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ABSTRACT

The trade-off between plant community structure and function is an important issue during grassland restoration. It is essential to assess
changes of structure and function after converting farmland to grassland. Three restoration stages (5, 15, and 30 years) were studied to deter-
mine the optimum time when the trade-off between diversity and productivity occurs. The results showed that the vegetation coverage,
height, and productivity significantly increased, but the species richness, diversity, and density significantly decreased along the restoration
time. Grassland community presented a succession from small individuals and high density to larger individuals and lower density. The com-
munity changed from being dominated by grass and forb functional groups to being dominated only by the grass functional group. The dom-
inant grass functional group plays a decisive role on community structure and function (productivity, diversity, and density) during grassland
succession. Our results suggest that community structure and function were mainly driven by the dominant grass functional group during the
long-term succession. Grassland should be utilized to suppress the leading role of the dominant functional groups in the 20th year for keeping
the trade-off of diversity and productivity. We suggest that the restoration grassland should be considered to use appropriately in the 20th
year. Our study could provide a key guidance for maintaining the community structure and function trade-off for cropland-converted grass-
land management in the semi-arid areas. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Global climate change, human disturbance, and desertification
have resulted in a continuing serious degradation of the grass-
land ecosystems, such as the reduction of biodiversity and pro-
ductivity (Oba et al., 2008; Végvári et al., 2016) and
ecosystem service provision and function (Sala et al., 2000;
Jafari & Bakhshandehmehr, 2016; Liu et al., 2016). Recent de-
cades, increasingly ecological engineering activities are being
implemented for the protection and restoration of grassland
in China, including grazing exclusion (Dong et al., 2008;
Wu et al., 2009; He et al., 2011), converting cropland to grass-
land (Deng et al., 2013), grassland establishment (Dong et al.,
2003; Shang et al., 2008; Hu et al., 2016), and other grassland
management practices (Chen et al., 2007; Dong et al., 2010;
Wang et al., 2015). Meanwhile, grassland establishment is
the key strategy to recover degraded soils (Taguas et al.,
2015; Hu et al., 2016; Pereira et al., 2016) and grassland man-
agement practices also influence soil habitats (Mukhopadhyay
&Maiti, 2014; Parras-Alcántara et al., 2015). Accordingly, un-
derstanding the ecological functions and structures of the de-
graded grassland is important for ecosystem restoration. An
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increasingly common goal of ecosystem restoration is to recon-
struct the high biodiversity, productivity, and functional group
diversity in general (Martin et al., 2005). The loss of biodiver-
sity may be detrimental for the ecosystem goods and services
(Hector et al., 1999). Thus, determining the relationship be-
tween biodiversity and productivity and understanding the
mechanism are the major goals of community ecology (van
Ruijven & Berendse, 2005). Previous studies have found that
grassland restoration plays an important role in changing plant
diversity (Adler & Levine, 2007), herbivore diversity (Borer
et al., 2014), productivity (Rajaniemi, 2003; Gillman &
Wright, 2006; Cardinale et al., 2007), and quantifying the ev-
idence for the effects of biodiversity on ecosystem function
and service provision (Cardinale et al., 2002; Balvanera
et al., 2006; Adler & Levine, 2007; Valkó et al., 2016).
Gillman & Wright (2006) analyzed the results from 131 pub-
lished studies, then showed that almost all productivity–
richness relationships were positive in data sets of regional ex-
tent, and unimodal relationships were not dominant even in
studies of fine grain or small spatial extent. However, some
previous studies showed that unimodal relationships are typical
in small and large scales (Kelemen et al., 2013; Fraser et al.,
2015). A plant diversity experiment without legumes for
4years also showed that a positive relationship between plant
species richness and productivity emerged in the second year
and strengthened with time (van Ruijven & Berendse, 2005).
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High richness enabled low-density communities to reach pro-
ductivity levels otherwise seen only at high density; thus,
density may alter diversity–productivity relationships in exper-
imental plant communities (He et al., 2005). The relationship
between plant diversity and stability has also been reported
(McCann, 2000; Tilman et al., 2006; Ives & Carpenter,
2007). Reestablishing diversity and productivity have been
widely recognized as a critical goal in restoration and an
integral component of the ecological system.
The process of grassland restoration is a long-term and

complex ecological process (Hastings et al., 2007). It is
related to many subjects, including ecology, soil science,
geography, forestry, and agriculture (Gattie et al., 2003;
Hastings et al., 2007). Particularly considering that the com-
position of grassland communities and species diversity are
both controlled by many environmental factors and distur-
bances (Collins & Smith, 2006). Knowledge of the relative
roles of competition and limitation as drivers of decreasing
diversity in grasslands might be useful for management
practice. Therefore, it is necessary to understand the changes
in community composition under long-term restoration. If
competition is the most important driver, major attention
should be taken on appropriate management of the grass-
land, that is removing a sufficient amount of biomass at
the right time (Deák et al., 2011; Liira et al., 2012). In addi-
tion, restoring community species diversity and ecosystem
process rates have been regarded as the main objectives of
restoration and vegetation improvement (Martin et al.,
2005). The time limitation that reaching the equilibrium of
diversity and productivity is a critical topic for studies.
In this study, an ecological project to convert a large area of

cropland to grassland was implemented in the semi-arid Loess
Plateau of China. The following questions were addressed dur-
ing the project of converting cropland to grassland: How com-
munity diversity and productivity change along the long-term
restoration? How many restoration years are needed to convert
croplands into grasslands in both plant diversity and primary
productivity points reaching a trade-off? To answer the ques-
tions, we focused on grassland community structure and func-
tion, which contained three main components, namely,
diversity, density, and productivity, and their interactions in
three different succession stages grassland. We hypothesized
that community structure and function changes were mainly
driven by the dominant functional group. Our objective was
to determine the time at which keep the trade-off of diversity
and productivity in grassland restoration. We anticipated to
be able to provide key implications for maintaining the com-
munity structure and function trade-off for cropland-converted
grassland management on the Loess Plateau.
Figure 1. The three restoration grasslands in this study (5-year restoration grass-
lands, A; 15-year restoration grasslands, B; and 30-year restoration grasslands, C).
This figure is available in colour online at wileyonlinelibrary.com/journal/ldr
MATERIAL AND METHODS

Study Site

The study area was located in the Wangdonggou watershed
(107°41′E, 35°14′N, 1120m), at a field station of the Chi-
nese Ecology Research Net in Changwu County, Shaanxi
Copyright © 2016 John Wiley & Sons, Ltd.
Province, China. This watershed is representative of the typ-
ical gully terrain of the Loess Plateau. Based on climate data
from 1984 to 2005, the mean annual precipitation is
584mm, of which nearly 52% occurs between July and Sep-
tember. The mean annual temperature is 9·1 °C. The soil is a
coarse-textured dark loess soil.

Experimental Design

Based on the chronosequence of plant succession process in
the area of study, we selected three abandoned farmlands,
which were wheat field for many years prior to establishing
the restored grassland. And, it had been used in restoration
grassland that had been naturally restored for 5, 15, and
30 years, namely, RG5, RG15, and RG30 as three restoration
treatments (Figure 1), respectively. All the grasslands
allowed spontaneous recovery without any other distur-
bances. One plot (10× 10m) for each of treatments and five
quadrats (1·0 m×1·0m) were randomly set in each sampling
plot. Samples were taken in early September, when to reach
the highest biomass. Total cover, productivity (dry above-
ground biomass), plant density, and species richness (total
number of species in the each quadrat) of grassland commu-
nity were measured. The mean number of ramets in
LAND DEGRADATION & DEVELOPMENT, 28: 699–707 (2017)



Table I. Functional group and above-ground biomass for each spe-
cies at the restoration grasslands (5-year restoration grasslands,
RG5; 15-year restoration grasslands, RG15; and 30-year restoration
grasslands, RG30)

Specie Functional
group

Above-ground
biomass (gm�2)

RG5 RG15 RG30

Agropyron cristatum GFG 99·98 28·03 22·88
Poa annua GFG 55·77 41·81 436·82
Helictotrichon
schellianum

GFG — 224·46 —

Vicia sepium LFG 14·84 20·26 20·29
Medicago ruthenica LFG — 25·12 16·80
Oxytropis racemosa LFG 19·32 — —
Viola verecunda FFG 15·44 23·13 15·08
Potentilla acaulis FFG 16·55 18·36 15·64
Artemisia sieversiana FFG 33·80 46·68 18·72
Tripolium vulgare FFG 22·91 24·32 —
Taraxacum
mongolicum

FFG 15·17 85·26 —

Senecio scandens FFG 15·88 19·16 —
Artemisia capillaris FFG 14·67 19·50 —
Galium aparine FFG 15·92 27·44 —
Polygala tenuifolia FFG 14·68 — —
Cirsium setosum FFG 17·05 — —
Sonchus oleraceus FFG 16·28 — —
Heteropappus altaicus FFG 15·64 — —
Calystegia hederacea FFG 15·04 — —
Galium aparine FFG — 27·44 —
Melica scabrosa FFG — — 21·98

Note: grasses functional group (GFG), forbs functional group (FFG), and
leguminous functional group (LFG). Symbol “—” show that there is no
species at the grassland.
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sampling plots represented the density of the plant commu-
nity. To further investigate the changes in plant communi-
ties, we classified the plants in the communities into three
plant functional groups: grasses functional group (GFG,
Gramineous grass), leguminous functional group (LFG,
Leguminous grass), and forbs functional group (FFG, other
species) by the methods of Wu et al. (2009). The list of all spe-
cies within each plant functional group was showed in Table I.
Table II. Description of dominant species, coverage, height and product
ration grasslands, RG5; 15-year restoration grasslands, and RG15; 30-yea

Type Coverage (%) Height (cm)

RG5 58·00 ± 5·38 b 19·80 ± 1·36 c

RG15 83·00 ± 4·06 a 34·76 ± 4·30 b

RG30 94·00 ± 2·20 a 58·81 ± 3·30 a

Note: Different letters in the same group mean significant difference at the 0·05 l

Copyright © 2016 John Wiley & Sons, Ltd.
In each quadrat, all green, above-ground plant parts of
each individual species were cut, collected, and put into sep-
arate, labeled envelopes. The below-ground biomass were
collected from 0–100 cm soil layers in three places within
each quadrant using a 9-cm diameter root auger. The major-
ity of the plant roots from each sample were isolated by a
2-mm sieve, while the remaining fine roots were isolated
by spreading the samples in shallow trays, overfilling the
trays with water and allowing the outflow from the trays to
pass through a 0·5-mm mesh sieve. All the samples were
dried at 65 °C for 24 h and weighed to determine the dry
mass. Dry weights were measured with 0·01 g accuracy.

Soil Sampling and Analysis

Soil samples were taken at five points in the quadrats of each
plot near to the above-ground biomass sampling points. Lit-
ter horizons were collected in envelope before soil sampling.
Soil samples were collected from (0–20 cm) soil layer using
a soil drilling sampler (9 cm inner diameter). The samples
within one quadrat were mixed together to make one com-
posite sample. The composite soil samples were air-dried
and passed through a 2-mm sieve, and roots and other debris
were removed. Soil bulk density was measured using a soil
bulk sampler with a 5-cm diameter and 5-cm-high stainless
steel cutting ring at points adjacent to the soil sampling
quadrats. The original volume of each soil core and its dry
mass after oven-drying at 105 °C were measured (Deng
et al., 2013). The soil organic matter of these samples was
then assayed by the vitriol acid-potassium dichromate oxida-
tion method (Walkley & Black, 1934). Each analysis was
carried out in three replications.

Relative Calculation

The species richness (R), Shannon–Wiener diversity index (H),
Evenness index (E), and similarity coefficient (J) of the grass-
land communities were calculated using the following
functions:

Species richness : R ¼ S
ivity (mean ± SE) for the three restoration grasslands (5-year resto-
r restoration grasslands, RG30)

above-ground biomass (gm�2) Dominant species

301·88 ± 25·50 b Agropyron cristatum
Potentilla acaulis
Poa subfastigiata
Artemisia sieversiana
Tripolium vulgare

419·74 ± 51·79 a Agropyron cristatum
Potentilla acaulis
Poa subfastigiata
Tripolium vulgare

496·28 ± 20·21 a Agropyron cristatum
Potentilla acaulis
Poa subfastigiata

evel among grasslands.
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Table III. Description of soil bulk density, water content, soil carbon, and nitrogen (mean ± SE) at three restoration grasslands (5-year res-
toration grasslands, RG5; 15-year restoration grasslands, and RG15; 30-year restoration grasslands, RG30)

RG5 RG15 RG30

Litter biomass (gm�2) 110·92 ± 10·44 b 124·56 ± 13·16 b 447·12 ± 53·16 a
Below-ground biomass (gm�2) 869·26 ± 114·03 a 906·99 ± 81·68 a 843·06 ± 171·16 a
Bulk density(g cm�3) 1·37 ± 0·01 a 1·26 ± 0·02 b 1·33 ± 0·01 a
Water content (%) 22·64 ± 0·68 ab 21·65 ± 0·68 b 24·70 ± 0·53 a
Organic matter content (g kg�1) 9·26 ± 0·46 b 11·20 ± 0·48 b 13·70 ± 0·67 a
Total nitrogen (g kg�1) 0·69 ± 0·28 b 0·77 ± 0·20 ab 0·96 ± 0·43 a

Note: Different letters indicate significant differences at the 0·05 level among grasslands.

Figure 2. Community species richness and the three functional groups
species richness (M ± SE) of the three restoration grasslands. RG5, 5-year
restoration grasslands; RG15, 15-year restoration grasslands; and RG30,
30-year restoration grasslands. GFG, grasses functional group; FFG, forbs
functional group; LFG, legume functional group. Different letters in same
group mean significant at the 0·05 level, ns, non-significant. This figure is

available in colour online at wileyonlinelibrary.com/journal/ldr
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Shannon–Wiener diversity index:

H ¼
Xs

i¼1

PiInPið Þ;

Evenness index:

E ¼ H
ln S

;

Where: S is the total number of species in the grassland com-
munity, Pi is the density of the i species, and H is the
Shannon–Wiener diversity index.

Similarity coefficients : J ¼ j= aþ b� jð Þ
Where: j is the number of species common to both quadrats
and a and b are the number of species only in one and the
other quadrat (Kerr et al., 2001).

Statistical Analyses

The differences among each of the above-ground (coverage,
height, productivity, and litter biomass) and below-ground
properties (biomass, bulk density, water content, organic
matter content, and total nitrogen) for a given restoring treat-
ment were evaluated by One-way ANOVA to compare the
results obtained from all the blocks. All data were expressed
as the mean± standard error (SE) of the samples collected
for each treatment.
Plant community structure was analyzed to assess the ef-

fects of restoration. Differences in productivity, diversity,
and density treatments were assessed using ANOVA. The
relationships among functional productivity, community
productivity (dependent factor), and functional density (in-
dependent factor) were estimated by regression analysis.
The same method was used to analyze the relationship
among community productivity, diversity, density, richness,
evenness (dependent factor), and restoration time (indepen-
dent factor). The regression equations (productivity–density
and diversity–density) were used to identify the plant den-
sity with the graph intersection (solution of the equation
group), then to identify the time in the regression of density
and restoration time. Differences were evaluated at the 0·05,
0·01, and 0·001 levels of significance. All of the statistical
tests were carried out using SPSS version 17·0 (SPSS Inc.,
Chicago, IL, USA).
Copyright © 2016 John Wiley & Sons, Ltd.
RESULTS

Composition and Productivity of Grassland Communities

The coverage significantly increased from RG5 to RG15,

RG30 (Table II). Mean community height successively in-
creased with the restoration time (RG5<RG15<RG30).
The difference in productivity between RG5 and RG15 was
significant (p< 0·05), but no significant difference was
found between RG15 and RG30 (Table II). The dominant
species in all the communities evaluated was Agropyron
cristatum, and the main companion species were Potentilla
acaulis and Poa subfastigiata in all RG. Meanwhile, the
maximum indices of similarity between the RG5 and RG15

and the RG15 and RG30 were estimated to be 0·67 and
0·50, respectively.
The highest and lowest below-ground productivity values

in the 0–100 cm soil layer were 906·99±81·68 gm�2 in the
RG15 area and 843·06± 171·15 gm�2 in the RG30

(Table III). For the litter biomass and organic matter content,
RG30 was significantly greater than RG5 and RG15

(Table III). Soil bulk density and soil water content followed
RG30>RG5>RG15 and RG30 were significantly greater
than RG15. Soil total nitrogen showed a tendency to increase
with the restoration time (Table III).
LAND DEGRADATION & DEVELOPMENT, 28: 699–707 (2017)



Figure 3. Community productivity and the three functional group produc-
tivity proportion (M ± SE) of the three restoration grasslands. RG5, 5-year
restoration grasslands; RG15, 15-year restoration grasslands; and RG30,
30-year restoration grasslands. GFG, grasses functional group; FFG, forbs
functional group; LFG, legume functional group. Different letters in same
group mean significant at the 0·05 level, ns, non-significant. This figure is

available in colour online at wileyonlinelibrary.com/journal/ldr
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Grassland Communities Plant Functional Groups and Diversity

The mean community species richness in the RG5, RG15,
and RG30 showed significant differences (p<0·05;
Figure 2). The greatest and lowest species richness were
10·8± 0·58 and 4·0 ± 0·31 in the RG5 and RG30, respec-
tively. The FFG species richness had a similar variation ten-
dency as the community species richness (p<0·05), and
RG5 had larger FFG species richness than RG15 and RG30.
However, RG15 had greater GFG species richness than
Figure 4. Relationships between three functional groups, density and the dominan
nity productivity. Best-fit models based on adjusted R2 as follows: exponential dec

and e. This figure is available in colour onlin

Copyright © 2016 John Wiley & Sons, Ltd.
RG5 and RG30. Meanwhile, the LFG species richness
showed non-significant differences among the three grass-
land treatments (p>0·05). The productivity of the commu-
nity and three functional groups varied significantly in
response to density (Figure 3). Additionally, while the anal-
ysis of functional groups density and productivity revealed
that community and GFG productivity significantly de-
creased with the increase of GFG density (Figure 4a,b), the
relationship between the density and productivity of the com-
munity, LFG, and FFG was inconsistent (Figure 4c,d,e,f). In
fact, the LFG productivity significantly increased with the in-
crease of LFG density, whereas the community productivity
decreased inversely to LFG density.
The variance of plant functional group proportion showed

that the RG30 had significantly higher GFG and lower LFG
than the RG5 (p< 0·05; Figure 3). Indeed, between the RG5

and RG30 areas, the fraction of GFG productivity increased
from 47·57% to 81·79%, while that of LFG productivity
decreased from 46·27% to 14·54%. The LFG exhibited no
significant differences among the three grassland treatments
(p>0·05).

Relationship between Diversity and Productivity

Regression analysis showed that productivity significantly
decreased with the increase of density, richness and
evenness; nevertheless, the Shannon–Wiener index
significantly increased with the increase of richness and even-
ness (Figure 5a,c,e). With increasing density, initially the
t functional group (grasses functional group) productivity, and total commu-
ay in panel a, linear reduction in panels c and f, and quadratic in panels b, d,
e at wileyonlinelibrary.com/journal/ldr
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Figure 5. Variance of productivity and Shannon–Wiener with density (a), richness (c), evenness (e); effects of restoration time on the relationships between
community density (b), richness (d), and evenness (f) through the restoration time period. Best-fit models based on adjusted R2. Exponential decay of produc-
tivity and quadratic of Shannon–Wiener index with the increase of density (a); linear reduction of productivity and quadratic of Shannon–Wiener index with the
increase of richness (c); linear reduction of productivity and exponential growth of Shannon–Wiener index with the increase of evenness (c); exponential decay
of density (b), linear reduction of richness, (d) and quadratic of evenness (f) with increase of restoration time. The black long-dashed lines are the intersections
of productivity and Shannon–Wiener index model and corresponding the fit x-axis value in panels a (the fit plant density for diversity and productivity trade-
off), c (fit richness), and e (fit evenness). The values from panels a, c, and e were substituted in the model of panels b, d and f, respectively, to evaluate the fit
restoration time. The fit restoration time were 18·4, 21·5, and 25·7 years for fit density, richness, and evenness (blue long-dashed lines), respectively, which

determined by productivity and diversity. This figure is available in colour online at wileyonlinelibrary.com/journal/ldr
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Shannon–Wiener index increased until the density was about
415 plants per square meter and subsequently decreased
(Figure 5a). In addition, the plant density and richness
significantly decreased with the increase of restoration time
(Figure 5b,d). Mean community evenness increased for the
first 15years of restoration, but subsequently declined
(Figure 5f). Furthermore, the productivity showed a signifi-
cant power-function increase with the restoration time
(p< 0·01; Figure 6), but the rate of declined over time. While
the diversity index showed a significant quadratic-function
decrease with increasing restoration time (p< 0·05; Figure 6),
the slope of the function decreased. Finally, the density for
appropriate productivity and diversity was reached in
the 19th year and estimated to be about 185 plants per square
(Figure 5a); the time in the richness and evenness were 22nd
(6·28) and 26th (0·81) years, respectively (Figure 5).
DISCUSSION

Our results showed that the productivity of three plant
functional groups changed with the species richness and
community density. The GFG productivity proportion
was consistent with the variation of community
Copyright © 2016 John Wiley & Sons, Ltd.
productivity (Figure 2), which indicated that GFG was
the dominant functional group in these grassland commu-
nities. The community composition exhibited dramatic
changes because of the changes in the dominant species
during long-term restoration (He et al., 2011). Our results
showed that above-ground productivity significantly in-
creased after 15-year restoration, which was consistent
with similar studies in other areas (Wu et al., 2009; Cheng
et al., 2011). Moreover, with the increase of restoration
time the species richness and the proportion of productiv-
ity significantly declined in the FFG, which had the
highest below-ground biomass. The GFG had the highest
above-ground biomass, but its below-ground biomass
was relatively lower than that of the FFG. The share of
FFG in community is strongly influenced by suitability
of abiotic environment, availability of microsites for estab-
lishment, propagule limitation (Kelemen et al., 2013).
Noteworthy, the dominant GFG plays a decisive role on
community structure and function (productivity, richness,
diversity, and density) during grassland succession.
Species diversity decreased by the decline of the richness

and density of the dominant functional group in the RG. At
the initial restoration stage, high community density
LAND DEGRADATION & DEVELOPMENT, 28: 699–707 (2017)



Figure 6. Relationships between grassland community productivity and
species diversity through the restoration time period. Best-fit models based
on adjusted R2. Power function growth of productivity with quadratic reduc-
tion of restoration time. The black long-dashed line means the fit restoration
time (19·4 years) determined by productivity and diversity trade-off. The
red dotted line represented the fit restoration time from Figure 5. This figure

is available in colour online at wileyonlinelibrary.com/journal/ldr

705DIVERSITY–PRODUCTIVITY BALANCE ALONG GRASSLAND RESTORATION
promoted the dominance of productive species (He et al.,
2005). Long-term restoration resulted in lower species diver-
sity and led to the domination of the community by a few
species with strong competitive abilities (Wu et al., 2009).
It is generally explained by the increasing rate of competi-
tion, increasing plant size, accumulation of a thick litter
layer (Kelemen et al., 2013). The GFG had dominance in re-
source competition because of adaptive ability, such as
higher height which increased light limitation (reduced
transmission of photosynthetically active radiation) to other
relatively lower height species (Borer et al., 2014). The
changes of the functional group’s richness pattern result
from differences in the colonization capacity and persistence
of each one (Bonet, 2004). In this study, the coverage, plant
height, and productivity significantly increased over time,
whereas species richness, diversity, and density declined
greatly. The decrease in diversity that accompanies the in-
crease in standing crop has been explained by the intensifi-
cation of asymmetric light competition (Deák et al., 2011;
Liira et al., 2012). These results are consistent with previous
result (Martin et al., 2005). Previously, it was revealed that
diversity loss in high-productivity grassland may result from
greater competition for canopy resources, and some species
with less competitive ability reduce their density or disap-
pear because of competition for light resources or nutrients
(Cheng et al., 2011). It is an indirect evidence of competi-
tion as a driver of community changes, which is also offered
by proportion of species traits that increasing competitive
ability. The decline in richness and evenness has been attrib-
uted to the increase in biomass, height of dominant plant
functional group, which resulted in light limitation (Borer
et al., 2014). Meanwhile, long-term grazing exclusion
caused litter accumulation, which in turn affected the com-
munity structure and diversity (Liu et al., 2010). Some au-
thors suggest that accumulated litter plays a more
important role in determining species richness than green
Copyright © 2016 John Wiley & Sons, Ltd.
biomass (Kelemen et al., 2013).The botanical components
in the RG30 indicated that the grassland underwent a change
from a community with small individuals and high density
to a community with larger individuals and lower density.
Indeed, the grass-dominated community on the Loess
Plateau was changed to a forb-dominated functional group.
This finding is in agreement with a previous study in fenced
alpine meadow (Wu et al., 2009). It is also consistent with
the result of Lin et al. (2015), which showed that plant func-
tional group shifted from rhizome bunch grasses to rhizome
plexus and dense plexus grasses during the degradation pro-
cess in alpine meadow.
It is worthwhile emphasizing that the importance of estab-

lishing and maintaining grassland communities with high di-
versity of dominant species and functional groups for
grassland restoration has been previously recognized (Bai
et al., 2004). The time elapsed since restoration has been
demonstrated that it affected the species richness and com-
position in grassland (Tikka et al., 2001; Lindborg &
Eriksson, 2004; Zhang & Dong, 2010). Our study showed
that long-term restoration leads to a decrease in species den-
sity, richness, and evenness. Therefore, in this study our
working hypothesis has been identified involving the limits
of restoration time for an effective productivity and diversity
in grassland restoration. For instance, our results showed
that productivity and diversity reached equilibrium after a
21-year natural restoration. This result is consistent with
the results of Jing et al. (2013), which showed that the
species diversity and biomass reached the peak values in
the 20th year in continental steppe grassland. The high di-
versity decline was previously found to occur as a result
of biomass accumulation and competition increasing
(Guo, 2005). The density, richness, and evenness, inte-
grated with both productivity and diversity, reached equi-
librium on the 19th, 22nd, and 26th years, respectively.
Evenness reached the peak value in approximately
15 years, and then gradually decreased. Thus, the results
indicated that the rational time is a very important factor
in ecological restoration and the optimum restoration time
required in RG is 19–21 years.
Restoration grassland ecosystem is a complex and lengthy

process, which is restricted by many biotic and abiotic fac-
tors (Cheng et al., 2011; Mukhopadhyay & Maiti, 2014;
Lu et al., 2015; Pereira et al., 2016). To evaluate the grass-
land restoration effect, both authropogenic and climatic im-
pacts should be considered. Diversity and productivity
changes represent the most responses of grassland to climate
changes and human activities (van Ruijven & Berendse,
2005; Gong et al., 2015). In some cases, the disturbances
caused some changes of other factors to affect productivity
and diversity (Pereira et al., 2014; Parras-Alcántara et al.,
2015; Wang et al., 2015). To maintain high-efficiency eco-
logical and economic benefits of grassland ecosystem, the
factors as many as possible should be considered in the stud-
ies. Long-term grassland restoration chronosequence in con-
tinuous and large spatial scales experiments should be
conducted in the future.
LAND DEGRADATION & DEVELOPMENT, 28: 699–707 (2017)
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CONCLUSIONS

Our results showed that long-term natural restoration in-
creased community productivity, but significantly decreased
species richness, diversity, and density. The dominant GFG
plays a decisive role on community structure and function
(productivity, richness, diversity, and density) during grass-
land succession. Grassland community showed a succession
from a community with the small individuals and high den-
sity to a community with larger individuals and lower density.
Grass-dominated community changed to forb-dominated one,
and a new degraded one was shown after 20-year succession
in the Loess Plateau. Our results suggest that changes of com-
munity structure and function were mainly derived from the
dominant grass functional group during the conversion of
cropland to grassland. The naturally restored grassland should
be utilized to suppress the leading role of the dominant func-
tional group before a new degradation of grassland commu-
nity function. Our study provided a key implication for
maintaining the community structure and function trade-off
for cropland-converted grassland management on regional
scale. Our study represents only three stages in a 30-year res-
toration chronosequence, so it is difficult to determine the
change of relationship between diversity and productivity
along the restoration time. Long-term and continuous experi-
ments should be designated for studying sustainable grass-
land restoration management regimes in the future.
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