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son grass) was investigated in vitro and in greenhouse experiments. Smut infection in-

Vol. 57, No. 1:62-71,2017 Abstract
DOI: 10.1515/jppr-2017-0009 The effect of loose kernel smut fungus Sporisorium cruentum on Sorghum halepense (John-

Received: July 13, 2016 
Accepted: January 17,2017

duced a decrease in the dry matter of rhizomes and aerial vegetative parts of the plants 
evaluated. Moreover, the diseased plants showed a lower height than controls. The infec-
tion resulted in multiple smutted buds that caused small panicles infected with the fungus.

’'Corresponding address: In addition, changes were observed in the structural morphology of the host. Leaf tissue
astizgasso@gmail.com sections showed hyphae degrading chloroplasts and vascular bundles colonized by the fun

gus. Subsequently, cells collapsed and widespread necrosis was observed as a symptom of 
the disease. The pathogen did not colonize the gynoecium of Sorghum plants until the tas
sel was fully developed. The sporulation process of the fungus led to a total disintegration 
of anthers and tissues. When panicles were inspected before emergence, fungal hyphae 
were observed on floral primord. Histological sections of panicles showed fungal hyphae 
located in the parenchyma tissue and the nodal area. Infection occurred in the floral pri- 
mordium before the tassel had fully developed and emerged from the flag leaf. Grains were 
replaced by sori surrounded by a thin membrane that usually was broken before or after 
the emergence of the panicle. The results, together with the significant decrease of the dry 
matter of rhizomes and seeds of S. halepense, suggest that S. cruentum could be considered 
as a potential biocontrol agent in the integrated management of this weed.

Key words: biocontrol, host-pathogen interactions, Johnson grass, Kernel smut, smut, sys
temic diseases

Introduction

Loose kernel smut, caused by the fungus Sporisorium 
cruentum (Sphacelotheca cruenta), attacks all groups 
of sorghum, including Johnson grass (Sorghum hale- 
pense), although certain varieties in some groups are 
immune or highly resistant. Sporisorium cruentum is 
the smut with the least incidence as a disease in the ge
nus Sorghum (Fischer and Holton 1953; Vánky 1985; 
Hirschhorn 1986; Duran 1987). Unlike plants cov
ered with kernel smut, plants affected by loose kernel 
smut are stunted, have thin stalks, and heads emerg
ing earlier than those of healthy plants. Abundant side 

branches (tillers) may also develop. Occasionally, the 
tillers are smutted, while the primary head is not. In 
addition, secondary infection may occur when spores 
from a smutted head infect late developing heads of 
healthy plants, causing them to become smutted. Sor
ghum halepense is one of the ten most important pe
rennial weed species in the world (Holm et al. 1977). 
In Argentina, it is spread over more than 7,000,000 Ha 
(Mitidieri 1984). The perpetuation capacity of alepo 
sorghum is through the seeds and sprouting of rhi
zomes. After 40-50 days of emergence, it is very difficult
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to establish whether the aerial structure has been gen
erated by rhizomes or by seeds. From biological, popu
lation and management points of view, there are no 
differences between adult plants generated by a seed or 
a rhizome. In the case of S. halepense seeds, this gives 
the species the possibility of being the main source of 
dispersion at a distance. Also they provide genetic varia
bility that allows the adaptation of the population to dif
ferent environments that affect the activity (Piper 1928; 
Ghersa and Satorre 1981; Satorre et al. 1981; Méndez 
Fernández et al. 1983; Leguizamón 2012). In Argentina, 
S. halepense can be infected by various pathogens such 
as S. cruentum, Alternaría spp., Drechslera spp., Cur- 
vularia spp., Phyllostictaspp, Phomaspp, and Bipolaris 
sorghicola (Hirschorn 1986; Verdejo et al. 1995; Accia
resi and Mònaco 1999). These pathogens affect the veg
etative development of the plant but have little impor
tance in the reproductive stage. Sporisorium cruentum 
prevents seed development, and black, small smut galls 
(sori) surrounded by a gray thin membrane replace nor
mal kernels. The powdery black spores (teliospores) are 
spread by the wind and adhere to the surface of healthy 
kernels ofneigh boring plants in the same field. Post
harvest the disease may persist in the soil, and infected 
seeds or rhizomes. Previous reports indicated that 
S. cruentum also reduces vegetative and reproductive 
biomass of infected plants (Millhollon 2000, Astiz Gassò 
et al. 2001). The objective of this work was to analyze 
the effect of S. cruentum on the vegetative development 
of rhizomes of S. halepense.

Materials and Methods

Our methodology for the study of the smut fungi was 
done, with some modification, according to Fernández 
et al. (1978), Matyac (1985), Craig and Frederiksen 
(1992), Kosiada (2011).

Plant material
Rhizomes of S. halepense plants naturally infected with 
loose kernel smut were collected from the Experimen
tal Field of the Instituto Filotècnico de Santa Catalina, 
Elavallol, Province of Buenos Aires, Argentina, during 
the summer of 2014.

The rhizomes were sectioned into small pieces, 
washed in water for 2 h and surface-disinfected with 
30% sodium hypochlorite for 20 min. Finally, they 
were rinsed in sterile distilled water.

Teliospore germination
For inoculum preparation, teliospores from heads in
fected with loose kernels were collected and allowed to 

dry at room temperature for a week under laboratory 
conditions at 20°C (±2°C). The teliospores were passed 
through a fine metal sieve to separate them from plant 
debris. Teliospores were sown on Petri dishes with Po
tato Dextrose Agar 2% (PDA) at 20°C (±2°C) in dark
ness. After 48 h, direct microscopic observations were 
made, and the number of germinated teliospores per 
microscopic field at x 100 magnification were counted. 
Teliospore germination was defined by the production 
of either promycelia or elongated hyphae. Morpho- 
-cultural studies of the colonies which developed on 
PDA were made.

Fungal inoculum
The harvested teliospores were washed in 3% sodium 
hypochlorite for 3 min, suspended in sterile distilled 
water, plated on PDA and incubated in the dark at 
25°C (±2°C) for 48-72 h. Isolated sporidial colonies 
were transferred to new PDA plates and incubated for 
an additional 48 h. A few colonies were transferred to 
flasks containing 2% Potato Broth (PB) and allowed to 
grow on a rotary shaker (CAT-S20) at 200 rpm for ap
proximately 4-5 days (Astiz Gasso et al. 2001). Eiquid 
medium containing sporidia (106-10s sporidia/ml) was 
used for inoculations following two techniques: Tl) 
hypodermic injection and T2) vacuum technique.

In Tl, inoculation of sorghum seedlings by means 
of hypodermic injection was performed. Two disin
fected rhizomes per pot were sown in fifteen 10 x 13 x 
x 15 cm plastic pots filled with sterile sand and inocu
lated at the 3-4 leaf stage according to Edmunds tech
nique (Edmunds 1963), maintained in a greenhouse at 
20°C (±5°C) with 80-90% relative humidity andcycles 
of 16-8 h light-darkness. As a control, an equal num
ber of plants was inoculated with the broth only. Three 
days later, five plants per stage were removed until the 
heading stage or until visible symptoms were observed. 
Samples were fixed in formaldehyde/acetic acid and 
ethyl alcohol (FAA) and storedin the laboratory. The 
presence of mycelium in apical buds, leaves, stalks and 
heads was assessed.

In T2, inoculation of rhizomes with teliospores 
and sporidial cultures by the vacuum technique was 
done. Two assays were conducted using two inocu
lum types: T2i. Immersion of rhizomes in a suspen
sion of potato broth + teliospores (106spores/ml) with 
vacuum (0.1 MPa for 5 min) and T2ii. Immersion of 
rhizomes in potato broth + sporidia (106sporidia/ml) 
with vacuum (0.1 Mpafor 5 min). As controls, rhizomes 
were immersed in broth only. The inoculated material 
was sown in plastic trays (10x13x15 cm) containing 
sterile sand watered with distilled water and maintained 
in achamber “BINDER KBF LQC” with favorable en
vironmental conditions for plant growth and pathogen 
(temperature 20°C (±5°C), relative humidity 40-60%
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and cycles of 16 h light + 8 h darkness). When seed
lings reached the 2-3 leaf stage, 2 plants per pot were 
transplanted into 4 liter pots containing sterile black 
substrate, to avoid contamination with other microor
ganisms. Plants were then transferred to the greenhouse 
to complete their growing cycle.

A completely randomized design with three replica
tions, and 2 seedlings/pot in 20 pots/treatment and con
trols were used. At the end of the growing cycle of the 
weed, the aerial dry matter (ADM g.pl-1) and rhizome 
dry matter (RDM g.pot-1.) was determined according 
to Ward et al. (1978). Data were analyzed and means 
were compared using the method of least significant dif
ferences (LSD) (p <0.05%) using SAS 6.03 (SAS, 1989).

Histological techniques
Samples of leaves with symptoms of the disease and 
vegetative and floral buds were fixed in 4% glutaralde
hyde, then sectioned in 1 x 1 mm pieces with a micro
tome Sorvall MT 2-13 equipped with a glass blade to 
obtain 1-pm sections, and stained in Toluidine Blue be
fore light microscope observations (Optical Olympus 
CX 21) to detect the presence of pathogen hyphae.

Samples of infected stalk nodes with apical buds, 
and panicles and controls were fixed in FAA, embed
ded in paraffin wax and then sectioned longitudinally 
and transversely (10-12 pm) using a Senior Rotary 
microtome “Model RMT-30”. Fast-green staining was 
selected because this method gives good differentia
tion between the host and fungal components of the 
sorus. Sections were observed with a light microscope 
(Bracegirdle and Miles 1975; D'Ambrogio Argueso 
1986).

The mature teliospores were mounted on a metal 
plate metallized coated gold-palladium and then ob
served and photographed. The observations were per
formed with a Philips XL 30 scanning electron micro
scope (SEM).

For transmission electron microscopy (TEM) stud
ies, the samples were fixed in 2.5% glutaraldehyde in 
0.1 M sodium phosphate buffer, pH = 7.2 at 4°C over
night. The materials were post-fixed in 1% OsO4 in 
the same buffer for 4 h at room temperature and then 
rinsed in three 20-min changes of buffer. For dehy
dration an acetone series was used, and Spurr’s resin 
was used for embedding (Spurr 1969). Sectioning was 
done with an ultramicrotome and thin sections were 
stained with uranyl acetate and lead citrate (Reynolds 
1963; O’Brien and McCully 1981).

Inoculations by the vacuum technique
Samples of different organs such as leaves, apical mer
istems, and inflorescences were observed under a light 
microscope in order to detect the presence of the 

pathogen. Trypan Blue 2% in lactophenole was used as 
amounting medium.

To evaluate the development of S. cruentum and the 
host-pathogen relationship with S. halepense, samples 
were taken before apical meristem stem elongation, 
before inflorescence emergence, and at smutted pani
cles at the end of the vegetative cycle.

Results

Taxonomic identification of S. cruentum
Macroscopic observations confirmed that the sori, 
which showed a curved columella with fragile peridium, 
were typical of S. cruentum (Fig. la). Teliospores, which 
were found in preparations using scanning electron mi
croscopy (SEM) and optical microscopy (Fig. lb, c) were 
rounded to subglobose, with an echinulate episporium, 
6-8 pm in diameter and dark brown. Teliospores ger
minated in vitro and produced metabasidia (= promyc- 
elia) with 4 cells and lateral basidiospores (= sporidia). 
Multiplication by budding generated an abundance of 
new sporidia (Fig. Id). The sporidia quickly formed 
light-brown to ocher, yeast-like colonies with smooth 
edgeson PDA (Fig. le).

Fig. 1. Macroscopic and microscopic observations of S. cruen
tum. a - smutted panicle; b - photomicrograph of teliospores 
with echinulate episporium observed under electron microsco
pe (SEM). Scale bar = 22 p; c - photomicrograph of teliospores 
observed in optical microscope (OM). Scale bar = 14 p; d - in vi
tro germination of sporidial type of teliospores on PDA. Scale 
bar = 14 p; e - colony developedon PDA
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Fig. 2. Longitudinal sections of meristems of Johnson grass rhi
zomes. a - apical meristem and leaf primordium from uninfec
ted control. Scale bar = 169 p; b - apical meristem with fungal 
hyphae (h) from rhizomes inoculated with S. cruentum. Scale 
bar = 169 p; c - leaves of inoculated plants showing chlorotic 
spots (chi); d-e - cross sections of leaves: d. Leaf of inoculated 
plants showing absence of chloroplasts and/or degraded by the 
hyphae ofthe fungus that are located in the vascular bundles (h). 
Scale bar = 16 p; e - uninoculated with normal chloroplasts (cl) 
in the parenchyma of vascular bundles. Scale bar = 20 p

65

Fig. 3. Photomicrographs of Transmission Electron Microscopy 
(TEM) in S. halepense. a-b - ultrastructure ofthe mesophyll 
cells of the healthy leaves, a - healthy chlorenchyma cells 
containing chloroplasts (ch), lipid globules (Ig), mitochondria 
(m), rough endoplasmic reticulum (ret) and vesicles (v) in the 
cytoplasm. Scale bar = 0.5 p. b - parenchymal cells of vascular 
bundles with normal chloroplasts. Scale bar = 1 p. c-d - paren
chymal sheath cells infected with the hyphae (h) of S. cruentum. 
Scale bars = 2 p

Inoculation with sporidia by the hypodermic 
syringe technique

PlanLs from rhizomes af Lhe 4 to 6 leaf stage were inocu
lated with sporidia. Three days after inoculation, samples 
from apical meristems and leaves of treated plants and 
controls were taken for the longitudinal section. Sam
ples from healthy plants showed no pathogen infection 
(Fig. 2a), whereas those from infected plants showed 
inter- and intracellular hyphae (Fig. 2b). Between 10 
to 15 days after inoculation 4 plants were recorded and 
hypoplastic symptoms with mild to marked chlorosis 
(Fig. 2c). Metaplastic symptoms with the production of 
anthocyanin pigments were observed. There was also 
a loss of leaves by vascular necrosis. Cross sections of 
the sheath from the vascular parenchyma showed the 
absence of or degraded chloroplasts (Fig. 2d). Con
trols showed a normal location of the chloroplasts (Fig. 
2e). In plants where chlorosis was marked, there was 
a minor effect on growth without death. These observa
tions were confirmed at the ultrastructural level with 
TEM. Healthy leaves showed normal chloroplasts in 
the chlorenchyma of the mesophyll and parenchyma 
sheath of the vascular bundles and normal develop
ment of structures in the cytoplasm, such as lipid 

globules, rough endoplasmic reticulum, mitochondria, 
and vesicles (Fig. 3a, b). In contrast, infected leaves of 
inoculated plants showed the presence of the pathogen 
hyphae (Fig. 3c, d). About 18-25 days after inocula
tion, the reproductive stage induced the production of 
multiple buds (between 3 and 7 buds) originating at a 
common node in one of the upper nodes. This type of 
abnormality is typical for S. cruentum. Subsequently, we 
observed the emergence of small infected panicles or 
the formation of sterile panicles or phyllodes and small 
stems (Fig. 4a). These abnormalities were not seen in 
the controls. When histological sections of small stems 
were analyzed, bud formation, i.e. vegetative and repro
ductive buds protected by the formation of leaf primor- 
dia, was visible (Fig. 4b). Hyphae were observed with 
an optical microscope at the base of the meristem of 
the stem (Fig. 4c, d) and confirmed in detail with TEM 
(Fig. 6a, b). The longitudinal and transverse sections of 
stems showed that the pathogen was not present intreat
ed plants. We also determined that the pathogen does 
not grow until the gynoecium is fully developed within 
the spikelets. Thus, the invasion of the fungus begins 
primarily by the gynoecium, which shows that hyphal 
fragments and spermogenesis occur with the formation 
of teliospores. The sporulation process continues in the
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Fig. 4. Morphological changes produced by S. cruentum. a - mul
tiple buds that cause small panicles infected with the fungus; 
b-c - longitudinal section of a multiple bud (mb), b - vegetative 
(v) and reproductive (r) buds. Scale bar = 169 p, c - bud bottoms 
with the presence of fungal hyphae (h). Scale bar = 74 p;d - deta
il of intracellular branched hyphae (h). Scale bar = 8.5 p

Fig. 5. a - Spikelets infected with smut with a sorum (s) formed 
by a curved columella, b - longitudinal section of gynoecium 
with the presence of teliospores (t), c-d - detail of a spikelet in
fected by the fungus (h). Scale bars = c, 50 p; d, 8,5 p.

anthers to produce the total disintegration of the tissues 
involved. The grains were replaced by 2.5 cm medium- 
-sized sorior surrounded by a thin gray membrane. This 
membrane usually breaks before or after the emergence 
of the panicle and brown to black teliospores are de
tached and a curved structure (columella) (Fig. 5a, b) 
formed by fungal tissues and the host can be seen with 
the naked eye (McTaggart et al. 2012). Glumes and 
bracts remain intact to protect the sorus. When spike
lets in formation were extracted, the presence of fungal 
hyphae was observed at the base of the flower primor- 
dia in all five specimens analyzed. At a more advanced 
stage, histological sections ofbasal spikelets showed that 
hyphae were located in the conducting tissues and the 
parenchyma of the floral pedicel (Fig. 5c, d). This was 
observed in greater detail in the TEM: cells infected by 
fungal hyphae, cytoplasm of the infected cell containing 
starch granules and bottoms of spikelet cells infected by 
S. cruentum (Fig. 6a, b, c, d).

Inoculation with teliospores by the vacuum 
technique
rlhe development of reproductive and vegetative myc
elium of S. cruentum. We also examined the base of 
10 outbreaks in 3-4 weeks old inoculated plants. In 
outbreaks, only bits of hyphae in meristematic tissue

Fig. 6. Photomicrographs of Transmission Electron Microscopy 
(TEM) in S. halepense, a-b. Ultrastructure of vegetative meristem. 
Scale bars = 2 p, a - cells infected by fungal hyphae (h); b - cyto
plasm ofthe infected cell containing starch granules (a), c-d - bot
toms of spikelet cells infected by S. cruentum. Scale bars = 1 p
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Fig. 7. Shoots of Johnson grass rhizomes in Petri dishes; a - healthy control; b - rhizo
mes and necrotic shoots colonized by the fungus (left). Detail of the whitish mycelium of 
S. cruentum (right)

were inactive, while some developed shoot apices were 
fully colonized in relatively early stages of development. 
In other cases, plants showed symptoms of metaplastic 
type in leaves but not as marked as in the case of infec
tion with the hypodermic syringe technique. The pres
ence of hyphae was not determined in stems.

Inoculation with sporidia by the vacuum 
technique
We examined 80 rootstocks inoculated with sporidia 
of the fungus and found a white mycelium which rap
idly colonized the surface and prevented the develop
ment of seedlings. Inoculated plants showed inhibi
tion of bud sprouting, dehydration and partial or total 
necrosis until death of the rhizome, unlike the controls, 
which grew normally. To check if these changes were 
caused by insufficient disinfection, contaminants or 
other causes, rhizomes inoculated with sporidia by the 
vacuum technique (T2ii) were placed in Petri dishes 
on paper moistened with sterile distilled water to con
firm the presence of S. cruentum by reisolation of the 
fungus (Fig. 7a, b). Also, in this case, the intercellular 
mycelia and pathogen hyphae were found at the base of 
the apical meristem and the region of buds. Fusion be
tween sporidia was not observed, but the development 
of intracellular hyphae was seen. Other plants showed 
symptoms of chlorosis in the leaves, and histological 
sections confirmed the presence of the hyphae of the 
fungus. Also, in this case, we observed the presence of 
aerial shoots at the nodes, multiple panicles and ster
ile buds induced by the pathogen, unlike the controls, 
which showed normal development of plants.

Aerial dry matter (ADM)
ADM showed no significant differences between the 
inoculation treatment with teliospores by the vacu
um technique T2i (0.16 g.p11) and withsporidia T2ii 
(0.17 g.pl'), but there were highly significant differences 
(p < 0.05) when compared with the controls (0.52 g.pu) 
(Fig. 8). The plants showed both a shortening of the

internodes and a decrease in height compared to the 
control. An early flowering in plants that had smut as 
opposed to controls was also observed.

Fig. 8. Dry mass of aerial parts (ADM) of Johnson grass plants at 
the end of the crop cycle: TO - control treatment; T2i - rhizome 
immersion in liquid culture suspension +teliospores;T2ii - rhizo
me immersion in liquid media + sporidia

Inoculation treatments

Fig. 9. Dry mass of rhizomes (RDM) of Johnson grass plants at the 
end of the crop cycle: TO - control treatment; T2i - rhizome im
mersion in liquid culture suspension +teliospores;T2ii - rhizome 
immersion in liquid media + sporidia

http://www.czasopisma.pan.pl
http://www.journals.pan.pl


www.journals.pan.pl

68 Journal of Plant Protection Research 57 (1), 2017

www.czasopisma.pan.pl

Rhizome dry matter (RDM)

RDM showed a behavior similar to that of ADM with 
T2i and T2ii treatments. The production of rhizomes 
obtained was similar to T2i (19.60 g.p11) and T2ii 
(22.10 g.pl 1). A significant reduction (p < 0.05) of the 
weight of the rhizomes with respect the controls was 
found (39.2 g.pl 1) (Fig. 9).

Discussion

Several factors associated with infection of the rhi
zomes of Johnson grass (S. halepense) seedlings were 
found during our experiments. Inoculations with the 
hypodermic syringe method had a more drastic effect 
than the vacuum technique since we found a higher 
number of plants with leaves with chlorotic spots and 
more anthocyanin pigments (Hanna 1929). In infect
ed leaves high amounts of anthocyanins were present 
as a result of the accumulation of this pigment in the 
cells of the epidermis. Results showed the presence 
of mycelium of the fungus in the parenchymal tissue 
and in the nodal area. The scattered distribution of the 
mycelium was probably due to the inoculation method 
used, as the sporidia were forced to penetrate into the 
plant tissue. The mycelium does not usually invade the 
apical meristem or vascular tissue of the shoots. Other 
researchers have reported the presence of chlorotic 
spots containing branched hyphae that developed and 
emerged on the leaves of maize and sorghum seedlings 
inoculated with S. reilianum. They also have found 
a correlation between field and greenhouse experi
ments which indicated that the hypodermic syringe 
method of inoculation is useful for the evaluation of 
different genotypes resistant or susceptible to smut. 
Here, we determined that the method was efficient 
in replacing field testing in screening assays (Wilson 
and Frederiksen 1970; Matyac 1985; Matyac and Kom- 
medaha 1985; Craig and Fredenksen 1992; Snetselaar 
and Mims 1994). According to our observations of 
the cross sections of leaves, the hyphae of the fungus 
degraded chloroplasts and invaded vascular bundles. 
Subsequently, cells collapsed and widespread necrosis 
was observed. In several cases, leaves withered, but the 
plant continued its development to complete its cycle, 
and showed the characteristic symptoms when the smut 
panicle emerged. Snetselaar and Mims (1994), Mar
tinez et al. (1999) and Martinez et al. (2002) observed 
that after inoculation of S. reilianum, young plants were 
slightly chlorotic and contained scattered hyphae. The 
latter developed in the epidermal cells and vascular pa
renchyma, but not in the intercellular spaces.

Our results suggest the aggressiveness of S. cruen- 
tum because multiple buds which in turn developed 

into vegetative and reproductive buds enclosed in 
leaves were frequently observed. Similar morphologi
cal alterations such as the formation of convoluted 
whips emerging from lateral buds from the stems, pro
ducing deformation, have been reported in Ustilago 
scitaminea Sydow (sugarcane smut) in stems, leaves 
and inflorescences (Sharma 1956; Byther and Steiner 
1974). Other studies also described the formation of 
single or multiple inflorescences and the formation of 
multiple whips emerging from the same point at the 
apex of the stem due to the smut infection. In addition, 
a reduction in plant growth and a shortening of inter
nodes were reported (Nasr 1976; Astiz Gasso 1988). 
One hypothesis to explain these changes could be 
the excessive production of hormones that stimulate 
stem elongation, shortening of internodes, formation 
of phyllodes and induction of changes in vegetative to 
reproductive primordia anticipating flowering. This 
stage of the plant is essential for the fungus to infect 
inflorescences and quickly to produce fragmentation 
of the mycelium and sporogenesis. While studying the 
involvement of gibberellins in S. reilianum, Matheus- 
sen et al. (1990) observed that the fungus produced 
these hormones on the first day of infection, and also 
when the fungus was cultured in vitro. Other studies 
on S. reilianum infected plants showed that changes in 
the inflorescence and the branching of maize also led 
to an increase in the auxin content of the inflorescence 
as well as an accumulation of reactive oxygen species 
(Ghareeb et al. 2011). In the case of S. cruentum further 
research is needed to confirm if the fungus produces 
these hormones to induce the abnormalities showed in 
this assay.

The longitudinal sections of the vegetative apex an
alyzed in the present work showed, in some cases, the 
presence of broken hyphae of the fungus, but not the 
fusion of sporidia. Similar results have been recorded 
in artificial inoculations of S. reilianum in S. bicolor 
(Wilson and Frederiksen 1970; Osorio and Frederik
sen 1998) and S. sorghi (Moharam et al. 2012). Alter
natively, intracellular branched hyphae below the dor
mant vegetative apex was observed previously to the 
differentiation of floral primord and the beginning of 
the mycelium colonization to the spikelets.

In our study, intracellular branched hyphae of the 
fungus below the vegetative apex observed in the dor
mant stage until the differentiation of floral primor
dia occurred and the mycelium began to move to the 
spikelets of the inflorescence. These were infected at 
ground level prior to stem elongation.

Regarding the histopathological techniques used 
in this study, it is important to point out that previ
ously they were successfully used in studies of smuts 
affecting other plant species. In the work of Millhol- 
lon (2000), for example, histological nodal segments 
of seedlings of S. halepense were used to confirm the
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effectiveness of field inoculations with suspensions 
of teliospores and sporidia of S. cruentum. Likewise, 
Sinha et al. (1982) used histology staining with trypan 
blue in lactophenol to detect the presence of the myce- 
lia of U. scitaminea from nodes, which were confirmed 
in the basal part of apical meristem.

Our results showed that fungal infection occurs in 
the floral primordium and not when the tassel is fully 
differentiated and emerged from the flag leaf. In rela
tion to the infection of spikelets of the panicle, we also 
noted that the latter must be fully formed, because 
there is a dependence on nutritional compounds. Such 
elements are apparently provided by the gynoecium, 
stamens and flower stigma to induce fragmentation of 
hyphae followed by sporulation and maturation of tel
iospores. Since we found no other reports in S. cruen
tum, we consider it important to undertake further 
studies to elucidate this process.

According to our results, it is important to con
sider the effect of the pathogen on the rhizomes’ dry 
matter, as shown by the below-ground biomass, which 
decreased at a time when the weed recorded an in
crease in the production of rhizomes at the end of the 
crop cycle. In this sense, Williams and Ingber (1977) 
demonstrated that in the absence of competition and 
under non-limiting water and nutritional conditions, 
S. halepense allocated 27% of the dry matter to the rhi
zomes and only 4% to the production of seeds. These 
researchers stated that in the presence of intraspecific 
competition, weeds retard the formation of rhizomes. 
Smith and Holt (1997) established that the use of addi
tional weed control and biological control are not an
tagonistic, but rather, that there are synergistic effects 
(where the combined effects are more than additive) 
that depend on the reproductive rate of weeds and the 
density at which they grow. In the present work, we 
also noted that the ADM was reduced because the dis
eased plants had lower height than controls. Reports 
made by Luttrell et al. (1964) and Millhollon (2000) on 
the species mentioned differences in growth of plants 
treated with smut.

In this work, a high level of fungal infection was 
obtained using the different inoculation methods 
tested and under the environmental conditions under 
which the experiments were performed. In addition, 
changes in the structural morphology of the host were 
found similar to those reported in previous research 
conducted in S. reilianum (Craig and Fredenksen 
1992; Martinez et al. 1999). Similarly, it was confirmed 
that S. cruentum produced structural morphological 
changes in the host.

As in the rest of Poaceae, the true stem of S. ha
lepense is compressed in a basal plate with nodes and 
internodes compressed that elongate at the reproduc
tive stage (Maddaloni and Ferrari 2001). Due to this 
form of plant growth, we can say that, according to the
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observations made, the pathogen located in the base of 
the buds migrates to the inflorescence producing the 
disease.

Regarding the management of this weed, the most 
effective method to control Johnson grassis is to cause 
a decrease in the production of rhizomes, as rhizomes 
have an important role in the reproductive dynamics 
of this weed (Williams and Ingber 1977). As our results 
showed, a marked reduction of rhizomes (RDM) has 
a potential role for S. cruentum as biocontrol agent.

As part of our research for integrated weed con
trol, we studied the possible use of fungi as potential 
biocontrol agents of the Ustilaginales group. The use 
of Ustilago spp. to control Paspalum on switch grass 
(Arevalo et al. 2000) and U. bullata on cheat grass was 
effective due to the reduction in seed production be
cause it was replaced by teliospores mass demonstrating 
its potential as a biocontrol agent. Moreover, in these 
studies the fungal optimum environmental conditions 
to cause infection in plants were established (Meyer 
et al. 2001; Boguena 2003, Boguena et al. 2007). There
fore, the feasibility of biological control using S. cruen
tum could be reliably established within an integrated 
framework of alternatives.

Moreover, it is necessary to establish the possible 
interactions between the implementation of biologi
cal control with other management alternatives in 
Johnson grass, such as the use of herbicides at reduced 
doses and the use of the competitive ability of crops to 
compete with weeds. Further experiments should be 
carried out to elucidate the effect of the pathogen in 
weeds under field conditions, given the high efficiency 
of S. cruentum to produce infections in S. halepense. 
This fungus could be used as a biocontrol agent in areas 
where the weed grows and limits agricultural produc
tion, by improving crop fields and promoting a sus
tainable agriculture.
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