

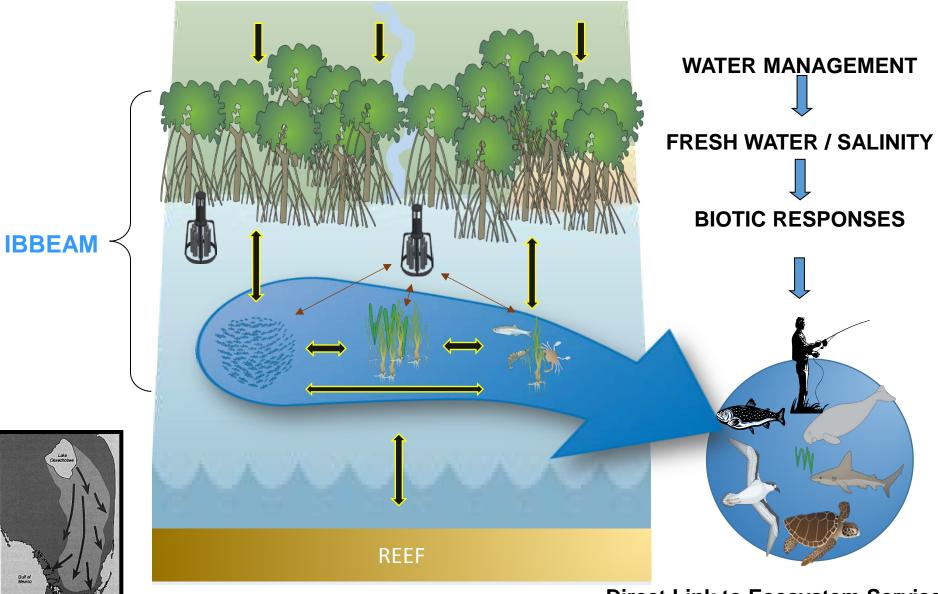
IBBEAM

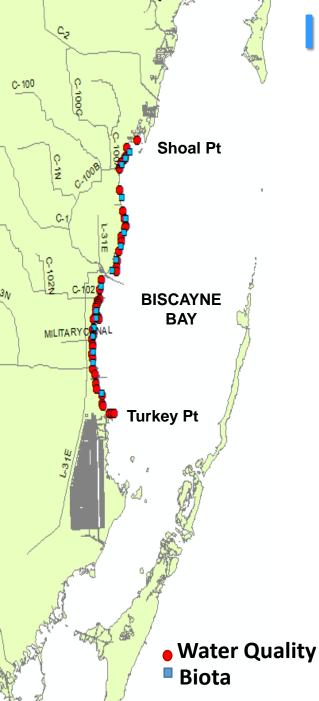
Integrated Biscayne Bay Ecological Assessment and Monitoring Program

Co-Principal Investigators:

D. Lirman* S. Bellmund⁺ J. Browder⁺⁺ J. Serafy⁺⁺

 * University of Miami, Rosenstiel School of Marine and Atmospheric Science
* NPS; Biscayne National Park
** National Oceanic and Atmospheric Administration – NMFS/SEFSC





<u>Project Staff:</u> E. Dalessandro G. Liehr S. Schopmeyer P. B. Teare M. Harangody C. Herman H. Jobert J. Robles

An integrated Ecosystem needs an integrated monitoring approach!!

Direct Link to Ecosystem Services

IBBEAM 47 CO-LOCATED SITES

<u>CERP</u> Comprehensive Everglades Restoration Plan

> **<u>RECOVER</u>** Restoration Coordination Verification

<u>MAP</u> Monitoring and Assessment Plan **CERP**

Get the Water Right

SALINITY GOALS FOR BISCAYNE BAY

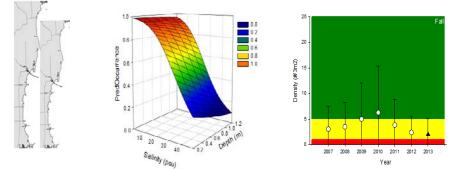
Modify Freshwater flows TO:

- 1) Expand the Spatial Extent of mesohaline/estuarine conditions
- 2) Expand the Temporal Extent of mesohaline conditions
- 3) Reduce salinity fluctuations
- 4) Decrease frequency of hyperhaline events

ECOLOGICAL GOALS FOR BISCAYNE BAY

Improve salinity patterns along the shoreline TO:

- 1) Increase nearshore seagrass cover
- 2) Increase the cover of *Halodule and* reduce the overdominance of *Thalassia*
- 3) Increase abundance and diversity of fish and invertebrate species associated with estuarine habitats


IBBEAM PRODUCTS

WE COLLECT AND DEVELOP:

SPATIALLY AND TEMPORALLY DETAILED BASELINES FOR KEY BIOTA

INTEGRATED ECOLOGICAL INDICATORS OF SALINITY PATTERNS

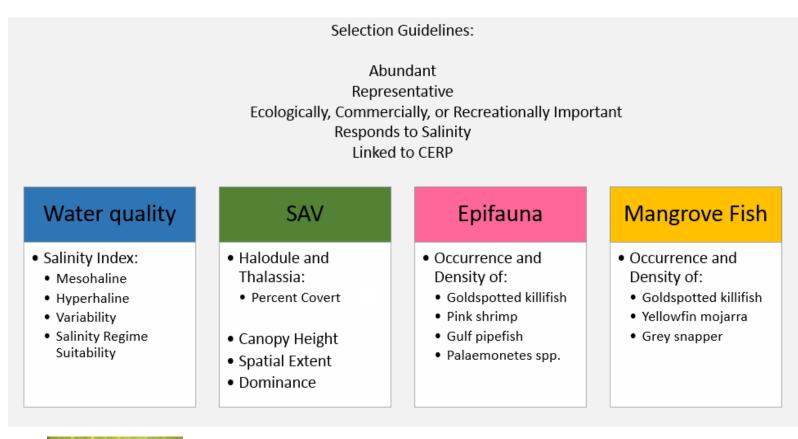
NOVEL SALINITY METRICS

USED TO:

Parameterize Salinity and Hydrodynamics Models

Determine status and trends

Enable before-after comparisons storms, temp anomalies, CERP projects!


Develop performance measures for Adaptive Management

Build Habitat Suitability Models that can mesh with hydrodynamic models

Support Scenario Testing

Produce and Publish Strong Science in Support of CERP !!!

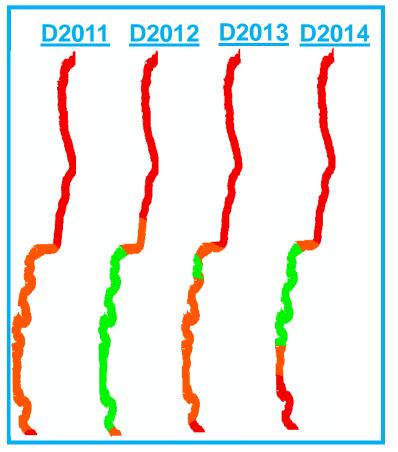
IBBEAM INDICATORS

17 YSI probes 15-min data

TARGETS

1 Mesohaline – Proportion (P) of days with salinity $\geq 5 < 18$ psu

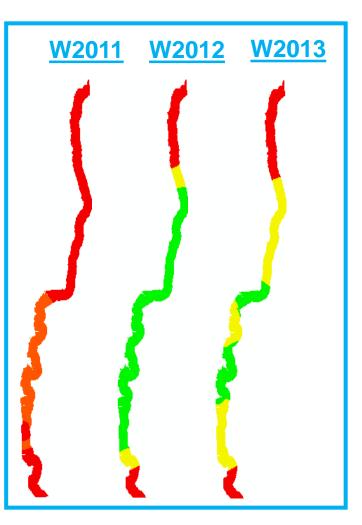
Variability – Proportion of days where salinity range is >5 psu per day


Hyperhaline – Proportion of days with salinity > 40 psu

Mesohaline Duration – P of days with uninterrupted mesohaline conditions

Hyperhaline Duration – P of days with uninterrupted hyperhaline conditions

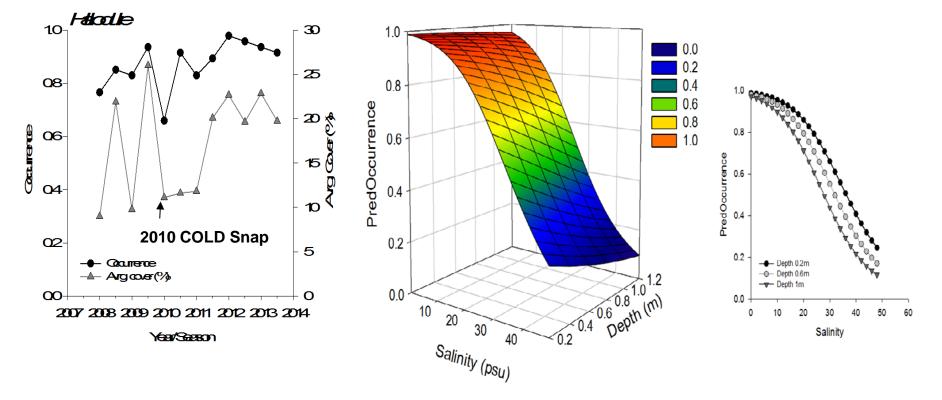
MESOHALINE INDEX (5-18 psu)


- In comparison to Reference Site (Max mesohaline index value = 0.299 in dry season)

WYR CYR	2011 2010/11	2012 2011/12	2013 2012/13	2014 2013/14
Month	Nov-Apr	Nov-Apr	Nov-Apr	Nov-Apr
Season	Dry	Dry	Dry	Dry
D6	0.000	0.003	0.000	0.000
D2	0.000	0.006	0.000	0.000
62	0.000	0.020	0.000	0.003
C8	0.000	0.032	0.000	0.008
C 6	0.003	0.035	0.000	0.000
56	0.003	0.043	0.001	0.008
C4	0.002	0.054	0.000	0.014
C2	0.037	0.088	0.007	0.106
B8	0.047	0.135	0.011	0.168
B6	0.137	0.399	0.439	0.430
B4	0.137	0.541	0.202	0.420
40	0.135	0.532	0.172	0.398
28	0.108	0.432	0.116	0.335
22	0.115	0.455	0.110	0.294
A8	0.118	0.419	0.138	0.241
14	0.134	0.566	0.220	0.132
A6	0.036	0.180	0.008	0.028

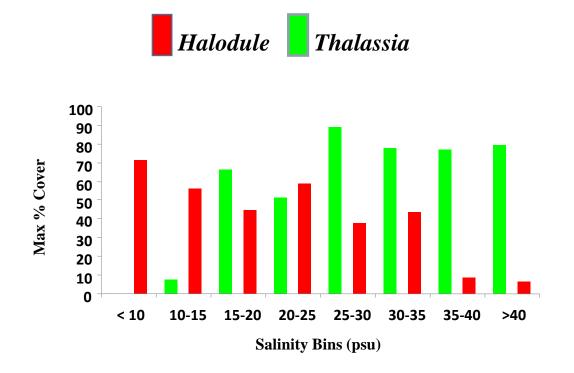
MESOHALINE INDEX (5-18 psu)

WYR CYR	2012 2011	2013 2012	2014 2013
Month	May-Oct	May-Oct	May-Oct
Season	Wet	Wet	Wet
D6	0.012	0.078	0.072
D2	0.005	0.072	0.075
62	0.019	0.248	0.216
C8	0.024	0.338	0.220
C6	0.032	0.579	0.383
56	0.070	0.646	0.445
C4	0.088	0.651	0.498
C2	0.186	0.688	0.418
B8	0.063	0.778	0.721
B6	0.366	0.666	0.534
B4	0.280	0.738	0.564
40	0.371	0.827	0.732
28	0.228	0.778	0.586
22	0.246	0.722	0.600
A8	0.190	0.605	0.512
14	0.212	0.568	0.535
A6	0.064	0.219	0.086



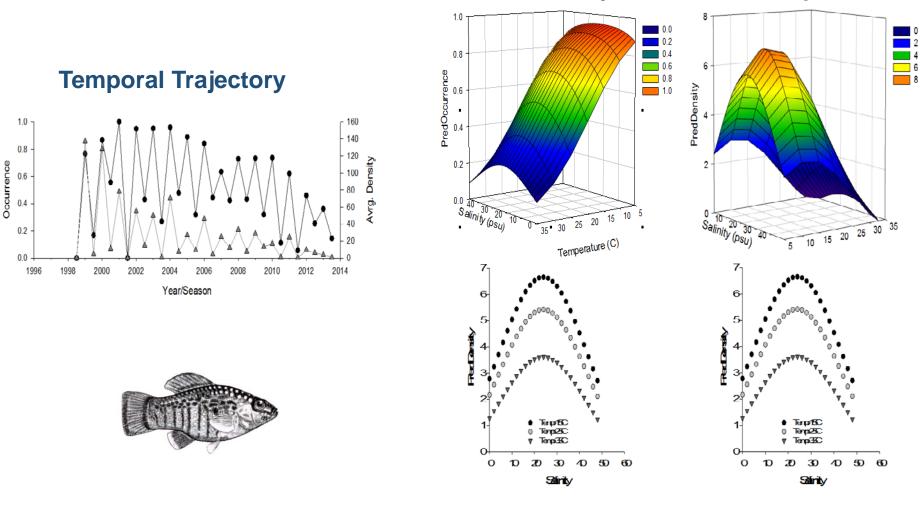
In comparison to Reference Site (Max mesohaline index value = 0.818 in wet season)

SUBMERGED AQUATIC VEGETATION (SAV) \rightarrow Halodule


Temporal Trajectory

Bio-Physical Relationships

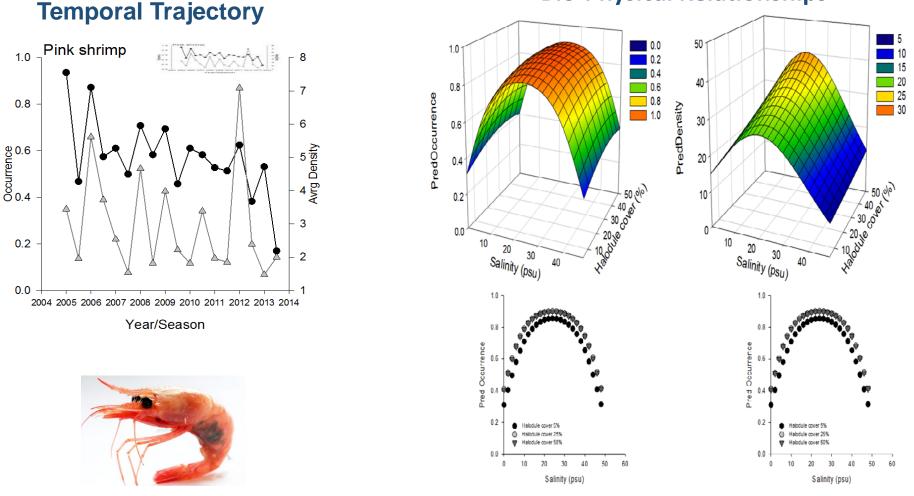
Multiple Regression Approach:


Halodule Occurrence = Sal * Depth * Temp * Sal² * Depth² * Temp² $p \le 0.05$ Goal: Increase SG cover by creating Mesohaline conditions

The combined mean cover of *Thalassia* and *Halodule* when both species are present (23%) is higher than the cover when only one of the species is present (17.4 % for *Thalassia* and 19.7 for *Halodule*)

Creating salinity climates that are conducive to the co-occurrence of both species is one way to achieve the goal of increased seagrass cover

MANGROVE FISH (MF) \rightarrow Goldspotted killifish

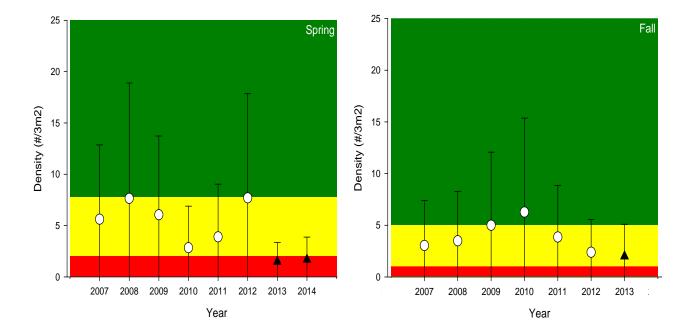


Bio-Physical Relationships

Occurrence/Density = **Sal** * Depth * Temp * **Sal**² * Depth² * Temp²

 $p \leq 0.05$

EPIFAUNAL COMMUNITY (EPI) → Pink Shrimp



Bio-Physical Relationships

Occurrence/Density = Sal * Depth * Temp * Canopy * Hal * Thal *Sal² * Depth² * Temp² * Canopy² * Hal² * Thal² $p \le 0.05$

EPIFAUNAL COMMUNITY (EPI) → Pink Shrimp

Stop-light pink shrimp status

SECTION OF '2014 ECOLOGICAL INDICATORS REPORT'

SUMMARY

SAV

- Habitat suitability models incorporating CYR 2008-2015 data reflect an affinity for low salinity by *Halodule* and high salinity by *Thalassia that is reflected in their spatial distribution*.
- Current models suggest that increased mesohaline conditions, a desired target of CERP, will increase overall seagrass abundance and support co-dominance by *Halodule* and *Thalassia*.

SUMMARY

Epifaunal Community

- No clear historical patterns of expansion or contraction of the focal species.
- Salinity is a significant factor for focal epifaunal species goldspotted killifish, gulf pipefish, *Farfantepenaeus* and *Palaemonetes* spp.
- Negative linear relationships with salinity were apparent for seagrass-associated goldspotted killifish and *Palaemonetes* spp. abundances, whereas dome-shaped parabolic relationships with salinity were apparent for gulf pipefish and *Farfantepenaeus* abundances
- *Halodule* cover had a positive influence on abundance of each of the four focal species.

SUMMARY

Mangrove Fish

- The time series for mangrove-associated goldspotted killifish suggests an overall, general decline from CYR 2006 through CYR 2015. The decrease in density is particularly pronounced.
- The temporal trajectory of mangrove-associated gray snapper shifted from a slightly negative trend from CYR 1998 2005 to a markedly positive trend thereafter.
- No clear patterns of historical expansion or contraction of the three focal species.
- Parabolic abundance-salinity relationships for mangroveassociated goldspotted killifish and yellowfin mojarra emerged with maximum abundances at intermediate (20-25 psu) salinity levels. In contrast, gray snapper habitat suitability was positively linearly correlated with salinity.