
Shannon diversity (see Chapter 8), the existence of 
replicate samples from each of the groups (sites/times 
etc.) allows formal statistical treatment by analysis of 
variance (ANOVA). This requires the assumption 
that the univariate index is normally distributed and 
has constant variance across the groups, conditions 
which are normally not difficult to justify (perhaps 
after transformation, see Chapter 9).  A so-called 
global test of the null hypothesis (Ho), that there are 
no differences between groups, involves computing a 
particular ratio of variability in the group means to 
variability among replicates within each group.  The 
resulting F statistic takes values near 1 if the null 
hypothesis is true, larger values indicating that Ho is 
false; standard tables of the F distribution yield a 
significance level (p) for the observed F statistic.  
Broadly speaking, p is interpreted as the probability 
that the group means we have observed (or a set of 
means which appear to differ from each other to an 
even greater extent) could have occurred if the null 
hypothesis Ho is actually true. 

Fig.6.1 and Table 6.1 provide an illustration, for the 6 
sites and 4 replicates per site of the Frierfjord macro-
fauna samples.  The mean Shannon diversity for the 6 
sites is seen in Fig.6.1, and Table 6.1 shows that the F 
ratio is sufficiently high that the probability of observing 
means as disparate as this by chance is p<0.001 (or 
p<0.1%), if the true mean diversity at all sites is the 
same.  This is deemed to be a sufficiently unlikely 
chance event that the null hypothesis can safely be 
rejected.  Convention dictates that values of  p<5% 
are sufficiently small, in a single test, to discount the 
possibility that Ho is true, but there is nothing sacrosanct 
about this figure: clearly, values of p = 4% and 6%  
should  result in the same inference.    It is  also  clear 
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Fig. 6.1.  Frierfjord macrofauna {F}.  Means and 95% confid-
ence intervals of  Shannon diversity (H’) at the 6 field sites (A-
E, G) shown in Fig. 1.1. 

 
that repeated significance tests, each of which has 
(say) a 5% possibility of  describing a chance event 
as a real difference, will cumulatively run a much 
greater risk of drawing at least one false inference.  
This is one of the (many) reasons why it is not usually 
appropriate to handle a multi-species matrix by perform-
ing an ANOVA on each species in turn. (Further 
reasons are the complexities of dependence between 
species and the general inappropriateness of normality 
assumptions for abundance-type data). 

Fig. 6.1 shows the main difference to be a higher 
diversity at the outer site, A.  The intervals displayed 
are 95% confidence intervals for the true mean 
diversity at each site; note that these are of equal 
width because they are based on the assumption of 
constant variance, that is, they use a pooled estimate 
of replication variability from the residual mean square 
in the ANOVA table. 
 

Table 6.1.  Frierfjord macrofauna {F}.  ANOVA table showing 
rejection (at a significance level of 0.1%) of the global hypothesis 
of ‘no site-to-site differences’ in Shannon diversity (H’). 

 Sum of 
squares 

Deg. of 
freedom 

Mean 
Square 

F ratio Sig. 
level 

      Sites 3.938   5 0.788 15.1 < 0.1% 
Residual 0.937 18 0.052   
Total 4.874 23    
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Further details of how confidence intervals are deter-
mined, why the ANOVA F ratio and F tables are 
defined in the way they are, how one can allow to 
some extent for the repeated significance tests in 
pairwise comparisons of site means etc, are not 
pursued here.  This is the ground of basic statistics, 
covered by many standard texts, for example Sokal 
and Rohlf (1981), and such computations are available 
in all general-purpose statistics packages.  This is not 
to imply that these concepts are elementary; in fact it 
is ironic that a proper understanding of why the uni-
variate F test works requires a level of mathematical 
sophistication that is not needed for the simple permuta-
tion approach to the analogous global test for differences 
in multivariate structure between groups, outlined 
below. 
 

MULTIVARIATE TESTS 

One important feature of the multivariate analyses 
described in earlier chapters is that they in no way 
utilise any known structure among the samples, e.g. 
their division into replicates within groups.  (This is 
in contrast with Canonical Variate Analysis, for 
example, which deliberately seeks out ordination axes 
that, in a certain well-defined sense, best separate out 
the known groups; e.g. Mardia et al, 1979).  Thus, the 
ordination and dendrogram of Fig 6.2, for the Frierfjord 
macrofauna data, are constructed only from the 
pairwise similarities among the 24 samples, treated 
simply as numbers 1 to 24.  By superimposing the 
group (site) labels A to G on the respective replicates 
it becomes immediately apparent that, for example, 
the 4 replicates from the outer site (A) are quite 
different in community composition from both the 
mid-fjord sites B, C and D and the inner sites E and 
G.  A statistical test of the hypothesis that there are 
no site-to-site differences overall is clearly unnecess-
ary, though it is less clear whether sufficient evidence 
exists to assert that B, C and D differ. 

This simple structure of groups, and replicates within 
groups, is referred to as a 1-way layout, and it was 
seen above that 1-way ANOVA would provide the 
appropriate testing framework if the data were uni-
variate (e.g. diversity or total abundance across all 
species).  There is an analogous multivariate analysis 
of variance (MANOVA, e.g. Mardia et al, 1979), in 
which the F test is replaced by a test known as Wilks’ 
Λ, but its assumptions will never be satisfied for 
typical multi-species abundance (or biomass) data.  
This is the problem referred to in the earlier chapters 
on choosing similarities and ordination methods; 
there are typically many more species (variables) than 

samples and the probability distribution of counts 
could never be reduced to approximate (multivariate) 
normality, by any transformation, because of the 
dominance of zero values.  For example, for the 
Frierfjord data, as many as 50% of the entries in the 
species/samples matrix are zero, even after reducing 
the matrix to only the 30 most abundant species! 

A valid test can instead be built on a simple non-
parametric permutation procedure, applied to the 
(rank) similarity matrix underlying the ordination or 
classification  of  samples,  and  therefore  termed  an 
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Fig. 6.2  Frierfjord macrofauna {F}. a) MDS plot, b) dendrogram, 

for 4 replicates from  each of the 6 sites (A-E and G), from Bray 
Curtis similarities computed for √√-transformed species abundances 
(MDS stress = 0.05). 
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ANOSIM test (analysis of similarities)¶, by analogy 
with the acronym ANOVA (analysis of variance).  
The history of such permutation tests dates back to 
the epidemiological work of Mantel (1967), and this 
is combined with a general randomization approach 
to the generation of significance levels (Hope 1968).  
In the context below, it was described by Clarke and 
Green (1988). 

‘ANOSIM’ FOR THE 1-WAY LAYOUT 

Fig.6.3 displays the MDS based only on the 12 samples 
(4 replicates per site) from the B, C and D sites of the 
Frierfjord macrofauna data. The null hypothesis (Ho) 
is that there are no differences in community compos-
ition at these 3 sites.  In order to examine Ho, there 
are 3 main steps: 

1) Compute a test statistic reflecting the observed 
differences between sites, contrasted with differences 
among replicates within sites.  Using the MDS plot of 
Fig. 6.3, a natural choice might be to calculate the 
average distance between every pair of replicates 
within a site, and contrast this with the average distance 
apart of all pairs of samples corresponding to replicates 
from different sites.  A test could certainly be construct-
ed from these distances but it would have a number of 
drawbacks. 
a) Such a statistic could only apply to a situation in 

which the method of display was an MDS rather 
than, say, a cluster analysis. 

b) The result would depend on whether the MDS was 
constructed in two, three or higher dimensions.  
There is often no ‘correct’ dimensionality and one 
may end up viewing the picture in several different 
dimensions – it would be unsatisfactory to generate 
different test statistics in this way. 

c) The configuration of B, C and D replicates in Fig. 
6.3 also differs slightly from that in Fig. 6.2a, 
which includes the full set of sites A-E, G.  It is 
again undesirable that a test statistic for comparing 
only B, C and D should depend on which other 
sites are included in the picture. 

These three difficulties disappear if the test is based 
not on distances between samples in an MDS but on 
the  corresponding rank similarities between  samples 
in the underlying triangular similarity matrix.  If Wr  
is defined as the average of all rank similarities among  

¶ The PRIMER ANOSIM routine covers tests for replicates from 
1-, 2- and 3-way (nested or crossed) layouts in all combinations. 
In 2- or 3-way crossed cases without replication, a special form 
of the ANOSIM routine can still provide a (rather different style 
of) test; all the possibilities are worked through in this chapter.  
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Fig. 6.3.  Frierfjord macrofauna {F}.  MDS ordination as for 

Fig. 6.2 but computed only from the similarities involving sites 
B, C and D (stress = 0.11). 

replicates within sites, and Br  is the average of rank 
similarities arising from all pairs of replicates between 
different sites†, then a suitable test statistic is 

 ( )
M

rr
R WB

2
1
−

=     (6.1) 

where M = n(n–1)/2 and n is the total number of 
samples under consideration.  Note that the highest 
similarity corresponds to a rank of 1 (the lowest 
value), following the usual mathematical convention 
for assigning ranks. 

The denominator constant in equation (6.1) has been 
chosen so that: 
a) R can never technically lie outside the range (-1,1); 
b) R = 1 only if all replicates within sites are more 

similar to each other than any replicates from differ-
ent sites; 

c) R is approximately zero if the null hypothesis is 
true, so that similarities between (among†) and 
within sites will be the same on average. 

R will usually fall between 0 and 1, indicating some 
degree of discrimination between the sites. R substant-
ially less than zero is unlikely since it would correspond 
to similarities across different sites being higher than 
those within sites; such an occurrence is more likely 

†There is an interesting semantic difference here between US and 
British English, which has occasionally caused confusion in the 
literature! Here ‘between groups’ can imply between several 
groups and not just two (see Fowler’s Modern English Usage) 
whereas US usage always prefers ‘among groups’ in that context. 
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to indicate an incorrect labelling of samples.†  The R 
statistic itself is a very useful comparative measure of 
the degree of separation of sites¶, and its value is at 
least as important as its statistical significance, and 
arguably more so. As with standard univariate tests, it 
is perfectly possible for R to be significantly different 
from zero yet inconsequentially small, if there are 
many replicates at each site. 

2) Recompute the statistic under permutations of the 
sample labels.  Under the null hypothesis Ho: ‘no 
difference between sites’, there will be little effect on 
average to the value of R if the labels identifying 
which replicates belong to which sites are arbitrarily 
rearranged; the 12 samples of Fig. 6.3 are just replicates 
from a single site if Ho is true.  This is the rationale 
for a permutation test of Ho; all possible allocations 
of four B, four C and four D labels to the 12 samples 
are examined and the R statistic recalculated for each.  
In general there are 

  (kn)!/[(n!)kk!]   (6.2) 

distinct ways of permuting the labels for n replicates 
at each of k sites, giving 5775 permutations here.  It is 
computationally possible to examine this number of 
re-labellings but the scale of calculation can quickly 
get out of hand with modest increases in replication, 
so the full set of permutations is randomly sampled 
(usually with replacement) to give the null distribution 
of R.  In other words, the labels in Fig. 6.3 are randomly 
reshuffled, R recalculated and the process repeated a 
large number of times (T). 

3) Calculate the significance level by referring the 
observed value of R to its permutation distribution.  If 
Ho is true, the likely spread of values of R is given by 
the random rearrangements, so that if the true value 
of R looks unlikely to have come from this distribution 
there is evidence to reject the null hypothesis.  Formally 
(as seen for the earlier SIMPROF test), if only t of the 
T simulated values of R are as large (or larger than) 
the observed R then Ho can be rejected at a signific-
ance level of (t+1)/(T+1), or in percentage terms, 
100(t+1)/(T+1)%. 

† Chapman and Underwood (1999) point out some situations in 
which negative R values (though not necessarily significantly 
negative) do occur in practice, when the community is species- 
poor and individuals have a heavily clustered spatial distribution, 
so that variability within a group is extreme.  It usually also 
requires a design failure, e.g. a major stratifying factor (a differing 
substrate, say) is encompassed within each group but its effect is 
ignored in the analysis. 
¶ As was seen when assessing relative magnitude of competing 
group divisions in divisive cluster analysis, in Chapter 3. 

EXAMPLE: Frierfjord macrofauna 

The rank similarities underlying Fig. 6.3 are shown in 
Table 6.2 (note that these are the similarities involv-
ing only sites B, C and D, extracted from the matrix 
for all sites and re-ranked). Averaging across the 3 
diagonal sub-matrices (within groups B, C and D) 
gives Wr  = 22.7, and across the remaining (off-diagonal) 
entries gives Br  = 37.5.  Also n = 12 and M = 66, so 
that R = 0.45.  In contrast, the spread of R values 
possible from random re-labelling of the 12 samples 
can be seen in the histogram of Fig. 6.4: the largest of 
T = 999 simulations is less than 0.45 (t = 0).  An 
observed value of R = 0.45 is seen to be a most 
unlikely event, with a probability of less than 1 in a 
1000 if Ho is true, and we can therefore reject Ho at a 
significance level of p<0.1% (at least, because R = 
0.45 may still have been the most extreme outcome 
observed had we chosen an even larger number of 
permutations. If it is the most extreme of all 5775 – it 
will be one of them – then p = 100(1/5775) = 0.02%). 

Table 6.2.  Frierfjord macrofauna {F}.  Rank similarity matrix 
for the 4 replicates from each of B, C and D, i.e. C3 and C4 are 
the most, and B1 and C1 the least, similar samples.  

 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 
B1  –            
B2 33  –           
B3  8   7  –          
B4 22 11 19  –         
C1 66 30 58 65  –        
C2 44  3 15 28 29  –       
C3 23 16  5 38 57  6  –      
C4  9 34  4 32 61 10  1  –     
D1 48 17 42 56 37 55 51 62  –    
D2 14 20 24 39 52 46 35 36 21  –   
D3 59 49 50 64 54 53 63 60 43 41  –   
D4 40 12 18 45 47 27 26 31 25  2 13  – 

Pairwise tests 

The above is a global test, indicating that there are site 
differences somewhere that may be worth examining 
further.  Specific pairs of sites can then be compared:  
for example, the similarities involving only sites B 
and C are extracted, re-ranked and the test procedure 
repeated, giving an R value of 0.23.  This time there 
are only 35 distinct relabellings so, under the null 
hypothesis Ho that sites B and C do not differ, the full 
permutation distribution of possible values of R can 
be computed; 12% of these values are equal to or larger 
than 0.23 so Ho cannot be rejected.  By contrast, R = 
0.54 for the comparison of B against D,  which  is  the 
most extreme value  possible  under the 35 permutations. 
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Fig. 6.4.  Frierfjord macrofauna {F}.  Permutation distribution 

of the test statistic R (equation 6.1) under the null hypothesis of 
‘no site differences’; this contrasts with an observed value for R 
of 0.45. 

B and D are therefore inferred to differ significantly 
at the p< 3% level.  For C against D, R = 0.57 similarly 
leads to rejection of the null hypothesis (p<3%).  

There is a danger in such repeated significance tests 
which should be noted (although rather little can be 
done to ameliorate it here).  To reject the null hypothesis 
at a significance level of 3% implies that a 3% risk is 
being run of drawing an incorrect conclusion (a Type 
I error in statistical terminology).  If many such tests 
are performed this risk will cumulate.  For example, 
all pairwise comparisons between 10 sites, each with 
4 replicates (allowing 3% level tests at best), would 
involve 45 tests, and the overall risk of drawing at 
least one false conclusion is high.  For the analogous 
pairwise comparisons following the global F test in a 
univariate ANOVA, there exist multiple comparison 
tests which attempt to adjust for this repetition of risk.  
One straightforward possibility, which could be carried 
over to the present multivariate test, is a Bonferroni 
correction.  In its simplest form, this demands that, if 
there are n pairwise comparisons in total, each test 
uses a significance level of 0.05/n. The so-called 
experiment-wise Type I error, the overall probability 
of rejecting the null hypothesis at least once in the 
series of pairwise tests, when there are no genuine 
differences, is then kept to 0.05.   

However, the difficulty with such a Bonferroni corr-
ection is clear from the above example:  with only 4 
replicates in each group, and thus only 35 possible 
permutations, a significance level of 0.05/3 (=1.7%) 
can never be achieved!  It may be possible to plan for 
a modest improvement in the number of replicates:  5 
replicates from each site would allow a 1% level test 
for a pairwise comparison, equation (6.2) showing 

that there are then 126 permutations, and two groups 
of 6 replicates would give close to a 0.2% level test.  
However, this may not be realistic in some practical 
contexts, or it may be inefficient to concentrate effort 
on too many replicates at one site, rather than (say) 
increasing the spatial coverage of sites.  Also, for a 
fixed number of replicates, a too demandingly low 
Type I error (significance level) will be at the expense 
of a greater risk of Type II error, the probability of 
not detecting a difference when one genuinely exists.   

Strategy for interpretation 

The solution, as with all significance tests, is to treat 
them in a more pragmatic way, exercising due caution 
in interpretation certainly, but not allowing the formality 
of a test procedure for pairwise comparisons to interfere 
with the natural explanation of the group differences.  
Herein lies the real strength of defining a test statistic, 
such as R, which has an absolute interpretation of its 
value†.  This is in contrast to a standard Z-type statistic, 
which typically divides an appropriate measure (taking 
the value zero under the null hypothesis) by its standard 
deviation, so that interpretation is limited purely to 
statistical significance of the departure from zero.            

The recommended course of action, for a case such as 
the above Frierfjord data, is therefore always to carry 
out, and take totally seriously, the global ANOSIM 
test for overall differences between groups.  Usually 
the total number of replicates, and thus possible 
permutations, is relatively large, and the test will be 
reliable and informative.  If it is not significant, then 
generally no further interpretation is permissible.  If it 
is significant, it is legitimate to ask where the main 
between-group differences have arisen.  The best tool 
for this is an examination of the R value for each pair-
wise comparison: large values (close to unity) are 
indicative of complete separation of the groups, small 
values (close to zero) imply little or no segregation.  If 
the MDS is of sufficiently low stress to give a reliable 
picture, then the relative group separations will also 
be evident from this.¶  The R value itself is not unduly 
affected by the number of replicates in the two groups 
being compared; this is in stark contrast to its statistical 
significance, which is dominated by the group sizes 

†A standard correlation coefficient, r, would be another example, 
like ANOSIM R, of a statistic which is both a test statistic (for the 
null hypothesis of absence of correlation, r = 0) and which has 
an interpretation as an effect size (large r is strong correlation). 
¶ But the comparison of ANOSIM R values is the more generally 
valid approach, e.g. when the two descriptions do not appear to 
be showing quite the same thing.  Calculation of R is in no way 
dependent on whether the 2-dimensional approximation implicit 
in an MDS is satisfactory or not, since R is computed from the 
underlying, full-dimensional similarity matrix. 
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(for large numbers of replicates, R values near zero 
could still be deemed ‘significant’, and conversely, 
few replicates could lead to R values close to unity 
being classed as ‘non-significant’). 

The analogue of this approach in the univariate case 
(say in the comparison of species richness between sites) 
would be firstly to compute the global F test for the 
ANOVA.  If this establishes that there are significant 
overall differences between sites, the size of the effects 
would be ascertained by examining the differences in 
mean values between each pair of sites, or equivalently, 
by simply looking at a plot of how the mean richness 
varies across sites (usually without the replicates also 
shown).  It is then immediately apparent where the 
main differences lie, and the interpretation is a natural 
one, emphasising the important biological features 
(e.g. absolute loss in richness is 5, 10, 20 species, or 
relative loss is 5%, 10%, 20% of the species pool, 
etc), rather than putting the emphasis solely on signif-
icance levels in pairwise comparisons of means that 
run the risk of missing the main message altogether.   

So, returning to the multivariate data of the above 
Frierfjord example, interpretation of the ANOSIM 
tests is seen to be straightforward: a significant level 
(p<0.1%) and a mid-range value of R (= 0.45) for the 
global test of sites B, C and D establishes that there 
are statistically significant differences between these 
sites.  Similarly mid-range values of R (slightly higher, 
at 0.54 and 0.57) for the B v D and C v D comparisons, 
contrasted with a much lower value (of 0.27) for B v C, 
imply that the explanation for the global test result is 
that D differs from both B and C, but the latter sites 
are not distinguishable.     

The above discussion has raised the issue of Type II 
error for an ANOSIM permutation test, and the com-
plementary concept, that of the power of the test, namely 
the probability of detecting a difference between groups 
when one genuinely exists.  Ideas of power are not 
easily examined for non-parametric procedures of this 
type, which make no distributional assumptions and 
for which it is difficult to specify a precise non-null 
hypothesis.  All that can be obviously said in general 
is that power will improve with increasing replication, 
and some low levels of replication should be avoided 
altogether.  For example, if comparing only two groups 
with a 1-way ANOSIM test, based on only 3 replicates 
for each group, then there are only 10 distinct permutat-
ions and a significance level better than 10% could 
never be attained.  A test demanding a significance 
level of 5% would then have no power to detect a 
difference between the groups, however large that 
difference is! 

Generality of application 

It is evident that few, if any, assumptions are made 
about the data in constructing the 1-way ANOSIM 
test, and it is therefore very generally applicable.  It is 
not restricted to Bray-Curtis similarities or even to 
similarities computed from species abundance data: it 
could provide a non-parametric alternative to Wilks’ 
Λ test for data which are more nearly multivariate-
normally distributed, e.g. for testing whether groups 
(sites or times) can be distinguished on the basis of 
their environmental data (see Chapter 11).  The latter 
would involve computing a Euclidean distance matrix 
between samples (after suitable transformation and 
normalising of the environmental variables) and entry 
of this distance matrix to the ANOSIM procedure.  
Clearly, if multivariate normality assumptions are 
genuinely justified then the ANOSIM test must lack 
sensitivity in comparison with standard MANOVA, 
but this would seem to be more than compensated for 
by its greater generality. 

Note also that there is no restriction to a balanced 
number of replicates.  Some groups could even have 
only one replicate provided enough replication exists 
in other groups to generate sufficient permutations for 
the global test (though there will be a sense in which 
the power of the test is compromised by a markedly 
unbalanced design, here as elsewhere).  More usefully, 
note that no assumptions have been made about the 
variability of within-group replication needing to be 
similar for all groups.  This is seen in the following 
example, for which the groups in the 1-way layout are 
not sites but samples from different years at a single 
site. 
 

EXAMPLE: Indonesian reef-corals 

Warwick et al (1990b) examined data from 10 replicate 
transects across a single coral-reef site in S. Tikus 
Island, Thousand Islands, Indonesia, for each of the 
six years 1981, 1983, 1984, 1985, 1987 and 1988.  
The community data are in the form of % cover of a 
transect by each of the 75 coral species identified, 
and the analysis used Bray-Curtis similarities on 
untransformed data to obtain the MDS of  Fig. 6.5.  
There appears to be a strong change in community 
pattern between 1981 and 1983 (putatively linked to 
the 1982/3 El Niño) and this is confirmed by a 1-way 
ANOSIM test for these two years alone: R = 0.43 (p< 
0.1%).  Note that, though not really designed for this 
situation, the test is perfectly valid in the face of 
greater variability in 1983 than 1981; in fact it is 
mainly a change in variability rather than location in 
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the MDS plot that distinguishes the 1981 and 1983 
groups (a point returned to in Chapter 15).¶  This is in 
contrast with the standard univariate ANOVA (or multi-
variate MANOVA) test, which will have no power to 
detect a variability change; indeed it is invalid without 
an assumption of approximately equal variances (or 
variance-covariance matrices) across the groups. 
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Fig. 6.5. Indonesian reef corals, S. Tikus Island {I}.  MDS of % 

species cover from 10 replicate transects in each of 6 years: 1 = 
1981, 3 = 1983 etc (stress = 0.19). 

The basic 1-way ANOSIM test can also be extended 
to cater for more complex sample designs. Firstly we 
consider the basic types of 2-factor designs (and later 
move on to look at 3-factor combinations). 

ANOSIM FOR TWO-WAY LAYOUTS 

Three types of field and laboratory designs are con-
sidered here: 
a) the 2-way nested case can arise where two levels 

of spatial replication are involved, e.g. sites are 
grouped a priori to be representative of two ‘treat-
ment’ categories (control and polluted, say) but 
there are also replicate samples taken within sites; 

¶ Of course it could equally be argued that, as with any portmanteau 
test, this is a drawback rather than an advantage of ANOSIM.  
The price for being able to detect changes of different types is 
arguably a loss of specificity in interpretation, in cases where it is 
important to ascribe differences solely to a shift in the ‘mean’ 
community rather than variation changes. The key point here is 
that ANOSIM tests the hypothesis of no difference among groups 
in any way, either (multivariate) location or dispersion. It has 
more power to detect a location shift than a dispersion difference 
because of its construction, but a sufficiently large change in 
either between groups can lead to significance – this is very 
different than the PERMANOVA test which is constructed to be a 
test only of location, and assumes constant dispersion. An issue 
for the latter is how sensitive it is to this assumption, and recent 
simulation work, Anderson and Walsh (2013), suggests it is not.  

b) the 2-way crossed case can arise from studying a 
fixed set of sites at several times (with replicates at 
each site/time combination), or from an experim-
ental study in which the same set of ‘treatments’ 
(e.g. control and impact) are applied at a number of 
locations (‘blocks’), for example in the different 
mesocosm basins of a laboratory experiment, or of 
course many other combinations of two factors; 

c) a 2-way crossed case with no replication of each 
treatment/block combination can also be catered 
for, to a limited extent, by a different style of 
permutation test.  

The following examples of cases a) and b) are drawn 
from Clarke (1993) and the two examples of case c) 
are from Clarke and Warwick (1994). 

EXAMPLE: Clyde nematodes (2-way 
nested case) 

Lambshead (1986) analysed meiobenthic communities 
from three putatively polluted (P) areas of the Firth of 
Clyde and three control (C) sites, taking three replicate 
samples at each site (with one exception). The resulting 
MDS, based on fourth-root transformed abundances 
of the 113 species in the 16 samples, is given in Fig. 
6.6a.  The sites are numbered 1 to 3 for both conditions 
but the numbering is arbitrary – there is nothing in 
common between P1 and C1 (say).  This is what is 
meant by sites being ‘nested within conditions’.  Two 
hypotheses are then appropriate: 
H1: there are no differences among sites within each 

treatment (control or polluted conditions);    
H2: there are no differences between control and poll-

uted conditions. 
The approach to H2 might depend on the outcome of 
testing H1. 

H1 can be examined by extending the 1-way ANOSIM 
test to a constrained randomisation procedure.  The 
presumption under H1 is that there may be a difference 
between general location of C and P samples in the 
multivariate space (as approximately viewed in the 
MDS plot) but within each condition there cannot be 
any pattern in allocation of replicates to the three sites.  
Treating the two conditions entirely separately, one 
therefore has two separate 1-way permutation  analyses 
of exactly the same type as for the Frierfjord macro-
fauna data (Fig. 6.3).  These generate test statistics RC 
and RP, computed from equation (6.1), which can be 
combined to produce an average statistic R .  This 
can be tested by comparing it with R  values from all 
possible permutations of sample labels permitted under 
the null hypothesis. This does not mean that all 16 
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sample labels may be arbitrarily permuted; the random-
isation is constrained to take place only within the 
separate conditions: P and C labels may not be switched.  
Even so, the number of possible permutations is large 
(around 20,000).   

Notice again that the test is not restricted to balanced 
designs, i.e. those with equal numbers of replicate 
samples within sites and/or equal numbers of sites 
within treatments (although lack of balance causes a 
minor complication in the efficient averaging of RC 
and RP, see Clarke, 1988, 1993). Fig. 6.6b displays 
the results of 999 simulations (constrained relabellings) 
from the permutation distribution for R  under the 
null hypothesis H1.  Possible values range from –0.3 
to 0.6, though 95% of the values are seen to be <0.27 
and 99% are <0.46.  The observed R  of 0.75 therefore 
provides a strongly significant rejection of hypothesis 
H1. 

H2, which will usually be the more interesting of the 
two hypotheses, can now be examined.  The test of 
H1 demonstrated that there are,  in effect, only three 
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Fig. 6.6.  Clyde nematodes {Y}.  a) MDS of species abundances 

from three polluted (P1-P3) and three control sites (C1–C3), 
with three replicate samples at most sites (stress = 0.09).  b) 
Simulated distribution of the test statistic R  under the hypothesis 
H1 of ‘no site differences’ within each condition; the observed 
R  is 0.75.  

 

genuine replicates (the sites 1-3) at each of the two 
conditions (C and P). 

This is a 1-way layout, and H2 can be tested by 1-way 
ANOSIM but one first needs to combine the inform-
ation from the three original replicates at each site, to 
define a similarity matrix for the 6 new ‘replicates’.  
Consistent with the overall strategy that tests should 
only be dependent on the rank similarities in the 
original triangular matrix, averages are first taken 
over the appropriate ranks to obtain a reduced matrix.  
For example, the similarity between the three P1 and 
three P2 replicates is defined as the average of the 
nine inter-group rank similarities; this is placed into 
the new similarity matrix along with the 14 other 
averages (C1 with C2, P1 with C1 etc) and all 15 
values are then re-ranked; the 1-way ANOSIM then 
gives R = 0.74.  There are only 10 distinct permutations 
so that, although this is actually the most extreme R 
value possible in this case, H2 is only able to be 
rejected at a p<10% significance level. 

The other scenario to consider is that the first test 
fails to reject H1.  There are then two possibilities for 
examining H2: 

a) Proceed with the average ranking and re-ranking 
exactly as above, on the assumption that even if it 
cannot be proved that there are no differences 
between sites it would be unwise to assume that 
this is so; the test may have had rather little power 
to detect such a difference. 

b) Infer from the test of H1 that there are no differ-
ences between sites, and treat all replicates as if 
they were separate sites, e.g. there would be 7 
replicates for control and 9 replicates for polluted 
conditions in a 1-way ANOSIM test applied to the 
16 samples in Fig. 6.6a. 

Which of these two courses to take is a matter for 
debate, and the argument here is exactly that of 
whether “to pool or not to pool” in forming the 
residual for the analogous univariate 2-way ANOVA.  
Option b) will certainly have greater power but runs a 
real risk of being invalid; option a) is the conservative 
test and it is certainly unwise to design a study with 
anything other than option a) in mind.¶ 

¶ Note that the ANOSIM program in the PRIMER package always 
takes the first of these options, so if the second option is required 
the resemblance matrix needs to be put through ANOSIM again, 
this time as a 1-factor design with the combined factor of 
condition and site (6 levels, C1, C2, C3, P1, P2, P3 and 3 
replicates within most of these levels).  
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EXAMPLE: Eaglehawk Neck meiofauna 
(2-way crossed case) 

An example of a two-way crossed design is given in 
Warwick et al (1990a) and is introduced more fully 
here in Chapter 12.  This is a so-called natural exp-
eriment, studying disturbance effects on meiobenthic 
communities by the continual reworking of sediment 
by soldier crabs.  Two replicate samples were taken 
from each of four disturbed patches of sediment, and 
from adjacent undisturbed areas, on a sand flat at 
Eaglehawk Neck, Tasmania; Fig. 6.7a is a schematic 
representation of the 16 sample locations.  There are 
two factors: the presence or absence of disturbance 
by the crabs and the ‘block effect’ of the four different 
disturbance patches.  It might be anticipated that the 
community will change naturally across the sand flat, 
from block to block, and it is important to be able to 
separate this effect from any changes associated with 
the disturbance itself.  There are parallels here with 
impact studies in which pollutants affect sections of 
several bays, so that matched control and polluted 
conditions can be compared against a background of 
changing community pattern across a wide spatial 
scale.  There are presumed to be replicate samples 
from each treatment/block combination (the meaning 
of the term crossed), though balanced numbers are 
not essential. 

For the Eaglehawk Neck data, Fig. 6.7b displays the 
MDS for the 16 samples (2 treatments × 4 blocks × 2 
replicates), based on Bray-Curtis similarities from root-
transformed abundances of 59 meiofaunal species.  
The pattern is remarkably clear and a classic analogue 
of what, in univariate two-way ANOVA, would be 
called an additive model.  The meiobenthic community 
is seen to change from area to area across the sand 
flat but also appears to differ consistently between 
disturbed and undisturbed conditions.  A test for the 
latter sets up a null hypothesis that there are no disturb-
ance effects, allowing for the fact that there may be 
block effects, and the procedure is then exactly that 
of the 2-way ANOSIM test for hypothesis H1 of the 
nested case.  For each separate block an R statistic is 
calculated from equation (6.1), as if for a simple one-
way test for a disturbance effect, and the resulting 
values averaged to give R . Its permutation distribution 
under the null hypothesis is generated by examining 
all simultaneous re-orderings of the four labels (two 
disturbed, two undisturbed) within each block.  There 
are only three distinct permutations in each  block,  
giving a total of 34 (= 81)  combinations overall and 

 
Fig. 6.7. Tasmania, Eaglehawk Neck {T}.  a) Schematic of the 

‘2-way crossed’ sampling design for 16 meiofaunal cores with 
two disturbed and two undisturbed replicates from each of four 
patches of burrowing activity by soldier crabs (shaded). b) MDS 
of species abundances for the 16 samples, showing separation 
of the blocks on the x-axis and discrimination of disturbed from 
undisturbed communities on the y-axis (stress = 0.11). 

the observed value of R  (= 0.94) is the highest value 
attained in the 81 permutations.  The null hypothesis 
is therefore rejected at a significance level of just 
over 1%. 

The procedure departs from the nested case because 
of the symmetry in the crossed design.  One can now 
test the null hypothesis that there are no block effects, 
allowing for the fact that there are treatment (disturb-
ance) differences, by simply reversing the roles of 
treatments and blocks. R  is now an average of two R 
statistics, separately calculated for disturbed and un-
disturbed samples, and there are 8!/[(2!)44!] = 105 
permutations of the 8 labels for each treatment.  A 
random selection from the 1052 = 11,025 possible 
combinations must therefore be made.  In 1000 trials
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Fig. 6.8.  Westerschelde nem-
atodes experiment {w}.  MDS 
of species abundances from 
16 different nutrient-enrichment 
treatments, A to P, applied to 
sediment cores in each of four 
mesocosm basins, 1 to 4 (stress 
= 0.28). 

the true value of R  (=0.85) is again the most extreme 
and is almost certainly the largest in the full set; the 
null hypothesis is decisively rejected.  In this case the 
test is inherently uninteresting but in other situations 
(e.g. a sites × times study) tests for both factors could 
be of practical importance. 

EXAMPLE: Mesocosm experiment (2-way 
crossed case with no replication) 

Although the above test may still function if a few 
random cells in the 2-way layout have only a single 
replicate, its success depends on reasonable levels of 
replication overall to generate sufficient permutations.  
A commonly arising situation in practice, however, is 
where the 2-way design includes no replication at all.¶  
Typically this could be a sites × times field study (see 
next section) but it may also occur in experimental 
work: an example is given by Austen and Warwick 
(1995) of a laboratory mesocosm study in which a 
complex array of treatments was applied to soft-
sediment cores taken from a single, intertidal location 

¶ PRIMER 7’s ANOSIM routine automatically switches to attempting 
the test described here if it finds no replicates to permute. The test will 
not work for actual or effective 1-way layouts (this is no surprise since 
univariate ANOVA is powerless to conclude anything if there are no 
replicates, e.g. in each of 4 treatments it is clearly a silly question to 
ask: ‘Are the responses 5, 3, 12, 10 different or not?’ if there is no way 
of assessing the variability in a single number!). But for 2- or 3-factor 
crossed designs without replication, with enough levels in the tested 
factor, the test automatically reverts to the correlation method here.  

in the Westerschelde estuary, Netherlands, {w}. A 
total of 64 cores were randomly divided between 4 
mesocosm basins, 16 to a basin. 

The experiment involved 15 different nutrient enrich-
ment conditions and one control, the treatments being 
applied to the surface of the undisturbed sediment cores.  
After 16 weeks controlled exposure in the mesocosm 
environment, the meiofaunal communities in the 64 
cores were identified, and Bray-Curtis similarities on 
root-transformed abundances gave the MDS of Fig. 
6.8.  The full set of 16 treatments was repeated in each 
of the 4 basins (blocks), so the structure is a 2-way 
treatments × blocks layout with only one replicate per 
cell.  Little, if any, of this structure is apparent from 
Fig. 6.8 and a formal test of the null hypothesis 

Ho: there are no treatment differences (but allowing 
the possibility of basin effects) 

is clearly necessary before any sort of interpretation 
is attempted. 

In the absence of replication, a test is still possible in the 
univariate case, under the assumption that interaction 
effects are small in relation to the main treatment or 
block differences (Scheffé, 1959).  In a similar spirit, 
a global test of Ho is possible here, relying on the 
observation that if certain treatments are responsible 
for community changes, in a more-or-less consistent 
way across blocks, separate MDS analyses for each 
block should show a repeated treatment pattern.  This 
is illustrated schematically in the  top half of  Fig. 6.9:  
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Fig. 6.9. Schematic diagram 
illustrating the stages in def-
ining concordance of treatment 
patterns across the blocks, and 
the two computational routes 
for rav 

the fact that  treatment A  is consistently close to B 
(and C to D) can only arise if Ho is false. The analogy 
with the univariate test is clear: large interaction effects 
imply that the treatment pattern differs from block to 
block and there is little chance of identifying a treat-
ment effect; on the other hand, for a treatment × block 
design such as the current mesocosm experiment there 
is no reason to expect treatments to behave very differ-
ently in the different basins. 

What is therefore required is a measure of how well the 
treatment patterns in the ordinations for the different 
blocks match; this statistic can then be recomputed 
under all possible (or a random subset of) permutations 
of the treatment labels within each block.  As previously, 
if the observed statistic does not fall within the body 
of this permutation distribution there is significant 
evidence to reject Ho.  Note that, as required by the 
statement of Ho, the test makes no assumption about 
the absence of block effects; between-block similarities 
are irrelevant to a statistic based only on agreement in 
within-block patterns. 

In fact, for the same reasons advanced for the previous 
ANOSIM tests (e.g. arbitrariness in choice of MDS 
dimensionality), it is more satisfactory to define agree-
ment between treatment patterns by reference to the 
underlying similarity matrix and not the MDS locations.  
Fig. 6.9 indicates two routes, which lead to equivalent 
formulations.  If there are n treatments and thus N = 
n(n–1)/2 similarities within a block, a natural choice 

for agreement of two blocks, j and k, is the Spearman 
correlation coefficient¶  

∑ = −
−

−= N
i ikijjk rr

NN 1
2

2 )(
)1(

61r  (6.3) 

between the matching elements of the two rank simil-
arity matrices {rij, rik; i=1,…,N}, since these ranks are 
the only information used in successful MDS plots.  
The coefficients can be averaged across all b(b–1)/2 
pairs from the b blocks, to obtain an overall measure 
of agreement rav on which to base the test.  A short cut 
is to define, from the row totals { ⋅ir } and grand total 

⋅⋅r  shown in Fig. 6.9, Kendall’s (1970) coefficient of 
concordance between the full set of ranks: 

2
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and then exploit the known relationship between this 
and rav: 

 rav = (bW – 1)/(b – 1)   (6.5) 

As a correlation coefficient, rav takes values in the 
range (–1, 1), with rav = 1 implying perfect agreement 
and rav ≈ 0 if the null hypothesis Ho is true. 

¶ We will return to this very important concept of a non-parametric 
matrix (or Mantel) correlation between two resemblance matrices 
later: it is also at the core of  several later Chapters (e.g. 11, 15, 16).  
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Fig. 6.10.  Westerschelde nem-
atodes experiment {w}.  MDS 
for the 16 treatments (A to P), 
performed separately for each 
of the four basins;  no shared 
treatment pattern is apparent 
(stress ranges from 0.16 to 
0.20). 

Note that standard significance tests and confidence 
intervals for r or W (e.g. as given in basic statistical 
tables) are totally invalid, since they rely on the ranks 
{rij; i=1,…,N} being from independent variables. 
This is obviously not true of similarity coefficients 
from all possible pairs of a set of samples – the 
samples will be independent but they are repeatedly 
re-used in calculating the similarities. This does not 
make rav any the less appropriate, however, as a 
measure of agreement whose departure from zero 
(rejection of Ho) is testable by permutation. 

For the nutrient enrichment experiment, Fig. 6.10 shows 
the separate MDS plots for the 4 mesocosm basins.  
Although the stress values are rather high (and the 
plots therefore slightly unreliable as a summary of the 
among treatment relationships), there appears to be 
no commonality of pattern, and this is borne out by a 
near zero value for rav of –0.03.  This is central to the 
range of permuted values for rav under Ho (obtained 
by permuting treatment labels separately for each 
block and recomputing rav), so the test provides no 
evidence of any treatment differences.  Note that the 
symmetry of the 2-way layout also allows a test of the 
(less interesting) hypothesis that there are no block 
effects, by looking for any consistency in the among-
basin relationships across separate analyses for each 
of the 16 treatments.  The test is again non-significant, 
with rav = –0.02.  The negative conclusion to the tests 
should bar any further attempts at interpretation. 

EXAMPLE: Exe nematodes (no replication 
and missing data) 

A final example demonstrates a positive outcome to 
such a test, in a common case of a 2-way layout of 
sites and times with the additional feature that samples 
are missing altogether from a small number of cells.  
Fig. 6.11 shows again the MDS, from Chapter 5, of 
nematode communities at 19 sites in the Exe estuary. 
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Fig. 6.11.  Exe estuary nematodes {X}.  MDS, for 19 inter-tidal 
sites, of species abundances averaged over 6 bi-monthly sampling 
occasions; see also Fig.5.1 (stress = 0.05). 
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In fact, this is based on an average of data over six 
successive bi-monthly sampling occasions.  For the 
individual times, the samples remain strongly clustered 
into the 4 or 5 main groups apparent from Fig. 6.11.  
Less clear, however, is whether any structure exists 
within the largest group (sites 12 to 19) or whether 
their scatter in Fig. 6.11 is just sampling variation. 

Rejection of the null hypothesis of ‘no site differences’ 
would be suggested by a common site pattern in the 
separate MDS plots for the 6 times (Fig. 6.12). At 
some of the times, however, one of the site samples is 
missing (site 19 at times 1 and 2, site 15 at time 4 and 
site 18 at time 6).  Instead of removing these sites from 
all plots, in order to achieve matching sets of similar-
ities, one can remove for each pair of times only those 
sites missing for either of that pair, and compute the 
Spearman correlation r between the remaining rank 
similarities.  The r values for all pairs of times are 
then averaged to give rav, i.e. the left-hand route is 
taken in the lower half of Fig. 6.9.  This is usually 
referred to as pairwise removal of missing data, in 
contrast to the listwise removal that would be needed 
for the right-hand route.  Though increasing the 
computation time, pairwise removal clearly utilises 
more of the available information. 

Fig. 6.12 shows evidence of a consistent site pattern, 
for example in the proximity of sites 12 to 14 and the 
tendency of site 15 to be placed on its own; the fact 
that site 15 is missing on one occasion does not under-
mine this perceived structure. Pairwise computation 
gives rav = 0.36 and its significance can be determined  
by a permutation test, as before. The (non-missing) 
site labels are permuted amongst the available samples,

 separately for each time, and these designations fixed 
whilst all the paired r values are computed (using 
pairwise removal) and averaged.  Here the, largest 
such rav value in 999 simulations was 0.30, so the 
null hypothesis is rejected at the p<0.1% level. 
In the same way, one can also carry out a test of the 
hypothesis that there are no differences across time 
for sites 12 to 19.  The component plots, of the 4 to 6 
times for each site, display no obvious features and 
rav = 0.08 (p<18%).  The failure to reject this null 
hypothesis justifies the use of averaged data across the 
6 times, in the earlier analyses, and could even be 
thought to justify use of times as ‘replicates’ for sites 
in a 1-way ANOSIM test for sites.  

Tests of this form, searching for agreement between 
two or more similarity matrices, occur also in Chapter 
11 (in the context of matching species to environmental 
data) and Chapter 15 (where they link biotic patterns 
to some model structure).  The discussion there includes 
use of measures other than a simple Spearman coeff-
icient, for example a weighted Spearman coefficient 
rw (suggested for reasons explained in Chapter 11), 
and these adjustments could certainly be implemented 
here also if desired, using the left-hand route in the 
lower half of Fig.6.9.  In the present context, this type 
of ‘matching’ test is clearly an inferior one to that 
possible where genuine replication exists within the 
2-way layout.  It cannot cope with follow-up tests for 
differences between specific pairs of treatments, and 
it can have little sensitivity if the numbers of treatments 
and blocks are both small.  A test for two treatments 
is impossible note, since the treatment pattern in all 
blocks would be identical. 
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Fig. 6.12.  Exe estuary nemat-
odes {X}.  MDS for sites 12 to 
19 only, performed separately 
for the 6 sampling times (read 
across rows for time order); in 
spite of the occasional missing 
sample some commonality of 
site pattern is apparent (stress 
ranges from 0.01 to 0.08).    
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ANOSIM FOR ORDERED FACTORS 

Generalised ANOSIM statistic for the 1-way case 

Now return to the simple one-way case of page 6-3, 
with multivariate data from a number of pre-specified 
groups (A, B, C, …, e.g. sites, times or treatments) 
and with replicate samples from each group. It is well 
known that the ANOSIM test, using the R statistic of 
equation 6.1, is formally equivalent to a non-paramet-
ric Mantel-type test (which PRIMER calls a RELATE 
test), in which the dissimilarities are correlated with a 
simple model matrix, using a Spearman rank correl-
ation coefficient (r, introduced in equation 6.3). Such 
model matrices are idealised distance matrices which 
describe the structure expected under the alternative 
hypothesis (to the null hypothesis of ‘no differences 
between groups’), and a range of such models are 
introduced and discussed in Chapter 15, but here we 
need just the simple case in which samples in the 
same group are considered to be a distance 0 apart 
and in different groups a distance 1 unit apart. (The 
units are not important because Pearson correlation 
between matching elements is calculated having first 
ranked both matrices, which is the definition of a 
Spearman rank correlation).  

 

A RELATE r statistic is not the same as an ANOSIM 
R statistic but the tests (which permute the labels over 
samples in the same way for the two tests) produce 
results which are identical because the two statistics 
are linked, in this simple case, by the relationship: 

)(3
)1( 2

wMw
MR

−
−

= r    (6.6) 

where w is the number of within-group ranks and M 
is the total number of ranks in the triangular matrix 
(thus for the simple example above, with groups A, 
B, C having replicates 2, 3, 2 respectively, w = 5, M = 
21 and R = 1.35r).  

Importantly, there is a more fundamental relationship 
between the two statistics, which allows us to gener-
alise the concept of an ANOSIM statistic to cater for 
ordered models. Then, the test is not of the null: 

H0: A = B = C = …  
against the general alternative  

H1: A, B, C, … differ (in ways unspecified) 
but of the same null H0 against an ordered alternative: 

 H1: A < B < C < …,  
i.e. A & B and B & C are only one step apart but A & 
C are 2 steps (and A & D are 3 steps etc). This is an 
appropriate model for testing, say, for an inter-annual 
drift in an assemblage away from its initial state, or 
for serial change in community composition along an 
environmental gradient (e.g. with increasing water 
depth or away from a pollution source). The model 
matrix is now of the form:  

 

and the RELATE test is again the correlation r of the 
dissimilarity ranks {ri} against model ranks {si}. In 
contrast, the generalised ANOSIM statistic is defined 
totally generally as the slope of a linear regression of 
{ri} on {si}, and denoted in the above ordered case by 
RO (the superscript upper case O denoting ‘ordered’). 
Testing of this statistic uses the appropriate permutat-
ion distribution; standard tests (or interval estimates) 
for the slope of the regression cannot be used because 
of the high degree of internal dependency among the 
{ri} (dissimilarities are not mutually independent). 

Several important points follow from this definition. 
Firstly, it takes only a few lines of algebra to show 
that, in the unordered case, this slope reduces to the 
usual ANOSIM R statistic. Secondly, the equations 
defining slopes and correlations dictate that RO is zero 
if and only if r is zero, the null hypothesis condition. 
Thirdly, RO can never exceed 1 and it takes that value 
only under a generalisation of our standard ‘mantra’ 
for the (non-parametrically) most extreme multivar-
iate separation that can be observed between groups, 
namely that ‘all dissimilarities between groups are 
larger than any within groups’, to which we must now 
add ‘and all dissimilarities between groups which are 
further apart in the model matrix are larger than any 
dissimilarities between groups which the model puts 
closer together’. This extreme case is illustrated by 
the following scatter plot for of {ri} against {si} for 
the example above of three ordered groups A< B<C.  
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The absence of any overlap (or equality) of values on 
the y axis (for ri) across the three possible tied ranks 
on the x axis (si values) is what ensures that RO = 1. 

Fourthly, the model values {si} will always involve 
tied ranks in designs with replication (and also for 
simple trend models without replication), and the plot 
makes it clear that the correlation r cannot in general 
attain its theoretical maximum of 1 (in all except 
pathological cases there has to be a scatter of y values 
at some x axis points). This makes RO potentially a 
more useful descriptor for these seriation with replic-
ation designs (as they are termed in Chapter 15, and 
Somerfield et al, 2002). Finally, one should note the 
asymmetry of the RO statistic relative to the symmetry 
of r. The generalised ANOSIM concept is restricted 
to regressing real data in the ranks {ri} on modelled 
distances in the ranks {si}; it does not make sense to 
carry out the regression the other way round. The 
RELATE r statistic, on the other hand, is appropriate 
for a wider sweep of problems where the interest is in 
comparing the sample patterns of any two triangular 
matrices¶; we have already met it used in this way, 
entirely symmetrically, in equation 6.3, and will do so 
repeatedly in later chapters. 

EXAMPLE: Ekofisk oil-field macrofauna 

Gray et al (1990) studied the soft-sediment macro-
benthos at 39 sites at different distances (100m to 
8km) and different directions away from the Ekofisk 
oil platform in the N Sea {E}, to examine evidence for 
changes in the assemblage with distance from the oil-

¶ This contrast is also in part an issue of what to do about tied 
ranks, and identifies a context-dependent dichotomy noted early 
in the development of non-parametric methods (Kendall, 1970). 
Would we say that two judges were in perfect agreement only if 
they ranked 10 candidates in exactly the same order, or does 
placing the candidates into the same two groups of 5 ‘acceptable’ 
and 5 ‘not acceptable’ count as perfect agreement? In our case, r 
(the former, which does not adjust for tied ranks) will be more 
appropriate for some problems, and generalised R (the latter, 
which does, in effect, build in an adjustment for ties in the {si}) 
more appropriate for other problems. 

rig. The sites were allocated (somewhat arbitrarily, 
but a priori) into 4 distance groups, A: >3.5km from 
the rig (11 sites), B: 1-3.5km (12), C: 250m-1km (10), 
D: <250m (6). An ordered 1-way ANOSIM test, with 
sites used as replicates for the four distance groups, 
does seem preferable here to the standard (unordered) 
ANOSIM. Though the null hypothesis H0: A=B=C=D 
is the same, the ordered alternative H1: A<B<C<D is 
an appropriate model for directed community change 
with distance. That is, there is no need for the test to 
have power to detect an (uninterpretable) alternative 
in which, for example, the communities in D are very 
different from C and B but then very similar to A, so 
by restricting the alternative to a smaller set of poss-
ibilities, we choose to employ a more powerful† test 
statistic RO for detecting that alternative, and for  
appropriately measuring its magnitude.  

Fig 6.13a shows the (n)MDS for the 39 sites based on 
square-root transformed abundances of 173 species, 
under Bray-Curtis dissimilarity, with the 4 distance 
groups (differing symbols) clearly showing a pattern 
of steady community change with distance from the 
oil-rig. Fig 6.13b plots‡ the 39×38/2 = 741 rank dis-
similarities {ri} against the (ordered) model ranks 
{si}, the four sets of tied ranks for the latter represent-
ing (left to right): within A, B, C or D; then A to B, B 
to C or C to D; then A to C or B to D; and finally A 
to D. The fitted regression of r on s has a strong slope 
of RO = 0.656, the ordered ANOSIM statistic, and this 
is larger than its value for 9999 random permutations 
of the group labels to the 39 samples, so P<0.01% at 
least (and it would clearly be more significant than 
effectively any proposed significance boundary here). 
The contrast is with a standard (unordered) ANOSIM 
test which records the lower (though still highly sig-
nificant) value of R = 0.54. Clearly, if there are only 
two groups, RO and R become the same statistic, so 
the pairwise tests between all pairs of groups which 
follows this (global) ordered ANOSIM test are all 
exactly the same as for the usual unordered analysis. 

†Somerfield et al (2002) discuss the difficult issue of power in the 
context of multivariate analyses (for which a myriad of simple 
hypotheses make up the complex alternative to ‘no change’, since 
every species may respond in a different way to potential changes 
in its environment). They use the Spearman r statistic throughout 
and demonstrate improved power for the alternative ‘seriation 
with replication’ model over the unordered case. 
‡ Construction of such scatter plots (though not the regression 
line) can be achieved by a combination of routines on the Tools 
menu for PRIMER7, i.e. the Ranked resemblance matrix and 
Ranked triangular matrix created by the Model Matrix option 
under Seriation are Unravelled and then Merged, to give (x, y) 
columns for the Scatter Plot. The test itself uses the PRIMER7 
extended ANOSIM routine. 
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Fig. 6.13. Ekofisk oil-field macrofauna {E}.  a) nMDS of the 39 

sites from square-root transformed abundances of 173 species 
and Bray-Curtis similarities, with the four distance groups from 
the oil-rig indicated by differing symbols. b) Scatter plot of rank 
dissimilarities (r) among the 39 sites against tied ranks (s) from 
a serial ordering model of groups, showing the fitted regression 
line with slope RO, the ordered ANOSIM statistic. 

For the four Ekofisk distance groups, the pairwise R 
values do show the pattern expected from a  gradient 
of change: for groups one step apart (A to B, B to C, 
C to D), R = 0.56, 0.16, 0.55; for two steps (A to C, B 
to D), R = 0.76, 0.82; and for three steps (A to D), R 
= 0.93 (all ‘significant’ by conventional criteria). 

Fig. 6.13b clearly demonstrates how the (global) RO 
captures both the standard ANOSIM R’s contrast of 
within and between group ranks (the left-hand set of 
points vs the right-hand three sets) and the regression 
relation of greater change with greater distance (the 
right-hand three). It is thus useful in what follows to 
distinguish two cases for the ordered 1-way ANOSIM 
test, namely ordered category and ordered single 
statistics, denoted by ROc  and ROs. The difference is 
simply that the notation ROc is used when the data has 
replicates, so that it gives both a test for the presence 
of group structure and the ordering of those groups, 
whereas ROs refers to 1-way layouts with no replicates 
and where the test is thus entirely based on whether 
or not there is a serial ordering (trend) in the multi-
variate pattern of the ‘groups’ (i.e. single samples in 

this case), in the specified order. Technically, the 
computation is no different: both are simply the slope 
of the regression of the ranks {ri} on {si}, though 
clearly the unreplicated design requires a reasonable 
number of ‘groups’ (at least 5, in the 1-way case) to 
generate sufficient permutations to have any prospect 
of demonstrating serial change. 

2-WAY ORDERED ANOSIM DESIGNS 

Under the non-parametric framework adopted in this 
manual (and in the PRIMER package) three forms of 
2-way ANOSIM tests were presented on page 6-7:  2-
factor nested, B within A (denoted by B(A)); 2-factor 
crossed (denoted A×B);  and a special case of A×B in 
which there are no replicates, either because only one 
sample was taken for each combination of A and B, 
or replicates were taken but considered to be ‘pseudo-
replicates’ (sensu Hurlbert, 1984) and averaged.¶ 

The principle of these tests, and their permutation 
procedures, remain largely unchanged when A or B 
(or both factors) are ordered. Previously, the test for 
B under the nested B(A) model (page 6-7) averaged 
the 1-way R statistic for each level of A, denoted R , 
and the same form of averaged statistic was used for 
testing B under the crossed A×B model with replic-
ates (page 6-9); without replicates the crossed  test 
used the special (and less powerful) construction of 
page 6-10, with test statistic the pairwise averaged 
matrix correlation, rav. (There was no test for B in the 
nested model, in the absence of replicates for B). If B 
is now ordered, R is replaced by ROc where there are 
replicates (becoming R Oc when averaged across the 
levels of A), or by ROs where there are not (becoming  
R Os); there is no longer any necessity to invoke the 
special form of test based on rav when the factor is 
ordered. The same substitutions then happen for the 
test of A, if it too is ordered: R and rav are replaced 
by R Oc and R Os. If A is not ordered, any ordering in 
B does not change the way the tests for A are carried 
out, e.g. for A×B, the A test is still constructed by 
calculating the appropriate 1-way statistic for A, 
separately for each level of B, and then averaging 
those statistics. 

Such a plethora of possibilities are best summarised 
in a table, and the later Table 6.3 lists all the possible 

¶An example of the latter might be ‘replicate’ cores from a multi-
corer deployed only once at each of a number of sites (A) for the 
same set of months (B); these multiple cores are neither spatially 
representative of the extent of a site (a return trip would result in 
multi-cores from a slightly different area within the site) nor, it 
might be argued, temporally representative of that month. 
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combinations of 2-way design, factor ordering (or 
not) and presence (or absence) of replicates, giving 
the test statistic and its method of construction, listing 
whether or not pairwise tests make sense¶, and then 
giving some examples of marine studies in which the 
factors would have the right structure for such a test. 

We have already seen unordered examples of 1-way 
tests (1a, Table 6.3) in Figs. 6.3 & 6.5, 2-way crossed 
(2a) in Fig. 6.7 and, without replication (2b), in Figs. 
6.10 & 6.12; Fig. 6.6 is 2-way nested (2g). Examples 
of 2-way crossed without replicates, with one (2d) or 
both (2f) factors ordered, now follow.  

EXAMPLE: Phuket coral-reef time series 

These data are discussed more fully in Chapters 15 
and 16; sampling of coral assemblages took place 
over a number of years between 1983 and 2000, see 
Brown et al (2002), along three permanent transects. 
Transect A, considered here, was sampled on each 
occasion by twelve ‘10m plotless line samples’, 
perpendicular to the main transect and spaced at 
about 10m. Percentage cover of each line sample by 
each of 53 coral taxa was recorded, {K}. 

For this example, we consider a sequence of 7 years 
of ‘normal’ conditions, i.e. all samples collected over 
1988 to 1997 (later chapters examine earlier and later 
years subject to impacts of different types). This is 
therefore a two-factor unreplicated crossed design, 
with one spatial factor (position on transect) and one 
temporal factor (year), with the spatial factor clearly 
ordered and the temporal factor capable of being 
analysed either as unordered or ordered, depending 
on whether the test is for non-specific inter-annual 
variation or for a trend in time. 

Fig. 6.14 shows the MDS of the beginning and ending 
years of this selected time period, for the 12 positions 
along the transect (inshore to offshore, 1 to 12), based 
on Bray-Curtis similarities from the root-transformed 
%cover data. The other 4 years have similarly clear 
spatial trends, so it is not surprising that the ordered 
ANOSIM test for Position (the B factor in case 2d of 
Table 6.3), which uses the unreplicated R Os

  statistic,  

¶ If they do make sense, the PRIMER7 ANOSIM routine will give 
them. Performing such a 2-(or 3-) way analysis is much simpler 
than reading these tables! It is simply a matter of selecting the 
form of design (all likely combinations of 1-, 2- or 3-factor, 
crossed or nested) and then specifying which factors are to be 
considered ordered – the factor levels must be numeric in that 
case but only their rank order is used. Analyses that use specific 
numerical levels (unequally-spaced) can be catered for in many 
cases within the expanded RELATE routine, utilising a r statistic, 
see Chapter 15. 

 
 Fig. 6.14. Ko Phuket corals {K}. nMDS for two years from coral 

cover of 53 taxa (root-transform, Bray-Curtis similarities), at 
12 positions along an inshore-offshore transect.      

an average of the separate ROs statistics over 7 years, 
returns the high value of 0.68 (p < 0.1%, though sign-
ificant at any specified level, in practice). In spite of 
the absence of replication, separate analyses of the 
position factor for each year are now possible, i.e. a 
1-way ordered ANOSIM without replication (case 
1d). E.g. the spatial trends seen in Fig. 6.14 for 1988 
and 1997 have ROs = 0.65 and 0.73 (both p < 0.1%). 

The general test for the Year factor (A in case 2d of 
Table 6.3), in contrast gives rav = 0.02 (ns, no year 
effect). A more directed test of a trend over the seven 
years between the starting and ending configurations 
seen in Fig. 6.14 (case 2f), based on an average of the 
ROs statistics through the years, separately for each 
transect position, also gives a low and non-significant 
value for R Os of 0.08 (p ≈ 10%). However, if earlier 
and later years are also included, which saw a sedim-
entation impact and a prolonged desiccation of the 
reefs, then a small trend is detected ( R Os = 0.18, p < 
0.1%), though this is more clearly seen as an ‘inter-
action’ in the second-stage analysis in Chapter 16. 

3-WAY ANOSIM DESIGNS 

Table 6.4 details all viable combinations of 3 factors, 
A, B, C, in crossed/nested form, ordered/unordered,  
and with/without replication at the lowest level. Fully 
crossed designs are denoted A×B×C, e.g. locations 
(A) each examined at the same set of times (B) and 
for the same set of depths (C) ¶.  

¶ One of the commonest mistakes made by people new to ANOVA-
type designs (whether in ANOSIM or PERMANOVA) is to assume 
here that depth is a nested factor in location, since the differing 
depth samples are all taken at the same location. But they are the 
same depths (or depth ranges) across locations, hence one can 
remove the location effect when studying depth and the depth 
effect when studying location, which is the whole point and power 
of a crossed design. 
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With a fully symmetric design like this (cases 3a-c in 
Table 6.4), the idea is to test each factor in turn (A, 
say), by ‘flattening/collapsing’ the other two into a 
single factor (B×C) whose levels are all the possible 
combinations of levels of B and C; the test for A from 
the relevant 2-way crossed design is then carried out. 
E.g. the global test for time effects (B removing A×C) 
will only compare those different times at the same 
depth and location, and will then average those time-
comparison statistics across all depth by location 
levels. Whichever of the definitions R / R Oc/ R Os/rav 
is used, the three global statistics (A removing B×C, 
B removing A×C, C removing A×B) can be directly 
compared to gauge relative importance of A, B & C.  

The fully nested design C(B(A)), e.g. area (C) nested 
in site (B), nested in location (A), cases 3d-g, can also 
be handled by repeated application of the 2-way case. 
This tests the lowest factor (C) inside the levels of the 
next highest (B), then averaging (in some form, see 
later) the replicate level, so that levels of C are now 
replicates for a test of B, then averaging the levels of 
C so that B levels are the replicates for a test of A.  

Another straightforward possibility is C(A×B), 3h, in 
which C is nested in all combinations of A and B, e.g. 
multiple sites (C) are chosen from all combinations of 
location (A) and habitat type (B), in a case where all 
habitat types are found at each location, with replicat-
ion (or not) at each site. The test for C uses the A×B 
‘flattened’ factor at the top level of a 2-way nested 
design, and tests for A and B are exactly as for the 2-
way crossed design but, if replicates exist, averaging 
them (again, in some form) to utilise the levels of C 
as replicates for the crossed A and B tests.  

The only other practical combination, and one which 
is quite frequently encountered, is B×C(A), 3i-m, in 
which only C is nested in A, and B is crossed with C, 
e.g. multiple sites (C) are identified at locations (A), 
and the same sites are returned to in each of a number 
of seasons (B), with (or without) genuine replicate 
day/area samples taken at each site in each season. 
Here there are one or two new issues of principle and 
these are illustrated in more detail later.   

EXAMPLE: King Wrasse fish diets, WA 

We begin the 3-factor examples with a fully crossed 
design A×B×C of the composition by volume of the 
taxa found in the foreguts of King Wrasse fish from 
two regions of the western Australian coast, just part 
of the data on labrid diets studied by Lek et al (2011), 
{k}. Taxonomic composition of the prey assemblage 

was reduced to 21 broad groups (such as gastropods,  
bivalves, annelids, ophiuroids, echinoids, small and 
large crustaceans, teleost fish, etc). Here the fish are 
‘doing the sampling’ of the assemblages and there is, 
naturally, no control over the total volume of material 
in each gut, so standardisation of the taxon volumes 
to relative composition (all taxa add to 100% for each 
sample) is essential. In addition, prior to this, foregut 
contents of c. 4 fish need to be (randomly) pooled to 
make a viable single sample of ingested material. 

For this illustration, the base-level samples have been 
further pooled to give two replicate times from each 
combination of A: three region/habitat levels (Jurien 
Bay Marine Park, JBMP, at exposed and sheltered 
sites, and Perth coast exposed sites); B: body size of 
the wrasse predator, with four ordered levels; C: two 
seasonal periods, summer/autumn and winter/spring ¶.  

Three-factor crossed ANOSIM (case 3c in Table 6.4, 
but for B ordered rather than C), testing for A within 
all 8 combinations of B and C levels gives R = 0.26 
(p ≈ 1.5%, on a random subset of 9999 from the 158 
possible permutations); the pairwise tests between the 
region/habitat levels (now on 38 = 6561 permutations) 
give similar values of R between 0.20 and 0.29. The 
ordered ANOSIM test for length-class B, across the 6 
strata of A and C, has a larger R Oc

 of 0.49 (p<0.01%) 
with a clear pattern in the pairwise R of increasing 
values with wider-separated wrasse size-classes (R12, 
R23, R34 = 0,0.21,0.08; R13, R24 = 0.46,0.5; R14 = 0.63; 
p<5% only for the last three tests).  Unsurprisingly 
therefore, the appropriately ordered ANOSIM test 
outperforms the equivalent unordered  test (case 3a), 
which has R = 0.32 (p<0.1%). The test for period C, 
removing A and B, gives no effect, with R = 0.0.  

The key point here is that the 3 global statistics, R or 
R Oc of A: 0.26, B: 0.49, C: 0 (and pairwise values), 
are directly comparable as measures of the effect size 
for each factor; the ANOSIM statistic is not hi-jacked 
by the differences in group sizes, in sharp contrast to 
the significance level, p, which never escapes strong 
dependence on the number of permutations.  

¶ The original data potentially have a 5-factor crossed design, 
treating region and habitat separately and with 2 further common 
labrid species studied, but such higher-way designs can always 
be analysed at a lower level, flattening pairs of factors, as for A 
above. In fact, Lek et al (2011) found it necessary to analyse only 
3 factors at a time to explore dietary change with region, habitat, 
species, size and season because there were no sheltered sites on 
the Perth coast, and not all labrid species and not all size classes 
were found in each location. Examining different hypotheses may 
often require separate analysis of different selections from a data 
set, and you should not be reluctant to do this! 
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Fig. 6.15. King Wrasse diets {k}. nMDS (on Bray-Curtis) of √ 

taxon volumes averaged over replicates and seasonal periods, 
showing clear dietary change with King Wrasse body size and 
between regions/habitats; lower plot overlays bubbles with 
sizes proportional to one component of the average diet. 

As for univariate ANOVA, the natural successor to 
hypothesis tests should be a means plot, illustrating 
these effect sizes. Since the period effect is absent, an 
average of the data matrix over both the 2 replicates 
and 2 periods is appropriate¶. The resulting nMDS of 
the dietary assemblages for the 4 wrasse size-classes 
at the 3 locations is shown in Fig. 6.15. It has low 
stress (0.09) and displays the relationships seen in the 
tests with great clarity, unlike the high-stress (0.19) 
nMDS on the full set of samples, which is the typical 
‘blob’ of replicate-level plots (an often useful mantra 
is: ‘test on the replicates – but ordinate the means’!).   

The next question is always likely to be: ‘and which 
taxa are mainly implicated in the steady change in the 
dietary assemblage through the size classes?’. This is 
the subject of Chapter 7, but one of the simplest and 

¶ Average the transformed data not the original matrix, or use the 
‘distances among centroids’ option in PERMANOVA+, though 
again these give virtually identical plots, see footnote on p5-18. 
The major step forward that PERMANOVA takes, albeit under 
the more restrictive assumptions of a linear model, is that it 
allows partitioning of the effects seen here into ‘main effects’ and 
‘interactions’, something which is simply undefinable in a non-
parametric approach (see later). Here, PERMANOVA tests give 
no evidence at all for any interactions: as the ordination shows, 
the orderly progression of diet as the wrasse grows is maintained 
in much the same way across the differing conditions (balance of  
food availability, in part, presumably) at the three locations. 

most effective tools is a bubble plot, superimposing 
on each ordination point a circle (or in 3-d, a sphere) 
with size proportional to the (averaged) value for a 
specific taxon in that (averaged) sample. The lower 
plot in Fig. 6.15 shows a bubble plot for the ‘large 
crustaceans’, which are seen to become an increasing 
part of King Wrasse diet with size, in all locations. 

EXAMPLE: NZ kelp holdfast macrofauna 

We now consider the fully nested design, C(B(A)). In 
north-eastern New Zealand, Anderson et al (2005) 
examined assemblages of invertebrates colonising 
kelp holdfasts at three spatial scales: 4 locations (A), 
with 2 sites (B) per location, sampling 2 areas (C) at 
each site and with 5 replicate holdfasts per area, {n}. 
This data is covered in detail in the PERMANOVA+ 
manual, Anderson et al (2008)†. Since B and C have 
only 2 levels, there can be no concept of them being 
‘ordered’ or not; A is also seen as unordered. The test 
statistics are therefore R and R , case 3d in Table 6.4, 
giving for A: R = 0.81, B: R = 0.38 and C: R = 0.26. 

These three ANOSIM R statistics are again directly 
comparable with each other. Their increase in size as 
the spatial scale increases is coincidental; they do not 
reflect accumulation of differences at all the spatial 
scales but only the additional assemblage differences 
when moving from replicates (with spacing at metres) 
to areas (at 10’s of metres) to sites (100’s of metres to 
kms) to locations (100’s of km). Thus, they can be 
seen as non-parametric equivalents of the univariate 
variance components (or the multivariate components 
of variation in PERMANOVA): the area differences

† We are ignoring for the purposes of this illustration that, as 
Anderson et al (2008) explain, the holdfasts will have different 
volumes and, even after we have attempted to correct for this by 
standardising all samples to relative composition not absolute 
numbers, there may still be some artefactual dissimilarity arising 
from higher species richness in larger holdfasts. PERMANOVA 
tests can attempt to model the ‘nuisance’ effects of covariates 
such as this, through a linear regression, and thereby adjust the 
C(B(A)) tests (as Anderson et al, 2008, do in this case); clearly 
nothing similar could ever be available in the non model-based 
approach here. However, such biases from unequal sample sizes 
will still remain in any ordination configuration, whatever the 
approach, and it should be examined by bubble plots of (here) 
holdfast volume on the area MDS. Characteristic indicators of a 
problem are that all the outlying points have low sample volumes 
(which does not happen here). Presence/absence analyses will be 
most prone to this artefact, so where such a problem is expected, 
some amelioration is likely from using less severe transforms – 
here the mild square root is used – or possibly dispersion weight-
ing (Chapter 9). This downweights the contribution of highly 
abundant, but highly variable, species without also effectively 
‘squashing’ species with low counts (but consistent over replic-
ates) to presence/absence, as severe transformations will do.  
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Fig. 6.16. NZ kelp holdfast fauna {n}. Null distributions by permutation for 3-factor fully nested (unordered) ANOSIM tests, C(B(A)), 
with 5 replicates from each of 2 areas (C), nested in 2 sites (B), nested in 4 locations (A). Very large numbers of permutations possible 
for the lowest level test of areas, so 9999 selected at random; all permutations are computed for site test (81) and location test (105). 

are small ( R = 0.26) in relation to assemblage variab-
ility from one holdfast to another, somewhat larger 
between sites (0.38), in relation to changes between 
areas, and very large among locations (0.81), relative 
to change in sites within those locations. This is in 
stark contrast to the conclusions one might draw from 
looking only at the significance levels (as seen from 
the permutation distributions under the null hypoth-
eses, Fig. 6.16), A: p=1%, B: p=1.2%, C: p<<0.01%, 
a result of the very different numbers of replicates, 
and thus possible permutations (105, 85 and 1268). As 
always, it is the R values which give the effect sizes.  

Pairwise tests are only meaningful at the top level of 
such a nested design and there are insufficient perm-
utations here (3) to make these at all informative. The 
best way, as always, to follow up the global ANOSIM 
tests, and visualise the effect sizes, is an MDS based 
on averaged data (but see footnotes on p5-18 & 6-21). 
Here Fig. 6.17 averages the (square root-transformed) 
replicate counts for the 16 areas, recomputes Bray-
Curtis and the nMDS plot re-affirms the test results. 

There is a minor technical issue, in the sequence of 
nested ANOSIM tests, as to how best to combine the 
original replicates to provide ‘area replicates’ for a 
test of site, and then how best to combine the areas to 

 

Fig. 6.17. NZ kelp holdfast fauna {n}. nMDS (on Bray-Curtis) of 
square-rooted abundances of 351 species, averaged over five 
replicates holdfasts in each area (nested in site and location). 

provide ‘site replicates’ for a test of locations. There 
are many possibilities: PERMANOVA uses centroids  
calculated in the high-dimensional resemblance space 
(see Anderson et al, 2008) whereas the rank-based 
approach in PRIMER was given on page 6-8 for the 
two-way nested case (the original resemblances are 
ranked, then averaged and re-ranked, at each level). 
Averaging the similarities rather than their ranks is 
another possibility, as is averaging the data, both 
transformed (as in Fig. 6.17) or untransformed. Only 
slight variations would be likely from the different 
choices, though experience suggests that averaging 
untransformed data makes the greatest difference.  
But in one situation even this might be considered 
appropriate, namely when the original replicates are 
sufficiently sparse and unreliable not to constitute a 
fair reflection of the assemblage structure at all: to 
pool them (i.e. average untransformed counts) and 
run the 3-way nested case as 2-way nested for A and 
B(A) tests (2g-n, Table 6.3) might then be preferable.  

EXAMPLE: Tees Bay macrofauna 

The final example in this chapter is of a mixed nested 
and crossed design B×C(A), for a total of 192 macro-
benthic samples (282 species) from: A: four sub-tidal 
Areas of Tees Bay (Fig. 6.17, top left), with C: two 
Sites from each area, the same sites being returned to 
each September over B: 24 Years (1973-1996), part 
of a wider study of the Tees estuary, Warwick et al 
(2002), {t}. Sites (C) are therefore nested in Areas (A) 
but crossed with Years (B). There was a further level 
of replication, with multiple grab samples collected 
but these have been averaged to give a more reliable 
picture of the assemblage on that occasion (the repeat 
grabs from a single ship stationing being considered 
‘pseudo-replicates’ in time, and possibly space). The 
areas lie on a spatial transect (c. 5km spacing) but are 
probably not ordered hydrodynamically, so we shall 
contrast both ordered and unordered tests for A (cases 
3m/3j in Table 6.4). The years are also amenable to  
analysis under either assumption: as it happens, there 
is a clear annual trend in assemblage structure over
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Fig. 6.17. Tees Bay macrofauna {t}. Map of four sampling areas in Tees Bay, NE England, and separate nMDS time-series plots for 

each area, of the macrobenthic assemblages over 24 years of September sampling; abundances were fourth-root transformed then 
averaged over the two sites in each area, then input to Bray-Curtis similarity calculation. Bottom left plot is the nMDS of averages of 
transformed abundances over the 24 time points for the two sites (a-b, c-d, e-f, g-h) in each of the four areas.  

the period (seen in the right-hand plots of Fig. 6.17, 
for the two sites in each area averaged), but the prior 
expectation might have been for a more complex time 
signal of cycles or short-term changes and reversions, 
so this data will serve as an illustration of both the 
case of B ordered or unordered (cases 3l/3j). There 
being only two sites in each area, it is then irrelevant 
whether C is considered ordered or not; with no real 
replication, there can be no test for a site effect from 
only two sites (though there would be a test with a 
greater number of sites, either ordered or not, 3k/3j).  

Test for Area factor (A) 

The schematic below displays the construction of the 
ANOSIM permutation test for area (A), case 3m/3j ¶.   

 

¶ It is to be understood that each dot represents a sample of 282 
species abundances (going into the page, if you like). Of course, 
data is not input into PRIMER in this (3-way) format but in the 
usual species × (all) samples worksheet, with areas (1-4), years 
(73-96) and sites (a-h) identified in the associated factors sheet.  

The building blocks are the 1-way ANOSIM statistics 
R (or ROc if A is considered ordered) for a test of the 
4 areas, using as replicates the 2 sites in each area, 
computed separately for each year. These are then 
averaged over the 24 years, to obtain the overall test 
statistic for A of R (or R Oc), exactly as for the usual 
2-way crossed case A×B met on page 6-9. The crucial 
difference however is in generating the null hypoth-
esis distribution for this test statistic. Permuting the 8 
sites across the 4 areas separately for each year, as 
the standard A×B test would do, is to assume that the 
sites are randomly drawn afresh each year from the 
defined area, rather than determined only once and 
then revisited each year. The relevant permutation is 
therefore to keep the columns of this schematic table 
intact and shuffle the 8 whole columns randomly over 
the 4 areas, recalculating R (or R Oc) each time. There 
will be many fewer permutations for the A test under 
this B×C(A) design (8!/2!2!2!2!4! = 105 for the un-
ordered case, compared with 10524) but what it loses 
in ‘power’ here it may make up for in improved focus 
when examining the time factor: subtle assemblage 
changes from year to year may be seen by returning 
to the same site(s), and these might otherwise get 
swamped by large spatial variability from site to site, 
if the latter are randomly reselected each year.  

If area is considered an unordered factor, R = 0.60, a 
high value (and the most extreme of the 105 perm-
utations, so p = 1%); this is clearly seen in the time-
averaged MDS plot for the 8 sites (Fig. 6.17, lower 
left). If treated as an ordered factor, the area test gives 

 

                                                           



 Chapter 6   
 page 6–24  
 
R Oc = 0.13, now not even significant. These two R  
values are directly comparable; both are slopes of a 
linear regression of the type seen in Fig. 6.13b, with 
the same y axis values but only two rather than four x 
axis points in the unordered case (within and among 
groups, as earlier explained). The MDS plot of sites 
in Fig. 6.17 makes clear the down side of an ordered 
test, based solely on the NW to SE transect of areas: 
here the middle two areas are within the confines of 
Tees Bay, their assemblages potentially influenced by 
the hydrodynamics or even anthropogenic discharges 
from the Tees estuary. Thus areas 1 and 4 are rather 
similar to each other but differ from areas 2 and 3. 
Opting for what can be a more powerful test if there 
is a serial pattern risks failing to detect obvious diff-
erences when they are not serial, as illustrated below 
for one of the 24 components of the average R  and 
R Oc, namely the R and ROc constructions for 1978: 

 
 
Test for Year factor (B) 

Turning to the test for the Year factor (B), case 3l/3j 
in Table 6.4, the schema for construction of the test 
statistic in both ordered and unordered cases is now: 

 

When years are considered ordered, the test reduces 
to the 2-way crossed layout B×C (case 2d, Table 6.3) 
in which a 1-way ordered ANOSIM statistic without 
replicates (ROs) is calculated over years, separately 
for each of the 8 sites, and these values averaged to 

give R Os, exactly the test for trend seen in Fig. 6.14 
for the Phuket coral reef data (though there the trend 
was for spatial positions averaged over years, whilst 
here it is the opposite, of inter-annual trends averaged 
over sites). The appropriate permutation is the usual 
one of samples in each site being randomly permuted 
across the years (since the null hypothesis specifies 
that there is no year effect, at any site). As Fig. 6.17 
illustrates, this will be roundly rejected, with global 
R Os = 0.52, which is significant at any fixed level, in 
effect, as shown by the null permutation distribution: 

 
If it is considered unwise to test only for a time trend, 
rather than a more general pattern of annual changes,  
there is no replication which the test for B can exploit 
so the design falls back on an indirect test of the type 
introduced in Fig. 6.9: evidence of differences among 
years is provided by a commonality of time patterns 
in space. A modified test statistic is needed here to 
cope with the structuring of the spatial factors into a 
2-way nested design of sites within areas. As shown 
in the above schematic diagram, a logical construct-
ion for the test statistic here is to use the matching 
statistic rav among the sites within each area (though 
in this case there is only one r since there are only 2 
sites) and then average this across the areas, to give a 
doubly-averaged avr  statistic. If there are no annual 
differences this will, as usual, take the value zero, and 
the null hypothesis distribution is created by the same 
permutations as for the ordered test. An inter-annual 
effect is therefore inferred from consistency in time 
patterns between sites. If (as might well be thought in 
this context) it is more appropriate to infer consistent 
temporal change by noting  commonality at the wider 
spatial scale of areas, then the sites should simply be 
averaged (see previous footnotes on how best to do 
this) to leave a 2-way A×B design with both factors 
unordered, and the B test uses the (singly-averaged) 
rav statistic of Fig. 6.9.  

Generally one might expect the time pattern to be less 
consistent as the spatial scale widens, but here, based 
on sites, avr = 0.62 and on areas, rav = 0.66, perhaps 
because averaging sites removes some of the variab-
ility in the sampling. Both r statistics are again highly 
significant, though note that they cannot be compared 
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with the R Os value for the ordered case; the statistics 
are constructed differently. 

Returning to the R Os test for temporal trend, doubly 
averaging the statistics in that case, by site then area, 
could not actually change the previous value (0.52), 
though averaging sites first and performing the 2-way 
design on areas×years does increase the value to R Os 
= 0.60, for the same reasons of reduction in sampling 
‘noise’; it is this statistic that reflects the overall trend 
seen in the four right-hand plots of Fig. 6.17. It would 
generally be of interest to ask whether the averaged 
R Os hides a rather different trend for each area, and 
the individual trend values ROs for each area (or site) 
could certainly be calculated and tested. The 4 areas 
here give the reasonably consistent values ROs = 0.67, 
0.54, 0.50, 0.67 respectively (all p<<0.01%), though 
there is perhaps a suggestion here and in the plots that 
the wider regional trend seen in Areas 1 and 4, and 
for which there is evidence from other North Sea loc-
ations (a potential result of changing hydrodynamics), 
is being impacted by more local changes within the 
Tees estuary, which will affect areas 2 and 3, within 
Tees Bay. This is a form of interaction between Year 
and Area factors and we shall see later that limited 
progress can be made in exploring this type of inter-
action non-parametrically, through the definition of 
second-stage MDS and tests (Chapter 16). These ask 
the question “does the assemblage temporal pattern 
change between areas, in contrast with its fluctuation 
within an area?”, and the comparison becomes one 
between entire time sequences rather than between 
individual multivariate samples.  

This raises the following important issue about the 
limitations of non-parametric tests in exploring the 
conventional interactions of additive linear models.  

Partitioning 

One crucial point needs to be made about all the 2- 
and 3-way tests of this chapter. They are fully non-
parametric, being based only on the rank order of 
dissimilarities, which delivers great robustness, but 
they cannot deliver the variance partitioning found in 
the semi-parametric methods of PERMANOVA+, the 
add-on routines to PRIMER (Anderson et al, 2008). 
PERMANOVA uses the precise measurement scale 
of the dissimilarities to fit general linear models in 
the high-dimensional PCO ‘resemblance space’ and it 
is then able to partition effects of a factor into main 
effects and 2-way (or 3-way or higher) interactions, 
each of which can then be tested. For some scientific 
questions, testing for the presence or absence of an 
interaction is the only form of inference that will 
suffice: a good example would be for Before-After/ 

Control-Impact (BACI) study designs, and there are 
many further examples in Anderson et al (2008) and 
associated papers. The non-parametric ANOSIM 
routine cannot (and could never) do this linear model 
variance-partitioning, of effects into main effects and 
interactions, because this form of interaction is a 
purely metric concept. This is simply illustrated in 
the univariate case by a hypothetical 2-factor crossed 
design with two levels for both A and B (e.g. where 
the response variable y is clearance rate of particles 
by a filter-feeding species under A1: low density and 
A2: high density of particulates, and B1: at night, B2: 
during the day), let us suppose with minimal variance 
in the replicates, giving cell means of (left-hand side): 

 

The data matrix for variable y demonstrates that there 
is significant interaction between particle density and 
day/night factors, because the means are not additive: 
the difference in clearance rate between high and low 
density is not the same during the night (1) as during 
the day (4). But a simple log2 transform of y gives the 
table to the right, in which there is now no interaction 
between the factors: the difference between logged 
clearance rate at low and high particle density is the 
same during both day and night (1). Yet, both these 
tables are identical if viewed non-parametrically, i.e. 
with the values replaced by their ranks.  

This example is scarcely representative of the typical 
multivariate abundance matrix but it does illustrate 
that this simple form of interaction is essentially a 
parametric construction, based on linear models of 
adding main effects, interactions and error. Though, 
as previously mentioned, ‘non-parametric interaction’ 
is not an altogether invalid concept (see Chapter 16), 
it cannot be straightforwardly defined. The ANOSIM 
crossed designs are tests for the presence or otherwise 
of an effect of factor A; this may be a large effect at 
one level of another factor B, and smaller ones at its 
other levels, or it may be a more consistent effect of 
A at all levels of B – these situations are not disting-
uished, and one way of viewing these R statistics is 
as combinations of ‘main effects’ and ‘interactions’. 
What they tell you, robustly, is whether factor A has 
an overall effect, at least somewhere, having removed 
all contributions that the other crossed factor(s) could 
possibly be having. They do not do this by subtract-
ing some estimate under a general linear model of the 
effect of other terms. Their excision of other factors 

 



 Chapter 6   
 page 6–26  
 
is more surgical than that: they only ever compare the 
different levels of A under an identical level for all 
other combinations of factors. Therefore there can be 
no equivalent, for example, of the way that in linear 
models main effects can apparently disappear because 
interactions ‘in different directions’ cancel them out. 
An R statistic is perfectly meaningful in the presence 
of interactions. Under the null hypothesis, the comp-
onent R values making up that average are all approx-
imately zero; where there are effects some or all of 
those R values become positive. If enough of them do 
so (or one or two of them do so enough), an effect is 
detected.  

RECOMMENDATIONS 

1) For typical species abundance matrices, it is much 
preferable to use a non-parametric ANOSIM-type 
permutation test rather than classical MANOVA; 
the latter will almost always be totally invalid. A 
realistic alternative is the semi-parametric PERM-
ANOVA tests of Anderson et al (2008). These do 
make more assumptions, fitting additive linear 
models in a (complex) high-dimensional space 
defined by the (metric) resemblance matrix but, 
crucially, do not make unacceptable normality 
assumptions in carrying out their tests, which use 
(approximate) null distributions from permutation 
procedures. In simple designs, ANOSIM’s greater 
robustness might be preferred; in more complex 
designs some questions can only be answered by 
PERMANOVA. This is a familiar balance from 
univariate statistics: non-parametric methods are 
more robust but give shallower inference, model 
estimation of parameters inevitably involves more 
assumptions but allows a deeper level of inference.  

2) Choice of the level and type of replication should 
be carefully considered.  Though it is difficult to 
define power for any of the ANOSIM (or PERM-
ANOVA) tests, it is important to ensure sufficient 
samples are taken at the right level to generate

enough permutations for meaningful significance 
levels. Equally important is that replicates which 
are crucial for the tests being undertaken should 
genuinely represent the condition being sampled: 
pseudo-replication is commonplace, e.g. analyses 
of sub-cores of single cores, or sets of spatially 
contiguous or temporally coincident samples which 
are unrepresentative of the extent of the sites or 
times about which inference is desired. Pseudo-
replicates may still have an important role, when 
pooled, in providing enough material for sensible 
definition of a single replicate of that time or place, 
but the balance of collection or analysis effort at 
different levels of a design is often context depend-
ent, and pilot experimentation will usually reap 
dividends for efficiency of the main study. As a 
general rule, design to provide fully representative 
replication at the level immediately below the 
effect of main interest, and use balanced crossed 
designs to eliminate non-negligible factors which 
are not the main focus of the study.  

3) A point that cannot be over-stressed is that ANOSIM 
tests only apply to groups of samples specified prior 
to seeing (or collecting) the data. A dangerous mis-
conception is that one can use a cluster analysis of 
the species abundance data to define sample group-
ings whose statistical validity can be established by 
performing an ANOSIM test for differences among 
those groups. This is entirely wrong, the reasoning 
being completely circular. Sometimes, independent 
data exists (e.g. environmental) which can permit 
the definition of groups to test with the biotic data. 
Another safe course here can be to use a first set of 
(biotic) data to define the groups of interest, i.e. to 
erect the hypothesis, and then to collect a further 
set of the same assemblage data to test that hypoth-
esis. Alternatively, the SIMPROF procedure of 
Chapter 3 may allow you to make some (weaker) 
statements about structure in the data that is worth 
exploring in future studies. If prior structure exists, 
use it: where ANOSIM (or PERMANOVA) tests 
are valid, they are your most useful testing tools.  
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CHAPTER 7:  SPECIES ANALYSES 
 

SPECIES CLUSTERING 

Chapter 2 (page 2-7) describes how the original data 
matrix can be used to define similarities between every 
pair of species; two species are positively associated 
(i.e. ‘similar’) if their numbers or biomass or cover etc 
tend to fluctuate in proportion across samples. They  
are negatively associated (i.e. ‘dissimilar’) if species 
have opposite patterns of abundance over samples, 
with the maximum dissimilarity of 100 occurring if 
two species are never found in the same samples. 
Clearly, differences in total abundance of species 
across samples are of no relevance to association – 
some species (perhaps with much smaller body size)  
inevitably have higher counts than others, but can still 
be perfectly associated with them – so some means of 
‘relativising’ species is essential. Pearson correlation 
does this by dividing by standard deviations and non-
parametric correlation by converting to ranks but both 
are poor measures of species association because of 
the ‘joint absence’ issue: two species are not similar 
because neither appear at a particular site or time, yet 
correlation will make them so. In contrast, standard-
ising species across samples (dividing by their total 
and multiplying by 100, making species add to 100), 
followed by Bray-Curtis similarity on pairs of species 
is not a function of joint absences and takes values 
over a scale of 0 (perfect ‘negative’ association) to 
100 (perfect positive association). It is helpful here to 
retain the idea of ‘negative’ and ‘positive’ relations 
even though the index is always in the range (0,100). 
This combination of species-standardising and Bray-
Curtis is more succinctly referred to as Whittaker’s 
(1952) index of association, e.g. of species 1 and 2: 
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where yij is the abundance of the ith species (i=1,.., p) 
in the jth sample (j=1,.., n).  

The species similarity matrix which results can be 
input to a cluster analysis or ordination in exactly the 
same way as for sample similarities. This is referred 
to historically (e.g. see Field et al 1983) as inverse or 
r-mode analysis. However, an ordination is rarely a 
good idea except in special circumstances with small 
numbers of species, all of which are well-represented. 
More typically, there are many species found in small 
numbers rather randomly across the set of samples, 
and these have associations to each other which are 

wildly varying, between 0 (if their few individuals are 
from different samples) and close to 100 (e.g. if their 
individuals happen to occur in the same one or two 
samples). Minor species such as this have very little 
influence on a samples analysis because their effect 
on the Bray-Curtis similarities are generally small, 
but they can provide a large amount of ‘noise’ in a 
species ordination, resulting in very high stress, and 
therefore unhelpful displays. An important initial step 
in most species analyses is therefore to eliminate the 
‘rare’ species, e.g. selecting only species which are 
‘important somewhere’ in the sense that they account 
for more than a threshold q% (perhaps q = 1% to 5%) 
of the total abundance in one or more samples, or by 
adjusting that percentage to reduce the matrix to a 
specified number of species n, or by retaining only 
species which are seen in at least n samples. 

EXAMPLE: Exe estuary nematodes 

Fig. 7.1 displays the results of a cluster analysis on the 
Exe estuary nematode data {X} first seen in Chapter 5, 
in which 19 intertidal sites with differing environments 
were sampled bimonthly over a year and time-averaged 
to give a matrix of 19 samples × 174 species. Initial 
species reduction retained only those accounting for 
≥5% of the total (averaged) abundance at one or more 
of the sites, and the index of association was calculated 
among those 52 species, followed by standard agglom-
erative hierarchical clustering. From the range of y axis  
values it is clear that some species are highly positively 
associated, and other species subsets are negatively 
associated, apparently found at quite different sites 
(from the zero associations) but this immediately raises 
the question as to how much of this clustering structure 
we are entitled to interpret. The solution to that will be 
an extension to the SIMPROF procedure first met in 
Chapter 3 (page 3-6), but this time applied to species 
rather than sample groupings.  

TYPE 2 AND TYPE 3 SIMPROF TESTS 

Somerfield and Clarke (2013) describe in full detail a 
range of useful SIMPROF tests, which they classify 
as Types 1, 2 and 3. Type 1 SIMPROF has already 
been seen in Chapter 3 (starting on page 3-6) and is 
concerned with testing hypotheses, in subsets of the 
samples, about whether the similarities among those 
samples show any departure from homogeneity: if all 
samples appear equally similar to each other, within 
the bounds of random chance, then there is no basis 
for further exploration of structure within that subset. 
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Fig. 7.1. Exe estuary nematodes 
{X}. Dendrogram using group 
average linking on species sim-
ilarities defined by the index of 
association (i.e. Bray-Curtis on 
species-standardised but other-
wise untransformed abundance 
for pairs of species compared 
across the 19 sites). Analysis is 
only for the species accounting 
for ≥5% of the total abundance 
at one or more of the sites (the 
52 species numbers are defined 
later, in Fig. 7.7). 

The left-hand side of the schematic below (Fig. 7.2) 
repeats the steps seen in Chapter 3: the test statistic π 
is the departure of the real similarity profile for that 
subset (i.e. the ordered set of similarities plotted from 
smallest to largest) from the average profile expected 
under the null hypothesis of absence of structure in 
those samples. Construction of this average (and the 
variation to be expected about it, under the null) uses 
permutations of species values over the samples. This 
Type 1 test is repeated many times for different sub-
sets of samples, e.g. at all nodes of an agglomerative 
or divisive dendrogram from hierarchical clustering 
(or even for the groups from the non-hierarchical k-R 
clustering), seen in Chapter 3 (and 11).  

The right-hand side of Fig. 7.2 is concerned with sim-
ilarities (associations) computed among species, over 
the full set of samples. Type 2 SIMPROF (top right)  
tests the hypothesis that no associations of any sort 
are detectable among all the (retained) species. The 
test statistic π is constructed in exactly the same way, 
by ordering all the species associations, from smallest 
to largest to produce a similarity profile, compared 
against profiles generated under the null hypothesis, 
by again independently permuting the values for each 
species across all samples. Clearly such permutations 
must break down any possible associations of species 
but, as with all permutation tests, have the immense 
advantage of retaining exactly the same set of counts

 

Fig. 7.2. Schematic of the three types of SIMPROF test. Type 1 tests samples (covered earlier) and 2 & 3 test species. Type 2 is a global test 
of the null hypothesis (H0) of no associations among all species, thus typically carried out only once. Type 3 (as with Type 1) is performed 
repeatedly in conjunction with some form of cluster analysis (agglomerative, divisive or the non-hierarchical k-R clustering, as in Chapter 3 
but applied to the species, not sample similarities) on subdivisions of the species list, to test the null hypothesis of uniformity of species simil-
arities within that sublist. These are best defined by the ‘index of association’. To apply to environmental-type variables (i.e. non-commonly 
scaled and/or without the need to capture a presence-absence structure, though they may still be biotic), use Pearson or rank correlation for 
variable similarities. In order for the permutation process to work correctly for Type 3 tests, prior normalisation or ranking is essential 
(even though these coefficients include a normalisation or ranking step), for the same reason that species standardisation is necessary 
before employing the index of association (though it includes such standardisation). 
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(/biomass/cover etc) for each species, so the process 
is entirely free of any distributional assumptions. 
Type 2 SIMPROF is therefore designed mainly to be 
used as a single test, permitting or barring the road to 
further examination of particular groups of species 
associations. If the null hypothesis is not rejected, 
there is no case at all for interpreting a dendrogram 
such as Fig. 7.1 – we would have no evidence that 
there were any associations (positive or negative) to 
interpret. Once we have rejected this specific null for 
the whole set of species, however, there is no logic in 
testing it again for a subgroup of those species. What 
is needed then are tests of a different null hypothesis, 
that the associations within a subset of species are not 
distinguishable, i.e. that the species are coherent in 
their patterns of abundance across the full sample set. 
In other words, clusters seen in the dendrogram of 
Fig. 7.1, for example, can be identified statistically as 
differing in their mutual associations from a wider 
group of which they are part, but not differentiated 
internally. This requires a series of Type 3 SIMPROF 
tests, each as shown in the bottom right of Fig. 7.2, 
which requires an orthogonal permutation scheme, 
namely across the subset of species (the species are 
interchangeable under the null), independently for 
each sample. Type 3 tests are therefore the natural 
analogue for species dendrograms of the sequence of 
Type 1 SIMPROF tests used for sample dendrograms. 

Species associations for Exe estuary nematodes 
Returning to the Type 2 SIMPROF test, and carrying 
this out for the Exe estuary nematode data of Fig. 7.1, 
gives the similarity (association) profile in the main 
plot of Fig. 7.3, which is seen to differ from profiles 
under the null both in respect of having many more 
similarities which are larger (‘positive’ associations)  
and smaller (‘negative’ associations) than expected. 
That this is statistically significant, at any probability 
level we care to nominate, is clear from the histogram 
of π values under the null, in relation to the observed 
π (Fig. 7.3 inset). Note that there are a large number 
of zero values (fully ‘negative’ associations) in the 
real profile, but also in all the permuted cases. This is 
typical of many community matrices: species which 
occur only in one or two samples are almost certain to 
be deemed totally dissimilar to other equally sparse 
species. The difference here is that we have removed 
many of the sparse species and the real profile is seen 
to ‘hug the x axis’ longer – it has more species pairs 
only ever found in different locations than would be 
expected by chance, as can be seen from Fig. 7.1. 
Type 2 tests can also have a role in testing whether a 
set of environmental variables may be considered as 
mutually uncorrelated with each other.   The variable 

 
Fig. 7.3. Exe estuary nematodes {X}. Similarity profile (bold line) 

for a Type 2 SIMPROF test of the null hypothesis of no genuine 
associations among any of the 52 species making up the dendro-
gram of Fig. 7.1, consisting of the (52×51)/2 = 1326 indices of 
association measures computed there, ordered (y axis) and plotted 
against their ranks (x axis). Also shown, for each value of x, is the 
mean index (continuous line) from 9999 permutations of the data 
matrix (under the null hypothesis), and the range (dotted line) in 
which 99% of the permuted index values lie. Inset: distribution of 
the distance π of (a further) 9999 permuted profiles from the mean 
profile, in comparison with π for the real profile (seen not to come 
from the null, establishing the existence of species associations).  

‘similarities’ are then defined as standard Pearson or 
rank-based Spearman correlations. One might even 
consider testing a priori designated pairs of variables 
for evidence of correlation by such a Type 2 permut-
ation method, and this then becomes a distribution-
free alternative to Fisher’s z score (or tabulations) for 
computing significance levels¶. However, systematic 
testing of large numbers of pairs of variables in this 
way is probably best avoided: not only is there the 
problem of repeated testing but also the tests them-
selves will be highly dependent. This is a familiar 
theme: the statistics (matrix of correlations) can be 
extremely useful for interpretation, and the global test 
(Type 2 SIMPROF) of whether there are any correl-
ations to interpret are key, but the p values for indiv-
idual correlations must be treated cautiously. 

¶ For just two variables, the similarity profile reduces to a point 
but – unlike Type 3 (and Type 1) SIMPROF tests for which all 
permutations then give a value which is no different than the real 
one and thus a test is impossible – here the different permutation 
direction, of the two variables across the full set of samples, gives  
a full null distribution for this point. In fact the test statistic, π, is 
more or less just the absolute value of the correlation coefficient 
(at least with enough permutations to ensure that the permuted 
‘mean profile’ is effectively a point at zero, as it will theoretically 
be). Another corollary of the permutation direction in Type 2 tests 
(across samples for each variable) is that there is actually now no 
need to ‘relativise’ the variables in advance, e.g. by normalising 
environmental variables or standardising the counts for species, 
since both correlation and association coefficients include this 
step internally. However, it is still wise to get into the habit of 
‘relativising’ routinely for variable analyses, because it is crucial 
for Type 3 tests, which otherwise would be meaningless. 
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Coherent species curves by Type 3 SIMPROF tests 

The procedure is well illustrated by reference to Fig. 
7.1, for the reduced set of 52 nematode species from 
the 19 Exe estuary sites. As we work down from the 
top of the dendrogram, highly heterogeneous groups 
(in terms of mixing very low and high associations) 
gradually give way to sub-groups in which all species 
are positively associated, though they may not yet be 
uniformly so, within each subgroup. At one node on 
each branch the remaining species become totally 
interchangeable, in the sense that permuting their 
abundances over that group of species, separately for 
each sample¶, results in more or less the same set of 
associations: there is no longer significant evidence 
for any heterogeneity. The non-differentiated species 
are described as coherent, and no structure is examin-
ed below that node. This point may come at quite 
different similarity levels on each branch – one group 
might consist of more loosely associated species than 
another – that is the nature of an exchangeability test. 
But there is no denying that the results of such a set 
of Type 3 SIMPROF tests can be profoundly helpful 
in a key step that has been missing in the exposition 
so far, namely how to interpret sample patterns in 
terms of the species that constitute these samples. 

To achieve this it is not enough to know how species 
are grouped; we also need to relate their (common) 
patterns of abundance to the samples. Here, samples 
are ordered in keeping with the dendrogram and MDS 
ordination of samples seen in Chapter 5. The stand-
ardised species counts (each species adds to 100 over 
the 19 sites) are plotted as simple line plots, Fig. 7.4, 
grouped into the sets identified as internally coherent 
and externally distinguishable, by the Type 3 tests. 
These are referred to as coherent species curves, and 
it is instantly clear that, in this case, the clear clusters 
seen, for example, in the sample MDS plot (Fig. 5.5) 
result from a high degree of species turnover among 
groups of sites, with many of the groups having rather 
few species in common (or occasionally, none at all).  

Some discussion of the species involved and how the 
pattern relates to measured environmental differences 
can be found in Somerfield and Clarke (2013) but, on 

¶ With reference to the previous footnote, it becomes clear at this 
point exactly why it is necessary to standardise all species across 
samples before applying the Type 3 SIMPROF permutations: if 
species have different total abundances then values for a single 
sample are not meaningfully exchangeable across species, how-
ever tightly the patterns of increasing and decreasing abundances 
over samples may match. The point is obvious for environmental-
type variables also, where the permutations might exchange, for 
example, temperature, salinity and dissolved oxygen values. This 
could only make sense for normalised variables.  

 
Fig. 7.4. Exe estuary nematodes {X}. ‘Coherent species curves’, 

namely groups (A-H) of line plots of relative species abundances, 
each species standardised (but otherwise untransformed) to total 
100% across all 19 sites, and plotted against an arrangement of 
sites which preserves the sample clustering structure seen in Fig. 
5.4. The species groups are identified by a series of SIMPROF 
(Type 3) tests at the 5% level, on the nodes of the dendrogram of 
Fig. 7.1, following each branch down from the top until the null 
hypothesis of coherence (that species below a node are indisting-
uishable in their associations) cannot be rejected. The later Fig. 
7.7 ‘shade plot’ relates these species numbers to respective names, 
in its redisplay of the dendrogram, with SIMPROF groups identif-
ied. Note that groups D and E are plotted together here; they are 
separated at a higher level of association than found elsewhere 
and would not have been so by tests with more stringent p values.  

the methodological front, note that the use of Type 3  
SIMPROF tests at a particular significance level is 
not often a really critical step, as was remarked for 
the Type 1 tests on page 3-9. E.g. for the data of Fig. 
7.4, the same groups are found for tests at the 1% 
level as at the 5% level. At 0.5%, two group mergers 
take place: D & E (which are similar and displayed in 
the same line plot above), and F & G, which fairly 
reflects the loose grouping of sites 12-19 in the MDS 
of Fig. 5.5. Pragmatically, the advice is to repeat the 
tests at three levels and report any minor differences.   
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EXAMPLE: Amoco-Cadiz oil spill 

A second example of deriving sets of coherent species 
curves, this time temporal rather than spatial, is for the 
benthic macrofauna sampled at one site in the Bay of 
Morlaix, on 21 occasions over 5 years, spanning the 
period of the Amoco-Cadiz oil tanker spill, for which 
the samples MDS and clustering were in Fig. 5.8, {A}. 
This is a more challenging example because many of 
the same species are present throughout the period, so 
Type 3 SIMPROF groups will not identify subsets of 
species which are exclusively found only in different 
groups of samples. In fact, Type 2 SIMPROF (see the 
plot in Somerfield and Clarke, 2013) gives very little, 
if any, evidence of an excess of negative associations: 
species do not appear to be ‘excluding’ other species 
(by competitive interactions or by independent but 
opposite responses to seasonal or other environmental 
changes), on any substantial scale at least. Again 52 
species, coincidentally, were retained from the large 
original set of 251, these being all the species which 
accounted for at least 0.5% of the total abundance at 
one or more of the 21 sampling times.  

Fig. 7.5 shows the species cluster analysis, based on 
the index of association computed on untransformed 
species counts, standardised to total 100 over the times. 
Type 3 SIMPROF tests yield 15 distinct species groups 
(A-K), and standardised counts for 11 of them appear 
as component line plots in Fig. 7.6. These demonstrate 
a wealth of fascinating biological information on the 
coherent responses of groups of species, seasonally and 
in response to the oil spill year and potential recovery 
over the next three years. The groups are arranged in 
approximate order A-J of a move of peak abundance 
towards the later times, with species in K showing 
consistent abundances (they are always present) and 
little convincing evidence of temporal patterns at all. 
The large A group, which contains a number of Ampel-
isca species found in high densities prior to the oil spill 
is characterised by virtual non-recruitment in the spill 
year and then a gradual recovery of its seasonal cycle, 
though not generally to the same peaks by the 5th year. 
Group B has something of the same pattern though 
with an apparently fuller recovery. Groups D and E 
appear to show an opportunist response to the spill, 
with peak numbers in the year immediately following, 
whereas F species are of consistently low abundance 
pre-spill but this starts to rise a year or so later, peak 
and then fall away in the 5th year; it is a group without 
a very clear seasonal pattern. Group I has a similar 
structure but the rise is more delayed still, and the 
seasonal pattern perhaps more evident; the latter is 
more marked still in H, and so on. Of course, some of 
these  temporal  patterns  may  simply  be the  result  of  

 

Fig. 7.5. Amoco-Cadiz oil spill {A}. Dendrogram (agglomerative, 
group average linked) from an index of association matrix among 
52 macrofaunal species, each of which accounts for at least 0.5% 
of the total abundance at one or more of the 21 sampling times. 
Grey dashed lines and differing symbols denote the 11 ‘coherent 
groups’ (A-K) containing more than one species, from 5% level 
Type 3 SIMPROF tests. There are a further four singleton groups, 
similar to B, C and K, not displayed in the subsequent line plots.  

natural inter-annual variability driven by a range of 
environmental factors and, without a spatio-temporal 
control/reference structure, inference about the causes 
for any particular patterns has to be suitably guarded. 
But what is unarguable is that the Type 3 SIMPROF 
technique has pulled out an apparently convincing set 
of differing temporal responses – consistent within a 
group, distinguishable between groups – a combination 
of patterns which is synthesised in the multivariate 
pattern of the nMDS, with its obvious change, partial 
recovery and re-establishment of the seasonal cycles.  

Some general points about Type 3 SIMPROF tests 

1) As pointed out on the footnote on page 7-3, a Type 3 
test is impossible to perform with only two species, so 
where a group of two is split from other clusters, as for 
the two Bathyporeia species, group J above, it cannot 
be further subdivided, whatever the association is bet-
ween the species.  Nonetheless,  it will be distinct from 
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Fig. 7.6. Amoco-Cadiz oil spill 

{A}. ‘Coherent species curves’ 
for the SIMPROF groups A-K 
of Fig. 7.5. Also re-shown (top 
left) is the nMDS plot Fig. 5.8a 
of the 21 samples over 5 years, 
displaying community change 
and partial recovery, with the 
seasonal cycle re-established. 
Note that this MDS is based on 
heavily transformed (4th root) 
abundances so its similarities 
do draw from a wide range of 
these species patterns. The 
explanation of the clear MDS 
structure is seen in the  comb-
ination of differing responses 
from the various species sets.  

other groups and (as here) the two species must have 
some common association otherwise they will be sliced 
off from the larger cluster as singletons. Naturally this 
raises the issue of the power of the SIMPROF test and 
much the same comments apply as for Type 1 tests, see 
the discussion on page 3-10 (though you will need to 
mentally transpose ‘samples’ and ‘species’!). In brief, 
though power to further divide a group is difficult to 
define formally in a multivariate context, it will clearly 
increase with the number of species in the group and 
especially with the number of samples over which the 
association is calculated. Thus, a time series of just 4 
seasons will tend to lead to fewer and larger species 
groups than for a series of 12, monthly, samples. Large 
spatial or long temporal series could distinguish fine-
scale, and somewhat trivially different, sets of species 
responses. Judicious use of averaging (but not over-
averaging) may be needed if there is much ‘noise’ in 
the data, so that  more genuine ‘signals’ are compared.   

2) It is worth re-iterating the point that Type 3 tests 
require an association measure with an inbuilt species 
standardisation (such as equation 7.1) and entry of a 
matrix which has already been standardised. Tempting 
though it is to feel that: a) input of an unstandardised 
matrix and use of the index of association; or b) input 
of a standardised matrix and use of the normal Bray-
Curtis measure (applied to the species, equation 2.9) 
will both do the trick, this is wrong – both will give 
results which are incorrect. The first is more plainly 

wrong, as noted in the footnote on page 7-4, but the 
second will, more subtly, make the test unconservative, 
leading to a greater number of smaller-sized groups. 
Whilst the real similarity profile will be fine, since the 
index of association is just Bray-Curtis on standardised 
data, after the permutations the species are no longer  
exactly standardised, so the permuted profiles will tend 
to contain (artefactually) lower similarities, making the 
real profile’s larger values appear more significant.  

3) Whilst the Exe estuary and Morlaix examples above 
both appeared to work well with standardising a data 
matrix which had not been previously transformed, it is 
not clear that this is always the best approach. Species 
standardisation removes the sometimes very large dis-
parity between abundances of different species (e.g. 
between large and very small-bodied organisms) but it 
does not address erratically large counts across samples 
for the same species. Pre-treatment by transformation 
is sometimes needed to tackle these outliers, as well as 
to better balance contributions from abundant and less 
abundant species, in which case it would make perfect 
sense to transform prior to standardising ‘noisy’ data, 
before input to Type 3 tests. It is perhaps not entirely 
coincidental that the Exe and Morlaix data matrices 
were both averaged (over seasons and over replicates), 
reducing the severity of any such outliers. 

4) Though this chapter concerns only species variables, 
it is clear that Type 3 SIMPROF tests are much more 
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widely applicable, to other measures of association or 
correlation and to environmental variables or biotic 
variables which are not positive (or zero) ‘quantities’, 
as in an abundance matrix. Somerfield and Clarke 
(2013) give examples of Type 3 tests for both classes 
of variables: an environmental suite of heavy metals 
and organics in the Garroch Head study {G}, and a 
biomarker study of biochemical/histological ‘health’ 
indices from flounder sampled along a North Sea 
transect (see the PRIMER User manual for the data 
source).  Standard Pearson correlations are relevant as 
association measures in both cases, sometimes with 
(differing) transformation of individual variables. The 
only new issue that arises is that, for the biomarker 
data at least, whether correlations between variables 
are positive or negative is not of primary concern – 
some biomarkers increase when an organism is subject 
to anthropogenic impact and some decrease. This is 
best handled by reversing some variables so that all are 
expected to decrease (say) under impact, so that the 
range of associations go from ‘uncorrelated’ to ‘exactly 
correlated’ variables – there is no longer a meaningful 
concept of ‘strongly negatively correlated’. In precise 
analogy with the species examples, matrices need to be 
normalised (after any transformation) before entry to 
Type 3 tests using Pearson correlation, and ranked 
before tests using a Spearman rank correlation.  

In conclusion 

Ultimately, like most of the techniques in PRIMER, 
coherent species curves are fundamentally simple and 
transparent. Indeed, practitioners have been drawing 
line plots of species responses over spatio-temporal 
gradients throughout the history of ecology, but they 
have usually been for single species or combinations 
that are arbitrarily selected. What Type 3 SIMPROF  
tests do is to give some objectivity to the selection of 
species to place in the same component line plot and 
provide a statistical basis for inferring differences in 
pattern between, and similarity within, components.  

SHADE PLOTS 

An alternative to line plots, and a technique that can 
often be even more useful, in terms of the range and 
quality of information it can present, is that of shade 
plots. These are visual displays in the form of the data 
matrix itself, with rows being species and columns 
the samples, and the entries rectangles whose grey-
shading deepens with increasing species counts (or 
biomass, area cover etc). White denotes absence of 
that species in that sample and full black represents 
the maximum abundance in the matrix. Many choices 
are possible for the column and row orderings.  

Whilst the coherent species plots can do a striking job 
of visually displaying common patterns of change in 
relative abundance across the samples for groups of 
species (i.e. species standardised data), they do not 
represent the patterns of dominant and less abundant 
species over the samples, which is key to understand-
ing the contributions of particular species to sample 
multivariate analyses. Of course, coherent species 
curves could be graphed using absolute, not relative, 
counts but this is generally ineffective, the coherence 
becoming lost, visually, in the major differences in 
mean abundance across species. In contrast, one of 
the strengths of shade plots is the way they (typically) 
can be used to display the abundances on exactly the 
measurement scale which is being entered to a multi-
variate analysis: this may be sample standardised and/ 
or transformed (or dispersion weighted, Chapter 9), 
or any other potential pre-treatment step, including 
species standardisation (though this is generally not 
recommended for input to sample resemblances).  

The visual impact of grey-scale intensities¶ in a shade 
plot can give a strong idea of which species are likely 
primarily to be influencing the multivariate results, 
and Clarke et al (2014) show how these plots can 
therefore be utilised to aid sound long-term choice of 
transformation and/or other pre-treatment for specific 
faunal groups and study types. Choice of transform is 
often something that perplexes the novice user but a 
simple shade plot will often make it abundantly clear 
which transforms are likely to capture the required 
‘depth of view’ of the community (from solely the 
dominant to the entire species set), and thus avoid 
under- or over-transforming the matrix to achieve that 
desired view (see Chapter 9 for some examples).  

Shade plot for Exe estuary nematodes 

Fig. 7.7 provides a good initial example of the range 
of information that can be captured by a shade plot, 
since we have seen the sample dendrogram and MDS 
plots in Figs. 5.4 and 5.5, the species clustering in 
Fig. 7.1 and the Type 3 SIMPROF tests producing the  
coherent species groups of Fig. 7.4. Here the sites are 
in the same order as in Fig. 7.4 and the 4 to 5 major 
clusters from Fig. 5.4 are separated by vertical lines.  

¶ Shade plots can be graphed effectively in colour also, and are 
then often referred to as heat maps, though since the genesis of a 
heat map is a temperature scale in which black denotes absence  
(extreme cold), increasing through blue, orange and red to white 
(‘white hot’) as the largest value, this seems a less helpful nomen-
clature than shade plot for our use, where the large numbers of 
zeros are much more effectively represented as white space. And 
it is necessary that the scale transparently represents the linearity 
of increasing (transformed) abundances by linear-scale shading 
or colour changes. Too richly colourful a plot might not aid this.  
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Fig. 7.7. Exe estuary nematodes {X). Shade plot, a visual representation of the data matrix of (in the columns) the 19 sites and (in the rows) 

the most dominant species, those accounting for ≥ 5% of the total abundance at one or more of the sites. White space denotes absence of 
that species at that site; depth of grey scale is then linearly proportional to a fourth-root transformation of abundance (see key), the same 
transform as used for the sample clustering and ordination of Figs. 5.4 and 5.5. Sites are divided by vertical lines into the 4 to 5 groups 
initially identified by Field et al (1982) from essentially those figures, and then ordered  in the same way as in the ‘coherent species’ line 
plots (Fig. 7.4). Species are shown in the numbered dendrogram order of Fig. 7.1, with the Type 3 SIMPROF groups (A-H, Fig. 7.4) 
identified by grey dashed lines and a range of symbols in the redisplay of that dendrogram here. The high turnover of species between site 
groups (matching that seen in Fig. 7.4) is self-evident, resulting in the clear clustering seen in the ordination of Fig. 5.5, and strongly 
curvilinear shape of the Shepard plot of Fig. 5.2, with many dissimilarities of 100%. Note the important distinction with Fig. 7.4 that the 
shade plot uses the fourth-root transformed data for its grey scale, whereas the line plots are of species-standardised untransformed data. 
Either technique could be used with either data form but the particular strengths of each display lend themselves to the combination shown. 

The rows present the same subset of species as used 
for the coherent curves, with the species dendrogram 
given in the same species order (numbers in Fig. 7.1 
are now identifiable to species names), and showing 
the species groups from the Type 3 SIMPROF tests. 
The grey-shade scale is the fourth-root transformed 
one appropriate to the samples multivariate analysis, 
but the linearly increasing grey intensity in the scale 
bar has been back-transformed to original counts for 
the displayed scale values, allowing an excellent 
‘feel’ for the abundances of each of these 52 species. 
Note that, since the lowest number in the matrix is a 
count of 1, the fourth-root transform ensures that 
even this is visible, so the presence-absence structure  
of the data is immediately apparent. An important 
implication is that, under this transformation, all the 

species will have a not entirely negligible role in 
determining the sample resemblances, though some 
still clearly have a more dominant contribution (e.g. 
by comparison with a P/A analysis in which all the 
shaded rectangles will, of course, be black). But the 
dominant impression from Fig. 7.7 is of overlapping 
but highly characteristic assemblages for each of the 
main five sample groups, with the more diffuse clust-
ering of samples 12-19 in relation to the tightness of 
the other 4 groups (seen in Fig. 5.5) readily apparent.  

EXAMPLE: Bristol Channel zooplankton 

This example, last seen in Chapter 3, consists of 24 
(seasonally-averaged) zooplankton net samples at 57 
sites in the Bristol Channel, UK.   Fig. 7.8 shows the
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Fig. 7.8. Bristol Channel zooplankton {B}. Shade plot of abundance (averaged over seasons) of 24 zooplankton species from 57 sites, with 

linear grey-scale intensity proportional to fourth-root abundance (see the key for back-transform to original abundances). Sites have been 
grouped using Bray-Curtis similarities on the transformed data, by hierarchical, unconstrained divisive clustering (UNCTREE), as in Fig. 
3.9, together with (Type 1) SIMPROF tests which identify four groups, A-D in Fig. 3.10b. The dendrogram is further rotated to produce a 
site ordering which optimises the matrix correlation r with a serial model (gradient of community change). Species are also clustered, this 
time with the standard agglomerative method, based on ‘index of association’ resemblances computed on species-standardised (but other-
wise untransformed) abundances; their dendrogram is again rotated to maximise the seriation statistic r, non-parametrically correlating 
their resemblances to the distance structure of a linear sequence.  

shade plot for fourth-root transformed abundances. 
All 24 species are used and this is again an example 
where there was no specific a priori structure to the 
samples, so various clustering methods were used in 
Figs. 3.9 and 3.10 to group the samples (with Type 1 
SIMPROF tests), and for the hierarchical methods it 
is appropriate to display dendrograms on both axes. 
The species axis again uses the index of association 
among untransformed species counts and agglomer-
ative clustering, this time without the SIMPROF tests 
(Type 3) and, purely to demonstrate that any method 
of clustering can be used on either axis, the sample 
grouping utilises the unconstrained divisive algorithm 
of the PRIMER UNCTREE routine, Fig. 3.9, based 
on a maximisation of the (ANOSIM) R statistic on 
each binary split. The 4 significantly different groups 
of sites given by SIMPROF tests are again shown by 
vertical lines and (in spite of the heavy transform) the 
grouping can now be seen to be driven by a very few 
dominant species, perhaps no more than 8 or 9 of the 
24 species, which clearly typify the four clusters and 
discriminate them from each other. It can also readily 
be appreciated why two alternative methods, seen in 
Fig. 3.10 (standard agglomerative and k-R clustering), 

which again give just four groups, differ in respect of 
only the allocation of three sites: 9, 23 and 24.  For 
example, the trade-off between absence (or nearly so) 
of Eurytemora, Temora sp. and Centropages hamatus 
decides the placement of sites 9 and 24 in groups A 
or B, and the high values for the Calanus and Para-
calanus species mitigate against a move of 23 to B. 

Serial ordering of shade plot axes  
This example is not just about grouping however. The  
MDS plots of Fig. 3.10 have already demonstrated 
that the rather clear clustering of sites forms part of a 
gradation of community change (and this is clearly 
associated with, if not actually driven by, the salinity 
gradient, 3.10b). The shade plot routine in PRIMER 
also incorporates a powerful facility which attempts 
to re-order either (or both) of the samples and species 
axes, independently of each other, in such a way as to 
maximise the serial change in the similarity pattern 
over the final ordering(s). In keeping with the non-
parametric philosophy of other core techniques, this 
utilises the RELATE r statistic, which will be used 
frequently in later chapters, but which was first met 
in equation (6.3) and discussed in terms of measuring 
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serial change on page 6-14, on the ordered ANOSIM  
test. This is a non-parametric Mantel-type statistic, 
computing a rank correlation coefficient (for example 
Spearman’s r) between matching entries of two dis-
similarity/distance matrices, namely the resemblance 
matrix (e.g. Bray-Curtis dissimilarity of the biological 
samples) and distances among points equi-spaced on 
a line (so that neighbouring points are one step apart, 
next-but-one neighbours are two steps apart, etc). We 
need to ‘run before we can walk’ here because later 
we discuss more straightforward RELATE examples, 
in which the community samples are tested for how 
much simple seriation they show in their transect or 
time order of collection, i.e. tested against known a 
priori ordering of the samples in space or time (or 
environmental condition). In the current context, we 
are not using r as a test statistic at all, but simply as a 
useful way of measuring the degree of serial change 
in a resemblance matrix, for any given ordering of its 
rows (and columns)¶.  

In theory, we could envisage looking at all possible 
sample orderings, calculating the r seriation statistic 
for each, and choosing the order that maximises r. 
This is not viable however (there are 57!/2 possible 
orders, i.e. 2×1076) and an iterative search  procedure 
is required, to attempt to get close to the optimum r. 
As with previous search procedures (such as for MDS 
ordination), the iterative process can converge to a 
solution which is some way from the optimal one, so 
repeat runs are required (1000 are suggested, if this 
runs in a reasonable time), from randomly different 
starting orders, and the best selected.†  

This is still an intensive search problem however, and 
there are limitations which this unconstrained search 
procedure would ignore here, namely that we wish to 
display a dendrogram along the sample axis, showing 

¶ This is analogous to the way we used the ANOSIM R statistic in 
the binary divisive and k-R clustering methods of Chapter 3, in 
which a test of the null hypothesis R=0 (as in ANOSIM) would 
have been quite incorrect, and irrelevant. What was needed there 
was, for example, to find a binary division of a cluster which 
maximised the value of ANOSIM R between the two sub-clusters 
formed by this division. Here we use RELATE r in the same way, 
to find an ordering of the samples which maximises the match of 
their dissimilarities to a triangular matrix of distances among 
equi-spaced points along a line. This is showing us the ‘natural 
order’ in which the samples would align themselves, in terms of 
their community change, if no external constraints were made.  
† This unconstrained seriation search, on either axis, is one of the 
options in the PRIMER Shade Plot routine. That it may not find 
the exact maximum r of the 2×1076 possibilities is not a concern. 
We are not seeking the ‘correct’ solution but trying to display 
samples (and species) in a reasonably natural order, which will 
enhance the prospects for visual interpretation of the data matrix. 

the clustering (and here, the SIMPROF groups). The 
vast majority of the permutations of sample ordering 
would conflict with that hierarchy. Chapter 3 describ-
ed the arbitrariness in ordering of a dendrogram and 
how it was not to interpreted as an ordination – but it 
is not completely arbitrary. The clustering and sub-
clustering structures must be maintained, and the plot 
is determined only down to random rotation of the 
bars of the ‘mobile’ it can be considered to represent 
(i.e. with horizontal lines as bars and vertical lines as 
strings). So a constrained seriation of the samples is 
required in this case, iteratively searching through the 
set of possible rotations of the dendrogram for that 
which again gets as close as possible to optimising 
the seriation statistic r. This is a further option in the 
PRIMER shade plot routine and is the ordering seen 
in Fig. 7.8. In fact, the reduction in the immense size 
of the search space that this constraint induces does 
seem to make the algorithm more efficient, and good 
orderings will often result with a much smaller degree 
of computation.  

Exactly the same constrained seriation procedure is 
also implemented on the species axis of Fig. 7.8, this 
time using the species resemblance matrix (index of 
association measure) ‡. The ability to seriate one or 
other (or both) axes imparts an order and structure to 
the data matrix which can often be apparent in the 
multivariate analysis – here in the strong gradient of 
samples (Fig. 3.10b) as well as the group structure – 
but which can be difficult to spot in the matrix itself 
without such rearrangement of rows and columns. (A 
striking example of this is seen later, in Fig. 7.10).  

It is important to note that these orderings are carried 
out independently for samples and species, if both are 
performed.  The sample re-arrangement uses only the 

‡ Note that the latter is computed by first species-standardising 
the untransformed data, not standardising the fourth-root trans-
formed values represented by the grey-scale rectangles. This is 
true for the Exe example above and all other shade plots in this 
manual, though species-standardising transformed  abundances 
could certainly be considered in some situations (for the reasons 
discussed in point 3 on page 7-6). Note that it is also universally 
true in these examples that the sample clustering or seriation is 
performed on the sample resemblances calculated from the full 
set of species, not the reduced set of species that it is convenient 
to view in a shade plot (though in the case of Fig. 7.8 there is no 
need to reduce to a smaller number of species). In a particular 
context, it might make sense to use only the reduced species set 
for all aspects of the sample analysis (and of course this is easy to 
do in PRIMER) but the difference this would make to multivariate 
analyses will typically be inconsequential, and it is logically more  
satisfactory to cluster and seriate the samples in the shade plot 
using the full set of species, which are the basis of the MDS plots, 
ANOSIM and RELATE tests etc. This is certainly the path which 
PRIMER’s Wizard for Matrix display assumes will be needed, 
though the direct Shade plot routine permits wide flexibility. 
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sample similarities, and the species ordering is quite 
immaterial to the calculation of those resemblances. 
In the same way, species similarities make no use of 
the sample ordering, and they are all that is used in 
the clustering or seriation of the species. Now, if both 
axes are rearranged to be as close to a serial trend as 
possible then it is inevitable that the matrix will have 
at least a very weak diagonalisation¶, even if what is 
being seriated is just ‘noise’ rather than real ‘signal’. 
So visual evidence of diagonalisation of the matrix is 
not, in itself, conclusive evidence of a trend in the 
samples – that comes from a RELATE (r) seriation 
test on the sample similarities, mentioned earlier. In 
other words, shade plots are not tools for testing but 
for interpretation of structures established by testing.  

However, in other cases, where the sample axis is in a 
fixed order based on spatial location or a time course 
– or the result of seriation of samples on independent 
information such as environmental conditions – then 
apparent diagonalisation of the shade plot, after the 
species have been seriated, does become prima facie 
evidence of a real gradient of community structure in 
that sample order. This is formally established by a 
seriation test on the sample resemblances, in rank 
correlation with (distances from) that sample order.  

EXAMPLE: Garroch Head macrofauna 

An example where the biotic sample axis could have  
sensibly been ordered according to an a priori spatial 
layout, or in terms of environmental conditions (e.g. 
the first principal component of a suite of organics 
and heavy metal levels in sediments, PC1), is that of 
the root-transformed biomass data from 12 sites on an 
E-W transect across the sewage-sludge dump-ground 
in the Firth of Clyde, discussed in Chapter 4, {G}. A 
shade plot very similar to that of Fig. 7.9a will result 
from sites ordered by this PC1, and there is again a 
marked diagonalisation – species turn-over is strong 

¶ This interesting and powerful independence of seriation on the 
two axes is in contrast to Correspondence Analysis-based tools, 
which produce a 2-way table by iteratively reweighting the axes 
in turn, so that the converged solution forces a mutual ordering 
to optimise diagonalisation. Here the diagonalisation emerges 
more spontaneously, and may not be guaranteed in cases of 
extreme species turnover. For example, if a group of samples has 
a completely disjunct species set from all other samples, those 
samples and species will be placed at one or other end of their 
respective gradients, but at which end is entirely arbitrary, the 
similarities (or associations) to all other samples (or species) 
being zero. In such extreme cases, it might be thought neater to 
follow automatic seriation by manual rotation of a disassociated 
group to a more ‘natural’ place. The ability to manually rotate 
dendrograms by clicking on ‘bars’ in the usual way is built into 
the PRIMER Shade Plot routine.  

as sites approach the high pollution levels closer to 
the dump-ground. In fact, we have chosen here to use 
this instead as an example contrasting the two choices 
that PRIMER gives for ordering samples. Fig. 7.9a is 
displayed with a reduced species set (of 35), using a 
seriation on both site and species axes, unconstrained 
by dendrograms for either axis. In contrast, Fig. 7.9b 
shows the result of ordering both sites and species in 
an order given by a nearest neighbour trajectory.   

Nearest neighbour ordering of shade plot axes 

Whilst arranging sample and species axes according 
to serial trends is generally the preferred choice for a 
shade plot, and is certainly instructive in the current 
case, there will be situations in which this is not so 
appropriate, for example if a cyclic pattern of samples 
is expected or observed (e.g. seasonality, cyclic inter-
annual change etc) and the data matrix would then 
not be expected to diagonalise. In such cases, we may 
want to place the samples in order of some observed 
natural trajectory in community structure, not limited 
to a simple gradient. An illustration of this is in Figs. 
7.9c and d, which are the same nMDS plot, for root-
transformed biomass at the 12 transect sites (data as 
in the shade plot above), and Bray-Curtis similarities. 
It is only the trajectories, defining the axis orders in 
the otherwise identical shade plots, which differ, with 
7.9c showing the optimum serial change and 7.9d an 
approximate solution to the ‘travelling salesman’ 
problem. This, as its name suggests, tries to find a 
route through all the sites, of minimum distance, and 
starting from whichever point minimises that length. 
Distance in this context means (Bray-Curtis) sample 
dissimilarity among the samples, not actual distance 
in the (only approximate) low-d nMDS ordination. 
And here there is a fairly natural trajectory joining 
the sites, which is not the zig-zag route of the serial 
trend, and the shade plot of 7.9b orders the samples  
and the species by these attempted minimum traject-
ories (in the case of the species order, minimisation is 
of the total index of association along its trajectory).   

There is again potentially an immense computational 
problem here (termed NP-hard in numerical analysis 
jargon), since there are 12!/2 sample orders and 35!/2 
species orders to consider. The solution implemented 
in PRIMER is a simple, non-iterative routine (which 
is often surprisingly effective) known as the ‘greedy 
travelling salesman’ or nearest neighbour ordering, 
and is simply described. First, join the two sites (say) 
which have the lowest dissimilarity, then go into a 
loop in which the nearest neighbour (lowest dissimil-
arity) to each current end point is found, the lowest of 
these  two values defining  the next link in the  chain. 
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Fig. 7.9. Garroch Head macrofauna {G}. Shade plots of sites 1-12 on an E-W transect (Fig. 1.5) covering a sewage-sludge dumpground 
(centred at site 6), based on square-root transformed biomass of 35 macrofaunal species, namely those accounting for at least 1% of the 
total biomass at one or more sites. The grey-scale intensity key has units back-transformed to the original biomass measurements. Axes 
for samples and species are ordered by: a) iterative maximisation independently on both axes (from 1000 starting configurations) of the 
seriation statistic, r, based for samples on Bray-Curtis similarities on root-transformed biomass, and for species on the association index 
on untransformed but species-standardised data; b) using the same similarity and association measures, both axes independently placed 
in nearest neighbour order (using the ‘greedy travelling salesman’ algorithm). Neither axis, on either plot, is constrained to be a rotation 
of a cluster dendrogram. The nMDS plot of the 12 sites (on the Bray-Curtis similarities) is shown with: c) serial and d) nearest 
neighbour trajectories from the sample orders in (a) and (b) respectively.  

The process thus works outwards from the first join, 
adding points at one or other end of the trajectory (or 
even all at the same end), until all samples are linked. 
The procedure is the same for species, the only arbitr-
ariness remaining being the same as for seriation, viz.  
whether the shade plot samples are ordered from left 
to right or vice-versa (and the species top to bottom 
or vice-versa); PRIMER simply allows a ‘flip’ option 
on both axes to suit the user’s preference. ¶  

¶ Note that this nearest neighbour trajectory is not the same thing 
as the minimum spanning tree (MST) met in point 4 on page 5-7. 
That is a more tractable problem and has an efficient algorithm 
for a precise solution (Gower and Ross, 1969), the key difference 
being that the MST allows branching (see Fig. 5.3b). Of course, 
this is not helpful in the current context of needing a 1-d ordering 
of the samples or species. 

We return to seriation of the sample and species axes 
to make one interesting final point about shade plots. 
The previous, clear-cut, examples may have given the 
impression that it is easy to see sample patterns in the 
data matrix using a shade plot, in whatever form the 
matrix is entered, but this is rarely the case – the key 
step is an effective grouping or ordering of the axes.   

EXAMPLE: Ekofisk oil-field macrofauna 

The 39 sites sampled for benthic infauna at different 
distances from an oil-field in the N Sea were shown 
in the last chapter to demonstrate a clear gradient of 
community change with distance (nMDS, Fig. 16.3). 
The shade plot of Fig. 7.10a however, which orders 
the sites in increasing distance from the rig, and puts
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Fig. 7.10. Ekofisk oil-field macrofauna {E}. a) Shade plot of the data matrix of 39 sites (columns), ordered by increasing distance from the 

oil-rig, and a subset of 74 of the 173 species (rows), those accounting for at least 1% of the total count in at least one of the sites. Depth of 
grey shading is linearly proportional to a loge(x+1) transformation of the counts x (see key). Species are in arbitrary (alphabetic) order.  
b) Shading is exactly as for (a) but the species are re-arranged, firstly hierarchically grouped by an agglomerative clustering (shown) of 
untransformed but species-standardised values, using the index of association to define species similarity, then re-ordered (within the 
constraints of permitted dendrogram rotation) to maximise the seriation r statistic (Spearman rank) among species.  

the species (reduced to 74 of the original 173 species) 
in alphabetic order, does not present a clear picture at 
all. Apart from Chaetozone setosa, the most dominant 
species in terms of abundance (an opportunist poly-
chaete which appears to thrive at the impacted sites 
close to the oilrig), the immediate visual impression 
is not of a striking gradient potentially caused by the  
dispersal of THCs and other contaminants from the 
oilfield. Yet the non-metric MDS does indeed display 
such a clear and striking gradient (Fig. 7.11), and the 
explanation is not the C. setosa counts because if that 
species is removed, the MDS remains unchanged (the 
two sample resemblance matrices, with and without 
C. setosa, are rank-correlated at the level of 0.993). 

Why is MDS picking up such a pattern? The human 
eye can see it in a clear fashion only if the species are 
grouped by dendrogram and reordered serially within 
those constraints, to obtain the shade plot Fig. 7.10b. 

 
Fig. 7.11. Ekofisk oil-field macrofauna {E}. nMDS ordination of 

39 sites from four (pre-assigned) groups of distances from the oil-
field, based on the 74 species and loge(x+1) transformed counts 
displayed in the shade plots of Fig. 7.10, and utilising Bray-Curtis  
similarities. (Note the closely similar outcome to the previous 
ordination of these data, Fig. 6.13a, based on the full set of 173 
species and square-root transformed counts). The plot shows a 
clear change in community structure with distance from the rig, 
extending to a distinction between sites within and outside 3.5km, 
even though the latter are in all directions away from the rig and 
therefore distant from each other.  
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7.10b contains identical information to 7.10a but now 
the pattern is obvious! As pointed out earlier, when 
the sample axis is fixed, independently of the species 
data (here it is simply a distance scale), any visual 
suggestion of diagonalisation is prima facie evidence 
for a community gradient across that sample ordering, 
and here it is abundantly clear (and ordered ANOSIM 
or RELATE tests absolutely confirm it). Species near 
the bottom of the shade plot (7.10b) tend to be those 
which, like C. setosa, increase sharply in abundance 
closer to the rig; those which are found throughout 
the distance range but still tend to increase towards 
the rig are seen in the mid-plot; above them is a group 
of species with a non-monotonic response, having 
their larger values in the mid-distances; then come a 
further set of abundant species which tend to decline 
nearer the rig, and at the top, the species which only 
tend to be found in the ‘background’ communities at 
>3-4km distant. Scattered throughout are species that 
show little relation to distance but these tend to be 
only patchily present, and there is a dominant ‘feel’ 
of groups of species responding (or least correlating) 
in different ways to the conditions represented by the 
distance gradient. The real strength of a multivariate 
approach is thus seen to be the way it is able to stitch 
together a little information from a lot of species, not 
only to produce a striking synthesis such as the MDS 
of Fig. 7.11 but also formal tests for this relationship. 
Having seen Fig. 7.10b, it is easier to look at the same 
information in the unordered 7.10a and note the same 
individual species patterns. To a multivariate analysis 
the two plots are naturally identical (sample similarity 
calculation makes no use of ordering of the species), 
but to a merely human interpreter, there can be little 
doubt which of these plots is the more useful!  

Immensely helpful though shade plots can be, there is 
one important way in which they do not fully present 
the information captured by a multivariate analysis. 
The pre-treatment steps, such as transformation, are 
visually well-represented, and a quick glance at the 
plot is enough to get a good feel of how many, and 
which, species will contribute to the analysis (a great 
many for the log-transformed Ekofisk data). But what 
is not represented is the effect of the specific resemb-
lance measure in synthesising this high-d information.   
For example, for the Ekofisk analysis, which species 
primarily account for the dissimilarity between the 
1-3.5km distant sites and those beyond 3.5km, seen in 
the MDS plot of Fig. 7.11? It is clear from the shade 
plot that there will be many, but it is still instructive 
to have a list of those species in decreasing relative 
contribution to the total dissimilarity between those 
two groups, and this is provided by the similarity 
percentages routine (SIMPER). 

SPECIES CONTRIBUTIONS TO SAMPLE 
(DIS)SIMILARITIES – SIMPER 

Dissimilarity breakdown between groups 

The fundamental information on the multivariate 
structure of an abundance matrix is summarised in the 
Bray-Curtis similarities between samples, and it is by 
disaggregating these that one most precisely identifies 
the species responsible for particular aspects of the 
multivariate picture.†  So, first compute the average 
dissimilarity δ  between all pairs of inter-group samples 
(e.g. every sample in group 1 paired with every sample 
in group 2) and then break this average down into 
separate contributions from each species to δ .  

For Bray-Curtis dissimilarity δjk between two samples 
j and k, the contribution from the ith species, δjk(i), could 
simply be defined as the ith term in the summation of 
equation (2.12), namely: 

        ∑ = +−= p
i ikijikijjk yyyyi 1 )(.100)(δ  (7.2) 

δjk(i) is then averaged over all pairs (j,k), with j in the 
first and k in the second group, to give the average 
contribution iδ  from the ith species to the overall 
dissimilarity δ  between groups 1 and 2.‡  Typically, 
there are many pairs of samples (j, k) making up the 
average iδ , and a useful measure of how consistently 
a species contributes to iδ  across all such pairs is the 
standard deviation SD(δi) of the δjk(i) values.§  If iδ  
is large and SD(δi) small (and thus the ratio iδ /SD(δi) 
is large), then the ith species not only contributes much 
to the dissimilarity between groups 1 and 2 but it also 
does so consistently in inter-comparisons of all samples 
in the two groups; it is a good discriminating species. 

For the Bristol Channel zooplankton data {B} of Fig. 
7.8, Table 7.1 shows the results of breaking down the 
dissimilarities between sample groups A and B into 
species contributions. Species are ordered by the third  

† This is implemented in the SIMPER routine in PRIMER, both in 
respect of contribution to average similarity within a group and 
average dissimilarity between groups. 
‡ Though this is a natural definition, it should be noted that, in 
the general unstandardised case, there is no unambiguous partition 
of δjk into contributions from each species, since the standardising 
term in the denominator of (7.2) is a function of all species values. 
§ The usual definition of standard deviation from elementary statistics 
is a convenient measure of variability here, but note that the δjk(i) 
values are not independent observations, and standard statistical 
inference cannot be used to define, for example, 95% confidence 
intervals for the mean contribution from the ith species.   
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Table 7.1.  Bristol Channel zooplankton {B}.  Averages of trans-
formed densities in site groups A and B of Fig. 7.8 (groups from 
unconstrained divisive tree method), then breakdown of average 
dissimilarity between groups A and B into contributions from 
each species (bold). Species ordered in decreasing contribution 
(until c.90% of average dissimilarity between A and B of 57.9 is 
attained, see last column). Ratio (also bold) identifies consistent 
discriminators by dividing average dissimilarity by its SD.  

Species name 
Av Ab 
Gp A 

Av Ab 
Gp B 

Av 
Diss 

Diss 
/SD 

  Cum 
    % 

Centropages hamatus    0.00    3.76   7.92   2.14  13.67 
Eurytemora affinis    3.37    0.32   6.78   2.08  25.38 
Temora longicornis    0.33    3.16   6.13   2.07  35.98 
Calanus helgolandicus    1.09    3.64   6.03   1.62  46.40 
Acartia bifilosa    3.05    5.56   5.51   1.39  55.92 
Pseudocalanus elongatus    2.83    4.25   4.76   2.85  64.14 
Sagitta elegans juv    0.17    1.71   3.35   1.97  69.93 
Pleurobrachia pileus juv    1.23    0.58   2.71   1.04  74.61 
Paracalanus parvus    0.17    1.20   2.63   0.85  79.16 
Sagitta elegans    0.62    1.38   2.12   1.36  82.82 
Mesopodopsis slabberi    0.47    0.99   1.72   1.34  85.80 
Pleuobrachia pileus    0.81    0.46   1.62   1.14  88.60 
.................................... ….. ….. ….. ….. ….. 

column, by decreasing values of average dissimilarity 
contribution iδ  to total average dissimilarity δ = Σ iδ  
= 57.9. They could instead be ordered by the fourth 
(Diss/SD) column, iδ /SD(δi). The final column re-
scales the Av Diss values to a percentage of the total 
dissimilarity that is contributed by the ith species 
(100 iδ /δ ), and then cumulates this down the rows 
of the table. It can be seen that many species play 
some part in determining dissimilarity of groups A 
and B, and this is typical of such SIMPER analyses, 
particularly (as in this case) when a severe transform-
ation has been used, since the intention is then to let 
many more species come into the reckoning. Here, c. 
90% of the contribution to δ  is accounted for by the 
first 12 species, with 55% by the first five.  

Naturally, the results agree well with the patterns of 
Fig. 7.8: C. hamatus and the Temora sp. are first and 
third in this list because they are scarcely found at all 
in group A but have good numbers in very many of 
the group B sites, the Eurytemora sp. between them 
having the opposite pattern. Calanus and Pseudo-
calanus spp. are found in group A, consistently so for 
the latter, but have much higher densities in group B, 
with a similar pattern (though much less consistency) 
for Acartia, with all 6 contributing 65% of the dis-
similarity between those groups. This is also seen in 
the first two columns of Table 7.1, which are means 
of the abundances over all sites in each group. Note 
that this averaging is on 4th-root transformed scales, 
so back-transforms of these averages represent major 
abundance differences (e.g. 1 back-transforms to a 
density of 1,  3.5 to 150, 5.6 to 1000 etc).  

Alternatively, ordering the list by the ratio column 
(Diss/SD) highlights the consistent discriminators of 
the two groups and the contrast is well illustrated by 
Acartia and Pseudocalanus species. While Acartia 
has large numbers, particularly in group B, and higher 
mean density difference between the groups, ensuring 
it contributes to the between group dissimilarities, the 
shade plot shows this density to be variable within the 
groups and it moves down the consistent discriminat-
or list. Pseudocalanus now heads the list even though 
its densities and mean difference are smaller, because 
of its greater consistency within groups. 

Similarity breakdown within groups 

In much the same way, one can examine the contribut-
ion each species makes to the average similarity within 
a group, S . The mean contribution of the ith species, 

iS , could be defined by taking the average, over all 
pairs of samples (j, k) within a group, of the ith term 
in the Bray-Curtis similarity definition of equation 
(2.1), in its alternative form, namely:  

  ∑ =
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The more abundant a species is within a group, the 
more it will contribute to the intra-group similarities.  
It typifies that group if it is found at consistent abund-
ance throughout, so that the standard deviation of its 
contribution SD(Si) is low, and the ratio iS /SD(Si) 
high. Note that this says nothing about whether that 
species is a good discriminator of one group from 
another; it may be very typical of a number of groups. 

Table 7.2 shows such a breakdown for group A of the 
Bristol Channel zooplankton data of Fig. 7.8. The 
average similarity within the group is S  = 62.6, with 
70% of this contributed by the Eurytemora, Acartia 
and Pseudocalanus species; it is clear from the shade 
plot that these are the only major ‘players’ in group 
A. Here Pseudocalanus, though the  least abundant of 
the three on average, heads the table, both in terms of 

Table 7.2.  Bristol Channel zooplankton {B}. Average of trans-
formed density in A and breakdown of average similarity into 
contributions from each species (decreasing order until c.90% 
of similarity of 62.6 reached); also ratio of contribution to SD.  

Species name 
Av Ab 
Gp A 

Av  
Sim 

Sim 
/SD 

  Cum 
    % 

Pseudocalanus elongatus    2.83   15.29   5.31  24.44 
Eurytemora affinis    3.37   14.89   1.66  48.23 
Acartia bifilosa    3.05   13.72   2.03  70.15 
Polychaete larvae    1.09    4.45   1.41  77.27 
Schistomysis spiritus    0.87    3.00   0.84  82.07 
Calanus helgolandicus    1.09    2.38   0.53  85.86 
Pleurobrachia pileus    0.81    2.34   0.67  89.61 
.................................... ….. ….. ….. ….. 
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contribution to average intra-group similarity and 
when consistency of that contribution is considered.  

Interpretation 

The dangers of taking the precise ordering in these 
tables too seriously, however, is well illustrated by 
noting that, if sites 9 and 24 had fallen into group B 
rather than A, which they did for the agglomerative 
clustering of this data (with k-R clustering giving a 
third – equally arbitrary – split; see Fig. 3.10), then 
the contribution and consistency of Eurytemora to the 
intra-group similarities of A would have been notably 
enhanced. This would have taken it to the head of the 
list both for contributions to similarity within group 
A and to dissimilarity between groups A and B.  

Some of the confusion that can arise with interpreting 
SIMPER output stems from the failure to appreciate 
that SIMPER is not a hypothesis testing technique but 
an interpretation step that is only permissible once 
there has been a testing-based justification. So groups 
to be compared must either be defined a priori and 
then seen to be significantly different under pairwise 
testing by ANOSIM, or the groups have been deter-
mined in a posteriori testing by SIMPROF analyses. 
It is inevitable that two groups which are not signific-
antly different will have some breakdown of their 
between-group dissimilarities (which will never be 
zero) into contributions from each species, but if the 
mean dissimilarity between two groups is no different 
(statistically) from that within the groups then it is 
not meaningful or sensible to look at that breakdown.  

Another occasional source of confusion is that some-
times a species will have similar mean abundance in 
two groups but will still feature somewhere in the list 
of species contributing to the dissimilarities between 
them. One simple explanation¶  is that if the densities 
(or biomass, area cover etc) are not negligible then 
samples from one group will inevitably have some 
dissimilarity to samples in the other group (except in 
the unlikely event that values are effectively identical 
in all replicates of both groups, in which case that 
species cannot feature in the list). The outcome will 
be that the standard deviation of those dissimilarities 
is relatively large, so that the Diss/SD ratio column is 
too small for that species to be taken seriously – on 

¶ A more subtle possibility is that SIMPER (in line with ANOSIM, 
which has the same property) is identifying a difference which is 
more a function of very strong dispersion differences between the 
groups rather than mean differences, where that arises from a 
consistent pattern of variance differences in the key species (but 
note that, quite often, community dispersion differences between 
groups arises from a totally different source – that of higher turn-
over or greater sparsity of species in one group than another). 

its own it would certainly not suggest that the groups 
differ (the implication of a low ratio). In other words, 
you need to keep an eye on both columns in bold in 
Table 7.1 (and 7.2) for any interpretation, whether 
you are primarily using the Av Diss column to better 
understand which species have contributed to the 
difference between those groups or Diss/SD to pick 
out a small number of key species you might monitor 
to  characterise future changes, for example. This is 
the motivation for SIMPER’s reporting of these two 
criteria – they serve different practical requirements. 

Extensions of SIMPER (Euclidean and 2-way) 

The Bray-Curtis measure lends itself to this break-
down into species contributions, both in terms of the 
dissimilarities between groups and similarities within 
groups, because of its two equivalent definitions that 
are expressible as sums over species – of equations 
(7.2) and (7.3) respectively. Other coefficients can be 
used; for example, it is straightforward to break down 
(squared) Euclidean distances into contributions from 
each of a set of (usually normalised) environmental-
type variables, since from equation (2.13):  

     22 )()( ikijjk yyid −=  (7.4) 

needs simply to be summed over species i = 1, ..., p. 
This deals with identifying variables which primarily 
differentiate two groups of environmental samples (or 
other data for which Euclidean  distance is relevant), 
but the reverse table of ‘nearness’ breakdowns within 
groups is less intuitively constructed. † 

EXAMPLE: Tasmanian meiofauna 

Another clear generalisation is to a 2-way rather than 
1-way layout, illustrated by the 16 meiofaunal cores 
from Eaglehawk Neck, Tasmania, Fig. 6.7. The MDS 
for the 59 nematode and copepod species from two 
crossed factors, treatments (disturbed or undisturbed 
sediment from activity of soldier crabs) and blocks 
(locations B1 to B4 across the sandflat) is again seen 
in Fig. 7.12, this time with the 16 pairs of dissimilar-
ities between treatments for the same block shown by 

† PRIMER does this by again tabulating a breakdown of squared 
(usually normalised) Euclidean distances, but for values within a 
group the table is therefore headed by variables which have zero 
or low contributions, taking the same or similar values within the 
group and thus accounting for little of its total squared Euclidean 
distance. For comparison between groups, the tables have a more 
familiar ‘feel’ in terms of the analogy with Bray-Curtis SIMPER 
output. That only squared Euclidean distance is partitioned, not 
Euclidean distance itself, is not generally of great concern in the 
context of PRIMER analyses, since they (ANOSIM, nMDS, BEST, 
RELATE etc) are usually only a function of ranks of the resem-
blances – identical whether Euclidean distance is squared or not. 
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Fig. 7.12. Tasmania, Eaglehawk Neck {T}. nMDS of 2 replicates 

from each of 4 blocks under disturbed/undisturbed conditions (see 
Fig. 6.7). 2-way SIMPER for the species contributing to the 
disturbance effect uses only the dissimilarities indicated by dashed 
lines, i.e. between disturbance conditions within each block. 

dashed lines. Clearly, they are the only dissimilarities 
appropriate to a SIMPER analysis of which species 
are primarily responsible for the community change 
between Disturbed and Undisturbed conditions which 
was established in Chapter 6 by the 2-way ANOSIM 
test, and they are the similarities used in the species 
breakdown produced by the 2-way crossed SIMPER 
calculations (e.g. Platell et al, 1998).  

A 1-way SIMPER on the treatment factor in this case 
would look at all 64 dissimilarities between the 8 
samples in each of the two conditions, but this mixes 
up effects which are due to treatment with those due 
to block differences, since for example they would 
use the dissimilarity between a Disturbed sample in 
Block 1 and an Undisturbed sample in Block 2. A 
separate 1-way SIMPER analysis could be run on the 
treatment difference for each of the blocks, but the 2-
way SIMPER here combines these neatly into a more 
succinct table, and there seems little evidence (from 
the MDS plot) of the disturbance effect differing to 
any great extent from block to block – this appears to 
be an approximately additive 2-factor pattern.  

Other techniques for identifying species 

A significant weakness of the SIMPER approach is 
its limitation to comparing two identified groups of 
samples at a time, sometimes leading to very large 
numbers of tables which are difficult to synthesise. In 
some contexts, a grouping structure of samples is not 
even observed or expected, the sample pattern being 
that of a continuous gradient (or gradients). What is 
needed here is a more holistic technique, identifying 
the set of influential species which between them are 
able to capture the full multivariate pattern (whether 
clustered or a gradation), and which operates with 

any appropriately-defined similarity coefficient. A 
solution to this is presented later, in Chapter 16 on 
comparing multivariate patterns. It has a somewhat 
different premise than SIMPER: the search is not for 
the (possibly very large) suite of species which do 
actually contribute to the full multivariate pattern but 
the smallest possible set of species which could stand 
in for the full set. They encompass the various ways 
in which groups of species respond differently to the 
drivers of that community structure but only one 
representative of each group may be required in order 
to capture that response. The links to the ‘coherent 
species’ topic at the start of this chapter are evident.  

Linking species to MDS displays 

Whether the primary species of interest are generated 
from SIMPER tables for discrete groups, or in more 
continuous cases by noting their gradient behaviour 
in a shade plot or extracting them from the (Chapter 
16) redundancy analysis, a final step would best view 
these selected species in the context of the displayed 
multivariate sample pattern (when low-dimensional 
ordination is acceptable), therefore stitching all the 
various threads together.  The choice here is usually a 
2-d or 3-d MDS, either nMDS or mMDS, sometimes 
based on averaging replicates (or on centroids in the 
high-d resemblance space in the context of PERM-
ANOVA) because then the MDS will very often be of 
sufficiently low stress to be a reliable summary. The 
relationship of the individual species to this overall 
community pattern is achieved by bubble plots. 
 

BUBBLE PLOTS 

Abundance (or density, biomass, area cover etc) for a 
particular species can be shown on the corresponding 
ordination point by a circle (‘bubble’) of size proport-
ional to that abundance, based either on its original 
scaling (e.g. counts), or on the transformed scale (e.g. 
log counts) employed for all species to produce that 
ordination. The idea was previously met in Fig. 6.15, 
in the context of relating individual components of 
diet of a specific fish predator species to the nMDS 
produced for the (averaged) full dietary assemblage. 
But bubble plots can be useful in any context where 
values of a single variable need to be related to a 2-d 
or 3-d configuration¶ based on a wider or different set 
of variables, e.g. in relating an ordination based on 
assemblage data to specific environmental variables 
which are potential community drivers (Chapter 11).  

¶PRIMER can plot 3-d versions (when the term ‘bubble plot’ is 
more appropriate!) for both simple and segmented bubble plots, 
though none are reproduced here since rotatable 3-d colour plots 
are not very successfully reproduced in static 2-d mono pictures. 
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Fig. 7.13. Ekofisk oil-field macrofauna {E}. a) nMDS of 39 sites at different distances from the rig (a priori assigned to four distance groups, 
denoted by different symbols/shading), based on square-root transformed counts of 173 species and showing a clear gradient of community 
change with distance. Superimposed is a vector plot for five species, chosen to display a range of observed responses to the gradient, with 
the vector direction for each species reflecting the (Pearson) correlations of their (root-transformed) counts with the two ordination axes 
(the latter rotated, as usual for an MDS, to PCs), and length giving the multiple correlation coefficient from this linear regression on the 
ordination points (the circle is a correlation of 1). b-f) Individual bubble plots for these 5 species, on the same nMDS, with dot representing 
absence and circle sizes proportional to transformed counts; the back-transformed scale of original counts is in (b), common to all plots.  

EXAMPLE: Ekofisk oil-field macrofauna 

Fig. 7.13a replots the nMDS ordination of sediment 
macrofaunal assemblages (173 species) for 39 sites at 
different distances from the Ekofisk oil-field, in the 
form previously seen at Fig. 6.13a (based on square-
root transformed counts). The a priori site groups at 
different distances are indicated by differing symbols 
but also by grey-shading, which is used in the bubble 
plots which follow, Figs. 7.13b-f, for five individual 
species. These are chosen to illustrate a range of the  
differing responses which meld together to produce 
the main gradient of assemblage change as sites near 
the oil-field (from four or five directions). That many 
species replicate each of these patterns, and more, is 
seen from the shade plot of Fig. 7.10b (that is based 
on log-transformed counts but the outcome is similar 
here). M. substriata is typical of species found in the 
background conditions but which are virtually absent 

at <1km from the oilrig. Species like A. prismatica 
are found in reasonable numbers right up to 250m 
from the rig but then appear to die out at the closest 
distances. P. inornata typifies an interesting group of 
species which, though present in background assem-
blages, are opportunists whose numbers increase as 
sites near the rig, in this case up to the very closest 
distances (<100m) before decreasing in abundance. 
C. setosa similarly shows an opportunist pattern with 
the highest counts in the matrix overall, and these are 
all within the <250m group, with counts increasing 
steadily as sites approach the oil-field centre. Counts 
of other species, such as S. bombyx, appear to bear a 
much weaker relation to the position of the points on 
the MDS, as well as having generally smaller values. 
Here, bubble sizes are chosen to be proportional to 
the transformed counts (and the common key, shown 
in b, back-transformed to original scales), in order to 
gauge relative species contributions to the MDS. 
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Vector plots      

A great many bubble plots could be produced in this 
case, where the clear gradient is constructed from the 
combination of a large number of species, each high-
lighting particular parts of the gradient. It is therefore 
tempting to attempt to represent these in a single plot, 
each species defined by a vector whose direction and 
length define, respectively, the direction in the MDS 
space in which that species increases its counts, and 
the (multiple) correlation coefficient of that species 
with the ordination configuration¶. The combination 
of these vectors is then superimposed on the MDS, as 
in Fig. 7.13a for the 5 species shown in the bubble 
plots of 7.13b-f. Technically, this is carried out by 
fitting multiple linear regression of the species counts 
to the MDS (x, y) co-ordinates – or (x, y, z) points if 
the MDS is in 3-d. If the MDS has been rotated such 
that the axes are uncorrelated (as noted earlier, this is 
automatic for the initial plot), then the vector lengths 
projected onto the x and y axes represent the Pearson 
correlations of that species with each axis. These are 
thus comparable across species in the vector diagram, 
with the circle representing a multiple correlation of 
1, but note that since these are separate regressions 
for each species, differences in scale among species 
counts are not seen in vector lengths. They reflect 
(scale-free) correlations with axes, not contributions 
to the MDS, e.g. the smaller counts of S. bombyx, see 
Fig. 7.13f, do not of themselves shorten their vector. †  

It is crucial to appreciate that the vector plot can be 
placed anywhere on the ordination plot, and can be 
scaled to any size, with its interpretation completely 
unchanged. This is often misunderstood, with users of 
vector plots sometimes inferring that the end point of 
a vector being close to a particular sample indicates, 
in some way, that this species takes its largest values 
at, or in the vicinity of, that sample. This is absolutely 
incorrect. All a vector indicates is a direction – the 
centre point of the vectors can be placed anywhere 

¶ Significance tests for these correlations would not be valid, not 
least because the vectors represent species which are part of the 
full set used to create the ordination points in the first place!  
†There are two other definitions of vectors available in PRIMER 
for 2- or 3-d ordinations. Pearson, here, is the default; an alter-
native is a multivariate (multiple) correlation method, which fits 
the supplied superimposed variables jointly, so vector directions 
will change if further variables are added, see discussion in the 
PERMANOVA+ manual, Anderson et al (2008), where this is 
used with Principal Co-ordinates, PCO. A third method (‘base 
variables’) arises only for PCA plots, a relevant ordination for 
analysis of environmental-type data, not the current case. The 
vectors then reflect the relative size and magnitude of coefficients 
of each variable in the PC1, PC2,... definitions, as in equation 
(4.1). Linear relationships of these variables to the co-ordinates 
of the plot is thus guaranteed and a vector plot always justified. 

but the direction in which a vector extends from that 
point is the direction in which that variable increases, 
e.g. the lowest C. setosa values are expected to the 
left and highest to the right of the plot (as in 7.13e).  

Widely used though such vector plots are, they have a 
serious problem, also poorly understood in the literat-
ure. They make the fundamental assumption that the 
relationship of species values to the plot co-ordinates 
is a linear one. But most of the bubble plots of Fig. 
7.13 (and the much larger species set of Fig. 7.10b) 
do not show such a relationship. Here, only C. setosa 
displays a linear-like increase from left to right of the 
plot, and arguably S. bombyx (right to left), with a 
weaker correlation. Others are distinctly non-linear, 
M. substriata and A. prismatica having a threshold-
type relation (constant then dropping to nothing), and 
P. inornata an increasing then decreasing pattern, not 
even monotonic. The telling comparison is between 
the vector plot of Fig. 7.13a and the bubble plots of b-
f. Does the vector plot really describe the pattern of 
relationships seen in the bubble plots? Scarcely, when 
at all – it is unquestionably a poor substitute for them.   

Nonetheless, a space limitation on multiple plots will 
often be encountered, and the ability to replace 4 or 5 
bubble plots (or more) by a single graph is necessary. 
This may be achievable by segmented bubble plots.  

Multi-variable (segmented) bubble plots 

Fig. 7.14 condenses the bubble plots of Fig. 7.13b-e 
into a single MDS plot, by simply showing segments 
of a circle (or, in 3-d, a sphere), differently shaded or 
coloured, with sizes again reflecting values of those 
four species in each sample, also commonly scaled as 
before (root-transformed). Whilst colour would aid 
distinction of the species (which of course PRIMER 
allows), it is still possible to draw exactly the same 
inference from this graph as for the four bubble plots. 

 
Fig. 7.14.  Ekofisk oil-field macrofauna {E}. Segmented bubble 

plot for MDS ordination as in Fig. 7.13a, with segment sizes 
proportional to the root-transformed counts of four species, 
commonly scaled. The size of segments in the key corresponds to a 
count of 225, when back-transformed to the original scale. 
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A remarkably clear example of a similar graph is seen 
for the Bristol Channel zooplankton data last met in 
the shade plot of Fig. 7.8. This example uses the agg-
lomerative clusters and MDS ordination of Fig. 3.10a, 
selecting four species to display by the criterion that 
they head the list of typifying species for each of the 
four clusters in the corresponding SIMPER analysis 
table¶. The combination of information from a shade 
plot and SIMPER analyses will often dictate species 
which could be usefully graphed in this way. Note 
that the bubble segment sizes use the original scales 
here and not the fourth-root transformed values that 
went into the MDS construction. This is a legitimate 
and often useful step, if the requirement is primarily 
to look at how the abundance of individual species 
behaves, e.g. over a community gradient, rather than 
the precise influence this has on the MDS itself. In 
that context, separate scaling of variables is not only 
permissible, it is almost mandatory if the plot is to be 
interpretable, e.g. here the Eurytemora values range 
only up to <500 whereas the maximum Paracalanus 
density is >30,000 (this is precisely why a severe 4th-
root transform was essential in this case, of course). 
We shall also see later (Chapter 11) that bubble plots 
have a useful role in displaying environmental-type 
variables on the points of an assemblage ordination, 
and the original units are rarely commonly scalable.  

 
Fig. 7.15. Bristol Channel zooplankton {B}.  Segmented bubble 

plot on nMDS ordination of the 57 sites, using Bray-Curtis on √√- 
abundances, leading by Type 1 SIMPROF to the 4 site clusters 
(A-D) of Fig. 3.10a, agglomerative clustering. Bubble segments 
are proportional to raw counts of the four species which ‘most 
typify’ those clusters, from SIMPER tables. Counts for these 
species (correspondingly labelled A-D) are differently scaled.  

Segmented bubble plots often prove most useful when 
the number of points on an ordination plot is small and 
the sampling error of each point has been substantially 
reduced, so that the picture consists mainly of genuine 

¶Of the type seen in Table 7.2, noting that Eurytemora affinis will 
head this table if the agglomerative groups are used (page 7-16). 

differences; then it is sometimes possible to show quite 
large numbers of species simultaneously. Such bubble 
plots thus have a strong role to play in means plots.  

EXAMPLE: W Australian fish diets 

Houston et al (2004) and Schafer et al (2002) report 
dietary data on gut contents (identified to one of 32 
taxon groups) of 7 marine fish species in nearshore, 
lower west coast Australian waters. Analysis was of 
sample-standardised (thus percent composition) data, 
in similar fashion to that for the (different) labrid fish 
dietary data of Fig. 16.5. The nMDS plot† of Fig. 7.16 
is based on meaned data over all fish guts for each of 
the 7 species (species names shown on the plot). This 
time it is SIMPER tables of the major dietary contrib-
utors, to the dissimilarities between fish species pairs, 
which have identified 6 dietary taxon groups to show 
as segmented bubbles overlaid on the mean points. 
Interpretation of the differing dietary regimes found 
amongst these co-occurring species, including those 
for three congeneric species, is now clear and direct, 
but must of course be made in conjunction with tests 
(such as in ANOSIM or PERMANOVA) to establish  
their statistical significance. 

 
Fig. 7.16.  Diets of W Australian fish {d}.  Segmented bubble plot.  

nMDS ordination (using Bray-Curtis similarities) of standardised, 
transformed, then averaged gut compositions (by volume) of 32 
broad dietary categories, from 7 abundant fish species in near-
shore habitats. Superimposed bubble segment sizes represent % 
composition (untransformed) for 6 dietary categories, shown from 
SIMPER analysis to contribute most to the average dissimilarities 
among the diets of the different fish species. Segment sizes are 
commonly scaled here (key sizes represent 50% composition).

† As seen on page 5-18, nMDS plots with few points, as here, can 
collapse, e.g. because one species predates on primarily different 
dietary categories than found anywhere else in the matrix. Metric 
MDS (or an nMDS solution which mixes a small amount of metric 
stress, to ‘fix’ the collapse) are often useful for such means plots, 
though they were not necessary in this case, with the main dietary 
categories usually being shared between more than one species.   
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CHAPTER 8:  DIVERSITY MEASURES, DOMINANCE CURVES AND 
OTHER GRAPHICAL ANALYSES 

 
UNIVARIATE MEASURES 

A variety of different statistics (single numbers) can 
be used as measures of some attribute of community 
structure in a sample.  These include the total number 
of individuals (N), total number of species (S), the total 
biomass (B), and also ratios such as B/N (the average 
size of an organism in the sample) and N/S (the average 
number of individuals per species).  Abundance or 
biomass totals (or averages) are not dimensionless 
quantities so tend to be less informative than diversity 
indices, such as: richness of the sample, in terms of 
the number of species (perhaps for a given number of 
individuals); dominance or evenness in the way in 
which the total number of individuals in the sample is 
divided up among the different species (and, in one 
version of this, a parameter of the species abundance 
distribution first described by Fisher et al, 1943).   

Diversity indices 

The main aim is to reduce the multivariate (multi-
species) complexity of assemblage data into a single 
index (or small number of indices) evaluated for each 
sample, which can then be handled statistically by 
univariate analyses.  It will often be possible to apply 
standard normal-theory tests (t-tests and ANOVA) to 
such derived indices (see page 6-1), possibly after 
transformation. 

A bewildering variety of diversity indices has been 
used, in a large literature on the subject, and some of 
the most frequently used candidates are listed below.¶  
More detail can be found in two (of several) overviews 
aimed specifically at the biological reader, Heip et al 
(1988) and Magurran (1991).  It should be noted, 
however, that diversity indices of this type tend to 
exploit some combination of just two features of the 
sample information: 

¶ The PRIMER DIVERSE routine permits selection of a subset 
from a list of over 20 indices, sending the values to a worksheet 
for plotting or export to a mainstream statistical package. Whilst 
the (non-parametric multivariate) PRIMER package does not do 
conventional univariate statistical testing, under the usual norm-
ality and constant variance assumptions across groups (which 
can be found in all standard statistical software), some of the 
elements of univariate analysis are certainly possible, univariate 
being a special case of multivariate! – see later. PRIMER also 
has plotting routines for Means Plots, Histograms, Box Plots, 
Line Plots, Scatter Plots for pairs or triples of indices etc.  

a) Species richness.  This measure is either simply the 
total number of species present or some adjusted 
form which attempts to allow for differing numbers 
of individuals.  Obviously, for samples which are 
strictly comparable, we would consider a sample 
containing more species than another to be the more 
diverse. 

b) Equitability.  This expresses how evenly the indiv-
iduals are distributed among the different species, 
and is often termed evenness.  For example, if two 
samples each comprising 100 individuals and four 
species had species abundances of 25, 25, 25, 25 
and 97, 1, 1, 1, we would intuitively consider the 
former to be more diverse although the species 
richness is the same.  The former has high evenness, 
and low dominance (essentially the reverse of 
evenness), while the latter has low evenness and 
high dominance (the sample being highly dominated 
by one species). 

Different diversity indices emphasize the species rich-
ness or equitability components of diversity to varying 
degrees.  The most commonly used diversity measure 
is the Shannon (or Shannon–Wiener) diversity index: 

H'  =  – Σi  pi log(pi)   (8.1) 

where pi is the proportion of the total count (or biomass 
etc) arising from the ith species.  Note that logarithms 
to the base 2 are sometimes used in the calculation, 
reflecting the index’s genesis in information theory.  
There is, however, no natural biological interpretation 
here, so the more usual natural logarithm (to the base 
e) is probably preferable, and commonly used.  Clearly, 
when comparing published indices it is important to 
check that the same logarithm base has been used in 
each case.  If not, it is simple to convert between results 
since log2x = (logex)/(loge2), i.e. all indices just need 
to be multiplied or divided by a constant factor.  
Whether it is sensible to compare H' across different 
studies is another matter, since Chapter 17 shows that, 
like many of the indices given here (Simpson being a 
notable exception, Fig. 17.1), it can be sensitive to the 
degree of sampling effort.  Hence H' should only be 
compared across equivalent sampling designs. 

Species richness 

Species richness is often given simply as the total 
number of species (S), which is obviously very 
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dependent on sample size (the bigger the sample, the 
more species there are likely to be).  Alternatively, 
Margalef’s index (d) is used, which also incorporates 
the total number of individuals (N), in an attempt to 
adjust for the fact that within a larger number of 
individuals, more species may expect to be found:  

     d  =  (S-1) / log N   (8.2) 

Equitability 

This is often expressed as Pielou’s evenness index: 

     J'  =  H'  / H'max  =  H' / log S  (8.3) 

where H′max is the maximum possible value of Shannon 
diversity, i.e. that which would be achieved if all species 
were equally abundant (namely, log S). 

Simpson 

Another commonly used measure is the Simpson index, 
which has a number of forms:  

     λ = Σ pi
2 

 1−λ = 1 − (Σ pi
2) 

     λ′ = {Σi Ni(Ni−1)}/{N(N−1)} 

 1−λ′ = 1 − {Σi Ni(Ni−1)}/{N(N−1)} (8.4) 

where Ni is the number of individuals of species i.  The 
index λ has a natural interpretation as the probability 
that any two individuals from the sample, chosen at 
random, are from the same species (λ is always ≤ 1).  
It is a dominance index, in the sense that its largest 
values correspond to assemblages whose total abund-
ance is dominated by one, or a very few, of the species 
present.  Its complement, 1 – λ, is thus an equitability 
or evenness index (sometimes called Gini-Simpson), 
taking its largest value (of 1 – S–1) when all species 
have the same abundance.  The slightly revised forms λ′ 
and 1 – λ′ are appropriate when total sample size (N) 
is small (they correspond to choosing the two individ-
uals at random without replacement rather than with 
replacement). As with Shannon, Simpson diversity 
can be employed when the {pi} come from proportions 
of biomass, standardised abundance or other data that 
are not strictly integral counts but, in that case, the λ′ 
and 1 – λ′ forms are not appropriate. 

Other count-based measures 

Further well-established indices include that of Brillouin 
(see Pielou 1975): 

   H  =  N–1 loge{N!/(N1!N2!…NS!)} (8.5) 

and a further model-based description, Fisher’s α 
(Fisher et al, 1943), which is the shape parameter, 
fitted by maximum likelihood, under the assumption 
that the species abundance distribution (SAD curve) 
follows a log series distribution.  This has certainly 
been shown to be the case for some ecological data 
sets but can by no means be universally assumed, and 
(as with Brillouin) its use is clearly restricted to 
genuine (integral) counts.   

The final option in this category is the rarefaction 
method of Sanders (1968) and Hurlbert (1971), which 
under the strict assumption that individuals arrive in 
the sample independently of each other, can be used 
to project back from the counts of total species (S) 
and individuals (N), how many species (ESn) would 
have been ‘expected’ had we observed a smaller number 
(n) of individuals: 

       ∑ = 
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The idea is thereby to generate an absolute measure of 
species richness, say ES100 (the number of different 
species ‘expected’ in a sample of 100 individuals), 
which can be compared across samples of very differing 
sizes.  It must be admitted, however, that the independ-
ence assumption is practically unrealistic.  It corresponds 
to individuals from each species being spatially rand-
omly distributed, giving rise to independent Poisson 
counts in replicate samples.  This is rarely observed 
in practice, with most species exhibiting some form 
of spatial clustering, which can often be extreme.  
Rarefaction will then be strongly biased, consistently 
overestimating the expected number of species for 
smaller sample sizes. 

Hill numbers 

Finally, Hill (1973b) proposed a unification of several 
diversity measures in a single statistic, which includes 
as special cases: 

 N0 = S 

 N1 = exp(H′) 

 N2 = 1 / Σ pi
2 

 N∞ = 1 / max{pi}   (8.7) 

N1 is thus a transform of Shannon diversity, N2 the 
reciprocal of Simpson’s dominance λ (called inverse 
Simpson) and N∞ is another possible evenness index 
(the reciprocal of the Berger-Parker index), which 
takes larger values if no single species dominates the 
total abundance. Other variations on these Hill 
numbers are given by Heip (1988).    
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Fig. 8.1.  Hamilton Harbour, 
Bermuda {H}.  Diversity (H′) 
and 95% confidence intervals 
for macrobenthos (left) and 
meiobenthic nematodes (right) 
at six stations. 

Units of measurement 

The numbers of individuals belonging to each species 
are the most common units used in the calculation of 
the above indices.  For internal comparative purposes 
other units can sometimes be used, e.g. biomass or total 
cover of each species along a transect or in quadrats 
(e.g. for hard-bottom epifauna), but obviously diversity 
measures using different units are not difficult to 
compare.  Often, on hard bottoms where colonial 
encrusting organisms are difficult to enumerate, total or 
percentage cover will be much more realistic to 
determine than species abundances. 

Representing communities 

Changes in univariate indices between sites or over time 
are usually presented graphically† simply as plots of 
means and confidence intervals for each site or time.  
For example, Fig. 8.1 graphs the differences in diversity 
of the macrobenthos and meiobenthic nematodes at 
six stations in Hamilton Harbour, Bermuda, showing 
that there are clear differences in diversity between 
sites for the former but much less obvious differences 
for the latter.  Fig. 8.2 graphs the temporal changes in 
three univariate indices for reef corals at South Tikus 
Island, Indonesia, spanning the period of the 1982–3 
El Niño (an abnormally long period of high water temp-
eratures which caused extensive coral bleaching in 
many areas throughout the Pacific).  Note the dramatic 
decline between 1981 and 1983 and subsequent partial 
recovery in both the number of species (S) and the 
Shannon diversity (H′), but no obvious changes in 
evenness (J'). 

Discriminating sites or times 

The significance of differences in univariate indices 
between sampling sites or times can simply be tested 

† PRIMER 7’s Means Plot produces plots such as Fig. 8.1, the 
95% confidence intervals either based on separate estimates of 
variance for each group or, as throughout this manual, assuming 
a pooled variance estimate (constant variance) across groups.  

by one-way analysis of variance (ANOVA)¶ followed 
by t-tests or multiple comparison tests for individual 
pairs of sites; see discussion at the start of Chapter 6. 

Determining stress levels 

Increasing levels of environmental stress have historic-
ally been considered to decrease diversity (e.g. H′), 
decrease species richness (e.g. d) and decrease even-
ness (e.g. J'), i.e. increase dominance.  This interpret-
ation may, however, be an over-simplification of the 
situation.  Subsequent theories on the influence of 
disturbance or stress on diversity have suggested that 
in situations where disturbance is minimal, species 
diversity is reduced because of competitive exclusion 
between species; with a slightly increased level or 
frequency of disturbance competition is relaxed, 
resulting in an increased diversity, and then at still 
higher or more frequent levels of disturbance species 
start to become eliminated by stress, so that diversity 
falls again.  Thus it is at intermediate levels of disturb-
ance that diversity is highest (Connell, 1978; Huston, 
1979).  Therefore, depending on the starting point of 
the community in relation to existing stress levels, 
increasing levels of stress (e.g. induced by pollution) 
may either result in an increase or decrease in diversity.  
It is difficult, if not impossible, to say at what point 
on this continuum the community under investigation 
exists, or what value of diversity one might expect at 
that site if the community were not subjected to any 
anthropogenic stress.  Thus, changes in diversity can  

¶ A rank-based alternative, using PRIMER, would be to compute 
Euclidean distance on a single variable (index) and input this to 
ANOSIM. This does not give the usual non-parametric univariate 
tests (Wilcoxon Mann-Whitney U for two groups, Kruskal-Wallis 
for several groups), but gives an alternative which generalises to 
multivariate data in a way that those tests do not, the permutation 
structure being the same but the test statistics differing. Or using 
PERMANOVA on the Euclidean distances gives an exact copy of 
the classical ANOVA table (see Anderson et al, 2008), except that 
the ‘F tests’ are permutation-based rather than making the less 
robust F distribution assumption, from normality (but the two will 
be very similar here, since normality is realistic for most indices).  
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Fig. 8.2.  Indonesian reef corals, South Tikus Island {I}.  Total number of species (S), Diversity (H') and Evenness (J') based on coral 

species cover data along transects, spanning the 1982–3 El Niño. 

only be assessed by comparisons between stations 
along a spatial contamination gradient (e.g. Fig. 8.1) 
or with historical data (Fig. 8.2). 

Caswell’s neutral model 

In some circumstances, the equitability component of 
diversity can, however, be compared with a theoretical 
expectation for diversity, given the number of individ-
uals and species present.  Observed diversity has been 
compared with predictions from Caswell’s neutral 
model (Caswell, 1976).  This model constructs an 
ecologically ‘neutral’ community with the same number 
of species and individuals as the observed community, 
assuming certain community assembly rules (random 
births/deaths and random immigrations/emigrations) 
and no interactions between species.  The deviation 
statistic V is then determined which compares the 
observed diversity (H′) with that predicted from the 
neutral model (E(H′)): 

[ ]
)(

)(
HSD

HEHV
′

′−′
=    (8.8) 

A value of zero for the V statistic indicates neutrality, 
positive values indicate greater diversity than predicted 
and negative values lower diversity.  Values > +2 or 
< -2 indicate ‘significant’ departures from neutrality.  
The computer program of Goldman and Lambshead 
(1989) is useful.¶ 

Table 8.1 gives the V statistics for the macrobenthos 
and nematode component of the meiobenthos from 
Hamilton Harbour, Bermuda (c.f. Fig. 8.1).  Note that 
the diversity of the macrobenthos at stations H4 and 

¶ This is implemented in the PRIMER CASWELL routine, but the 
significance aspects should be treated with some caution since they 
are inevitably crucially dependent on the neutral model assumptions.  
These are usually over-simplistic for real assemblages (even 
when genuinely neutral, in the sense that their species do not 
interact) because they again assume simple spatial randomness. 

H3 is significantly below neutral model predictions, 
but the nematodes are close to neutrality at all stations.  
This might indicate that the macrobenthic communities 
are under some kind of stress at these two stations.  
However, it must be borne in mind that deviation in 
H′ from the neutral model prediction depends only on 
differences in equitability, since the species richness 
is fixed, and that the equitability component of diversity 
may behave differently from the species richness 
component in response to stress (see, for example, 
Fig. 8.2).  Also, it is quite possible that the ‘intermediate 
disturbance hypothesis’ will have a bearing on the 
behaviour of V in response to disturbance, and increased 
disturbance may either cause it to decrease or increase.  
Using this method, Caswell found that the flora of 
tropical rain forests had a diversity below neutral model 
predictions! 

Table 8.1.  Hamilton Harbour, Bermuda {H}.  V statistics for 
summed replicates of macrobenthos and meiobenthic nematode 
samples at six stations. 

    Station  Macrobenthos Nematodes 

       H2 +0.5 –0.1 
       H3 –5.4 +0.4 
       H4 –4.5 –0.5 
       H5 –1.9 0.0 
       H6 –1.3 –0.4 
       H7 –0.2 –0.4 

 
GRAPHICAL/DISTRIBUTIONAL PLOTS 

The purpose of graphical/distributional representations 
is to extract information on patterns of relative species 
abundances without reducing that information to a 
single summary statistic, such as a diversity index.  
This class of techniques can be thought of as inter-
mediate between univariate summaries and full 
multivariate analyses.  Unlike multivariate methods, 
these distributions may extract universal features of 
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community structure which are not a function of the 
specific taxa present, and may therefore be related to 
levels of biological ‘stress’.† 

1) Rarefaction curves (Sanders, 1968) were among 
the earliest to be used in marine studies.  They are 
plots of the number of individuals on the x-axis 
against the number of species on the y-axis.  The 
more diverse the community is, the steeper and 
more elevated is the rarefaction curve.  The sample 
sizes (N) may differ widely between stations, but 
the relevant sections of the curves can still be 
compared. 

2) Gray and Pearson (1982) recommend plotting the 
number of species in x2 geometric abundance 
classes (the SAD curves) as a means of detecting poll-
ution effects. The plots are of the number of species 
represented by only 1 individual in the sample (class 
1), 2–3 individuals (class 2), 4–7 (class 3), 8–15 
(class 4) etc.  In unpolluted situations there are many 
rare species and the curve is smooth with its mode 
well to the left.  In polluted situations there are 
fewer rare species and more abundant species so 
that the higher geometric abundance classes are 
more strongly represented, and the curve may also 
become more irregular or ‘jagged’ (although this 
latter feature is more difficult to quantify).  Gray 
and Pearson further suggest that it is the species in 
the intermediate abundance classes 3 to 5 that are 
the most sensitive to pollution-induced changes 
and might best illustrate the differences between 
polluted and unpolluted sites (e.g. this is a way of 
selecting ‘indicator species’ objectively). 

3) Ranked species abundance (dominance) curves 
are based on the ranking of species (or higher taxa) 
in decreasing order of their importance in terms of 
abundance or biomass. The ranked abundances, 
expressed as a percentage of the total abundance of 
all species, are plotted against the relevant species 
rank.  Log transformations of one or both axes have 
frequently been used to emphasise or downweight 
different sections of the curves.  Logging the x (rank) 
axis enables the distribution of the commoner species 
to be better visualised. 

† Two plotting programs of this type are available in PRIMER: a) 
Geometric Class Plots, which produce a frequency distribution of 
geometric abundance classes, the so-called SAD curves (Fisher et 
al 1943), from which fitting log-series distributions gives rise to 
the α index output by the DIVERSE routine, and b) Dominance 
Plots, which generate ranked abundance (or biomass) curves, with 
options to choose from ordinary, cumulative or partial forms, and 
single or dual (Abundance-Biomass Comparison) curves, as seen 
below. DIVERSE also outputs rarefaction estimates: expected 
number of species, ES(n), for one or more values of numbers of 
individuals, n (where n must be chosen <min(N) in the  samples).  

4) k-dominance curves are cumulative ranked abund-
ances plotted against species rank, or log species 
rank (Lambshead et al, 1983).  This has a smoothing 
effect on the curves.  Ordering of curves on a plot 
will obviously be the reverse of rarefaction curves, 
with the most elevated curve having the lowest 
diversity. To compare dominance separately from 
the number of species, the x-axis (species rank) may 
be rescaled from 0–100 (relative species rank), to 
produce Lorenz curves. 

EXAMPLES: Garroch Head and Ekofisk 
macrofauna 

Plots of geometric abundance classes along a transect 
across the Garroch Head {G} sewage-sludge dump site 
(Fig. 8.3) are given in Fig. 8.4.  Note that the curves 
are very steep at both ends of the transect (the relatively 
unpolluted stations) with many species represented 
by only one individual, and they extend across very 
few abundance classes (6 at station 1 and 3 at station 
12).  As the dump centre at station 6 is approached 
the curves become much flatter, extending over many 
more abundance classes (13 at station 7), and there 
are fewer rare species. 

In Fig. 8.5a, average ranked species abundance curves 
(with the x-axis logged) are given for the macrobenthos 
at a group of 6 sampling stations within 250m of the 
current centre of oil-drilling activity at the Ekofisk 
field in the North Sea {E}, compared with a group of 
10 stations between 250m and 1km from the centre 
(see inset map in Fig. 10.6a for locations of these stat-
ions).  Note that the curve for the more polluted (inner) 
stations is J-shaped, showing high dominance of abund-
ant species, whereas the curve for the less polluted 
(outer)  stations is much flatter,  with low dominance. 

1

7
12

Dumpsite

Arran

Bute

Cumbrae

Ayrshire

2 3 4 5 6 8 9 10 11

Firth of Clyde 5 km

 
Fig. 8.3.  Garroch Head macrofauna {G}.  Map showing location 

of dump-ground and position of sampling stations (1–12); the 
dump centre is at station 6. 
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Fig. 8.4.  Garroch Head macro-

fauna {G}.  Plots of ×2 geo-
metric species abundance 
classes for the 12 sampling 
stations shown in Fig. 8.3. 

Fig. 8.5b shows k-dominance curves for the same data.  
Here the curve for the inner stations is elevated, 
indicating lower diversity than at the 250m–1km 
stations. 

Abundance/biomass comparison plots 
Whether k-dominance curves are plotted from the 
species abundance distribution or from species biomass 
values, the y-axis is always scaled in the same range (0 
to 100). This facilitates the Abundance/Biomass 
Comparison (ABC) method of determining levels of 
disturbance (pollution-induced or otherwise) on 
community structure. The initial paradigm was for 
soft-sediment macrobenthos . Under stable conditions 
of infrequent disturbance the competitive dominants 
in benthic communities are K-selected (conservative) 
species,  with the attributes of large body  size  and 

long life-span: these are rarely dominant numerically 
but are generally dominant in terms of biomass.  Also 
present in these communities are smaller r-selected 
(opportunistic) species with a smaller body size and 
short life-span, which can be numerically significant 
but do not represent a large proportion of the 
community biomass.  When pollution perturbs a 
community, conservative species are less favoured in 
comparison with opportunists.  Thus, under pollution 
stress, the distribution of numbers of individuals 
among species behaves differently from the distrib-
ution of biomass among species.   

The ABC method, as originally described by Warwick 
(1986), involves the plotting of separate k-dominance 
curves (Lambshead et al, 1983) for species abundances 
and species biomass on the same graph and making  a 
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Fig.  8.5.  Ekofisk macrobenthos 
{E}.  a) Average ranked species 
abundance curves (x-axis 
logged) for 6 stations within 
250m of the centre of drilling 
activity (dotted line) and 10 
stations between 250m and 
1km from the centre (solid 
line); b) k-dominance curves 
for the same  groups of stations. 
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Fig. 8.6.  Hypothetical k-dominance curves for species biomass and abundance, showing ‘unpolluted’, ‘moderately polluted’ and 

‘grossly polluted’ conditions. 

comparison of the forms of these curves.  The species 
are ranked in order of importance in terms of abundance 
or biomass on the x-axis (logarithmic scale) with 
percentage dominance on the y-axis (cumulative 
scale†.  In undisturbed communities the biomass is 
dominated by one or a few large species, leading to 
an elevated biomass curve.  Each of these species, 
however, is represented by rather few individuals so 
they do not dominate the abundance curve, which 
shows a typical diverse, equitable distribution.  Thus, 
the k-dominance curve for biomass lies above the 
curve for abundance for its entire length (Fig. 8.6a).  
Under moderate pollution (or disturbance), the large 
competitive dominants are eliminated and the inequality 
in size between the numerical and biomass dominants 
is reduced so that the biomass and abundance curves 
are closely coincident and may cross each other one 
or more times (Fig. 8.6b).  As pollution becomes more 
severe, benthic communities become increasingly 
dominated by one or a few opportunistic species 
which whilst they dominate the numbers do not 
dominate the biomass, because they are very small-
bodied.  Hence, the abundance curve lies above the 
biomass curve throughout its length (Fig. 8.6c).   

The contention is that these three conditions (termed 
unpolluted, moderately polluted and grossly polluted) 
should be recognisable in a community without 
reference to control samples in time or space, the two 
curves acting as an ‘internal control’ against each 
other.  Reference to spatial or temporal control samples 
is, however, still desirable.  Adequate replication of 
sampling is a prerequisite of the method, since the 
large biomass dominants are often represented by few 
individuals, which will be liable to a higher sampling 
error than the numerical dominants. 

† The species are therefore in a different order on the x axis for the 
abundance and biomass curves – the species identities are not 
matched up in any way, it is simply the dominance structure of the 
community that is separately captured for abundance and biomass.  

Whilst described in terms of benthic macrofauna the 
paradigm is likely to apply much more generally¶.   
 

EXAMPLES: Loch Linnhe and Garroch 
Head macrofauna 

ABC curves for the macrobenthos at site 34 in Loch 
Linnhe, Scotland {L} between 1963 and 1973 are 
given in Fig. 8.7.  The time course of organic pollution 
from a pulp-mill, and changes in species diversity 
(H'), are shown top left.  Moderate pollution started 
in 1966, and by 1968 species diversity was reduced.  
Prior to 1968 the ABC curves had the unpolluted 
configuration.  From 1968 to 1970 the ABC plots 
indicated moderate pollution.  In 1970 there was an 
increase in pollutant loadings and a further reduction 
in species diversity, reaching a minimum in 1972, and 
the ABC plots for 1971 and 1972 show the grossly 
polluted configuration.  In 1972 pollution was decreased 
and by 1973 diversity had increased and the ABC 
plots again indicated the unpolluted condition.  Thus, 
the ABC plots provide a good ‘snapshot’ of the pollution 
status of the benthic community in any one year, without 
reference to the historical comparative data which 
would be necessary if a single species diversity measure 
based on the abundance distribution was used as the 
only criterion. 

ABC plots for the macrobenthos along a transect of 
stations across the accumulating sewage-sludge dump-
ground at Garroch Head, Scotland {G} (Fig 8.3) are 
given in Fig. 8.8.  Note how the ABC curves behave 
along  the transect,  with the peripheral stations  1 and 

¶ Indeed, the several hundred papers that cite Warwick (1986) 
include many examples of application to other marine fauna (e.g. 
fish communities, where over-fishing tends to be accompanied by 
reduction in average body-size and replacement of large-bodied 
by increased abundance of smaller-bodied species) and terrest-
rial/freshwater fauna: birds, dragonflies, small mammals, herpet-
ofauna (whose ABC curves tracked successional recovery after 
forest fires, Smith and Rissler, 2010) etc.   
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Fig. 8.7.  Loch Linnhe macro-
fauna {L}.  Shannon diversity 
(H′) and ABC plots over the 
11 years, 1963 to 1973.  Abund-
ance = thick line, biomass = 
thin line. 

12 having unpolluted configurations, those near the 
dump-centre at station 6 with grossly polluted config-
urations and intermediate stations showing moderate 
pollution.  Of course, at the dump-centre itself there 
are only three species present, so that any method of 
data analysis would have indicated gross pollution.  
However, the biomass and abundance curves start to 
become transposed at some distance from the dump-
centre, when species richness is still high. 

Transformations of k-dominance curves 

Very often k-dominance curves approach a cumulative 
frequency of 100% for a large part of their length, and 
in highly dominated communities this may be after the 
first two or three top-ranked species.  Thus, it may be 
difficult to distinguish between the forms of these 
curves.  One solution to this problem is to transform 

the y-axis so that the cumulative values are closer to 
linearity.  Clarke (1990) suggests the modified logistic 
transformation: 

 yi´ = log[(1 + yi)/(101 – yi)]  (8.9) 
 
An example of the effect of this transformation on 
ABC curves is given in Fig. 8.9 for the macrofauna at 
two stations in Frierfjord, Norway {F}, A being an 
unimpacted reference site and C a potentially impacted 
site.  At site C there is an indication that the biomass 
and abundance curves cross at about the tenth species, 
but since both curves are close to 100% at this point, 
the crossover is unclear.  The logistic transformation 
enables this crossover to be better visualised, and 
illustrates more clearly the differences in the ABC 
configurations between these two sites. 
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Fig. 8.8.  Garroch Head macro-
fauna {G}.  ABC curves for 
macrobenthos in 1983.  Abund-
ance = thick line, biomass = 
thin line. 

Partial dominance curves 

A second problem with the cumulative nature of k-
dominance (and ABC) curves is that the visual inform-
ation presented is over-dependent on the single most 
dominant species.  The unpredictable presence of 
large numbers of a species with small biomass, perhaps 
an influx of the juveniles of one species, may give a 
false impression of disturbance.  With genuine disturb-
ance, one might expect patterns of ABC curves to be 
unaffected by successive removal of the one or two 
most dominant species in terms of abundance or 
biomass, and so Clarke (1990) recommended the use 
of partial dominance curves, which compute the 
dominance of the second ranked species over the 
remainder (ignoring the first ranked species), the 

same with the third most dominant etc.  Thus if ai is 
the absolute (or percentage) abundance of the ith 
species, when ranked in decreasing abundance order, 
the partial dominance curve is a plot of pi against log 
i (i = 1, 2, ..., S–1), where  

     ∑ == S
j jaap 111 ,100   ∑ == S

j jaap 222 ,100  

                     …, )(100 111 SSSS aaap += −−−     (8.10) 

Earlier values can therefore never affect later points 
on the curve.  The partial dominance curves (ABC) 
for undisturbed macrobenthic communities typically 
look like Fig. 8.10, with the biomass curve (thin line) 
above the abundance curve (thick line) throughout its 
length.  The abundance curve is much smoother than 
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Fig. 8.9.  Frierfjord macro-

fauna {F}.  a), b) Standard 
ABC plots for sites A (reference) 
and C (potentially impacted).  
c), d) ABC plots for sites A 
and C with the y-axis subjected 
to modified logistic transform-
ation.  Abundance = thick 
line, biomass = thin line. 

the biomass curve, showing a slight and steady decline 
before the inevitable final rise.  Under polluted cond-
itions there is still a change in position of partial domin-
ance curves for abundance and biomass, with the 
abundance curve now above the biomass curve in 
places, and the abundance curve becoming much more 
variable.  This implies that pollution effects are not 
just seen in changes to a few dominant species but are 
a phenomenon which pervades the complete suite of 
species in the community.  For example, the time series 
of macrobenthos data from Loch Linnhe (see Fig. 8.11) 
 

Species rank
1 10

  0

 10

 20

 30

 40

 50

 60

 70

B

A

Site A

Pa
rt

ia
l %

 d
om

in
an

ce

 
Fig. 8.10.  Frierfjord macrofauna {F}.  Partial dominance curves 

(abundance/biomass comparison) for reference site A (c.f. Figs 
8.9a,c for corresponding standard and transformed ABC plots). 

shows that in the most polluted years 1971 and 1972 
the abundance curve is above the biomass curve for 
most of its length (and the abundance curve is very 
atypically erratic), the curves cross over in the moderat-
ely polluted years 1968 and 1970 and have an unpolluted 
configuration prior to the pollution impact in 1966.  In 
1967, there is perhaps the suggestion of incipient change 
in the initial rise in the abundance curve.  Although 
these curves are not so smooth (and therefore not so 
visually appealing!) as the original ABC curves, they 
may provide a useful alternative aid to interpretation 
and are certainly more robust to random fluctuations 
in the abundance of a small-sized, numerically dominant 
species. 
 
Phyletic role in ABC method 

Warwick and Clarke (1994) have shown that the ABC 
response in macrobenthos results from (i) a shift in 
the proportions of different phyla present in commun-
ities, some phyla having larger-bodied species than 
others, and (ii) a shift in the relative distributions of 
abundance and biomass among species within the 
Polychaeta but not within any of the other major 
phyla (Mollusca, Crustacea, Echinodermata).  The 
shift within polychaetes reflects the substitution of 
larger-bodied by smaller-bodied species, and not a 
change in the average size of individuals within a 
species.  In most instances the phyletic changes 
reinforce the trend in species substitutions within the 
polychaetes,  to produce the overall ABC response,  but 
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Fig. 8.11.  Loch Linnhe macro-

fauna {L}.  Selected years 
1966–68 and 1970–72.  a–f) 
ABC curves (logistic transform).  
g)–l) Partial dominance curves 
for abundance (thick line) and 
biomass (thin line) for the same 
years. 

 
in some cases they may work against each other.  In 
cases where the ABC method has not succeeded as a 
measure of the pollution status of marine macrobenthic 
communities, it is because small non-polychaete 
species have been dominant.  Prior to the Amoco 
Cadiz oil-spill, small ampeliscid amphipods (Crustac-
ea) were present at the Pierre Noire sampling station 
in relatively high abundance (Dauvin, 1984), and 
their disappearance after the spill confounded the ABC 
plots (Ibanez and Dauvin, 1988).  It was the erratic 
presence of large numbers of small amphipods (Coro-
phium) or molluscs (Hydrobia) which confounded 
these plots in the Wadden Sea (Beukema, 1988).  
These small non-polychaetous species are not an 
indication of polluted conditions, as Beukema points 
out. Indications of pollution or disturbance detected by 
this method for marine macrobenthos should therefore 
be viewed with caution if the species responsible for the 
polluted configurations are not polychaetes. 

W statistics 

When the number of sites, times or replicates is large, 
presenting ABC plots for every sample can be cumber-
some, and it would be convenient to reduce each plot 
to a single summary statistic.  Clearly, some information 
must be lost in such a condensation: cumulative domin-
ance curves are plotted, rather than quoting a diversity 
index, precisely because of a reluctance to reduce the 
diversity information to a single statistic. Nonetheless, 
Warwick’s (1986) contention that the biomass and 
abundance curves increasingly overlap with moderate 
disturbance, and transpose altogether for the grossly 
disturbed condition, is a unidirectional hypothesis and 
very amenable to quantification by a single summary 
statistic. 

Fig. 8.12 displays the difference curves B–A for each 
of four replicate macrofauna samples from two stations 
(H2 and H4) in Hamilton Harbour, Bermuda; these are  
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Fig. 8.12.  Hamilton Harbour macrobenthos {H}.  Difference 

(B–A) between cumulative dominance curves for biomass and 
abundance for four replicate samples at stations H2 (thick line) 
and H4 (thin line). 

simply the result of subtracting the abundance (Ai) 
from the biomass (Bi) value for each species rank (i) 
in an ABC curve.¶  For all four replicates from H2, 
the biomass curve is above the abundance curve 
throughout its length, so the sum of the Bi–Ai values 
across the ranks i will be strongly positive.  In contrast, 
this sum will be strongly negative for the replicates at 
H4, for which abundance and biomass curves are largely 
transposed.  Intermediate cases in which A and B curves 
are intertwined will tend to give Σ(Bi–Ai) values near 
zero.  The summation requires some form of standard-
isation to a common scale, so that comparisons can be 
made between samples with differing numbers of 
species, and Clarke (1990) proposes the W (for 
Warwick) statistic: 
  

[ ]∑ = −−= S
i ii SABW 1 )1(50)(             (8.11) 

It can be shown algebraically that W takes values in 
the range (–1, 1), with W → +1 for even abundance 
across species but biomass dominated by a single 
species, and W → –1 in the converse case (though 
neither limit is likely to be attained in practice). 

An example is given by the changing macrofauna 
communities along the transect across the sludge 
dump-ground at Garroch Head {G}.  Fig. 8.13 plots 
the W values for each of the 12 stations against the 
station number.  These summarise the 12 component 
ABC plots of Fig. 8.8 and clearly delineate a similar 

¶ Note that, as always with an ABC curve, Bi and Ai do not necessarily 
refer to values for the same species; the ranking is performed separ-
ately for abundance and biomass. 

pattern of gradual change from unpolluted to disturbed 
conditions, as the centre of the dumpsite is approached. 
 
Hypothesis testing for dominance curves 

There are no replicates in the Garroch Head data to 
allow testing for statistical significance of observed 
changes in ABC patterns but, for studies involving 
replication, the W statistic provides an obvious route 
to hypothesis testing.  For the Bermuda samples of 
Fig. 8.12, W takes values 0.431, 0.253, 0.250 and 
0.349 for the four replicates at H2 and -0.082, 0.053, 
-0.081 and -0.068 for the four H4 samples.  These 
data can be input into a standard univariate ANOVA 
(equivalent in the case of two groups to a standard 2-
sample t-test), showing that there is indeed a clearly 
established difference in abundance-biomass patterns 
between these two sites (F = 45.3, p<0.1%). 
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Fig. 8.13.  Garroch Head macrofauna {G}.  W values corresponding 

to the 12 ABC curves of Fig. 8.8, plotted against station number; 
station 6 is the centre of the dump ground (Fig. 8.3). 

More general forms of hypothesis testing are possible, 
likely to be particularly relevant to the comparison of 
k-dominance curves calculated for replicates at a number 
of sites, times or conditions (or in some two-way 
layout, as discussed in Chapter 6).  A measure of 
‘dissimilarity’ could be constructed between any pair 
of k-dominance (or B-A) curves, for example based 
on their absolute distance apart, summed across the 
species ranks.  When computed for all pairs of samples 
in a study this provides a (ranked) triangular dis-
similarity matrix, essentially similar in structure to 
that from a multivariate analysis; thus the 1-way and 
2-way ANOSIM tests (Chapter 6) can be used in 
exactly the same way to test hypotheses about differ-
ences between a priori specified groups of samples.  
Clarke (1990) discusses some appropriate definitions 
of dissimilarity for use with dominance curves in 
such tests, as now described and illustrated.  
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MULTIVARIATE TOOLS USED ON 
UNIVARIATE DATA 

Ekofisk macrofauna: testing dominance curves 

Fig. 8.5b compares the averaged community samples 
for the closest distances to the oil platform (< 250m) 
with the second closest group (250m – 1km), in terms 
of their k-dominance curves, and the closest samples 
appear to be more heavily dominated. But, to test this, 
we must return to the replicate rather than averaged 
curves, and these are seen for the 6 and 10 samples in 
the two distance groups in Fig. 8.14a,b, the two plots 
being identical apart from a log scaled x axis in (a). 

For any two curves, in the same or different groups, 
their absolute distance apart on the y axis, for each x 
axis point, is calculated and totalled, giving a possible 
measure of the ‘dissimilarity’ of the two curves. This 
can be thought of as the area between two curves in 
Fig.8.14b, taking the value 0 only if they lie totally on  

 
Fig. 8.14. Ekofisk oil-field macrofauna {E}. k-dominance curves 

for sites in the closest and second closest distance groups to the 
oil-field, plotted with x axis on: a) log scale, b) linear scale. 

top of each other. In Fig. 8.14a, which is the more 
usual form of a k-dominance curve, the absolute y- 
axis deviations are given increasingly less weight for 
larger x-axis ranks, so the distance apart of curves 1 
and 2 (y axis values {yi1} and {yi2}) is defined as:  

∑ =
−+−= max

1
1

21 )1log(' S

i ii iyyd            (8.12) 

where Smax is the largest number of species seen in a 
single sample and all curves are assumed to continue 
at 100% after they reach that maximum point. This 
again effectively defines the ‘dissimilarity’ of two 
curves in Fig. 8.14a as the area separating them. This 
is the default for the DOMDIS routine in PRIMER, 
since this ‘log weighting of species ranks’ matches 
the standard k-dominance plot, with its emphasis on 
dominance differences for the most abundant species. 

Computing (8.12) among every pair of samples (the 
output from DOMDIS) and subjecting the resulting 
dissimilarities to an ANOSIM test of the two distance 
groups gives R = 0.51 (p<0.3%), a clear difference in 
dominance structure. The matching test to Fig. 8.14b 
is little different, with R = 0.56 (p<0.2%). 

General curve comparisons: size distributions  

The simplicity of a dissimilarity-based approach to 
testing for significant differences between groups of 
curves immediately suggests many other contexts in 
which a similarly robust, multivariate ANOSIM test 
could be employed. Particle-size distributions in sed-
iment or water-column sampling are often measured 
in replicate samples, and need comparison between 
different factor levels in space and/or time. In effect, 
each curve (whether cumulative frequency or simple 
frequency polygon¶) needs to be treated as a single, 
multivariate point, the variables (‘species’) being the 

¶ These are usually not ‘true’ statistical probability distributions, 
in the sense of individual particles arriving randomly and indep-
endently of each other, which would be needed to justify multi-
nomial assumptions for a Kolmogorov-Smirnov test of difference 
between two such (cumulative) sample distribution functions. 
Typically, instruments such as Coulter counters will scan vast 
numbers of particles to construct a size distribution, and the 
important level of variability is not within a sample but among 
independent samples taken at the same place or time. Fitting 
specific parametric distributions, such as a 2- or 3-parameter 
Weibull, in order to compare parameter estimates among curves, 
is therefore unappealing: the data is not a true probability dist-
ribution and the parametric form will usually not fit well (mixture 
curves, and even bimodality, may be commonplace), and an un-
necessary approximation step is interposed. Comparing simple 
moment estimators such as mean, standard deviation, skewness 
(or medians, percentiles etc) of grain sizes in each sample using 
classic univariate tests is a commonly used and viable alternative, 
but this may easily miss differences which are due to bimodality 
or other characteristic shapes repeated across replicates – why 
not instead just directly compare the curves with each other?  
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differing size classes and their observed values the 
relative frequencies (i.e. samples are automatically 
standardised to total to 1 or 100%), or cumulative 
relative frequencies, and this matrix is input to either 
Euclidean or Manhattan distance calculation¶. The 
resulting resemblances are then available for the full 
range of multivariate techniques, including ANOSIM 
(or PERMANOVA) tests on the groups of replicate 
curves, ordination by MDS etc.  

EXAMPLE: Plymouth particle-size data 

Fig. 8.15 is from Coulter Counter data of particle-size 
distributions for estuarine water samples from 5 sites, 
over 92 logarithmically increasing size-classes, based 
on 4 replicate samples per site (A Bale, pers. comm.), 
{P}. For clarity, the line plot† of Fig. 8.15a shows the 
size distributions averaged over replicates, and some 
differences in profiles (multimodality etc) are appar-
ent for the various locations, but are such differences 
statistically demonstrable in the context of variation 
among replicate water samples at a site? A Manhattan 
distance matrix calculated for all pairs of frequency 
curves from the 20 samples can be input to ordination 
– here metric MDS is preferred because the Shepard 
diagram between input distances and final distances 
in the MDS is perfectly linear, and has low stress (for 
a metric plot, especially) of 0.07, Fig. 8.15b. The plot 
indicates clear differences between sites and this is 
established by significance (at p<3%) for all pairwise 
ANOSIM tests, with the lowest R of 0.63 between 
Saltram and Devoran locations.  

¶ PRIMER’s DOMDIS routine is not needed here since this is simply 
calculation of a distance measure between pairs of  samples in a given 
matrix.. DOMDIS’s role in k-dominance curves also includes the 
initial re-ordering of the matrix in decreasing species abundance 
order, separately for each sample, before calculating Manhattan 
distance, in effect, on the resulting matrix. Other distance options 
given in PRIMER include, for example, the maximum distance of 
two curves from each other (usually applied to cumulative curves, 
as in a Kolmogorov-Smirnov statistic). Note that, if no transform 
is applied to the relative frequency data prior to distance calcul-
ation (often the case, though occasionally a mild transform may 
be preferred, to downweight a dominant size category) then Man-
hattan distance is equivalent to Bray-Curtis dissimilarity in this 
case, since the denominator term in equation (2.1) is fixed at 200. 
† This line plot was produced in PRIMER, which has a facility for 
drawing line plots over the sample order in the worksheet (x axis) 
for each ‘species’ (y axis), with multiple species on the same plot. 
Of course this is the only possibility which makes sense for the 
usual type of community matrix, since species variables would not 
normally have a meaningful order to place on the x axis of a line 
plot (apart from the ranking by abundance of dominance plots).  
In this case, however, the size-class variables are automatically 
ordered and the natural line plot of Fig. 8.15b can be obtained by 
duplicating the worksheet and switching the definition of samples 
and variables from the Edit>Properties menu.  

 
Fig. 8.15. Plymouth particle-size data {P}. a) Frequency distrib-

ution (y axis) of particle sizes in logarithmic size-classes (x axis) 
from water samples at 5 Plymouth sites. Frequency scale is the 
percentage of particulates in each of 92 classes, then averaged 
over 4 replicates per site. b)Metric MDS of replicate-level data 
based on Manhattan distances between all pairs of samples.  

Ordering of the variable list 

Applying multivariate methods to a matrix which is 
abundances not of different species, but of different 
size classes of a single species, has always been an 
(implicit) option throughout this manual, but there is 
one important way in which such a matrix (and the 
above data on particle sizes) differ from a standard 
community matrix: there is an explicit ordering of the 
variables. None of the resemblance measures (Bray-
Curtis may often be appropriate again) would return  
different values if the ‘species’ list was re-ordered; all 
that matters is the degree to which the matching size-
classes in the two samples have similar abundances 
(or relative frequencies). This was not an issue with 
the very smooth particle-size profiles above, but it 
could be when comparing (say) size-class histograms 
which are very ‘noisy’. That peaks for sample 1 are 
seen opposite troughs for sample 2 may have more to 
do with a choice of size interval which is too narrow, 
for the total frequency (arbitrarily) categorised in this 
way, than it does to a genuine mismatch in profiles. 
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A perfectly valid solution, if this is an issue, is firstly 
to smooth the relative frequencies (or abundances) 
over the size-classes before entering them to distance 
calculations¶. Any such smoothing is ‘fair game’, 
provided it is done in the same way for each sample. 
Naturally, it increases correlation among the variables 
but no assumption of  independence of variables is 
made in multivariate analysis. Quite the reverse: the 
techniques are designed specifically to handle and 
exploit correlated variables, because each sample is 
only treated as one ‘point’ in the analysis. 

Growth curves & other repeated measures designs 

Realisation that it is not necessary for the points on a 
curve to be independent of each other, for a method 
which uses the whole curve as a single (independent) 
replicate, naturally suggests an application to growth 
curves. Such a profile would be the increasing size of 
a specific organism (or, say, the number of hatching 
larvae in a single bioassay vial) monitored through 
time. These are (univariate) repeated measures on a 
single experimental/observational unit and therefore 
certainly not independent. But, given an appropriate 
design, the organisms (or the vials) are independently 
and randomly allocated to a specific treatment or obs-
ervational condition, and statistical tests can compare 
this set of growth profiles with each other, among and 
within conditions etc, exactly as above, as a group of 
independent points in multivariate space. This time 
the variables are simply the sequence of time points, 
which must of course be commonly spaced across all 
measured profiles.  In fact, this is what is known as 
the fully multivariate approach to univariate repeated 
measures designs,† except that we are here suggesting 

¶ This could be by, for example, simple moving averages or more 
sophisticated kernel density estimation (found in many standard 
packages). PRIMER offers another simple form of smoothing, viz. 
cumulating values over the size-classes (abundances must first be 
sample standardised). Smoothing makes no sense for assemblage 
data of different species – unless the ‘nearby’ species whose 
abundances contribute to the moving average (say) for a specific 
species are defined by their taxonomic or functional affinity with 
that species (pooling species into higher taxa would be a crude 
example of this) – but is natural for ordered size-class variables 
†It will not be lost on the reader that it might also be nice to have 
a ‘fully multivariate approach to multivariate repeated measures 
designs’, as arise, say,  when monitoring an algal community on 
a marked quadrat through time. Removing a ‘quadrat effect’ in a 
higher-way ANOVA-type design can adjust for the fact that some 
quadrats have consistently different communities than others at 
all times, within the same ‘treatment’, but does not address the 
lack of symmetry in the correlation structure among times: obser-
vations at the beginning and end of a time sequence will be likely 
to have lower autocorrelation than adjacent times (see also the 
discussion in Anderson et al 2008). A fully multivariate approach 
to multivariate repeated measures, using  second stage analysis, 

a distribution-free approach to analysis, side-stepping 
the need for model-based estimation of the auto-
correlation structure amongst the times (‘variables’). 
Put simply, the problem reduces to asking whether, 
for example, the set of n growth profiles of organisms 
in group A are identifiably different in shape from the 
set of m profiles in B, in any respect, and consistently 
enough to determine significance. This needs only a 
measure of dissimilarity of profile pairs (e.g. Euclid-
ean or Manhattan) and ANOSIM (/PERMANOVA).  

MULTIPLE DIVERSITY INDICES 

A large number of different diversity measures can be 
computed from a single data set and it is relevant to 
ask if anything is achieved by doing so. The classic 
‘spot’ (alpha) diversity indices, many of which were 
listed earlier in equations (8.1) to (8.7), are all based 
either on the set of species proportions {pi}, the total 
number of species S, or some mix of these two largely 
unrelated strands of information, and most are  there-
fore mechanistically inter-correlated as a result, i.e. 
they will be seen to be correlated whatever the set of 
data for which they are calculated. Of course, for any 
particular data set, a richness measure such as simple 
S and a purely relatedness measure such as Simpson’s 
1 – λ may be observed to correlate across samples, 
e.g. when a contaminant impact removes a wide range 
of climax community species, replacing them with a 
smaller number of opportunists which dominate the 
total numbers (or area cover), so that both richness 
and evenness indices decline. But this is a biological 
correlation not a mechanistic one. In other situations 
S and 1 – λ may do something quite different, but H′ 
(Shannon), J′ (Pielou) and 1 – λ will always be seen 
to correlate positively, as a result of their definitions. 

We can (and should) examine such issues of whether 
anything is to be gained in calculating further indices 
by taking a multivariate approach, in contravention 
to what many ecologists have done for decades, i.e. 
test and interpret multiple measures (often mechanist-
ically correlated) separately, as if they were providing 
independent scrutiny of a specific hypothesis (we are 
not immune from such strictures ourselves!). Though 
biological in origin, diversity indices are (statistically 
speaking) ‘environmental-type’ variables in that their 

is possible in limited cases, and is essentially an extension of the 
idea here. The ‘profile’ (in that case an entire dissimilarity matrix 
covering the changing community pattern over all times for a 
single experimental unit) becomes the single, independent point 
in a multivariate space which, along with other (matrix) points, 
we  can enter into ANOSIM tests, MDS etc. Chapter 16 gives an 
example of such a rocky-shore experiment to monitor algal re-
colonisation of quadrats under different clearance conditions  
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distributions are generally rather well-behaved (as a 
result of the central limit theorem), needing only mild 
transformation if at all, and normalisation since they 
are on different measurement scales. The resulting 
data matrix of multiple indices across all samples can 
then be input to PCA (Chapter 4) to reveal the ‘true’ 
dimensionality, i.e. how many uncorrelated axes of 
information does this set of indices really contain? 

As referred to in Chapter 7 on variables analysis, to 
examine the relationship of variables to each other, a 
resemblance matrix can be derived which is initially 
just the correlations over the samples for every pair of 
indices; Pearson correlation of (perhaps transformed) 
measures is appropriate. This may include positive or 
negative values, for example if Simpson is included 
as a dominance measure λ, it will be negatively corr-
elated with evenness indices such as H′ and J′. But 
these indices are still considered closely related so 
similarity is defined as absolute correlation (×100). 
MDS on these similarities displays the relationships.  

Garroch Head dump-ground macrofauna 

Earlier in the chapter we saw the behaviour of some 
diversity-based constructions for the 12 sites on the 
E-W transect across the sewage-sludge dumpsite in 
the Firth of Clyde (1983 data), e.g. the ‘ABC’ method 
for contrasting abundance and biomass k-dominance 
curves, summarised in the W statistic of eqn. (8.11).   
Calculating also a range of standard diversity indices, 
none of which needed transformation, the normalised 
full set of 10 measures when input to PCA¶ is seen to 
contain only two (or at most three) dimensions of un-
correlated information. The first two PCs account for 
95.4% of the variance and the first three for 98.2% (if 
W is omitted, the first two PCs account for 97.3%).  

The MDS plot of the diversity index ‘similarities’ is 
shown in Fig. 8.16 and tells a simple, and universal, 
story. To the right are the richness measures (S and 
Margalef’s d) and to the left the evenness measures 
(Pielou’s J′ and Simpson, 1–λ). On the line between 
them, mixing evenness and richness, Shannon H′ and 
its discrete form, Brillouin H, are seen to be close to 
evenness indices, though they contain a small element 
of richness. Fisher’s α, essentially the steepness of 
declines seen in the (log series) distributions of the 
SAD curves, Fig. 8.4, is seen to be a mixture of both 
elements. Perhaps the initially surprising observation 

¶ More detailed working of PCA for an index set from this data is 
shown in the PRIMER User Manual, e.g. the extent to which the 
diversity measures capture the impact gradient seen in the full 
multivariate analysis, and the definition of the PCs as an overall 
decline in all diversity measures when sites near the dump centre 
(PC1) and a contrast between evenness and richness (PC2).  

 
Fig. 8.16. Garroch Head macrofauna {G}. nMDS from absolute 

Pearson correlations among 10 diversity indices (variables) 
computed on soft-sediment faunal samples from 12 sites on a 
transect across the Clyde sewage sludge dump-ground.  

is that the rarefaction estimates (equation 8.6) – the  
expected number of species for a given number of 
individuals, here calculated for ‘rarefying’ to 20 and 
45 individuals (the most depauperate sample contain-
ing only 46 individuals) – is seen not to estimate rich-
ness at all here but to mainly reflect sample evenness. 
This is not so surprising when the construction is con-
sidered in more detail: individuals dropped at random 
until a small percentage are left (most samples have 
100’s or 1000’s of individuals), and so the number of 
species remaining will be dictated by how dominated 
the community is by just a few species. 

Another interesting feature is that the W statistic does 
not lie on this richness-evenness axis. It is towards 
the evenness end, as might be expected from its use 
of the abundance k-dominance curve but here it also 
provides fresh information from the biomass domin-
ance pattern. And this is the general point that such 
plots make: whatever the input data matrix, a pattern 
broadly in line with Fig. 8.16 will emerge. What this 
plot mainly captures is the mechanistic relationships 
among the diversity indices rather than the ecological 
information of a specific context†. The implication is 
always that the number of diversity indices it makes 
sense to calculate, based only on the species abund-
ances, is very small – basically one richness and one 
evenness measure. Striking out from these two axes 
into third or higher dimensional diversity space needs 
introduction of fresh information, on biomass patterns 
perhaps or, for genuinely unrelated dimensions, the 
concept of average distinctness of a species set, for a 
given numbers of species, in terms of the taxonomic 
or genetic/phylogenetic relatedness of the species (or, 
indeed, their functional relatedness). Such a concept 
of diversity is returned to in Chapter 17. 

† A similar idea is seen for ordination of the relationship among 
competing definitions of distance or dissimilarity, utilising second 
stage plots (Chapter 16), viz. which coefficients capture the same, 
and which very different information on multivariate structure? 
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CHAPTER 9:  TRANSFORMATIONS AND DISPERSION WEIGHTING 
 
There are two distinct roles for transformations in 
community analyses: 
a) to validate statistical assumptions for parametric 

techniques – in the approach of this manual such 
methods are restricted to univariate tests; 

b) to weight the contributions of common and rare 
species in the (non-parametric) multivariate repres-
entations. 

The second reason is the only one of relevance to the 
preceding chapters, with the exception of Chapter 8 
where it was seen that standard parametric analysis of 
variance (ANOVA) could be applied to diversity indices 
computed from replicate samples at different sites or 
times.  Being composite indices, derived from all species 
counts in a sample, some of these will already be 
approximately continuous variates with symmetric 
distributions, and others can be readily transformed to 
the normality and constant variance requirements of 
standard ANOVA.  Also, there may be interest in the 
abundance patterns of individual species, specified a 
priori (e.g. keystone species), which are sufficiently 
common across most sites for there to be some possib-
ility of valid parametric analysis after transformation. 
 

UNIVARIATE CASE 

For purely illustrative purposes, Table 9.1 extracts the 
counts of a single Thyasira species from the Frierfjord 
macrofauna data {F}, consisting of four replicates at 
each of six sites. 

Table 9.1.  Frierfjord macrofauna {F}.  Abundance of a single 
species (Thyasira sp.) in four replicate grabs at each of the six 
sites (A–E, G). 

Site: A B C D E  G 
Replicate       

1 1 7 0 1 62 66 
2 4 0 0 8 102 68 
3 3 3 0 5 93 52 
4 11 2 3 13 69 36 

Mean 4.8 3.0 0.8 6.8 81.8 55.5 

Stand. dev. 4.3 2.9 1.5 5.1 18.7 14.8 

Two features are apparent: 
1) the replicates are not symmetrically distributed (they 

tend to be right-skewed); 
2) the replication variance tends to increase with increas-

ing mean, as is clear from the mean and standard 
deviation (s.d.) values given in Table 9.1. 

The lack of symmetry (and thus approximate normality) 
of the replication distribution is probably of less import-
ance than the large difference in variability; ANOVA 
relies on an assumption of constant variance across 
the groups.  Fortunately, both defects can be overcome 
by a simple transformation of the raw data; a power 
transformation (such as a square root), or a logarithmic 
transformation, have the effect both of reducing right-
skewness and stabilising the variance. 

Power transformations 

The power transformations y* = yλ form a simple and 
useful family, in which decreasing values of λ produce 
increasingly severe transformations.  The log transform, 
y* = loge(y), can also be encompassed in this series 
(technically, (yλ – 1)/λ → loge(y) as λ → 0).  Box and 
Cox (1964) give a maximum likelihood procedure for 
optimal selection of λ but, in practice, a precise value 
is not important, and indeed rather artificial if one 
were to use slightly different values of λ for each new 
analysis.  The aim should be to select a transformation of 
the right order for all data of a particular type, choosing 
only from, say: none, square root, 4th root or logarith-
mic.  It is not necessary for a valid ANOVA that the 
variance be precisely stabilised or the non-normality 
totally removed, just that gross departures from the 
parametric assumptions (e.g. the order of magnitude 
change in s.d. in Table 9.1) are avoided.  One useful 
technique is to plot log(s.d.) against log(mean) and 
estimate the approximate slope of this relationship 
(β).  This is shown here for the data of Table 9.1. 

0

1

2

0 1 2 3 4

Log(s.d.)

Log(mean)

β = 0.55

 

It can be shown that, approximately, if λ is set roughly 
equal to 1 – β, the transformed data will have constant 
variance.  That is, a slope of zero implies no transform-
ation, 0.5 implies the square root, 0.75 the 4th root 
and 1 the log transform.  Here, the square root is 
indicated and Table 9.2 gives the mean and standard 
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deviations of the root-transformed abundances:  the 
s.d. is now remarkably constant in spite of the order 
of magnitude difference in mean values across sites.  
An ANOVA would now be a valid and effective testing 
procedure for the hypothesis of ‘no site-to-site differ-
ences’, and the means and 95% confidence intervals 
for each site can be back-transformed to the original 
measurement scales for a more visually helpful plot. 

Table 9.2. Frierfjord macrofauna {F}.  Mean and standard deviation 
over the four replicates at each site, for root-transformed abund-
ances of Thyasira sp. 

Site: A B C D E G 

Mean(y*) 2.01 1.45 0.43 2.42 9.00 7.40 
S.d.(y*) 0.97 1.10 0.87 1.10 1.04 1.04 

Like all illustrations, though genuine enough, this one 
works out too well to be typical!  In practice, there is 
usually a good deal of scatter in the log s.d. versus 
log mean plots; more importantly, most species will 
have many more zero entries than in this example and 
it is impossible to ‘transform these away’: species 
abundance data are simply not normally distributed 
and can only rarely be made so.  Another important 
point to note here is that it is never valid to ‘snoop’ in 
a data matrix of, perhaps, several hundred species for 
one or two species that display apparent differences 
between sites (or times), and then test the significance of 
these groups for that species.  This is the problem of 
multiple comparisons referred to in Chapter 6; a 
purely random abundance matrix will contain some 
species which fallaciously appear to show differences 
between groups in a standard 5% significance level 
ANOVA (even were the ANOVA assumptions to be 
valid).  The best that such snooping can do, in hypoth-
esis testing terms, is identify one or two potential key 
or indicator species that can be tested with an entirely 
independent set of samples. 

These two difficulties between them motivate the only 
satisfactory approach to most community data sets: a 
properly multivariate one in which all species are 
considered in combination in non-parametric methods 
of display and testing, which make no distributional 
assumptions at all about the individual counts. 

MULTIVARIATE CASE 

There being no necessity to transform to attain distrib-
utional properties, transformations play an entirely 
separate (but equally important) role in the clustering 
and ordination methods of the previous chapters, that 

of defining the balance between contributions from 
common and rarer species in the measure of similarity 
of two samples. 

Returning to the simple example of Chapter 2, a subset 
of the Loch Linnhe macrofauna data, Table 9.3 shows 
the effect of a 4th root transformation of these abund-
ances on the Bray-Curtis similarities.  The rank order 
of the similarity values is certainly changed from the 
untransformed case, and one way of demonstrating 
how dominated the latter is by the single most numerous 
species (Capitella capitata) is shown in Table 9.4. 
Leaving out each of the species in turn, the Bray-Curtis 
similarity between samples 2 and 4 fluctuates wildly 
when Capitella is omitted in the untransformed case, 
though changes much less dramatically under 4th root 
transformation, which downweights the effect of single 
species. 

Table 9.3.  Loch Linnhe macrofauna {L} subset.  Untransformed 
and 4th root-transformed abundances for some selected species 
and samples (years), and the resulting Bray-Curtis similarities 
between samples. 

Untransformed      
Sample: 1  2  3   4      
Species     Sample 1 2 3 4 
Echinoca. 9 0 0 0      1 –    
Myrioche. 19 0 0 3      2 8 –   
Labidopl. 9 37 0 10      3 0 42 –  
Amaeana 0 12 144 9      4 39 21 4 – 
Capitella 0 128 344 2      
Mytilus 0 0 0 0      

√√-transformed      
Sample: 1  2  3   4      
Species     Sample 1 2 3 4 
Echinoca. 1.7 0 0 0      1 –    
Myrioche. 2.1 0 0 1.3      2 26 –   
Labidopl. 1.7 2.5 0 1.8      3 0 68 –  
Amaeana 0 1.9 3.5 1.7      4 52 68 42 – 
Capitella 0 3.4 4.3 1.2      
Mytilus 0 0 0 0      

 
Transformation sequence 

The previous remarks about the family of power trans-
formations apply equally here: they provide a continuum 
of effect from λ = 1 (no transform), for which only 
the common species contribute to the similarity, through 
λ = 0.5 (square root), which allows the intermediate 
abundance species to play a part, to λ = 0.25 (4th 
root), which takes some account also of rarer species.  
As noted earlier, λ → 0 can be thought of as equivalent 
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to the loge(y) transformation and the latter would 
therefore be more severe than the 4th root transform.  
However, in this form, the transformation is impractical 
because the (many) zero values produce log(0) → –∞.  
Thus, common practice is to use log(1+y) rather than 
log(y), since log(1+y) is always positive for positive y 
and log(1+y) = 0 for y = 0.  The modified transformation 
no longer falls strictly within the power sequence; on 
large abundances it does produce a more severe trans-
formation than the 4th root but for small abundances it 
is less severe than the 4th root.  In fact, there are rarely 
any practical differences between cluster and ordination 
results performed following y0.25 or log(1+y) transform-
ations; they are effectively equivalent in focusing 
attention on patterns within the whole community, 
mixing contributions from both common and rare 
species.¶  

Table 9.4.  Loch Linnhe macrofauna {L} subset.  The changing 
similarity between samples 2 and 4 (of Table 9.3) as each of the 
six species is omitted in turn, for both untransformed and 4th root-
transformed abundances. 

Untransformed        
Species omitted: None 1 2 3 4 5 6 
Bray-Curtis (S): 21 21 21 14 13 54 21 

√√-transformed        
Species omitted: None 1 2 3 4 5 6 
Bray-Curtis (S): 68 68 75 61 59 76 68 

The logical end-point of this transformation sequence 
is therefore not the log transform but a reduction of 
the quantitative data to presence/absence, the Bray-
Curtis coefficient (say) being computed on the resulting 
matrix of 1’s (presence) and 0’s (absence).  This comp-
utation is illustrated in Table 9.5 for the subset of the 
Loch Linnhe macrofauna data used earlier.  Comparing 
with Table 9.3, note that the rank order of similarities 
again differs, though it is closer to that for the 4th 
root transformation than for the untransformed data.  
In fact, reduction to presence/absence can be thought 
of as the ultimate transformation in down-weighting 
the effects of common species.  Species which are 
sufficiently ubiquitous to appear in all samples (i.e. 
producing a 1 in all columns) clearly cannot discriminate 

¶ Though practical differences are likely to be negligible, on purely 
theoretical grounds it could be argued that the 4th root is the more 
satisfactory of the two transformations because Bray-Curtis simil-
arity is then invariant to a scale change in y.  Similarity values 
would be altered under a log(1+y) transformation if abundances 
were converted from absolute values to numbers per m2 of the 
sampled substrate, or if biomass readings were converted from 
mg to g.  This does not happen with a strict power transformation; 
it is clear from equation (2.1) that any multiplying constant applied 
to y will cancel on the top and bottom lines of the summations. 

between the samples in any way, and therefore do not 
contribute to the final multivariate description.  The 
emphasis is therefore shifted firmly towards patterns in 
the intermediate and rarer species, the generally larger 
numbers of these tending to over-ride the contributions 
from the few numerical or biomass dominants. 

Table 9.5. Loch Linnhe macrofauna {L} subset.  Presence (1) or 
absence (0) of the six species in the four samples of Table 9.3, and 
the resulting Bray-Curtis similarities. 

Presence/absence      
Sample: 1  2  3   4      
Species     Sample 1 2 3 4 
Echinoca. 1 0 0 0      1 –    
Myrioche. 1 0 0 1      2 33 –   
Labidopl. 1 1 0 1      3 0 80 –  
Amaeana 0 1 1 1      4 57 86 67 – 
Capitella 0 1 1 1      
Mytilus 0 0 0 0      

One inevitable consequence of ‘widening the franchise’ 
in this way, allowing many more species to have a 
say in determining the overall community pattern, is 
that it will become increasingly harder to obtain 2-d 
ordinations with low stress: the view we have chosen 
to take of the community is inherently high-dimensional.  
This can be seen in Fig. 9.1, for the dosing experiment 
{D} in the Solbergstrand mesocosm (GEEP Oslo work-
shop), previously met in Figs. 4.2 and 5.6.  Four levels 
of contaminant dosing (designated Control, Low, 
Medium, High) were each represented by four replicate 
samples of the resulting nematode communities, giving 
the MDS ordinations of Fig. 9.1.  Note that as the 
severity of the transformation increases, through none, 
root, 4th root and presence/absence (Fig. 9.1a to 9.1d 
respectively), the stress values rise from 0.08 to 0.19. 

It is important to realise that this is not an argument 
for deciding against transformation of the data.  Fig. 
9.1a is not a better representation of the between-
sample relationships than the other plots: it is a different 
one.  The choice of transformation is determined by 
which aspects of the community we wish to study.  If 
interest is in the response of the whole community 
then we have to accept that it may be more difficult to 
capture this in a low-dimensional picture (a 3-d or 
higher-dimensional MDS may be desirable).  On the 
other hand, if the data are totally dominated by one or 
two species, and it is these that are of key biological 
interest, then of course it will be possible to visualise 
in a 1- or 2-d picture how their numbers (or biomass) 
vary between samples:  in that case an ordination on 
untransformed data will be little different from a simple 
scatter plot of the counts for the two main species.
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Fig 9.1  Dosing experiment, 
Solbergstrand {D}.  MDS of 
nematode communities in four 
replicates from each of four 
treatments (C = control, L = 
low, M = medium, H = high 
dose of a hydrocarbon/copper 
contaminant mixture dosed to 
mesocosm basins), based on 
Bray-Curtis similarities from 
transformed data: a) no trans-
form (stress = 0.08), b) √ (stress 
= 0.14), c) √√ (stress = 0.18), 
d) presence/absence (stress = 
0.19). 

RECOMMENDATIONS 

The transformation sequence in a multivariate analysis, 
corresponding to a progressive downweighting of the 
common species, is effectively: 

The choice of transformation from this sequence can 
affect the conclusions of an analysis, and in many 
respects it is more a biological than a statistical 
question: which view of the community do we wish to 
take (shallow or deep), given that there are potentially 
many different 2-dimensional summaries of this high-
dimensional data? 

Statistical considerations do enter, however, particularly 
in relation to the reliability of sampling. At one 
extreme, a presence/absence analysis can give too 
much weight to the chance capture of species only 
found occasionally as single individuals. At the other 
extreme, an abundance MDS plot can be distorted by 
the capture of larvae or opportunist colonisers with a 
strong degree of spatial clumping, such that replicate 
samples at the same time/location give counts from 
absent to thousands. Under certain conditions, e.g. 
when the data matrix consists of real counts (not 
adjusted densities per area of sediment or volume of 
water) and there are replicate samples which will 

allow the degree of clumping of individuals to be 
quantified, the next section describes a useful way of 
removing the effects of this clumping (by dispersion 
weighting). This replaces the statistical need for 
transformation (to reduce highly erratic counts over 
replicates) but not necessarily the biological need, 
which remains that of balancing contributions from 
(consistently) abundant with less abundant species. 

If conditions do not allow dispersion weighting (e.g. 
absence of replicates), the practical choice of trans-
formation is often between moderate (√) and rather 
severe (√√ or log), retaining the quantitative inform-
ation but downplaying the species dominants. (After 
dispersion weighting the severest transformations are 
not usually necessary). Note that the severe trans-
formations come close to reducing the original data to 
about a 6 point scale: 0 = absent, 1 = one individual, 2 
= handful, 3 = sizeable number, 4 = abundant, ≥5 = very 
abundant. Rounding the transformed counts to this 
discrete scale will usually make little or no difference 
to the multivariate ordination (though this would not be 
the case for some of the univariate and graphical 
methods of Chapter 8). The scale may appear crude 
but is not unrealistic; species densities are often highly 
variable over small-scale spatial replication, and if 
the main requirement is a multivariate description, 
effort expended in deriving precise counts from a 
single sample could be better spent in analysing more 
samples, to a less exacting level of detail. This is also 
a central theme of the following chapter, Chapter 10. 

 



 Chapter 9   
page 9–5  

DISPERSION WEIGHTING 

There is a clear dichotomy, in defining sample simil-
arities, between methods which give each variable 
(species) equal weight, such as normalisation or 
species standardisation, and those which treat counts 
(of whatever species) as comparable and therefore 
give greater weight to more numerically dominant 
species. As pointed out above, giving rare species the 
same weight as dominant ones bundles in a great deal 
of ‘noise’, diffusing the ‘signal’, but it can be equally 
unhelpful to allow the analysis to be driven by highly 
abundant, but very erratic counts, from motile species 
occurring in schools, or more static species which are 
spatially clumped by virtue of their colonising or 
reproductive patterns. A severe transformation will 
certainly reduce the dominance of such species, but it 
can be seen as rather a blunt instrument, since it also  
squeezes out much of the quantitative information 
from mid- or low-abundance species, some of which 
may not exhibit this erratic behaviour over replicates 
of the same condition (site/time/treatment), because 
they are not spatially clumped. If data are genuinely 
counts and information from replicates is available, a 
better solution (Clarke et al, 2006a) is to weight 
species differently, according to the reliability of the 
information they contain, namely the extent to which 
their counts in replicates display overdispersion. 

It is important to appreciate the subtlety of the idea of 
dispersion weighting: species are not down-weighted 
because they show large variation across the full set 
of samples; they may do that because their abundance 
changes strongly across the different conditions (and 
it is precisely those species which will best indicate 
community change). Species are down-weighted if 
they have high variability, for their mean count, in 
replicates of the same condition. In fact, we must be 
careful to make no use of information about the way 
abundances vary across conditions when determining 
the weight each species gets in the analysis, otherwise 
we are in serious danger of a self-fulfilling argument 
(e.g. high weight given to species which, on visual 
inspection, appear to show the greatest differences 
between groups will clearly bias tests unfairly in 
favour of demonstrating community change, just as 
surely as picking out only a subset of species, a 
posteriori, to input to the analyses).  

Dispersion weighting (DW) therefore simply divides 
all counts for a single species by a particular constant, 
calculated as the index of dispersion D (the ratio of 
the variance to the mean) within each group, averaged 
across all groups to give divisor D for that species. 
The justification for this is a rather simple but general 

model in which counts of a species in each replicate 
are from a generalised Poisson distribution. Details 
are given in Clarke et al (2006a), but the concept is 
illustrated in Fig. 9.2, thought of as replicate quadrats 
‘catching’ a different number of centres of population 
(clumps) for that species as the conditions (groups) 
change, but with each centre containing a variable 
number of individuals, with unknown probability 
distribution. The only assumption is that the different 
conditions change the number of clumps but not the 
average or standard deviation of the clump size, e.g. 
in some sites a particular species is quite commonly 
found and in others hardly at all, but its propensity to 
school or clump is something innate to the species. 

 
Fig 9.2 Simple graphic of generalised Poisson model for counts 

of a single species: centres of population are spatially random 
but with density varying across groups (sites/times/treatments). 
The distribution of the number of individuals(≥1) found at each 
centre is assumed constant across groups, though unknown.  

Technically, for a particular species, if the number of 
centres in a replicate from group g has a Poisson 
distribution with mean νg and the number of individ-
uals at each centre has an unknown distribution with 
mean µ and variance σ2, then Xj, the count in the jth 
replicate from group g, has mean νgµ and variance 
νg(µ2+σ2). Thus the index of dispersion D, the ratio of 
variance to mean counts for the group is (µ2+σ2)/µ 
and this is not a function of νg, i.e. D is the same for 
all groups, and an average D can be computed across 
groups (weighted, if replicates unbalanced). Dividing 
all counts by this average gives values which have the 
‘Poisson-like’ property of variance ≈ mean.  

The process is repeated for all species separately. 
Note that there is certainly no assumption that the 
clump size distribution is the same for all species, not 
even in distributional form: some species will be 
heavily clumped, others not at all, with all possibil-
ities in between, but all are reduced by DW to giving 
(non-integral) abundances that are equally variable in 
relation to their mean, i.e. the unwanted contributions 
made by large but highly erratic counts are greatly 
down-weighted by their large dispersion indices.  
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Table 9.5. Simple example of 

dispersion weighting (DW) on 
abundances from a matrix of 
two species sampled for two 
groups (e.g. sites/times), each 
of eight replicates. Prior to 
DW, species 2 would receive 
greater weight but its arrivals 
are clumped. After DW, the 
species have identical entries 
in the matrix. 

 
 

One simple (over-simple) way of thinking of this is 
that we count clumps instead of individuals, and the 
calculation for such a simple hypothetical case is 
illustrated above. Here, there are two groups, with 8 
replicates per group and two species. The individuals 
of species 1 arrive independently (the replicates show 
the Poisson-like property of variance≈ mean) whereas 
species 2  has an identical pattern of arrivals but of 
clumps of 5 individuals at a time. Dividing through 
each set of species counts by the averaged dispersion 
indices (1.1 and 5.5 respectively) would reduce both 
rows of data to the same Poisson-like ‘abundances’.¶ 

However, DW is much more general than this simple 
case implies. The generalised Poisson model certainly 
includes the case of fixed-size clumps, and the even 
simpler case where the clump size is one, so that 
individuals arrive into the sample independently of 
each other, for which the counts are then Poisson and 
D=1 (DW applies no down-weighting). More realist-
ically, it includes the Negative Binomial distribution 
as a special case, a distribution often advocated for 
fully parametric modelling of overdispersed counts 
(e.g. recently by Warton et al, 2012). Such modelling 
needs the further assumption that the clump size 
distribution is of the same type for all species, namely 
Fisher’s log series. Also subsumed under DW are the 
Neyman type A (where the clump size distribution is 
also Poisson) and the Pólya-Aeppli (geometric clump 
size distribution) and many others.  

Our approach here is to remain firmly distribution-
free. In order to remove the large contributions that 
highly erratic (clumped) species counts can make to 
multivariate analyses such as the SIMPER procedure, 
it is not necessary (as Warton et al, 2012 advocate) to 
throw out all the advantages of a fully multivariate 
approach to analysis, based on a biologically relevant 
similarity matrix, replacing them with what might be 
characterised as ‘parallel univariate analyses’. (This 

¶ In fact the counts for species 1 would not lead to rejection of the 
null hypothesis of independent random arrivals (D=1) in this 
case, using the permutation test discussed later, so no DW would 
be applied to species 1. 

seems a classic case of ‘throwing the baby out with 
the bathwater’). Instead, it is simply necessary first to 
down-weight such species semi-parametrically, by 
dispersion weighting, which subsumes the negative 
binomial and many other commonly-used parametric 
models for overdispersed counts, and the (perceived†) 
problem disappears. 
  

EXAMPLE: Fal estuary copepods 

Somerfield et al (1994) present biotic and environ-
mental data from five creeks of the Fal estuary, SW 
England, whose sediments can contain high heavy 
metal levels resulting from historic tin and copper 
mining in the surrounding valleys ({f}, Fig. 9.3). 

 

† It is relevant to point out here that the later example (and much 
other experience) suggests that, whilst DW is more logically 
satisfactory than the cruder use of severe transformations for this 
purpose, the practical differences between analyses based on DW 
and on simple transforms are, at their greatest, only marginal. 
Since most of the 10,000+ papers using PRIMER software in its 
20-year history have used transformed data (PRIMER even issues 
a warning if Bray-Curtis calculation has not been preceded by a 
transformation), Warton’s conclusions, largely based on analyses 
of untransformed data, that “hundreds of papers every year 
currently use methods [which] risk undesirable consequences” 
seem unjustified.  

Fig. 9.3 Fal estuary 
copepods {f}. Five 
creeks sampled for 
meiofauna/macro-
fauna 
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Table 9.6.  Fal estuary copepods {f}. Original counts from five replicate meiofaunal cores in each of two creeks (Mylor and Pill). Final 
three columns give the average dispersion index, its significance, and the divisor used to downweight each row (matrix is ordered by 
the latter) under the dispersion weighting procedure. Divisor=1 if permutation test does not give significant clumping for that species. 

Species counts M1 M2 M3 M4 M5  P1 P2 P3 P4 P5  D  p% Divisor 

Platychelipus littoralis 43 88 26 8 1  12 34 76 112 18  36.1 0 36.1 
Enhydrosoma gariene 19 130 26 44 21  50 34 44 24 6  27.7 0 27.7 
Pseudobradya curticorne 19 2 12 32 13  18 0 6 26 7  8.7 0 8.7 
Microarthridion fallax 110 88 76 92 58  60 38 38 22 7  8.2 0 8.2 
Halectinosoma gothiceps 0 0 0 0 0  16 6 8 0 0  7.3 0 7.3 
Mesochra lilljeborgi 1 0 6 0 1  10 12 14 34 3  6.6 0 6.6 
Robertsonia celtica 4 24 8 8 0  0 4 6 2 1  5.8 0 5.8 
Paronchocamptus curticaudatus 0 0 0 0 0  0 8 8 12 3  3.6 1.4 3.6 
Amphiascoides limicola 1 0 0 0 0  14 14 8 22 0  3.4 0.1 3.4 
Tachidius discipes 6 2 8 0 0  0 0 0 0 2  3.1 0 3.1 
Mesochra pygmaea 0 0 0 0 0  2 0 0 4 0  2.7 2.3 2.7 
Stenhelia palustris 3 2 8 4 6  12 6 14 2 5  2.2 2.1 2.2 
Enhydrosoma longifurcatum 0 0 2 0 0  10 8 6 4 1  2.1 2.5 2.1 
Pseudobradya sp. 2 0 0 2 0 0  0 0 0 0 1  1.5 20.2 1 
Harpacticus flexus 0 0 0 0 0  2 2 0 0 0  1.5 23.9 1 
Enhydrosoma propinquum 1 0 0 0 0  0 0 0 2 0  1.5 20.2 1 
Paronychocamptus nanus 0 0 0 0 1  0 0 0 0 0  1 100 1 
Asellopsis sp. 1 0 0 0 0  0 0 0 0 0  1 100 1 
Stenhelia elizabethae 1 4 4 4 4  0 0 0 0 0  0.5 73.4 1 

 
Here, only the infaunal copepod counts are analysed, 
from five replicate meiofaunal cores in each of two 
creeks (Mylor, M and Pill, P), subject to differing 
sediment concentrations of contaminants (Table 9.6). 
Species are listed in decreasing order of their average 
dispersion index D over the two groups, e.g. for the 
first species, Platychelipus littoralis, DM =35.9 and 
DP =36.2, giving average D = 36.1, the divisor for the 
first row of the matrix. This represents rather strong 
overdispersion for this species, as does the divisor 
D = 27.7 for the second row, Enhydrosoma gariene. 
In fact, the highest counts in the matrix are found in 
these two species and, without DW, they would have 
played an influential role in determining the similar-
ity measures input to the multivariate analyses. But 
their counts are not consistent over replicates, ranging 
from 1 to 88, 12 to 112, 19 to 130 etc, hence giving 
large dispersion indices (variance-to-mean ratios). 
The dispersion-weighted values, however, are now 
much lower, ranging only up to 3 or 4, and therefore 
strongly down-weighted in favour of more consistent 
species (over replicates), such as Microarthridion 
fallax. Its counts were initially similarly high but are 
subject to a much lower divisor, so this fourth row of 
the weighted matrix now ranges up to 13, giving it 
much greater prominence. Interestingly, even quite 
low-abundance species, such as  the last in the list 
(Stenhelia elizabethae) will now make a significant 
contribution, because of its consistency; it does not 
get down-weighted at all, as the following permut-
ation test shows.  

Test for overdispersion 
The final six species in the table exhibit no signif-
icant evidence of overdispersion at all, and their 
divisor is therefore 1. What is needed here to examine 
this is a test of the null hypothesis D=1 in all groups, 
and a relevant large-sample test is based on the 
standard Wald statistic for multinomial likelihoods 
(further details in Clarke et al, 2006a). This has the 
familiar chi-squared form, e.g. for Tachidius discipes 
how likely is it that observed counts for Mylor of 6, 
2, 8, 0, 0 could arise from placing 16 individuals into 
5 replicates independently and with equal probability, 
i.e. when the ‘expected’ values in each replicate are 
3.2? Simultaneously, how likely is it that the two 
individuals from Pill both fall into the same replicate 
if they arrive independently (i.e. observed values are 
0, 0, 0, 0, 2 and expected values 0.4 in each cell)? 
The usual chi-squared form X2=Σ[(Obs – Exp)2/Exp] 
can be computed, but these are far from large samples 
so its distribution under the null hypothesis will only 
be poorly approximated by the standard χ2 distrib-
ution on 8 df. Instead, in keeping with other tests of 
this manual, the null distribution is simply created  by 
permutation: 16 and 2 individuals are randomly and 
independently placed into the first and second set of 
replicates, respectively, and X2 recalculated many 
times. For T. discipes the observed X2 is larger than 
any number of simulated ones and D=1 can be firmly 
rejected, so the divisor of 3.1 is used, but for the final 
6 species D=1 is not rejected (at p=5% on this one-
tailed test), and no down-weighting is carried out.   
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Fig 9.4 Fal estuary copepods 
{f}. MDS of copepod assemb-
lages for 5 meiofaunal cores 
in each of two creeks (Mylor 
and Pill), from Bray-Curtis 
similarities on: a) untrans-
formed counts; b) dispersion-
weighted counts  

Effect of dispersion weighting 

The effect of DW on the multivariate analysis can be 
seen in Fig. 9.4, which contrasts the (non-metric) 
MDS plots from Bray-Curtis similarities based on 
untransformed and dispersion-weighted counts. A 
major difference is not observed, but there is a clear 
suggestion that the replicates within the M group in 
particular have tightened up, and the distinction 
between the two groups enhanced. The former is 
exactly what might be expected: by down-weighting 
species with large but erratic abundances in replicates 
we should be reducing the ‘noise’, allowing any 
‘signal’ that may be there to be seen more clearly. 
But the latter cannot, and should not, be guaranteed. 
It is perfectly possible that when attention is focussed 
on the species that are consistent in replicates, they 
may display no change at all across groups – so be it. 
In fact, in this case, DW makes a sizeable difference 
to the ANOSIM test for the group effect, with the R 
statistic increasing from 0.41 to 0.71 after DW.  

Shade plots to demonstrate matrix changes 

The explanation, in terms of particular species, for 
changes seen in the multivariate analyses following 
DW, are well illustrated by simple shade plots (p7-7, 
Clarke et al 2014).  For these visual representations 
of the data matrices, the intensity of grey shading is 
linearly proportional to the matrix entry, with white 
representing absence and full black the largest count 
(or weighted count) in the matrix, Fig. 9.5. Here, the 
species have been ordered according to a species 
clustering using the index of association on the 
original counts (equation 7.1), and the same species 
ordering is preserved for the shade plot under DW. It 
is readily seen that some of the less erratic species, 
such as M. fallax and S. elizabethae, do show a clear 
pattern of larger values at Mylor than Pill, and several 
other species which are not heavily down-weighted 
(Enhydrosoma longifurcatum, Amphiascoides limic-

ola, Mesochra lilljeborgi) show the reverse pattern. 
The highly erratic species formerly given the most 
weight, P. littoralis and E. gariene, did not clearly 
distinguish the two creeks, so that their reduction in 
importance under DW has again, in this case, aided 
discrimination of the two groups. 

Further DW issues  

The DW procedure makes few assumptions about the 
data, but is derived from a model in which the degree 
of clumping, and thus the index of dispersion, of a 
particular species is constant across groups. In some 
cases this may well be a poor assumption, e.g. when 
impacts represented by a group structure affect both 
the propensity for that species to clump as well as the 
density of clump centres. Clearly, in that case, we 
must not use a different dispersion divisor D for each 
group; as earlier emphasised, doing different things 
for each group risks creating an artefactual group 
effect where none exists. Using an averaged index 
( D ) across groups might thus still provide a sensible 
‘middle course’ in deciding how much weight to give 
to that species. Faced with the alternatives of doing 
no species weighting (so that erratic, clumped species 
dominate) or giving all species, abundant and rare, 
exactly the same weight (e.g. as in normalising the 
variables or the implicit standardisations of a Gower 
resemblance measure), DW may indeed be a robust 
general means of weighting species. As is seen later 
(e.g. Chapter 10 and 16 and Fig. 13.8), even quite 
major changes to the balance of information utilised 
from different species can have surprisingly little 
effect on a multivariate analysis, mainly because the 
latter typically uses only a small amount of inform-
ation from each species and the same driving patterns 
are present in many species.  

Clarke et al (2006a) discuss further DW questions 
naturally arising. For example, should one upweight 
species that are significantly underdispersed, i.e. are 
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Fig. 9.5 Fal estuary copepods {f}. Shade plot, showing: left-hand, the untransformed counts of Table 9.6, represented by rectangles of 

linearly increasing grey scale (species clustering gives y-axis ordering); right-hand, the dispersion weighted values (maximum 13.4). 

territorially spaced, more evenly than expected under 
randomness, so that replicate counts are ‘too similar’ 
and chi-squared is significantly small? This is rarely 
observed, in the marine environment at least! Indeed, 
one of the beneficial side effects of applying DW is 
likely to be a clearer understanding of how a range of 
species are distributed in the environment, through 
histograms of dispersion indices calculated from all 
species in assemblages of different faunal types. 

Also, how much more general can the DW idea be 
made? Clearly the test for D=1 is based on a realistic 
probability model for genuine counts but, if the 
testing structure is ignored, it would still logically 
make sense to apply downweighting by the variance-
to-mean ratio for densities as well as counts, at least 
provided the adjustment from count to density was 
only of a modestly varying constant across samples. 
(A typical context might be where real counts from 
trawl samples are variably adjusted for modest differ-
ences in the volume of water filtered.) An extension 
to area cover data for rocky-shore or coral reef 
studies seems equally plausible. Here, the ‘counts’ 
can be thought of as number of grid points within a 
sampled area (one replicate) which fall on a particular 
species. If an individual algal or coral colony is larger 
than the grain of the grid points then the same colony 
will be ‘captured’ by several points, expressed as 
over-dispersion of the ‘counts’ from replicate to 
replicate (in the extreme, one species with an average 
area cover of 50% might vary from 100% in one 
replicate to 0% in the next, where another ubiquitous 
species, whose clump size is much smaller than the 
sampling grain, might record variation of only 40% to 
60%). Relative down-weighting by dispersion indices 

then makes reasonable sense, and similar arguments 
could be adduced for biomass data of motile species. 
Larger-bodied species give greater ‘overdispersed’ 
biomass relative to smaller-bodied ones. In fact, by 
overlaying the previous model of real counts of 
organisms with a fixed body mass per individual 
(varying between species), relative downweighting by 
D works in exactly the same way as earlier, removing 
at the same time both greater clumping of individuals 
and the size differential between species, to leave  a 
natural and robust weighting of the different species 
in subsequent multivariate analyses. It is, however, 
only relative D values that matter in all these cases; 
D=1 has no meaning outside the case of real counts.  

DW vs. Transformation 

DW is advocated above as an alternative to trans-
formation, providing a more targeted way of dealing 
with large and highly variable counts in some species. 
The disadvantage of simple, severe transformations in 
this context (e.g. fourth root) is that, whilst effective 
in reducing the contribution of the erratic P. littoralis 
and E. gariene in the earlier example, they will also 
‘squash’ consistent but low-abundance species, such 
as S. elizabethae, into a near presence/absence state. 
Nonetheless, simple transformations can be applied 
universally (e.g. without the need for replicates), and    
will often give similar results to DW. A fourth root 
transformation here actually leads to an even higher R 
value for the ANOSIM test for a group difference of 
0.81, and the MDS plot, while similar, tightens up the 
Pill group by giving less emphasis to the lower total 
abundance at P5 than the other Pill creek sites; the 
latter was clearly seen in the shade plot, Fig. 9.5.  

 



 Chapter 9   
 page 9–10  
 
A shade plot for this fourth-root transformed matrix 
is shown in Fig. 9.6 (left-hand plot) and it is clear that 
the multivariate analyses will now mainly be driven 
by the differing presence/absence structure, with the 
originally important species playing a much smaller 
role (e.g. M. fallax now appears scarcely to differ 
between the two creeks).  

DW and Transformation 

However, the key step here is to realise that DW and 
transformation are not necessarily alternatives; it may 
be optimal to use them in combination. DW directly 
addresses the problem of undue emphasis being given 
to high abundance-high variance species, ensuring all 
weighted species values now have strictly comparable 
reliability. But DW does not address the primary 
motivation for transformations outlined in Chapter 2, 
that of better balancing the contributions from less 
abundant (and consistent) species with the more 
abundant (and now equally consistent) species. Not 
all high abundance species are erratic in replicates 
and, if they are, they may still have largely dominant 
values after DW has ensured their consistency. In 
short: DW is applied for statistical reasons but we 
may still need to transform further (after DW) for 
biological reasons, if we seek a ‘deeper rather than 
shallower’ view of the assemblage. That transform 
will likely now be less severe than if no DW had been 
carried out since it is no longer trying to address two 
issues at once. Here, the shade plot for DW followed 
by square root transformation is shown in Fig. 9.6 
(right-hand plot) and this combination does actually 
give (marginally) the best separation of Mylor and 
Pill creeks in the multivariate analysis, amongst the 
analyses shown here, with R = 0.85.  

This is not an uncommon finding. Clarke et al (2014) 
describe the role of shade plots in assisting long-term 
choice of better transformation and/or DW strategies, 
and give examples. One is of fish studies in which 
highly schooling species, though heavily down-
weighted by DW (by two orders of magnitude), 
remain dominant because they are consistently found 
in some quantity in all replicates. DW followed by 
mild transformation was transparently a better option 
than either DW or severe transformation on its own.  
‘Long-term choice’ is an important phrase here: one 
must avoid the selection bias inherent in chasing the 
best combination of DW and transformation for each 
new study – ‘best’ in the sense of appealing most to 
our preconceptions of what the analysis should have 
demonstrated! Instead, the idea is to settle on a pre-
treatment strategy to be used consistently in future for 
that faunal type in those sampling contexts. 

VARIABILITY WEIGHTING 

Hallett et al (2012) describe a similar idea to dispers-
ion weighting for use when the data are continuous 
biological variables, such as diversity indices or other 
measures of ecological health of an assemblage. For 
such non-quantity data, for which zero plays no 
special role (and measures can be negative), variance-
to-mean ratios are inappropriate. Instead, a natural 
weighting of indices in Euclidean distance calculation 
might be to divide each index by an average measure 
of its standard deviation (or range or IQ range) over 
replicates from each group. Indices with high replic-
ate variability are then given less weight than more 
consistent ones. In some cases this may be preferable 
to normalising, which gives each index equal weight. 

 
Fig. 9.6 Fal estuary copepods {f}. Shade plot, with linear grey scale for: left-hand, 4th-root transformed counts; right-hand, dispersion 

weighted values subsequently square-root transformed. Species order kept the same as in (untransformed) species clustering, Fig. 9.5. 
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CHAPTER 10: SPECIES AGGREGATION TO HIGHER TAXA 
 

SPECIES AGGREGATION 

Fig. 10.1a repeats the multivariate ordination (nMDS) 
seen in Fig. 1.7 for the macrofaunal data from Frier-
fjord, based on 4th-root transformed species counts 
and Bray-Curtis similarities among the 24 samples (at 
6 sites, A-E,G). The assemblage consisted of 110 taxa 
identified in three-quarters of the cases to the species 
level (the remainder, as is commonly the case, were 
only identified to some higher taxonomic level, e.g. 
Nemertines, Oligochaetes etc). Fig. 10.1b shows the 
same ordination plot that would have been obtained 
had all species-level identifications only been to the 
level of genus, and it is clear that the conclusions 
about the relationships among the 6 sites would have 
remained more or less identical had the identification 
level been that degree coarser. This is not really that 
surprising since many of the identified genera only 
contained a single species, the number of variables 
(taxa) reducing only from 110 species to 88 genera¶. 
However, the insensitivity of the multivariate analysis 
to the change in identification effort in this case is 
suggestive of more general possibilities. 

The painstaking work involved in sorting and ident-
ifying samples to the species level has resulted in 
community analysis for environmental impact studies 
being traditionally regarded as labour-intensive, time-
consuming and therefore relatively expensive. One 
practical means of overcoming this problem might 
therefore be to try analysing the samples to some higher 
taxonomic level, such as family. If results from this 
coarser level are comparable to full species analysis, 
this means that: 

a) A great deal of labour can be saved.  Several groups 
of marine organisms are taxonomically difficult, 
for example (in the macrobenthos) several families 
of polychaetes and amphipods; as much time can 
be spent in separating a few of these difficult groups 
into species as the entire remainder of the sample, 
even in Northern Europe where taxonomic keys for 
identification are most readily available. 

¶ This pooling of counts to any specified coarser taxonomic level 
(called aggregation by PRIMER) uses the Aggregate routine on 
the Tools menu and requires a look-up table, an aggregation file, 
which can consist of a much larger species set (probably in a 
different order), from which each variable (species) in the data 
matrix is allocated to a specified genus, family, order, class, etc.  
Such aggregation files are also of fundamental importance in 
computing biodiversity measures based on the taxonomic relatedness 
of species in each sample, see Chapter 17. 

 
Fig. 10.1  Frierfjord macrofauna {F}.  Sample MDS using Bray-

Curtis similarities on √√-transformed counts for a) 110 species, 
b) 88 genera (stress = 0.10, 0.09 respectively). 

b) Less taxonomic expertise is needed. Many taxa 
really require the skills of specialists to separate 
them into species, and this is especially true in parts 
of the world where fauna is poorly described.  For 
certain groups of marine organisms, e.g. the meio-
benthos, the necessary expertise required to identify 
even the major taxa (nematodes and copepods) to 
species is lacking in most laboratories which are 
concerned with the monitoring of marine pollution, 
so that these components of the biota are rarely 
used in such studies, despite their many inherent 
advantages (see Chapter 13). 

For the marine macro- and meiobenthos, aggregations 
of the species data to higher taxonomic levels are 
examined below in a few applications, and resultant 
data matrices subjected to several forms of statistical 
analysis to see how much information has been lost 
compared with species-level analysis. Examples are 
also  seen in  Chapter 16,  where a more sophisticated 
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Fig. 10.2.  Nutrient-enrichment experiment, Solbergstrand {N}.  MDS plot of copepod abundances (√√-transformed, Bray-Curtis 
similarities) for 4 replicates from 3 treatments; species data aggregated into genera and families (stress = 0.09, 0.09, 0.08). 

methodology is given for summarising the relative 
effects of differing levels of taxonomic aggregation, 
in comparison with other decisions that need to be 
made about a multivariate analysis, e.g. severity of 
transformation and choice of resemblance measure 
(we defer such discussion until the needed tools have 
been presented in Chapters 11 and 15). Aggregation, 
followed by simple re-analysis, has now been looked 
at very widely in the marine (and non-marine) literat-
ure for a range of faunal groups.  

Methods amenable to aggregation 

1) Multivariate methods.  Although taxonomic levels 
higher than that of species can be used to some degree 
for all types of statistical analysis of community 

data, it is probably for multivariate methods that 
this is most appropriate, at least when the taxa is 
relatively species rich; e.g. Chapter 16 shows the 
high degree of structural redundancy in marine 
macrobenthic assemblages, with many sets of 
species ‘carrying the same information’, in effect, 
about  the spatio-temporal changes which drive the 
community patterns. (On the other hand, it is clear 
that for a very limited faunal group such as, say, 
the freshwater fish of Australian river systems, 
with species numbers typically only in single 
figures, there is much to lose and little to gain by 
aggregation to higher taxa). All ordination/clustering 
techniques are amenable to aggregation, and there is 
now substantial evidence that identification only to 
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Fig. 10.3.  Loch Linnhe macrofauna {L}.  MDS (using Bray-Curtis similarities) of samples from 11 years.  Abundances are √√-transformed 

(top) and untransformed (bottom), with 111 species (left), aggregated into 45 families (middle) and 9 phyla (right).  (Reading across rows, 
stress = 0.09, 0.09, 0.10, 0.09, 0.09, 0.02). 
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Fig. 10.4. Amoco-Cadiz oil spill 

{A}.  MDS for macrobenthos 
at station ‘Pierre Noire’ in the 
Bay of Morlaix.  Species data 
(left) aggregated into phyla 
(right).  Sampling months are 
A:4/77, B:8/77, C:9/77, D:12/77, 
E:2/78, F:4/78, G:8/78, H:11/78, 
I:2/79, J:5/79, K:7/79, L:10/79, 
M:2/80, N:4/80, O:8/80, P:10/80, 
Q:1/81, R:4/81, S:8/81, T:11/81, 
U:2/82.  The oil-spill was during 
3/78, (stress = 0.09, 0.07). 

the family level for macrobenthos, and the genus 
level for meiobenthos, makes very little difference 
to the results (see, for example, Figs. 10.2–10.6, 
and the results in Chapter 16).  There are possibly 
also theoretical advantages to conducting multivar-
iate analyses at a high taxonomic level for pollution 
impact studies.  Natural environmental variables 
which also affect community structure are rarely 
constant in surveys designed to detect pollution 
effects over relatively large geographical areas. For 
the benthos, such ‘nuisance’ variables include water 
depth and sediment granulometry.  However, it is a 
tenable hypothesis that these variables influence the 
fauna more by species replacement than by changes 
in the proportions of the major taxa present.  Each 
major group, in its adaptive radiation, has evolved 
species which are suited to rather narrow ranges of 
natural environmental conditions, whereas anthro-
pogenic contamination has been too recent for the 
evolution of suitably adapted species.  Ordinations 
of abundance or  biomass data  of these major  taxa 
are  thus more likely to correlate with a contamin-
ant gradient than are species ordinations, the latter 
being more complicated by the effects of natural 
environmental variables.  In short, higher taxa may 
well reflect well-defined pollution gradients more 
closely than species. 

2) Distributional methods.  Aggregation for ABC 
curves is possible, and family level analyses are 
often identical to species level analyses (Fig. 10.7). 

3) Univariate  methods.     The  concept  of  pollution 
indicator groups rather than indicator species is 
well-established. For example, at organically en-
riched sites, polychaetes of the family Capitellidae 
become abundant (not just Capitella capitata), as 
do meiobenthic nematodes of the family Onchol-
aimidae.   The nematode copepod ratio  (Raffaelli 

 

Fig. 10.5.  Indonesian reef corals {I}.  MDS for species (p=75) 
and genus (p=24) data at South Pari Island (Bray-Curtis 
similarities on untransformed % cover).  The El Niño occurred in 
1982–3. 1=1981, 3=1983 etc. (stress = 0.25). 

and Mason, 1981) is an example of a pollution 
index based on higher taxonomic levels.  Such 
indices are likely to be of more general applicability 
than those based on species level data.  Diversity 
indices themselves can be defined at hierarchical 
taxonomic levels for internal comparative purposes, 
although this is not commonly done in practice. 
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Fig. 10.6.  Ekofisk oil-platform macrobenthos {E}.  a) Map of station positions, indicating symbol/shading conventions for distance zones 

from the centre of drilling activity; b)-d) MDS for root-transformed species, family and phyla abundances (stress = 0.12, 0.11, 0.13). 

MULTIVARIATE EXAMPLES 

Nutrient-enrichment experiment 

In the soft-bottom mesocosms at Solbergstrand, Norway 
{N}, box-cores of sublittoral sediment were subjected 
to three levels of particulate organic enrichment (L = 
low dose, H = high dose and C = control), there being 
four replicates from each treatment.  After 56 days the 
meiobenthic communities were analysed.  Fig 10.2 
shows that, for the copepods, there were clear differ-
ences in community structure between treatments at 
the species level, which were equally evident when the 
species data were aggregated into genera and families. 
(Indeed, at the family level the configuration is arguably 
more linearly related to the pollution gradient than at 
the species level). 

Loch Linnhe macrofauna 

MDS ordinations of the Loch Linnhe macrobenthos are 
given in Fig. 10.3, using both double square root and 
untransformed abundance data.  Information on the 
time-course of pollution events and changes in diversity 

are given in Fig. 10.7 (top left).  The ordinations have 
been performed separately using all 111 species, the 
45 families and the 9 phyla.  In all ordinations there is 
a separation to the right of the years 1970, 1971 and 
1972  associated with  increasing pollution  levels and 
community stress, and a return to the left in 1973 
associated with reduced pollution levels and community 
stress.  This pattern is equally clear at all levels of 
taxonomic aggregation.  Again, the separation of the 
most polluted years is most distinct at the phylum 
level, at least for the double square root transformed 
data (and the configuration is more linear with respect 
to the pollution gradient at the phylum level for the 
untransformed data). 

Amoco-Cadiz oil-spill 

Macrofauna species were sampled at station ‘Pierre 
Noire’ in the Bay of Morlaix on 21 occasions between 
April 1977 and February 1982, spanning the period of 
the wreck of the ‘Amoco-Cadiz’ in March 1978.  The 
sampling site was some 40km from the initial tanker 
disaster but substantial coastal oil slicks resulted. The 
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Fig. 10.7.  Loch Linnhe macro-

fauna {L}.  Shannon diversity 
(H´) and ABC plots over the 
11 years, 1963 to 1973, for 
data aggregated to family level 
(c.f. Fig. 8.7).  Abundance = 
thick line, biomass = thin line. 

species abundance MDS has been repeated with the data 
aggregated into five phyla: Annelida, Mollusca, 
Arthropoda,  Echinodermata and ‘others’  (Fig. 10.4). 
The analysis of phyla closely reflects the timing of 
pollution events, the configuration being slightly more 
linear than in the species analysis.  All pre-spill samples 
(A-E) are in the top left of the configuration, the immed-
iate post-spill sample (F) shifts abruptly to the bottom 
right after which there is a gradual recovery in the 
pre-spill direction.  Note that in the species analysis, 
although results are similar, the immediate post-spill 
response is rather more gradual.  The community 
response at the phylum level is remarkably clear. 

Indonesian reef corals 

The El Niño of 1982-3 resulted in extensive bleaching 
of reef corals throughout the Pacific.  Fig. 10.5 shows 

the coral community response at South Pari Island 
over six years in the period 1981-1988, based on ten 
replicate line transects along which coral species cover 
was determined.  Note the immediate post-El Niño 
location shift on the species MDS and a circuitous 
return towards the pre-El Nino condition. This is closely 
reflected in the genus level analysis. 

Ekofisk oil-platform macrobenthos 

Changes in community structure of the soft-bottom 
benthic macrofauna in relation to oil drilling activity 
at the Ekofisk platform in the North Sea {E} have been 
studied by Gray et al (1990), Warwick and Clarke 
(1991).  The positions of the 39 sampling stations 
around the rig are coded by different symbol and 
shading conventions in Fig. 10.6a, according to their 
distance from the centre of drilling activity at that 
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time.  In the MDS species abundance analysis (Fig. 
10.6b), community composition in all of the zones is 
distinct, and there is a clear gradation of change from 
the (black circle) inner to the (open triangle) outer 
zones.  Formal significance testing (using the methods 
of Chapter 6) confirms statistically the differences 
between all zones.  The MDS has been repeated with 
the species data aggregated into families (Fig. 10.6c) 
and phyla (Fig. 10.6d).  The separation of sites is still 
clear, and pairwise comparisons confirm the statistical 
significance of differences between all zones, even at 
the phylum level, which does show some deterioration 
of the pattern.  This is in contrast to (species-level) 
univariate and graphical/distributional measures, in 
which only the inner zone (less than 250m from the 
rig) was significantly different from the other three 
zones (see Chapter 14).  Thus, phylum level analyses 
are again shown to be surprisingly sensitive in detecting 
pollution-induced community change, and little inform-
ation at all is lost by working at the family level. 

GRAPHICAL EXAMPLES 

Loch Linnhe macrofauna 

ABC plots for the Loch Linnhe macrobenthos species 
data are given in Chapter 8, Fig. 8.7, where the perform-
ance of these curves with respect to the time-course 
of pollution events is discussed.  In Fig. 10.7 the species 
data are aggregated to family level, and the curves are 
virtually identical to the species level analysis, so that 
there would have been no loss of information had the 
samples only been sorted originally into families. 

Similar results were produced by replotting the ABC 
curves for the Garroch Head sewage sludge dumping 
ground macrobenthos {G} (Fig. 8.8) at the family level 
(Warwick, 1988b). 

UNIVARIATE EXAMPLE 

Indonesian reef corals 

Fig. 10.8 shows results from another survey of 10 
replicate line transects for coral cover over the period 
1981-1988, in this case at South Tikus Island, Indonesia 
{I}.  Note the similarity of the species and genus 
analyses for the number of taxa and Shannon diversity, 
with an immediate post-El Niño drop and subsequent 
suggestion of partial recovery. 

 

Fig. 10.8.  Indonesian reef corals {I}.  Means and 95% confidence 
intervals for number of taxa and Shannon diversity at South Tikus 
Island, showing the impact and partial recovery from the 1982–3 
El Niño.  Species data (left) have been aggregated into genera 
(right). 

RECOMMENDATION 

Clearly the operational taxonomic level for environ-
mental impact studies is another factor to be considered 
when planning such a survey, along with decisions 
about the number of stations to be sampled, number 
of replicates, types of statistical analysis to be employed 
etc.  The choice will depend on several factors, particul-
arly the time, manpower and expertise available and 
the extent to which that component of the biota being 
studied is known to be robust to taxonomic aggregation, 
for the type of statistical analysis being employed, 
and the type of perturbation expected.  Thus, it is 
difficult to give general recommendations and each 
case must be treated on its individual merits.  However, 
for routine monitoring of organic enrichment situations 
using macrobenthos, one can by now be rather certain 
that family level analysis will be perfectly adequate.  
Also, for the free-living meiofauna, there are by now 
many examples where multivariate analysis of genus-
level information is indistinguishable from that for 
species, and broadly similar results have been found 
now for a wide range of faunal groups. The topic is 
returned to in Chapter 16.  
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CHAPTER 11:  LINKING COMMUNITY ANALYSES TO 
ENVIRONMENTAL VARIABLES 

 

APPROACH 

In many studies, the biotic data is matched by a suite 
of environmental variables measured at the same set 
of sites.  These could be natural variables describing 
the physical properties of the substrate (or water) from 
which the samples were taken, e.g. median particle 
diameter, depth of the water column, salinity etc, or 
they could be contaminant variables such as sediment 
concentrations of heavy metals.  The requirement here 
is to examine the extent to which the physico-chemical 
data is related to (‘explains’) the biological pattern. 

The approach adopted is firstly to analyse the biotic data 
and then ask how well the information on environmental 
variables, taken either singly (Field et al, 1982) or in 
combination (Clarke and Ainsworth, 1993), matches 
this community structure.¶  The motivation here, as in 
earlier chapters, is to retain simplicity and transparency 
of analysis, by letting the species and environmental 
data ‘tell their own stories’ (under minimal model 
assumptions) before judging the extent to which one 
provides an ‘explanation’ of the other. 

ENVIRONMENTAL DATA ANALYSIS 

An analogous range of multivariate methods is available 
for display and testing of environmental samples as 
has been described for biotic data: species are simply 
replaced by physical/chemical variables.  However, the 
matrix entries are now of a rather different type and 
lead to different analysis choices.  No longer do zeros 
predominate; the readings are usually more nearly 
continuous and, though their distributions are often 
right-skewed (with variability increasing with the mean), 
it is often possible to transform them to approximate 
normality (and stabilise the variance) by a simple root 
or logarithmic transformation, see Chapter 9.  Under 
these conditions, Euclidean distance is an appropriate 
measure of dissimilarity and PCA (Chapter 4) is an 
effective ordination technique, though note that this 
will need to be performed on the correlation rather 
than the covariance matrix, i.e. the variables will usually 
have different units of measurement and need normal-
ising to a common scale (see the discussion on p4-6). 

¶ Methods such as canonical correlation (e.g. Mardia et al, 1979), 
and the important technique of canonical correspondence (ter 
Braak, 1986), take the rather different stance of embedding the 
environmental data within the biotic analysis, motivated by specific 
gradient models defining the species-environment relationships. 

In the typical case of samples from a spatial contaminant 
gradient, it is also usually true that the number of 
variables is either much smaller than for a biotic matrix 
or, if a large number of chemical determinations has 
been made (e.g. GC/MS analysis of a range of specific 
aromatic hydrocarbons, PCB congeners etc.) they are 
often highly inter-correlated, tending to preserve a 
fixed relation to each other in a simple dilution model.  
A PCA can thus be expected to do an adequate job of 
representing in (say) two dimensions a pattern which 
is inherently low-dimensional to start with. 

In a case where the samples are replicates from different 
groups, defined a priori, the ANOSIM tests of Chapter 
6 are equally available for testing environmental hypoth-
eses, e.g. establishing differences between sites, times, 
conditions etc., where such tests are meaningful.†  The 
appropriate (rank) dissimilarity matrix would use 
normalised Euclidean distances. 

EXAMPLE: Garroch Head macrofauna 

For the 12 sampling stations (Fig. 8.3) across the 
sewage-sludge dump ground at Garroch Head {G}, 
the biotic information was supplemented by sediment 
chemical data on metal concentrations (Cu, Mn, Co, 
...) and organic loading (% carbon and nitrogen); also 
recorded was the water depth at each station. The 
data matrix is shown in Table 11.1; it follows the 
normal convention in classical multivariate analysis 
of the variables appearing as columns and the 
samples as rows.‡ 

No replication is available for the 12 stations so the 
variance-to-mean plots suggested in Chapter 9 are not 
possible, but simple scatter plots of all pairwise combin-
ations of variables (draftsman plots, see the later Fig. 
11.9) suggest that log transformations are appropriate 
for the concentration variables, though not for water 
depth.   The criteria here are that variables should  not 

† The ANOSIM tests in the PRIMER package are not now the only 
possibility; the data will have been transformed to approximate 
normality so classical multivariate (MANOVA) tests such as Wilks’ 
Λ (e.g. Mardia et al, 1979) may be valid, but only if the number of 
variables is small in relation to the number of samples. 
‡ This is in contrast with abundance matrices which, because of 
their often larger number of variables (species) are usually 
transposed, i.e. the samples are displayed as columns. The  PRIMER 
software package handles data entered either way round, of 
course, though it is important to specify in the entry dialog 
whether the rows or the columns should be taken as samples. 
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Table 11.1.  Garroch Head dump ground {G}.  Sediment metal concentrations (ppm), water depth at the site (m) and organic loading of 

the sediment (% carbon and nitrogen), for the transect of 12 stations across the sewage-sludge dump site (centre at station 6), see Fig. 8.3. 

Station Cu Mn Co Ni Zn Cd Pb Cr Dep %C %N 

1 26 2470 14 34 160 0 70 53 144 3 0.53 
2 30 1170 15 32 156 0.2 59 15 152 3 0.46 
3 37 394 12 38 182 0.2 81 77 140 2.9 0.36 
4 74 349 12 41 227 0.5 97 113 106 3.7 0.46 
5 115 317 10 37 329 2.2 137 177 112 5.6 0.69 
6 344 221 10 37 652 5.7 319 314 82 11.2 1.07 
7 194 257 11 34 425 3.7 175 227 74 7.1 0.72 
8 127 246 10 33 292 2.2 130 182 70 6.8 0.58 
9 36 194 6 16 89 0.4 42 57 64 1.9 0.29 

10 30 326 11 26 108 0.1 44 52 80 3.2 0.38 
11 24 439 12 34 119 0.1 58 36 83 2.1 0.35 
12 22 801 12 33 118 0 52 51 83 2.3 0.45 

 

show marked skewness across the samples, enabling 
meaningful normalisation, and that the relationships 
between them should be approximately linear; the 
standard product-moment correlations between variables 
and Euclidean distances between samples are then 
satisfactory summaries.  In pursuit of this, note that 
whilst each variable could in theory be subjected to a 
different transformation it is more logical to apply the 
same transformation to all variables of the same type.  
Thus the decision to log all the metal data stems not 
just from the draftsman plots but also from previous 
experience that such concentration variables often 
have standard deviations proportional to their means; 
i.e. a roughly constant percentage variation is log 
transformed to a stable absolute variance. 

Fig. 11.1 displays the first two axes (PC1 and PC2) of 
a PCA ordination on the transformed data of Table 
11.1.  In fact, the first component accounts for much 
of the variability (61%) in the full matrix, and the 
second a further 27%, so the first two components 
account for 88% and the 2-d plot provides an accurate 
summary of the relationships. The axes are defined as 

  PC1 = 0.38 Cu' – 0.22 Mn' – 0.08 Co' + 0.15 Ni' 
  + 0.37 Zn' + 0.33 Cd' + 0.37 Pb' + 0.35 Cr' 
  – 0.12 Dep' + 0.37 C' + 0.33 N'             

          (11.1) 

 PC2 = -0.04 Cu' + 0.42 Mn' + 0.54 Co' + 0.47 Ni' 
+ 0.16 Zn' – 0.11 Cd' + 0.13 Pb' – 0.09 Cr'  
+ 0.46 Dep' + 0.09 C' + 0.19 N' 

Broadly, PC1 represents an axis of increasing cont-
aminant load since the sizeable coefficients are all 
positive. (The dash denotes that variables have been 
log transformed, excepting Dep, and normalised to 
zero mean and unit standard deviation). PC2 needs to 
be orthogonal to PC1 (coefficients cross-multiplying 
to zero) and it does this simply here by, e.g., the large 
PC1 coefficients being small in PC2 and vice-versa.  

 

 
Fig. 11.1.  Garroch Head dump ground {G}.  Two-dimensional 

PCA ordination of the 11 environmental variables of Table 11.1 
(transformed and normalised), for the stations (1–12) across the 
sewage-sludge dump site centred at station 6 (% variance explained 
= 88%). Selected vectors are shown; they represent direction 
and relative strength of linear increase of normalised variables 
in this 2-d plane (‘base variables’ option). Only the directions 
of vectors should be interpreted; their location is arbitrary. 

Fig. 11.1 shows a strong pattern of change on moving 
from the ends of the transect to the dump site centre, 
which (unsurprisingly) has the greatest levels of organic 
enrichment and metal concentrations (exceptions are  
Mn′, Co′ and Ni′). The superimposed vectors are in 
this case entirely accurate (see the footnote on p7-19), 
since equation (11.1) shows that the axes are linear in 
the variables. For example, the Cu′ vector is pointing 
along the x axis (to the right) because it has a sizeable 
positive coefficient of 0.38 on PC1, and only slightly 
downwards because of its small negative coefficient 
(-0.04) on the PC2 axis, whereas Mn′ and Ni′ increase 
strongly up the y axis (i.e. one would expect Ni′ to be 
at its lowest for site 9), with Mn′ pointing left and Ni′ 
right because of their (smaller) negative and positive 
PC1 terms. %C and Pb vectors are coincident, at least 
on these 2 axes, from their near identical coefficients.  
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LINKING BIOTA TO UNIVARIATE 
ENVIRONMENTAL MEASURES 

Univariate community measures 

If the biotic data are best summarised by one, or a few, 
simple univariate measures (such as diversity indices), 
one possibility is to attempt to correlate these with a 
similarly small number of environmental variables, 
taken one at a time.  The summary provided by a 
principal component from a PCA of environmental 
variables can be exploited in this way.  In the case of 
the Garroch Head dump ground, Fig. 11.2 shows the 
relation  between Shannon diversity of the macrofauna 
samples at the 12 sites and the overall contaminant 
load, as reflected in the first PC of the environmental 
data (Fig. 11.1).  Here the relationship appears to be a 
simple linear decrease in diversity with increasing 
load, and the fitted linear regression line clearly has a 
significantly negative slope (β = – 0.29, p < 0.1%). 
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Fig. 11.2.  Garroch Head macrofauna {G}.  Linear regression of 

Shannon diversity (H'), at the 12 sampling stations, against the 
first PC axis score from the environmental PCA of Fig. 11.1, 
which broadly represents an axis of increasing contaminant 
load (first part of equation 11.1). 

Multivariate community measures 

In most cases however, the biotic data is best described 
by a multivariate summary, such as an MDS ordination.  
Its relation to a univariate environmental measure can 
then be visualized in bubble plots¶, by representing 
the values of this variable as bubbles of different sizes 
centred on the biotic ordination points (see p7-17). This, 
or the alternative plotting of coded values for the env-
ironmental variable, can be a useful means of noting 

¶ Bubble plots can also be useful in a wider context: Field et al 
(1982) superimpose morphological characteristics of each species 
onto a species MDS, and Chapter 7 gives a number of examples 
of how single and segmented bubble plots can show relationships 
between ordinations and some of the biotic variables used in their 
construction. Segmented bubble plots can similarly be used with 
abiotic variables, if carefully enough scaled (Purcell et al 2014).  

consistent differences in an abiotic variable between 
biotic clusters, or of observing a smooth relationship 
with ordination gradients (Field et al, 1982). 

EXAMPLE: Bristol Channel zooplankton 

A cluster analyses of zooplankton samples at 57 sites 
in the Bristol Channel {B} was seen in Chapter 3, and 
a SIMPROF analyses determined divisions into four 
main clusters (Fig. 3.7). The associated MDS plot of  
Fig. 3.10a, whilst not in conflict with those groups, 
shows a continuity of change. Whether this gradient 
in community bears some relation (causal or not) to 
the salinity gradient at these sites is seen by plotting 
salinity classes as codes or bubble sizes on the MDS.  

If an arbitrary coding is used (or a continuous salinity 
scale for bubble size), biological considerations might 
suggest that simple linear coding/scaling is less than 
optimal here. The species turnover would be expected 
to be larger with a salinity differential of 1 ppt from 
full salinity water than for a similar change at (say) 
25 ppt. This motivates application of a reverse logar-
ithmic transformation, log (36 – s), or more precisely: 

 s* = a – b loge(36 – s)                (11.2) 

where a = 8.33, b = 3 are simple constants chosen for 
this data to constrain the transformed variable s* to 
lie, when rounded to the nearest integer, in the range 
1 (low) to 9 (high salinity).† The resulting MDS plots, 
Figs. 11.3 and 11.4, show the strong relation to the  
salinity gradient‡ and might also help to direct attent-
ion to sites which appear slightly anomalous in respect 
of this gradient, and raise questions of whether there 
are secondary environmental variables which could 
explain the biological differentiation of samples at 
similar salinities. 

† In the PRIMER ‘Transform (individual)’ routine the expression 
for the salinity variable is thus: INT(0.5 + 8.33 – 3*log(36–V)), 
and these bubble values can then be used to label the MDS plot. 
‡ Note the horseshoe effect (more properly termed the arch effect), 
which is a common feature of the ordination from single, strong 
environmental gradients. Both theoretically and empirically, non-
metric MDS would seem to be less susceptible to this than metric 
ordination methods. But without the drastic (and somewhat 
arbitrary) intervention in the plot that a technique like detrended 
correspondence analysis uses (specifically to ‘cut and paste’ such 
ordinations to a straight line), some degree of curvature is un-
avoidable and natural.  Where samples towards opposite ends of 
the environmental gradient have few species in common (thus 
giving dissimilarities near 100%), samples which are even further 
apart on the gradient have little scope to increase their dissimil-
arity further.  To some extent, non-metric MDS can compensate 
for this by the flexibility of its monotonic regression of distance 
on dissimilarity (Chapter 5), but arching of the tails of the plot is 
clearly likely when dissimilarities near 100% are reached. 
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Fig. 11.3.  Bristol Channel zooplankton {B}.  Biotic MDS for the 

57 sampling sites, as in Fig. 3.10 (based on Bray-Curtis similar-
ities on √√-transformed abundances), stress = 0.11. Numbers are 
the 9 salinity codes for sites, 1: <26.3, 2: (26.3, 29.0), 3: (29.0, 
31.0), ..., 8: (34.7, 35.1), 9: >35.1 ppt..  

 
Fig. 11.4.  Bristol Channel zooplankton {B}.  Biotic MDS as in 

Fig. 11.3, with superimposed ‘bubbles’  whose sizes represent the 
same salinity scale as above, i.e. the transformed values given by 
equation (11.2). The four community groups identified from agglom-
erative clustering and SIMPROF tests (as in Fig. 3.10a) are shown 
by different shading.  

EXAMPLE: Garroch Head macrofauna 

The macrofauna samples from the 12 stations on the 
Garroch Head transect {G} lead to the MDS plot of 
Fig. 11.5a.  For a change, this is based not on abundance 
but biomass values (root-transformed).¶  Earlier in the 
chapter, it was seen that the contaminant gradient 
induced a marked response in species diversity (Fig. 
11.2), and there is an even more graphic representation 
of steady community change in the multivariate plot 
as the dump centre is approached (stations 1 through 
to 6), with gradual reversion to the original community 

¶ Chapter 14 argues that, where it is available, biomass can some-
times be more biologically relevant than abundance, though in 
practice MDS plots from both will be broadly similar, especially 
under heavy transformation, as the data tends towards presence/ 
absence (Chapter 9). 

structure on moving away from the centre (stations 6 
through to 12).†  

The correlation of the biotic pattern with some of the 
contaminant variables is well illustrated by the bubble 
plots of Figs. 11.5b-d. In fact, the inter-correlation of 
many of the contaminants is clear from the later Fig. 
11.9, so several other bubble plots will look similar to 
that for %C and Pb, which are virtually identical. It is 
clear that, when two environmental variables are so 
strongly related (collinear), separate putative effects 
on the biotic structure could never be disentangled 
(effects are said to be confounded). 

A decision needs to be made about whether the scale 
for the contaminant circles (genuine ‘bubbles’ if a 3-d 
MDS plot is used) is that for the original data or its 
transformed form. Either may be useful in particular 
contexts but, whichever is chosen, the plots are likely 
to need rescaling‡ such that minimum and maximum 
values are represented by vanishingly small circles up 
to a fixed maximum circle size, respectively, as is the 
case in Fig. 11.5, based on the log-transformed data. 
Note the distinction here with the previous use (Figs. 
7.13-7.16) of bubble size to represent species counts, 
usually on a common scale over species (though also 
often transformed); the natural interpretation there of 
absence as a vanishingly small bubble rarely has a 
counterpart with bubble plots of abiotic variables.  

As with the earlier Fig. 11.1, a selection of vectors is 
shown in Fig. 11.5a but these are no longer the coeff-
icients in the definition of the axis; the environmental 
variables are an independent data set from the biotic 
variables producing these axes. Instead, they reflect 
the (individual) multiple correlations of each abiotic 
variable to the ordination axes, derived from multiple 
linear regression (Pearson option, page 7-19). There 
is no longer any guarantee that the relationship of an 
environmental variable to the biotic ordination axes is 
now linear, and vectors only represent linear relation-
ships (see the strictures on this point on page 7-19). 
Here the full set of bubble plots gives no undue cause 
for concern that the vector plot is misleading, but this 
will not always be the case (see Fig. 11.6c below) and 
it is wise to check bubble plots before summarising 
the relationships solely by vectors. 

† This can be seen also in the MDS plots of Figs. 7.9c & d, though the 
known ordering of sites was not used for the purposes of that example. 
The minor difference in the MDS configuration from Fig. 11.5 is not 
due to any difference in transformation or similarity but the fact that 
the analysis here uses all 65 species with recorded biomass whereas, 
for illustrative purposes, the previous shade plot used only the 35 
accounting for at least 1% of the biomass in one or more samples. 
‡ This is best accomplished within PRIMER by using output from 
the Summary Stats routine (for variables) on the Analyse menu. 
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Fig. 11.5.  Garroch Head macro-
fauna {G}.  a) nMDS of Bray-
Curtis similarities from √-trans-
formed species biomass data 
at the 12 sites (Fig. 8.3) on 
the E-W transect, stress=0.05. 
Vector plot (right) shows the 
direction of linear increase of 
sediment concentrations for 
selected contaminants, and 
the multiple correlation of 
each (transformed) variable 
on  the 2-d ordination points 
(circle is correlation of 1).  
b)-d) bubble plots, i.e. same 
MDS plot but with circles of 
increasing size representing 
sediment concentrations at 
those sites, of %C, Mn and 
Pb, from loge(0.1+x) transf-
ormation of Table 11.1 data.  

EXAMPLE: Exe estuary nematodes 

The Garroch Head data is an example of a smooth 
gradation in faunal structure reflected in a matching 
gradation in several contaminant variables.  In contrast, 
the Exe estuary nematode communities {X}, discussed 
in Chapter 5, separate into five well-defined clusters 
of samples (Fig. 11.6a).  For each of the 19 intertidal 
sites, six environmental variables were also recorded: 
the median particle diameter of the sediment (MPD), 
its percentage organic content (% Org), the depth of 
the water table (WT) and of the blackened hydrogen 
sulphide layer (H2S), the interstitial salinity (Sal) and 
the height of the sample on the shore, in relation to 
the inter-tidal range (Ht).   

When each of these is superimposed in turn on the 
biotic ordination, as bubble plots, some instructive 
patterns emerge.  MPD (Fig. 11.6b) appears to increase 
monotonically along the main MDS axis but cannot 
be responsible for the division, for example, between 
sites 1-4 and 7-9.  On the other hand, the relation of 
salinity to the MDS configuration is non-monotonic 
(Fig. 11.6c), with larger values for the ‘middle’ groups, 
but now providing a contrast between the 1-4 and 7-9 
clusters.  Some other variables, such as the height up 
the shore (Fig. 11.6d), appear to bear little relation to 
the overall biotic structure, in that samples within the 
same faunal groups are frequently at opposite 
extremes of the intertidal range. 

These patterns have some important implications for 
vector plots. Previously, in the Garroch Head data of  
Fig. 11.5, it was suggested that viewing the relations 
between environmental variables and the ordination 

via a vector plot was unlikely to mislead, because 
perusal of bubble plots for each variable in that case 
suggested that changes were, if not truly linear, at 
least monotonically increasing or decreasing across 
the plot. However, that this will not always be true 
and, here, the salinity bubble plot clearly shows the 
difficulty. In which direction does salinity increase? 
A linear regression of, say, a quadratic function may 
well have a zero slope (small vector, in no particular 
direction) thus making it impossible to distinguish 
between a vector for an obvious, but non-monotonic 
relationship and that for a situation in which there is 
apparently little relationship at all, such as for the Ht 
variable in Fig. 11.6d.  

These plots, however, make clear the limitations in 
relating the community structure to a single environ-
mental variable at a time:  there is no basis for answering 
questions such as “how well does the full set of abiotic 
data jointly explain the observed biotic pattern?” and 
“is there a subset of the environmental variables that 
explains the pattern equally well, or better?”  These 
questions are answered in classical multivariate statistics 
by techniques such as canonical correlation (e.g. Mardia 
et al, 1979) but, as discussed in earlier chapters, this 
requires assumptions which are unrealistic for species 
abundance or biomass data (correlation and Euclidean 
distance as measures of similarity for biotic data, 
linear relationships between abundance and environ-
mental gradients etc).   

Instead, the need is to relate community structure to 
multivariate descriptions of the abiotic variables, 
using the type of non-parametric, similarity-based 
methods of previous chapters.   
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Fig. 11.6.  Exe estuary nemat-

odes {X}.  a) MDS of species 
abundances at the 19 sites, as 
in Fig. 5.1;  b)-d) the same 
MDS but with superimposed 
circles representing, respect-
ively, median particle diameter 
of the sediment, its interstitial 
salinity and height up the shore 
of the sampling locations.  (Stress 
= 0.05). 

LINKING BIOTA TO MULTIVARIATE 
ENVIRONMENTAL PATTERNS 

The intuitive premise adopted here is that if the suite 
of environmental variables responsible for structuring 
the community were known¶, then samples having 
rather similar values for these variables would be 
expected to have rather similar species composition, 
and an ordination based on this abiotic information 
would group sites in the same way as for the biotic 
plot.  If key environmental variables are omitted, the 
match between the two plots will deteriorate.  By the 
same token, the match will also worsen if abiotic data 
which are irrelevant to the community structure are 
included.† 

¶ These might sometimes include biotic as well as abiotic data, 
e.g. when assessing how coral reef fish communities might be 
structured by area cover of specific, dominant species of coral. 
†Additional reasons for a poor match include: cases where the 
observed biotic patterns are largely a function of internal stochastic 
forces, e.g. competitive interactions within the assemblage, rather 
than external forcing variables; abiotic variables are measured 
over the wrong spatio-temporal scales in terms of their impact on 
community structure; there is a large element of random variation 
from sample to sample, under the same environmental conditions, 
e.g. the unit sample size is inadequate to characterise the assembl-
age; and a more technical reason (addressed later) concerning 
non-additive effects of structuring variables. In all these cases, the 
procedure may fail to ‘explain’ the community structure well, in 
terms of the provided set of environmental variables. 

The Exe estuary nematode data {X} again provides an 
appropriate example.  Fig. 11.7a repeats the species 
MDS for the 19 sites seen in Fig. 11.6a.   The remaining 
plots in Fig. 11.7 are of specific combinations of the 
six sediment variables: H2S, Sal, MPD, %Org, WT 
and Ht, as defined above.  For consistency of present-
ation, these plots are also MDS ordinations but based 
on an appropriate dissimilarity matrix (Euclidean 
distance on the normalised abiotic variables).  In 
practice, since the number of variables is small, and 
the distance measures the same, the MDS plots will 
be largely indistinguishable from PCA configurations 
(note that Fig. 11.7b is effectively just a scatter plot, 
since it involves only two variables). 

The point to notice here is the remarkable degree of 
concordance between biotic and abiotic plots, especially 
Figs. 11.7a and c; both group the samples in very 
similar fashion.  Leaving out MPD (Fig. 11.7b), the 
(7–9) group is less clearly distinguished from (6, 11) 
and one also loses some matching structure in the 
(12–19) group.  Adding variables such as depth of the 
water table and height up the shore (Fig. 11.7d), the 
(1–4) group becomes more widely spaced than is in 
keeping with the biotic plot, sample 9 is separated 
from 7 and 8, sample 14 split from 12 and 13 etc, and 
the fit again deteriorates.  In fact, Fig. 11.7c represents 
the best fitting environmental combination, in the 
sense defined below, and therefore best ‘explains’ the 
community pattern. 
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Fig. 11.7.  Exe estuary nemat-
odes {X}.  MDS ordinations of 
the 19 sites, based on: a) species 
abundances, as in Fig. 5.1; b) 
two sediment variables, depth 
of the H2S layer and interstitial 
salinity; c) the environmental 
combination ‘best matching’ 
the biotic pattern: H2S, salinity 
and median particle diameter; 
d) all six abiotic variables.  
(Stress = 0.05, 0, 0.04, 0.06). 

Measuring agreement in pattern 

Quantifying the match between any two plots could 
be accomplished by a Procrustes analysis (Gower, 
1971), in which one plot is rotated, scaled or reflected 
to fit the other, in such a way as to minimize a sum of 
squared distances between the superimposed configur-
ations.  This is not wholly consistent, however, with 
the approach in earlier chapters; for exactly the same 
reasons as advanced in deriving the ANOSIM statistic 
in Chapter 6, the ‘best match’ should not be dependent 
on the dimensionality one happens to choose to view 
the two patterns.  The more fundamental constructs 
are, as usual, the similarity matrices underlying both 
biotic and abiotic ordinations.†  These are chosen 
differently to match the respective form of the data 
(i.e. Bray-Curtis for biota, Euclidean distance for 
environmental variables) and will not be scaled in the 
same way.  Their ranks, however, can be compared 
through a rank correlation coefficient, a very natural 
measure to adopt bearing in mind that a successful 
MDS is a function only of the similarity ranks. 

† For example, in spite of the very low stress in Fig. 11.7, a 2-d 
Procrustes fit of 11.7a with 11.7c will be rather poor, since the 
(5, 10) and (12–19) groups are interchanged between the plots.  
Yet, the interpretation of the two analyses is fundamentally the 
same (five clusters, with the (5, 10) group out on a limb etc).  This 
match will probably be better in 3-d but will be fully expressed, 
without arbitrary dimensionality constraints, in the underlying 
similarity matrices. 

The procedure is summarised schematically in Fig. 
11.8, and Clarke and Ainsworth (1993) describe the 
approach in detail.  Three possible matching coefficients 
are defined between the (unravelled) elements of the 
respective rank similarity matrices {ri; i = 1, ..., N} 
and {si; i = 1, ..., N}, where N = n(n–1)/2 and n is the 
number of samples.  The simplest is the Spearman 
coefficient (e.g. Kendall, 1970) ¶: 

     ∑ = −
−

−= N
i iis sr

NN 1
2

2 )(
)1(

61r             (11.3) 

A standard alternative is Kendall’s τ (Kendall, 1970) 
which, in practice, tends to give rather similar results 
to rs.  The third possibility is a modified form of 
Spearman, the weighted Spearman (or harmonic‡) 
rank correlation: 

     ∑ = +
−

−
−= N

i
ii

ii
w sr

sr
NN 1

2)(
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61r             (11.4) 

¶ This matrix correlation statistic has already been met, e.g. on 
pages 6-11, 6-14, 7-10, and will be used extensively again later. 
‡ This is so defined by Clarke and Ainsworth (1993) because it is 
algebraically related to the average of the harmonic mean of each 
(ri, si) pair.  The denominator term, ri + si, down-weights the contrib-
ution of large ranks; these are the low similarities, the highest simil-
arity corresponding to the lowest value of rank similarity (1), as 
usual. Note that rw and τ tend to give consistently lower values 
than rs for the same match; nothing should therefore be inferred 
from a comparison of absolute values of rs, τ and rw. 
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Fig. 11.8.  Schematic diagram 
of the BEST procedure (Bio-
Env): selection of the abiotic 
variable subset maximising 
rank correlation (r) between 
biotic and abiotic (dis)simil-
arity matrices, by checking all 
combinations of variables. 

The constant terms are defined such that, in both 
(11.3) and (11.4), r lies in the range (–1, 1), with the 
extremes of r = –1 and +1 corresponding to the cases 
where the two sets of ranks are in complete opposition 
or complete agreement, though the former is unlikely 
to be attainable in practice because of the constraints 
inherent in a similarity matrix.  Values of r around 
zero correspond to the absence of any match between 
the two patterns, but typically r will be positive.  It is 
tempting, but wholly wrong, to refer rs to standard 
statistical tables of Spearman’s rank correlation, to 
assess whether two patterns are significantly matched 
(r  > 0).  This is invalid because the ranks {ri} (or {si}) 
are not mutually independent variables, since they are 
based on a large number (N) of strongly interdependent 
similarity calculations. 
 
In itself, this does not compromise the use of rs as an 
index of agreement of the two triangular matrices.  
However, it could be less than ideal because few of 
the equally-weighted difference terms in equation 
(11.3) involve ‘nearby’ samples.  In contrast, the 
premise at the beginning of this section makes it clear 
that we are seeking a combination of environmental 
variables which attains a good match of the high 
similarities (low ranks) in the biotic and abiotic 
matrices.  The value of rs, when computed from 
triangular similarity matrices, will tend to be swamped 
by the larger number of terms involving distant pairs 
of samples, contributing large squared differences in 
(11.3).  This motivates the down-weighting denominator 
term in (11.4).  However, experience suggests that, 
typically, this modification affects the outcome only 
marginally and, in the interests of simplicity of 
explanation, the well-known Spearman coefficient 
may be preferred. 

The BEST (Bio-Env) procedure 

The matching of biotic to environmental patterns can 
now take place¶, as outlined schematically in Fig. 11.8.  
Combinations of the environmental variables are 
considered at steadily increasing levels of complexity, 
i.e. k variables at a time (k = 1, 2, 3, ..., v).  Table 11.2 
displays the outcome for the Exe estuary nematodes. 

Table 11.2.  Exe estuary nematodes {X}.  Combinations of the 6 
environmental variables, taken k at a time, yielding the best matches 
of biotic and abiotic similarity matrices for each k, as measured 
by weighted Spearman rank correlation rs; bold type indicates 
overall optimum.  See earlier text for variable abbreviations. 

k             Best variable combinations (rs) 

1 H2S %Org Sal     … 
 (.66) (.57)      (.54) 

2 H2S, Sal   H2S, MPD   H2S, %Org   H2S, WT   … 
    (.77)       (.74)              (.70)     (.65) 

3 H2S, Sal, MPD  H2S, Sal, %Org   H2S, MPD, %Org  
         (.81)                     (.76)                     (.76) 

4 H2S, Sal, MPD, %Org H2S, Sal, MPD, Ht   … 
             (.80)             (.79) 

5 H2S, Sal, MPD, %Org, Ht  … 
                  (.80) 

6 H2S, Sal, MPD, %Org, Ht, WT 
                       (.79) 

The single abiotic variable which best groups the 
sites, in a manner consistent with the faunal patterns, 
is the depth of the H2S layer (rs = 0.66); next best is 
the organic content (rs = 0.57), etc.  Naturally, since 

¶ This is implemented in the PRIMER BEST routine, which 
includes both a full search (the Bio-Env  option) and a sequential, 
stepwise, form of this (BVStep), when there are too many variables to 
permit an exhaustive search. 
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the faunal ordination is not one-dimensional (Fig. 
11.7a), it would not be expected that a single abiotic 
variable would provide a very successful match, 
though knowledge of the H2S variable alone does 
distinguish points to the left and right of Fig. 11.7a 
(samples 1 to 4 and 6 to 9 have lower values than for 
samples 5, 10 and 12 to 19, with sample 11 between). 

The best 2-variable combination also involves depth 
of the H2S layer but adds the interstitial salinity.  The 
correlation (rs = 0.77) is markedly better than for the 
single variables, and this is the combination shown in 
Fig. 11.7b.  The best 3-variable combination retains 
these two but adds the median particle diameter, and 
gives the overall optimum value for rs of 0.81 (Fig. 
11.7c); rs drops slightly to 0.80 for the  best 4- and 
higher-way combinations.  The results in Table 11.2 do 
therefore seem to accord with the visual impressions in 
Fig. 11.7.†  In this case, the first column of Table 11.2 
has a hierarchical structure: the best combination at 
one level is always a subset of the best combination on 
the line below. This is not guaranteed since all combin-
ations have been evaluated and simply ranked, though 
it will tend to happen when the explanatory variables 
are only weakly related to each other, if at all.  

An exhaustive search over v variables involves 

     12
)!(!

!
1 −=

−∑ =
vv

k kvk
v              (11.5) 

combinations, i.e. 63 for the Exe estuary study, though 
this number quickly becomes prohibitive when v is 
larger than about 15.  Above that level, one could 
consider stepwise procedures which search in a more 
hierarchical fashion, adding and deleting variables 
one at a time (see the BEST BVStep option, Chapter 
16). In practice though, it may be desirable to limit 
the scale of the search initially, for a number of 
reasons, e.g. always to include a variable known from 
previous experience or external information to be 
potentially causal.  Alternatively, scatter plots of the 
environmental variables may demonstrate that some 
are highly inter-correlated and nothing in the way of 
improved ‘explanation’ could be achieved by entering 
them all into the analysis. 

† This will not always be the case if the 2-d faunal ordination has 
non-negligible stress.  It is the matching of the similarity matrices 
which is definitive, although it would usually be a good idea to 
plot the abiotic ordination for the best combination at each value 
of k, in order to gauge the effect of a small change in r on the 
interpretation.  Experience suggests that combinations giving the 
same value of r to two decimal places do not give rise to ordinations 
which are distinguishable in any practically important way, thus 
it is recommended that r is quoted only to this accuracy, as in 
Table 11.2. 

An example is given by the Garroch Head macrofauna 
study {G}, for which the 11 abiotic variables of Table 
11.1 are first transformed, to validate the use of Euclid-
ean distances and standard product-moment correlations 
(page 11-2).  As indicated earlier, choice of transform-
ations is aided by a draftsman plot, i.e. scatter plots 
of all pairwise combinations of variables, Fig. 11.9.  
Here, this is after all the concentration variables, but 
not water depth, have been log transformed‡, in line 
with the recommendations on page 11-2.   

The draftsman plot, and the associated correlation 
matrix between all pairs of variables, can then be 
examined for evidence of collinearity (page 11-5), 
indicated by straight-line relationships, with little 
scatter, in Fig. 11.9.  A further rule-of-thumb would 
be to reduce all subsets of (transformed) variables 
which have mutual correlations averaging more than 
about 0.95 to a single representative.  This suggests 
that %C, Cu, Zn and Pb are so highly inter-correlated 
that it would serve no useful purpose to leave them 
all in the BEST analysis.  For every good match that 
included %C, there would be equally good matches 
including Cu, Zn or Pb, leading to a plethora of effect-
ively identical solutions.  Here, the organic carbon 
load (%C) is retained and the other three excluded, 
leaving 8 abiotic variables in the full Bio-Env search.  
This results in an optimal match of the biotic pattern 
with %C, %N and Cd (rs = 0.86).  The corresponding 
ordination plots are seen in Fig. 11.10.  The biotic 
MDS of Fig. 11.10a, though structured mainly by a 
single strong gradient towards the dump centre (e.g. 
the organic enrichment gradient seen in Fig. 11.10b), 
is not wholly 1-dimensional.  Additional information, 
on a heavy metal, appears to improve the ‘explanation’. 

Further examples of the Bio-Env procedure are given 
in Clarke and Ainsworth (1993), Clarke (1993), 
Somerfield et al (1994) and many subsequent applic-
ations.  For a series of data sets on impacts on benthic 
macrofauna around N Sea oil rigs, Olsgard et al (1997, 
1998) use the Bio-Env procedure in a particularly 
interesting way.   They examine which transformations 
(Chapter 9) and what level of taxonomic aggregation 
(Chapter 10) tend to maximise the Bio-Env correl-
ation, r.  The hypotheses examined are that certain 
parts of the community, on the spectrum of rare to 
common species,  may delineate the underlying  impact 

‡ This actually uses a log(c+x) transformation where c is a constant 
such as 1 or 0.l.  The necessity for this, rather than a simple log(x) 
transform, comes from the zero values for the Cd concentrations 
in Table 11.1, log(0) being undefined.  A useful rule-of-thumb here 
is to set the constant c to the lowest non-zero measurement, or the 
concentration detection limit. 
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Fig. 11.9.  Garroch Head macrofauna {G}.  Draftsman plot (all possible pairwise scatter plots) for the 11 abiotic variables recorded at 12 

sampling stations across the sewage sludge dumpsite.  All variables except water depth have been log transformed. 

gradient more clearly (see page 9-4), as may some 
taxonomic levels, higher than species (see page 10-2). 
 
Global BEST test 
 
Another question which naturally arises is the extent 
to which the conclusions from a BEST run can be 
supported by significance tests. This is problematic 

given the lack of model assumptions underlying this 
procedure, which can be seen as both a strength (i.e. 
generality, ease of understanding, simplicity of inter-
pretation) and a weakness (lack of a structure for 
formal statistical inference). A simple RELATE test 
is available (see p6-14 and later) of the hypothesis 
that there is no relationship between the biotic inform-
ation  and that from a specified set of abiotic  variables, 
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Fig 11.10. Garroch Head macro-
fauna {G}.  MDS plots for the 
12 sampling stations across 
the sewage-sludge dump site 
(Fig. 8.3), based on: a) species 
biomass, as in Fig. 11.5a; 
b)-d) three combinations of 
carbon, nitrogen and cadmium 
concentrations (log transform-
ed) in the sediments, the best 
match with the biota over all 
combinations of the 8 variables 
being for %C, %N and Cd (rs 
= 0.86).  (Stress = 0.05, 0, 
0.01, 0.01). 
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i.e. that r  is effectively zero.  This can be examined 
by a permutation or randomisation test, of a type met 
previously on p6-11 & 6-14, in which r is recomputed 
for all (or a large random subset of) permutations of 
the sample labels in one of the two underlying simil-
arity matrices. As usual, if the observed value of r 
exceeds that found in 95% of the simulations, which by 
definition correspond to unrelated ordinations, then the 
null hypothesis can be rejected at the 5% level.   

Note however that this is not a valid procedure if the 
abiotic set being tested against the biotic pattern is the 
result of optimal selection by the BEST procedure, on 
the same data. For v variables, this is implicitly the 
same as carrying out 2v–1 null hypothesis tests, each 
of which potentially runs a 5% risk of Type 1 error 
(rejecting the null hypothesis when it is really true).  
This rapidly becomes a very large number of tests as 
v increases, and a naïve RELATE test on the optimal 
combination is almost certain to indicate a significant 
biotic-abiotic relation, even with entirely random data 
sets!  

What is needed here is a randomisation test which 
incorporates the fitting stage and thus allows for the 
selection bias in the optimal solution.  This can be 
readily achieved, though requires quite a heavy 
computational load.  The requirement is to generate 
the (null) distribution of the maximum r  that can be 
obtained, by an exhaustive search over all subsets of 
environmental variables (see Fig. 11.8), when there 
really is no matching structure between biotic and 
abiotic data. The null situation is again produced by 
randomly permuting the columns (samples) of one of 
the data matrices on the left hand side of Fig. 11.8, in 
relation to the other.  The two matrices are then 
treated as if their samples do have matching labels 
and the full Bio-Env procedure is applied, to find the 
subset of environmental variables which gives the 
‘best’ match.  Of course, this r would not be expected 
to be large, since any real match has been destroyed 
by the permutation, but r will clearly be greater than 
zero since the largest of all the 2v–1 calculated 
correlations has been selected.   

So far, then, we have produced a single value from 
the null distribution of (max) r, when there is no 
biotic-environmental link.  This whole procedure is 
now repeated a total of (say) 999 times, each time 
randomly reshuffling the columns of the abiotic 
matrix and running through the entire Bio-Env 
procedure, to obtain an optimum r.  A histogram of 
these values is the null distribution, namely, the 
expected range of BEST Bio-Env r values that it is 
possible to obtain by chance when there is no biotic to 

 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

137

0

266

Observed
rs = 0.86

Garroch Head macrofauna

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Observed
rs = 0.81

Exe estuary nematodes

Fr
eq

ue
nc

y 
in

 9
99

 ra
nd

om
is

at
io

ns
Fr

eq
ue

nc
y 

in
 9

99
 ra

nd
om

is
at

io
ns

Matching coefficient rs

Matching coefficient rs  
Fig. 11.11.  Garroch Head macrofauna {G} and Exe estuary 

nematodes {X}. Global BEST (Bio-Env) test for a significant 
relationship between community and environmental samples.  
The histograms are the null permutation distributions of 
possible values for the best Bio-Env match (Spearman rs), in the 
absence of a biota-environment relationship.  

abiotic link. As usual, comparison with the observed 
value of r  shows the statistical significance, or other-
wise, of this observed r. 

Fig 11.11 shows the resulting histograms for the two 
examples used in this chapter to illustrate the BEST 
(Bio-Env) procedure.  For both  the Exe nematodes 
{X} and the Garroch Head macrofauna {G}, we can be 
confident in interpreting the biota to environment 
links because the observed best matches of rs = 0.81 
and 0.86 are larger than could have been obtained by 
chance: they are greater than any of their 999 simul-
ated rs values (p<0.1%).  Note, however, how far the 
null distributions are from being centred at r = 0, 
particularly for the Garroch Head data, which has a 
mode at about 0.25 and right-tail values up to about 
0.7.  This reflects both the small number of sites that 
are being matched and the simplicity of the strong 
linear gradient in the sample structure.  With 8 abiotic 
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variables (and thus a choice of 255 possible subsets) 
it is clearly not that difficult to find an environmental 
combination, by chance, that gives some degree of 
match to any rank order of the samples along a line.   

The same idea can be used to derive a permutation 
test for the BVStep context, in which only a stepwise- 
selected set of optimal variables are generated. The 
simulations of the null condition simply require an 
equivalent stepwise search on the randomly permuted 
(and thus non-matching) matrices for the maximum r, 
repeated many times to obtain the null distribution for 
r. This is the principle of permutation tests: permute 
the data appropriately to reflect the null condition, then 
repeat exactly the same steps (however complicated) in 
calculating the test statistic as were carried out on the 
data in its original form, and compare the true statistic 
to the values under permutation.    

These tests for Bio-Env and BVStep procedures are 
together referred to as global BEST tests, and as with 
the global ANOSIM test of Chaper 6, this becomes an 
important initial ‘traffic light’.  The null hypothesis, of 
no biotic to abiotic link, must be decisively rejected 
before any attempt is made to interpret the environ-
mental variables that BEST selects. This is always 
helped by increasing the number of sites, conditions, 
times etc that are being matched.  For the Exe data, 
there were 19 sites (compared with 12 for Garroch 
Head) and only 6 environmental variables, and the 
null distribution of rs in Fig. 11.11 now has mode 
less than 0.1, with right tail values stretching to no 
higher than about 0.4.  Any reasonably large observed 
rs is therefore likely to be interpretable.  
 

FURTHER ‘BEST’ VARIATIONS  

Entering variables in groups 

In some contexts, it makes good sense to utilise an a 
priori group structure for the explanatory variables 
and enter or drop all variables within a single group 
simultaneously, e.g. if locations of sites expressed in 
latitude and longitude are two of the variables, it does 
not make sense to enter one into the ‘explanation’ and 
leave out the other. Valesini et al (2014, {e}) give a 
more major example of an estuarine fish study, where 
abiotic variables potentially driving the assemblages 
over different spatial scales were divided into those 
measuring wave exposure, substrate/vegetation type, 
extent of marine water intrusion, and more dynamic 
water quality parameters – with multiple variables in 
each group – all within a categorical structure, e.g. of 
different microtidal estuaries in Western Australia. 
Groups were entered into the BEST Bio-Env routine 

as indivisible units, to determine which variable type, 
or types, best explained the fish communities (at sites 
aggregated by SIMPROF into homogeneous clusters 
of their fish communities). Both BEST and the global 
BEST test need thus to be run on these (aggregated) 
samples by searching all combinations of groups of 
explanatory variables, which involves a much smaller 
number of combinations – and consequently lower 
selection bias to allow for in the permutation test – 
than if all variables had been separately entered. ¶ 

Constrained (‘two-way’) BEST analyses 

A further BEST modification parallels the two-way 
ANOSIM test of Chapter 6 and two-way SIMPER 
breakdown of Chapter 7. A strong categorical factor, 
clearly dominating the main differences observed in 
community structure among samples in an ordination,   
may sometimes not be comfortably incorporated into 
a set of quantitative explanatory variables to enter 
into BEST, e.g. if the factor has several levels which 
are in no sense ordered. An example could again be 
found in the Valesini et al (2014) study in which the 
suite of c. 15 quantitative environmental variables are 
measured at a wide range of sites within each of a 
number of different estuaries. Rather than attempt to 
convert the estuary factor into a quantitative form†, or 
simply ignore it on the grounds (say) that the major 
differences noted between estuaries should be ident-
ified by one of the measurement variables, in some 
circumstances it may be appropriate to accept that the 
differing locations will have differing assemblages 
and remove this categorical estuarine factor. For each 
considered combination of explanatory variables (or 
groups of variables perhaps, in the previous section), 
the matching statistic r is calculated separately within 
each of the levels (each estuary) and its values then 
averaged over those levels. The variable combination 
giving the largest average r is the constrained BEST 
match, and it can be tested for departure from the null 
hypothesis of ‘no genuine match’ by the same style of 
global BEST test as previously, but with constrained 
permutation of sample labels only within each level,  
then recalculating the largest average r, etc. The 2-
way crossed ANOSIM analogy is very clear. 

¶ The option to group variables, using a pre-defined indicator, is 
implemented in the PRIMER BEST routine and its associated test, 
as is the conditional BEST analysis which follows.  
† Clearly it would usually be inappropriate to number estuaries 
1, 2, 3, 4, and then treat this as a quantitative variable, since it 
forces estuaries 1 and 4 to be ‘further apart’ environmentally 
than 1 and 3, which may be arbitrary. Instead, the trick is usually 
to replace this single factor by four new binary factors. (Is the 
sample in estuary 1? If so score 1, otherwise 0. Is it in estuary 2? 
… etc).  Such binary variables are quantitative and now ordered.  
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Fig. 11.12.  Exe estuary nematodes {X}. First step in LINKTREE illustrated by a biotic nMDS of the 19 sites, as Fig. 11.6, with bubble 
plots for: a-c) median particle diameter, interstitial salinity (as % of 36ppt) and depth of the anoxic layer (cm). Dotted line indicates the 
optimal split of the communities at the 19 sites into two groups (open and closed circles), based on maximising the ANOSIM R statistic 
between them, subject to the constraint that the figured abiotic variable takes consistently lower values in one group than the other.  

LINKAGE TREES 

The idea of linkage trees¶ is most easily understood 
in the context of a particular example, so Fig. 11.12 
redisplays some of the nMDS bubble plots for the 17 
Exe estuary sites used to illustrate the BEST/Bio-Env 
procedure, earlier in this chapter. Bio-Env shows that 
three variables, MPD, Sal% and H2S, can ‘explain’ a 
large (and significant, Fig. 11.11) component of the 
multivariate biotic structure but this does not tell us 
how they explain the structure, e.g. for the five main 
clusters seen in Fig. 5.4, which abiotic variables are 
distinguishing which clusters? The answer is readily 
seen in this case from a few simple bubble plots, but 
this is only possible because the 2-d MDS stress is 
low (0.05) and thus the plot is reliable. In general it 
would be useful to have some means of describing 
how particular abiotic variables ‘explain’ particular 
divisions of samples in the full, high-d biotic space: 
the PRIMER LINKTREE routine can be helpful here.  

Binary divisive clustering was introduced on pages 
3-10 to 3-13. The unconstrained clustering technique 
described there (UNCTREE) divides each sample set 
into two subsets, successively, each binary division 
being chosen in some optimum way, until a stopping 
rule is triggered, which is typically a SIMPROF test 
failing to demonstrate community differences among 
the remaining samples in a group. LINKTREE, in 

¶ De’ath (2002) introduced this idea into ecology as ‘multivariate 
regression trees’, extending the ‘classification and regression 
trees’ (CART) routines found in major statistics packages such as 
S-Plus. Clarke et al (2008) adapt this technique to be consistent 
with PRIMER’s non-parametric approach, and therefore use 
binary clustering divisions based on optimising the rank-based 
ANOSIM R statistic rather than, for example, maximising among- 
group sums of squares. They use the terminology ‘linkage trees’ 
since the method has little to do with model-based ‘regression’ as 
such (a historical term arising from the ‘regression to the mean’ 
seen when the slope of a linear relationship declines as the 
residual variance increases). 

contrast, is a constrained binary divisive clustering, 
in which the only subdivisions allowed are those for 
which an ‘explanation’ exists in terms of a threshold 
on one of the environmental variables in a separately 
supplied abiotic matrix for a matching set of samples. 
For the Exe nematode data, the first stage is shown in 
Fig. 11.12: MPD, Sal% and H2S are considered one at 
a time. For Median Particle Diameter, the ‘best’ split 
of the full set of samples into two groups is shown on 
the biotic MDS for all 19 sites (seen previously at Fig 
11.6), corresponding to the threshold MPD<0.18 for 
sites 1-4, 7-9 (sites to the left of the dotted line) and 
MPD>0.21 for the remaining sites (to the right), Fig. 
11.12a. The ‘best’ split is defined here as that which 
maximises the ANOSIM R statistic between the two 
groups formed†, as was the case for the unconstrained 
(UNCTREE) procedure, and it does not use the MDS 
plot in any way – thus ensuring that the procedure 
works in the true high-d space of the biota data.  

For LINKTREE (unlike UNCTREE), not all 218 ways 
of dividing 19 samples into two groups are permitted, 
because most of them will not correspond to a precise 
threshold on the median particle diameter. In fact, by 
ranking the sites in increasing MPD order, it is clear 
that we only need to consider 18 possible divisions in 
the constrained case (the site with smallest MPD vs. 
the rest, the two smallest vs. the rest, and so on). Fig. 
11.2a shows the best of these 18 splits gives R=0.73. 

† As explained at the end of p3-11 we are not using ANOSIM as a 
test here, merely exploiting its very useful role as a measure of 
separation between groups of samples in multivariate space. Note 
therefore that the resemblance matrix among samples for each 
new set is re-ranked in order to calculate the R values for all the 
possible subsets from the next division. There are no constraints 
that subsets should be of comparable size. PRIMER does allow 
the user to debar groups of fewer than n samples (n specified) but 
there seems no good reason to rule out e.g. singleton groups, or 
not to split a group of less than n samples, if  a SIMPROF test 
would allow it. (Note, however, that SIMPROF will never split a 
group of two samples, page 3-10). PRIMER can also allow a split 
not to be made if R does not exceed a threshold value – see later.  
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Fig. 11.13.  Exe estuary nematodes {X}. a) Binary divisive clustering (LINKTREE) of the communities at 19 sites, for which step A was 

illustrated in Fig. 11.12, i.e. each split constrained by a threshold on one of the three abiotic variables: MPD, Sal%, H2S. The first in-
equality (e.g. for split A, H2S<7.3) always indicates sites to the left side of the split, the second (in brackets, e.g. >20) sites to the right. 
The same splits will be obtained whether abiotic data is transformed or not (the process is truly non-parametric!) so the inequalities 
should always quote untransformed values, for greater clarity. Dotted or grey lines or text denote splits not to be interpreted because 
they are below the stopping rules; here the latter use SIMPROF tests before each split and also require that R>0.2 (e.g. the split at L 
would be allowed by SIMPROF but has R<0.2). The y axis scale (B%) is the average of the between-group rank dissimilarities, using 
the original ranks from the biotic resemblance matrix, scaled to take the value 100% if the first split is a perfect division (i.e. R=1). 
b) Unconstrained binary divisive clustering (UNCTREE) of the same data, plotted in ‘classic’ style (e.g. as for LINKTREE in PRIMER 
v6; v7 allows both formats for either analysis). UNCTREE is based only on the biotic resemblances, with grey lines/letters again 
denoting divisions with R<0.2 or not supported by SIMPROF tests. 

Now the other two abiotic variables are considered in 
turn. Sal%, though important (as will be seen later),  
does not do a good job of an initial binary split, the 
best division giving only R=0.39 (Fig. 11.12b) – it is 
clear that sites are either of greatly reduced interstitial 
salinity (<24.8% of seawater) or are reasonably saline 
(>71.2%), with no sites in between. However, depth 
of the blackened H2S layer separates the 19 sites into 
two groups best of all here, with R=0.80 (Fig 11.12c), 
so this becomes the first division (labelled A) in the 
dendrogram of Fig. 11.13a.  

Each subset is now subject to further binary division, 
exploring thresholds on all three abiotic variables. It 
is clear from Fig. 11.12b, for  example, that Sal% will 
provide the best explanation for the natural separation 
of sites (5,10) from (12-19), those for which H2S>20 
in the first split. This gives R=1, split G on Fig. 11.3a, 
and the remaining divisions proceed in the same way. 
The figure legend gives some detail on layout of the 
full divisive dendrogram of Fig. 11.3a. One point to 
note is that inequalities can be in either direction, e.g. 
the division at J has sites to the left with Sal%>89.4 
and to the right with Sal%<89, and these will reverse 
if the dendrogram branches are arbitrarily rotated (in 
the same way as for any other dendrogram). Further, 
though all splits are shown¶, it would be incorrect to 

¶ This is to make it possible to display labels or factor levels and 
symbols for the samples, rather than the previous LINKTREE 
format in PRIMER v6 (the ‘classic’ style of Fig. 11.13b) which 
was restricted to using sample numbers. In the new form, it can 
be incorporated into shade plots, see the sample axis in Fig. 7.8.   

interpret some, since they ‘fail’ the SIMPROF test, 
i.e. if there is no evidence of biological heterogeneity 
of samples in a current group, then there can be no 
justification for seeking an environmental explanation 
for further dividing that group – thus these parts of 
the dendrogram are ‘greyed out’.  

The scale on the y axis can be chosen (the A% scale) 
to make the divisions equi-step, arbitrarily, down the 
dendrogram (this is the option used in most standard 
CART programs) but  here we display divisions at a y 
axis level (B%) which reflects the magnitude of diff-
erences between the subsets of samples formed at 
each division, in relation to the community structural 
differences across all samples. Such an absolute scale 
cannot be created from the ANOSIM R values used to 
make each split, since they continually ‘relativise’, by 
re-ranking the dissimilarities within each current set. 
Clarke et al (2008) show that an appropriate scale can 
be based only on between-group average rank dissim-
ilarity, using the original ranks from the full matrix. 
This is scaled by dividing by its value for the case of 
maximum possible separation of the first two groups 
produced by the initial division (the case R=1) and 
multiplying by 100, to give the B% scale. The Fig. 
11.13a dendrogram does not quite start at B = 100 
therefore, since the split seen in Fig. 11.12c gives R = 
0.80 (clearly a few between group dissimilarities are 
smaller than some within group values) but the split 
at G is seen to be between very different groups (B = 
82%), whilst that at, for example, D (the division of 
site 4 from 1 to 3), is inconsequential in comparison 
(B = 5%); that pattern is clear from the MDS plot.  
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An interesting but subtle point arises for split J, with 
its B = 35% value just exceeding that for H, a prior 
division (B = 34%). This reversal in the dendrogram 
is here an indication that the split of site 15 from (12-
14, 16-19) would have been a more natural first step 
than the LINKTREE division of sites 12-14 from 15-
19. In fact this is exactly what unconstrained (UNC-
TREE) clustering does, as seen in Fig. 11.13b (split 
J’). The point to note here is that LINKTREE is not 
able to make this more natural division because none 
of the three variables gives a threshold value which 
can separate site 15 from the set (12-14, 16-19). It is 
only after the group 12-14 has been removed that the 
separation of site 15 (now only from 16-19) has an 
‘explanation’. So the presence of such reversals in a 
dendrogram could be an indication that an abiotic 
variable capable of ‘explaining’ a natural pattern has 
not been measured. Here, site 15 is discriminated by 
Ht (height up the shore) and, had that variable been 
included, the dendrogram would have separated 15 
before others in that group. However, a reversal could 
equally well reflect large sampling variability in the 
biotic community or the measured abiotic variables – 
it is clear that LINKTREE is a technique suited only 
to robust data, with well-established detailed patterns 
in SIMPROF tests, and it is relevant that this success-
ful example of a LINKTREE run is a case where both 
biotic and abiotic data have been (time-)averaged to 
reduce the variability¶.  

¶ LINKTREE can also sometimes succeed because of its total lack 
of assumptions and thus great flexibility. An (over)simple charac-
terisation is that DISTLM (multivariate multiple linear regression 
in PERMANOVA+) assumes linearity and additivity of the abiotic 
variables on the high-d community response, whereas Bio-Env 
caters for non-linearity but still makes the additivity assumption, 
i.e. both are holistic methods applying across the full set of sites.  
For example, Ht (shore height) did not feature in Bio-Env results 
(Table 11.2) and would not do so in DISTLM, because its ‘effect’  
is inconsistent across the sites: 1-4 have a wide range of shore 
heights yet identical communities (largely true of sites 7-9 also), 
whereas the assemblage at site 15 appears to be separated from 
all those at 12-19 by the greater shore height (the only variable 
that makes this split). If, as here, Ht only appears to be important 
to the community when the sediment is coarser (MPD>0.21), but 
does not matter at all when it is finer (MPD<0.18), Fig. 11.12a, 
this is exactly the definition of interaction (non-additivity) of the 
two abiotic variables in their effect on the biota. By the intuitive 
premise for Bio-Env (first paragraph on page 11-6) it is clear 
that the procedure will be ambivalent about including Ht in its 
explanation. Similarly, in modelled multiple regression, whilst 
DISTLM could theoretically be extended to include all interaction 
effects (in addition to all quadratic terms, to try to allow for the 
non-linear response) this is usually impossible because of the 
large number of model parameters that would then need fitting. 
LINKTREE is designed to cater for strong non-linearity through 
its use of thresholds, and interaction through its compartmental-
isation – explanations are only local to a few sites not global. But 
it has major drawbacks: no allowance for sampling variability 
and an inability to cater sensibly for more than a few variables.  

One unwelcome result, however, of introducing more 
explanatory variables is that there are certain to be 
multiple explanations for each split, whereas this is 
only seen in a limited way in Fig. 11.13a, e.g. at split 
I, where a threshold on MPD or on Sal% will give the 
same division of sites (12,13) from 14. Had we used 
all 6 abiotic variables, nearly every division would 
have had multiple explanations, e.g. the first split A 
would have resulted from %Org>0.37(<0.24) as well 
as H2S<7.3(>20). The routine can have no basis for 
choosing between ‘explanations’ which give the same 
split – neither may be causal, of course! So there is a 
strong incentive in LINKTREE to be disciplined and 
use few abiotic variables, chosen for their potential 
causality and likely independence, as now seen.   

EXAMPLE: Fal estuary nematodes  

Fig. 11.14 shows the divisive LINKTREE clustering 
of 27 sites in 5 creeks of the Fal estuary, UK, based 
on nematode assemblages (creek map at Fig. 9.3, {f}). 
The creeks have varying levels of metal pollution by 
historic mining, here represented by sediment Cu 
concentrations (other metals being highly correlated 
with Cu), and a single grain size variable, %Silt/Clay.  

 
Fig. 11.14.  Fal estuary nematodes {f}. a) Constrained divisive 

clustering (LINKTREE, using y axis scale A%, of arbitrary equi-
steps), and b) nMDS of the 27 sites (in 5 creeks, see map in Fig. 
9.3: Restronguet, Mylor, Pill, St Just, Percuil), based on fourth-
root transformed counts and Bray-Curtis similarities. Divisions 
subject to thresholds on two environmental variables: sediment 
Cu concentration and %Silt/Clay ratio. Dashed lines and grey 
letters on the dendrogram denote groupings not supported by 
SIMPROF. Supported divisions identified by the same letters on 
the MDS, together with the inequalities ‘explaining’ them.   
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Though the creek distinctions are not utilised at all, 
the resulting divisive clustering and SIMPROF tests 
largely divides the sites into their creeks (with a few 
sub-divisions), Fig. 11.14a. In spite of the non-trivial 
stress in this case (0.12), making the MDS (11.14b) 
only an approximation to the biotic relationships, it 
can be still be useful to indicate the sub-groupings, by 
increasingly fainter dividing lines, and the thresholds 
from the LINKTREE run, manually on the ordination.  

CONCLUDING REMARKS 

For this chapter as a whole, two final points need to 
be made. The topic of experimental and field survey 
design for ecologists is a large one, addressed to some 
extent in the accompanying PERMANOVA+ manual 
(Anderson et al 2008)†, but this is a problematic area 
for all multivariate techniques because of the difficulty 
of specifying an explicit alternative hypothesis to the 
null hypothesis of, for example, no link of an assem-
blage to abiotic variables. A specified alternative is 
required to define power of statistical procedures but 
there a myriad ways in which individual species can 
react, even to a single environmental variable (some 
increase along an abiotic gradient, some decrease, 
some increase then decrease, others change little etc), 
any combination of which, for each of the variables, 
will be inferred as a biotic-abiotic link. Formal power 
calculations, analogous to those for simple univariate 
regression (e.g. Bayne et al 1981), are a non-starter, 
and simulation from observed alternatives to the null 
conditions are the only possible approach (see, for 
example, Somerfield et al 2002). However, in the 
context of linking biotic and abiotic patterns, it is 
intuitively clear that this has the greatest prospect of 
success if there are a moderately large number of 
sample conditions, and the closest possible matching 
of environmental with biological data.  In the case of a 
number of replicates from each of a number of sites, this 
could imply that the biotic replicates would each have 
a closely-matched environmental replicate. Without 
matching of biotic and abiotic samples none of the

† Green (1979) also provides some useful guidelines, mainly on 
field observational studies, and Underwood (1998) concentrates 
on design of field manipulative experiments; both books are 
largely concerned with univariate data but many of the core issues 
are common to all analyses. 

methods of this chapter could be used, so data from 
the two sources will always need averaging up to the 
lowest common denominator, giving a one-to-one 
match of ‘response’ and ‘explanatory’ samples.  

Another lesson of the Fal estuary nematode study and 
the Garroch Head example of Fig 11.9 is the difficulty 
of drawing conclusions about causal variables from 
any observational study.  In the Garroch Head case, 
four of the abiotic variables were so highly correlated 
with each other that it was desirable to omit all but 
one of them from the computations.  There may 
sometimes be good external reasons for retaining a 
particular member of the set but, in general, one of 
them is chosen arbitrarily as a proxy for the rest (e.g. 
in the Garroch Head data, %C was a proxy for the 
highly inter-correlated set %C, Cu, Zn, Pb).  If that 
variable does appear to be linked to the biotic pattern 
then any member of the subset could be implicated, 
of course.  More importantly, there cannot be a 
definitive causal implication here, since each retained 
variable is also a proxy for any potentially causal 
variable which correlates highly with it, but remains 
unmeasured.  Clearly, in an environmental impact 
study, a design in which the main pollution gradient 
(e.g. chemical) is highly correlated with variations in 
some natural environmental measures (e.g. salinity, 
sediment structure), cannot be very informative, 
whether the latter variables are measured or not.  A 
desirable strategy, particularly for the non-parametric 
multivariate analyses considered here, is to limit the 
influence of important natural variables by attempting 
to select sites which have the same environmental 
conditions but a range of contaminant impacts 
(including control sites‡ of course).  Even then¶, in a 
purely observational study one can never entirely 
escape the stricture that any apparent change in 
community, with changing pollution impact, could be 
the result of an unmeasured and unconsidered natural 
variable with which the contaminant levels happen to 
correlate. Such issues of causality motivate the follow-
ing chapter on experimental approaches. 

‡  Note the plurality; Underwood (1992) argues persuasively that 
impact is best established against a baseline of site-to-site variability 
in control conditions. 
¶ And in spite of impressive modern work on causal models that 
bring a much-needed sense of discipline to the selection of abiotic 
variables and prior modelling of causal links among variables 
and responses, see Paul and Anderson (2013).   
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CHAPTER 12:  CAUSALITY: COMMUNITY EXPERIMENTS IN THE 
FIELD AND LABORATORY 

 
In Chapter 11 we have seen how both the univariate and 
multivariate community attributes can be correlated 
with natural and anthropogenic environmental variables.  
With careful sampling design, these methods can 
provide strong evidence as to which environmental 
variables appear to affect community structure most, 
but they cannot actually prove cause and effect. In 
experimental situations we can investigate the effects of 
a single factor (the treatment) on community structure, 
while other factors are held constant or controlled, thus 
establishing cause and effect. There are three main 
study types which have been labelled ‘experiments’ 
(though many ecologists – and most statisticians! – 
would argue that it is a misnomer in the first case):  

1) ‘Natural experiments’.  Nature provides the treat-
ment, i.e. we compare places or times which differ 
in the intensity of the forcing factor in question. 

2) Field experiments.  The experimenter provides the 
treatment, i.e. environmental factors (biological, 
chemical or physical) are manipulated in the field. 

3) Laboratory experiments.  Environmental factors 
are manipulated by the experimenter in laboratory 
mesocosms or microcosms. 

The degree of ‘naturalness’ (hence realism) decreases 
from 1-3, but the degree of control which can be exerted 
over potentially confounding environmental variables 
increases from 1-3. 

In this chapter, each class of experiments is illustrated 
by a single example. These all happen to concern the 
meiobenthos, since such data is readily available to 
the authors(!) but also because the smaller the biotic 
size component the more amenable it is to community 
level manipulations (see Chapter 13) ¶. 

In all cases care should be taken to avoid pseudo-
replication, i.e. the treatments should be replicated, 
rather than a series of (pseudo-)replicate samples 
taken from a single treatment (e.g. Hurlbert, 1984).  
This is because other confounding variables, often 
unknown, may also differ between the treatments. It is 

¶ A self-evident truth from the explosion of assemblage studies 
using the PRIMER and PERMANOVA+ multivariate methods on 
microbiological communities in the last few years, many of which 
are a result of  manipulative experiments; see the downloadable 
reference list of PRIMER-using papers at www.primer-e.com 
mentioned in the footnote on p0-3. This manual is deficient in not 
representing such studies in its illustrations, but it is clear that 
there are few, if any, different issues of principle in carrying over 
the macro-scale examples to microbiological or genetic contexts.  

also important to run experiments long enough for 
community changes to occur; this favours components 
of the fauna with short generation times (Chapter 13). 

It should be made clear at the outset that the treatment 
of experiments in this chapter is somewhat cursory.  
The subject of ecological experiments requires a book 
of its own, indeed it gets an excellent one in Underwood 
(1998). The latter, though, in common with other 
biologically oriented texts on experiments, concerns 
univariate analysis (e.g. of a population abundance). 
Ecological experiments with multiple outcomes using 
multivariate methods are now, however, common-
place in publications (useful methods papers include 
Anderson 2001a,b; Chapman and Underwood 1999; 
Krzanowski 2002; Legendre and Anderson 1999; 
McArdle and Anderson 2001; Underwood and Chap-
man 1998; Clarke et al 2006b). 

‘NATURAL EXPERIMENTS’ 

It is doubtful whether so called natural experiments 
deserve to be called ‘experiments’ at all, and not 
simply well-designed field surveys, since they make 
comparisons of places or times which differ in the 
intensity of the particular environmental factor under 
consideration. The obvious logical flaw with this 
approach is that its validity rests on the assumption 
that places or times differ only in the intensity of the 
selected environmental factor (treatment); there is no 
possibility of randomly allocating treatments to 
experimental units, the central tool of experimentation 
and one that ensures that the potential effects of 
unmeasured, uncontrolled variables are averaged out 
across the experimental groups. Design is often a 
problem, but statistical techniques such as two-way 
ANOVA, e.g. Sokal and Rohlf (1981), Underwood 
(1981), or two-way ANOSIM (Chapter 6), may enable 
us to examine the treatment effect allowing for differ-
ences between sites, for example. This is illustrated in 
the first example below. 

In some cases natural experiments may be the only 
possible approach for hypothesis testing in community 
ecology, because the attribute of community structure 
under consideration may result from evolutionary 
rather than ecological mechanisms, and we obviously 
cannot conduct manipulative field or laboratory 
experiments over evolutionary time.  One example of 
a community attribute which may be determined by 
evolutionary mechanisms relates to size spectra in 
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marine benthic communities. Several hypotheses, 
some complementary and some contradictory, have 
been invoked to explain biomass size spectra and species 
size distributions in the metazoan benthos, both of 
which have bimodal patterns in shallow temperate 
shelf seas.  Ecological explanations involve physical 
constraints of the sedimentary environment, animals 
needing to be small enough to move between the 
particles (i.e. interstitial) or big enough to burrow, 
with an intermediate size range capable of neither 
(Schwinghamer, 1981). Evolutionary explanations 
invoke the optimisation of two size-related sets of 
reproductive and feeding traits: for example small 
animals (meiobenthos) have direct benthic development 
and can be dispersed as adults, large animals (macro-
benthos) have planktonic larval development and 
dispersal, there being no room for compromise 
(Warwick, 1984).   

To test these hypotheses we can compare situations 
where the causal mechanisms differ and therefore 
give rise to different predictions about pattern.  For 
example, the reproductive dichotomy noted above 
between macrobenthos and meiobenthos breaks down 
in the deep-sea, in polar latitudes and in fresh water, 
although the physical sediment constraints in these 
situations will be the same as in temperate shelf seas.  
The evolutionary hypothesis therefore predicts that 
there should be a unimodal pattern in these situations, 
whereas the ecological hypothesis predicts that it 
should remain bimodal. Using these situations as 
natural experiments, we can therefore falsify one or 
the other (or both) of these hypotheses. 

However, natural experiments of this kind are outwith 
this manual’s scope, and the chosen example concerns 
ecological effects of disturbance on assemblages. 

 
Fig. 12.1.  Tasmania, Eaglehawk Neck {T}.  Sketch showing the 
type of sample design.  Sample positions (same symbols as in Fig. 
12.3) in relation to disturbed sediment patches (shaded). 

The effects of disturbance by soldier crabs on 
meiobenthic community structure {T} 

On a sheltered intertidal sandflat at Eaglehawk Neck, on 
the Tasman Peninsula in S.E. Tasmania, the burrowing 
and feeding activities of the soldier crab Mictyris platy-
cheles are evidenced as intensely disturbed areas of 
sediment which form discrete patches interspersed with 
smooth undisturbed areas. The crabs feed by manipul-
ating sand grains in their mandibles and removing fine 
particulate material, but they are not predators on the 
meiofauna, though their feeding and burrowing activity 
results in intense sediment disturbance.  This situation 
was used as a ‘natural experiment’ on the effects of 
disturbance on meiobenthic community structure. Meio-
fauna samples were collected in a spatially blocked 
design, such that each block comprised two disturbed 
and two undisturbed samples, each 5m apart (Fig. 12.1). 

Table 12.1. Tasmania, Eaglehawk Neck {T}.  Mean values per core sample of univariate measures for nematodes, copepods and total 
meiofauna (nematodes + copepods) in the disturbed and undisturbed areas.  The significance levels for differences are from a two-way 
ANOVA, i.e. they allow for differences between blocks, although these were not significant at the 5% level. 

 Total 
individuals (N) 

Total 
species (S) 

Species 
richness (d) 

Shannon 
diversity (H’) 

Species 
evenness (J’) 

Nematodes      
Disturbed 205 14.4 2.6 1.6 0.58 
Undisturbed 200 20.1 3.7 2.2 0.74 
Significance (%)  91  1 0.3 0.1 1 

Copepods      
Disturbed   94 5.4 1.0 0.96 0.59 
Undisturbed 146  5.7 1.0 0.84 0.49 
Significance (%)  11  52 99  52  38 

Total meiofauna      
Disturbed 299 19.8 3.4 2.0 0.66 
Undisturbed 346 25.9 4.4 2.3 0.69 
Significance (%)  48  1  3  3  16 
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Fig. 12.2. Tasmania, Eaglehawk 
Neck {T}.  Replicate k-domin-
ance curves for nematode abund-
ance in each sampling block. 
D = disturbed, U = undisturbed. 

Univariate indices.  The significance of differences 
between disturbed and undisturbed samples (treatments) 
was tested with two-way ANOVA (blocks/treatments), 
Table 12.1. For the nematodes, species richness, 
Shannon diversity and evenness were significantly 
reduced in disturbed as opposed to undisturbed areas, 
although total abundance was unaffected.  For the 
copepods, however, there were no significant differ-
ences in any of these univariate measures. 

Graphical/distributional plots.  k-dominance curves 
(Fig. 12.2) also revealed significant differences in the 
relative species abundance distributions for nematodes 
(using both ANOVA and ANOSIM-based tests, the 
latter following DOMDIS,  as described on  p8-13, 

see Clarke, 1990).  For the copepods,  however,  
(plots given in Chapter 13, Fig. 13.4), k-dominance 
curves are intermingled and crossing, and there is no 
significant treatment effect. 

Multivariate ordinations.  MDS revealed significant 
differences in species composition for both nematodes 
and copepods: the effects of crab disturbance were 
similar within each block and similar for nematodes 
and copepods. Though the ‘treatment signal’ is weaker 
for the latter, note the general similarities in Fig. 12.3 
between the nematode and copepod configurations: both 
disturbed samples within each block are above both of 
the undisturbed samples (except for one block for 
the copepods), and the blocks are arranged in the 

Nematodes Copepods Meiofauna

 
Fig. 12.3.  Tasmania, Eaglehawk Neck {T}.  MDS configurations for nematode, copepod and ‘meiofauna’ (nematode + copepod) abund-

ance (root-transformed).  Different shapes represent the four blocks of samples.  Open symbols = undisturbed, filled = disturbed (stress 
= 0.12, 0.09. 0.11 respectively). 
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Table 12.2.  Tasmania, Eaglehawk Neck {T}.  Results of the two-
way ANOSIM test for treatment (disturbance/no disturbance) and 
block effects. 

 Disturbance  Blocks 

 R Sig.(%)  R Sig.(%) 

Nematodes 1.0 1.2  0.85 0.0 

Copepods 0.56 3.7  0.62 0.0 

Meiofauna 0.94 1.2  0.85 0.0 

 
same sequence across the plot.  For both nematodes 
and copepods, two-way ANOSIM shows a significant 
effect of both treatment (disturbance) and blocks, 
Table 12.2, but the differences are more marked for 
the nematodes (with higher values of the R statistic). 

Conclusions.  Univariate indices and graphical/distrib-
utional plots were only significantly affected by crab 
disturbance for the nematodes.  Multivariate analysis 
revealed a similar response for nematodes and copepods 
(i.e. it seems to be a more sensitive measure of commun-
ity change).  In multivariate analyses, natural variations 
in species composition across the beach (i.e. between 
blocks) were about as great as those between treatments 
within blocks, and the disturbance effect would not 
have been clearly evidenced without this blocked 
sampling design. 
 

FIELD EXPERIMENTS 

Field manipulative experiments include, for example, 
caging experiments to exclude or include predators, 
controlled pollution of experimental plots, and big-
bag experiments with plankton. Their use was histor-
ically (unsurprisingly) predominantly for univariate 
population rather than community studies, although 
some early examples of multivariate analysis of 
manipulative field experiments include Anderson and 
Underwood, 1997, Morrisey et al, 1996, Gee and 
Somerfield, 1997, Austen and Thrush, 2001. The 
following example is one in which univariate, 
graphical and multivariate statistical analyses have been 
applied to meiobenthic communities. 
 
Azoic sediment recolonisation experiment with 
predator exclusion {Z} 

Olafsson and Moore (1992) studied meiofaunal colon-
isation of azoic sediment in a variety of cages designed 
to exclude epibenthic macrofauna to varying degrees: 
A – 1 mm mesh cages designed to exclude all macro-
fauna; B –1 mm control cages with two ends left open;   
C  – 10 mm mesh cages to exclude only larger macro- 
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Fig. 12.4.  Azoic sediment recolonisation experiment {Z}.  MDS 

configuration for harpacticoid copepods (4th root transformed 
abundances) after 1, 3 and 8 months, with 6 different treatments 
(A–F), see text (stress = 0.07). 

fauna; D – 10 mm control cages with two ends left open; 
E – open unmeshed cages; F – uncaged background 
controls.  Three replicates of each treatment were 
sampled after 1 month, 3 months and 8 months and 
analysed for nematode and harpacticoid copepod 
species composition. 

Univariate indices.  The presence of cages had a more 
pronounced impact on copepod diversity than nemat-
ode diversity.  For example, after 8 months, H' and J' 
(but not S) for copepods had significantly higher values 
inside the exclusion cages than in the control cages 
with the ends left open, but for the nematodes, differ-
ences in H' were of borderline significance (p = 5.3%). 

Graphical/distributional plots.  No significant treat-
ment effect for either nematodes or copepods could be 
detected between k-dominance curves for all sampling 
dates, using the ANOSIM test for curves, referred to 
at the end of Chapter 8 (p8-13). 

Multivariate analysis.  For the harpacticoid copepods 
there was a clear successional pattern of change in 
community composition over time (Fig. 12.4), but no 
such pattern was obvious for the nematodes.  Fig. 12.4 
uses data from Table 2 in Olafsson and Moore’s paper, 
which are for the 15 most abundant harpacticoid species 
in all treatments and for the mean abundances of all 
replicates within a treatment on each sampling date.  
On the basis of these data, there is no significant 
treatment effect using the 2-way crossed ANOSIM 
test with no replication¶ (see page 6-10), but the 
fuller replicated data may have been more revealing. 

¶ Note, however, that this test (or the equivalent PERMANOVA 
test which exploits the interaction term as its residual) will be 
uninformative in the presence of large treatment × time 
interactions, which is a likely possibility here. 
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Fig. 12.5.  Nutrient enrichment 

experiment {N}.  k-dominance 
curves for nematodes, total cop-
epods and copepods omitting 
the ‘weed’ species of Tisbe, 
for summed replicates of each 
treatment, C = control, L = 
low and H = high dose. 

LABORATORY EXPERIMENTS 

More or less natural communities of some components 
of the biota can be maintained in laboratory (and also 
outdoor) experimental containers and subjected to a 
variety of manipulations.  Many types of experimental 
systems have been used for marine studies, ranging 
from microcosms (containers less than 1 m3) to meso-
cosms (1–1000 m3).  Early examples of microcosm 
experiments analysed by multivariate means can be 
found, for example, in Austen and McEvoy (1997), 
Schratzberger and Warwick (1998a, 1999), and meso-
cosm experiments in Austen et al (1998), Widdicombe 
and Austen (1998, 2001).  Macrocosms (larger than 
103 m3), usually involving the artificial enclosure of 
natural areas in the field, have also been used, for 
pelagic studies, though replicating the treatment is 
often a significant problem. 

Effects of organic enrichment on meiofaunal 
community structure {N} 

Gee et al (1985) collected undisturbed box cores of 
sublittoral sediment and transferred them to the 
experimental mesocosms established at Solbergstrand, 
Oslofjord, Norway.  They produced organic enrichment 
by the addition of powdered Ascophyllum nodosum to 
the surface of the cores, in quantities equivalent to 50 
g C m-2 (four replicate boxes) and 200 g C m-2 (four 
replicate boxes), with four undosed boxes as controls, 
in a randomised design within one of the large meso-
cosm basins.  After 56 days, five small core samples 
of sediment were taken from each box and combined 
to give one sample.  The structure of the meiofaunal 
communities in these samples was then compared. 

Univariate indices.  Table12.3 shows that, for the 
nematodes, there were no significant differences in 
species richness or Shannon diversity between treat-
ments, but evenness was significantly higher in enriched 
boxes than controls.  For the copepods, there were 
significant differences in species richness and evenness 
between treatments, but not in Shannon diversity. 

Table 12.3.  Nutrient-enrichment experiment {N}.  Univariate 
measures for all replicates at the end of the experiment, with the 
F-ratio and significance levels from one-way ANOVA. 

 Species  
richness (d) 

Shannon 
diversity (H') 

Species 
evenness (J') 

Nematodes    
Control 3.02 2.25 0.750 
 3.74 2.39 0.774 
 3.36 2.47 0.824 
 4.59 2.76 0.747 
Low dose 4.39 2.86 0.877 
 2.65 2.47 0.840 
 4.67 2.89 0.875 
 2.33 2.27 0.860 
High dose 2.86 2.17 0.782 
 2.82 2.39 0.843 
 4.30 2.40 0.829 
 4.09 2.47 0.853 
F ratio 0.04 1.39 5.13 
Sig level (p) ns ns <5% 

Copepods    
Control 2.53 1.93 0.927 
 1.92 1.56 0.969 
 2.50 1.77 0.908 
 2.47 1.94 0.931 
Low dose 1.80 1.60 0.643 
 1.66 1.28 0.532 
 1.66 1.16 0.484 
 1.79 1.54 0.640 
High dose 1.75 1.59 0.767 
 0.97 1.00 0.620 
 1.03 0.30 0.165 
 1.18 1.70 0.872 
F ratio 17.72 2.65 4.56 
Sig level (p) <0.1% ns <5% 

Graphical/distributional plots.  Fig. 12.5 shows the 
average k-dominance curves over all four boxes in 
each treatment.  For the nematodes these are closely 
coincident, suggesting no obvious treatment effect.  For 
the copepods, however, there are apparent differences 
between the curves.  A notable feature of the copepod
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Fig. 12.6.  Nutrient enrichment experiment {N}.  MDS of √√-transformed abundances of nematodes, copepods and total meiofauna (nematodes 

+ copepods). C = control, L = low dose, H = high dose (stress = 0.18, 0.09, 0.12). 

 
Table 12.4.  Nutrient enrichment experiment {N}.  Values of the 

R statistic from the ANOSIM test, in pairwise comparisons between 
treatments, together with significance levels.  C = control, L = 
low dose, H = high dose. 

 Treatment Statistic 
value (R) 

% Sig. 
level 

Nematodes    
 (L,C) 0.27 2.9 
 (H,C) 0.22 5.7 
 (H,L) 0.28 8.6 
Copepods    
 (L,C) 1.00 2.9 
 (H,C) 0.97 2.9 
 (H,L) 0.59 2.9 

assemblages in the enriched boxes was the presence, 
in highly variable numbers, of several species of the 
large epibenthic harpacticoid Tisbe, which are ‘weed’ 
species often found in old aquaria and associated with 
organic enrichment.  If this genus is omitted from the 
analysis, a clear sequence of increasing elevation of 
the k-dominance curves is evident from control to high 
dose boxes. 

Multivariate analysis. Fig. 12.6 shows that, in an MDS 
of √√-transformed species abundance data, there is no 
obvious discrimination between treatments for the 
nematodes.  In the ANOSIM test (Table 12.4) the 
values of the R statistic in pairwise comparisons between 

treatments are low (0.2–0.3), but there is a significant 
difference between the low dose treatment and the 
control, at the 5% level.  For the copepods, there is a 
clear separation of treatments on the MDS, the R 
statistic values are much higher (0.6–1.0), and there 
are significant differences in community structure 
between all treatments. 

Conclusions. The univariate and graphical/distributional 
techniques show lowered diversity with increasing 
dose for copepods, but no effect on nematodes.  The 
multivariate techniques clearly discriminate between 
treatments for copepods, and still have some discrimin-
ating power for nematodes.  Clearly the copepods have 
been much more strongly affected by the treatments 
in all these analyses, but changes in the nematode 
community may not have been detectable because of 
the great variability in abundance of nematodes in the 
high dose boxes.  The responses observed in the meso-
cosm were similar to those sometimes observed in the 
field where organic enrichment occurs.  For example, 
there was an increase in abundance of epibenthic 
copepods (particularly Tisbe spp.) resulting in a 
decrease in the nematode/copepod ratio.  In this 
experiment, however, the causal link is closer to 
being established, though the possible constraints and 
artefacts inherent in any laboratory mesocosm study 
should always be borne in mind (see, for example, the 
discussion in Underwood and Peterson, 1988). 
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CHAPTER 13:  DATA REQUIREMENTS FOR BIOLOGICAL EFFECTS 
STUDIES: WHICH COMPONENTS AND ATTRIBUTES 
OF THE MARINE BIOTA TO EXAMINE? 

 

COMPONENTS 

The biological effects of pollutants can be studied on 
assemblages of a wide variety of marine organisms: 
Pelagos 

– plankton (both phytoplankton and zooplankton) 
– fish (pelagic and demersal) 

Benthos (soft-bottom)  
– macrobenthos 
– meiobenthos 
– microbenthos, not much used in community studies 

Benthos (hard-bottom) 
– epifauna (encrusting forms, e.g. corals) 
– motile fauna (both macrofauna and meiofauna in 

e.g. algae, holdfasts and epifauna) 
These various components of the biota each have certain 
practical and conceptual advantages and disadvantages 
for use in biological effects studies.  These are discussed 
in this chapter, and an example is given for each of 
the components (although not all of these examples 
are directly concerned with pollution effects). 

PLANKTON 

The advantages of plankton are that: 
a) Long tows over relatively large distances result in 

community samples which reflect integrated ecolog-
ical conditions over large areas.  They are therefore 
useful in monitoring more global changes. 

b) Identification of macro-planktonic organisms is 
moderately easy, because of the ready availability 
of appropriate literature. 

The disadvantage of plankton is that, because the water 
masses in which they are suspended are continually 
mobile, they are not useful for monitoring the local 
effects of a particular pollutant source. 

Example: Continuous Plankton Recorder 

Plankton samples have been collected from ‘ships of 
opportunity’ plying their usual commercial routes across 
the NE Atlantic since the late 1940s (e.g. Colebrook, 
1986) and continue today, their historical continuity 
(through the Sir Alister Hardy Foundation for Ocean 
Science, Plymouth, UK) giving the survey ever greater 
importance with respect to climate change monitoring. 
The CPR plankton recorders collect samples through a 
small aperture, and these are trapped on a continuously 

winding roll of silk so that each section of silk contains 
an integrated sample from a relatively large area.  This 
has enabled long term trends in plankton abundance 
to be assessed; e.g. Colebrook (1986) describes a 
gradual decline in both zooplankton and phytoplankton 
since the early 1950s, with an upturn in the 1980s 
(Fig. 13.1). 

FISH 

The advantages of fish are that: 
a) Because of their mobility they are again more useful 

for studying general rather than local effects, but 
some demersal fish communities may show site 
fidelity, such as the coral-reef fish in the example 
below. 

b) The taxonomy of fish is relatively easy, in all parts 
of the world. 

c) Fish are of immediate commercial and public interest, 
and so studies of fish communities are more directly 
related to the needs of environmental managers 
than, for example, the meiobenthos (despite the 
fact, of course, that the latter are vitally important 
to the early life-stages of fish!). 
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Fig. 13.1.  Continuous Plankton Recorder Survey of the NE Atlantic 

{p}.  First principal components for zooplankton and phytoplankton 
over the first 35 years of the survey (from Colebrook, 1986).  Graphs 
scaled to zero mean and unit variance. 
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The disadvantages of fish are that:  

a) Strictly quantitative sampling which is equally rep-
resentative of all the species in the community is 
difficult.  The overall catching efficiency of nets, 
traps etc. is often unknown, as are the differing 
abilities of species to evade capture or their suscept-
ibility to be attracted to traps.  Visual census methods 
are also not free from bias, since some species will 
be more conspicuous in colouration or behaviour 
than other dull secretive species. 

b) Uncertainty about site fidelity is usually, but not 
always, a problem. 

Example: Maldives coral reef-fish 

For a study in the Maldive islands, Dawson-Shepherd 
et al (1992) used visual census methods to compare 
reef-fish assemblages at 23 coral reef-flat sites, 11 of 
which had been subjected to coral mining for the 
construction industry and 12 were non-mined controls.  
The MDS (Fig. 13.2) clearly distinguished mined 
from non-mined sites. 
 

MACROBENTHOS 

The advantages of soft-bottom macrobenthos are that: 

a) They are relatively non-mobile and are therefore 
useful for studying the local effects of pollutants. 

b) Their taxonomy is relatively easy. 

c) Quantitative sampling is relatively easy. 

d) There is an extensive research literature on the 
effects of pollution, particularly organic enrichment, 
on macrobenthic communities, against which specific 
case-histories can be evaluated. 
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Fig. 13.2.  Maldive Islands, coral-reef fish {M}.  MDS ordination 

of fish species abundance data from mined (M) and control (C) 
reef-flats (stress = 0.08). 

This combination of advantages has resulted in the 
soft-bottom macrobenthos being probably the most 
widely used component of the marine biota in environ-
mental impact studies.  Despite this, they do have 
several disadvantages: 

a) Relatively large-volume sediment samples must be 
collected, so that sampling requires relatively large 
research ships. 

b) Because it is generally not practicable to bring large 
volumes of sediment back to the laboratory for 
processing, sieving must be done at sea and is rather 
labour intensive and time consuming (therefore 
expensive). 

c) The potential response time of the macrobenthos to 
a pollution event is slow.  Their generation times 
are measured in years, so that although losses of 
species due to pollution may take immediate effect, 
the colonisation of new species which may take 
advantage of the changed conditions is slow.  Thus, 
the full establishment of a community characterising 
the new environmental conditions may take several 
years. 

d) The macrobenthos are generally unsuitable for 
causality experiments in mesocosms, because such 
experiments can rarely be run long enough for fully 
representative community changes to occur, and 
recruitment of species to mesocosm systems is often 
a problem because of their planktonic larval stages 
(see Chapter 12).                                                      

Example: Amoco Cadiz oil-spill 

The sensitivity of macrobenthic community structure 
to pollution events, when using multivariate methods 
of data analysis, is discussed in Chapter 14.  The 
response of the macrobenthos in the Bay of Morlaix 
to the Amoco Cadiz oil-spill some 40 km away, 
already seen in Chapters 5, 7 and 10, is a good 
example of this (Fig. 13.3). 
 

MEIOBENTHOS 

Apart from sharing the advantage of non-mobility, 
and therefore usefulness for local effects studies, the 
relative advantages and disadvantages of the meio-
benthos are exactly the reverse of the macrobenthos.  
Their advantages are: 

a) Because of their small size and high density in marine 
sediments, quantitative sampling of the meiobenthos 
is easy from small ships, open boats etc. 

b) The small volume of the samples means that they  
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Fig. 13.3.  Amoco-Cadiz oil spill, Bay of Morlaix {A}.  MDS for 

macrobenthos at station ‘Pierre Noire’, at approximately three-
monthly sampling intervals (stress = 0.09). 
 
can easily be transported to the laboratory, and need 
not be processed on board ship. 

c) Their generation times are usually measured in 
months rather than years, so that their potential 
response time to pollution events is much faster 
than that of the macrobenthos. 

d) Because of this fast response time, and direct benthic 
rather than planktonic development, the meiobenthos 
are good candidates for causality experiments in 
experimental microcosms and mesocosms. 

The disadvantages of meiobenthos are that: 

a) Their taxonomy is considered difficult.  Identification 
of almost all the meiobenthic taxa to species level 
presents difficulties even in Europe and N America, 
and in many parts of the world the fauna is almost 
completely unknown.  However, to a considerable 
degree, three factors mitigate against this problem: 

i. The robustness of community analyses to the use 
of taxonomic levels higher than species (see Chapter 
10). 

ii. The cosmopolitan nature of most meiobenthic 
genera. 

iii. The increasing availability of easily used keys 
to meiobenthic genera.  For example, the pictorial 
keys to marine nematodes of Platt and Warwick 
(1988) have been used successfully worldwide. 

b) Community responses of the meiobenthos to pollution 
are not as well documented as for the macrobenthos, 
and there is only a modest body of information in 
the literature against which particular case-histories 
can be evaluated. 

Example: Soldier crab disturbance of nematode 
assemblages, Tasmania 

This natural field experiment was first met in Chapters 
6 and 12.  It will be remembered that the nematode 
diversity profiles were affected by the crab disturb-
ance (Fig. 12.2), whereas no significant effect was 
noted for copepods (Fig. 13.4).  Many nematode 
species are more sedentary in habit than copepods, 
often adhering to sand-grains by secretions from their 
caudal glands, and some species prefer conditions of 
low oxygen concentration or are obligate anaerobes.  
The so called ‘thiobiotic’ meiofaunal community 
contains many nematode species, but apparently no 
copepods.  Non-bioturbated sediments will have a 
vertical gradient in physical and chemical conditions 
ranging from wave-disturbed sediments with an 
oxiphilic meiofauna community near the surface to a 
stable sediment with a thiobiotic community deeper 
down.  Dramatic disturbance by crabs, of the kind 
found at this site, will inevitably destroy this gradient, 
so that the whole sediment column will be well 
aerated and unstable.  This reduction in habitat 
complexity is probably the most parsimonious 
explanation for the reduction in nematode species 
diversity. 

The differential response of these two components of 
the meiobenthos has been elaborated here in order to 
demonstrate how a knowledge of the biology of these 
components can aid in the interpretation of community 
responses to perturbation.  The macrobenthos and 
meiobenthos may also respond differently to different 
kinds of perturbation (e.g. physical disturbance, 
pollution) so that a comparative study of both may be 
indicative of the cause. 

Example: Macrobenthos and meiobenthos in 
Hamilton Harbour, Bermuda 

Fig. 13.5 shows the average k-dominance curves for 
the macrobenthos and the nematode component of the 
meiobenthos at six stations in Hamilton Harbour.  For 
the macrobenthos, the curves at three of the stations 
(H3, H4 & H6) are much more elevated than the other 
three, suggesting some kind of perturbation at these 
sites.  For the nematodes, however, all curves are closely 
coincident.  There must therefore be some form of 
perturbation affecting the macrobenthos but not the 
meiobenthos, and it was suggested by Warwick et al 
(1990c) that this is more likely to be physical disturb-
ance of the sediment resulting from the regular passage 
of large cruise liners within the harbour, rather than 
pollution.  This is because the macrobenthos are much 
more dependent on sediment stability to maintain 
diversity than are the meiobenthos. 
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Fig. 13.4.  Tasmania, Eaglehawk 

Neck {T}.  k-dominance curves 
for disturbed (D) and undis-
turbed (U) copepod samples 
in 4 separate sampling blocks. 

HARD-BOTTOM EPIFAUNA 

The advantages of using hard-bottom encrusting faunas, 
reef-corals etc. are: 
a) They are immobile and therefore good for local 

effects studies. 
b) A major advantage over sedimentary faunas is that 

non-destructive (visual/photographic) sampling is 
possible. 

The disadvantages are: 
a) Remote sampling is more difficult. Intertidal or 

shallow subtidal sites can be surveyed (the latter by 
divers); remote cameras require a greater level of 
technical sophistication but great strides have been 
made with this technology in recent decades. 

 

b) Enumeration of colonial organisms is difficult, so 
that abundance units such as number of colonies or 
percentage cover must be used – this only becomes 
a problem when it is necessary to combine data on 
colonial organisms with that on motile species (see 
page 5-19). However, biomass measurements are 
difficult to make. 

Example: Indonesian reef corals 

The example shown in Fig. 13.6, of the effects of the 
1982-3 El Niño on reef coral communities at South 
Pari Island, was seen in Chapter 10.  A clear differ-
ence is seen in community composition between 1981 
and 1983, with a more steady pattern of change there-
after, though without full reversion to the initial state. 
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Fig. 13.5.  Hamilton Harbour, 
Bermuda {H}.  k-dominance 
curves for macrobenthos (left) 
and meiobenthic nematodes 
(right) at six stations (H2-H7). 
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Fig. 13.6.  Indonesian reef-corals {I}.  MDS for coral species 

percentage cover data for South Pari Island (10 replicate tran-
sects in each year). 1=1981, 3=1983 etc. (stress = 0.25). 

 
HARD-BOTTOM MOTILE FAUNA 

The motile fauna living on rocky substrates and assoc-
iated with algae, holdfasts, hydroids etc. has rarely 
been used in pollution impact studies because of its 
many disadvantages: 
a) Remote sampling is difficult. 
b) Quantitative extraction from the substrate, and 

comparative quantification of abundances between 
different substrate types, are difficult. 

c) Responses to perturbation are largely unknown. 
d) A suitable habitat (e.g. algae) is not always available.  

A solution to this problem, and also problem (b), 

that has sometimes been tried in practice, is to deploy 
standardised artificial substrates, e.g. plastic mesh 
pan-scrubbers, along suspected pollution gradients 
in the field, allowing these to become colonised. 

 
Example: Metazoan fauna of intertidal seaweed 
samples from the Isles of Scilly 

The entire metazoan fauna (macrofauna + meiofauna) 
was examined from five species of intertidal macro-
algae (Chondrus, Laurencia, Lomentaria, Cladophora, 
Polysiphonia) each collected at eight sites near low 
water from rocky shores on the Isles of Scilly, UK 
(Gee and Warwick, 1994).  The MDS plots for meio-
benthos and macrobenthos were very similar, with the 
algal species showing very similar relationships to each 
other in terms of their meiofaunal and macrofaunal 
community structure (Fig. 13.7).  The structure of the 
weed therefore clearly influenced community structure 
in both these components of the benthic fauna. 
 

ATTRIBUTES 

Species abundance data are by far the most commonly 
used in environmental impact studies at the community 
level.  However, the abundance of a species is perhaps 
the least ecologically relevant measure of its relative 
importance in a community, and we have already 
seen in Chapter 10 that higher taxonomic levels than 
species may be sufficient for environmental impact 
analyses.  So, when planning a survey, consideration 
should be given not only to the number of stations 
and number of replicates to be sampled, but also to 
the level of taxonomic discrimination which will be 
used, and which measure(s) of the relative importance 
of these taxa will be made. 

Chondrus Laurencia Lomentaria Cladophora Polysiphonia

Meiofauna Macrofauna

 

 

 

 

 

 

 

 
 

Fig. 13.7.  Scilly Isles seaweed 
fauna {S}.  MDS of standard-
ised √√-transformed meiofauna 
and macrofauna species abund-
ance data.  The five seaweed 
species are indicated by differ-
ent symbol and shading con-
ventions (stress = 0.19, 0.18). 
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Fig. 13.8.  Frierfjord macro-

fauna {F}.  MDS ordinations 
for abundance and biomass of 
the 4 replicates at each of the 
6 sites (stress = 0.10, 0.08). 

Abundance, biomass and production 

As a measure of the relative ecological importance for 
soft-sediment and water-column sampling of species, 
biomass is better than abundance, and production in 
turn is better than biomass.  However, the determination 
of annual production of all species within a community 
over a number of sites or times would be so time 
consuming as to be completely impracticable.¶  We 
are therefore left with the alternatives of studying 
abundances, biomasses, or both.  Abundances are 
marginally easier to measure, biomass may be a better 
reflection of ecological importance, and measurement 
of both abundance and biomass opens the possibility 
of comparing species-by-sites matrices based on these 
two different measures (e.g. by the ABC method 
discussed in Chapter 8).   

In practice, multivariate analyses of abundance and 
biomass data often give remarkably similar results, 
despite that fact that the species mainly responsible for 
discriminating between stations are usually different.  In 
Fig. 13.8, for example, the Frierfjord macrobenthos 
MDS configurations for abundance and biomass are 
very similar but it is small polychaete species which 
are mainly responsible for discriminating between 
sites on the basis of abundance, and species such as 
the large echinoid Echinocardium cordatum which 
discriminate the sites on the basis of biomass. 

¶ Although relative ‘production’ of species can be approximated 
using empirical relationships between biomass, abundance and 
production, and these ‘production’ matrices subjected to multi-
variate analysis, see Chapter 15. 

 
Species or higher taxa 

We have already seen in Chapter 10 that, in many 
pollution-impact studies, it has been found for both 
graphical and multivariate analyses that there is 
surprisingly little loss of information when the species 
data are aggregated to higher taxa, e.g. genera, families 
or sometimes even phyla.  For the detection of pollution 
impact, initial collection of data at the level of higher 
taxa would result in a considerable saving of time 
(and cost) in the analysis of samples.  Such a strategy 
would, of course, be quite inappropriate if the objective 
were to be  differently defined, for example, the quant-
ification of biodiversity properties. 
 

RECOMMENDATIONS 

It is difficult to give firm recommendations as to which 
components or attributes of the biota should be studied, 
since this depends on the problem in hand and the 
expertise and funds available.  In general, however, 
the wider the variety of components and attributes 
studied, the easier the results will be to interpret.  A 
broad approach at the level of higher taxa is often 
preferable to a painstakingly detailed analysis of species 
abundances.  If only one component of the fauna is to 
be studied, then consideration should be given to 
working up a larger number of stations/replicates at 
the level of higher taxa in preference to a small number 
of stations at the species level.  Of course, a large 
number of replicated stations at which both abundance 
and biomass are determined at the species level is 
always the ideal!  
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CHAPTER 14:  RELATIVE SENSITIVITIES AND MERITS OF 
UNIVARIATE, GRAPHICAL/DISTRIBUTIONAL AND 
MULTIVARIATE TECHNIQUES 

 
Two communities with a completely different taxonomic 
composition may have identical univariate or graphical/ 
distributional structure, and conversely those comprising 
the same species may have very different univariate 
or graphical structure.  This chapter compares univariate, 
graphical and multivariate methods of data analysis 
by applying them to a broad range of studies on various 
components of the marine biota from a variety of 
localities, in order to address the question of whether 
species dependent and species independent attributes 
of community structure behave the same or differently 
in response to environmental changes, and which are 
the most sensitive.  Within each class of methods we 
have seen in previous chapters that there is a very 
wide variety of different techniques employed, and to 
make this comparative exercise more tractable we 
have chosen to examine only one method for each 
class: 

Shannon-Wiener diversity index H' (see Chapter 8), 

k-dominance curves including ABC plots (Chapter 8), 

non-metric MDS ordination on a Bray-Curtis similarity 
matrix of appropriately transformed species abund-
ance or biomass data (Chapter 5). 

 
EXAMPLE 1: Macrobenthos from 
Frierfjord/Langesundfjord, Norway 

As part of the GEEP/IOC Oslo Workshop, macro-
benthos samples were collected at a series of six stations 
in Frierfjord/Langesundfjord {F}, station A being the 
outermost and station G the innermost (station F was 
not sampled for macrobenthos).  For a map of the 
sampling locations see Fig. 1.1. 
 
Univariate indices 

Site A had a higher species diversity and site C the 
lowest but the others were not significantly different 
(Fig. 14.1). 
 
Graphical/distributional plots 

ABC plots indicated that stations C, D and E were 
most stressed, B was moderately stressed, and A and 
G were unstressed (Fig. 14.2). 
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Fig. 14.1.  Frierfjord macrobenthos {F}.  Shannon diversity (mean 

and 95% confidence intervals) for each station. 
 
 
Multivariate analysis 

An MDS of all 24 samples (4 replicates at each station), 
supported by the ANOSIM test, showed that only 
stations B and C were not significantly different from 
each other (Fig. 14.3).  Gray et al (1988) show that 
the clusters correlate with water depth rather than 
with measured levels of anthropogenic variables such 
as hydrocarbons or metals. 

 
Conclusions 

The MDS was much better at discriminating between 
stations than the diversity measure, but perhaps more 
importantly, sites with similar univariate or graphical/ 
distributional community structure did not cluster 
together on the MDS.  For example, diversity at E 
was not significantly different from D but they are 
furthest apart on the MDS; conversely, E and G had 
different ABC plots but clustered together.  However, 
B, C and D all have low diversity and the ABC plots 
indicate disturbance at these stations.  The most likely 
explanation is that these deep-water stations are 
affected by seasonal anoxia, rather than anthropogenic 
pollution. 
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Fig. 14.2.  Frierfjord macro-
benthos {F}.  ABC plots based 
on the totals from 4 replicates 
at each of the 6 sites.  Solid 
lines: abundances; dotted lines: 
biomass. 
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Fig. 14.3.  Frierfjord macrobenthos {F}.  MDS of 4 replicates at 

each of sites A–E, G, from Bray-Curtis similarities on 4th root-
transformed counts (stress = 0.10). 

 
EXAMPLE 2: Macrobenthos from the 
Ekofisk oilfield, N. Sea 

Changes in community structure of the soft-bottom 
benthic macrofauna in relation to oil drilling activity 
at the Ekofisk platform in the North Sea {E} have been 
described by Gray et al (1990).  The positions of the 
sampling stations around the rig are coded by shading 
and symbol conventions in Fig. 14.4a, according to 
their distance from the active centre of drilling activity 
at the time of sampling. 

Univariate indices 

It can be seen from Fig. 14.4b that species diversity 
was only significantly reduced in the zone closer than 
250m from the rig, and that the three outer zones did 
not differ from each other in terms of Shannon diversity 
(this conclusion extends to the other standard  measures 
such as species richness and other evenness indices). 
 
Graphical/distributional plots 

The k-dominance curves (Fig. 14.4c) also only indicate 
a significant effect within the inner zone, the curves 
for the three outer zones being closely coincident. 
 
Multivariate analysis 

In the MDS analysis (Fig. 14.4d) community compos-
ition in all of the zones was distinct, and there was a 
clear gradation of change from the inner to outer zones.  
Formal significance testing (using ANOSIM) confirmed 
statistically the differences between all zones.  It will 
be recalled from Chapter 10 that there was also a clear 
distinction between all zones at higher taxonomic levels 
than species (e.g. family), even at the phylum level 
for some zones. 
 
Conclusions 

Univariate and graphical methods of data analysis 
suggest that the effects on the benthic fauna are rather 
localised.  The MDS is clearly more sensitive, and 
can detect differences in community structure up to 
3 km away from the centre of activity. 



 Chapter 14   
page 14–3  

b

c d

a Sampling sites Diversity

k-dominance Species MDS

Distance from centre of drilling activity:
1 - 3.5km 250m - 1km < 250m> 3.5km

2km

(30km E)

500m

Distance groups from oilfield centre

2.0

2.4

2.8

3.2

3.6

1 10 100
0

20

40

60

80

100

Species rank

Distance groups:

250m - 1km
1 - 3.5km

< 250m

> 3.5km

C
um

ul
at

iv
e 

%

Sh
an

no
n 

H
’

 
Fig. 14.4.  Ekofisk macrobenthos {E}.  a) Map of sampling sites, represented by different symbol and shading conventions according to 

their distance from the 2/4K rig at the centre of drilling activity; b) Shannon diversity (mean and 95% confidence intervals) in these distance 
zones; c) mean k-dominance curves; d) MDS from root-transformed species abundances (stress = 0.12). 

 
EXAMPLE 3: Reef corals at South Pari 
Island, Indonesia 

Warwick et al (1990b) analysed coral community 
responses to the El Niño of 1982-3 at two reef sites in 
the Thousand Islands, Indonesia {I}, based on 10 
replicate line transects for each of the years 1981, 83, 
84, 85, 87 and 88. 

Univariate indices 

At Pari Island there was an immediate reduction in 
diversity in 1983, apparent full recovery by 1985, 
with a subsequent but not significant reduction (Fig. 
14.5). 
 
Graphical/distributional plots 

The mean k-dominance curves were similar in 1981 
and 1985, with the curves for 1983, 1984, 1987 and 
1988 more elevated (Fig. 14.6).  Tests on the replicate 
curves (using the DOMDIS routine given on p8-13, 
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Fig. 14.5.  Indonesian reef corals, Pari Island {I}.  Shannon diversity 

(means and 95% confidence intervals) of the species coral cover 
from 10 transects in each year. 

followed by ANOSIM) confirmed the significance of 
differences between 1981, 1985 and the other years, 
but the latter were not distinguishable from each other. 



 Chapter 14  
 page 14–4  
 

1 10
Species rank

0

20

40

60

80

100

81

85
83

84

88

87

C
um

ul
at

iv
e 

%

 
Fig. 14.6.  Indonesian reef-corals, Pari Island {I}.  k-dominance 

curves for totals of all ten replicates in each year. 

 
Multivariate analysis 

Though the MDS has rather a high stress it nonetheless 
shows an immediate location shift in community 
composition at the ten replicate sites between 1981 
and 1983, and ANOSIM indicates significant differences 
between all pairs of years.  Recovery proceeded in the 
pre-El Niño direction but was not complete by 1988 
(Fig. 14.7). 
 
Conclusions 

All methods of data analysis demonstrated the dramatic 
post El Niño decline in species, though the multivariate 
techniques were seen to be more sensitive in monitoring 
the recovery phase in later years. 
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Fig. 14.7.  Indonesian reef-corals, Pari Island {I}.  MDS for coral 

species percentage cover data (1 = 1981, 3 = 1983 etc). 

EXAMPLE 4: Fish communities from 
coral reefs in the Maldives 

In the Maldive islands, Dawson-Shepherd et al (1992) 
compared reef-fish assemblages at 23 coral reef-flat 
sites {M}, 11 of which had been subjected to coral 
mining for the construction industry and 12 were non-
mined controls.  The reef-slopes adjacent to these 
flats were also surveyed. 
 
Univariate indices  

Using ANOVA, no significant differences in diversity 
(Fig. 14.8) were observed between mined and control 
sites, with no differences either between reef flats and 
slopes. 
 
Graphical/distributional plots 

No significant differences could be detected between 
mined and control sites, in k-dominance curves for 
either species abundance or biomass.  Fig. 14.9 displays 
the mean curves for reef-flat data pooled across the 
replicates for each condition. 
 
Multivariate analysis 

The MDS (Fig.14.10) clearly distinguished mined 
from control sites on the reef-flats, and also to a lesser 
degree even on the slopes adjacent to these flats, 
where ANOSIM confirmed the significance of this 
difference. 
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Fig. 14.8.  Maldive Islands, coral-reef fish {M}.  Shannon species 

diversity (means and 95% confidence intervals) at mined (closed 
symbols) and control (open symbols) sites, for both reef flats 
(circles) and reef slopes (squares). 
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Fig. 14.9.  Maldive Islands, coral-reef fish {M}.  Average k-dom-

inance curves for abundance and biomass at mined and control 
reef-flat sites. 

 
Conclusions 

There were clear differences in community composition 
due to mining activity revealed by multivariate methods, 
even on the reef-slopes adjacent to the mined flats, but 
these were not detected at all by univariate or graphical/ 
distributional techniques, even on the flats, where the 
separation in the MDS is so obvious. 
 

EXAMPLE 5: Macro- and meiobenthos 
from Isles of Scilly seaweeds 

The entire metazoan fauna (macrofauna + meiofauna) 
has been analysed from five species of intertidal macro-
algae (Chondrus, Laurencia, Lomentaria, Cladophora, 
Polysiphonia) each collected at eight sites near low 
water from rocky shores on the Isles of Scilly {S} 
(Fig. 14.11). 
 
Univariate indices 

The meiofauna and macrofauna showed clearly different  
 

 
Fig. 14.10.  Maldive Islands, coral-reef fish {M}.  MDS of 4th root-

transformed species abundance data.  Symbols as in Fig. 14.8, 
i.e. circles = reef-flat, squares = slope, solid = mined, open = 
control (stress = 0.09). 
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Fig. 14.11.  Scilly Isles {S}.  Map of the  sites (1-8) from each of 

which 5 seaweed species were collected. 

 

diversity patterns with respect to weed type; for the 
meiofauna there was a trend of increasing diversity 
from the coarsest (Chondrus) to the finest (Polysiph-
onia) weed, but for the macrofauna there was no clear 
trend and Polysiphonia had the lowest diversity (Fig. 
14.12). 
 
Graphical/distributional plots 

These differences in meiofauna and macrofauna species 
diversity profiles were also reflected in the k-dominance 
curves (Fig. 14.13) which had different sequencing 
for these two faunal components, for example the 
Polysiphonia curve was the lowest for meiofauna and 
highest for macrofauna. 
 
Multivariate analysis 

The MDS plots for meiobenthos and macrobenthos 
were very similar, with the algal species showing 
very similar relationships to each other in terms of 
their meiofaunal and macrofaunal community structure 
(see Fig. 13.7, in which the shading and symbol con-
ventions for the different weed species are the same 
as those in Fig. 14.12).  Two-way crossed ANOSIM 
(factors: weed species and site), using the form 
without replicates (p6-10), showed all weed species 
to be significantly different from each other in the 
composition of both macrofauna and meiofauna. 
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Fig. 14.12.  Isles of Scilly seaweed 
fauna {S}.  Shannon diversity 
(mean and 95% confidence 
intervals) for the meiofauna 
and macrofauna of different 
weed species: Ch = Chondrus, 
La = Laurencia, Lo = Loment-
aria, Cl = Cladophora, Po = 
Polysiphonia. 

Conclusions 

The MDS was more sensitive than the univariate or 
graphical methods for discriminating between weed 
species.  Univariate and graphical methods gave 
different results for macrobenthos and meiobenthos, 
whereas for the multivariate methods the results were 
similar for both. 
 

EXAMPLE 6: Meiobenthos from the 
Tamar Estuary, S.W. England 

Austen and Warwick (1989) compared the structure 
of the two major taxonomic components of the meio-
benthos, nematodes and harpacticoid copepods, in the 
Tamar estuary {R}.  Six replicate samples were taken 
at a series of ten intertidal soft-sediment sites (Fig. 
14.14). 
 
Graphical/distributional plots 

The average k-dominance curves showed no clear 
sequencing of sites for the nematodes, for example 
the curve for site 1 was closely coincident with that for 

for site 10 (Fig. 14.15).  For the copepods, however, 
the curves became increasingly elevated from the mouth 
to the head of the estuary.  However, for both nematodes 
and copepods, many of the curves were not distinguish-
able from each other. 
 
Multivariate analysis 

In the MDS, both nematodes and copepods showed a 
similar (arched) sequencing of sites from the mouth 
to the head of the estuary (Fig. 14.16).  ANOSIM 
showed that the copepod assemblages were significantly 
different in all pairs of sites, and the nematodes in all 
pairs except 6/7 and 8/9. 
 
Conclusions 

The multivariate technique was more sensitive in dis-
criminating between sites, and gave similar patterns for 
nematodes and copepods, whereas graphical methods 
gave different patterns for the two taxa.  For nematodes, 
factors other than salinity seemed to be more important 
in determining diversity profiles, but for copepods 
salinity correlated well with diversity. 
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Fig. 14.13.  Isles of Scilly seaweed 

fauna {S}.  k-dominance curves 
for meiofauna (left) and macro-
fauna (right).  Ch = Chondrus, 
La = Laurencia, Lo = Loment-
aria, Cl = Cladophora, Po = 
Polysiphonia. 
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Fig. 14.14.  Tamar estuary meiobenthos {R}.  Map showing locations 

of 10 intertidal mud-flat sites. 

 
EXAMPLE 7: Meiofauna from Eaglehawk 
Neck sandflat, Tasmania 

This example of the effect of disturbance by burrowing 
and feeding of soldier crabs {T} was dealt with in 
some  detail in Chapter 12.   For nematodes, univariate,  

graphical and multivariate methods all distinguished 
disturbed from undisturbed sites.  For copepods only 
the multivariate methods did.  Univariate and graphical 
methods indicated different responses for nematodes 
and copepods, whereas the multivariate methods indic-
ated a similar response for these two taxa. 

GENERAL CONCLUSIONS 

Three general conclusions emerge from these examples: 
1) The similarity in community structure between sites 

or times based on their univariate or graphical/distrib-
utional attributes is different from their clustering 
in the multivariate analysis. 

2) The species-dependent multivariate method is much 
more sensitive than the species-independent methods 
in discriminating between sites or times. 

3) In examples where more than one component of the 
fauna has been studied, univariate and graphical 
methods may give different results for different 
components, whereas multivariate methods tend to 
give the same results. 

The sensitive multivariate methods are essentially 
geared towards detecting differences in community 
composition between sites.  Although these differences 
can be correlated with measured levels of stressors 
such as pollutants, the multivariate methods so far 
described do not in themselves indicate deleterious 
change which can be used in value judgements.  Only 
the species-independent methods of data analysis lend 
themselves to the determination of deleterious responses 
although, as we have seen in Chapter 8 (and will do 
so again in Chapter 17), even the interpretation of 
changes in diversity is not always straightforward in 
these terms.  There is a need to employ sensitive 
techniques for determining stress which utilise the full 
multivariate information contained in a species/sites 
matrix, and three such possibilities form the subject 
of the next chapter. 
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Fig. 14.15.  Tamar estuary meio-

benthos {R}.  k-dominance 
curves for amalgamated data 
from 6 replicate cores for nem-
atode and copepod species 
abundances.  For clarity of 
presentation, some sites have 
been omitted. 
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Fig. 14.16.  Tamar estuary meio-

benthos {R}.  MDS of 4th root-
transformed nematode and cop-
epod species abundance data 
for six replicate cores at each 
of 10 stations. 

RECOMMENDATIONS 

It is important to apply a wide variety of classes of 
data analysis, as each will give different information 
and this will aid interpretation.  Sensitive multivariate 
methods will give an ‘early warning’ that community 
changes are occurring, but indications that these changes  

are deleterious are required by environmental managers, 
and the less sensitive taxa-independent methods will 
also play a role.  Amongst the latter are the newly-
devised biodiversity measures based on taxonomic 
(or phylogenetic) distinctness of the species making 
up a sample – see the discussion in Chapter 17 of their 
advantages over classical diversity indices. 
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CHAPTER 15:  MULTIVARIATE MEASURES OF COMMUNITY STRESS 
                                       AND RELATING TO MODELS 

 
We have seen in Chapter 14 that multivariate methods 
of analysis are very sensitive for detecting differences 
in community structure between samples in space, or 
changes over time.  Generally, however, these methods 
are used to detect differences between communities, 
and not in themselves as measures of community stress 
in the same sense that species-independent methods 
(e.g. diversity, ABC curves) are employed.  Even using 
the relatively less-sensitive species-independent methods 
there may be problems of interpretation in this context.  
Diversity does not behave consistently or predictably 
in response to environmental stress.  Both theory 
(Connell, 1978; Huston, 1979) and empirical observ-
ation (e.g. Dauvin, 1984; Widdicombe and Austen, 
1998) suggest that increasing levels of disturbance 
may either decrease or increase diversity, or it may 
even remain the same.  A monotonic response would 
be easier to interpret.  False indications of disturbance 
using the ABC method may also arise when, as some-
times happens, the species responsible for elevated 
abundance curves are pollution sensitive rather than 
pollution tolerant species (e.g. small amphipods, 
Hydrobia etc).  Knowledge of the actual identities of 
the species involved will therefore aid the interpretation 
of ABC curves, and the resulting conclusions will be 
derived from an informal hybrid of species-independent 
and species-dependent information (Warwick and 
Clarke, 1994).  In this chapter we describe three 
possible approaches to the measurement of community 
stress using the fully species-dependent multivariate 
methods. 

META-ANALYSIS OF MARINE 
MACROBENTHOS 

This method was initially devised as a means of 
comparing the severity of community stress between 
various cases of both anthropogenic and natural 
disturbance.  On initial consideration, measures of 
community degradation which are independent of the 
taxonomic identity of the species involved would be 
most appropriate for such comparative studies.  Species 
composition varies so much from place to place 
depending on local environmental conditions that any 
general species-dependent response to stress would 
be masked by this variability.  However, diversity 
measures are also sensitive to changes in natural 
environmental variables and an unperturbed community 
in one locality could easily have the same diversity as 
a perturbed community in another.  Also, to obtain 

comparative data on species diversity requires a highly 
skilled and painstaking analysis of species and a high 
degree of standardisation with respect to the degree 
of taxonomic rigour applied to the sample analysis; 
e.g. it is not valid to compare diversity at one site where 
one taxon is designated as Nematodes with another at 
which this taxon has been divided into species. 

The problem of natural variability in species compos-
ition from place to place can be potentially overcome 
by working at taxonomic levels higher than species.  
The taxonomic composition of natural communities 
tends to become increasingly similar at these higher 
levels.  Although two communities may have no species 
in common, they will almost certainly comprise the 
same phyla.  For soft-bottom marine benthos, we have 
already seen in Chapter 10 that disturbance effects 
are detectable with multivariate methods often at the 
highest taxonomic levels, even in some instances where 
these effects are rather subtle and are not evidenced 
in univariate measures even at the species level, e.g. 
the Ekofisk {E} study. 

Meta-analysis is a term widely used in biomedical 
statistics and refers to the combined analysis of a range 
of individual case-studies which in themselves are of 
limited value but in combination provide a more global 
insight into the problem under investigation.  Warwick 
and Clarke (1993a) have combined macrobenthic data 
aggregated to phyla from a range of case studies {J} 
relating to varying types of disturbance, and also from 
sites which are regarded as unaffected by such pertur-
bations.  A choice was made of the most ecologically 
meaningful units in which to work, bearing in mind 
the fact that abundance is a rather poor measure of 
such relevance, biomass is better and production is 
perhaps the most relevant of all (Chapter 13).  Of 
course, no studies have measured production (P) of 
all species within a community, but many studies 
provide both abundance (A) and biomass (B) data.  
Production was therefore approximated using the 
allometric equation: 

     P  =  (B/A)0.73 × A              (15.1) 

where B/A is simply the mean body-weight, and 0.73 
is the average exponent of the regression of annual 
production on body-size for macrobenthic invertebrates.  
Since the data from each study are standardised (i.e. 
production of each phylum is expressed as a proportion 
of the total) the intercept of this regression is irrelevant.  
For each data set the abundance and biomass data were 
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first aggregated to phyla, following the classification 
of Howson (1987); 14 phyla were encountered overall 
(see the later Table 15.1).  Abundance and biomass 
were then combined to form a production matrix using 
the above formula.  All data sets were then merged 
into a single production matrix and an MDS performed 
on the standardised, 4th root-transformed data using 
the Bray-Curtis similarity measure.  All macrobenthic 
studies from a single region (the NE Atlantic shelf) 
for which both abundance and biomass data were 
available were used, as follows: 

1) A transect of 12 stations sampled in 1983 on a west-
east transect (Fig. 1.5) across a sewage sludge dump-
ground at Garroch Head, Firth of Clyde, Scotland 
{G}.  Stations in the middle of the transect show 
clear signs of gross pollution. 

2) A time series of samples from 1963–1973 at two 
stations (sites 34 and 2, Fig. 1.3) in West Scottish 
sea-lochs, L. Linnhe and L. Eil {L}, covering the 
period of commissioning of a pulp-mill.  The later 
years show increasing pollution effects on the macro-
fauna, except that in 1973 a recovery was noted in 
L. Linnhe following a decrease in pollution loading. 

3) Samples collected at six stations in Frierfjord 
(Oslofjord), Norway {F}.  The stations (Fig. 1.1) 
were ranked in order of increasing stress A–G–E–
D–B–C, based on thirteen different criteria.  The 
macrofauna at stations B, C and D were considered 
to be influenced by seasonal anoxia in the deeper 
basins of the fjord. 

4) Amoco-Cadiz oil spill, Bay of Morlaix {A}. In order 
not to swamp the analysis with one study, the 21 
sampling times have been aggregated into 5 years 
for the meta-analysis: 1977 = pre-spill year, 1978 = 
post-spill year and 1979-81 = ‘recovery’ period. 

5) Two stations in the Skagerrak at depths of 100 and 
300m.  The 300m station showed signs of disturbance 
attributable to the dominance of the sediment re-
working bivalve Abra nitida. 

6) An undisturbed station off the coast of Northumber-
land, NE England. 

7) An undisturbed station in Carmarthen Bay, S Wales. 
8) An undisturbed station in Kiel Bay; mean of 22 sets 

of samples. 
In all, this gave a total of 50 samples, the disturbance 
status of which has been assessed by a variety of diff-
erent methods including univariate indices, dominance 
plots, ABC curves, measured contaminant levels etc.  
The MDS for all samples (Fig.15.1) takes the form of 
a wedge with the pointed end to the right and the wide 
end to the left.  It is immediately apparent that the 
long axis of the configuration represents a scale of 
disturbance, with the most disturbed samples to the 
right and the undisturbed samples to the left.  (The 
reason for the spread of sites on the vertical axis is 
less obvious).  The relative positions of samples on 
the horizontal axis can thus be used as a measure of 
the relative severity of disturbance.  Another gratifying 
feature of this plot is that in all cases increasing levels 
of disturbance result in a shift in the same direction, 
i.e. to the right.  For visual clarity, the samples from 
individual case studies are plotted in Fig. 15.2, with 
the remaining samples represented as dots.  
1) Garroch Head (Clyde) sludge dump-ground {G}.  

Samples taken along this transect span the full scale 
of the long axis of the configuration (Fig. 15.2a).  
Stations at the two extremities of the transect (1 
and 12) are at the extreme left of the wedge, and 
stations close to the dump centre (6) are at the 
extreme right. 
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Fig. 15.1.  Joint NE Atlantic 

shelf studies (‘meta-analysis’) 
{J}.  Two dimensional MDS 
ordination of phylum level 
‘production’ data (stress = 
0.16).
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Fig. 15.2.  Joint NE Atlantic shelf studies (‘meta-analysis’) {J}.  

As Fig. 15.1 but with individual studies highlighted: a) Garroch 
Head (Clyde) dump-ground; b) Loch Linnhe and Loch Eil; c) 
Frierfjord and Amoco-Cadiz spill (Morlaix). 

2) Loch Linnhe and Loch Eil {L}. In the early years 
(1963–68) both stations are situated at the unpolluted 
left-hand end of the configuration (Fig. 15.2b).  After 
this the L. Eil station moves towards the right, and 
at the end of the sampling period (1973) it is close 
to the right-hand end; only the sites at the centre of 
the Clyde dump-site are more polluted. The L. Linnhe 
station is rather less affected and the previously 
mentioned recovery in 1973 is evidenced by the 
return to the left-hand end of the wedge. 

3) Frierfjord (Oslofjord) {F}.  The left to right order 
of stations in the meta-analysis is A–G–E–D–B–C 
(Fig. 15.2c), exactly matching the ranking in order 
of increasing stress.  Note that the three stations 
affected by seasonal anoxia (B,C and D) are well 
to the right of the other three, but are not as severely 
disturbed as the organically enriched sites in 1) and 
2) above. 

4) Amoco-Cadiz spill, Morlaix {A}.  Note the shift to 
the right between 1977 (pre-spill) and 1978 (post-
spill), and the subsequent return to the left in 1979–
81 (Fig. 15.2c).  However, the shift is relatively 
small, suggesting that this is only a mild effect. 

5) Skagerrak. The biologically disturbed 300m station 
is well to the right of the undisturbed 100m station, 
although the former is still quite close to the left-
hand end of the wedge. 

6-8) Unpolluted sites. The Northumberland, Carmarthen 
Bay and Keil Bay stations are all situated at the left-
hand end of the wedge. 

An initial premise of this method was that, at the phylum 
level, the taxonomic composition of communities is 
relatively less affected by natural environmental vari-
ables than by pollution or disturbance (Chapter 10).  
To examine this, Warwick and Clarke (1993a) super-
imposed symbols scaled in size according to the values 
of the two most important environmental variables 
considered to influence community structure, sediment 
grain size and water depth, onto the meta-analysis 
MDS configuration (a technique described in Chapter 
11).  Both variables had high and low values scattered 
arbitrarily across the configuration, which supports 
the original assumption. 

With respect to individual phyla, annelids comprise a 
high proportion of the total ‘production’ at the polluted 
end of the wedge, with a decrease at the least polluted 
sites.  Molluscs are also present at all sites, except 
the two most polluted, and have increasingly higher 
dominance towards the non-polluted end of the wedge.  
Echinoderms are even more concentrated at the non-
polluted end, with some tendency for higher dominance 
at the bottom of the configuration (Fig. 15.3a). Crustacea 
are again concentrated to the left, but this time entirely 
confined to the top part of the configuration (Fig. 15.3b).  
Clearly, the differences in relative proportions of 
crustaceans and echinoderms are largely responsible 
for the vertical spread of samples at this end of the 
wedge, but these differences cannot be explained in 
terms of the effects of any recorded natural environ-
mental variables.  Nematoda are clearly more important 
at the polluted end of the wedge, an obvious conseq-
uence of the fact that species associated with organic 
enrichment tend to be very large in comparison with 
their normal meiofaunal counterparts (e.g. Onchol-
aimids), and are therefore retained on the macrofaunal 
ecologists’ sieves.  Other less important phyla show 
no clear distribution pattern, except that most are 
absent from the extreme right-hand samples. 
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Fig. 15.3.  Joint NE Atlantic shelf studies (‘meta-analysis’) {J}. 

As Fig. 15.1 but highlighting the role of specific phyla in shaping 
the MDS; symbol size represents % production in each sample 
from: a) echinoderms, b) crustaceans. 

This multivariate approach to the comparative scaling 
of benthic community responses to environmental stress 
seems to be more satisfactory than taxon-independent 
methods, having both generality and consistency of 
behaviour.  It is difficult to assess the sensitivity of 
the technique because data on abundance and biomass 
of phyla are not available for any really low-level or 
subtle perturbations.  However, its ability to detect 
the deleterious effect of the Amoco-Cadiz oil spill, 
where diversity was not impaired, and to rank the 
Frierfjord samples correctly with respect to levels of 
stress which had been determined by a wide variety 
of more time-consuming species-level techniques, 
suggests that this approach may retain much of the 
sensitivity of multivariate methods.  It certainly seems, 
at least, that there is a high signal/noise ratio in the 
sense that natural environmental variation does not 
affect the communities at this phyletic level to an extent 
which masks the response to perturbation.  The fact 
that this meta-analysis ‘works’ has a rather weak 
theoretical basis.  Why should Mollusca as a phylum 
be more sensitive to perturbation than Annelida, for 
example?  The answer to this is unlikely to be straight-
forward and would need to be addressed by considering 
a broad range of toxicological, physiological and 
ecological characteristics which are more consistent 
within than between phyla. 

The application of these findings to the evaluation of 
data from new situations requires that both abundance 
and biomass data are available.  The scale of  perturb-

ation is determined by the 50 samples present in the 
meta-analysis.  These can be regarded as the training 
set against which the status of new samples can be 
judged.  The best way to achieve this would be to merge 
the new data with the training set to generate a single 
production matrix for a re-run of the MDS analysis.  
The positions of the new data in the two dimensional 
configuration, especially their location on the principal 
axis, can then be noted. Of course the  positions of 
the samples in the training set may then be altered 
relative to each other, though such re-adjustments 
would be expected to be small.  It is also natural, at 
least in some cases, that each new data set should add 
to the body of knowledge represented in the meta-
analysis, by becoming part of an expanded training 
set against which further data are assessed.  This 
approach would preserve the theoretical superiority 
and practical robustness of applying MDS (Chapter 
5) in preference to ordination methods such as PCA.   

However, there are circumstances in which more 
approximate methods might be appropriate, such as 
when it is preferable to leave the training data set 
unmodified.  Fortunately, because of the relatively 
low dimensionality of the multivariate space (14 
phyla, of which only half are of significance), a two-
dimensional PCA of the ‘production’ data gives a plot 
which is rather close to the MDS solution.  The 
eigenvectors for the first three principal components, 
which explain 72% of the total variation, are given in 
Table 15.1.  The value of the PC1 score for any existing 
or new sample can then easily be calculated from the 
first column of this table, without the need to re-analyse 
the full data set.  This score could, with certain caveats 
(see below), be interpreted as a disturbance index.  This 
index is on a continuous scale but, on the basis of the 
training data set given here, samples with a score of 
>+1 can be regarded as grossly disturbed, those with a 
value between –0.2 and +1 as showing some evidence 
of disturbance and those with values <–0.2 as not 
signalling disturbance with this methodology.  A more 
robust, though less incisive, interpretation would place 
less reliance on the absolute location of samples on 
the MDS or PCA plots and emphasise the movement 
(to the right) of putatively impacted samples relative 
to appropriate controls.  For a new study, the spread of 
sample positions in the meta-analysis allows one to scale 
the importance of observed changes, in the context of 
differences between control and impacted samples for 
the training set. 

It should be noted that the training data is unlikely to 
be fully representative of all types of perturbation that 
could be encountered.   For example, in Fig. 15.1,  all 
the grossly polluted samples involve organic enrichment  
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Table 15.1. Joint NE Atlantic shelf studies (‘meta-analysis’) {J}.  
Eigenvectors for the first three principal components from covar-
iance-based PCA of standardised and 4th root-transformed phylum 
‘production’ (all samples). 

Phylum       PC1      PC2     PC3 

Cnidaria -0.039  0.094   0.039 
Platyhelminthes -0.016  0.026  -0.105 
Nemertea  0.169  0.026   0.061 
Nematoda  0.349 -0.127  -0.166 
Priapulida -0.019  0.010   0.003 
Sipuncula -0.156  0.217   0.105 
Annelida   0.266  0.109  -0.042  
Chelicerata  -0.004  0.013  -0.001 
Crustacea   0.265  0.864  -0.289 
Mollusca  -0.445 -0.007    0.768 
Phoronida  -0.009   0.005    0.008 
Echinodermata  -0.693  -0.404    -0.514  
Hemichordata  -0.062  -0.067   -0.078 
Chordata  -0.012    0.037   -0.003 

of some kind, which is conducive to the occurrence of 
the large nematodes which play some part in the posit-
ioning of these samples at the extreme right of the meta-
analysis MDS or PCA.  This may not happen with 
communities subjected to toxic chemical contamination 
only. Also, the training data are only from the NE 
European shelf, although data from a tropical locality 
(Trinidad, West Indies) have also been shown to 
conform with the same trend (Agard et al, 1993).  
Other studies have looked at specific impact data 
merged with the above training set (e.g. Somerfield et 
al, 2006, on dredged-material disposal in UK waters), 
though these studies have been rather few in number.  
It is unclear whether this represents a paucity of data 
of the right type (biomass measurements are still 
uncommon, in spite of the relative ease with which 
they can be made, given the faunal sorting necessary 
for abundance quantification), or reflects a failure of 
the analysis to generalise.   

INCREASED VARIABILITY 

Warwick and Clarke (1993b) noted that, in a variety 
of environmental impact studies, the variability among 
samples collected from impacted areas was much 
greater than that from control sites.  The suggestion 
was that this variability in itself may be an identifiable 
symptom of perturbed situations.  The four examples 
examined were: 

1) Meiobenthos from a nutrient-enrichment study 
{N}; a mesocosm experiment to study the effects of 
three levels of particulate organic enrichment (control, 

low dose and high dose) on meiobenthic community 
structure (nematodes plus copepods), using four 
replicate box-cores of sediment for each treatment. 

2) Macrobenthos from the Ekofisk oil field, N Sea 
{E}; a grab sampling survey at 39 stations around 
the oil field centre.  To compare the variability among 
samples at different levels of pollution impact, the 
stations were divided into four groups (A-D) with 
approximately equal variability with respect to 
pollution loadings.  These groups were selected 
from a scatter plot of the concentrations of two key 
pollution-related environmental variables, total PAHs 
and barium.  Since the dose/response curve of 
organisms to pollutant concentrations is usually 
logarithmic, the values of these two variables were 
log-transformed. 

3) Corals from S Tikus Island, Indonesia {I}; changes 
in the structure of reef-coral communities between 
1981 and 1983, along ten replicate line transects, 
resulting from the effects of the 1982–83 El Niño. 

4) Reef-fish in the Maldive Islands {M}; the structure 
of fish communities on reef flats at 23 coral sites, 
11 of which had been subjected to mining, with the 
remaining 12 unmined sites acting as controls. 

Data were analysed by non-metric MDS using the 
Bray-Curtis similarity measure and either square root 
(mesocosm, Ekofisk, Tikus) or fourth root (Maldives) 
transformed species abundance data (Fig. 15.4). While 
the control and low dose treatments in the meiofaunal 
mesocosm experiment show tight clustering of replic-
ates, the high dose replicates are much more diffusely 
distributed (Fig. 15.4a).  For the Ekofisk macrobenthos, 
the Group D (most impacted) stations are much more 
widely spaced than those in Groups A–C (Fig. 15.4b).  
For the Tikus Island corals, the 1983 replicates are 
widely scattered around a tight cluster of 1981 replicates 
(Fig. 15.4c)¶, and for the Maldives fish the control 
sites are tightly clustered entirely to the left of a more 
diffuse cluster of replicates of mined sites (Fig. 15.4d).  
Thus, the increased variability in multivariate structure 
with increased disturbance is clearly evident in all 
examples.

¶ We shall explore this data set in more detail in Chapter 16, in 
connection with the effect that choice of different resemblance 
measures has on the ensuing multivariate analyses. It is crucial to 
realise that this multivariate dispersion (seen in the MDS plot) 
represents variability in similarities among different replicate 
pairs and is not much influenced by, e.g., absolute variation in 
total cover. Euclidean distance, which is strongly influenced by 
the latter, shows the opposite pattern, with the replicates widely 
varying for 1981 and much tighter for 1983. Here, Bray-Curtis is 
driven by the turnover in species present (a concept ignored by 
Euclidean distance) in what is a sparse assemblage by 1983.  
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Fig. 15.4.  Variability study {N, 

E, I, M}.  Two-dimensional con-
figurations for MDS ordinations 
of the four data sets. Treatment 
codes: a) H = High dose, L = 
Low dose, C = Controls;  b) 
A–D are the station groupings 
by pollution load; c) 1 = 1981, 
3 = 1983; d) M = Mined, C = 
Controls (stress: 0.08, 0.12, 
0.11, 0.08). 

It is possible to construct an index from the relative 
variability between impacted and control samples. One 
natural comparative measure of dispersion would be 
based on the difference in average distance among 
replicate samples for the two groups in the 2-d MDS 
configuration.  However, this configuration is usually 
not an exact representation of the rank orders of simil-
arities between samples in higher dimensional space.  
These rank orders are contained in the triangular 
similarity matrix which underlies any MDS.  (The 
case for using this matrix rather than the distances is 
the same as that given for the ANOSIM statistic in 
Chapter 6.)  A possible comparative Index of Multi-
variate Dispersion (IMD) would therefore contrast 
the average rank of the similarities among impacted 
samples )( tr  with the average rank among control 
samples )( cr , having re-ranked the full triangular 
matrix ignoring all between-treatment similarities.  
Noting that high similarity corresponds to low rank 
similarity, a suitable statistic, appropriately 
standardised, is: 
     )()(2 ctct NNrrIMD +−=              (15.2) 
where 
      Nc  = nc (nc – 1)/2,  Nt  = nt (nt – 1)/2            (15.3) 

and nc, nt are the number of samples in the control 
and treatment groups respectively.  The chosen denom-
inator ensures that IMD has maximum value of +1 when 
all similarities among impacted samples are lower than 

any similarities among control samples.  The converse 
case gives a minimum for IMD of –1, and values near 
zero imply no difference between treatment groups. 

In Table 15.2, IMD values are compared between each 
pair of treatments or conditions for the four examples.  
For the mesocosm meiobenthos, comparisons between 
the high dose and control treatments and the high dose 
and low dose treatments give the most extreme IMD 
value of +1, whereas there is little difference between 
the low dose and controls. For the Ekofisk macro-
fauna, strongly positive values are found in comparisons 
between the group D (most impacted) stations and the 
other three groups. It should be noted however that 

Table 15.2. Variability study {N, E, I, M}.  Index of Multivariate 
Dispersion (IMD) between all pairs of conditions.  

Study Conditions compared IMD 

Meiobenthos High dose / Control +1 
 High dose / Low dose +1 
 Low dose / Control -0.33 
   

Macrobenthos Group D / Group C +0.77 
 Group D / Group B +0.80 
 Group D / Group A  +0.60 
 Group C / Group B -0.02 
 Group C / Group A -0.50 
 Group B / Group A -0.59 
   

Corals 1983 / 1981 +0.84 
   

Reef-fish Mined / Control reefs +0.81 
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stations in groups C, B and A are increasingly more 
widely spaced geographically.  Whilst groups B and 
C have similar variability, the degree of dispersion 
increases between the two outermost groups B and A, 
probably due to natural spatial variability.  However, 
the most impacted stations in group D, which fall 
within a circle of 500 m diameter around the oil-field 
centre, still show a greater degree of dispersion than 
the stations in the outer group A which are situated 
outside a circle of 7 km diameter around the oil-field.  
Comparison of the impacted versus control conditions 
for both the Tikus Island corals and the Maldives reef-
fish gives strongly positive IMD values. For the 
Maldives study, the mined sites were more closely 
spaced geographically than the control sites, so this is 
another example for which the increased dispersion 
resulting from the anthropogenic impact is ‘working 
against’ a potential increase in variability due to 
wider spacing of sites. Nonetheless, for both the 
Ekofisk and Maldives studies the increased dis-
persion associated with the impact more than cancels 
out that induced by the differing spatial scales.   

Application of the comparative index of multivariate 
dispersion (the MVDISP routine in PRIMER) suffers 
from the lack of any statistical framework for testing 
hypotheses of comparable variability among groups¶.  
As given above, it is also restricted to the comparison 
of only two groups, though it can be extended to several 
groups in straightforward fashion.  Let ir  denote the 
mean of the Ni = ni(ni–1)/2 rank similarities among the ni 
samples within the ith group (i = 1, …, g), having (as 
before) re-ranked the triangular matrix ignoring all 
between-group similarities, and let N be the number 
of similarities involved in this ranking (N = ∑i Ni). Then 
the dispersion sequence 
     krkrkr g /...,,/,/ 21              (15.4) 

defines the relative variability within each of the g 
groups,  the larger values  corresponding to  greater 
within-group dispersion. The denominator scaling 
factor k is (N + 1)/2, i.e. simply the mean of all N 
ranks involved, so that a relative dispersion of unity 
corresponds to ‘average dispersion’.  (If the number  

¶ This is because there is no exact permutation process possible 
under a null hypothesis which says that dispersion is the same but 
location of the groups may differ. The only viable route to a test 
is firstly to estimate the locations of each group in some high-d 
‘resemblance space’, and move those group centroids on top of 
each other. Having removed location differences, permuting the 
group labels becomes permissible under the null hypothesis. This 
is the procedure carried out by the PERMDISP routine in PERM-
ANOVA+, Anderson (2006). Like most tests in this add-on soft-
ware it is therefore an approximate rather than exact permutation 
test (because of the estimation step) and is semi-parametric not 
non-parametric (based on similarities themselves not their ranks).   

Table 15.3. Variability study {N, E, I, M}.  Relative dispersion of 
the groups (equation 15.4) in each of the four studies.  

Meiobenthos Control 0.58 
 Low dose 0.79 
 High dose 1.63 
   

Macrobenthos Group A 1.34 
 Group B 0.79 
 Group C 0.81 
 Group D 1.69 
   

Corals 1981 0.58 
 1983 1.42 
   

Reef-fish Control reefs 0.64 
 Mined reefs 1.44 

of samples is the same in all groups then the values in 
equation (15.4) will average 1, though this will not 
quite be the case if the {ni} are unbalanced.) 

As an example, the relative dispersion values given 
by (15.4) have been computed for the four studies 
(Table 15.3).  This is  complementary information to 
the IMD values; Table 15.2 provides the pairwise 
comparisons which follow the global picture in Table 
15.3.  The conclusions from the latter are, of course, 
consistent with the earlier discussion, e.g. the 
increase in variability at the outermost sites in the 
Ekofisk study, because of their greater geographical 
spread, being nonetheless smaller than the increased 
dispersion at the central, impacted stations. 

These four examples all involve either experimental 
or spatial replication but a similar phenomenon can 
also be seen with temporal replication.  Warwick et al 
(2002) report a study of macrobenthos in Tees Bay, 
UK, for annual samples (taken at the same two times 
each year) over the period 1973–96 {t}. This straddled 
a significant, and widely reported, phase shift in plank-
tonic communities in the N Sea, in about 1987.  The 
multivariate dispersion index (IMD),  contrasting pre-
1987 with post-1987, showed a consistent negative 
value (increase in inter-annual dispersion in later years) 
for each of six locations in Tees Bay, at each of the 
two sampling times (Table 15.4).   

Table 15.4. Tees Bay macrobenthos {t}.  Index of Multivariate 
Dispersion (IMD) between pre- and post-1987 years, before/after a 
reported change in N Sea pelagic assemblages.  

 March September 
Area 0 –0.15 –0.15 
Area 1 –0.09 –0.60 
Area 2 –0.33 –0.33 
Area 3 –0.35 –0.36 
Area 4 –0.28 –0.67 
Area 6 –0.46 –0.15 
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BREAKDOWN OF SERIATION 

Clear-cut zonation patterns in the form of a serial change 
in community structure with increasing water depth 
are a striking feature of intertidal and shallow-water 
benthic communities on both hard and soft substrata.  
The causes of these zonation patterns are varied, and 
may differ according to circumstances, but include 
environmental gradients such as light or wave energy, 
competition and predation.  None of these mechanisms, 
however, will necessarily give rise to discontinuous 
bands of different assemblages of species, which is 
implied by the term zonation, and the more general 
term seriation is perhaps more appropriate for this 
pattern of community change, zonation (with discont-
inuities) being a special case. 

Many of the factors which determine the pattern of 
seriation are likely to be modified by disturbances of 
various kinds.  For example, dredging may affect the 
turbidity and sedimentation regimes and major engin-
eering works may alter the wave climate.  Elimination 
of a particular predator may affect patterns which are 
due to differential mortality of species caused by that 
predator.  Increased disturbance may also result in the 
relaxation of interspecific competition, which may in 
turn result in a breakdown of the pattern of seriation 
induced by this mechanism.  Where a clear sequence 
of community change along transects is evident in the 
undisturbed situation, the degree of breakdown of this 
sequencing could provide an index of subsequent 
disturbance.  Clarke et al (1993) have described a 
simple non-parametric index of multivariate seriat-
ion, and applied it to a study of dredging impact on 
intertidal coral reefs at Ko Phuket, Thailand {K}. 

In 1986, a deep-water port was constructed on the SE 
coast of Ko Phuket, involving a 10-month dredging 
operation.  Three transects were established across 
nearby coral reefs (Fig. 15.5), transect A being closest 
to the port and subject to the greatest sedimentation, 
partly through escape of fine clay particles through 
the southern containing wall.  Transect C was some 
800 m away, situated on the edge of a channel where 
tidal currents carry sediment plumes away from the 
reef, and transect B was expected to receive an inter-
mediate degree of sedimentation. Data from surveys of 
these three transects, perpendicular to the shore, are 
presented here for 1983, 86, 87 and 88 (see Chapter 
16 for later years).  Line-samples of 10m were placed 
parallel to the shore at 10m intervals along the main 
transect from the inner reef flat to the outer reef edge,  
12 lines along each of transects A and C and 17 along 
transect B.  The same transects  were relocated each 
year and living coral cover of each species recorded.   

 
Fig. 15.5.  Ko Phuket corals {K}.  Map of study site showing locations 

of transects, A, B and C. 

The basic data were root-transformed and Bray-Curtis 
similarities calculated between every pair of samples 
within each year/transect combination (C was not 
surveyed in 1986); the resulting triangular similarity 
matrices were then input to non-metric MDS (Fig. 
15.6).  By joining the points in an MDS, in the order 
of the samples along the inshore-to-offshore transect, 
one can visualise the degree of seriation, that is, the 
extent to which the community changes in a smooth 
and regular fashion, departing ever further from its 
that at the start of the transect.  A measure of linearity 
of the resulting sequence could be constructed directly 
from the location of the points in the MDS.  However, 
this could be misleading when the stress is not zero, so 
that the pattern of relationships between the samples 
cannot be perfectly represented in 2 dimensions; this 
will often be the case, as with some of the component 
plots in Fig. 15.6¶. Again, a better approach is to 
work with the fundamental similarity matrix that 
underlies the MDS plots, of whatever dimension.  

¶ Even where the stress is low, the well-known arch effect, Seber 
(1984), mitigates against a genuinely linear sequence appearing 
in a 2-d ordination as a straight line; see the footnote on p11–3. 
Or to put it a simpler way, given the whole of 2-d space in which 
to place points which are essentially in sequence (i.e. the distance 
between points 1 and 2 is less than that between 1 and 3 which is 
less than between 1 and 4 etc), it is clear that points can ‘snake 
around’ (without coiling!) in that 2-d space in a large number of 
possible ways, few of which will end up looking like a straight 
line. Transect B in Years 83, 86 and 88 are a good case in point: 
none will be well fitted by a straight line regression on the MDS 
plot but they clearly have a very strong serial trend.  
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Fig. 15.6.  Ko Phuket corals 

{K}.  MDS ordination of the 
changing coral communities 
(species cover data) along 
three transects (A to C) at 
four times (1983 to 1988).  
The lines indicate the degree 
of seriation by linking success-
ive points along a transect, 
from onshore (1) to offshore 
samples (12 or 17); r values 
(seriation statistic, IMS) are 
at top right.  Sample 1 from 
transect A in 1983 is omitted 
(see text) and no samples 
were taken for transect C in 
1986 (reading across rows, 
stress = 0.10, 0.11, 0.09; 
0.10, 0.11; 0.08, 0.14, 0.11; 
0.07, 0.09, 0.10). 

The index of multivariate seriation (IMS) proposed is 
therefore defined as a Spearman correlation coefficient 
(rs, e.g. Kendall, 1970, see also equation 6.3)  computed 
between the corresponding elements of two triangular 
matrices of rank ‘dissimilarities’.  The first is that of 
Bray-Curtis coefficients calculated for all pairs from 
the n coral community samples (n = 12 or 17 in this 
case).  The second is formed from the inter-point 
distances of n points laid out, equally-spaced, along a 
line.  If the community changes exactly match this 
linear sequence (for example, sample 1 is close in 
species composition to sample 2, samples 1 and 3 are 
less similar; 1 and 4 less similar still, up to 1 and 12 
having the greatest dissimilarity) then the IMS has a 
value r = 1.  If, on the other hand, there is no discernible 
biotic pattern along the transect, or if the relationship 
between the community structure and distance offshore 
is very non-monotonic – with the composition being 
similar at opposite ends of the transect but very different 
in the middle – then r will be close to zero. These 
near-zero values can be negative as well as positive 
but no particular significance attaches to this. 

A statistical significance test would clearly be useful, 
to answer the question: what value of r is sufficiently 
different from zero to reject the null hypothesis of a 

complete absence of seriation?  Such an (exact) test 
can be derived by permutation in this case.  If the null 
hypothesis is true then the labelling of samples along 
the transect (1, 2, …, n) is entirely arbitrary, and the 
spread of r values which are consistent with the null 
hypothesis can be determined by recomputing its value 
for permutations of the sample labels in one of the two 
similarity matrices (holding the other fixed).  For T 
randomly selected permutations of the sample labels, 
if only t of the T simulated r values are greater than 
or equal to the observed r, the null hypothesis can be 
rejected at a significance level of 100(t+1)/(T+1)%.¶  

In 1983, before the dredging operations, MDS config-
urations (Fig.15.6) indicate that the points along each 
transect conform rather closely to a linear sequence, 
and there are no obvious discontinuities in the sequence 
of community change (i.e. no discrete clusters separated 
by large gaps); the community change follows a quite 
gradual pattern.  The values of r are consequently high 
(Table 15.5), ranging from 0.62 (transect C) to 0.72 
(transect B). 

¶ The calculations for the tests were carried out using the PRIMER 
RELATE routine, which is examined in more detail, and in more 
general form below, when this particular example is concluded. It 
has been referred to previously in Chapters 6 & 11 (r statistic). 
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Table 15.5.  Ko Phuket corals {K}.  Index of Multivariate Seriation 

(r) along the three transects, for the four sampling occasions.  
Figures in parentheses are the % significance levels in a permut-
ation test for absence of seriation (T = 999 simulations). 

Year Transect A Transect B Transect C 

1983 0.65 (0.1%) 0.72 (0.1%) 0.62 (0.1%) 
1986 0.26 (3.8%) 0.71 (0.1%) – 
1987 0.19 (6.4%) 0.32 (0.2%) 0.65 (0.1%) 
1988 0.64 (0.1%) 0.80 (0.1%) 0.72 (0.1%)  

The correlation with a linear sequence is highly sign-
ificant in all three cases.  Note that in the 1983 MDS 
for transect A, the furthest inshore sample has been 
omitted; it had very little coral cover and was an outlier 
on the plot, resulting in an unhelpfully condensed 
display of the remaining points.  The MDS has therefore 
been run with this point removed¶. There is no similar 
technical need, however, to remove this sample from 
the r calculation; this was not done in Table 15.5 
though doing so would increase the r value from 0.65 
to 0.74 (as indicated in Fig. 15.6). 

On transect A, subjected to the highest sedimentation, 
visual inspection of the MDS gives a clear impression 
of the breakdown of the linear sequence for the next 
two sampling occasions.  The IMS is dramatically 
reduced to 0.26 in 1986, when the dredging operations 
commenced, although the correlation with a linear 
sequence is still just significant (p=3.8%).  By 1987, 
r on this transect is further reduced to 0.19 and the 
correlation with a linear sequence is no longer signif-
icant. On transect B, further away from the dredging 
activity, the loss of seriation is not evident until 1987, 
when the sequencing of points on the MDS configure-
ation breaks down and the IMS is reduced to 0.32, 
although the latter is still significant (p=0.2%).  Note 
that the MDS plots of Fig. 15.6 may not tell the 
whole story; the stress values lie between 0.07 and 
0.14, indicating that the 2-dimensional pictures are 
not perfect representations.  The largest stress is, in 
fact, that for transect B in 1987, so that the seriation 
that is still detectable by the test is only imperfectly 
seen in the 2-dimensional plot.  It is also true that the 
increased number of points (17) on transect B, in 
comparison with A and C (12), will lead to a more 
powerful test. Essentially though what the test is 
picking up is a tendency for nearby samples on the 
transect to have more similar assemblages and one 
should bear in mind in interpreting such analyses that 
(as with the earlier ANOSIM test) it is the value of 

¶ The problem is discussed on p5-18 and the solution presented 
there, mixing a small amount of mMDS stress to the nMDS stress 
would have been an alternative, effective way of dealing with this.  

the statistic itself which gives the key information 
here: values around 0.6 or more will only be obtained 
if there is a clear serial trend in the samples. Smaller, 
but still significant values could result from serial 
autocorrelation, which the test will have some limited 
power to detect†.  

On transect C there is no evidence of the breakdown 
of seriation at all, either from the r values or from 
inspection of the MDS plot.  By 1988 transects A and 
B had completely recovered their seriation pattern, 
with r values highly significant (p<0.1%) and of 
similar size to those in 1983, and clear sequencing 
evident on the MDS plots.  There was clearly a graded 
response, with a greater breakdown of seriation occur-
ring earlier on the most impacted transect, some 
breakdown on the middle transect but no breakdown 
at all on the transect least subject to sedimentation. 

Overall, the breakdown in the pattern of seriation was 
due to the increase in distributional range of species 
which were previously confined to distinct sections of 
the shore.  This is commensurate with the disruption 
of almost all the types of mechanism which have been 
invoked to explain patterns of seriation, and gives us 
no clue as to which of these is the likely cause. 

MODEL MATRICES & ‘RELATE’ TESTS  

The form of the seriation statistic is simply a matrix 
correlation coefficient (e.g. equation 11.3) between the 
unravelled entries of the similarity matrix of the biotic 
samples and a model distance matrix defined, in this 
case from equi-spaced points on a line:   

 

† The distinction between trend and serial autocorrelation in uni-
variate statistics can be somewhat arbitrary. One can often model 
a time series just as convincingly by (say) a cubic polynomial 
response with a simple independent error term as by a simple 
linear fit with an autocorrelated error structure: which we choose 
is sometimes a matter of convention. Here, where the non-para-
metric framework steers clear of any parametric modelling, the 
test needs to be realistic in ambition: it can demonstrate an effect, 
and the size of that effect (r) and the accompanying MDS plot 
guides interpretation: large values imply a strong serial trend. 
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Correlation coefficients available with the PRIMER 
RELATE routine are three non-parametric options: 
Spearman, equation (11.3); Kendall’s τ (Kendall, 1970); 
weighted Spearman (11.4); and one measure which uses 
the similarities themselves rather than their ranks: the 
standard product-moment or Pearson correlation, (2.3). 
The latter is the form of matrix correlation first defined 
by Mantel (1967), in an epidemiological context. The 
Spearman coefficient r  is a natural choice for our rank-
based philosophy and has an interesting affinity with the 
ordered ANOSIM statistic, RO, discussed on p6-14 and 
p6-15, which builds the same model matrix of serial 
trend (with or without replication, see later).  This can, 
of course, be seriation in time rather than space, so this 
form of RELATE test provides a useful means of testing 
and quantifying the extent of a time trend – perhaps an 
inter-annual drift away of an assemblage from its initial 
state, through gradual processes such as climate change.   

EXAMPLE: Tees Bay macrofauna  

Fig. 15.7 shows the nMDS plot for the inter-annual 
macrofauna samples (282 species) collected every 
September from 1973 to 1976 in four areas of Tees 
Bay ({t}, see Fig. 6.17 for map, and individual MDS 
plots for each area). The current plot uses averages of 
the 4th-root transformed counts over the four areas 
(and the two sites within each area), and Bray-Curtis 
similarities, to obtain an overall picture of the time 
trend in the benthos. Relating the Bray-Curtis matrix 
to a triangular matrix of a seriation model, as shown 
schematically above, the (matrix) Spearman rank 
correlation (r) takes a high value of 0.68. Though the 
stress in the MDS is not negligibly low, the strong 
time trend seen in this statistic is very evident in the 
plot. Notice again that is it not at all necessary for the 

 
Fig. 15.7.  Tees Bay macrofauna {t}.  MDS plot of inter-annual time 

trend in averaged data over 4 areas (and 2 sites per area), for Sept-
ember samples, based on 4th-root transformed counts of 282 species 
and Bray-Curtis similarities among averaged samples.   

the plot to take the form of a straight line to obtain a 
high r value: the statistic is much more general than 
this and the approximations inherent in any low-d 
ordination are avoided by direct correlation of the 
observed and modelled resemblance matrices. High r  
values are triggered by any continuing movement of 
the community away from its initial state.   

As explained above, the hypothesis test available is 
only of the null hypothesis H0: r = 0, that there is no 
link of the assemblage to such a serial time sequence, 
and the null distribution is obtained by recalculating 
r  for a large number of random reassignments of the 
24 year numbers to the 24 samples. (Note that this is 
not a test of the hypothesis r  = 1, of a perfect time 
trend – that is a common misunderstanding!). Here, 
unsurprisingly, the observed sequence gives a higher 
r  than any of 9999 such permutations (p << 0.1%)    
and is never higher here than about r = 0.3 by chance 
(the large number of years gives a ‘powerful’ test).  

The matrix correlation idea can be much more general 
than seriation, as was seen in Chapter 11, where it was 
used in the BEST routine to link biotic dissimilarity to a 
distance calculated from environmental variables. Model 
matrices can therefore be viewed as just special cases of 
abiotic data which define an a priori structure, an (alt-
ernative) hypothesis which we erect as a plausible model 
for the biotic data. We wish then to do two things: to test 
the null hypothesis that there is no link of the data to the 
hypothesised model, and if rejected, to interpret the size 
of the correlation r of the data to the model.  

The model matrix for the Phuket coral data was based 
on simple physical distance between the 10m-spaced 
transect positions down the shore. This generalises in 
an obvious way to the physical distance between all 
pairs of sampling locations in a geographical layout 
(indeed this was the distance matrix used by Mantel 
for his work on clustering of cancer incidences). The 
test and r statistic then quantify how strongly related 
observed assemblages are to mutual proximity of the 
samples, and the model matrix can be created by in-
putting simple x, y co-ordinates (e.g. the decimalised  
latitude-longitude) to a resemblance calculation of 
non-normalised Euclidean distance.  

EXAMPLE: Loch Creran/Etive macrofauna 

Somerfield and Gage (2000) describe grab sampling 
of subtidal soft sediments in Scottish sea-lochs, by a 
vessel positioning at points equidistant (∼50m) from a 
moored buoy, giving 16 equal-spaced samples around 
a 100m diameter circle (samples numbered 1-16). An 
MDS ordination from this data set is seen in Fig. 15.8 
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Fig. 15.8. Creran & Etive  sea-loch macrofauna {c}. MDS of species 

abundance data from sub-tidal samples taken at 16 equally-spaced 
locations on the circumference of a circle (in an unperturbed envir-
onment). Significant (albeit weak) match to a cyclic model matrix.  

and while again the stress is high, so the 2-d MDS is 
not very reliable, there is certainly a suggestion that 
the samples, joined in their order of sampling, around 
the circle, match this spatial layout. A model matrix 
from a serial trend is no longer appropriate of course; 
instead it will be of the following general form (but 
illustrated only for 6 points around a circle)¶. 

 
For equal-spaced points round a circle, the inter-point 
distances shown are not physically accurate – they 
are chords of a circle, and if that is of radius 1, the 
actual distances would be 1, 1.73 (=√3) and 2, rather 
than 1, 2 and 3 – but the model matrix is shown with 
distances 1, 2 and 3 because a Spearman correlation 
is only a function of the rank orders of the distances. 

¶ The PRIMER RELATE routine gives three options: match to a 
simple seriation (distance matrix of the type on p15-10), simple 
cyclicity (distance matrix as seen here) or to any other supplied 
triangular matrix (a further model matrix, or possibly a second 
biotic resemblance matrix, e.g. testing and quantifying the match 
of reef fish community structure to the coral reef assemblages on 
which they are found). A separate routine on the Tools menu, 
Model Matrix, allows the user to create more complex models, for 
seriation or cyclicity where spacing is unequal or where there are 
replicates at each point. These are specified by numeric levels of 
a factor. E.g. though this simple 6-point circular model is auto-
matically catered for by RELATE, recreating it using the Model 
Matrix routine needs a factor with levels in (0,1), taken to be the 
same point at the start and end of the circle, i.e. use levels 0, 
0.167, 0.333, 0.5, 0.667, 0.833 for the samples 1, 2, 3, 4, 5, 6. 

The matching coefficient of the assemblage (dis)sim-
ilarities to this distance coefficient is r = 0.34, and 
this was larger than produced by any of 999 random 
permutations of the labels, hence the null hypothesis 
of no match can be rejected (at p < 0.1%), on a test 
designed for an alternative hypothesis of cyclicity.  

However, rather than a spatial context, a cyclic model 
matrix is much more likely to be useful in a temporal 
study, e.g. where seasonality (or perhaps diurnal data) 
is involved. A data set with monthly levels 1-12, for 
January to December, would fit poorly to a seriation 
since the latter would dictate that December was the 
most dissimilar month to January. An example of bi-
monthly sampling, where a test for a hypothesis of no 
seasonality is not a foregone conclusion, is provided 
by the Exe estuary nematode data met extensively in 
Chapters 5 and 11, and also in Chapter 7.     

EXAMPLE: Exe estuary nematodes 

Fourth-root transformed nematode counts from 174 
species are averaged over the 19 sampling sites of the 
Exe estuary study {X}, separately for each of the 6 bi-
monthly sampling times through a single year. (Note 
that most previous analyses in this manual have used 
the data averaged over the months, separately for the 
sites, though an exception is Fig. 6.12). The question 
is simply whether there is any overall demonstration 
of seasonal pattern in these 6 meiofaunal community 
samples? The model matrix is now exactly that shown 
immediately to the left and the Spearman correlation 
of Bray-Curtis dissimilarities with this matrix is 0.21. 
The evidence in Fig. 15.9 for any such cyclic pattern 
in unconvincing, either in the MDS or in the formal 
RELATE test (p = 20%, see inset, where the jagged 
null distribution is a result of the small number of 
distinct permutations of the 6 numbers, i.e. 5! = 120).  

 
Fig. 15.9. Exe estuary nematodes {X}. nMDS on Bray-Curtis similar-

ities from counts of 174 species, 4th-root transformed then averaged 
over the 19 locations, for each of 6 bi-monthly sampling times over 
one year (1-6).  Inset: null distribution for test of cyclicity (r=0.21).  
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Seriation with replication 

Quite commonly, there will be interest in testing for a 
serial trend in the presence of replicate observations 
at each of the points in time or space (or at ordered 
treatment levels etc). This is precisely the problem 
that was posed towards the end of Chapter 6 (p6-14 
onwards) in setting up the ordered ANOSIM tests. 
There are now ordered groups of samples (A, B, C, 
…), and the null hypothesis ‘H0: A=B=C=…’ that the 
groups are indistinguishable is not tested against a 
non-specific alternative ‘H1: A, B, C, … differ’ but 
against the ordered seriation model ‘H1: A<B< C …’. 
More detail is given on p6-14 to 6-16, but the only 
difference here is that instead of using the generalised 
ANOSIM statistic RO, the slope of the regression line 
of the ranks {ri} in the (biotic) dissimilarity matrix 
against the ranks {si} in the model matrix, we use 
here their correlation r (this is Pearson correlation on 
the ranks, i.e. Spearman on the matrices).  

 

The simple form of seriation with replication (the 
model matrix for which is seen above, illustratively, 
for 3 groups A, B, C, with 2 replicates in groups A 
and C, and 3 replicates in B), was extensively studied 
by Somerfield et al (2002) and illustrated by further 
Norwegian oilfield benthic data from the N Sea, {g}.   

EXAMPLE: Gullfaks oilfield macrofauna 

Routine monitoring of soft-sediment macrobenthos 
around all the Norwegian oilfields typically involves 
sites radiating in several directions (usually 4) from 
the centre of each field (as in the Ekofisk study, see 
Fig. 10.6), but for analysis purposes broadly grouped 
into distance classes. For the two oilfields: GullfaksA 
(16 sites, 1989 data) and GullfaksB (12 sites, 1993), 3 
groups were defined as C: <1km, B: ∼1km, A: > 1km 
from the centre of drilling activity, each consisting of 
between 4 and 6 replicate sites. These are shown as 
differing symbols and shading on their faunal MDS 
plots in Fig. 15.10.  Unlike the Ekofisk data, where 
the oilfield had been operating for longer, the group 
differences are less clear-cut, and differences are not 
significantly established in unordered ANOSIM tests. 

 
Fig. 15.10. Gullfaks oilfields, macrofauna {g}. nMDS on Bray-Curtis 

similarities from transformed species counts for sites in 3 distance 
groups A: >1km, B: ∼1km, C: <1km from the oilfield centres. Both 
show a significant left to right progression, with seriation statistics 
r =0.20 and r =0.22 for GullfaksA and GullfaksB fields respectively. 

However, when tested against the ordered alternative, 
using the seriation with replication schematic (to the 
left) the r values of 0.20 and 0.22 are both significant 
at about the p < 2% level. The issue here is one of 
power of the test. As Somerfield et al (2002) show, 
where a test against an ordered alternative is relevant, 
it will have more power to reject the null hypothesis 
(‘no group differences’) in favour of that alternative¶. 
The improved power always comes at a price though, 
namely the likely inability to detect an alternative 
which is not the postulated model matrix. Thus, in 
Fig. 15.10, B is generally intermediate between A and 
C, and this is as postulated. If the benthic community 
is distinct at differing distances from the oilfield as a 
result of dilution of contaminants coming from the 
centre†, then a situation in which groups A and C 
have indistinguishable benthic assemblages but B has 

¶ This is certainly true of the analogue in univariate statistics (see 
Somerfield et al 2002), e.g. the choice between ANOVA and linear  
regression when treatment levels (with replication) are numeric. 
Regression is always the more powerful, though it would completely 
miss, for example, a hormesis response that ANOVA would detect. 
Power is a much more difficult concept in multivariate space but 
Somerfield et al (2002) demonstrate a similar result for unordered 
ANOSIM vs RELATE (i.e. ordered ANOSIM) in some special cases, 
by simulation from observed alternatives to the null of ‘no change’.  
† Or a number of other causal mechanisms to do with existence of 
the oilfield that might be tricky to distinguish by biotic observat-
ional data alone, e.g. a change in the sediment structure resulting 
from deposition of finer grained drilling muds, maybe disruption 
of current flows, even reduced  commercial fishing pressure etc.  
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a different one would not be interpretable, and would 
be discounted as a ‘fluke’. If we are happy to forgo 
the prospect of ever detecting such a case then it 
makes sense to focus the statistic on alternatives that 
are of interest, and thereby gain power.  

Constrained (‘2-way’) RELATE tests 

Just as was seen with the BEST procedure in Chapter 
11 (p11-12), it is straightforward to remove the effect 
of a further (crossed) factor when testing similarities 
against a model matrix (or any secondary matrix). 
The r statistic is calculated separately within each 
level of the ‘nuisance’ factor, so that any effect of the 
latter is removed, and the resulting r statistics then 
averaged. The same procedure is carried out for the 
permutations under the null hypothesis, i.e. it is a 
constrained permutation in which labels are only 
permuted within the levels of the second (nuisance) 
factor, just as in 2-way ANOSIM or its ordered form 
(p6-7 and p6-17). However, the ordered ANOSIM 
tests in PRIMER v7 only implement the seriation 
model (with or without replication), so the following 
RELATE example illustrates a 2-factor case where a 
cyclic test is needed on (replicated) seasons, having 
removed regional differences in the assemblages, {l}. 

EXAMPLE: Leschenault estuarine fish 

Veale et al (2014) describe nearshore trawls for fish 
abundance (43 species) in a microtidal W Australian 
estuary, with freshwater inflow only near the estuary 
mouth (Basal region, B) and thus a reverse salinity 
gradient increasing through its Lower (L), Upper (U) 
and Apex (A) regions. That region has a strong effect 
on fish communities is evident from the MDS of Fig. 
15.11b, for 6-8 replicate samples (both spatially, in 
regions, and temporally, across years) from each of 
16 combinations of 4 seasons and 4 regions. There is 
some suggestion from Fig. 15.11a (the same MDS but 
showing seasons) of a seasonal effect, but this is hard 
to discern, given also the strong regional effect. 

The conditional test for seasonality fits the model 
matrix on p15-12, but for only 4 not 6 times (Autumn, 
Winter, Spring, Summer) and with replication. (A test 
without replication is possible but this really needs to 
be for monthly or bimonthly data rather than just four 
seasons, since there are only 3! = 6 distinct permutat-
ions from a single set of 4 times). The r  statistic, 
averaging the cyclicity (seasonality) r values, given 
by each region separately, is only 0.27, indicating the 
high replicate variability (seen in Fig. 15.11a and b), 
but this is strongly significantly different from zero 
(p<<0.01%) since the permutations never came close 
to  producing an average r  larger than 0.1. That there 
is a clear seasonal effect, consistently across regions, 
can be seen (as must always be done, and rarely is!) 
by averaging over the temporal and spatial replicates 
to obtain the 16-sample nMDS of Fig. 15.11c. 

 
Fig. 15.12. Leschenault estuary fish {l}. nMDS from Bray-Curtis for 

averages over all samples (previously dispersion weighted then 
transformed, p9-10) from 4 regions over 4 seasons. Regions align 
left to right in increasing salinity up the estuary, clearly with parallel 
seasonal cycles. 

 

 
 
 
 

Fig. 15.12. Leschenault estuary 
fish {l}. nMDS from Bray-Curtis 
on dispersion weighted then √-
transformed samples of counts 
from 43 species, of sites within 
the four regions (Apex, Upper, 
Lower, Basal) over two years 
and in all seasons of each year 
(Winter, Spring, Summer and  
Autumn). a) and b) are the same 
MDS but indicate samples from 
seasons & regions respectively.  
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CHAPTER 16: FURTHER MULTIVARIATE COMPARISONS AND 
RESEMBLANCE MEASURES 

 
To motivate the first method of this chapter look again 
at the analysis of macrobenthic samples from the Bay 
of Morlaix {A}, before and after the Amoco-Cadiz oil 
spill. The MDS of Fig. 16.1 shows a clear signal of 
community change through time, a combination of 
cyclical seasonal fluctuations (the samples are approx-
imately quarterly) with the major perturbation of the 
oil spill after approximately a year, and a partial 
recovery over the next four years.  The intricate and 
informative picture is based on a matrix of 257 species 
but the question naturally arises as to whether all these 
species are influential in forming the temporal pattern.  
This cannot be the case, of course, because many 
species are very uncommon.  The later Fig. 16.3a 
shows an identical MDS plot based on only 125 species, 
the omitted ‘least important’ 132 species accounting 
for only 0.2% of the total abundance and, on average, 
being absent from all 5 replicate samples on 90% of 
the 21 sampling times.  However, the question still 
remains: do all the 125 species contribute to the MDS 
or is the pattern largely determined by a small number 
of highly influential species?  If the latter, an MDS of 
that small species subset should generate an ordination 
that looks very like Fig. 16.1, and this suggests the 
following approach (Clarke and Warwick, 1998a). 

A

B

C
D E

F

G

H
I

J

K

L

M

N
O

P
Q

R

S

T
U

Amoco-Cadiz
oil spill
Mar 78

 
Fig. 16.1.  Amoco-Cadiz oil spill {A}.  MDS for 257 macrobenthic 

species in the Bay of Morlaix, for 21 sampling times (A, B, C, 
…, U; see legend to Fig. 10.4 for precise dates).  The ordination 
is based on Bray-Curtis similarities from fourth root-transformed 
abundances and the samples were taken at approximately 
quarterly intervals over 5 years, reflecting normal seasonal 
cycles and the perturbation of the oil spill (stress = 0.09). 

MATCHING OF ORDINATIONS 

The BEST (Bio-Env) technique of Chapter 11 can be 
generalised in a natural way, to the selection of species 
rather than abiotic variables. The procedure is shown 
schematically in Fig. 16.2.  Here the two starting data 
sets are not: 1) biotic, and 2) abiotic descriptions of 
the same set of samples, but: 1) the faunal matrix, and 
2) a copy of that same faunal matrix.  Variable sets 
(species) are selected from the second matrix such that 
their sample ordination matches, ‘as near as makes no 
difference’, the ordination of samples from the first 
matrix, the full species set.  This matching process, as 
seen in Chapter 11, best takes place by optimising the 
correlation between the elements of the underlying 
similarity matrices, rather than matching the respective 
ordinations, because of the approximation inherent in 
viewing inter-sample relationships in only 2-dimensions, 
say.  The appropriate correlation coefficient could be 
Spearman or Kendall, or some weighted form of 
Spearman, but there is little to be gained in this context 
from using anything other than the simplest form, the 
standard Spearman coefficient (r).   

A definition of a ‘near-perfect’ match is needed, and 
this is (somewhat arbitrarily) deemed to be when r 
exceeds 0.95.  Certainly two ordinations from similarity 
matrices that are correlated at this level will be virtually 
indistinguishable and could not lead to different inter-
pretation of the patterns.  The  requirement is therefore 
to find the smallest possible species subset whose 
Bray-Curtis similarity matrix correlates at least at r = 
0.95 with the (fixed) similarity matrix for the full set 
of species. 

There is a major snag, however, to carrying over the 
Bio-Env approach to this context.  A search through 
all possible subsets of 125 species involves: 125 poss-
ibilities for a single species, 125C2 (= 125.124/2) pairs 
of species, 125C3 (= 125.124.123/6) triples, etc., and 
this number clearly gets rapidly out of control.  In fact 
a full search would need to look at 2125 – 1 possible 
combinations, an exceedingly large number! 
 
Stepwise procedure 

One way round the problem is to search not over every 
possible combination but some more limited space, 
and the natural choice here is a stepwise algorithm 
which operates sequentially and involves both  forward  
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Fig. 16.2. Schematic diagram 

of selection of a subset of 
species whose multivariate 
sample pattern matches that 
for the full set of species 
(BEST routine). The search is 
either over all subsets of the 
species (Bio-Env option) or, 
more practically, a stepwise 
selection of species (BVStep 
option), aiming to find the 
smallest subset of species giving 
rank correlation between the 
similarity matrices of r ≥ 0.95. 

and backward-stepping phases.¶  At each stage, a sel-
ection is made of the best single species to add to or 
drop from the existing selected set.  Typically, the proc-
edure will start with a null set, picking the best single 
variable (maximising r), then adding a second variable 
which gives the best combination with the first, then 
adding a third to the existing pair.  The backward 
elimination phase then intervenes, to check whether 
the first selected variable can now be dropped, the 
combination of second and third selections alone not 
having been considered before.  The forward selection 
phase returns and the algorithm proceeds in this fashion 
until no further improvement is possible by the addition 
of a single variable to the existing set or, more likely 
here, the stopping criterion is met (r exceeds 0.95).  
In order fully to clarify the alternation of forward and 
backward stepping phases, Table 16.1 describes a 
purely hypothetical (and unrealistically convoluted) 
search over 6 variables.  Analogously to the MDS 
algorithm of Chapter 6, it is quite possible that such 
an iterative search procedure will get trapped in a local 
optimum and miss the true best solution; only a minute 
fraction of the vast search space is ever examined.  Thus, 
it may be helpful to begin the search at several, different, 
random starting points, i.e. to start sequential addition 
or deletion from an existing, randomly selected set of 
half a dozen (say) of the species.† 

¶ This concept may be familiar from stepwise multiple regression 
in univariate statistics, which tackles a similar problem of selecting 
a subset of explanatory variables which account for as much as 
possible of the variance in a single response variable.  
† The PRIMER BEST routine (BVStep option) carries out this step-
wise approach on an active sheet which is the similarity matrix 
from all species (Bray-Curtis here), supplying a secondary sheet 
which is the (transformed) data matrix itself. There are options 
always to exclude, or always to include, certain variables (species) 
in the selection,  to start the algorithm either with none, all or a 
random set of species in the initial selection, and to output results of 
the iteration at various levels of detail (full detail recommended).      

EXAMPLE: Amoco-Cadiz oil spill 

Applying this (BVStep) procedure to the 125-species 
set from the Bay of Morlaix, a smallest subset of only 
9 species can be found, whose similarity matrix across 
the 21 samples correlates with that for the full species 
set, at r ≥ 0.95.  The MDS plot for the 21 samples based 
only on these 9 species is shown in Fig.16.3b and is 
seen to be largely indistinguishable from 16.3a.  The 
make-up of this influential species set is discussed later 
but it is important to realise, as often with stepwise proc-
edures, that this may be far from a unique solution.  
There are likely to be other sets of species, a little larger 
in number or giving a slightly lower r value, that would 
do a (nearly) equally good job of ‘explaining’ the full 
pattern.   

One interesting way of seeing this is to discard the 
initial selection of 9 species, and search again for a 
further subset that produces a near-perfect match (r ≥ 
0.95) to the pattern for the full set of 125 species.  Fig. 
16.3c shows that a second such set can be found, this 
time of 11 species.  If the two sets are discarded, a third 
(of 14 species), then a fourth (of 18 species) can also 
be identified, and Fig. 16.3d and e again show the high 
level of concordance with the full set, Fig. 16.3a.  There 
are now 73 species left and a fifth set can just about 
be pulled out of them (Fig. 16.3f), though now the 
algorithm terminates at a genuine maximum of r;  a 
match better than r = 0.91 cannot be found by the 
stepwise procedure, even after several attempts with 
different random starting positions.  If these (27) species 
are also discarded, the ability of the remaining 46 
species to reconstruct the initial pattern degrades slowly 
(Fig. 16.3g) then rapidly (Fig. 16.3h and i), i.e. little 
of the original ‘signal’ remains.   
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Table 16.1. Hypothetical illustration of stages in a stepwise algorithm (F: forward selection, B: backward elimination steps) to select a 
subset of species which match the multivariate sample pattern for a full set (here, 6 species).  Bold underlined type indicates the subset 
with the highest r  at each stage, and italics denote a backward elimination step that decreases r and is therefore ignored.  The procedure 
ends when r attains a certain threshold (r ≥ 0.95), or when forward selection does not increase r.  

Step    Direction Species sets Best r   

1 F 1 2 3 4 5 6 0.6 
2 F 2+1 2+3 2+4 2+5 2+6  0.65 
3 B 2 4     0.6 
4 F 2+4+1 2+4+3 2+4+5 2+4+6   0.7 
5 B 2+4 2+5 4+5    0.8 
6 B 4 5     0.55 
7 F 4+5+1 4+5+2 4+5+3 4+5+6   0.85 
8 B 4+5 4+1 5+1    0.8 
9 F 4+5+1+2 4+5+1+3 4+5+1+6    0.9 
10 B 4+5+1 4+5+6 4+1+6 5+1+6   0.92 
11 B 5+1 5+6 1+6    0.93 
12 B 5 6     0.55 
13 F 5+6+1 5+6+2 5+6+3 5+6+4   0.94 
14 B 5+6 5+2 6+2    0.93 
15 F 5+6+2+1 5+6+2+3 5+6+2+4    0.95 
16 B 5+6+2 5+6+4 5+2+4 6+2+4   0.94 
17 STOP r = 0.95 threshold reached, for species subset 2+4+5+6 
 

Clarke and Warwick (1998a) discuss the implication 
of these plots for concepts of structural redundancy 
in assemblages (and, arguably, for functional redund-
ancy, or at least compensation capacity).  They invest-
igate whether the various sets of species ‘peeled’ out 
from the matrix have a similar taxonomic structure.  
For example, Table 16.2 displays the first and second 
‘peeled’ species lists and defines a taxonomic mapping 
coefficient, used to measure the degree to which the 
first set has taxonomically closely-related counterparts 

in the second set, and vice-versa.  (Note that taxonomic 
relatedness concepts are the basis of several indices 
used in Chapter 17, this specific coefficient being the 
Θ+ of eqn. 17.8)  A permutation test can be constructed 
that leads to the conclusion that the peeled subsets are 
more taxonomically similar (i.e. have greater taxon-
omic coherence) than would be expected by chance.  
The number of such coherent subsets which can be 
‘peeled out’ from the matrix is clearly some measure 
of redundancy of information content. 

 

 

Fig. 16.3.  Amoco-Cadiz oil spill 
{A}. MDS plots from 21 samples 
(approximately quarterly) of  
macrobenthos in the Bay of 
Morlaix (Bray-Curtis on 4th-
root transformed abundances). 
a) As Fig. 16.1 but discarding 
the rare species, leaving 125; 
b)–f) based on a succession of 
five, small, mutually exclusive 
subsets of species, generated 
by the BEST/BVStep option, 
showing the high level of match-
ing with the full data (r values 
in bottom right of plots, and 
number of species in top right); 
g)–i) after successive removal 
of the species in previous plots, 
the ability to match the original 
pattern by selecting from the 
remaining species rapidly 
degrades (stress = 0.09, 0.08, 
0.08, 0.08, 0.12, 0.12, 0.21, 
0.24, 0.24 respectively).       
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Table 16.2.  Amoco-Cadiz oil spill {A}.  Illustration of taxonomic 

mapping of the second and third ‘peeled’ species subsets (i.e. 
those underlying Fig. 16.3c,d), from the successive application 
of BVStep, highlighting the (closer than random) taxonomic 
parallels between the species sets which are capable of ‘explaining’ 
the full pattern of Fig. 16.3a.  Continuous lines represent the 
closest relatives in the right-hand set to each species in the left-
hand set (underlined values are the number of steps distant through 
the taxonomic tree, see Chapter 17 for examples).  Dashed lines 
map the right-hand set to the left-hand (non-underlined values 
are again the taxonomic distances).  The taxonomic mapping 
similarity coefficient, M, averages the two displayed mean 
taxonomic distances (denoted  Θ+ in Chapter 17).    
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Viewed at a pragmatic level, the message of Fig. 16.3 
is therefore clear.  It is not a single, small set of species 
which is responsible for generating the observed sample 
patterns of Fig. 16.1, of disturbance and (partial) re-
covery superimposed on a seasonal cycle.  Instead, 
the same temporal patterns are imprinted several times 
in the full species matrix.  The steady increase in size 
of successive ‘peeled’ sets reflects the different signal-
to-noise ratios for different species, or groups of species.  
The signal can be reproduced by only a few species 
initially but, as these are sequentially removed, the 
remaining species have increasingly higher ‘noise’ 
levels, requiring an ever greater number of them to 
generate the same strength of ‘signal’.  Clarke and 
Warwick (1998a) give further macrobenthic examples, 
of time series from Northumberland subtidal sites, 
whose structural redundancy is at a similar level (4–5 
peeled subsets), though this is by no means a universal 
phenomenon (M G Chapman, pers. comm., for rocky 
shore assemblages; Clarke and Gorley, 2006, for zoo-
plankton communities, both of which examples are 
much less species-rich in the first place). 

FURTHER EXTENSIONS 

Both BEST Bio-Env and BVStep routines can be gen-
eralised to accommodate possibilities other than their 
‘defaults’ of selecting abiotic variables to optimise a 
match with fixed biotic similarities, and selecting subsets 
of species to link to the sample patterns of the full 
species set.  In fact, the only distinction between the 
two options in BEST  is simply one of whether a full 
search is performed (Bio-Env) or a stepwise search is 
adopted (BVStep), the latter being essential where 
there are many variables to select from (e.g. >16) so 
that a full search is prohibitive (>216 combinations).   

The fixed similarity matrix can be from species (e.g. 
Bray-Curtis), environmental variables (e.g. Euclidean), 
or even a model matrix, such as the equally-spaced 
inter-point distances in the seriation matrix of Chapter 
15.  The secondary matrix, whose variables are to be 
selected from, can also be of biotic or abiotic form.  
Some possible applications involve searching for:¶ 

1) species within one faunal group that ‘best explain’ 
the pattern of a different faunal group (‘Bio–Bio’), 
e.g. key macrofaunal species which are structuring 
(or are correlated with environmental variables that 
are structuring) the full meiofaunal assemblages; 

2) species subsets which best respond to (characterise) 
a given gradient of one or more observed contam-
inants (‘Env–Bio’); 

3) species subsets which match a given spatial or temp-
oral pattern (‘Model–Bio’), e.g. the model might 
be the geographic layout of samples, expressed 
literally as inter-sample distances, or a linear time-
trend (equal-spaced steps, as with seriation), or a 
circular pattern appropriate to a single seasonal 
cycle, etc; 

4) subsets of environmental variables which best 
characterise an a priori categorisation of samples 
(‘Model-Env’), e.g. selecting quantitative beach 
morphology variables which best delineate a given 
classification of beach types (Valesini et al, 2003). 

¶ All these combinations are possible in the PRIMER BEST routine 
with either Bio-Env (full search) or BVStep (stepwise) options. In 
v7, the fixed resemblance matrix (biotic, abiotic or model) is the 
active sheet from which the BEST routine is run, and determines 
the samples to be analysed. The secondary data matrix supplied to 
the routine, from which variables are to be selected, can be a ‘look-up 
table’ of a larger set of samples (e.g. from an environmental database 
for that region) but all sample labels in the resemblance matrix must 
have a matching sample label in the data matrix. (In v6, the active 
sheet was the data matrix and not the resemblance matrix but the v7 
structure is more logical, and consistent with the analogous DISTLM 
routine in PERMANOVA+).  
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SECOND-STAGE MDS 

It is not normally a viable sampling strategy, for soft-
sediment benthos at least, to use BVStep to identify a 
subset of species as the only ones whose abundance is 
recorded in future, since all specimens have to be sorted 
and identified to species, to determine the subset. Saving 
of monitoring effort on identification can sometimes be 
made, however, by working at a higher taxonomic 
level than species (see Chapter 10).  Where full species-
based information is available, MDS plots can be gener-
ated at different levels of taxonomic aggregation (i.e. 
using species, genera, families, etc) and the configur-
ations visually compared. Another axis of choice for 
the biologist is that of the transformation applied to 
the original counts (or biomass/cover etc).  Chapter 9 
shows that different transformations pick out different 
components of the assemblage, from only the dominant 
species (no transform), through increasing contributions 
from mid-abundance and less-common species (√, √√, 
log) to a weighting placing substantial attention on 
less-common species (presence/absence).  The environ-
mental impact, or other spatial or temporal ‘signal’, 
may be clearer to discern from the ‘noise’ under some 
transformations than it is for others. 

Amoco-Cadiz oil spill 

The difficulty arises that so many MDS plots can be 
produced by these choices that visual comparison is no 
longer easy, and it is always subjective, relying only 
on the 2-d approximation in an MDS plot, rather than 
the full high-dimensional information. For example, 
Fig. 16.4 displays the MDS plots for the Morlaix study 
at only two taxonomic levels: data at species and 
aggregated to family level, for each of the full range 
of transformations, but it is already difficult to form a 
clear summary of the relative effects of the different 
choices.  However, part of the solution to this problem 
has already been met earlier in the chapter. For every 
pair of MDS plots – or rather the similarity matrices 
that underlie them – it is easy to define a measure of 
how closely the sample patterns match: it is the Spear-
man rank correlation (r) applied to the elements of the 
similarity matrices.  Different transformations and 
aggregation levels will affect the absolute range of 
calculated Bray-Curtis similarities but, as always, it is 
their relative values that matter.  If all statements of 
the form ‘sample A is closer to B than it is to C’ are 
identical for the two similarity matrices then the conclus-
ions of the analyses will be identical, the MDS plots 
will match perfectly and r will take the value 1.  

Table 16.3 shows the results of calculating the rank 
correlations (r)  between every pair of analysis options 
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Fig. 16.4.  Amoco-Cadiz oil spill {A}.  MDS plots of the 21 sampling 

occasions (A, B, C, …) in the Bay of Morlaix, for all macrobenthic 
species (left) and aggregated into families (right), and for different 
transformations of the abundances (in top to bottom order: no 
transform, root, 4th-root, log(1+x), presence/absence).  For 
precise dates see the legend to Fig. 10.4; the oil-spill occurred 
between E and F (stress, reading left to right: 0.06, 0.07; 0.07, 
0.08; 0.09, 0.10; 0.09, 0.09; 0.14, 0.18).      

represented in Fig. 16.4.  For example, the largest 
correlation is 0.996 for untransformed species and 
family-level analyses, the smallest is 0.639 between 
untransformed and presence/absence family-level 
analyses, etc.  Though Table 16.3 is clearly a more 
quantitatively objective description of the pairwise 
comparisons between analyses, the plethora of coeff-
icients still make it difficult to extract the overall 
message.  Looking at the triangular form of the table, 
however, the reader can perhaps guess what the next 
step is!  Spearman correlations are themselves a type 
of similarity measure:  two analyses telling essentially 
the same story have a higher r (high similarity) than 
two analyses giving very different pictures (low r, 
low similarity).  All that needs adjustment is the simil-
arity scale, since correlations can potentially take values  
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Fig. 16.5.  Schematic diagram 

of the stages in quantifying 
and displaying agreement, by 
second-stage MDS, of different 
multivariate analyses of a corr-
esponding set of samples. 

Table 16.3.  Amoco-Cadiz oil spill {A}.  Spearman correlation 
matrix between every pair of similarity matrices underlying the 
10 plots of Fig. 16.4, measuring the extent to which they ‘tell the 
same story’ about the 21 Morlaix samples.  These correlations 
(rank ordered) are treated like a similarity matrix and input to a 
second-stage MDS.  Key: s = species-level analysis, f = family-level;  
0 = no transform, 1 = root, 2 = 4th root, 3 = log(1+x), 4 = presence 
/absence. 

 s0 s1 s2 s3 s4 f0 f1 f2 f3 
s1 .970         
s2 .862 .949        
s3 .852 .942 .995       
s4 .736 .847 .961 .946      
f0 .996 .965 .855 .845 .726     
f1 .949 .993 .961 .958 .865 .947    
f2 .791 .893 .972 .974 .953 .785 .924   
f3 .760 .869 .962 .971 .946 .753 .904 .993  
f4 .645 .756 .877 .870 .923 .639 .792 .946 .929 

in (–1, 1) rather than (0,100) say.  In practice, negative 
correlations in this context will be rare (but if they 
arise they indicate even less similarity of the two 
pictures) but the problem is entirely solved anyway 
by working, as usual, with the ranks of the r values, 
i.e. rank (dis)similarities.  It is then natural to input 
these into an MDS ordination, as shown schematically 
in Fig. 16.5.   

The resulting picture is termed a second-stage MDS 
and is displayed in Fig. 16.6 for the Morlaix analyses 
of Fig. 16.4.  The relationship between the various 
analysis options is now summarised in a clear and 
straightforward fashion (with near-zero stress).  The 
different transformations form the main (left to right) 
axis, in steady progression through: no transform, √, 
√√ and log(1+x), to pres/abs.  The difference between 

species and family level analyses largely forms the 
other (bottom to top) axis.  Three important points are 
immediately clear: 
1) Log and √√ transforms are virtually identical in their 

effect on the data, with differences between these 
transformations being much smaller than that between 
species and family-level analyses in that case. 

2) With the exception of these two, the transformations 
generally have a much more marked effect on the 
outcome than the aggregation level (the relative 
distance apart on the MDS of the points representing 
different transformations, but the same taxonomic 
level, is much greater than the distance apart of 
species and family-level analyses, for the same 
transformation). 

s0
s1

s2
s3

s4

f0

f1
f2

f3
f4

 
Fig. 16.6.  Amoco-Cadiz oil spill {A}.  Second-stage MDS of the 

10 analyses of Fig. 16.4.  The proximity of the points indicates the 
extent to which different analysis options capture the same inform-
ation. s = species-level analysis, f = family-level;  0 = no transform, 
1 = root, 2 = 4th root, 3 = log(1+x), 4 = presence /absence.  Stress 
= 0.01, so the 2-d picture tells the whole story, e.g. that choice 
of  aggregation level has less effect here than transformation. 
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3) The effect of taxonomic aggregation becomes greater 
as the transformation becomes more severe, so that 
for presence/absence data the difference between 
species and family-level is much more important 
than it is for untransformed or mildly transformed 
counts.  Whilst this is not unexpected, it does indicate 
the necessity to think about analysis choices in comb-
ination, when designing a study. 

Other applications  

The concept of a second-stage MDS used on rank 
correlations between similarity matrices – from different 
taxonomic aggregation levels (species, genus, family, 
trophic group) and, in the same analysis, different 
faunal groups (nematodes, macrofauna) recorded for 
the same set of sites – was introduced by Somerfield 
and Clarke (1995), for studies in Liverpool Bay and 
the Fal estuary, UK.  Olsgard et al (1997, 1998) 
expanded the scope to include the effects of different 
transformation, simultaneously with differing aggreg-
ation levels, for data from N Sea oilfield studies.¶  
Other interesting applications include Kendall and 
Widdicombe (1999) who examined different body-
size components of the fauna as well as different 
faunal groups, from a hierarchical spatial sampling 
design (spacings of 50cm, 5m, 50m, 500m) in Plymouth 
subtidal waters.  They used a second-stage MDS to 
display the effects of different combinations of body-
sizes, faunal groups and transformation.  Olsgard and 
Somerfield (2000) introduced the pattern from environ-
mental variables as an additional point on a second-
stage MDS, together with biotic analyses from different 
faunal components (polychaetes, molluscs, crustacea, 
echinoderms) at another N Sea oilfield.  The idea is 
that biotic subsets whose multivariate pattern links 
well to the environmental data will be represented by 
points on the second-stage MDS which lie close to 
the environmental point.  The converse operation can 
also be envisaged, as a visual counterpart to the Bio–
Env procedure.  For small numbers of environmental 
variables, the abiotic patterns from subsets of these 
can be represented as points on the second-stage MDS, 
in which the (fixed) biotic similarity matrix is also 
shown.  The best environmental combinations should 
then ‘converge’ on the (single) biotic point. 

¶ They also carried out another interesting analysis, assessing 
Bio–Env results in the light of analysis choices.  It was hypoth-
esised earlier (p9-4 and 10-2), that a contaminant impact may 
manifest itself more clearly in the assemblage pattern for inter-
mediate transform and aggregation choices.  Olsgard et al (1997) 
do indeed show, for the Valhall oilfield, that the Bio–Env 
matching of sediment macrobenthos to the degree of disturbance 
from drilling muds disposal (measured by sediment THC, Ba 
concentrations etc), was optimised by intermediate transform (√ ) 
and aggregation level (family).    

COMPARISON OF RESEMBLANCE 
MEASURES 

S Tikus Island coral cover  

The use of second-stage MDS plots can be extended 
to also include the relative effects of choosing among 
different resemblance measures (similarities/dissimil-
arities or  distances) in defining sample relationships. 
To illustrate this we will use area cover of 75 coral 
reef species on ten 30m line transects from S Tikus in 
the Thousand Islands, Indonesia, {I}, taken in each of 
the years 1981, 83, 84, 85, 87, 88, spanning a coral 
bleaching episode related to the 1982-3 El Niño, see 
Warwick et al (1990b); data met originally on p6-6. 
Though by no means typical, the data gives a salutary 
lesson on the importance of selecting an appropriate  
resemblance measure with some care, since different 
coefficients result in widely differing descriptions.  

The 1983 samples were notably denuded of live coral 
cover, with average % cover reducing by an order of 
magnitude and number of species more than halving. 
The sparsity of non-zero entries on the 1983 transects 
makes the Bray-Curtis dissimilarity rather unstable, 
with many 100% dissimilarities between transects in 
that year. Clarke et al (2006c) suggest that a modified 
form of Bray-Curtis could be useful in such cases.  

Zero-adjusted Bray-Curtis 

Two samples with small numbers of only one or two 
species can vary wildly in their dissimilarity, from 
0% if they happen to consist of a single individual of 
the same species, to 100% if those two individuals 
are from different species. If the samples contain no 
species whatsoever, their Bray-Curtis dissimilarity is 
undefined, since it is a coefficient which ignores joint 
absences thus leaving no data on which to perform a 
calculation. (Both the numerator and denominator in 
equation 2.1 are zero, and 0/0 is undefined). This may 
be a reasonable conclusion in some contexts: if the 
sampler size is inadequate, and capable of missing all 
organisms in two quite different locations (or times or 
treatments), then nothing can be said about whether 
the communities might have been similar or not, had 
anything actually been captured. If, on the other hand, 
sparsity arises as a result of increasing impacts on an 
assemblage, to the point where samples become fully 
azoic, however large the sampler size, then it might 
be desirable to define those samples as 100% similar 
(0% dissimilar). Another example is of tracking over 
time the colonisation of a settlement plate or a rock 
patch which has been cleared: very sparse assemb-
lages would be inevitable at the start, and one would 
want to define these early samples as highly similar. 
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A modified dissimilarity is thus needed, exploiting 
this extra information that we have from the context, 
that very sparse samples are to be deemed similar. A 
simple addition to the denominator of Bray-Curtis 
achieves this, giving the zero-adjusted Bray-Curtis: 
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between samples j and k, where {yij} is the quantity of 
species i in the jth sample (for i = 1, .., p species). An 
alternative way of viewing this coefficient is that it is 
ordinary Bray-Curtis calculated on a data matrix with 
an added dummy species consisting of one individual 
in each sample. This cannot change the numerator, 
since the dummy species adds |1 − 1| for every pair of 
samples but it adds 1 + 1 to the denominator for each 
pair, explaining the 2 on the bottom line of (16.1). A 
pair of samples containing no species must now be 
0% dissimilar because they share the same abundance 
of their only species (the dummy species), and even 
two samples that have a single individual of different 
species will no longer be 100% dissimilar but only 
50% dissimilar, because of their shared (dummy) 
species. And Clarke et al (2006c) show that if the 
numbers in the matrix are not vanishingly small then 
this zero adjustment can make no difference at all to 
the resulting resemblance structure. Bray-Curtis will 
operate as previously but it will behave in a particular 
(and sometimes required) way for highly denuded 
samples which ‘go to zero’.  

The adjustment is in the same spirit as the use of log 
transforms on species counts: the log(y) function will 
behave badly as y goes to zero (it tends to -∞) so we 
use log(1+y), which makes no difference if y is not 
small but ‘feathers in’ the behaviour as y→0. That 
analogy is useful because it suggests what we should 
do for abundances which are not counts but biomass 
or area cover. Then the dummy value would be better 
taken not as 1 but the smallest non-zero entry in the 
matrix¶. In fact, here, the Tikus coral cover does have  
effectively a minimum value of about 1 after the root-
transformation is applied, so this is used both for the 
quantitative data and for a presence/absence analysis.  

¶ The PRIMER Resemblance routine offers addition of a dummy 
species, with a specified dummy value, for any coefficient, since 
the idea will apply to other members of the Bray-Curtis family 
(p2-4), but it will not always make sense, and on coefficients not 
excluding joint absences (such as distance measures) it will have 
little or no effect at all. As with the log transform, choice of the 
dummy value is a balance between being too small to be relevant 
(it will always give two blank samples a similarity of 100% but 
two nearly blank samples can still be effectively 0% similar) or 
too large and thus impact on samples that are not at all denuded.  

 
Fig. 16.7. Indonesian reef-corals, Tikus Island {I}. nMDS of 6 

years (1=1981, 3=1983, 4=1984, 5=1985, 7=1987, 8=1988), 
with 10 transects per year. Data are %cover of 75 coral species, 
√-transformed, and similarities calculated as: a) standard Bray-
Curtis; b) zero-adjusted Bray-Curtis; c) zero-adjusted Sorensen. 
The ANOSIM R statistics for the global test (R, among all years) 
and pairwise (R13, for years 1 and 3 only) are also shown, given 
that stress values in the MDS are high: a) 0.18; b) 0.21; c) 0.21. 

The effect of applying this modification to the Tikus 
Island corals MDS can be seen in Fig. 16.7a-c, which 
contrasts the standard Bray-Curtis coefficient with its 
zero-adjusted form and zero-adjusted Sorensen (eqn. 
2.7) which is simply Bray Curtis on species presence/ 
absence, including an always-present dummy species. 
The wide spread of 1983 values, which come from a 
large number of zero similarities within that sparse 
group, are tightened up substantially with the zero-
adjusted coefficient, reflected in the high pairwise 
ANOSIM statistic R13 = 0.87 between 1981 and 1983, 
cf  R13 = 0.43 for the standard Bray-Curtis. Sorensen 
similarly benefits from the use of the adjustment here, 
since five of the ten 1983 transects have ≤ 2 species.  
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Fig. 16.8. Indonesian reef-corals, Tikus Island {I}. nMDS of 6 

years, exactly as in Fig. 16.7, but based on: a) Kulczynski; b) 
zero-adjusted  Kulczynski; c) Euclidean distance; d) χ2 distance 
with MDS stress: a) 0.21; b) 0.24; c) 0.12; d) 0.13. Global and 
pairwise (81 v 83) ANOSIM R statistics again shown.  

The  Kulczynski similarity (equation 2.4), Fig. 16.8a, 
is also in the Bray-Curtis family and, whilst it would 
appear to perform less satisfactorily than Bray-Curtis 
in this case, and also generally (though see Faith et al 
1987 and footnote on p2-5), it too benefits from the 
dummy species adjustment, Fig. 16.8b. Even more 
dramatic changes are seen to these plots for a wider 

range of coefficients: Euclidean distance (eqn 2.13, 
Fig. 16.8c) reverses the within-group dispersion of 
1981 and 1983 samples. All these analyses (apart 
from P/A measures) are on square-root transformed 
area cover, but even after transformation there are big 
differences in total cover between the samples, and 
Euclidean distance is primarily dominated by these, 
with the tight cluster of 1983 transects resulting from 
the strong reduction in total cover noted earlier.  

The χ2 distance measure, defined as: 

∑ ∑∑∑ 
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which is the implicit dissimilarity in Correspondence 
Analysis (CA) and its detrended (DCA) and canon-
ical versions (CCA), is seen to be at the other end of 
the spectrum (Fig. 16.8d), increasing the spread of 
1983 (and 1984) values further than standard Bray-
Curtis and collapsing the 1981 transects almost to a 
single point. The χ2 distance coefficient is always 
susceptible to dominance by rare species, with very 
small area covers, since its genesis is for data values 
which are real frequencies¶. The problem can be seen 
in the (first) denominator for each term in the sum, 
which is the total across samples for each species, an 
area cover which can be very small, giving instability. 
(In fact three outlying 1983 replicates are omitted in 
Fig. 16.8d to even get this plot). Another implication 
of the form of this coefficient is that methods based 
on CA always standardise samples (the denominators 
inside the squared term are totals across species for 
each sample) hence the effects of much larger total 

¶ The theoretical basis of CA is that the entries in the matrix are 
real frequencies, following multinomial distributions for each 
species (the distributional basis of χ2 tests, for example), which 
this distance measure reflects. Species count matrices are never 
real frequencies because individuals are not distributed randomly 
(and with the same mean density) over the area or water volume 
being sampled, i.e. they are clumped, not Poisson distributed (see 
p9-5). Real frequencies are produced from, say, several quadrats 
taken for each sample, which are then condensed to ‘number of 
quadrats in which species X is found’. Where such sampling is 
possible, frequency data can be an effective alternative to strong 
transformation or dispersion weighting of highly clumped counts, 
or of dominance of area cover % by a few large and common 
rocky shore algae or coral species, see for example Clarke et al 
(2014). Even for such data, a χ2 distance measure can still be 
problematic in respect of the rare species (the mantra for χ2 tests 
in standard statistics, that ‘expected frequencies should be >5’, 
arises for much the same reason) and the CA-based methods in 
the excellent CANOCO package (ter Braak and Smilauer, 2002) 
build in a downweighting of rare species to circumvent the issue.  
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(square-rooted) area covers in 1981, which dominate 
the Euclidean plot, entirely disappear for χ2 distance. 
The Bray-Curtis family coefficients are intermediate 
in this spectrum: they make some use of differences 
in sample totals but are also influenced by the species 
presence/absence structure, a feature with no special 
role in Euclidean (and similar) distance measures.  

Other quite commonly used coefficients¶ (for which 
MDS ordinations are not shown) include Manhattan 
distance, equation (2.14), whose behaviour is close to 
that of Euclidean distance though it should be less 
susceptible to outliers in the data, because distances 
are not squared as in the Euclidean definition. Note 
that Manhattan does, however, share some affinity of 
definition with Bray-Curtis. To within a constant, 
Bray-Curtis will reduce to Manhattan distance when 
the totals of all (transformed) data values for samples, 
summed across species, are the same. For the data of 
Fig. 16.8, the Manhattan ordination is very similar to 
that for the Euclidean plot (Fig. 16.8c); it gives global 
R = 0.28 and pairwise R13 = 0.38.  

The normalised form of Euclidean distance, in which 
each species is first centred at its mean over samples 
(again after transformation) and, more importantly, 
divided by its standard deviation over samples, is 
about as inappropriate a measure for species data as 
could be envisaged! This is both because it does not 
honour the status of a zero entry as indicating species 
absence (as noted on p2-7, the zeros are replaced by a 
different number for each species) and also because 
each species is now given exactly the same weight in 
the calculation, irrespective of whether it is very rare 
or extremely common, often a recipe for anarchy in 
the ensuing analysis. And indeed the MDS plot for 
the coral data is essentially a slightly more extreme 
form of the Euclidean plot of Fig. 16.8c, with even 
lower ANOSIM statistics of R = 0.19, R13 = 0.34. It 
should be noted, of course, that normalised Euclidean 
is a perfectly sensible resemblance measure (usually 
the preferred choice) for data of environmental type, 
in which zeros play no special role and the variables 
are on different measurement scales, hence must be 
adjusted to a common scale.  

The basic form of Gower’s coefficient (Gower, 1971) 
is defined as: 

 ∑
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¶ PRIMER offers about 45 different resemblance measures, under 
(not mutually exclusive) divisions of: similarity or dissimilarity/ 
distance; quantitative or P/A; correlation; and the P/A taxonomic 
dissimilarity measures at the end of Chapter 17.  

where the Manhattan-like numerator is standardised 
by dividing by the range for that species across all 
samples, Ri = maxj{yij} − minj{yij}. Since nearly all 
species will often be absent somewhere in the set of 
samples, in effect this is calculating Manhattan on a 
data matrix which has been species-standardised by 
the species maximum†. The equal weight it therefore 
gives to each species and the use of a simple distance 
measure on those standardised values ensures that it 
will behave very similarly to normalised Euclidean, 
as is observed for the coral MDS plot; global R is 
0.21 and R13 = 0.39. There is, however, a form of the 
Gower measure in which joint absences are identified 
and removed from the calculation. In practice this just 
means that the p divisor (the number of species in the 
matrix) outside the sum in (16.3) is replaced by the 
number of non-jointly absent species for each specific 
pair of samples. The same trick was seen in (2.12) in 
the Stephenson et al (1972) formulation of Canberra 
similarity, and it has a major effect in bringing both 
coefficients into step with one of the defining guide-
lines of biologically-useful measures, viz. point (d) on 
p2-5, that jointly absent species carry no information 
about similarity of those two samples. The MDS plot 
for the Gower (exc 0-0) coefficient does result in a 
configuration closer to that for the (zero-adjusted) 
Bray-Curtis than it is to the basic Gower coefficient 
and gives R = 0.41, R13 = 0.61. The Canberra measure 
here gives highly similar plots and ANOSIM values 
to Bray-Curtis (as is quite often the case, since it does 
satisfy all the ‘Bray-Curtis family’ guidelines, p2-4), 
and also benefits in the same way from adding the 
‘dummy species’, giving R = 0.48, R13 = 0.87.  

Second-stage MDS on resemblance measures  

This plethora of MDS plots and, more importantly, 
the relationships among their underlying resemblance 
matrices, can best be summarised using the same tool 
as for comparing different transforms or taxonomic 
levels, earlier in this section: the second stage MDS. 
This is based on similarities of similarity coefficients 
typically measured by the usual (RELATE) Spearman 
rank correlations between every pair of resemblance 
matrices, which values are themselves re-ranked as 
part of the second-stage nMDS ordination‡. 

† Standardising species (or samples) either by their totals or by 
their maxima, are options offered by the PRIMER Standardise 
routine, under the Pre-treatment menu.      
‡ There is little necessity to worry about whether these Spearman 
matrix correlations are all positive, as befits similarities. Indeed 
some are not, such is the disagreement between Fig. 16.8c & d 
for example, giving RELATE r = -0.22! Positivity can be ensured 
by the conversion S=50(1+r), but this is unnecessary if nMDS is 
to be used, because only the rank orders of the values matter.  
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Fig. 16.9. Indonesian reef-corals, Tikus Island {I}. Second-stage 

MDS of Spearman matrix correlations between every pair of 14 
resemblance matrices, calculated from square-root cover from 
75 species on 60 reef transects. (The ‘fix collapse’ option, on 
p5-18,  was applied in this case†). Resemblance coefficients are: 
Euclidean (normalised or not), Gower (excluding joint absences 
or not), Manhattan, χ2 distance, and four ‘biological’ measures, 
all calculated with zero-adjustments (dummy species) or not: 
Bray-Curtis, Kulczynski, Canberra and Sorensen (the latter on 
presence/absence data). Proximity of coefficients indicates how 
similarly they describe multivariate patterns of the 60 samples.  

Fig. 16.9 displays the second-stage nMDS plot for 14 
resemblance measures, calculated on the Tikus Island 
samples, for some of which measures the (first-stage) 
MDS plots are seen in Figs. 16.7 & 16.8. Such second 
stage plots, of relationships amongst the multivariate 
patterns obtained by different coefficient definitions, 
tend to display a consistent pattern for different data 
sets. As with the discussion on Fig. 8.16, on patterns 
of correlation between differing diversity definitions, 
what such plots are able to reveal is not primarily the 
characteristics of particular data sets, but mechanistic 
relationships among the indices/coefficients. These 
arise as a result of their mathematical form, and the 
way that form dictates which general features of the 
data are emphasised and what assumptions they make 
(implicitly) about issues such as those listed on p2-4: 
should the result be a function of sample totals?; are 
all the species to be given essentially similar weight?; 
are joint absences to be ignored?; should the coeff-
icient have a concept of complete dissimilarity?; etc. 

It is evident from the figure that the ‘biological’coeff-
icients do take a strongly similar view of the data and 
that the zero-adjustment does affect the outcome in 
the same way for all four such measures. Interestingly 
the difference between square-root transformed and 
presence/absence data under the same Bray-Curtis 
coefficient (the Sorensen point is Bray-Curtis on P/A) 
is hardly detectable amongst the major differences 
seen in changing to a different coefficient. The move 
from Euclidean to normalised Euclidean, and similar 
coefficients giving species equal weight irrespective 
of their total/range, is also very evident (this sequence 
of coefficients on the extreme left of the plot is also 
consistent across data sets), and the very different 

view taken of this data by the χ2 distance measure is 
equally clear. Taken together, this plot is a salutary 
lesson in the importance of choosing an appropriate 
similarity measure for the scientific context, and 
making consistent use of it for all the analyses of that 
data set¶.  

Other data sets will produce similar patterns to Fig. 
16.9, though with subtle and interesting differences, 
e.g. if sparsity of samples in not an issue then the 
zero-adjusted coefficients will be totally coincident 
with their standard forms. For data in which turnover 
of species under the different conditions (sites/times/ 
treatments) is low, then coefficient differences will 
generally have smaller effect†− thankfully not all data 
sets produce the distressingly large array of outcomes 
seen in Figs 16.7 and 16.8! Clarke et al (2006c) give 
a number of further examples, but we shall show one 
more instructive example, that of the Clyde macro-
benthic data first seen in Chapter 1, Fig. 1.11.   

Garroch Head macrofauna counts 

Previous analyses of the E-W transect of 12 sites over 
the sewage-sludge dumpground in the Firth of Clyde, 
{G}, have been of the macrofaunal biomass data (e.g. 
Figs. 1.11, 7.9, 11.5) but Fig. 16.10 is of fourth-root 
transformed counts for the 84 macrobenthic species, 
ordinated using six different resemblance measures. 
The main feature of this data is the steady change in 
community as the dump centre  (site 6)  is approached 
and  steady reversion back to a similar  community  at

¶ It is one if the authors’ bête noires to see how inconsistent and 
incompatible a use some ecologists make of the available multi-
variate tools. The Cornell Ecology routines (detrended CA, and  
TWINSPAN) and CANOCO’s CA and CCA plots and tests (from 
χ2 distance), classic PCA, canonical correlation, MANOVA or 
discriminant analysis (from Euclidean or Mahalanobis distance), 
PRIMER and PERMANOVA+ methods such as MDS, ANOSIM, 
SIMPER, PERMANOVA etc (using a specific measure such as 
Bray-Curtis) all have their place in historical development and 
current use, but it is generally a mistake to mix their use across 
different implicit  or explicit resemblance measures on the same 
data matrix. (Of course different data matrices, e.g. for species or 
environmental variables, will usually need different coefficient 
choices). Choice of coefficient (and to a lesser extent transform-
ation) is sufficiently important to the outcome, that you need: a) 
to understand why you are choosing this particular coefficient 
and transformation, b) to apply it as consistently as possible to 
your testing, visualisation and interpretation of that matrix.   
† The differences between coefficients are so stark for the Tikus 
Island  data that the nMDS shown by Clarke et al (2006c) did 
collapse into three groups: Euclidean to Normalised Euclidean, 
the ‘biological’ measures and χ2 distance (all correlations among 
those three groups being smaller than any correlations within 
them), and two of the groups were separately ordinated.  Here 
Fig. 16.9 can avoid this problem by using PRIMER v7’s new ‘fix 
collapse’ option, p5-18, in which a small amount (5%) of mMDS 
stress is mixed with 95% nMDS stress, to stabilise the plot.  

                                                           



 Chapter 16  
 page 16–12  
 

 

Fig. 16.10. Garroch Head macrofauna {G}. 2-d nMDS of counts of 84 species from soft-sediment benthic samples along a transect of 12 
sites (1-12) in the Firth of Clyde (see map fig. 8.3), across the sludge disposal location (site 6). Counts are fourth-root transformed with 
resemblance measures: a) standard Bray-Curtis (equation 2.1), b) zero-adjusted Bray-Curtis (16.1), c) Euclidean distance (2.13), d) 
normalised Euclidean distance (p4-6), e) basic Gower coefficient (16.3), f) Gower excluding joint absences (p16-10). 

the opposite ends of the transect (sites 1 and 12). As 
the ‘meta-analysis’ of Fig. 15.1 shows, this is a major 
change in assemblage resulting from a clear pattern of   
impact of organic enrichment and (most) heavy metal 
concentrations on nearing the dump centre, Fig. 11.1.  
In fact, only three species are found at site 6, though 
in reasonably large numbers (76 Tubificoides benedii, 
4 Capitella capitata and 250 nematodes, meiofauna 
which were not taxonomically separated in this study 
but captured in a macrofauna sieve by virtue of their 
large size). These species are virtually absent from 
sites 1, 2, 11 and 12, which are characterised by a 
distinctly different suite of species (e.g. Nuculoma, 
Nucula, Spiophanes sp.) but still with rather modest 
total counts (<200 individuals at any of those 5 sites). 
At in-between sites along the transect, the number of 
species and the total number of individuals steadily 
increase then decrease, as the dump centre is neared. 
This appears a classic case of the intermediate dist-
urbance hypothesis (Connell, 1978; Huston, 1979), 
as a result of the organic enrichment, in which the 
richness diversity and abundance increase with mild 
forms of disturbance, because of influx of opportunist 
species (typically small-bodied and in large numbers) 
before everything crashes at severe impact levels. 
Such a clear and ecologically meaningful pattern is 
quite enough to completely confuse some distance 
measures in Fig. 16.10! Euclidean distance (whether  
normalised or not) and the basic form of the Gower 
coefficient are strongly influenced by the fact that the 
abundance totals are similar at the ends and mid-point 
of the transect, and the fact that these sites have many 

jointly-absent species, i.e. joint absences are inferred 
as evidence for similarity of samples, whereas they 
are nothing of the sort. The species which are present 
are largely completely different ones, which will 
indicate some dissimilarity in all coefficients, but this 
contribution is largely overwhelmed by the evidence 
for similarity from joint absences in the inappropriate 
distance measures! The net effect is for the latter 
ordinations to show sites 6 and 7 merging with 1, 11 
and 12 in a highly misleading way. The Bray-Curtis 
family, on the other hand − and to a lesser extent, the 
Gower coefficient, excluding joint absences − have 
no problem generating the correct and meaningful 
ecological gradient here, though the latter’s insistence 
on giving the rare species equal weight with dominant 
ones does tend to diffuse the tight gradient of change. 
Note also (Fig. 6.10a & b) that no useful purpose is 
served by a ‘dummy species’ addition: none of the 
samples is sparse enough for the zero-adjusted coeff-
icients to alter the relative among-sample similarities.  

Fig. 6.11 is the second-stage MDS from the Spearman 
matrix correlation (r) among a very wide range of 
coefficients, not all of which have been defined here 
but all of which are available on the PRIMER menu 
for resemblance calculation (and for which equations 
are given in the User Manual). They exclude those 
coefficients which are designed for untransformed, 
real counts, with coefficients constructed from multi-
nomial likelihoods, and other measures with their 
own built in transformations (e.g. ‘modified Gower’) 
which  cannot then sensibly be applied to  fourth-root
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Fig. 16.11. Garroch Head macrofauna {G}. Second-stage MDS of Spearman matrix correlations between every pair of 25 resemblance 

matrices, calculated from fourth-root counts of 84 species on a transect of 12 sites across the sludge disposal site. Resemblance coeff-
icients are: Euclidean (normalised or not), Gower (exclude joint absences or not), Manhattan, Hellinger and chi-squared distance, the 
coefficient of divergence, Canberra similarity and Canberra metric, Bray-Curtis (zero-adjusted or not), Kulczynski (and in P/A form), 
Ochiai (and in P/A form), Czekanowski’s mean character difference, Faith P/A, Russell & Rao P/A, and three pairs of coefficients 
which are coincident since they are monotonically related to each other (denoted by ⇔): Simple matching and Rogers & Tanimoto P/A, 
Geodesic metric and Orloci’s Chord distance, and finally Jaccard  and Sorensen P/A (the P/A form of Bray-Curtis). See the PRIMER 
User manual for definition of all coefficients. 

transformed data. All the displayed measures are thus 
compared on the same (transformed) data though note 
that several of the coefficients utilise only presence or 
absence data. Only one zero-adjusted similarity − that 
for Bray-Curtis − is included, since the adjustment is 
rather minor in all cases for this example.  

Similar groupings are evident as for the previous Fig. 
6.9, for those coefficients which are present in both, 
though a number of measures which are only in Fig. 
6.11 are seen to take further different ‘views’ of the 
data. (Note that the wider range of inter-relationships 
ensured that the nMDS did not collapse as previously 
and there was no need to stabilise the plot by mixing 
with a degree of metric stress). Note again the large 
difference made by adjusting for joint absences, both 
between the forms of the Gower coefficient, as seen 
previously (the scale of this change can be seen in 
Fig. 16.10e & f), and the equivalent difference for the 
Canberra similarity of equation (2.12), as used in Fig. 
16.9, and the Canberra metric which is a function of 
joint absences. Three pairs of coefficients identified 
in the legend to Fig. 16.11 do not have precisely the 
same mathematical form but it is straightforward to 
show that they increase and decrease in step (though 
not linearly), i.e. their ranks similarities/distances will 
be identical. The best known of these are the two 
presence/absence measures, Sorensen and Jaccard, 

which because of this monotonic relation will give 
identical nMDS plots, ANOSIM tests etc for all data 
sets (though not identical PERMANOVA tests). Note 
also that, though the differences between fourth-root 
transform and P/A for the same measure (Bray-Curtis 
to Sorensen, Ochiai, Kulczynski) are not large, they 
are consistent and non-negligible, indicating that the 
data have not been over-transformed to a point where 
all the quantitative information is ‘squeezed out’. 
Bray-Curtis, Ochiai and Kulczynski are also seen to 
fall in logical order (of the arithmetic, geometric and 
harmonic means in their respective denominators). 

Many such subtle points to do with construction of 
coefficients can be seen in the second-stage plots, but 
another strength is their ability to place in context any 
proposed measure, perhaps newly defined (and the 
ease with which plausible new coefficients can be 
defined was commented on in the footnote on p2-5). 
If a new measure is an asymptotic equivalent of an 
existing one, the two points will be consistently juxta-
posed; if it captures new aspects of similarity or 
distance, it should occupy a different space in the 
plot. Together with assessments of the theoretical 
rationale or mathematical form of coefficients, the 
practical implications seen from a second-stage plot  
might therefore help to provide a way forward in 
defining a classification of resemblance measures.  
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SECOND-STAGE INTERACTION PLOTS 

Phuket coral-reef times series 

A rather different application of second-stage MDS¶ 
is motivated by considering the two-way layout from 
a time-series of coral-reef assemblages, along an 
onshore-offshore transect in Ko Phuket, Thailand 
{K}.  These data were previously met in Chapter 15, 
where only samples from the earlier years 1983, 86, 
87, 88 were considered (as available to Clarke et al, 
1993).  The time series was subsequently expanded to 
the 13 years 1983–2000, omitting 1984, 85, 89, 90 
and 96, on transect A (Brown et al, 2002). The A 
transect consisted of 12 equally-spaced positions along 
the onshore-offshore gradient, and was subject to 
sedimentation disturbance from dredging for a new 
deep-water port in 1986 and 87.  For 10 months during 
late 1997 and 98 there was also a wide scale sea-level 
depression in the Indian Ocean, leading to significantly 
greater irradiance exposures at mid-day low tides.  
Elevated sea temperatures were also observed (in 
1991, 95, 97, 98), sometimes giving rise to coral 
bleaching events, but these generally resulted in only 
short-term partial mortalities. 

The two (crossed) factors here are the years and the 
positions along transect A (1-12, at the same spacing 
each year).  Separate MDS plots of these 12 positions 
for each of the years 1983, 86, 87 and 88 were seen in 
Fig. 15.6 (first column). Fig. 16.12 adds nine more 
years (1991-95, 1997-2000) of the spatial patterns 
seen along the transect. The underlying resemblance 
matrices for each of these MDS plots can be matrix 
correlated, with the usual Spearman rank coefficient, 
in all possible pairs of years, giving a second-stage 
resemblance matrix (turned into a similarity by the 
transformation 50(1+r), if there are negative values). 
Input to a cluster analysis and nMDS, the result is 
Fig. 16.13a, which gives a clear visual demonstration 

¶ Both applications of the second-stage idea are catered for in 
the PRIMER 2STAGE routine, the inputs either being a series of 
similarity matrices (which can be taken from any source provided 
they refer to the same set of sample labels), which is the use we 
have made of the routine so far, or a single similarity matrix, 
from a 2–way crossed layout with appropriately defined ‘outer’ 
and ‘inner’ factors (time and space, respectively, in this case so 
that patterns in space are matched up across times, or more often 
it will be the converse, matching up patterns in time across 
spatial layouts, so that space becomes the outer factor and time 
the inner). There can be no replication below each combination 
of inner and outer levels in the input similarity matrix, though 
levels of the outer factor might themselves encompass replication, 
by the ‘flattening’ of a 1-way layout of groups and replicates. An 
example will follow of a colonisation study in which replicate 
sites within treatments (which together make up the outer factor) 
are monitored through time (the inner factor).  

of the years which are exceptional from the point of 
view of showing different patterns of reef assemblage 
turnover moving down the shore. The sedimentation-
based disruption to the gradient in 1986 and 87, and 
the negative sea-level anomaly of 1998 seem both to 
be clearly identified. (There is however no statistical 
test that we can carry out on this second-stage matrix 
which would identify ‘significant’ change in those 
years, because in this simple two-way crossed design 
there is no replication structure to permit this). It is 
nonetheless interesting to note that the anomalous 
years are on opposite sides of the MDS plot, possibly 
suggesting that the departures from the ‘normal’ type 
of onshore-offshore gradient are of a different kind in 
1998 than in 1986 & 87. Less speculative is the clear 
evidence from Fig. 16.13b that a comparable ‘first-
stage’ nMDS plot does not obviously identify those 
years as anomalous. This is an ordination based on 
Bray-Curtis of ‘mean’ communities for each year, 
obtained by averaging the (square-root transformed) 
%cover values for each of the 53 coral species over 
the whole transect for each year.  

Note the subtlety therefore of what a second-stage 
analysis is trying to isolate here. The compositions of 
the transect over the different years are not directly 
compared, as they are in a first-stage plot. There may 
(and will) be natural year-to-year fluctuations in area 
cover which would separate the transects on an MDS 
plot in which all transect positions and all years are 
displayed, but which do not disrupt the serial change 
in assemblage along the transect.  The second-stage 
procedure will  not be sensitive to such fluctuations. It 
eliminates them by concentrating only on whether the 
pattern is the same each year: assemblage similarities 
between the same transect points in different years do 
not enter the calculations at all (as observed in the 
schematic diagram for second-stage analysis of Fig. 
16.5, where now each of the data matrices on the left 
represents the transect samples for a particular year). 
Disruptions to the (generally gradient) pattern in 
certain years are, in a sense, interactions between 
transect position and year, removing year-to-year 
main effects (by working only within each year) and 
it is such secondary, interaction effects that the 
second-stage MDS sets out to display.† Clarke et al 
(2006b) give the same analysis for the B transect and 
discuss two further applications, to Tees Bay data {t}, 
and a rocky shore colonisation study (see later). 

†The idea also has close ties with the special form of ANOSIM 
test described in Chapter 6 (Fig. 6.9), with the ‘blocks’ as the 
outer year factor and the ‘treatments’ as the inner position factor, 
but instead of averaging the r values in the final triangular 
matrix of that Fig. 6.9 schematic, we ordinate that matrix to 
obtain the second-stage MDS. 
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Fig. 16.12. Ko Phuket corals 
{K}. MDS plots of square-root 
transformed cover of 53 coral 
species for 12 positions (plot-
less line samples) on the A 
transect, running onshore to 
offshore, ordinated separately 
for each of 9 years (4 earlier 
years are shown in Fig. 15.6).  

 
Fig. 16.13.  Ko Phuket corals {K}.  a) Second-stage MDS plot of 

13 years in the period 1983 to 2000, based on comparing the 
multivariate pattern for each year of the 12 transect positions 
down the shore (transect A). Note the anomalous (non-seriated) 
patterns in 1986/7 and again in 1998, evidenced by the separ-
ation of these years on the plot and in the groups obtained from 
slicing a cluster dendrogram at a fixed similarity level. b) First-
stage MDS of the whole assemblage in each year, by averaging 
the transformed cover matrix over transect positions.  

Before-After Control-Impact designs, over times 

When there are sufficient sampling times in a study 
of the effects of an impact, both before and after that 
impact, and for multiple spatial replicates at both 
control and impact locations, the concept of a second-
stage multivariate analysis may be a solution to one 
significant problem in handling such studies (known 
as ‘Beyond BACI’ designs, Underwood, 1993),  viz. 
how to allow for lack of independence in the comm-
unities observed when repeatedly returning to the 
same spatial patch. Monitoring communities at fixed 
locations (e.g. on permanent reef transects or over 
designated areas of rocky shore etc), in so-called 
repeated measures designs can sometimes be an 
efficient way of removing the effects of major spatial 
heterogeneity in the relevant habitat which would 
overwhelm any attempt at repeated random sampling, 
at each time, of different areas from the same general 
regions or treatment conditions under study. In other 
words, to detect smaller temporal change against a 
backdrop of large spatial variability could prove 
impossible without isolating the two factors, e.g. by 
monitoring the same area in space at different times, 
and different areas in space at the same time. A major 
imperative goes with this, however, and that is to 
recognise that the repeated measures (of community 
structure) in a single, restricted area, cannot in most 
cases be analysed as if they were independent¶. 

¶ Unless the communities themselves are dynamic in the environ-
ment, so stochastic assumptions for the process being monitored 
replace randomness of sampling units for a fixed environment.  
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Fig. 16.14. Schematic of the construction of a second-stage ‘interaction’ plot and test for a Before-After/Control-Impact design with 

(replicate) fixed sites from Impact and Control conditions sampled over several times Before and After an anticipated impact.  

This is a problem that the second-stage multivariate 
analysis strategy neatly side-steps, because it has no 
need to invoke an assumption that the points making 
up a time course are in any way independent of each 
other: what ends up being compared is one whole 
time course with another (independent) time course, 
both resulting in single (independent) multivariate 
points in a second stage analysis. The above schema 
(Fig. 6.14) demonstrates the concept.  

The data structure, on the left, shows the elements of 
a ‘Beyond BACI’ design¶, in which several areas (to 
call them fixed quadrats gives the right idea) will be 
sampled under both impact and reference (control) 
conditions, each quadrat being sampled at the same 
set of fixed times, which must be multiple occasions 
both before and after the impact is anticipated. It is 
the time courses of the multivariate community (seen 
here as MDS plots, but in reality the similarities that 
underlie these) which are then matched over quadrats 
in a second-stage correlation (r) matrix, shown to the 
right. This has a factor with two levels, control and 
impact, and replicate quadrats in each condition. A 
second-stage MDS plot from this second-stage simil-
arity matrix would then show whether the temporal 
patterns differed for the two conditions, by noting 

¶ Of course the samples are not entered into PRIMER in this rect-
angular form but by the usual entry of (say) rows as the species 
constituting the assemblages and columns as all the samples, but 
with factors defining Condition (levels of Control/Impact) and the 
unique Quadrat number which identifies that fixed quadrat over 
time, and a factor giving the sampling Time (with matching levels 
for all quadrats). The 2STAGE routine is then entered with the 
outer factor Quadrat and the inner factor Time, resulting in a 
resemblance matrix among all quadrats, in terms of their patterns 
though time. This has a 1-way structure of Condition (C/I) and 
replicate quadrats within each condition, input to ANOSIM.  

whether the control and impacted quadrats clustered 
separately. A formal test for a significant effect of the 
impact is given by a 1-way ANOSIM on the second-
stage similarity matrix. This is ‘on message’ with the 
purpose of a BACI design, namely to show (or not) 
that the temporal pattern under impact differs from 
that under control conditions, and we are justified in 
calling this an interaction test between B/A and C/I. 
In fact it is a rather general definition of interaction, 
entirely within the non-parametric framework that 
PRIMER adopts, and not at all in the same mould as 
the interaction term in a 2-way crossed ANOVA (or 
PERMANOVA) model, which is a strongly metric 
concept (see the discussion on p6-25).   

There are two strengths of this approach that can be 
immediately appreciated. Firstly, it is rare for control 
/reference sites to have the same Before assemblages 
as do the sites that will be part of the Impact group. 
For many studies, in order to find reference sites that 
will be outside the impact zone, one must move 
perhaps to a different estuary or coastal stretch, in 
which the natural assemblages will inevitably be a 
little different. Such initial differences are entirely 
removed however, in the above process − the only 
thing monitored and compared is the pattern of 
change over time within each site. Secondly, there is 
no suggestion here that assemblages at the sites 
(quadrats) will be independent observations from one 
time to the next. This is a repeated measures design, 
as previously alluded to. It is the whole time course 
of a quadrat, with all its internal autocorrelations 
among successive times, which becomes a single 
(multivariate) point in the final ANOSIM test, and all 
that is necessary for full validity of the test is that the 
quadrats  should be chosen  independently from  each
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Fig. 16.15. Algal colonisation, 
Calafuria {a}. MDS of macro-
algal species based on zero-
adjusted Bray-Curtis from 
fourth-root transformed area 
cover, using photographs, for 
48 samples, each an average 
over three replicate ‘patches’ 
(three sub-patches in each) 
for all 8 × 6 combinations of 
month of clearance (numbers 
1-8 over the course of a year) 
and time over which colonis-
ation has been taking place 
(six approximately bi-monthly 
sampling times, shown by a 
succession of larger/bolder 
boxes).  

other, e.g. randomly and representatively across their 
particular conditions (C or I). This ability to compare 
whole temporal (or sometimes spatial) profiles as the 
experimental units of a design is certainly a viable 
approach to some ‘repeated measures’ data sets. 

However, there are also some significant drawbacks. 
Using similarities only from within each quadrat will 
remove all differences in initial assemblage but will 
also remove differences in relative dispersion of the 
set of time trajectories. When control and impact sites 
do have similar initial assemblages, there will be no 
way of judging how far an impact site has moved 
from the control condition and whether it returns to 
that at some post-impact time; all that is seen is the 
extent to which the impact site reverts to its own 
initial state, before impact. Thus the second-stage 
process has inevitably ‘turned its back’ on the full 
information available in the species × samples matrix, 
to concentrate on only a small (though important) 
part, which might be considered a disadvantage. Also 
the simpler forms of BACI design in which there is 
only one time before and after the impact can clearly 
not be handled; there needs to be a rich enough set of 
times to be able to judge whether internal temporal 
patterns differ for control and impacted quadrats.  

EXAMPLE: Algal recolonisation, Calafuria 

An example of this type (though not a classic BACI 
situation) is given by Clarke et al (2006b), for a study 
by Airoldi (2000). Sub-tidal patches of rocky reefs 
were cleared of algae at one station (Calafuria) on the 
Ligurian Sea coast of N Italy (data from two further 
stations is not shown here). Multiple marked (and 
interspersed) patches were cleared on 8 different 

months over the year 1995/6, and the time course of 
recolonisation examined at 6 times (c. bi-monthly) in 
the year following clearance, utilising non-destructive 
(photographic) estimates of % area cover by the algal 
species community. Data from three ‘patches’ (in fact 
these were themselves the average from three sub- 
patches) were tracked for each of the clearance start 
months (the ‘treatment’). One rationale for the design 
was to examine likely differences in recovery rates 
and patterns (after reef damage by shipping/boats) for 
the different times of year at which this may happen. 
It is clearly a repeated measures design, with the 6 
bi-monthly samples of fixed patches being dependent.  

Fig. 16.15 is an nMDS of the 48 community samples, 
over 6 recovery periods (successively bolder squares) 
for the 8 different starting months of clearance (1-8), 
the three replicate patches for each ‘treatment’ (start 
date) having been averaged for this plot. Whilst a 
colonisation pattern through time is evident (mid-
right to low left then upwards) there is no prospect of 
seeing whether that pattern is the same across the 
start times since assemblage differences are naturally 
large over the colonisation period. The trajectories of 
the 6 times for each of the patches, viewed separately 
by MDS ordination in their groups of three patches 
per treatment (Fig. 16.16), do however show strong 
differences in these time profiles. Though they are 
spatially interspersed, there is a marked consistency 
of replicate patches within treatments and character-
istically different colonisation profiles across them.  

With outer factor the patch designators and inner 
factor the 6 bi-monthly times, the 2STAGE routine 
extracts the 6×6 similarity matrix representing each 
profile, from diagonals of the 144×144 Bray-Curtis 
matrix for the full set of samples,  and then relates the
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Fig. 16.16. Algal recolonisation, Calafuria {a}. Separate nMDS plots for each of the 8 clearance months (‘treatments’), showing time 

trajectories over the following 6 approximately bi-monthly observations of the colonising macroalgal communities, for three replicate 
patches in each treatment (different line shading). Note the similarity of trajectories within, and dissimilarity between, treatments.  

24 such sub-matrices with rank matrix correlations r, 
each sub-matrix then becoming a single point in the 
second-stage nMDS of Fig. 16.17. Unlike the earlier 
coral reef example, there are now replicates which 
will allow a formal hypothesis test, and ANOSIM on 
the differences among starting times assessed against 
the variability over replicate patches (in their time 
profiles, not in their communities!) gives a decisive 
global R of 0.96.¶  By averaging over the replicate 
level, Clarke et al (2006b) go on to demonstrate that 
the experiment is repeatable, since the second-stage 
pattern of the 8 starting months at the Calafuria 
station is strongly related to the pattern for the same 
sampling design at another station, Boccale. This 
utilises a RELATE test on the two second-stage 
matrices, a procedure which comes dangerously close 
to being a third-stage analysis, by which point the 
original data has become merely a distant memory! 

The serious point here, of course, is that plots such as 
Fig. 16.17 are never the end point of a multivariate 
analysis. They may help to tease out, and sometimes 
formally test, interesting and relevant assemblage 
patterns, but having established that there are valid 
interpretations to be made, a return to the data matrix

¶ In fact, had the nested design of smaller patches within each of 
these replicate ‘patches’ been exploited, the second-stage tests at 
this point would have been 2-way nested ANOSIM.  

 is always desirable, and the types of species analyses 
covered in Chapter 7 (much enhanced in PRIMER 
v7) will then usually play an important part in the 
final interpretation.  

 
Fig. 16.17. Algal recolonisation, Calafuria {a}. Second-stage 

nMDS of similarities in the time course of recolonisation of 
macroalgae, as seen in the first-stage MDS plots of Fig. 16.16, 
i.e. at 3 ‘patches’ under 8 different months (1-8) of clearance of 
algae from the subtidal rocky reefs (the ‘treatments’). The very 
consistent time course within, and marked differences between,  
treatments is seen in the tight dispersion of the replicates, giving 
a large and highly significant ANOSIM statistic, R = 0.96. 
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CHAPTER 17: BIODIVERSITY AND DISSIMILARITY MEASURES BASED 
ON RELATEDNESS OF SPECIES 

 

SPECIES RICHNESS DISADVANTAGES 

Chapter 8 discussed a range of diversity indices based 
on species richness and the species abundance distrib-
ution.  Richness (S) is widely used as the preferred 
measure of biological diversity (biodiversity) but it has 
some major drawbacks, many of which apply equally 
to other diversity indices such as H′, H, J′, etc. 

1) Observed richness is heavily dependent on sample 
size/effort.  In nearly all marine contexts, it is not 
possible to collect exhaustive census data.  The 
assemblages are sampled using sediment cores, trawls 
etc, and the ‘true’ species richness of a station is 
rarely fully represented in such samples. For example, 
Gage and Coghill (1977) describe a set of contiguous 
core samples taken for macrobenthic species in a 
Scottish sea-loch.   A species-area plot (or accum-
ulation curve) which illustrates how the number of 
different species detected increases as the samples 
are accumulated¶, shows that, even after 64 replicate 
samples are taken at this single locality, the observed 
number of species is still rising.   
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“The harder you look, the more species you find” 
is fundamental to much biological sampling and 
the asymptote of accumulation curves is rarely 

¶ This uses the Species-Accumulation Plot routine in PRIMER, with 
the option of plotting the curve in the presented sample order or 
(as here) randomising that order a large number of times. In the 
latter case, the resulting curves are averaged to obtain a smooth 
relationship of average number of species for each number of 
replicates. The routine also computes several standard extrapol-
ation models which attempt to predict the asymptotic number of 
species that would be found for an infinity of samples from the 
same (closed) location. Included are Chao estimators, jacknife 
and bootstrap techniques, see Colwell and Coddington (1994). 

reached.  Observed species richness S is therefore 
highly sensitive to sample size and totally non-
comparable across studies involving unknown, 
uncontrolled or simply differing degrees of sampling 
effort.  The same is true, to a lesser extent, of many 
other standard diversity indices.  Fig. 17.1 shows 
the effect of increasing numbers of individuals on 
the values of some of the diversity indices defined 
in Chapter 8.  This is a sub-sampling study, selecting 
different numbers of individuals at random from a 
single, large community sample.  The only index to 
demonstrate a lack of bias in mean value is Simpson 
diversity, given here in the form 1–l′, see equation 
(8.4).  Comparison of richness, Shannon, evenness, 
Brillouin etc values for differing sample sizes is 
clearly problematic. 

2) Species richness does not directly reflect phylo-
genetic diversity.  “A measure of biodiversity of a 
site ought ideally to say something about how 
different the inhabitants are from each other” (Harper 
and Hawksworth, 1994).  It is clear that a sample 
consisting of 10 species from the same genus should 
be seen as much less biodiverse than another sample 
of 10 species, all of which are from different families:  
genetic, phylogenetic or, at least, taxonomic related-
ness of the individuals in a sample is the key concept 
which is developed in this chapter, into practical 
indices which genuinely reflect biodiversity and 
are robust to sampling effort variations. 

3) No statistical framework exists for departure of S 
from ‘expectation’.  Whilst observed species richness 
measures can be compared across sites (or times) 
which are subject to strictly controlled and equivalent 
sampling designs, there is no sense in which the 
values of S can be compared with some absolute 
standard, i.e. we cannot generally answer the question 
“what do we expect the richness to be at this site?”, 
in the absence of anthropogenic impact, say. 

4) The response of S to environmental degradation 
is not monotonic.  Chapter 8 discusses the well-
established paradigm (see Wilkinson, 1999, and 
references therein) that, under moderate levels of 
disturbance, species richness may actually increase, 
before decreasing again at higher impact levels.  It 
would be preferable to work with a biological index 
whose relation to the degree of perturbation was 
purely monotonic (increasing or decreasing, but 
not both). 
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Fig. 17.1.  Amoco-Cadiz oil spill {A}, pooled pre-impact data.  Values of 6 standard diversity indices (y-axis, see Chapter 8 for definitions), 

for simulated samples of increasing numbers of individuals (x-axis, log scaled), drawn randomly without replacement from the full set 
of 140,344 macrobenthic organisms. 

5) Richness can vary markedly with differing 
habitat type.  Again, the ideal would be a measure 
which is less sensitive to differences in natural 
environmental variables but is responsive to 
anthropogenic disturbance. 

AVERAGE TAXONOMIC DIVERSITY 
AND DISTINCTNESS 

Two measures, which address some of the problems 
identified with species richness and the other diversity 
indices, are defined by Warwick and Clarke (1995a).  
They are based not just on the species abundances 
(denoted by xi, the number of individuals of species i 
in the sample) but also the taxonomic distances (ωij), 
through the classification tree, between every pair of 
individuals (the first from species i and the second 
from species j).  For a standard Linnean classification, 
these are discrete distances, the simple tree below 
illustrating path lengths of zero steps (individuals 
from the same species), one step (same genus but 
different species) and two steps (different genera)¶.  
Clarke and Warwick (1999) advocate a simple linear 

¶ The principle extends naturally to a phylogeny with continuously 
varying branch lengths and even, ultimately, to a molecular-based 
genetic distance between individuals (of the same or different species), 
see Clarke and Warwick (2001), Fig. 1. And one of the interesting 
further developments is to apply the ideas of this chapter to a tree 
which reflects functional relationships among species, leading to 
functional diversity measures (Somerfield et al 2008).  

scaling whereby the largest number of steps in the 
tree (two species at greatest taxonomic distance apart) 
is set to ω = 100.  Thus, for a sample consisting only 
of the 5 species shown, the path between individuals 
in species 3 and 4 is ω34 = 100, between species 1 and 
2 is ω12 = 50, between two individuals of species 5 is 
ω55 = 0, etc. 
 

Individuals

Species

Family

Genera

ω12 (=50)

ω34 (=100)

ω55
(=0)

x1 x2 x3 x4 x5  

Average taxonomic diversity of a sample is then defined 
(Warwick and Clarke, 1995a) as: 

     ∆ = [ ΣΣi<j  ωij xi xj ] / [ N(N – 1)/2 ]            (17.1) 

where the double summation is over all pairs of species 
i and j (i,j = 1, 2, …, S; i<j), and N = Σi xi , the total 
number of individuals in the sample.  ∆ has a simple 
interpretation: it is the average ‘taxonomic distance 
apart’ of every pair of individuals in the sample or, to 
put it another way, the expected path length between 
any two individuals chosen at random.   
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Fig. 17.2.  Amoco-Cadiz oil spill {A}, pooled pre-impact data.  a), b) Quantitative indices (y-axis): Average taxonomic diversity (∆) and 

distinctness (∆*) for random subsets of fixed numbers of individuals (x-axis, logged), drawn randomly from the pooled sample, as in Fig. 17.1.  
c)–f) List-based (presence/absence) indices (y-axis): Average taxonomic distinctness (∆+), total phylogenetic diversity (PD), average 
phylogenetic diversity (Φ+) and Variation in taxonomic distinctness (Λ+), for random subsets of fixed numbers of species (x-axis) drawn 
from the full species list for the pooled sample.  The sample-size independence of TD-based indices is clear, contrasting with PD and 
most standard diversity measures (Fig. 17.1).          

Note also that when the taxonomic tree collapses to a 
single-level hierarchy (all species in the same genus, 
say), ∆ becomes 

  ∆°  =  [ 2 ΣΣi<j  pi pj ] / (1 − N –1),  where pi = xi / N, 

        =  ( 1  −  Σi  pi
2 ) / (1 − N –1)             (17.2) 

which is a form of Simpson diversity.  The Simpson 
index is actually defined from the probability that any 
two individuals selected at random from a sample belong 
to the same species (Simpson, 1949).  ∆ is therefore seen 
to be a natural extension of Simpson, from the case 
where the path length between individuals is either 0 
(same species) or 100 (different species) to a more 
refined scale of intervening relatedness values (0 = same 
species, 20 = different species in the same genera, 40 
= different genera but same family, etc).†  It follows that 
∆ will often track Simpson diversity fairly closely. To 
remove the dominating effect of the species abundance 
distribution {xi}, leaving a measure which is more nearly 
a pure reflection of the taxonomic hierarchy, Warwick 
and Clarke (1995a) proposed dividing ∆ by the Simpson 
index ∆°, to give average taxonomic distinctness 

† In addition, there is a relationship between ∆ and Simpson indices 
computed at  higher taxonomic levels, see Shimatani (2001). In 
effect, ∆ is a (weighted) mean of Simpson at all taxonomic levels. 

    ∆*  =  [ ΣΣi<j  ωij xi xj ] / [ ΣΣi<j  xi xj ]             (17.3) 

Another way of thinking of this is as the expected 
taxonomic distance apart of any two individuals chosen 
at random from the sample, provided those two individ-
uals are not from the same species. 

A further form of the index, exploited greatly in what 
follows, takes the special case where quantitative data 
is not available and the sample consists simply of a 
species list (presence/absence data). Both ∆ and ∆* 
reduce to the same coefficient 

    ∆+  =  [ ΣΣi<j  ωij ] / [ S(S − 1)/2 ]                    (17.4) 

where S, as usual, is the observed number of species 
in the sample and the double summation ranges over 
all pairs i and j of these species (i<j).  Put simply, the 
average taxonomic distinctness (AvTD) ∆+ of a species 
list is the average taxonomic distance apart of all its 
pairs of species.  This is a very intuitive definition of 
biodiversity, as average taxonomic breadth of a sample.   
 
Sampling properties 

For quantitative data, repeating the pairwise exercise 
(Fig. 17.1) of random subsampling of individuals from 
a single,  large sample,  Fig. 17.2a and b show that both 
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taxonomic diversity (∆) and average taxonomic distinct-
ness (∆*) inherit the sample-size independence seen 
in the Simpson index, from which they are generalised.  
Clarke and Warwick (1998b) formalise this result by 
showing that, whatever the hierarchy or subsample 
size, ∆ is exactly unbiased and ∆* is close to being so 
(except for very small subsamples).  For non-quantit-
ative data (a species list), the corresponding question 
is to ask what happens to the values of ∆+ for random 
subsamples of a fixed number of species drawn from 
the full list.  Fig. 17.2c demonstrates that the mean 
value of ∆+ is unchanged, its exact unbiasedness in all 
cases again being demonstrated in Clarke and Warwick 
(1998b).  This lack of dependence of ∆+ (in mean 
value) on the number of species in the sample has far-
reaching consequences for its use in comparing 
historic data sets and other studies for which 
sampling effort is uncontrolled, unknown or unequal.     
 

EXAMPLES: Ekofisk oil-field and Tees 
Bay soft-sediment macrobenthos 

 
The earlier Fig. 14.4 demonstrated a change in the 
sediment macrofaunal communities around the Ekofisk 
oil-field {E}, out to a distance of about 3 km from the 
centre of drilling activity.  This was only evident, 
however, from the multivariate (MDS and ANOSIM) 
analyses, not from univariate diversity measures such 
as Shannon H', where reduced diversity was only 
apparent up to a few hundred metres from the centre 
(Fig. 17.3a).  The implication is that the observed 
community change resulted in no overall loss of 
diversity but this is not the conclusion that would 
have been drawn from calculating the quantitative 
average taxonomic distinctness index, ∆*.  Fig. 17.3b 
shows a clear linear trend of increase in ∆* with (log) 
distance from the centre, the relationship only breaking 

down into a highly variable response for the strongly 
impacted sites, within 100m of the drilling activity.   

A further example, from the coastal N Sea, is given 
by a time-series of macrobenthic samples, with data 
averaged over 6 locations in Tees Bay, UK, ({t}, 
Warwick et al, 2002).  Samples were taken in March 
and September for each of the years 1973 to 1996, 
and Fig. 17.4 shows the September inter-annual patterns 
for four (bio)diversity measures.  Notable is the clear 
increase in Shannon diversity at around 1987/88 (Fig. 
17.4b), coinciding with significant widescale changes 
in the N Sea planktonic system which have been 
reported elsewhere (e.g. Reid et al, 2001).  However, 
Shannon diversity is very influenced here by the high 
numbers of a single abundance dominant (Spiophanes 
bombyx), whose decline after 1987 led to greater 
equitability in the quantitative species diversity 
measures.  A more far-reaching change, representative 
of what was happening to the community as a whole, 
is indicated by looking at the taxonomic relatedness 
statistics based only on presence/absence data.  Use 
of simple species lists has the advantage here of ensuring 
that no one species can dominate the contributions to 
the index.  Average taxonomic distinctness (∆+) is 
seen to show a marked decline at about the time of 
this N Sea regime shift (Fig. 17.4c), indicating a 
biodiversity loss, a very different (and more robust) 
conclusion than that drawn from Shannon diversity. 
 

OTHER RELATEDNESS MEASURES 

The remainder of this chapter deals only with data in 
the form of a species list for a locality (presence/absence 
data).  There is a substantial literature on measures 
incorporating, primarily, phylogenetic relationships 
amongst species (see references in the review-type 
papers of Faith,  1994,  Humphries et al 1995).   The 
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Fig. 17.3. Ekofisk macrobenthos 
{E}.  a) Shannon diversity (H') 
for the 39 sites (y-axis), plotted 
against distance from centre 
of drilling activity (x-axis, log 
scale).  b) Quantitative average 
taxonomic distinctness ∆* for 
the 39 sites, indicating a re-
sponse trend not present for 
standard diversity indices.  
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Fig. 17.4. Tees macrobenthos 

{t}.  (Bio)diversity indices for 
Tees Bay areas combined, from 
sediment samples in September 
each year, over the period 1973 
–96, straddling a major regime-
shift in N Sea ecosystems, about 
1987.  a) Richness, S; b) Shann-
on, H’; c) Average taxonomic 
distinctness, ∆+, based on pres-
ence/absence and reflecting 
the mean taxonomic breadth 
of the species lists; d) Variation 
in taxonomic distinctness, Λ+ 
(also pres/abs), reflecting un-
evenness in the taxonomic 
hierarchy.    

context is conservation biology, with the motivation 
being the selection of individual species, or sets of 
species (or reserves), with the highest conservation 
priority, based on the unique evolutionary history 
they represent, or their complementarity to existing 
well-conserved species (or reserves).  Warwick and 
Clarke (2001) draw a potentially useful distinction of 
terminology between this individual species-focused 
conservation context and the use, as in this chapter, 
of relatedness information to monitor differences in 
community-wide patterns in relation to changing 
environmental conditions.  They suggest that the term 
taxonomic/phylogenetic distinctiveness (of a species) 
is reserved for weights assigned to individual species, 
reflecting their priority for conservation; whereas 
taxonomic/phylogenetic distinctness (of a community) 
summarises features of the overall hierarchical structure 
of an assemblage (the spread, unevenness etc. of the 
classification tree). 

Phylogenetic diversity (PD) 

In the distinctiveness context, Vane-Wright et al (1991), 
Williams et al (1991) and May (1990) introduced 
measures based only on the topology (‘elastic shape’) 
of a phylogenetic tree, appropriate when branch lengths 
are entirely unknown, and Faith (1992, 1994) defined 
a phylogenetic diversity (PD) measure based on known 
branch lengths:  PD is simply the cumulative branch 
length of the full tree.  Whether this is thought of as 
representing the total evolutionary history, the genetic 

turnover or morphological richness, it is an appealingly 
simple statistic.  Unfortunately, Fig. 17.5 demonstrates 
some of the disadvantages of using these measures in 
a distinctness context.  The figure compares only 
samples (lists) with the same number of species (7), 
at four hierarchical levels (say, species within genera 
within families, all in one order), so that each step 
length is set to 33.3.  Fig. 17.5b and c have the same 
tree topology, yet we should not consider them to 
have the same average (or total) distinctness, since 
each species is more taxonomically similar to its 
neighbours in b than c (reflected in ∆+ values of 33.3 
and 66.6 respectively).  Similarly, contrasting Fig. 17.5d 
and e, the total PD is clearly identical, the sum of all 
the branch lengths being 333 in both cases, but this 
does not reflect the more equitable distribution of 
species amongst higher taxa in d than e (∆+ does, 
however, capture this intuitive element of biodiversity, 
with respective values of 52 and 43). 

Average PD 

More importantly, there is another clear reason why 
phylogenetic diversity PD is unsuitable for monitoring 
purposes.  Firstly, note that PD itself is a total rather 
than average property; as new species are added to 
the list it always increases.  This makes PD highly 
dependent on species richness S and thus sampling 
effort, a demonstration of which can be seen in Fig. 
17.2d (and the later Fig. 17.9a), a near straight line 
relationship of PD with S.  This is to be expected, and 
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Fig. 17.5.  a)-f) Example taxon-

omic hierarchies for presence/ 
absence data on 7 species (i.e. 
of fixed species richness), with 
4 levels and 3 step lengths (thus 
each of 33.3, though the third 
step only comes into play for 
plot f).  Φ+: average phylo-
genetic diversity, ∆+: average 
taxonomic distinctness, Λ+: 
variation in TD.  The plots 
show, inter alia:  the expected 
‘biodiversity’ decrease from 
a) to d) and e) to b) (in both 
∆+ and Φ+), and from d) to e) 
(but only in ∆+, not in Φ+);  
unevenness of f) in relation to 
c), reflected in increased Λ+ 
though unchanged ∆+. 

a better equivalent to average taxonomic distinctness 
(AvTD, ∆+) would be average phylogenetic diversity 
(AvPD), defined as the ratio: 

    Φ+  =  PD / S                (17.5) 

This is a very intuitive summary of average distinctness, 
being the contribution that each species makes on 
average to the total tree length, but unfortunately it 
does not have the same lack of dependence on sampling 
effort that characterises ∆+.  Fig. 17.2e (and the later 
Fig. 17.9b) show that its value decreases markedly as 
the number of species (S) increases, making it mislead-
ing to compare AvPD values across studies with differ-
ing levels of sampling effort. 

‘Total’ versus ‘average’ measures 

Note the distinction here between total and average 
distinctness measures.  AvPD (Φ+) is the analogue of 
AvTD (∆+), both being ways of measuring the average 
taxonomic breadth of an assemblage (a species list), 
for a given number of species.  ∆+ will give the same 
value (on average) whatever that number of species; 
Φ+ will not.  Total PD measures the total taxonomic 
breadth of the assemblage and has a direct analogue 
in total taxonomic distinctness: 

    TTD  =  S. ∆+  =  Σi  [(Σj≠i  ωij ) / (S – 1)]       (17.6)  

Explained in words, this is the average taxonomic 
distance from species i to every other species, summed 
over all species, i = 1, 2, …, S.  (Taking an average 
rather than a sum gets you back to AvTD, ∆+.)  TTD 

may well be a useful measure of total taxonomic breadth 
of an assemblage, as a modification of species richness 
which allows for the species inter-relatedness, so that 
it would be possible, for example, for an assemblage 
of 20 closely-related species to be deemed less ‘rich’ 
than one of 10 distantly-related species.  In general, 
however, like total PD, total TD will tend to track 
species richness rather closely, and will only therefore 
be useful for tightly controlled designs in which effort 
is identical for the samples being compared, or sampling 
is sufficiently exhaustive for the asymptote of the 
species-area curve to have been reached (i.e. comparison 
of censuses rather than samples). 

Variation in TD 

Finally, a comparison of Fig. 17.5c and f shows that 
the scope for extracting meaningful biodiversity indices 
(unrelated to richness) from simple species lists has 
not yet been exhausted.  Average taxonomic distinctness 
is the same in both cases (∆+ = 66.6) but the tree 
constructions are very different, the former having 
consistent, intermediate taxonomic distances between 
pairs of species, in comparison with the latter’s disparate 
range of small and large values.  This can be conven-
iently summarised in a further statistic, the variance 
of the taxonomic distances {ωij} between each pair of 
species i and j, about their mean value ∆+: 

    Λ+  =  [ ΣΣi<j  (ωij – ∆+)2 ] / [ S(S − 1)/2 ]        (17.7) 

termed the variation in taxonomic distinctness, VarTD.  
Its behaviour in a practical application will be examined 
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later in the chapter¶, but note for the moment that it, 
too, appears to have the desirable sampling property 
of (approximate) lack of dependence of its mean value 
on sampling effort (see Fig. 17.2f). 
 

‘EXPECTED DISTINCTNESS’ TESTS  

Species master list  

The construction of taxonomic distinctness indices from 
simple species lists makes it possible to address another 
of the ‘desirable features’ listed at the beginning of 
the chapter:  there is a potential framework within 
which TD measures can be tested for departure from 
‘expectation’.  This envisages a master list or inventory 
of species, within defined taxonomic boundaries and 
encompassing the appropriate region/biogeographic 
area, from which the species found at one locality can 
be thought of as drawn.  For example, the next illustr-
ation uses the full British faunal list of 395 free-living 
marine nematodes, updated from the keys of Platt and 
Warwick (1983, 1988). The species complement at any 
specific  locality and/or historic period (e.g. putatively 
impacted areas such as Liverpool Bay or the Firth of 
Clyde) can be compared with this master list, to ask 
whether the observed subset of species represents the 
biodiversity expressed in the full species inventory.  
Clearly, such a comparison is impossible for species 
richness S, or total TD or PD, since the list at one 
location is automatically shorter than the master list.   
Also, comparison of S between different localities (or 
historic periods) is invalidated by the inevitable differ-
ences in sampling effort in constructing the lists for 
different places (or times).  However, the key observ-
ation here (Clarke and Warwick, 1998b) is that average 
taxonomic distinctness (∆+) of a randomly selected 
sublist does not differ, in mean value, from AvTD for 
the master list.  So, localities that have attracted 
differing degrees of sampling effort are potentially 
directly comparable, with each other and with ∆+ for 
the full inventory.  The latter is the ‘expected value’ 
for average distinctness from a defined faunal group, 

¶ The PRIMER DIVERSE routine has options to compute the full 
range of relatedness-based biodiversity measures discussed in this 
chapter: ∆, ∆*, ∆+, TTD, Λ+, PD, Φ+, simultaneously for all the 
samples in a species matrix.  It returns the values to a worksheet 
which can be displayed as Scatter Plots, Histograms, Draftsman 
Plots etc, analysed in a multivariate way (with the indices as the 
variables, page 8-15) or by conventional univariate tests, either 
in PERMANOVA on Euclidean distance matrices from single 
indices (Anderson et al 2008) or exported to ANOVA software. 
These  DIVERSE options require the availability of an aggregat-
ion file, detailing which species map to which genus, families etc, 
in exactly the same format needed for the Aggregate routine  used 
to perform higher taxonomic level analyses in Chapter 10. 

and reductions from this level, at one place or time, 
can potentially be interpreted as loss of biodiversity.   

Testing framework 

Furthermore, there is a natural testing framework for 
how large a decrease (or increase) from expectation 
needs to be, in order to be deemed statistically ‘signif-
icant’.  For an observed set of m species at one location, 
sublists of size m are drawn at random from the master 
inventory, and their AvTD values computed.  From, 
say, 999 such simulated sublists, a a histogram can 
be constructed of the expected range of ∆+ values, for 
sublists of that size, against which the true ∆+ for that 
locality can be compared.  If the observed ∆+ falls 
outside the central 95% of the simulated ∆+ values, it 
is considered to have departed significantly from 
expectation:  a two-sided test is probably appropriate 
since departure could theoretically be in the direction 
of enhanced as well as reduced distinctness.   

The next stage is to repeat the construction of these 
95% probability intervals for a range of sublist sizes 
(m = 10, 15, 20, …) and plot the resulting upper and 
lower limits on a graph of ∆+ against m.  When these 
limit points are connected across the range of m values, 
the effect is to produce a funnel plot (such as seen in 
Fig. 17.8).  The real ∆+ values for a range of observ-
ational studies are now added to this plot, allowing 
simultaneous comparison to be made of distinctness 
values with each other and with the ‘expected’ limits.†     

EXAMPLE: UK free-living nematodes 

Warwick and Clarke (1998) examined 14 species lists 
from a range of different habitats and impacted/undist-
urbed UK areas ({U}, Fig. 17.6), referring them to a 
6-level classification of free-living, marine nematodes 
(Lorenzen, 1994), based on cladistic principles.  The 
taxonomic groupings were: species, genus, family, 
suborder, order and subclass, all within one class, thus 
giving equal step lengths between adjacent taxonomic 
levels of 16.67 (species within different subclasses 
then being at a taxonomic distance of ω = 100).  The 
relatively comprehensive British master list (updated  
from Platt and Warwick, 1983, 1988, Warwick et al 
1998) consisted of 395 species, the individual area/ 
habitat sublists ranging in size from 27 to 164 species.  

† Histogram and funnel plots of the ‘expected’ spread of ∆+ values 
for a given subsample size (or size range), drawn from a master 
species list, are plotted in the PRIMER TAXDTEST routine, access-
ible when the active sheet is the aggregation file for the master 
list.  An option is given to superimpose a real data value on the 
simulated histogram, or a set of real values on the funnel plot. 
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They included two studies of the same (generally 
impacted) area, the Firth of Clyde, carried out by 
different workers and resulting in very disparate 
sublist sizes (53 and 112). 
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Fig. 17.6.  UK regional study, free-living nematodes {U}.  The 

location/habitat combinations for the 14 species sublists whose 
taxonomic distinctness structure is to be compared.  Sublittoral 
offshore sediments at N: Northumberland (Warwick and Buchanan 
1970); TY: Tyne (Somerfield et al, 1993); L: Liverpool Bay 
(Somerfield et al, 1995).  Intertidal sand beaches at ES: Exe 
(Warwick, 1971); C1: Clyde (Lambshead, 1986); C2: Clyde 
(Jayasree, 1976); FO: Forth (Jayasree, 1976); SS: Scilly (Warwick 
and Coles, 1977).  Estuarine intertidal mudflats at EM: Exe 
(Warwick, 1971); TA: Tamar (Austen and Warwick, 1989); FA: 
Fal (Somerfield et al, 1994a,b).  Algal habitats in SA: Scilly 
(Gee and Warwick, 1994 a,b).  Also mixed habitats at E: Exe, 
S: Scilly.         

 

Histograms 

Species richness levels of the 14 lists are clearly not 
comparable since sampling effort is unequal.  However, 
the studies have been rationalised to a common taxon-
omy and AvTD values may be meaningfully compared.  
Fig. 17.7 contrasts two of the studies, which have 
similar-length species lists: sandy sites in the Exe 
estuary (ES, 122 species) and the Firth of Clyde (C1, 
112 species).  Fig. 17.7a displays the histogram of ∆+ 
values for 999 random subsamples of size m = 122, 
drawn from the full inventory of 395 species, and this 
is seen to be centred around the master AvTD of 78.7, 
with a (characteristic) left-skewness to the ∆+ distrib-
ution.  The observed ∆+ of 79.1 for the Exe data falls 
very close to this mean, in the body of the distribution, 
and therefore suggests no evidence of reduced taxon-
omic distinctness.  Fig. 17.7b shows the histogram of 
simulated ∆+ values in subsets of size m = 112, having 
(of course) the same mean ∆+ of 78.7 but, in contrast, 
the observed ∆+ of 74.1 for the Clyde data now falls 
well below its value for any of the randomly selected 
subsets, demonstrating a significantly reduced average 
distinctness. 

Funnel plots 

Fig. 17.8 displays the funnel plot, catering for all sublist 
sizes.  The simulated 95% probability limits are again 
based on 999 random selections for each of m = 10, 
15, 20, …, 250 species from the 395.  The mean ∆+ is 
constant for all m (at 78.7) but the limits become increas-
ingly wide as the sample size decreases, reducing the 
likelihood of being able to detect a change in distinctness 
(i.e. reducing the power of the test).  The probability 
limits also demonstrate the left-skewness of the ∆+ 
distribution about its mean throughout, though especially 
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Fig. 17.7.  UK regional study, 

free-living nematodes {U}.  
Histograms of simulated AvTD, 
from 999 sublists drawn rand-
omly from a UK master list of 
395 species. Sublist sizes of a) 
m=122, b) m=112, correspond-
ing to the observed number of 
species in the Exe (ES) and 
Clyde (C1) surveys.  True ∆+ 
also indicated: the Exe value 
is central but the null hypoth-
esis that AvTD for the Clyde 
equates to that for the UK list 
as a whole is clearly rejected 
(p<0.001 or 0.1%)   
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Fig. 17.8.  UK regional study, 
free-living nematodes {U}.  
Funnel plot for simulated AvTD, 
as in Fig. 17.7, but for a range 
of sublist sizes m=10, 15, 20, 
…, 250 (x-axis).  Crosses, and 
thick lines, indicate limits within 
which 95% of simulated ∆+ 
values lie; the thin line indicates 
mean ∆+ (the AvTD for the 
master list), which is not a 
function of m.  Points are the 
true AvTD (y-axis) for the 14 
location/habitat studies (see 
Fig. 17.6 for codes), plotted 
against their sublist size (x-
axis).  

for low numbers of species.  Superimposing the real 
∆+ values for the 14 habitat/location combinations, five 
features are apparent: 

1) The impacted areas of Clyde, Liverpool Bay, Fal 
and, to a lesser extent, Tamar, are all seen to have 
significantly reduced average distinctness, whereas 
pristine locations in the Exe and Scilly have ∆+ values 
close to that of the UK master list. 

2) Unlike species richness (and in keeping with the 
‘desirability criteria’ stated earlier), ∆+ does not 
appear to be strongly dependent on habitat type: Exe 
sand and mud habitats have very different numbers 
of species but rather centrally-placed distinctness;  
Scilly algal and sand habitats have near-identical ∆+ 
values.  Warwick and Clarke (1998) also demonstrate 
a lack of habitat dependence in ∆+ from a survey of 
Chilean nematodes (data of W Wieser). 

3) There is apparent monotonicity of response of the 
index to environmental degradation (also in keeping 
with another initial criterion).  To date, there is no 
evidence of average taxonomic distinctness increasing 
in response to stress. 

4) In spite of the widely differing lengths of their species 
lists, it is notable that the two Clyde studies (C1, C2) 
return rather similar (depressed) values for ∆+. 

5) There is no evidence of any empirical relation in the 
(∆+, S) scatter plot.  We know from the sampling 
theory that the mechanics of calculating ∆+ does 

not lead to an intrinsic relationship between the 
two but that does not prevent there being an observed 
correlation; the latter would imply some genuine 
assemblage structuring which predisposed large 
communities to be more (or less) ‘averagely distinct’ 
than small communities.  The lack of an intrinsic, 
mechanistic correlation greatly aids the search for 
such interesting observational relationships (see 
also the later discussion on AvTD, VarTD correl-
ations).  The same cannot be said for phylogenetic 
diversity, PD.  Fig. 17.9a shows the expected near-
linear relation between total PD and S for these 
meiofaunal studies (total TD and S would have 
given a similar picture) but, more significantly, Fig. 
17.9b bears out the previous statements about the 
dependence also of average PD (Φ+) on S.  This 
intrinsic relationship, shown by the declining curve 
for the expected value of Φ+ as a function of the 
number of species in the list, contrasts markedly 
with the constant mean line for ∆+ in Fig. 17.8.  
Nothing can therefore by read into an observed 
negative correlation of Φ+ and S in a practical study:  
such a relationship would be likely, as here, to be 
purely mechanistic, i.e. artefactual.              

AvTD is therefore seen to possess many of the features 
listed at the beginning of the chapter as desirable in a 
biodiversity index – a function, in part, of its attractive 
mathematical sampling properties (for formal statistical 
results on unbiasedness and variance structure see 
Clarke and Warwick, 1998b, 2001).   Many questions 
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Fig. 17.9.  UK regional study, free-living nematodes {U}.  Scatter plots for the 14 location/habitat studies (Fig. 17.6) of: a) total PD, b) AvPD 

against list size m, the latter also showing the declining ‘expected’ mean Φ+ with m, simulated from sublists of the UK master list. 

remain, however – from theoretical issues of its depend-
ence (or lack of it) on essentially arbitrary assumptions 
about relative weighting of step lengths through the 
taxonomic tree, to further practical demonstration of 
its performance (or lack of it) for other faunal groups 
and environmental impacts.  The following example 
addresses these two questions in particular.    
 

EXAMPLE: N Europe groundfish surveys 

An investigation of the taxonomic structure of demersal 
fish assemblages in the North Sea, English Channel 
and Irish Sea, motivated by concerns over the impacts 
of beam trawling, is reported by Rogers et al (1999).  
A total of 277 ICES quarter-rectangles were sampled 
for 93 species of groundfish {b}, by research vessels 
from different N European countries.  Sampling effort 
per rectangle was not constant.  For the purposes of 
display, quarter-rectangles were grouped into 9 larger 
sea-areas: 1–Bristol Channel, …, 9–Eastern Central 
N Sea (Fig. 17.10, see legend for area definitions). 

There is a wealth of taxonomic detail to exploit in this 
case.  The analysis uses a 14-level classification (Fig. 
17.11), based on phylogenetic information, compiled 
by J.D. Reynolds (Univ E Anglia), primarily from 
Nelson (1994) and McEachran and Miyake (1990).  
The distinctness structure of this master list, and its 
AvTD of ∆+ = 80.1, for all groundfish species that 
could be reliably sampled and identified, becomes the 
standard against which the species lists from the various 
quarter-rectangles are assessed. 

Funnel plot 

Fig. 17.12 displays the resulting funnel plot of the range 
of  ∆+  values expected from sublists of size 5 to 35, 

 
Fig. 17.10.  Beam-trawl surveys, for groundfish, N Europe {b}. 277 

rectangles from 9 sea areas.  1: Bristol Channel, 2: W Irish Sea, 
3: E Irish Sea, 4: W Channel, 5: NE Channel, 6: SE Channel, 7: 
SW North Sea, 8: SE North Sea, 9: E Central North Sea.   

repeating the mean, lower and upper limits in sub-plots 
of observed ∆+ values for the 9 sea areas.  ∆+ is clearly 
seen to be reduced in some areas, particularly 6, 8 and 
9, whilst remaining at ‘expected’ levels in others.  
Rogers et al (1999) discuss possible explanations for 
this, noting the contribution made by the spatial pattern 
of elasmobranchs, a taxonomic group they argue may 
be particularly susceptible to disturbance by commercial 
trawling, because of their life history traits. 

Weighting of step lengths 

Many of the fine-scale phylogenetic groupings in Fig. 
17.11 are utilised comparatively rarely (e.g. subgenera 
only within Raja, tribe only within the Pleuronectidae 
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Fig. 17.11.  Beam-trawl surveys, for groundfish, N Europe {b}.  14-level classification (phylogenetically-based) used for the construction of 
taxonomic distances between 93 demersal fish species, those that could be reliably sampled and identified for the 277 rectangles in this 
N European study. 

Table 17.1.  Beam-trawl surveys, for groundfish, N Europe {b}. The 
13 taxonomic/phylogenetic categories (k) used in the groundfish 
study, the standard taxonomic distances {ωk} and an alternative 
formulation {ωk

(0)} based on taxon richness {sk} at each level.  
ωk (or ωk

(0)) is the path length between species from different 
taxon group k but the same group k+1. 

k Taxon sk ωk ωk
(0) 

1 Species 93   7.7 1.3 
2 Sub-genus 89 15.4 6.9 
3 Genus 72 23.1 8.9 
4 Tribe 67 30.8 12.5 
5 Sub-family 59 38.5 21.4 
6 Family 41 46.2 22.9 
7 Super-family 39 53.8 27.4 
8 Sub-order 33 61.5 44.4 
9 Order 14 69.2 54.9 
10 Series 9 76.9 61.4 
11 Super-order 7 84.6 65.6 
12 Sub-division 6 92.3 85.3 
13 Class 2      100.0 100.0 

etc), and the standard assumption that all step lengths 
between taxonomic levels are given equal weight (7.69, 
in this case) may appear arbitrary.  For example, if a 
new category is defined which is not actually used, 
then the resulting change in all the step lengths, in 
order to accommodate it, seems unwarranted.  The 
natural alternative here is to make the step lengths 
proportional to the extent of group melding that takes 
place, larger steps corresponding to larger decreases 
in taxon richness.  A null category would then add no 
additional step length.  Table 17.1 shows the resulting 
taxonomic distances {ω(0)} between species connected 
at the differing levels, contrasted with the standard, 
equal-stepped, distances {ω}.  Obviously, both are 
standardised so that the largest distance in the tree 
(between species in the different classes Chondrichthyes 
and Osteichthyes) is set to 100. 
 
Fig. 17.13 demonstrates the minimal effect these revised 
weights have on the calculation of average taxonomic 
distinctness, ∆+.  It is a scatter plot of  ∆+(0) (revised 
weights) against ∆+ (standard, equal-stepped, distances) 
for the 277 quarter-rectangle species lists.  The relation 
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Fig. 17.12.  Beam-trawl surveys, 
for groundfish, N Europe {b}.  
AvTD (presence/absence data) 
against observed number of 
species, in each of 274 rect-
angles, grouped into 9 sea 
areas (Fig. 17.10).  Dashed 
line indicates mean of 5000 
simulated sublists for each size 
m = 5, 6, 7, …, 35, confirming 
the theoretical unbiasedness 
and therefore comparability of 
∆+ for widely differing degrees 
of sampling effort.  Continuous 
lines denote 95% probability 
limits for ∆+ from a single sub-
list of specified size from the 
master list (of 93 species).   
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Fig. 17.13. Beam-trawl surveys, for groundfish, N Europe {g}.  

Comparison of observed ∆+, for each of 277 rectangles, between 
two weighting options for taxonomic distance between species: 
equal step-lengths between hierarchical levels (x-axis), and lengths 
proportional to change in taxonomic richness at that step (y-axis). 

is seen to be very tight, with only about 3 samples de-
parting from near-linearity.  (These are outliers of very 
low species richness – in one case as few as 2 species 
– and have been removed from Fig. 17.12.)  Clearly, 
the relative values of ∆+ are robust in this case to the 
precise definition of the step-length weights, a reassuring 
conclusion which is also borne out for the UK nematode 
study {U}.  For the data of Fig. 17.8, Clarke and War-
wick (1999) consider the effects of various alternative 
step-length definitions, consistently increasing or 
decreasing the weights at higher taxonomic levels as 
well as weighting them by changes in taxon richness.  

The only alteration to the conclusions came from de-
creasing the step lengths at the higher (coarsest) taxon-
omic levels, especially suppressing the highest level 
altogether (so that species within different subclasses 
were considered no more taxonomically distant than 
those within different orders).  The Scilly data sets 
then showed a clear change in their average distinctness 
in comparison with the other 11 ∆+ values.¶ 

The unusual structure of the Scillies sublists is also 
exemplified, in a more elegant way, by considering 
not just average but variation in taxonomic distinctness. 
 

VARIATION IN TAXONOMIC 
DISTINCTNESS, Λ+  

VarTD was defined in equation (17.7), as the variance 
of the taxonomic distances {ωij} between each pair of 
species i and j, about their mean distance ∆+.  It has 
the potential to distinguish differences in taxonomic 
structure resulting, for example, in assemblages with 
some genera becoming highly species-rich whilst a range 
of other higher taxa are represented by only one (or a 
very few) species.  In that case, average TD may be 
unchanged but variation in TD will be greatly increased, 
and Clarke and Warwick (2001) argue (on a sample 
of one!) that this might be expected to be characteristic 
of island fauna, such as that for the Isles of Scilly.   

¶ Both the PRIMER DIVERSE and TAXDTEST routines allow such 
compression of taxonomic levels, either at the top or bottom of the 
tree (or both), and also permit automatic computation of step-
length weights based on changes in taxon richness and, indeed, 
any user-specified weighting. 

                                                           



 Chapter 17   
page 17–13  

Number of species (m)

Va
ria

tio
n 

in
 T

ax
on

om
ic

 D
is

tin
ct

ne
ss

Λ
+

Theoretical mean Λ+

Simulated 95% limits

C2

300

400

500

600

700

0 50 100 150 200 250

C1

EEM
ES

FO

N

S

SA

SS

TA
TY

FA

L

 

 
 
 
Fig. 17.14.  UK regional study, 

free-living nematodes {U}.  
Funnel plot, as in Fig. 17.8, 
but for simulated VarTD (Λ+), 
against sublist sizes m=10, 
15, 20, …, 250 (x-axis), drawn 
from the 395-species master list.  
Thin line denotes the theoretical 
(and simulated) mean Λ+, which 
is no longer entirely constant, 
declining very slightly for small 
values of m.  The bias is clearly 
negligible, however, showing 
that (like ∆+) Λ+ is comparable 
across studies with differing 
sampling effort (as here). Super-
imposed observed Λ+ values 
for the 14 location/habitat 
combinations (Fig. 17.6) show 
a significantly larger than 
expected VarTD for the Scilly 
datasets.  

For the UK nematode study {U}, Fig. 17.14 displays 
the funnel plot for VarTD (Λ+) which is the companion 
to Fig. 17.8 (for AvTD, ∆+).  It is constructed in the 
same way, by many random selections of sublists of a 
fixed size m from the UK master list of 395 nematode 
species, and recomputation of Λ+ for each subset.  The 
resulting histograms are typically more symmetric 
than for ∆+, as seen by the 95% probability limits for 
‘expected’ Λ+ values, across the full range of sublist 
sizes: m = 10, 15, 20, 25, …, shown in Fig. 17.14.  Three 
features are noteworthy: 

1) The simulated mean Λ+ (thin line in Fig. 17.14) is 
again largely independent of sublist size, only de-
clining slightly for very short lists (and the slight 
bias is dwarfed by the large uncertainty at these 
low sizes).  Clarke and Warwick (2001) derive an 
exact formula for the sampling bias of Λ+ and show, 
generally, that it will be negligible.  This again has 
important practical implications because it allows 
Λ+ to be meaningfully compared across (historic) 
studies in which sampling effort is uncontrolled. 

2) The various UK habitat/location combinations all 
fall within ‘expected’ ranges, with the interesting 
exception of the Scilly data sets.  These have signif-
icantly higher VarTD values, as discussed above. 

3) Λ+ therefore appears to be extracting independent 
information, separately interpretable from ∆+, about 
the taxonomic structure of individual data sets.  
This assertion is testable by a bivariate approach. 

JOINT (AvTD, VarTD) ANALYSES  

The histogram and funnel plots of Figs. 17.7 and 17.8 
are univariate analyses, concentrating on only one index 
at a time.  Also possible is a bivariate approach in 
which (∆+, Λ+) values are considered jointly, both in 
respect of the observed outcomes from real data sets 
and their expected values under subsampling from a 
master species inventory.  Fig. 17.15 shows the results 
of a large number of random selections of m = 100 
species from the 395 in the UK nematode list {U}; 
each selection gives rise to an (AvTD, VarTD) pair 
and these are graphed in a scatter plot (Fig. 17.15a).  
Their spread defines the ‘expected’ region (rather 
than range) of distinctness behaviour, for a sublist of 
100 species.  Superimposed on the same plot are the 
observed (∆+, Λ+) pairs for three of the studies with 
list sizes of about that order:  all three (Clyde, Liver-
pool Bay and Scilly) are seen to fall outside the 
expected structure, though in different ways, as 
previously discussed.   

‘Ellipse’ plots 

It aids interpretation to construct the bivariate equivalent 
of the univariate 95% probability limits in the histogram 
or funnel plots, namely a 95% probability region, within 
which (approximately) 95% of the simulated values 
fall.  An adequate description here is provided by the 
ellipse from a fitted bivariate normal distribution to 
separately transformed scales for ∆+ and Λ+. 
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Fig. 17.15.  UK regional study, free-living nematodes {U}.  a) Scatter plot of (AvTD, VarTD) pairs from random selections of m = 100 

species from the UK nematode list of 395; also superimposed are three observed points: Clyde (C1), Liverpool Bay (L) and Scilly (S), 
all falling outside ‘expectation’.  b) Probability contours (back-transformed ellipses) containing approximately 95, 90, 75 and 50% of 
the simulated values.  Both plots are based on 1000 simulations though only 500 points are displayed, for clarity. 

AvTD in particular needs a reverse power transform 
to eliminate the left-skewness though, as previously 
noted, any transformation of VarTD can be relatively 
mild, if needed at all. Clarke and Warwick (2001) 
discuss the fitting procedure in detail¶ and Fig. 17.15b 
shows its success in generating convincing probability 
contours, containing very close to the nominal levels 
of 50, 75, 90 and 95% of simulated data points.  In 
the normal convention, the ‘expected region’ is taken 
as the outer (95%) contour, which is an ellipse on the 
transformed scales, though typically ‘egg-shaped’ 
when back-transformed to the original (∆+, Λ+) plot.  

A different region needs to be constructed for each 
sublist size or, in practice, for a range of m values, 
straddling the observed sizes. It may improve clarity 
to plot the regions in groups of two or three, as in Fig. 
17.16. The conclusions are largely unchanged here, 
perhaps querying the need for a bivariate approach. 
However, there are at least three advantages to this: 

¶ Accomplished by the PRIMER TAXDTEST routine, which auto-
matically carries out the simulations and transformation/fitting of 
bivariate probability regions to obtain (transformed) ‘ellipse’ plots, 
for specified sublist sizes, on which real data pairs (∆+,Λ+) may 
be superimposed. Another variation introduced into TAXDTEST 
in later versions of PRIMER is to generate the model histograms, 
funnels etc for the ‘expected’ AvTD, VarTD not by assembling 
species by simple random picks from the master list, but by select-
ing species proportionally to their frequency of occurrence in a 
master data matrix (which will often be just the set of all samples 
in the study) – it can be argued that this provides a more realistic 
null hypothesis against which to compare the observed related-
ness. The mean AvTD line is no longer quite independent of S 
(though dependence is weak) but funnels can be generated in just 
the same way – they may move slightly up or down the y axis, but 
again this modelling in no way changes the observed indices. 

1) A bivariate test naturally compensates for repeated 
testing which is inherent in separate univariate tests. 

2) The ‘failure to reject’ region of the null hypothesis, 
inside the simulated 95% probability contour, is not 
rectangular, as it would be for two separate tests.  
This opens the possibility for other faunal groups, 
where simulated ∆+ and Λ+ values may be negatively 
correlated (as appears to happen for components of 
the macrobenthos, Clarke and Warwick, 2001), that 
significance could follow from the combination of 
moderately low AvTD and VarTD values, where 
neither of them on their own would indicate rejection. 

3) It aids interpretation of spatial biodiversity patterns 
to know whether there is any intrinsic, artefactual 
correlation to be expected between the two indices, 
resulting from the fact that they are both calculated 
from the same set of data.  Here, Fig. 17.15 shows 
emphatically that no such internal correlation is to 
be expected (though, as just commented, the indep-
endence of ∆+ and Λ+ is not a universal result, and 
needs to be examined by simulation for each new 
master list).  Yet the empirical correlation between 
∆+ and Λ+ for the 14 studies is not zero but large 
and positive (Fig. 17.17).  This implies a genuine 
correlation from location to location in these two 
assemblage features, which it is legitimate to inter-
pret.  The suggestion (Clarke and Warwick, 2001) 
is that pollution may be connected with a loss both 
of the normal wide spread of higher taxa (reduced 
∆+), and that the higher taxa lost are those with a 
simple subsidiary structure, represented only by 
one or two species, genera or families, leaving a 
more balanced tree (reduced Λ+).          

                                                           



 Chapter 17   
page 17–15  

400

450

500

550

600

Va
ria

tio
n 

in
 T

ax
on

om
ic

 D
is

tin
ct

ne
ss

 Λ
+

C1: Clyde 1
E: Exe (all)
ES: Exe sand
L: Liverpool Bay
S: Scillies (all)
TY: Tyne

SA (41)
SS (42)

EM (48)

FO (27)
C2 (53)

40

50

60 80

N (63)
TA (66)

FA (78)

400

450

500

550

600

72 74 76 78 80 82 72 74 76 78 80 82

Average Taxonomic Distinctness ∆+

100

115

S (102)

C1 (112)

L (97)

TY (114)
120

160

ES (122)

E (164)

C2: Clyde 2
EM: Exe mud
FA: Fal
FO: Forth
N: Northumberland
SA: Scillies algae
SS: Scillies sand
TA: Tamar

a b

c d

 
Fig. 17.16.  UK regional study, free-living nematodes {U}.  ‘Ellipse’ plots of 95% probability regions for (AvTD, VarTD) pairs, as for 

Fig. 17.15 but for a range of sublist sizes:  a) m = 40, 50; b) m = 60, 80; c) m = 100, 115; d) m = 120, 160.  The observed (∆+, Λ+) 
values for the 14 location/habitat studies are superimposed on the appropriate plot for their particular species list size (given in brackets).  
As seen in the separate funnel plots (Figs. 17.8 and 17.14), Clyde, Liverpool Bay, Fal (borderline) and all the Isles of Scilly data sets 
depart significantly from expectation. 
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Fig. 17.17.  UK regional study, free-living nematodes {U}.  Simple 

scatter plot of observed (AvTD, VarTD) values for the 14 location/ 
habitat studies, showing the strongly positive empirical correlation 
(Pearson r = 0.79), which persists even if the three Scilly values 
are excluded (r = 0.75). 

CONCLUDING REMARKS ON 
TAXONOMIC DISTINCTNESS 

Early applications of taxonomic distinctness ideas in 
marine science can be found in Hall and Greenstreet 
(1998) for demersal fish, Piepenburg et al (1997) for 
starfish and brittle-stars in polar regions, Price et al 
(1999) for starfish in the Atlantic, and Woodd-Walker et 
al (2002) for a latitudinal study of pelagic copepods. 
An early non-marine example is the work of Shimatani 
(2001) for forest stands.  Over the last decade the index 
has become very widely used and cited. A bivariate 
example is given by Warwick and Light (2002) who 
use ‘ellipse’ plots of expected (∆+, Λ+) values, from 
live faunal records of the Isles of Scilly, to examine 
whether easily sampled bivalve and gastropod ‘death 
assemblages’ could be considered representative of 
the taxonomic distinctness structure of the live fauna. 

Too much should not be claimed for these methods. It 
is surprising that anything sensible can be said about 
diversity at all, for data consisting simply of species 
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presences, and arising from unknown or uncontrolled 
sampling effort (which usually renders it impossible 
to read anything into the relative size of these lists).  
Yet, much of the later part of this chapter suggests 
that not only can we find one index (AvTD) which is 
comparable across such studies, capturing an intuitive 
sense of biodiversity, but we can also find a second 
one (VarTD), with equally good statistical properties, 
and which may (sometimes at least) capture a near 
independent attribute of biodiversity structure. 

Nonetheless, it is clear that controlled sampling designs, 
carried out in a strictly uniform way across different 
spatial, temporal or experimental conditions, must 
provide additional, meaningful, comparative diversity 
information (on richness, primarily) that ∆+ and Λ+ 
are designed to ignore.  Even here, though, concepts 
of taxonomic relatedness can expand the relevance of 
richness indices:  rather than use S, or one of its variants 
(see Chapter 8), total taxonomic distinctness (TTD) 
or total phylogenetic diversity (PD), see pages 17-5 
and 17-6, capture the richness of an assemblage in 
terms of its number of species and whether they are 
closely or distantly related. 

Sensitivity and robustness 

Returning to the quantitative form ∆∗, the Ekofisk oil-
field study suggested that such relatedness measures 
may have a greater sensitivity to disturbance events 
than is seen with species-level richness or evenness 
indices (Warwick and Clarke, 1995).  This suggestion 
was not borne out by subsequent oil-field studies 
(Somerfield et al, 1997), particularly where the impact 
was less sustained, the data collection at a less extensive 
level and hence the gradients more subtly entwined 
with natural variability.  But it would be a mistake to 
claim sensitivity as a rationale for this approach:  there 
is much empirical evidence that the best way of detect-
ing subtle community shifts arising from environmental 
impacts is not through univariate indices at all, but by 
non-parametric multivariate display and testing (Chapter 
14).  The difficulty with the multivariate techniques is 
that, since they match precise species identities through 
the construction of similarity coefficients, they can be 
sensitive to wide scale differences in habitat type, geo-
graphic location (and thus species pool) etc. 

Though independent of particular species identities, 
many of the traditional univariate indices have their 
own sensitivities, to habitat type, dominant species 
and sampling effort differences, as we have discussed.  
The general point here is that robustness (to sampling 
details) and sensitivity (to impact) are usually conflicting 
criteria.  What is properly claimed for average taxon-
omic distinctness is not sensitivity but: 

a) relevance – it is a genuine reflection of biodiversity 
loss, gain, or neither (rather than recording simply 
a change of assemblage composition), and one that 
appears to respond in a monotonic way to impact; 

b) robustness – it can be meaningfully compared across 
studies from widely separated locations, with few 
(or even no) species in common, from different 
habitats, using data in presence/absence form (and 
thus not sensitive to dominant species), and with 
different sampling effort.  This makes its natural 
use the comparison of regional/global studies and/or 
historic data sets, and it is no surprise to find that 
many of the citing papers address such questions.  

Taxonomic artefacts 

A natural question is the extent to which relatedness 
indices are subject to taxonomic artefacts. Linnean 
hierarchies can be inconsistent in the way they define 
taxonomic units across different phyla, for example.  
This concern can be addressed on a number of levels.  
As suggested earlier, the concept of mutual distinctness 
of a set of species is not constrained to a Linnean class-
ification.  The natural metric may be one of genetic 
distance (e.g. Nei, 1996) or that from a soundly-based 
phylogeny combining molecular approaches with more 
traditional morphology.  The Linnean classification 
clearly gives a discrete approximation to a more contin-
uous distinctness measure, and this is why it is important 
to establish that the precise weightings given to the 
step lengths between taxonomic levels are not critical 
to the relative values that the index takes, across the 
studies being compared.  Nonetheless, it is a legitimate 
concern that a cross-phyletic distinctness analysis 
could represent a simple shift in the balance of two 
major phyla as a decrease in biodiversity, not because 
the phylum whose presences are increasing is genuinely 
less (phylogenetically) diverse but because its taxonomic 
sub-units have been arbitrarily set at a lower level. Such 
taxonomic artefacts can be examined by computing 
the (AvTD, VarTD) structure across different phyla in 
a standard species catalogue, and Warwick and Som-
erfield (2008) show that the 4 major marine phyla do 
not suffer badly from this problem, though rare phyla 
with few species do have substantially lower AvTD. 
The pragmatic approach, as here, is to work within a 
well-characterised, taxonomically coherent group. 

Master species list 

Concerns about the precise definition of the master 
list (e.g. its biogeographic range or habitat specificity) 
also naturally arise.  Note, however, that the existence 
of such a wide-scale inventory is not a central require-
ment, more of a secondary refinement.  It is not used 
in constructing and contrasting the values of ∆+ for 
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individual samples, and only features in two ways in 
these analyses: 
1) In the funnel plots (Figs. 17.8, 17.12, 17.14), location 

of the points does not require a master species list, 
the latter being used only to display the background 
reference of the mean value and limits that would 
be expected for samples drawn at random from such 
an inventory.  In Fig. 17.12, in fact, the limits are 
not even that relevant since they apply to single 
samples rather than, for example, to the mean of 
the tens of samples plotted for each sea area. The 
most useful plot for interpretation here is simply a 
standard means plot of the observed mean ∆+ and 
its 95% confidence interval, calculated from the 
replicates for each sea area (see Rogers et al, 1999 
and Warwick and Clarke, 2001). 

2) In Table 17.1 and Fig. 17.3, the master species list 
is employed to calculate step lengths in a revised 
form of ∆+ – weighting by taxon richness at the differ-
ent hierarchical levels.  The existence of a master 
inventory makes this procedure more appealing, since 
if the taxon richness weighting was determined only 
by the samples to hand, the index would need to be 
adjusted as each new sample (containing further 
species) was added.  The message of this chapter, 
however, is that the complication of adjusting weights 
in ∆+ for differences in taxon richness is unnecessary.  
Constant step lengths appear to be adequate.   

The inventory is therefore only used for setting a back-
ground context, the theoretical mean and funnel limits.  
Various lists could sensibly be employed: global, local 
geographic, biogeographic provinces, or simply the 
combined species list of all the studies being analysed.  
The addition of a small number of newly-discovered 
species to the master inventory is unlikely to have a 
detectable effect on the overall mean and funnel for 
∆+.  If these are located in the taxonomic tree at random 
with respect to the existing taxa (rather than all belong-
ing to the same high or low order group) they will have 
little or no effect on the theoretical mean ∆+.  This, of 
course, is one of the advantages of using an index of 
average rather than total taxonomic distinctness.   

It also makes clear what the limitations are to the validity 
of ∆+ comparisons.  Whilst many marine community 
studies seem to consist of the low-level (species or 
genera) identifications which are necessary for meaning-
ful computation of ∆+, there are always some taxa that 
cannot be identified to this level. There is no real 
difficulty here, since ∆+ is always used in a relative 
manner, provided these taxa are treated in the same 
way in all samples (e.g. treated as a single species in a 
single genus, single family,  etc., of that higher taxon).  

The ability to impose taxonomic consistency is clearly 
an important caveat on the use of taxonomic distinct-
ness for historic or widely-sourced data sets. Where 
such conditions can be met, however, we believe that 
these and similar formulations based on species 
relatedness, have a useful role in biodiversity assess-
ment of biogeographic pattern and widescale change.  

TAXONOMIC DISSIMILARITY 

A natural extension of the ideas of this chapter is 
from α- or ‘spot’ diversity indices to β- or ‘turn-over’ 
diversity. The latter are essentially based on measures 
of dissimilarity between pairs of samples, the starting 
point for most of the methods of this manual.  It is 
intriguing to ask whether there are natural analogues 
of some of the widely-used ‘biological’ dissimilarity 
coefficients, such as Sørensen (Bray-Curtis on 
presence/absence data, equation 2.7) or Kulczynski 
(P/A, equation 2.8), which exploit the taxonomic, 
phylogenetic or genetic relatedness of the species 
making up the pair of samples being compared.  Thus 
two samples would be considered highly similar if 
they contain the same species, or closely related ones, 
and highly dissimilar if most of the species in one 
sample have no near relations in the other sample.  

In fact, Clarke and Warwick (1998a) first defined a 
taxonomic mapping similarity between two species 
lists, in order to examine the taxonomic relatedness of 
the species sets successively ‘peeled’ from the full 
list, in a structural redundancy analysis of influential 
groups of species (the M statistic of Chapter 16, Table 
16.2).  This turns out to be the natural extension of 
Kulczynski dissimilarity and (to be consistent with 
our use in Chapter 17 of u.c. Greek characters for 
taxonomic relatedness measures) it is denoted here by 
Θ+.  Iszak and Price (2001) used a slightly different 
form of coefficient, which proves to be the extension 
of the Sørensen coefficient, denoted here by Γ+. 
Before defining these coefficients, however, it is 
desirable to state the potential benefits of such a 
taxonomic dissimilarity measure: 
a) samples from different biogeographic regions do 

not lend themselves to conventional clustering or 
MDS ordination analyses using Sørensen (Bray-
Curtis) or other traditional similarity coefficients. 
This is because few species may be shared between 
samples from different parts of the world. In 
extreme cases, there may be no species in common 
among any of the samples and all Bray-Curtis 
dissimilarities will be 100, leaving no possibility 
for a dendrogram or ordination plot.  A taxonomic 
dissimilarity measure, however, takes into account 
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not just whether the second sample has matching 
species to the first sample but, if it does not, 
whether there are closely related species in the 
second sample to all those found in the first sample 
(and vice-versa).  Two lists with no species in 
common therefore have a defined dissimilarity, 
measuring whether they contain distantly or closely 
related species, and meaningful MDS plots ensue. 

b) standard similarity measures will, inevitably, be 
susceptible to variation in taxonomic expertise or 
(in the case of time series) revisions in taxonomic 
definition, across the samples being compared.  For 
example, suppose at some point in a time series, an  
increase in taxonomic expertise results in what was 
previously identified as a single taxon being noted 
as two separate species. The data should, of course, 
be subsequently rationalised to the lowest common 
denominator of taxonomic identification over the 
full series, but if this is not done, an ordination will 
have a tendency to display some artefactual signal 
of ‘community change’ at this point (one species 
has disappeared and two new ones have appeared).  
A single occurrence of this sort will not have much 
effect – one of the advantages of similarities based 
on presence/absence data is that they draw only a 
little information from each species – but if 
taxonomic inconsistency is rampant, misleading 
ordinations could result.  Taxonomic dissimilarity 
would, however, be more robust to species being 
split in this way.  The later samples do not appear 
to have the same taxon as the earlier samples, but 
they have one (or two) species which are very 
closely related to it (the same genus), hence retain 
high contributions to similarity from that species.  

c) it might be hoped that the desirable sampling 
properties of taxonomic distinctness indices such 
as ∆+ and Λ+, in particular their robustness to 
variable sampling effort across the samples, would 
carry over to taxonomic dissimilarity measures. 

Taxonomic dissimilarity definition 

As in Table 16.2, the distance through the taxonomic, 
(or phylogenetic/genetic) hierarchy, from every species 
in the first sample (A) to its nearest relation in the 
second sample (B), is recorded.  These are totalled, as 
are the distances between species in sample B and 
their nearest neighbours in sample A, see the example 
in Fig. 17.18.  These two totals are not the same, in 
general, and the way they are converted to an average 
taxonomic distance between the two samples defines 
the difference between Γ+ and Θ+.  Formally, if ωij is 
the path length between species i and j, and there are 
sA and sB species in samples A and B, then: 

 
Fig. 17.18.  For presence/absences from two hypothetical samples 

(A with 6 species, B with four), distances through the tree from 
each species in A to its nearest neighbour in B  (black, continuous 
join) and vice-versa (grey, dashed join).  

 

In words, Γ+ is the average path length to the nearest 
relation in the opposite sample¶, i.e. a simple average 
of all the path lengths shown in Fig. 17.18. Thus: 

Γ+ = [(0+25+50+0+50+0)+(0+0+75+0)]/(6+4) = 20.0  

whereas Θ+ is a simple mean of the separate averages 
in the two directions: A to B, then B to A.  Thus: 

Θ+ = [(125/6) + (75/4)]/2 = 19.8  

Clearly, the two measures give identical answers if 
the number of species is the same in the two samples, 
and they cannot give very different dissimilarities 
unless the richness is highly unbalanced.  This is 
precisely as found for the relationship between the 
Bray-Curtis and Kulczynski measures on P/A data; 
they cannot give a different ordination plot unless 
species numbers are very variable.  The relation of 
these standard coefficients to Γ+ and Θ+ is readily 
seen: imagine flattening the taxonomic hierarchy to 
just two levels, species and genus, with all species in 
the same genus, so that different species are always 
100 units apart.  The branch length between a species 
in sample A and its nearest neighbour in sample B is 
either 0 (the same species is in sample B) or 100 (that 
species is not found in sample B).  In that case: 

Γ+ = (300 + 100)/(6+4) = 40.0 ≡ B+ 

¶ Γ+ is the taxonomic distance, ‘TD’, of Iszak and Price 2001 (not 
to be confused with the AvTD and TTD of this chapter, which are 
diversity indices not dissimilarities!), except that the longest path 
length in their taxonomic trees is not scaled to a fixed number, 
such as 100 or 1, so they rescale it in similarity form, denoted ∆s 
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Θ+ = (300/6 + 100/4)/2 = 37.5 ≡ K+ 

where B+ and K+ denote Bray-Curtis and Kulczynski 
dissimilarity for P/A data, respectively. The truth of 
this identity can be seen from their general definitions 
(see equations 2.7 and 2.8 for the similarity forms): 

B+ = (100b + 100c)/[(a+b) + (a+c)]             
          (17.9) 

K+ = [(100b)/(a+b) + (100c)/(a+c)]/2           

where b is the number of species present in sample A 
but not sample B, c is the number present in B but not 
A, and a is the number present in both. Clearly, 100b 
is the total of the (a+b) path lengths from A to B, and 
100c the total of the (a+c) path lengths from B to A. 

Taxonomic dissimilarity, Γ+, is therefore a natural 
generalisation of the Sorensen coefficient, adding a 
more graded hierarchy on top of standard Bray-Curtis 
(instead of matching ‘hits’ and ‘misses’ there are now 
‘near hits’ and ‘far misses’).  In some ways, this is 
analogous to the relationship shown earlier, between 
Simpson diversity (∆°) and taxonomic diversity (∆), 
and it has two likely consequences:   
1) ordinations based on Γ+ will bear an evolutionary, 

rather than revolutionary, relationship to those 
based on P/A Bray-Curtis¶; when there are many 
direct species matches Γ+ may tend to track B+ 
rather closely. 

2) Γ+ will tend to carry across the sampling properties 
of B+; it is well-known that Bray-Curtis (and 
indeed, all widely-used dissimilarity coefficients) 
are susceptible to bias from variations in sampling 
effort.  It is axiomatic in multivariate analysis that 
similarities be calculated between samples which 
are either rigidly controlled to represent the same 
degree of sampling effort, or in the case of non-
quantitative sampling, samples are large enough 
for richness to be near the asymptote of the species 
-area curve (this is very difficult to arrange in most 
practical contexts!)  Otherwise, it is inevitable that 
samples of smaller extent will contain fewer species 
and thus similarities calculated with larger samples 
will be lower, even when true assemblages are the 

¶ It is tempting to define, by analogy with equations (17.1) to 
(17.3), a further coefficient, the ratio Φ+ = Γ+/B+, which reflects 
more purely the relatedness dissimilarity, removing the Bray-
Curtis component in Γ+, coming from direct species matches.  In 
fact, Φ+  is simply the average of the minimum distance from 
each species to its nearest relation in the other sample, calculated 
only for the ‘b+c’ species which do not have a direct match.  It is 
thus independent of ‘a’ (number of matches) as well as ‘d’ of 
course (number of joint absences).  Limited practical experience, 
however, suggests that Φ+ tends to ‘throw the baby out with the 
bathwater’ and leads to uninterpretably ‘noisy’ ordination plots. 

same. Theory shows that, indeed, Γ+ and Θ+ (along 
with B+, K+, Φ+) are not independent of sampling 
effort, so the third of our hoped-for properties for 
taxonomic dissimilarity – that it would carry across 
the nice statistical properties of taxonomic distinct-
ness measures ∆+ and Λ+ – is not borne out†.   

The other two potential advantages of taxonomic 
dissimilarity, given above, do stand up to practical 
examination. One of us (PJS), in the description of 
these taxonomic dissimilarity measures in Clarke et 
al, 2006c, gives the following two examples.  

 EXAMPLE: Island fish species lists 

Fish species lists extracted from FishBase (www. 
fishbase.org) for a selection of 26 world island groups 
{i} were slimmed down to leave only species that are 
‘endemic’ to the total list, in the sense of being found 
at only one of these 26 locations. This is an artificial 
construction, clearly, but it makes the point that the 
presence/absence matrix which results could never be 
input to species-level multivariate analysis because 
all locations then have no species in common, i.e. are 
100% dissimilar to each other, and the Bray-Curtis 
resemblance matrix is uninformative. However, if the 
taxonomic dissimilarity Γ+ is calculated for this data, 
the MDS ordination of Fig. 17.19  is obtained.  

 
Fig. 17.19. Island group fish species {i}. nMDS ordination from 

presence/absence data on (pseudo-)endemic species found at 26 
island groups, using taxonomic dissimilarity Γ+. 

† Note, however, that Iszak and Price (2001) provide some 
limited simulation evidence for Γ+ being less biased by uneven 
sampling effort than one of the other standard P/A indices, 
Jaccard, equation (2.6). This suggests that the comparison with 
Sørensen – the more natural comparator, given the above 
discussion – would also indicate some advantage for the taxonomic 
dissimilarity measure (Jaccard and Sørensen are quite closely 
linked, in fact monotonically related, so they produce identical 
non-metric MDS plots for example).  
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Whilst this has reasonably high stress, a somewhat 
interpretable pattern of biogeographic relationships 
among the island groups is evident. 

EXAMPLE: Valhall oilfield macrofauna 

This is another oilfield study, similar to the Ekofisk 
data ({E}), in which sediment samples are taken at 
one of five distance groups from the oilfield centre 
(0.5, 1, 2, 4 and 6 km), in a cross-hair design, and the 
macrobenthos examined through the time-course of 
operation of the field (data discussed by Olsgard et al 
1997, {V}). The data used here is of 20 samples taken 
in two years, 1988 and 1991, and the questions of 
interest concern not just whether a gradient of change 
exists in the community moving away from the field 
(which is clear) but whether this gradient is longer – a 
more accentuated change – in the later year.  

After reduction to presence/absence and computation 
of Bray-Curtis dissimilarity (Sorensen, in effect, see 
equation 2.7) the nMDS of data from both years in a 
single ordination is shown in Fig. 17.20a. Whilst it is 
clear that there is a gradient of change away from the 
field in a parallel direction for the two years, the most 
obvious feature is the apparently large change in the 
community between 1988 and 1991 at all distances, 
and this certainly makes it difficult to gauge the size 
of relative changes along the two gradients. This gulf 
between the two years, e.g. even in the background 
community at 6km distant from the field, would not 
be expected at all, and is quite clearly an artefact. It 
does not take long to realise that the problem was that 
in 1988 (presumably with less-skilled contractors) the 
species were not identified with the same degree of 
discrimination: many species identified only as A in 
the earlier year had been split into species A and B 
(or even A, B, C, ..) in the later year, leading to an 
apparent major increase in species richness! Such an 
(artefactual) change in the data – an apparent influx 
of a large number of ‘new’ species – is certain to lead 
to the wide division of the two years in the MDS. The 
best solution, of course, is always to work with data 
at the lowest common denominator of identification: 
loss of precision in failing to split ‘difficult’ species 
is usually inconsequential in comparison to artefacts 
that arise from using inconsistent identification.  

Such identification issues can be less obvious than in 
this case, of course: they may occur infrequently and 
balance out in terms of numbers of species recorded.  

 
Fig. 17.20. Valhall oilfield macrofauna {V}. nMDS ordinations of 
macrobenthos from 20 sites in 5 distance groups from the oilfield 
centre, sampled in 1988 and 1991, using presence/absence data 
and: a) Bray-Curtis (Sorensen); b) taxonomic  dissimilarity Γ+. 

One possibility, if such problems are suspected, is 
simply  to coarsen the data by aggregation to a  much 
higher taxonomic level (Chapter 10), but a less severe 
course,  retaining the finer identification structure,  is 
to use a taxonomic dissimilarity measure. The effect 
is to say that, whilst species B, C, .. in the later year 
may not have exact counterparts in the earlier year, 
they will have a species which is very closely related 
(species A) and thus contribute little to dissimilarity 
between the two years. This follows because species 
which are discriminated to a greater or lesser degree 
will still usually be placed in the same slightly higher 
taxonomic group (e.g. genus or family). The dramatic 
effect of using Γ+ and not Bray-Curtis on the Valhall 
data can be seen in Fig. 17.20b. There is still likely to 
be an artefactual gulf between the years, though they 
are now much closer together; it can be argued that 
the distant ‘reference’ samples converge to a greater 
extent, the remaining difference still being identificat-
ion issues though one cannot rule out some natural 
time changes over a wide spatial scale. But what is 
unarguable is that it is much easier to see the relative 
scale of gradient change with distance, and note that 
there is no strong evidence for it having lengthened. 
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CHAPTER 18: BOOTSTRAPPED AVERAGES FOR REGION ESTIMATES IN 
MULTIVARIATE MEANS PLOTS  

 

MEANS PLOTS 

Several examples have been seen in previous chapters 
of the advantages of viewing ordination plots of the 
samples averaged over replicates within each factor 
level, or sometimes over the levels of other factors. 
This reduces the variance (technically, ‘multivariate 
dispersion’) in the resulting mean samples, usually 
allowing the structure of factor levels, e.g. patterns 
over sites, times or treatments, to be viewed with low 
stress on a 2- or 3-d non-metric or metric MDS plot. 
Chapter 5 (e.g. page 5-12 and the footnote on 5-18) 
discusses the range of choices here, from averaging 
transformed data, through averaging similarities, to 
calculating distances among centroids in high-d PCO 
space computed from the resemblances, and the point 
was made that there is not often much practical diff-
erence in the resulting ordination of these means. 

Here we shall concentrate on just the simplest, and 
most common case, that of replicate data from a one-
factor design (which may, of course, result from a 
combination of two or more crossed factors or from 
examining a higher level of a nested design in which 
the replicates are the averaged levels of the factor 
immediately below). If the data is univariate, e.g. a 
diversity measure computed from replicate transects 
of coral communities sampled over a series of years, 
standard practice would be to test for inter-annual 
differences using the replicate data and then construct 
a means plot with interval estimates, as in Fig. 14.5. 
It is rare in such cases to see a plot of the replicate 
values themselves, plotted against year, because the 
large variability from transect to transect in the index 
can make it difficult to see the patterns, even where 
these are clearly established by the hypothesis tests. 
And so it should be with a multivariate response, e.g. 
the coral species communities themselves: a useful 
mantra will often be to test effects using replicates 
but – having established the existence of such effects 
– to display them in ordinations on averaged data. 

EXAMPLE: Indonesian reef corals, S. Tikus 

The point is made here in Fig 18.1 for the Shannon 
diversity of coral community transects (% cover data) 
at S. Tikus Island, Indonesia {I} first met in Fig 6.5. 
Normal-theory based tests are usually entirely valid 
for most diversity indices, often without transform-
ation,  since the normality is typically induced by the  

 
Fig. 18.1. Indonesian reef corals, S. Tikus Island {I}. a) Shannon 

diversity (base e) for % cover of 75 coral species on 10 replicate 
transects in each of 6 years, over the period 1981-1988, spanning 
a coral bleaching event in 1982; b) ‘means plot’ for the replicates 
in (a), with 95% interval estimates for mean diversity in each year.  

central limit theorem, most indices being a sum over 
a large number of species contributions. Pairwise 
tests show a clear diversity change in 1983, post the 
El Niño-induced bleaching event, and change again 
of the index thereafter, but still distinct from its 1981 
level. This interpretation is evident from the means 
plot of Fig 18.1b (though it is by no means as clear in 
the replicate plot, 18.1a!). The means plot also allows 
the direct inference that, in the later years, the index 
is intermediate between its 1981 and 1983 levels. 

The same pattern of analysis should be applied to the 
community response. Here, the appropriate similarity 
is the zero-adjusted Bray-Curtis (see p16-7), on root-
transformed % cover: the global ANOSIM statistic, 
R  = 0.47, is sizeable and overwhelmingly significant. 
Pairwise ANOSIM values (Table 18.1) also have tests 
based on large numbers of permutations (92,378), a 
result of the 10 replicates per year, and differences 
are thus demonstrated between every pair of years. 
However, many of the pairwise R values are not just 
significant but substantial, ranging up to 0.87.  

Table 18.1. Indonesian reef corals, S. Tikus Island {I}. Pairwise 
ANOSIM R statistics, from square-root transformed % cover of 
coral communities on 10 transects in 6 years, and zero-adjusted 
Bray-Curtis similarity. All years are significantly different (p < 
2%), with ’81 and ’83 differing from all other years at p<0.1%.  

R 1981 1983 1984 1985 1987 

1983 0.87     
1984 0.73 0.43    
1985 0.63 0.67 0.31   
1987 0.50 0.64 0.25 0.33  
1988 0.64 0.54 0.49 0.30 0.25 
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Fig. 18.2. Indonesian reef corals, S. Tikus Island {I}. a) Metric MDS (mMDS) of the coral communities on 10 transects sampled in each 
of 6 years, spanning a coral bleaching event in 1982, based on zero-adjusted Bray-Curtis similarities (dummy value = 1) on square-root 
transformed data of % cover. Also shown are the mean communities for each year (filled symbols, joined in date order), from averaging 
the transformed data over the 10 replicates and merging this with the transformed matrix, prior to resemblance calculation. b) mMDS of 
‘whole sample’ bootstrap averages, resampling the 10 transects 100 times for each of the 6 years. c) mMDS ordination as in (b) but with 
approximate 95% region estimates fitted to the bootstrap averages in (b); also seen are the group means of these repeated bootstrap 
averages, again joined in a trajectory across years. See later text for details of precise construction in (b) and (c). 

The initial, stark change in the community from ’81 
to ’83 is evident from the ordination plot of replicate 
transects (Fig. 18.2a), and the following years can be 
seen to be intermediate between these extremes, but 
their pattern only becomes clearer when the average 
points for each year are also included in the plot, as 
closed symbols joined by a trajectory in time order. 
Displaying all 60 replicate points (and the means) in 
the same 2-d ordination, given the large degree of 
variability from transect to transect within a year, is 
in any case over-optimistic: the stress is unacceptably 
high. (Note that this is a metric MDS, for consistency 
with the following exposition, but the nMDS plot is 
similar and still has an uncomfortable stress of 0.21). 
If the averaged values are mMDS-ordinated on their 
own, the pattern is similar (as it is for the ‘distance 

among centroids’ construction§, Anderson et al 2008) 
but what is missing in comparison with the univariate 
plot is some  indication of reliability in the position of 
these averaged communities, i.e. an analogue of the 
interval estimates in Fig. 18.1b. What region of the 6-
point mMDS would we expect each of these averages 
to occupy, if we had been able to take repeated sets of 
10 transects from each year, computing the averaged 
community for each set? To attempt formal modelling 
of confidence regions with exact coverage properties 
is highly problematic for typical multivariate datasets, 
with their often high (and correlated) dimensionality 
and zero-inflated distributions. Also permutation does 
not provide an obvious distribution-free solution: by 
permuting labels of the replicates in a particular year 
we clearly do not construct new realisations of the

_____________________________________________________________________________________________________________ 

§ There is an important distinction in what these two approaches are trying to achieve. ‘Distance among centroids’, in the high-d PCO 
space calculated from the resemblances, is trying to locate the ‘centre’ of each cloud of replicate points and then project this, potentially 
along with the replicates, into low-d (say 2-d) PCO space; such centroids will then be at the centre of gravity of the replicates in the 2-d 
PCO. Averaging of community samples, on the other hand, may not produce a sample which is ‘central’ to the replicates (though often, 
such as in Fig. 18.2a, it more or less does so). For example, unless species are ubiquitous, the average is likely to contain more species 
than most of the replicates and, if a biological similarity measure which pays much attention to presence/absence structure is chosen 
(Bray-Curtis under heavy transformation, Jaccard etc), then the averaged sample need not be highly similar to any of the replicates. 
Ecologists will be very familiar with this idea from measuring diversity by species richness (S). The average number of species in a 
replicate core from a location is not the same as the number of species found at that location, but both have validity as measures of 
richness, at different spatial scales. Similarly both ‘centroid’ and ‘average’ are interpretable constructs in this context (as a central, 
single community sample and a representation of the ‘pooled’ community at that location, respectively), and it is interesting to note that 
they often tell you an almost identical story about the relationships between the locations (/times etc).  
Averages in the species space have substantial practical advantages over centroids in the resemblance space in that they do not lose the 
link to the individual species, thus shade plots, species bubble plots, SIMPER analyses etc are all possible with averaged community 
samples, and impossible with the centroids in resemblance space. Averages have a clear disadvantage of potential biases for strongly 
unbalanced numbers of replicates across locations, for exactly the same reasons (though usually less acutely) as in calculating species 
richness as the number of species observed at each location (under uneven sampling effort). If averaging in such strongly unbalanced 
cases, it would usually be wise to avoid severe transformations, which drag the data matrix close to presence/absence, and to check 
whether the final ordination shows a pattern linked to replicate numbers making up each group average. A useful graph is an ordination 
bubble plot, in which the circles (or spheres) have sizes representing numbers of samples making up each ordination point. Tell-tale 
signs of potential bias problems are often where points at the extremities of an ordination are all averages involving low sample sizes. 
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averaged community for that year. But bootstrapping 
these replicates, resampling them with replacement,  
does provide a way forward without distributional 
assumptions, and produces bootstrap regions for the 
averaged communities with at least nominal coverage 
probabilities (subject to a number of approximations).  

 ‘BOOTSTRAP AVERAGE’ REGIONS  

The idea of the (univariate) bootstrap (Efron 1979) is 
that our best estimate of the distribution of values 
taken by the (n) replicates in a single group, if we are 
not prepared to assume a model form (e.g. normality), 
is just the set of observed points themselves, each 
with equal probability (1/n). We can thus construct an 
example of what a further mean from this distribution 
would look like – had we been given a second set of n 
samples from the same group and averaged those – by 
simply reselecting our original points, independently, 
one at a time and with equal probability of selection, 
stopping when we have obtained n values. This is a 
valid sample from the assumed equi-probable distr-
ibution and such reselection with replacement makes 
it almost certain that several points will have been 
selected two or more times, and others not at all, and 
thus the calculated average will differ from that for 
the original set of n points. This reselection process 
and recalculation of the mean is repeated as many 
times (b) as we like, resulting in what we shall refer 
to as b bootstrap averages. These can be used to 
construct a bootstrap interval, within which (say) 
95% of these bootstrap averages fall. This is not a 
formal confidence interval as such but gives a good 
approximation to the precision with which we have 
determined the average for that group. Under quite 
general conditions, these bootstrap averages are un-
biased for the true mean of the underlying distrib-
ution, though their calculated variance underestimates 
the true variance by a factor of (1 – n-1); the interval 
estimate can be adjusted to compensate for this.  

Turning to the multivariate case, in the same way we 
could define ‘whole sample’ bootstrap averages by, in 
the coral reef context say, reselecting 10 transects 
with replacement from the 10 replicate transects in 
one year, and averaging their root-transformed cover 
values, for each of the 75 species. If this is repeated 
b = 100 times, separately for each of the years, the 
resulting 600 bootstrap averages could then be input 
to Bray-Curtis similarity calculation and metric MDS, 
which would result in a plot such as Fig. 18.2b. (This 
is not quite how this figure has been derived but we 
will avoid a confusing digression at this point, and 
return to an important altered step on the next page). 
Fig. 18.2b thus shows the wide range of alternative 

averages that can be generated in this way. The total 
possible number of different bootstrap sets of size n 
from n samples is (2n)! / [2(n!)2], a familiar formula 
from ANOSIM permutations and giving again the 
large number of 92,378 possibilities when there are 
n = 10 replicates, though the combinations are this 
time very far from being equally likely.  

With such relatively good replication, Fig. 18.2b now 
gives a clear, intuitively appealing idea both of the 
relation between the yearly averages and of the limits 
within which we should interpret the structure of the 
means. Put simply, all these are possible alternative 
averages which we could have obtained: if we pick 
out any two sets of 6, one point from each year in 
both cases, and would have interpreted the relations 
among years differently for the two sets, then we are 
guilty of over-interpreting the data¶. The simplicity of 
the plot inevitably comes with some caveats, not least 
that 2-d ordination may not be an accurate represent-
ation of the higher-d bootstrap averages. But this is a 
familiar problem and the solution is as previously: we 
look at 3-d (or perhaps higher-d) plots. The mMDS in 
3-d is shown in Fig. 18.3, and is essentially similar to 
Fig. 18.2b, though it does a somewhat better job of 
describing the relative differences between years, as 
seen by the drop in stress from 0.22 to 0.12 (both are 
not unduly high for mMDS plots, which will always 
have much higher stress than the equivalent nMDS – 
bear in mind that this is an ordination of 600 points!).  
With balanced replication, as here, one should expect 
the degree of separation between pairs of bootstrap 
‘clouds’ for the different groups to bear a reasonable 
relationship to the ordering of pairwise ANOSIM R 
values in Table 18.1, and by spinning the 3-d solution 
this is exactly what is seen to happen. By comparison, 
the 2-d plot somewhat under-represents the difference 
between 1981 and 88 and over-separates 1984 and 87.   

Fig. 18.2c takes the next natural step and constructs 
smoothed, nominal 95% bootstrap regions on the 2-d 
plot of Fig. 18.2b. The ordination is unchanged, being 

¶ It is likely to be important for such interpretation that we have 
chosen mMDS rather than nMDS for this ordination. One of the 
main messages from any such plot is the magnitude of differences 
between groups compared to the uncertainty in group locations. 
Metric MDS takes the resemblance scale seriously, relating the 
distances in ordination space linearly through the origin to the 
inter-point dissimilarities. As discussed on p5-17, this is usually a 
disaster in trying to display complex sample patterns accurately 
in low-d space because the mMDS ordination has, at the same 
time, to reconcile those patterns with displaying the full scale of 
random sampling variability from point to point (samples from 
exactly the same condition never have 0% dissimilarity). The 
pattern here is not complex however, just a simple 6 points (with 
an important indication of the uncertainty associated with each), 
and the retention of a scale makes mMDS the more useful display. 
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Fig. 18.3. Indonesian reef corals, S. Tikus Island {I} 3-d mMDS of 
whole sample bootstrap averages constructed as in Fig. 18.2b .  

still based on the 600 bootstrap averages, the points 
being suppressed in the display in favour of convex 
regions describing their spread. These are constructed 
in a fairly straightforward manner by fitting bivariate 
normal distributions, with separately estimated mean, 
variance and correlation parameters to each group of 
bootstrap averages. Given that each point represents a 
mean of 10 independent samples, it is to be expected 
that the ‘cloud’ of bootstrap averages will be much 
closer to multivariate normality, at least in a space of 
high enough dimension for adequate representation,  
than the original single-transect samples. However, 
non-elliptic contours should be expected in a 2-d 
ordination space both from any non-normality of the 
high-dimensional cloud and because of the way the 
groups interact in this limited MDS display space – 
some years may be ‘squeezed’ between others. The 
shifted power transform (of a type used on p17-14 for 
the construction of joint ∆+, Λ+ probability regions) is 
thus used on a rotation of each 2-d cloud to principal 
axes, again separately for each group (and axis). The 
bivariate normals are fitted in the transformed spaces 
and their 95% contours back transformed to obtain 
the regions of Fig. 18.2c. Such a procedure cannot 
generate non-convex regions (as seen for means in 
1987, though there is less evidence of non-convexity 
in the 3-d plot) but often seems to do a good job of 
summarising the full set of bootstrap averages.  

In one important respect the regions are superior to 
the clouds of points: when the bivariate normals are 
fitted in the separate transformed spaces, correction 
can be made for the variance underestimation noted 
earlier for bootstrap averages in the univariate case. 

The details are rather involved¶ but the net effect is to 
slightly enlarge the regions to cover more than 95% 
of the bootstrapped averages, to produce the nominal 
95% region. The enlargement will be greater as n, the 
number of replicates for a group, reduces, because the 
underestimation of variance by bootstrapping is then 
more substantial.  

Fig. 18.2c also allows a clear display of the means for 
each group. The points (joined by a time trajectory) 
are the group means of the 100 bootstrap averages in 
each year, which are merged with those 600 averages, 
and then ordinated with them into 2-d space. Region 
plots in the form of Fig. 18.2c thus come closest to an 
analogue of the univariate means plot, of averages 
and their interval estimates.  
 

EXAMPLE: Loch Creran macrobenthos 

Gage and Coghill (1977) collected a set of 256 soft-
sediment macrobenthic samples along a transect in 
Loch Creran, Scotland {c}, data which have little or 
no evidence of a trend or spatial group structure and 
will therefore be useful here in illustrating a potential 
bootstrapping artefact, discussion of which we post-
poned from the previous page. For this example, 16 
cores are pooled at a time, giving 16 replicates spaced 
along the transect, each having sufficient biological 
material to fairly reflect the community (an average 
of 26 species per replicate). A 2-level group factor is 
defined as the first and second halves of the transect 
(1-8 for group A and 9-16 for group B) and Fig. 18.4a 
shows the resulting mMDS plot. A stress of 0.27 on 
only 16 points is too high for a reliable plot, even for 
a metric MDS, and the Shepard plot of 18.4b shows 
the inadequacy of metric linear regression (through 
the origin) for this 2-d ordination. Nonetheless, whilst 
there is some suggestion that the ‘centres’ for the two 
groups are not in precisely the same position (with 5 
of the 8 replicates from group A being to the left and 
bottom of those for group B),  it is no surprise to find 

¶ An elliptic contour of the bivariate normal is found in the trans-
formed space, with P% cover, where P is greater than the target 
P0 (95%, say), such that the variance bias is countered. A neat 
simplification results from P = 100[1 – {1 – (P0 /100)}1/W] for 
bivariate normal probabilities from concentric ellipses, where W 
is the bootstrap underestimate of the total variance, from both 
axes. Under rather general conditions, the expected value of W is 
again only (1 – n-1), though this cannot be simply substituted into 
the expression for P since the mean of a function of W is not the 
function of the mean of W. Hence a large-scale simulation of W is 
needed to give mean P from the above expression, for a full range 
of n and a few key P0 values. Once computed, the adjustment can 
be put in a simple look-up table for software (in practice an emp-
irical quadratic fit of P to n-1 suffices), and this is implemented in 
PRIMER 7’s Bootstrap Averages routine 
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Fig. 18.4. Loch Creran macrobenthos {c}. (a) mMDS plot of (pooled) samples, 1-16, along a single transect, from untransformed data 

and Bray-Curtis dissimilarities. Triangles and squares denote groups A (1-8) and B (9-16). b-d) Shepard diagrams for the mMDS plots 
of these 16 samples in 2-d, 6-d and 15-d.  e) Bootstrap average regions (95%) for groups A and B, symbols as in (a), by bootstrapping 
co-ordinates of the 16 samples in the 6-d mMDS approximation to the original 67-d space (Pearson matrix correlation r = 0.968, of 
those inter-point distances with the original resemblance matrix). f) Regions as in (e) but by bootstrapping co-ordinates in the 15-d 
mMDS space, which in this case perfectly preserves the Bray-Curtis similarities from the full space, as shown by (d), and r = 1.  

that an ANOSIM test (or a PERMANOVA test), on 
the Bray-Curtis similarities from the untransformed 
species counts in the 67-d samples × species matrix, 
does not distinguish the two groups at all. But what 
happens to the bootstrap averages? 

Artefact of bootstrapping in high dimensions 

The 95% region estimates for the means of the two 
groups, whilst they will inevitably be ‘centred’ in 
different places, would be expected to overlap, but 
this is not what happens when bootstrap averages are 
calculated separately for the two sets of 8 replicates 
in their full (67-d) species space and then ordinated 
into lower dimensions, as shown in the 2-d mMDS of 
Fig. 18.5.  

What has gone horribly wrong here? The answer lies 
in the vastness of high-dimensional space¶. Bootstrap 
samples ‘work’, in the sense of giving a plausible set 
of alternative samples (with the same properties) to 
the set we actually did obtain, because the spread of 

¶ “Space is big. Really big. You just won't believe how vastly, 
hugely, mindbogglingly big it is. I mean, you may think it's a long 
way down the road to the chemist's, but that's just peanuts to 
space.” Douglas Adams, 1978, The Hitchhiker’s Guide to the 
Galaxy. Not a quote about high-d space, but it could have been! 

 
Fig. 18.5.Loch Creran macrobenthos {c}. 2-d mMDS of bootstrap 

averages in the original 67-d species space, for groups A and B. 

values produced, along a line, in a plane, in a 3-d box 
etc, cover much the same interval, areal and spatial 
extents as the original samples. However, this feature 
gradually starts to disappear for increasingly higher 
dimensions. This data set contains only 16 points, but 
these are in 67-dimensional space. Many of the points 
could ‘have some dimensions to themselves’, purely 
by chance, when there are no real differences in the 
two communities, e.g. because of the sparse presence 
of many species in a typical assemblage matrix. The 
two groups of samples will thus occupy a somewhat 
different set of dimensions (many dimensions will be 
found in both sets, of course, but some will only be 
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found in one or other group). On repeated sampling 
separately from each of the groups, it is inevitable 
that bootstrap averages for a group will remain in its 
own subset of dimensions. Those averages vary over 
a tighter range than the original samples – that is the 
nature of averages – and the non-identity of the two 
sets of dimensions will cause the bootstrap averages 
to shrink apart so that, even in a low-d ordination, the 
two groups will not overlap. This oversimplifies a 
complex situation but is likely to be one of the basic 
reasons why the high-d bootstrap artefact is seen.  

This way of posing the problem immediately suggests 
a possible solution, namely to bootstrap the samples 
in a much lower-d space, which nonetheless retains 
essentially all the information present in the original 
resemblances from the 67-d samples × species matrix. 
Here, we have only 16 samples and a 15-d mMDS 
can, in this case, near-perfectly‡ reconstruct the set of 
among-sample Bray-Curtis resemblances in 15-d, as 
can be seen in the Shepard diagram of Fig. 18.4d. 
However, the 15-d mMDS of Fig. 18.4f shows that 
the high-d artefact is still present, though apparently 
substantially reduced. This is perhaps unsurprising, 
given there are still as many dimensions as points, 
and we need to search for a lower-dimensional space 
in which to create the bootstrap averages.  

The technique we have used in previous chapters to 
measure information loss in replacing a resemblance 
matrix with an alternative is simple matrix correlation 
of the two sets of resemblances. Here, in the context 
of metric MDS, which tries to preserve dissimilarity 
values themselves, it would be appropriate to use a 
standard (Pearson) correlation r, rather than the non-
parametric Spearman correlation which fits better to 
preserving rank orders of resemblances in nMDS. A 
suggested procedure is therefore to ordinate the data 
by mMDS, from the chosen dissimilarity matrix, into 
increasingly higher dimensions, until a predetermined 
threshold for r is crossed (say r > 0.95 or r > 0.99). 
The r value is almost sure to increase monotonically 
with the dimension, m. The process can probably start 
with m≥4, since evidence suggests the high-d artefact 
does not trouble such relatively low-d space. At the 
upper end, as m gets much larger than 10, the artefact 
can become non-negligible, especially if (as for the 

‡ Euclidean distances among k points can always be represented 
in k-1 dimensions but here we are dealing with biological resem-
blance measures which are never ‘metrics’, so this can only be 
achieved in general with a mix of real and imaginary axes (i.e. in 
complex space, see for example Fig. 3.4 of Anderson et al. 2008). 
A real-space mMDS can nearly always get close to recreating the 
original dissimilarities however; often near-perfectly, as here.  

current example) this is nearing the total sample size 
in the original data. This suggests that the search is 
made over 4 ≤ m ≤ 10 (and this will certainly produce 
r values in the range 0.95-0.99).  

In the current Loch Creran example, an mMDS in m 
= 6 dimensions provides a reasonable linear fit to the 
original resemblance values, as shown in Fig. 18.4c 
(for which r = 0.97).  The co-ordinates of the sample 
points in this m-dimensional mMDS space are now 
used to produce a large number of bootstrap averages 
(b) for each group. b ≥ 100 is recommended, though 
lower values may have to be used if there are many 
groups, in order to obtain mMDS region plots in a 
viable computation time. Here, for only two groups, 
b = 150 averages were taken from each. Euclidean 
distances are then computed among these bootstrap 
averages, this being the relevant resemblance matrix 
for points in ordination space, naturally¶. These are 
then input to metric MDS to obtain the final 2- or 3-d 
ordination plot and the smoothed region estimates, as 
previously described for the S Tikus data of Fig. 18.2 
and 18.3 (this is the procedure that was followed for 
those earlier plots, selecting m=7, for which r >0.95). 
The 95% region plot for the Creran data (Fig. 18.4e) 
now shows the two groups overlapping, as expected†.   

A somewhat subtle but important consequence of this 
solution to the high-d bootstrap artefact is that it also 
addresses the issue raised in the footnote on p 18-2, 
that simple averages of replicates in species space 
will often not occupy the centre of gravity of those 
replicates when they and the averages are ordinated

¶Do not confuse this with making Euclidean distance assumptions 
for the original samples × species matrix! We are still computing, 
say, Bray-Curtis dissimilarities among the samples, exactly as 
previously, but then we approximate those by Euclidean distances 
among points in m dimensions (this is what the Shepard diagram 
shows and is what ordination is all about). For each of g groups, 
a bootstrap average is then a simple centroid (‘centre of gravity’) 
of n bootstrap samples drawn with replacement from that group’s 
n points in this Euclidean space. b such averages are produced 
for each group, and it is the (Euclidean) distances among those 
b×g points which are input to the final mMDS, to obtain plots 
such as Fig. 18.4e. 
†It is a mistake to expect an exact parallel between overlap of 
bootstrap regions and the significance of (say) pairwise ANOSIM 
tests, in the way that (with careful choice of confidence probab-
ilities) univariate confidence intervals, based on normality, can 
be turned into hypothesis tests. Bootstraps do not give formal 
confidence regions and a number of approximations are made 
(e.g. sample size is often small for bootstrapping, the final display 
is in approximate low-d space, etc); in contrast ANOSIM is an 
exact permutation test, but utilises only the ranks from the full 
resemblance matrix. Nonetheless, as we saw for S Tikus corals, 
the relative positioning and size of regions in these plots can add 
real interpretative value, following hypothesis testing.  
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Fig. 18.6. Fal estuary macrofauna {f}. a) mMDS from Bray-Curtis similarities on fourth-root transformed counts of 23 soft-sediment 

macrofaunal species in a total of 27 samples from 5 creeks of the Fal estuary (R = Restronguet, M = Mylor, P = Pill, J = St Just, E = 
Percuil); b) Shepard plot for this 2-d mMDS ; c) Shepard plot for a 4-d mMDS of the same data (Pearson correlation = 0.991)  

together, using a similarity such as Bray-Curtis (or 
any biological measure responding to the presence/ 
absence structure in the data). But now the averaging 
is carried out in the Euclidean distance-based mMDS 
space which approximates those similarities so, for 
each group, the mean of the bootstrap averages is just 
their centre of gravity (in the m-dimensional space).¶ 
And theoretical unbiasedness of the bootstrap method 
(a univariate result which carries over to multivariate 
Euclidean space) dictates that this mean will be close 
to the group average of the original replicates, when 
the latter is calculated in the m-dimensional space. 
(This is not, of course, the same as computing these 
averages in the original species space and ordinating 
them, along with the replicates, into m dimensions.)   

Thus, in Fig. 18.2c for example, the means shown 
should be close to the centres of gravity of the clouds 
of bootstrap averages in 18.2b; they can only not be 
so because of the distortion involved in the final step 
of approximating the m-dimensional space by a 2-d 
mMDS solution. Thus the means are usually worth 
displaying, as a further guide to such distortion.  

¶And this also sidesteps the issues raised in the last paragraph of 
the footnote on p18-2. Averaging over unbalanced numbers of 
replicates for the differing groups will not now introduce a bias 
coming from the relative species richness of these averages, since 
that averaging is in the Euclidean space of the low-d mMDS, not 
the species matrix. Thus it can be carried out with impunity on 
heavily transformed (or even presence / absence) samples from 
unbalanced group sizes. However, the same remarks apply now, 
about breaking the link to the species, as to the centroids in PCO 
space calculated in PERMANOVA+ (Anderson et al 2008), to 
which these mMDS spaces have a strong affinity. The differences 
are that the PERMANOVA+ centroids are calculated in the full 
PCO space (and in general will have real and imaginary comp-
onents) whilst the mMDS is an approximation in real space; also 
that lower-d plots are produced by projection through the higher 
axes with PCO but by placement of points in low-d in mMDS (in 
such a way as to optimise the fit to the actual resemblances).  

A final example of bootstrapping is one with slightly 
different numbers of replicate samples across groups, 
though bootstrap averages are calculated in just the 
same way and without bias from the varying sampling 
effort for one of the means (again see footnote ¶).  

EXAMPLE: Fal estuary macrofauna 

The soft-sediment macrobenthic communities from 
five creeks of the Fal estuary, SW England, {f} were 
examined by Somerfield et al (1994). For location of 
the creeks (Restronguet, Mylor, Pill, St Just, Percuil) 
see the map in Fig. 9.3, where the analysis was of the 
sediment meiofaunal assemblages. The sediments in 
this estuary are heavily contaminated by heavy metal 
levels, resulting from historic tin and copper mining 
in the surrounding area, and the macrofaunal species 
list for the 5 replicates per creek (7 in Restronguet) 
consists of only 23 taxa. A 2-d metric MDS of these 
27 samples, based on fourth-root transformed counts 
and Bray-Curtis similarity, is seen in Fig. 18.6a, and 
the associated Shepard plot in 18.6b. In this case, an 
excellent approximation to the Bray-Curtis resembl-
ances is obtained from the Euclidean distances in an 
m = 4-dimensional mMDS, for which the Pearson 
correlation to the Bray-Curtis dissimilarities is r = 
0.991, as seen from the Shepard diagram, Fig. 18.6c.  

A total of 100 bootstrap averages are generated in this 
4-d space, for each creek, and the full set of 500 boot-
straps is ordinated into 2-d in Fig. 18.7. Approximate 
95% regions are superimposed, in the way outlined 
earlier. In all cases, fewer than 5 of the 100 bootstrap 
averages fall outside of these regions, because of the 
adjustment made to the coverage probability from 
simulations based on a theoretical bias of (1 − n-1) in 
their variance. These adjustments are rather modest 
however, and cannot be expected to compensate for 
all sources of potential uncertainty in bootstrapping 
with small n, and of course displaying in low-d space.  
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Fig. 18.7. Fal estuary macrofauna {f}. Metric MDS of bootstrap 

averages for the five creeks from the replicate samples of Fig 8.6a 
(Mylor creek in grey to aid distinction), including ∼95% region 
estimates for the ‘mean communities’ in each creek. Bootstrapp-
ing performed in m = 4 dimensional mMDS space. 

It should not be forgotten that the bootstrap concept 
in univariate space was introduced and justified on 
the basis of its asymptotic (large n) behaviour. It has 
some desirable small-sample properties, such as the 
unbiasedness of bootstrap means for the underlying 
true mean. But there is no guarantee that, for small n, 
intervals produced from the percentiles of the set of 
averages of randomly drawn bootstrap samples will 
achieve their nominal ‘% cover’. Some authors have 
even suggested the need for n>50 replicates (for each 
group!). Whilst this is unrealistic, and unnecessary, it 
should caution us not to take a nominal 95% cover 
value too seriously.  

One formula worth bearing in mind is that given on 
p18-3 for the number of possible different bootstrap 
averages (B) that could be obtained from n samples, 
B = (2n)! / [2(n!)2]. For n = 2, B = 3; for n=3, B = 10; 
for n = 4, B = 35; and only when n = 5 do we have 
more than 100 possibilities (B = 126). At that level, 
though not all these distinct combinations will be 
found in b=100 random draws¶, the majority will 
appear, giving at least a range of bootstrap averages 
to generate the regions, as can be seen from the

¶ They are not equally likely but have a multinomial distribution, 
thus the probability that a single bootstrap sample will consist of 
all 5 of one of the original samples is small, at only 1/625, so is 
unlikely to be seen in most runs of b=100 averages. In contrast, 
the probability that a bootstrap sample reselects all 5 replicates 
in the original sample is 24/625 = 0.038, so its average point will 
occur about 4 times in a run of b=100, and has about a  98% 
chance of being in the set at least once. 

Mylor, Pill, St Just and Percuil creeks in Fig. 18.7. 
(Restronguet, with n=7, has more combinations, B = 
1716, and that can be seen in the more random cover 
of points, rather than the striated patterns of the other 
bootstraps). Certainly n=5 should be considered as 
absolutely minimal for such bootstrap regions.  

These caveats aside, and minimal though replication 
may be in the case of Fig. 18.7, it is clear nonetheless 
that the only two creeks whose regions overlap – and 
strongly so – are Mylor and Percuil. And pairwise 
ANOSIM test results, using the original Bray-Curtis 
similarities, are again consistent with these bootstrap 
averages: R =  −0.01 for the Mylor v. Percuil test, but 
all other R statistics are > 0.55 and significant at the 
1% level. (This level is the most extreme of the 126 
permutations possible for all pairwise comparisons of 
5 replicates; comparisons with Restronguet, with its 7 
replicates, are based on 792 permutations, but all 
those pairwise tests again return p<1%). Whilst the 
warning given in the footnote on p18-6 (that it would 
be most unwise to use these regions as substitutes for 
hypothesis tests) is still very germane, it is reassuring 
to note how often the interpretations broadly concur.  

Finally, comparison of Figs. 18.6a and 18.7 restates  
the point made by the initial Fig. 18.1. In univariate 
statistics, we do not expect a plot of the replicates 
themselves to be the most informative way to picture 
the patterns in a data set. The means plot, with its 
interval estimates (which are not of course trying to 
summarise variation in the replicates, but uncertainty 
in the knowledge of the averages for each group), can 
often be a more informative way of interpreting the 
results of hypothesis tests. The same reasoning is true 
in the multivariate case. Fig. 18.6a has few samples to 
clutter the basic ordination plot, by comparison with 
many studies, but the patterns demonstrated by the 
ANOSIM (or PERMANOVA) tests are then more 
clearly visualised in a means plot such as Fig. 18.7. 
To repeat the mantra: test using the replicates, display 
using the means (with or without bootstrap regions). 
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APPENDIX 1:  INDEX OF EXAMPLE DATA 
 

The following is a list of all (real) data sets used as 
examples in the text, where they are referenced by 
their indexing letter (A–Z, a-z). The entries give all 
pages on which each set is analysed or discussed and 
also its source reference (see also Appendix 3).  These 
are not always the appropriate references for the 
analyses which can be found in the text; the latter are 
generally given in Appendix 2. 

A – Amoco-Cadiz oil spill, Bay of Morlaix, France. 
Macrofauna. (Dauvin, 1984). 
p 5−10, 5–11, 5–13, 5–16, 5–17, 7–5, 7–6, 10–3, 
10–4, 13–2, 13–3, 15–2, 15–3, 16–1 to 16–6, 
17−2, 17–3 

a – Algal recolonisation, Calafuria, Ligurian Sea, 
Italy. Macroalgae. (Airoldi, 2000). 
p 16−17, 16−18 

B – Bristol Channel, England.  Zooplankton. (Collins 
and Williams, 1982). 
p 3–5, 3–6, 3–8, 3–9, 3–12, 3–13, 7–8 to 7–10, 
7–14 to 7–16, 7–20, 11–3, 11–4 

b – Beam-trawl surveys, N. Europe. Groundfish.  
(Rogers et al, 1998). 

 p 17–10 to 17–12 

C – Celtic Sea.  Zooplankton.  (Collins, pers. comm.).  
p 5–9, 5–10 

c – Creran & Etive loch, Scotland. Macrobenthos. 
(Gage and Coghill, 1977; Gage, 1972). 
p 15-11, 15-12, 18–4 to 18–6  

D – Dosing experiment, Solbergstrand mesocosm, 
Norway (GEEP Workshop). Nematodes. (Warwick 
et al, 1988). 
p 4–8, 5–8, 5–9, 9–3, 9–4 

d – Diets of W Australian fish. Gut contents of seven 
nearshore species. (Hourston et al, 2004). 

 p 7–20   

E – Ekofisk oil platform, N.Sea.  Macrofauna.  (Gray 
et al, 1990). 
p 6–15, 6–16, 7–12 to 7–14, 7–18, 7–19, 8–5, 
8−6, 8–13, 10–4 to 10–6, 14–2, 14–3, 15–5 to 
15−7, 17–4 

e – Estuaries, W Australia. Fish. (Valesini, 2014). 
p 11–12 

F – Frierfjord, Norway (GEEP Workshop). Macro-
fauna.  (Gray et al, 1988). 
p 1–3, 1–4, 1–9, 1–10, 1–11, 3–1, 3–2, 6–1 to 
6−6, 8–8, 8–10, 9–1, 9–2, 10–1, 13–6, 14–1, 
14−2, 15–2, 15–3 

f  – Fal estuary sediments, S.W. England.  Meio- and 
macrofauna.  (Somerfield et al, 1994a,b). 
p 9–6 to 9–10, 11−15, 11−16, 18–7, 18–8 

G – Garroch Head, sludge dump-ground, Scotland. 
Macrofauna.  (Pearson and Blackstock, 1984). 
p 1–6, 1–8, 1–12, 1–13, 4–5, 4-6, 7–7, 7–11, 7–12, 
8–5 to 8–7, 8–9, 8–12, 8–16, 11–1 to 11–5, 11–9 to 
11−12, 11–16, 15–2, 15–3, 16–11 to 16–13 

g – Gullfaks A&B oilfields, Norway. Macrobenthos. 
(Olsgard and Gray, 1995).  
p 15-13 

H – Hamilton Harbour, Bermuda (GEEP Workshop). 
Macrofauna, nematodes.  (Warwick et al, 1990c). 
p 8–3, 8–4, 8–12, 13–3, 13–4 

I – Indonesian reef corals, S. Pari and S. Tikus Islands.  
Coral % cover.  (Warwick et al, 1990b). 
p 6–6, 6–7, 8–3, 8–4, 10–3, 10–5, 10–6, 13–4, 
13–5, 14–3, 14–4, 15–5 to 15–7, 16–7 to 16–11, 
18–1 to 18–4 

i – Island group species lists. Fish presence/absence. 
(Clarke et al, 2006c). 
p 17–19 

J – Joint NE Atlantic shelf studies (‘meta-analysis’). 
Macrofauna ‘production’.  (Warwick and Clarke, 
1993a). 
p 15–2 to 15–5 

K – Ko Phuket coral reefs, Thailand.  Coral species 
cover.  (Clarke et al, 1993; Brown et al, 2002). 
p 6–17, 15–8 to 15–10, 16–7, 16–8, 16–14, 
16−15 

k – King Wrasse diets, W Australia. Gut contents of 
labrid fish. (Lek et al, 2011). 
p 6−20, 6−21 

L – Loch Linnhe and Loch Eil, Scotland, pulp-mill 
effluent.  Macrofauna.  (Pearson, 1975). 
p 1–6, 1–7, 1–10, 1–12, 2–2, 2–3, 3–3, 5–2, 5–3, 
8−7, 8–8, 8–10, 8–11, 9–2, 9–3, 10–2, 10–4 to 10–
6, 10–7, 15–2, 15–3 
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l – Leschenault estuary, W Australia. Estuarine fish 

assemblage, over seasons. (Veale et al, 2014).  
p 15-14 

M – Maldive Islands mining.  Coral reef fish.  (Dawson-
Shepherd et al, 1992). 
p 13–2, 14–4, 14–5, 15–5 to 15–7 

m – Messolongi lagoons, E. Central Greece. Diatoms 
and water-column data. (D.B. Danielidis, Ph.D. 
thesis, Univ. Athens, 1991). 

 p 5–19, 5–20 

N – Nutrient-enrichment experiment, Solbergstrand 
mesocosm, Norway.  Nematodes, copepods.  (Gee 
et al, 1985). 
p 1–14, 10–2, 10–4, 12–5, 12–6, 15–5 to 15–7 

n – NE New Zealand kelp holdfasts. Macrofauna. 
(Anderson et al, 2005). 
p 6−21, 6−22 

O – Okura estuary, Long Bay, New Zealand. Inter-
tidal macrofauna. (Anderson et al, 2004). 
p 5–18, 5–19 

P – Plymouth particle-size data. Water samples with 
Coulter Counter. (A. Bale, pers. comm). 
p 8–14 

p – Plankton survey (Continuous Plankton Recorder), 
N.E. Atlantic.  Zooplankton, phytoplankton.  (Cole-
brook, 1986). 
p 13–1 

R – Tamar estuary mud-flat, S.W. England.  Nematodes, 
copepods.  (Austen and Warwick, 1989). 
p14–6 to 14–8 

S – Scilly Isles, UK.  Seaweed metazoa.  (Gee and 
Warwick, 1994). 
p 13–5, 14–5, 14–6 

T – Tasmania, Eaglehawk Neck.  Nematodes, copepods.  
(Warwick et al, 1990a). 
p 6–9, 7–16, 7–17, 12–2 to 12–4, 13–3, 13–4, 
14–7 

t  − Tees Bay, N.E. England. Macrobenthos (Warwick 
et al, 2002) 
p 6–22 to 25, 15–7, 15-11, 17–5 

U – UK regional studies. Nematodes.  (Warwick and 
Clarke, 1998).  
p 17–7 to 17–10, 17–13 to 17–15 

V – Valhall oilfield, N Sea. Macrofauna. (Olsgard et 
al, 1997)  
p 17–20 

W – World map. Great-circle distances among cities. 
(Reader’s Digest Great World Atlas, 1962) 

 p 5–14 to 5–16  

w – Westerschelde estuary cores, Netherlands; meso-
cosm experiment on food supply.  Nematodes.  
(Austen and Warwick, 1995). 
p 6–10, 6–12 

X – Exe estuary, S.W. England.  Nematodes.  (Warwick, 
1971). 
p 5–2 to 5–4, 5–7, 5–8, 6–12, 6–13, 7–1 to 7–4, 
7−7, 7–8, 11–5 to 11–9, 11–11 to 11–9, 15-12 

Y – Clyde, Scotland.  Nematodes.  (Lambshead, 1986). 
p 6–7, 6–8 

Z – Azoic sediment recolonization experiment.  Cop-
epods.  (Olafsson and Moore, 1992). 
p 12–4 
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APPENDIX 2:  PRINCIPAL LITERATURE SOURCES AND FURTHER 
READING  

 
A list of some of the core methods papers was given 
in the Introduction, and the source papers for the data 
used in examples can be found in Appendix 1. Here 
we itemize, for each chapter, the source of analyses 
which repeat those in published literature, and where 
figures have been redrawn from. Figures or analyses 
not mentioned can be assumed to originate with this 
publication. Also sometimes mentioned are historical 
references to earlier developments of the ideas in that 
chapter, or other useful background reading.  

Chapter 1: Framework. The categorisation here is 
an extension of that given by Warwick (1988a).  The 
Frierfjord macrofauna data and analyses (Tables 1.2 
& 1.6 and Figs. 1.1, 1.2 & 1.7) are extracted and re-
drawn from Bayne et al (1988), Gray et al (1988) and 
Clarke and Green (1988), the Loch Linnhe macrofauna 
data (Table 1.4 and Fig. 1.3) from Pearson (1975), 
and the ABC curves (Fig. 1.4) from Warwick (1986).  
The species abundance distribution for Garroch Head 
macrofauna (Fig. 1.6) is first found in Pearson et al 
(1983), and the multivariate linking to environmental 
variables (Fig. 1.11) in Clarke and Ainsworth (1993).  
The ‘coherent species curves’ (Fig. 1.10) for the Loch 
Linnhe data are redrawn from Somerfield and Clarke 
(2013). The mescosm data from the nutrient enrich-
ment experiment (Table 1.7) and the MDS plot for 
copepods and nematodes (Fig. 1.12) are extracted and 
redrawn from Gee et al (1985). 

Chapters 2 and 3: Similarity and Clustering.  These 
methods originated in the 1950’s and 60’s (e.g. Florek 
et al, 1951; Sneath, 1957; Lance and Williams, 1967).  
The description here widens that of Field et al (1982), 
with some points taken from the general texts of Everitt 
(1980) and Cormack (1971).  The dendrogram of Frier-
fjord macrofaunal samples (Fig.3.1) is redrawn from 
Gray et al (1988), and the zooplankton example (Figs. 
3.2 & 3.3) from Collins and Williams (1982). The 
SIMPROF test for samples on agglomerative clusters 
is described in Clarke et al (2008); Fig. 3.8 mimics 
one in Anderson et al (2008), and the other cluster 
methods (unconstrained divisive and k-R clustering,  
maximising R) are somewhat new to this publication.  

Chapter 4: Ordination by PCA.  This is a founding 
technique of multivariate statistics, see for example 
Chatfield and Collins (1980) and Everitt (1978).  The 
MDS from a dosing experiment in the Solbergstrand 
mesocosms (Fig. 4.2) is from Warwick et al (1988). 

Chapter 5: Ordination by MDS.  Non-metric MDS 
was introduced by Shepard (1962) and Kruskal (1964); 
two standard texts are Kruskal and Wish (1978) and 
Schiffman et al (1981).  Here, the exposition parallels 
that in Field et al (1982) and Clarke (1993); the Exe 
nematode graphs (Figs. 5.1,5.2,5.4,5.5) are redrawn 
from the former.  The dosing experiment (Fig. 5.6) is 
discussed in Warwick et al (1988). Metric MDS (see 
Cox and Cox, 2001), not to be confused with the 
similar, but not identical, PCO ordinations (produced 
by PERMANOVA+ for example), was also an early 
introduction but is much less commonly implemented 
in software. The combining of nMDS and mMDS 
stress functions bears some relationship to hybrid and 
semi-strong hybrid scaling methods (Faith et al 1987, 
Belbin 1991) but with some important differences in 
implementation and with a different rationale here 
(the avoidance of collapsed sub-groups in an MDS 
plot, and for two nMDS stress functions, the merging 
of similarities of different types); see footnote on 
page 5-18.  

Chapter 6: Testing.  The basic permutation test and 
simulation of significance levels can be traced to Mantel 
(1967) and Hope (1968), respectively.  In this context 
(e.g. Figs. 6.2 & 6.3 and eqt. 6.1) it is described by 
Clarke and Green (1988).  A fuller discussion of the  
extension to 2-way nested and crossed ANOSIM tests 
(including Figs. 6.4 & 6.6) is in Clarke (1993) (with 
some asymptotic results in Clarke, 1988);  the coral 
analysis (Fig. 6.5) is in Warwick et al (1990b), and 
the Tasmanian meiofaunal MDS (Fig. 6.7) in Warwick 
et al (1990a).  The 2-way design without replication 
(Figs. 6.8-6.12) is tackled in Clarke and Warwick 
(1994); see also Austen and Warwick (1995). The 
ordered ANOSIM test is new to this publication, as 
are the extensions to 3-way crossed/nested designs. 
Lek et al (2011) give the ‘flattened’ 2-way ANOSIM 
tests for the 3-way crossed example of labrid diets; 
Fig. 6.15 is redrawn from there. The NZ kelp holdfast 
data is provided with the PERMANOVA+ software 
(Anderson et al 2008). Fig. 6.17 is partly extracted 
from Warwick et al (2002).  

Chapter 7: Species analyses.  Clustering on species 
similarities is given in Field et al (1982) for the Exe 
nematode data; see also Clifford and Stephenson 
(1975). SIMPROF test for species (‘coherent curves’) 
follows Somerfield and Clarke (2013); Figs. 7.1-7.6 
are redrawn from there. Shade plots are described in 
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Clarke et al (2014) but have a very long history (see 
Wilkinson and Friendly, 2009), though there are 
some novelties in the options outlined here, in terms 
of combinations of input data,  axis ordering, cluster 
analysis choices, and so on. The SIMPER (similarity 
percentages) procedure is given in Clarke (1993), and 
the 2-way crossed SIMPER first used in Platell et al 
(1998). Simple bubble plots are a staple routine for 
graphical output but PRIMER 7’s segmented bubble 
plots were first used in Stoffels et al (2014) and in 
Purcell et al (2014).  

Chapter 8: Univariate/graphical analyses.  Pielou 
(1975), Heip et al (1988) and Magurran (1991) are 
useful texts, summarising a large literature on a variety 
of diversity indices and ranked species abundance 
plots.  The diversity examples here (Figs. 8.1 & 8.2) 
are discussed by Warwick et al (1990c, 1990b respect-
ively) and the Caswell V computations (Table 8.1) are 
from Warwick et al (1990c).  The Garroch Head species 
abundance distributions (Fig. 8.4) are first found in 
Pearson et al (1983); Fig. 8.3 is redrawn from Pearson 
and Blackstock (1984).  Warwick (1986) introduced 
Abundance–Biomass Comparison curves, and the Loch 
Linnhe and Garroch Head illustrations (Figs. 8.7 & 
8.8) are redrawn from Warwick (1986) and Warwick 
et al (1987).  The transformed scale and partial domin-
ance curves of Figs. 8.9-8.11 were suggested by Clarke 
(1990), which paper also tackles issues of summary 
statistics (Fig. 8.12, equation 8.7, and as employed in 
Fig. 8.13) and significance tests for dominance curves 
(the DOMDIS routine in PRIMER). Use of ANOSIM 
on distances among curves (growth curves, particle 
size distributions etc) has been advocated at PRIMER 
courses for some years and there are now a few 
examples in the literature. Similarly, the treatment of 
multiple diversity indices by multivariate methods, to 
ascertain the true (and limited) dimensionality of 
information captured, and the consistent (mechanistic) 
relationships between indices seen in ordination 
patterns (such as Fig. 8.16), has long been a staple of 
PRIMER courses, though never specifically published.  

Chapter 9:  Transformations. The chapter start is 
an expansion of the discussion in Clarke and Green 
(1988); Fig. 9.1 is recomputed from Warwick  et al 
(1988). Detailed description of dispersion weighting 
(DW) is in Clarke et al (2006a); Figs. 9.2, 9.4 of the 
Fal nematode data (Somerfield et al 1994) are re-
drawn from Clarke et al (2006a). The use of shade 
plots to aid transformation or DW choices is the topic 
of Clarke et al (2014). A different form of weighting 
of variables (by their standard deviation) is described 
in Hallett et al (2012).  

Chapter 10:  Aggregation.  This description of the 
effects of changing taxonomic level is based on Warwick 
(1988b), from which Figs. 10.2-10.4 and 10.7 are 
redrawn.  Fig. 10.1 is discussed in Gray et al (1988), 
Fig. 10.5 and 10.8 in Warwick et al (1990b) and Fig. 
10.6 in Gray et al (1990) (or Warwick and Clarke, 
1993a, in this categorisation). A methodology for 
examining the comparative effects on an analysis of 
choice of taxonomic level (and transform) can be 
found in Olsgard et al (1997, 1998) and Olsgard and 
Somerfield (2000). 

Chapter 11:  Linking to environment.  For wider 
reading on this type of ‘canonical’ problem, see Chapter 
5 of Jongman et al (1987), including ter Braak’s (1986) 
method of canonical correspondence analysis.  The 
approach here of performing environmental and biotic 
analyses separately, and then comparing them, combines 
that advocated by Field et al (1982: superimposing 
variables on the biotic MDS) and by Clarke and Ains-
worth (1993: the BIO-ENV program).  The data in Table 
11.1 is from Pearson and Blackstock (1984).  Fig 11.3 
is redrawn from Collins and Williams (1982) and Fig. 
11.6 from Field et al (1982); Figs. 11.7, 11.8, 11.10 
and Table 11.2 are from Clarke and Ainsworth (1993). 
The global BEST test is given in Clarke et al (2008), as 
is the description of linkage trees, the general idea of 
which (as ‘multivariate regression trees’) can be found 
in De’Ath (2002). The modification to a constrained 
(2-way) BEST is new to this publication. 

Chapter 12:  Community experiments.  Influential 
papers and books on field experiments, and causal 
interpretation from observational studies in general, 
include Connell (1974), Hurlbert (1984), Green (1979) 
and many papers by A J Underwood, M G Chapman 
and collaborators, in particular the Underwood (1997) 
book. Underwood and Peterson (1988) give some 
thoughts specifically on mesocosm experiments. Lab-
based microcosm experiments on community structure, 
using this analysis approach, are typified by Austen and 
Somerfield (1997) and Schratzberger and Warwick 
(1998b).  Figs. 12.2 and 12.3 are redrawn from Warwick 
et al (1990a) and Figs. 12.5, 12.6 from Gee et al (1985). 

Chapter 13:  Data requirements.  The exposition 
parallels that in Warwick (1993) but with additional 
examples.  Figs. 13.1-13.3 and 13.8 are redrawn from 
Warwick (1993), and earlier found in Colebrook (1986), 
Dawson-Shepherd et al (1992), Warwick (1988b) and 
Gray et al (1988) respectively.  Fig. 13.4 is redrawn 
from Warwick et al (1990a), Fig. 13.5 from Warwick 
et al (1990c), Fig. 13.6 from Warwick et al (1990b) 
and Fig. 13.7 from Warwick and Clarke (1991).  
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Chapter 14: Relative sensitivities.  This parallels the 
earlier sections of Warwick and Clarke (1991), from 
which all these figures (except Figs. 14.11 & 14.14) 
have been redrawn.   Primary  source versions  of  the 
figures can be found as follows: Figs. 14.1-14.3, Gray 
et al (1988); Figs. 14.5-14.7, Warwick et al (1990b); 
Figs 14.9-14.10, Dawson-Shepherd et al (1992); Figs. 
14.11-14.12, Gee and Warwick (1994); Figs. 14.14-
14.16, Austen and Warwick (1989). 

Chapter 15:  Multivariate measures of disturbance 
and relating to models. The first part on multivariate 
measures of stress follows the format of Warwick and 
Clarke (1995) and is an amalgamation of ideas from 
three primary papers: Warwick and Clarke (1993a) on 
‘meta-analysis’ of NE Atlantic macrobenthic studies, 
Warwick and Clarke (1993b) on the increase in multi-
variate dispersion under disturbance, and Clarke et al 
(1993) on the breakdown of seriation patterns.  Figs. 
15.1-15.3 and Table 15.1 are redrawn and extracted 
from the first reference, Fig. 15.4 and Table 15.2 from 
the second and Figs. 15.5 & 15.6 and Table 15.5 from 
the third. The analysis in Table 15.4 is from Warwick 
et al (2002). In the second part, the principle of matrix 
correlations using a Pearson coefficient dates to Mantel 
(1967); RELATE tests are a non-parametric form. The 
seriation test with replication is discussed in detail by 
Somerfield et al (2002), the Tees data is analysed in 
Warwick et al (2002), the sea-loch data in Somerfield 
and Gage (2000), the Gullfaks Fig. 15.10 is extracted 
from Somerfield et al (2002) and the Leschenault Fig. 
15.12 redrawn from Veale et al (2014). 

Chapter 16:  Further multivariate comparisons and 
resemblance measures.  The general extension of the 
Bio-Env approach of Chapter 11, to combinations other 
than selecting environmental variables to match biotic 
patterns, is described in Clarke and Warwick (1998a).  
This details the forward/backward stepping search 
algorithm BVStep, and uses it to select subsets of 
‘influential’ species from a biotic matrix. Second-
stage MDS was defined by Somerfield and Clarke 
(1995) and early examples of its use can be found in 
Olsgard et al (1997, 1998).  Figs. 16.1 to 16.3, and 
Tables 16.1 and 16.2, are extracted from Clarke and 
Warwick (1998a), and Fig. 16.5 from Somerfield and 
Clarke (1995). The definition and behaviour of zero-
adjusted Bray-Curtis is given by Clarke et al (2006c), 
and that paper also discusses the relative merits of the

 resemblance measures covered here and introduces 
the use of second-stage MDS for comparing coeffic-
ients. Figs. 16.7 to 16.10 are a recalculated form of 
some of the figures of that paper; Fig. 16.11 expands 
the set of coefficients considered there. The very 
different use of second-stage analysis to generate 
‘interaction-type’ plots is the subject of Clarke et al 
(2006b). Figs. 16.12 to 16.13 and 16.15 to 16.17  are 
redrawn from there. 

Chapter 17:  Taxonomic distinctness measures.  
Warwick and Clarke (1995a) first defined taxonomic 
diversity/distinctness.  Earlier work, from a conservation 
perspective, and using different species relatedness 
properties (such as PD), can be found in, e.g. Faith 
(1992, 1994), Vane-Wright et al (1991) and Williams 
et al (1991).  The superior sampling properties of  
average taxonomic distinctness (∆+), and its testing 
structure in the case of simple species lists, are given 
in Clarke and Warwick (1998b), and applied to UK 
nematodes by Warwick and Clarke (1998) and Clarke 
and Warwick (1999).  Variation in taxonomic distinct-
ness (Λ+) was introduced, and its sampling properties 
examined, in Clarke and Warwick (2001), and a  review 
of the area can be found in Warwick and Clarke (2001), 
from which Figs. 17.1, 17.2, 17.5, 17.11, 17.12 are 
redrawn.  Fig. 17.3 is discussed in Warwick and Clarke 
(1995a), Fig. 17.4 in Warwick et al (2002), Figs. 17.6, 
17.8, 17.9, 17.14, 17.17 in Clarke and Warwick (2001), 
Fig. 17.7 in Clarke and Warwick (1998b) and Figs. 
17.10, 17.13 in Rogers et al (1999). Taxonomic 
dissimilarities are discussed in Clarke et al (2006c), 
from which the two examples, Fig. 17.19, 17.20 are 
taken. The measures were first defined in Clarke and 
Warwick (1998a) and Iszak and Price (2001).     

Chapter 18:  Bootstrap average regions. Bootstrap-
ping univariate data was introduced by Efron (1979), 
see also Efron and Tibshirani (1993). Its specific 
application to these complex multivariate contexts is 
new to this publication and might best be treated as 
experimental, for the moment. Certainly the nominal 
region coverage probabilities (e.g. 95%) should not 
be given a formal 95% confidence region interpretat-
ion, since some sources of uncertainty are, inevitably, 
not included in that probability statement – primarily 
how well the lower-dimensional region represents the 
higher-dimensional reality.  
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