1988). Not until Caine's (1986) research were any data available regarding loggerhead epibionts based on a large sample size of live turtles (N = 138) within the southeastern United States. Caine's (1986) study was conducted only in South Carolina and Florida, leaving a large gap for information on epibionts from *Caretta* along the Georgia coast. To our knowledge, there are only four studies which report epibionts from *Caretta* (Frazier et al. 1985, 1991, 1992; Sawyer et al. 1975). Furthermore, research conducted in Georgia can only include turtles from Camden County (Frazier et al. 1985, 1991, 1992), because Sawyer (1975) did not specify the localities from where his samples were taken.

We initiated a study to provide a comprehensive survey of the epibionts associated with nesting loggerheads in Georgia.We documented a total of 86 epibiotic species (Table 1), 76 of which had never been seen from *Caretta* in Georgia and 52 of which were unknown from loggerheads within the United States. Here, we report our data on loggerhead epibionts from five major nesting beaches in Georgia.

Our study sites were located on Blackbeard Island in McIntosh Co. (31°28.4'N, 81°13.1'W); Jekyll Island, Glynn Co. (31°03.9'N, 81°24.9'W); Little Cumberland Island, Camden Co. (30°57.2'N, 81°25.5'W); Little St. Simons Island, Glynn Co. (31°15.4'N, 81°17.2'W); and Wassaw Island, Chatham Co. (31°53.4'N, 80°58.4'W). All samples were collected during the 1997 nesting season from May to August. No samples were included from dead turtles because epibiont attachment may have occurred postmortem and may not reflect the true nature of the observed relationship.

Sampling was conducted while the turtle was nesting or covering the nest site. All visible areas of the turtle were examined and sampled where epibiota were most prevalent. Standardization of collection sites on turtles was considered but not adopted as suggested by Caine (1986). Epibionts were collected by using a small putty knife and/or pair of forceps. Once collected, samples were placed in containers of 10% formalin or 70% isopropyl alcohol. Containers were marked with a number previously

FIG. 1. Prevalent epibiont sites on nesting *Caretta caretta* in Georgia, USA. Shaded neck region represents attachment site for marine leeches, *Ozobranchus margoi*.

Epibionts Associated with Nesting Loggerhead Sea Turtles (*Caretta caretta*) in Georgia, USA

MICHAEL G. FRICK

Caretta Research Project, PO Box 661, Tybee Island, Georgia 31328, USA e-mail: Caretta05@aol.com

KRISTINA L. WILLIAMS

Caretta Research Project, 4405 Paulsen Street, Savannah, Georgia 31405, USA

and MICHAEL ROBINSON P.O. Box 21078, St. Simons Island, Georgia 31522, USA

Loggerhead sea turtles (*Caretta caretta*) are platforms for the colonization of various species of marine flora and fauna (Ernst et al. 1994). Unfortunately, much of the data on commensals and parasites associated with loggerheads is based on small sample sizes, dead turtles, and extremely broad areas of sampling (Dodd

TABLE 1. Epibionts collected from *Caretta caretta* in Georgia, USA. Data are the number of turtles upon which the epibiont was found with the percent occurrence in parentheses; sample size (N) = 65 turtles. B = Blackbeard Island, J = Jekyll Island, LC = Little Cumberland Island, LS = Little St. Simons Island, W = Wassaw Island, and A = all localities surveyed.

Species			Common Name	Locality	Percentage
Porifera	ele Bisi Mi Anali ele	of smoothe	laberat Magdal an an		
	Cliona celata		boring sponge	W, LC, J	31 (47.7%)
	Haliclona loosanoffi		eroded sponge	W, J	4 (6.2%)
	Microciona prolifera		red beard sponge	J, LC	7 (10.8%)
	Mycale americana		flabby sponge	W, LC, J	8 (12.3%)
Cnidaria	Traho de				
Hydroz			C. d. L. d. 14	337	0 (12.90)
	Halocordyle disticha		feather hydroid	w	9 (13.8%)
	Hydractinia echinata		snail fur	A	65 (100%)
	Obelia dichotoma		brown hydroid	J, LC	19 (29.2%)
	Tubularia crocea		wildflower hydroid	Α	13 (20%)
Anthoz	oa				
	Aiptasia pallida		brown anemone	LC, W	2 (3.1%)
	Anemonia sargassiensis		sargassum anemone	W, J, LC	5 (7.7%)
	Bunodosoma cavernata		warty anemone	J	1 (1.5%)
	Calliactus tricolor		hermit crab anemone	W, LC	17 (26.1%)
	Halliplanella luciae		orange-striped anemone	J. LC	2 (3.1%)
	Leptogorgia virgulata		sea whip	W	3 (4.6%)
Mollusos					
Gastro	noda				
oustroj	Chaetonleura aniculata		eastern headed chiton	W	1 (1 5%)
	Cratena nilata		ivory sea slug	Δ	6(9.2%)
	Cranidula fornicata		Atlantic slipper spail	WIC	27(41.5%)
	Crepidula plana		white clipper speil	W, LC	10(20.2%)
	Diadana amananaia		white supper shall	vv, J T	19(29.2%)
	Diadora cayenensis		cayenne keynole limpet	J	2(3.1%)
	Doriopsilia pnarpa		lemon drop sea slug	W, LC, J	7 (10.8%)
	Doris verrucosa		sponge sea slug	W, J, LC	3 (4.6%)
	Ischnochiton striolatus		false beaded chiton		1(1.5%)
.	miesea evenna		transiteent sea sing	J, LC	2 (3.170)
Bivalvi	a		1.		
	Anadara ovalis		blood ark	W	12 (18.5%)
	Anomia simplex		common jingle	J, LC	14 (22%)
	Brachidontes exustus		scorched mussel	W	5 (7.7%)
	Chione grus		grey pygmy venus	A	5 (7.7%)
	Musculus lateralis		zig-zag mussel	A	10 (15.4%)
	Ostrea equestris		horse oyster	J	13 (20%)
	Rupellaria typica		Atlantic rock borer	W, LC	2 (3.1%)
	Sphenia antillensis		soft shelled clam	LC	2 (3.1%)
Platyhelr	ninthes				
Tremat	oda				
10	Oligaclado floridanus		variable flatworm	W	1 (1.5%)
Turbell	aria				
	Bdelloura candida		white flat worm	W, LC	4 (6.2%)
Annolida					
Himdir	100				
imuun	Ozobranchus margoi		marine turtle leech	W. J. LC	58 (89.2%)
De11	anto			,	and a state of
Polych					10 (10 577)
	Dorvillea sociabilis		milipede worm	A	12 (18.5%)
	Filograna vulgaris		lacy feather worm	W	1 (1.5%)
	Nereis falsa		false polychaete	J	3 (4.6%)
	Podarke obscura		swift-footed worm	W, J	5 (7.7%)
	Procerea fasciata		red, white and blue worm	W	1 (1.5%)
	Sabellaria floridensis		Florida mason worm	W	(1.1%)
	Sabellaria vulgaris		mason worm	LC	(4.6%) 3 (4.6%)
	Serpula vermicularis		fan worm	LC	7 (10.8%)

Herpetological Review 29(4), 1998

Syllis spongicola	sponge worm	W, J	2 (3.1%)
Arthropoda Crustacea			
Decapoda			
Lysmata wurdemanni	peppermint shrimp	W	9 (13.8%)
Cirripedia Family Lepadidae			
Lepas anatifera	large goose barnacle	W, J	2 (3.1%)
Lepas pectinata	small goose barnacle	W	1 (1.5%)
Family Balanidae			
Balanus amphitrite	acorn barnacle	А	65 (100%)
Balanus eburneus	ivory barnacle	W, J, B	13 (20%)
Family Corunulidae			
Chelonibia testudinaria	turtle barnacle	A Distance A	65 (100%)
Chelonibia caretta	turtle barnacle	A	65 (100%)
Chthamalus fragilis	fragile barnacle	A	42 (64 6%)
Chthamalus stellatus	star barnacle	WILC	21(32.3%)
T		o hobestal a	R BASE Dear
Tanaidea	robust tangid	LIC States	6 (0.2%)
Leuxo robusius	Tobust tailaid	J, EC	0 (9.270)
Amphipoda			
Ampithoe ramondi	Raymond's amphipod	W, J	2 (3.1%)
Caprella andreae	skeleton shrimp	A	65 (100%)
Caprella equilibria	skeleton shrimp	A	44 (67.7%)
Caprella penantis	skeleton shrimp	W, J, B	19 (29.2%)
Dulichiella appendiculata	bigclaw amphipod	w, J	24 (36.9%)
Elasmopus rapax	no common name		3(4.0%)
Erichthonius braziliensis	no common name	J	1(1.5%)
Paracaprella tenuis	skeleton shrimp	W	6(9.2%)
Poaocerus cheloniae		J, LC I	$\frac{17}{20.2\%}$
Stenothoe minuta	no common name		3 (4.0%)
Isopoda		- 147 C. 31 (317)	
Sphaeroma quadridentatum	marine roly-poly	W, J	31 (47.7%)
Cancrion carolinus	entonioscid isopod	w	4 (6.2%)
Brachvura			
Neopanope sayi	mud crab	J, LC	7 (10.8%)
Panopeus herbstii	Atlantic mud crab	W	8 (12.3%)
Planes minuta	gulf-weed crab	W	2 (3.1%)
Bryozoa			
Amathia distans	bushy bryozoan	LC. J	31 (47.7%)
Anguinella palmata	bushy bryozoan	W, LC	29 (44.7%)
Bugula neritina	bushy bryozoan	Α	60 (92.3%)
Membranipora tenuis	white crust bryozoan	Α	65 (100%)
Chordata			
Urochordata			
Aplidium constellatum	constellation tunicate	W, J	2 (3.1%)
Didemnum duplicatum	paintbrush tunicate	W	7 (10.8%)
Eudistoma carolinese	sandy lobed tunicate	Α	42 (64.6%)
Molgula manhattensis	sea grape	W	5 (7.7%)
Perophora viridis	honeysuckle tunicate	W	1 (1.5%)
Algae			
Calothrix sp	blue-green algae	W	19 (29.2%)
Ceramium sp.	red algae	LC. LS	2(3.1%)
Cladophora sp.	green algae	W. LC. J	31 (47.7%)
Ectocarpus sp.	brown algae	Α	60 (92.3%)
Enteromorpha sp.	green algae	W. J. LC	42 (64.6%)
Noctiluca sp.	dinoflagellate (fire water) A	65 (100%)
Polysiphonia sp.	red algae	W, J	13 (20%)
unidentified green algae	single celled algae	Α	65 (100%)
unidentified diatoms	diatoms	Α	65 (100%)

assigned to data sheets which corresponded to each sampling attempt. Samples were only taken from tagged turtles and no turtle was sampled twice. Epibionts were sorted from the samples, counted, and identified.

Other data recorded at the time of sampling included turtle length and width, tag numbers, date, time, county, locations on the turtle where epibiota were most prevalent, and the locations on the turtle where epibionts were collected. Data sheets and samples were compiled in August and September 1997 and recorded into the Caretta Research Project/Wassaw National Wildlife Refuge database at the Savannah Science Museum.

The sites where epibionts were most prevalent corresponded to the posterior one-third of the carapace (Fig. 1). Marine turtle leeches (*Ozobranchus margoi*), however, were more common in the axial region of the turtles (Fig. 1). Also, while leeches preferred the aforementioned area, several turtles (N = 7, Wassaw Island) contained excessive loads of *O. margoi* within their ovipositors. Such obstructions of leeches were ultimately detached during egg deposition.

The relationship between marine turtles and their epibionts remains a poorly studied aspect of sea turtle natural history (Dodd 1988). The occurrence of particular epibiont species may ultimately help to clarify certain questions about sea turtle movements, habitat preference, juvenile and subadult activities, and many other aspects of their life history away from the nesting beaches (Caine 1986).

Acknowledgments.—We thank the following individuals and institutions for their help and support: Anne M. Lindsay, Randy Isbister, Karen L. Creech, Kirsten Dahlen, Rebecca Bell, Paul Hotchkin, Sarah V. Mitchell, and Alex Score (for help with epibiota collections), Robert A. Moulis and Gerald K. Williamson (Savannah-Ogeechee Canal Museum), Brad Winn and John Jensen (Georgia Department of Natural Resources), Sam Drake, John Robinette, Pat Metz, Mark Musaus, Jim Stockie and Charles Warnock (U.S. Fish and Wildlife Service), and C. Kenneth Dodd, Jr., and Jeffrey E. Lovich for providing helpful comments on the original manuscript.

LITERATURE CITED

CAINE, E. A. 1986. Carapace epibionts of nesting loggerhead sea turtles: Atlantic coast of U.S.A. J. Exp. Mar. Biol. Ecol. 95(1):15–26.

- DODD, C. K. 1988. Synopsis of the biological data on the loggerhead sea turtle. U.S. Fish Wildl. Serv. Biol. Rep. 88:1–110.
- ERNST, C. H., J. E. LOVICH, AND R. W. BARBOUR. 1994. Turtles of the United States and Canada. Smithsonian Inst. Press. 578 pp.
- FRAZIER, J. G., I. GOODBODY AND C. A. RUCKDESCHEL. 1991. Epizoan communities on marine turtles. II. Tunicates. Bull. Mar. Sci. 48(1):763– 765.

, D. MARGARITOULIS, K. MULDOON, C. W. POTTER, J. ROSEWATER, C. RUCKDESCHEL, AND S. SALAS. 1985. Epizoan communities on marine turtles I. Mollusca Mar. Ecol. 6(2):127–140.

J. E. WINSTON, AND C. A. RUCKDESCHEL. 1992. Epizoan communities on marine turtles. III. Bryozoa. Bull. Mar. Sci. 51(1):1–7.

SAWYER, R. T., A. R. LAWLER, AND R. M. OVERSTREET. 1975. Marine leeches of the eastern United States and the Gulf of Mexico with a key to the species. J. Nat. Hist. 9:633–667.