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Abstract

In this paper, we’ll be proving the main theorem that TS is homeomorphic to R3g−3
+ ×R3g−3

where the mapping of this homeomorphism is the Fenchel-Nielson coordinates. To do this, we’ll

introduce some background. First, we’ll introduce Riemann surfaces by looking at the square

root function and the function that graphs a torus. Next, we’ll discuss Teichmüller spaces

by defining what markings on Riemann surfaces are. Finally, we’ll discuss Fenchel-Nielson

coordinates, which consists of topological pants decompositions and twisting angles.

1. Introduction

First, some historical background on these topics. In Bernhard Riemann’s 1851 PhD

dissertation, Riemann first combined works done by Niels Henrik Abel and Carl Gustav

Jacobi to introduce the idea of Riemann surfaces. He further advanced his theory in his 1857

paper on the theory of abelian functions. Riemann’s theories were studied in several different

perspectives. Oswald Teichmüller wanted to more rigorously define Riemann’s notion of

moduli spaces, which yielded the Teichmüller space. This introduction of Teichmüller space

developed into a field studying these spaces called Teichmüller theory, which consists of

many notable contributions. One contribution we’ll be discussing is by Jakob Nielson and

Werner Fenchel. In their book [FN03], Nielson and Fenchel introduced the Fenchel-Nielson

coordinates, which are coordinates for the Teichmüller space.

In this paper, we’ll show that the Teichmüller space is homeomorphic to R3g−3
+ × R3g−3

and that the mapping of the space onto R3g−3
+ × R3g−3 is the Fenchel-Nielson coordinates.

Here’s a quick preview on some necessary background to prove this theorem.
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If we say two objects are homeomorphic, this is equivalent to saying one object can be

transformed into the other by molding it - as if it were clay. We define a “marking” on an

object to be a unique path shaped like a loop on a surface. If we visualize the objects as

clay, the markings on the objects can be thought of as drawing on the clay with a marker.

For now, we can think of Teichmüller space as a collection of equivalent markings of objects.

Points on this Teichmüller space can be defined by the Fenchel-Nielson coordinates, which

record information about a surface.

To prove our main result, we’ll first be providing all the necessary background. We’ll

introduce how Riemann surfaces are constructed and show some examples of them. Then,

we’ll define the Teichmüller space based off markings on Riemann surfaces. Finally, we’ll

introduce Fenchel-Nielson coordinates and use them to prove our main result.

2. Background

Definition 2.1. A topological space is a set with a topology, which allows for continuous

deformation and continuity.

Definition 2.2. Two spaces are said to be homeomorphic if they can be deformed into

each other by a continuous, invertible mapping.

For example, in figure 1, the leftmost shape is a donut and it can be molded - as if it was

clay - into a coffee cup. This molding process does not include actions like tearing or ripping

but merely pushing and pulling parts of the donut to form the coffee cup. We can say that

the donut and coffee cup are homeomorphic. We denote homeomorphisms using the symbol

≈. It’s often easier for mathematicians to show that two objects aren’t homeomorphic. An

example of objects that aren’t homeomorphic is a sphere and a donut. These two are not

homeomorphic because there is no way to mold the sphere such that it becomes a donut.

This makes sense because no matter how much we pull or push the sphere, we won’t be able

to form the donut hole in a move that doesn’t involve cutting or tearing.
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Figure 1. A diagram demonstrating that a donut and coffee cup are

homeomorphic.

More important concepts in topology are the genus and boundary. The genus g counts the

number of holes. For example, a donut has g = 1. The boundary n is the set of points not

belonging to the interior of S and lying in the closure. A simpler way to think of this are the

lines that delineate the shape.

We define the following terms that will be used throughout the paper.

Definition 2.3. A holomorphic function is a complex-valued function that’s complex

differentiable for each point in Cn.

Definition 2.4. A homeomorphism is a continuous map with a continuous inverse.

Definition 2.5. A diffeomorphism is a differentiable map with a differentiable inverse

Definition 2.6. A biholomorphism is a holomorphism with a holomorphic inverse.

Definition 2.7. The Euler characteristic of a surface S is defined as χ(S) = v − e+ f

where v is the number of vertices, e is the number of edges, and f is the number of faces. For

smooth surfaces, these values would be counted by counting the number of vertices, edges,

and faces of the triangulation of this surface.

We won’t go into the specifics of how we can triangulate a surface since we’ll only use the

Euler characteristic to derive basic theorems. In this paper, we’ll use pre-calculated Euler

characteristic values. From this definition, we have the theorem 2.8.

Theorem 2.8. Given two orientable surfaces S1 and S2. S1 is homeomorphic to S2 if and

only if χ(S1) = χ(S2).

Definition 2.9. The genus g can also be defined as g =
2− χ(S)

2
.
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3. Riemann Surfaces

3.1. The Square Root Function. We start by considering the function y =
√
x for all

x > 0. Recall that the y values we obtain are the values we get when we solve the equation

x = y2. An example of an x value is 4. Intuitively, y = 2. However, y can also be −2 since y

is being squared. In general, both
√
x and −√

x will be solutions to y. Therefore, the graph

of y =
√
x will be the following:
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However, this is only for x > 0. Let’s now look at the complex plane for all x such that

x < 0. Similar to x > 0 case, we have the function w = f(z) = z
1
2 , where z is a complex

number and Im(z) ∈ R and Re(z) ∈ R. Similarly, we’re solving the equation z = w2 for w.

To determine whether this equation also has two solutions (like the
√
x and −√

x we had

earlier), we first express z in its polar form:

z = reiθ.

Recalling properties of polar form, we perform the square root computation:

w =


√
z =

√
re

iθ
2

−√
z = −√

re
iθ
2
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Figure 2. The full graph of y =
√
x where the axes (x, y, z) are

(Re(z), Im(z),Re(w)). In this diagram, the y axis is the one extending to the

left, and the x axis is extending to the right, while the z axis extends upwards.

If we want to graph our results similar to the real case, we run into a problem. Both

the domain and range of the function are complex numbers. Recall that graphing complex

numbers requires two dimensions: one real and one complex. This means graphing a complex

input and output will require four dimensions. Because it’s harder to work in four dimensions

as we don’t have a strong intuition for it, we project our four-dimensional graph down to

three dimensions. We can assign our axes to be (Re(z), Im(z),Re(w)). Now, the graph of

w = z
1
2 is as shown in figure 2.

In this graph, we can identify the graph y =
√
x for x > 0. In figure 3, we see the

y =
√
x graph in the red box. By tracing along the green portions of the graph, we have the

parabolic-like shape that we saw for the real values.

This graph clearly shows the multi-valuedness of the square root function. This is called

the Riemann Surface of y =
√
x.

Definition 3.1. A Riemann surface is a connected one-dimensional complex manifold.

The Riemann surface let’s us visualize multi-valuedness. If we start on a point on the

graph and circle around - specifically, a 2π revolution - we circle around to the same value

but with an opposite sign. For example, if our starting point is on the top green region, after
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Figure 3. The full graph of y =
√
x with the real parabola in the red boxed

area

making a 2π revolution, we end up on the bottom green region. Mathematically speaking,

we get the negative root.

This 2π revolution circling phenomenon can also be represented through branch cuts.

Branch cuts are sometimes considered an alternate representation to Riemann surfaces.

Definition 3.2. A branch cut is a curve where a multi-valued function is discontinuous.

Alternatively, one can think of branch cuts as cuts that are made at branch points.

Definition 3.3. A branch point is a value at which a multi-valued function doesn’t return

to its initial value as a closed, continuous curve around the point is traced.

A way to make sense of these complicated definitions is our 2π revolution visualization. As

noted previously, making a 2π revolution on the Riemann surfaces results in a root with the

opposite sign. This is what definition 3.3 is referring to by “a function not returning to its

initial value”. If this is hard to believe through just the visual representation, we can also

think of this mathematically. Recall that we can represent z in polar form:

z = reiθ.
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When taking the square root, we have:

√
z =

√
re

iθ
2 .

Adding 2π:

√
re

i(θ+2π)
2 =

√
re

iθ
2
+π.

This is clearly not the same value. In fact, it’s the opposite in sign! Clearly, f(x) =
√
x

has a branch cut. More specifically, its branch cut is the negative real axis.

Proposition 3.4. When a function has branch cuts, the Riemann surface can be defined

such that when moving through the branch cut, we move from one sheet to the other. The

same goes for moving from the other sheet back to the first.

An important note to make that traveling past the branch cut results in a “jump” between

two “plates”. Looking at the Riemann surface of f(x) =
√
x (figure 2), this makes sense.

The branch cut of f(x) is the intersection between the red section and the blue section

(this is the negative real axis), and the two plates - one on top and the other below it - are

connected by the branch cut. Let’s say we start at a point on the yellow area on the top plate.

As we travel along the surface in the counterclockwise direction (making a 2π revolution is

counterclockwise), we pass the branch cut. Once we pass the branch cut, we end up on the

bottom plate.

In addition to the square root function, some other well-known examples of Riemann

surfaces are the log(x) and arcsin(x) functions. The Riemann surfaces of these functions are

shown in figure 4.

3.2. A More Interesting Example: the Torus.

Let’s take a look at a more interesting example.

Example. w =
√

(z2 − 1)(z2 − k2) where k ∈ C, k ̸= ±1, and (z, w) ∈ C2 [Tel03]
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Figure 4. The Riemann surfaces for the functions f(x) = log(x) on the left

and f(x) = arcsin(x) on the right.

Figure 5. Number line showing where w is defined on the real plane. The

dotted lines indicate imaginary-valued regions.

We take a similar approach by solving for w in

w2 = (z2 − 1)(z2 − k2).

The values for which w is defined in the real plane is z ∈ (−∞,−k] ∪ [−1, 1] ∪ [k,∞),

which can be visualized on a number line, where the dotted lines indicate imaginary values

as shown in figure 5.

Near the points ±1 and ±k the function behaves like a square root function. The important

thing to note here is that there is no single value at these points. Recall in our earlier example

of f(x) =
√
x, making a 2π revolution around the graph of the function - and therefore, the
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Figure 6. A rope with three segments; two red segments separated by a blue

segment.

Figure 7. Representation of cutting out (−k,−1) and (1, k) and

multi-valuedness of real values.

function itself - resulted in a root with the opposite sign. This implies that for any w if we

follow continuously round ±1 or ±k we’ll end up with the opposite-signed root.

To define this continuous path, we need to make some “cuts” in our real plane. An easier

way to visualize this is with a piece of string as shown in figure 6.

Let’s define a “continuous” segment in this rope as a segment that has uniform color across

the segment. We can think of the blue segment of rope as imaginary values while the red

segments are real values. The imaginary values and real values aren’t the same “color”, which

makes our “rope” not continuous. Therefore, we need to make cuts as shown in the figure.

To resolve this problem, we can remove the line segments (1, k) and (−k,−1). Additionally,

on the complement of these segments, inputs have two outputs (think of the multi-valuedness

of the square root function), so our graph must split into two different plates as shown in

figure 7.

Notice that the function also takes on two values over the cut intervals due to the multi-

valuedness on the imaginary-valued intervals as well. Also note that if we start on one plate

and travel through the cut, we’ll end up on the other plate. This follows from proposition

3.4. Therefore, if we start on one sheet and travel through the cut, we’ll end up exiting on

the other sheet. Thus, we have a path depicted as shown by the arrows in figure 8.
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Figure 8. Representation of moving through the cuts across the sheets

Figure 9. Representation of flipping a sheet and pulling out tubes

With the plates positioned as depicted, it would be impossible to create a model in R3

(the third dimension). In order to resolve this issue, we can flip one of the sheets about the

real axis. In other words, multiply all the points on that sheet by i2 = −1. Not only does

this resolve our issue of modeling this in R3, but we also get a plate with opposite values,

thereby resulting in a good representation of the function’s multi-valuedness. Now that our

cuts are aligned, we can pull out linking tubes as shown in figure 9.

There’s another way to look at this surface. If we pull these tubes out until the infinitely

large plates aren’t plates, we end up with a donut-shaped object called the torus. The torus

in this example, however, is slightly abnormal. Because we’re pulling the tubes infinitely

long, we’ll end up with a torus as shown in figure 10.
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Figure 10. Another way to visualize figure 9

4. Teichmüller Spaces

Teichmüller spaces can be defined in serveral different ways. We’ll be taking a look at the

definition that uses marked Riemann surfaces. But first, some notation regarding Riemann

surfaces. From now on, we’ll be defining Riemann surfaces off of their genus g and their

boundary component n. For more detailed definitions and explanations of these, refer to

section 2.

4.1. Marked Riemann Surfaces.

Definition 4.1. The fundamental group is the group of equivalence classes under homotopy

of the loops connected in the space. We can denote the fundamental group as π1(X, x0) for a

topological space X with base point x0.

Intuitively speaking, the fundamental group records information about the number of loops

that can be made on a surface from a base point x0, where x0 is a point on X.

The fundamental group is independent of the base point x0. For a Riemann surface with

genus g, the fundamental group consists of 2g elements. These elements make up a marking

on a Riemann surface. We denote a marking on a surface of genus g as Σg.
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Figure 11. Torus of genus 2 with 4 markings.

Figure 12. The collection of paths associated with markings

Σg = {|A1|, |A2|, |A3|, |B1|, |B2|, |B3|} (left) and

Σg = {|A′
1|, |A2|, |A3|, |B1|, |B2|, |B3|} (right) on surfaces of genus 3. [Bro18]

Definition 4.2. For a Riemann surface R of genus g, a marking on R is defined as

Σg = {|Aj|, |Bj| | j = 1, 2, ..., g} of π1(R, p). We denote a marked Riemann surface R with

marking Σg as (R,Σg).

Examples of markings can be seen in figures 11 and 12.

A question one might ask at this point is: can’t there technically be infinite markings on a

surface? We define two markings that originate from the same base point to be equivalent if

they are homeomorphic to each other. In other words, one of the markings can be deformed

into the other. For example, consider the markings on the genus 2 topological object shown in

figure 13. The blue and red loops are considered equivalent because they are homeomorphic.

In addition to equivalent markings, we can define what it means for two marked Riemann

surfaces to be equivalent.
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x0

Figure 13. Genus 2 torus with two equivalent loops; one blue and one red

Definition 4.3. An isometry is a bijective map between two metric spaces that preserves

distance.

Examples of isometries include translations, rotations, and reflections.

Definition 4.4. An isotopy is a homotopy from embedding one manifold X onto another

Y such that it is an embedding.

Recall that a homotopy is a continuous family of homeomorphisms. For our purposes, we

can treat an isotopy as a continuous function that is able to smoothly transform one manifold

X onto another Y .

Definition 4.5. Two marked Riemann Surfaces (R,Σg1) and (S,Σg2) are consideredmarking

equivalent if there exists an isometry m : R → S such that Σg2 and m ◦ Σg1 are isotopic.

Let’s walk through this definition to make more sense of it. By our definition of an isometry

(definition 4.3), R can be transformed to S such that distance is preserved. Furthermore, by

our definition of isotopy (definition 4.4), there should exist a smooth transition from the

marking Σg2 to m ◦ Σg1 . We can now make sense of definition 4.5. Visually, it’s saying that

if we can make a continuous transformation (i.e: no cutting) from R to S such that we can

smoothly transform Σg2 to Σg1 . In other words, if there is a function m that transforms R

to S and this function also smoothly transforms the markings on R to the markings on S,

then these surfaces are marking equivalent. This definition intuitively makes sense because

as mentioned earlier, we defined equivalent markings as those that can be “deformed” into

each other.
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4.2. The Teichmüller Space.

Definition 4.6. We define the Teichmüller space of a Riemann surface S of genus g ≥ 2

and boundary component n as

Tg,n = {(S,Σg)}/ ∼

where Σg is the marking on S.

In other words, the Teichmüller space is the set of all marking equivalence classes for genus

g and boundary component n. Tg,n is different to the regular moduli space - the surface.

Essentially, it’s the moduli space but with markings. The reason we use markings - and

therefore, Teichmüller space - is because it results in a much simpler space, which makes

them easier to work with. Furthermore, for more complicated moduli with higher genuses,

the moduli space becomes too complicated and eventually impossible to understand while the

Teichmüller space is understandable. A natural question that arises from defining Teichmüller

spaces is how we define points on it. This is the center of Fenchel and Nielson’s work on

Fenchel-Nielson coordinates.

5. Fenchel-Nielson Coordinates

Definition 5.1. A pair of topological pants is a genus zero surface with three boundaries.

An example of a pair of pants is shown in figure 14. One thing to note is that these pants

can look slightly different. However, as long as it is homeomorphic to the pants shown in

figure 14, it is considered a pair of pants. In addition to the genus and boundary requirements,

there’s another property of pants that we can note: seams.

Definition 5.2. Given a pair of pants with geodesic boundaries there exists three geodesic

arcs that join the cuffs perpendicular to their endpoints. These arcs collectively are called

the seams of the pants.

If we cut the pants along the seams, we end up with two hyperbolic hexagons with right

angles. A representation of this can be seen in figure 15.
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Figure 14. Topological pair of pants

Figure 15. Representation of ending up with two hexagons when cutting

along the seams of a pair of pants [SZS+16]

All pairs of pants have seams, and we can essentially define a pair of pants by defining its

seams.

Proposition 5.3. For l1, l2, l3 ∈ R+, there exists a unique hyperbolic right-angled hexagon

with alternating edge lengths (l1, l2, l3).

The most important takeaway from this proposition is that we can define a hyperbolic

right-angled hexagon by three real, positive side lengths.

Proposition 5.4. Given a surface S with genus g and pants decomposition P , the surface

can be decomposed in 2g − 2 pairs of pants.

Proof. Some things to note before starting the proof is that a pair of pants has an Euler

characteristic of −1 and circles have an Euler characteristic of 0. Since the edges of the

pairs of pants that are glued to each other are circles, they don’t contribute to the Euler
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(a)

(b)

Figure 16. Pants decomposition of a genus 2 surface (a) and a genus 4

surface (b)

Figure 17. Pair of pants labeled with geodesic arcs τi, τj, and τk and

boundaries γi, γj, and γk. [JZDG09]

characteristic. Therefore, each pair of pants in the decomposition will contribute exactly −1

to the Euler characteristic. So the number of pants n = −χ(S). Recall from definition 2.9

that g =
2− χ(s)

2
. Substituting yields n = 2g − 2. ■

Some examples of decompositions of surfaces are shown in figure 16.

A geodesic is a length minimizing curve. Assume all of the boundaries in figure 17

{γ1, γ2, ..., γ3g−3} are geodesics. For each pair of pants, define the lengths {τ1, τ2, ...τ3g−3}
as the shortest paths between these boundaries. These lengths, therefore, intersects the

boundaries at right angles.
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Figure 18. A visualization of what the twisting angle represents and

measures. By twisting the orientation of the pants before gluing them, we end

up with a different isometry type.

Definition 5.5. For two pants P1 and P2 that are glued together along γi, the shortest path

τ1 on P1 intersects γi at p1, and the shortest path τ2 on P2 intersects γi at p2. The twisting

angle - sometimes also referred to as the twisting parameter - is given by:

θ = 2π
d(p1, p2)

|γ|
where d(p1, p2) is the geodesic distance between p1 and p2 and |γ| is the length of γ.

To visualize twisting angles, let’s suppose we’re gluing two pairs of pants to create a surface

S. If we simply glued the pants in the orientation shown in the leftmost image of figure 18,

it would be different to gluing pants as shown in the rightmost image. This is because the

geodesic distance d(p1, p2) is different, which would change the twisting angle. Therefore,

rotating the top pair of pants changes the pants composition, which is why keeping track of

the twisting angle is important.

Definition 5.6. For a surface S of g > 1, S can be decomposed in 2g − 2 pairs of pants

{P1, P2, ...P2g−2} by closed geodesics {γ1, γ2, ..., γ3g−3}. The Fenchel-Nielson coordinates

of S in a Teichmüller space Tg,n are given by:

{(|γ1|, θ1), (|γ2|, θ2), ..., (|γ3g−3|, θ3g−3)}.

We can now prove our main theorem.
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Theorem 5.7. Let g ≥ 2 for a surface S. The map

FN : TS → R3g−3
+ × R3g−3

defined by

FN(X) = (|γ1|, |γ2|, ..., |γ3g−3|, θ1, θ2, ..., θ3g−3)

is a homeomorphism.

Proof. Another way to interpret this theorem is Tg ≈ R6g−6 ∼= C3g−3.

First, realize that the theorem is essentially saying that a point on the Teichmüller space

determined by the Fenchel-Nielson coordinates can also be expressed by R3g−3
+ × R3g−3. One

way to approach this is to construct our pants decomposition and essentially “count” the

inputs that determine this point - sort of like a probability problem. There are two parts

that we have to consider. To tackle this construction, first we consider how we glue the pants

together. Then, we consider the orientation of the pants when we’re gluing.

Let’s start with how we glue the pants together. Recall that proposition 5.3 states that a

triple of positive real numbers can define the alternating edges of a hyperbolic right-angled

hexagon. This means that choosing three real values determines the hexagon that makes up

a pair of pants. Since this is the seam - as defined in definition 5.2 - and the seam essentially

defines the shape of the pants, the three real values that we choose determine what the

pants look like and the geodesics on it that can be glued to other geodesics on other pants.

Additionally, by proposition 5.4, we know that there are 2g − 2 pairs of pants. So in total,

we have 3(2g − 2) = 6g − 6 curves. However, note that we count these curves in pairs, which

means we end up with 6g−6
2

= 3g − 3 total curves in a pants decomposition. Thus, 3g − 3

lengths (which are positive real values) determine the ways in which what sized pants are

glued together.

Next, we tackle the orientation of the pants when we’re gluing them together. Recall the

twisting angle as defined in definition 5.5. The twisting angles are defined from 1 to 3g − 3.
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Note that even if we twist the pants by a 2π revolution, the orientation is still different. This

is because revolving by 2π results in a different length for the geodesic. Doing a nπ revolution

- even if n is even - ends up with a different composition.

Therefore, R3g−3
+ represents “choosing” the lengths of the hexagon, and R3g−3 represents

the twist between pants. Thus, R3g−3
+ ×R3g−3 represents a point on the Teichmüller space Tg.

The Fenchel-Nielson coordinates also represent points on Teichmüller spaces. This concludes

the proof. ■

To perform this proof more rigorously, more work is required though it is slightly uninter-

esting. See [FM11] for the more rigorous proof.

6. Further Research Regarding Teichmüller Spaces

The study of Teichmüller spaces is called Teichmüller theory. This field is being actively

studied, and there are several interesting theorems that arise from Teichmüller spaces. For

example, in [referece], Mg is defined as the moduli space of Riemann surfaces, and N(R) is

defined as the number of closed Teichmüller geodesics in Mg of length at most R.

Theorem 6.1. As R → ∞, we have

N(R) ∼ ehR

hR

where h = 6g − 6

The notation A ∼ B means the ratio A
B
tends to 1. Another theorem - conveniently named

Teichmüller’s theoem - states:

Theorem 6.2. For two marked Riemann surfaces (X, g) and (Y, h), there’s always a unique

quasiconformal mapping X → Y in the isotopy class of h ◦ g−1 which has a minimal dilation.

This map is called the Teichmüller mapping.

Furthermore, there are several metrics that arise to study the metric geometry of Te-

ichmuüller space. For example, the Teichmüller metric is:
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Definition 6.3. If x, y ∈ TS and the Teichmüller mapping between them has dilatation K

then the Teichmüller distance between them is by definition
1

2
log(K).

This metric defines a distance on TS that induces its topology. There’s also the Weil-

Petersson metric that’s commonly paired with Fenchel-Nielson Coordinates to study Te-

ichmüller spaces. See [Wei58] for more detail on them.

In general, as mentioned earlier, Teichmüller spaces provide a lot of insight into moduli

spaces and allow us to study moduli spaces more in-depth. Furthermore, Teichmüller spaces

can be used for real-world applications, particularly in scientific research.
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