Interprocedural Symbolic Analysis

Paul Havlak

CRPC-TR94451-S
May, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

RICE UNIVERSITY

Interprocedural Symbolic Analysis
by
Paul Havlak

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Ken Kennedy, Noah Harding Professor
Computer Science

Chair

Keith D. Cooper, Associate Professor
Computer Science

Robert S. Cartwright, Professor
Computer Science

John Bennett, Assistant Professor
Electrical and Computer Engineering

Houston, Texas

May, 1994

Abstract

Interprocedural Symbolic Analysis

by Paul Havlak

Compiling for efficient execution on advanced computer architectures requires
extensive program analysis and transformation. Most compilers limit their analysis to
simple phenomena within single procedures, limiting effective optimization of modular
codes and making the programmer’s job harder. We present methods for analyzing
array side effects and for comparing nonconstant values computed in the same and
different procedures.

Regular sections, described by rectangular bounds and stride, prove as effective in
describing array side effects in LINPACK as more complicated summary techniques.
On a set of six programs, regular section analysis of array side effects gives 0 to 39
percent reductions in array dependences at call sites, with 10 to 25 percent increases
in analysis time.

Symbolic analysis is essential to data dependence testing, array section analysis,
and other high-level program manipulations. We give methods for building symbolic
expressions from gated single-assignment form and simplifying them arithmetically.
On an suite of 33 scientific Fortran programs, symbolic dependence testing yields
reductions of 0 to 32 percent in the number of array dependences, as compared with
constant propagation alone. The additional time and space requirements appear
proportional to the size of the codes analyzed.

Interprocedural symbolic methods are essential in enabling array section analysis
and other advanced techniques to operate on multiple procedures. Our implementa-
tion provides this support while allowing for recompilation analysis to approximate
the incrementalism of separate compilation. However, direct improvement of data de-
pendence graphs from interprocedural symbolic facts is rare in the programs studied.

Overall, the use of our symbolic techniques in a production compiler is justified

by their efficiency, their direct enhancement of dependence testing within procedures,

11

and their indirect improvement of interprocedural dependence testing through array

side effect analysis.

Acknowledgments

As the prospect of finishing my dissertation begins fully to sink in, I realize again that
[would never have gotten this far without the help, good wishes and high expectations
of all my family, friends, and colleagues.

My wife, Lisa Gray, has been more patient than I deserve during my graduate
career, and I would be lost without her continuous love and support. I thank my
parents and all the Havlaks for being there when I need them.

I owe a great debt to my teachers over the years, especially to Wilma Hill and
Ronda McNew for giving me my first taste of rigorous science.

Rice and its Department of Computer Science have been my home for a long
time, and I am eternally grateful for the congenial atmosphere and for the inspiring
colleagues I have found there. The team efforts of the PFC and ParaScope projects
and the shared trials of graduate school have solidified several cherished friendships.

Finally, I would like to thank my advisor, Ken Kennedy, and the rest of my
thesis committee for seeing me through graduate school. 1 particularly appreciate the
extensive feedback provided by John Bennett. Thanks also to the many others who
have helped me improve the syntax and semantics of this document.

To all these, and my patient readers, thanks.

Contents

Abstract
Acknowledgments
List of Illustrations
List of Tables

List of Algorithms

Introduction
1.1 Program Analysis and Transformation
1.2 Symbolic Analysis
1.2.1 Symbolic Questionso
1.2.2 Partitioning the Problem
1.3 Research Overview
1.3.1 Goals. oo
1.3.2 Organization
Array Section Analysis
2.1 Introduction
2.2 Bounded Sections oo
2.2.1 Vectorsof Ranges L.
2.2.2 Operations on Ranges
2.3 Imitial Analysiso
2.3.1 Symbolic Analysis oo o
2.3.2 Avoiding Compilation Dependences
2.3.3 Building Summary Sections 0oL L.
2.4 Interprocedural Propagation
2.4.1 Translation into a Call Context
2.4.2 Treatment of Recursion.
2.5 Experimental Results 00000

2.5.1 Benchmarks

i
v
X1

xii

X111

= ho =

O 1 3 O Ot

vi

2.5.2 Precision. e 23
2.5.3 Efficiency 24
254 Utility . . . oo 24
2.6 Related Work 28
2.6.1 Summary Methods 00 L. 28
2.6.2 Reference Lists 29
2.6.3 Summary Sections Lo 31
2.7 Lessons e 32
2.7.1 Conditional Symbolic Analysis 33
2.7.2 Killed Regular Sections 34
2.7.3 Planof Attack 34
2.8 Summary e 35
Program Representations 36
3.1 Introduction 36
3.2 Control over Execution 37
3.2.1 Control Flow Graphs 37
3.2.2 Control Dependence Graphs 41
3.3 DataFlow 42
3.3.1 Variable References 43
3.32 SSAForm 45
3.4 GSA Form: Dataflow and Conditionals A7
3.4.1 Definition of TGSA Form 47
3.4.2 Construction of TGSA Form 50
3.5 Efficiency 58
3.5.1 Control-Flow Characteristics 59
3.5.2 Asymptotic Complexity L. 59
3.5.3 Experimental Performance 000 61
3.6 Related Work 64
3.6.1 Groundwork 64
3.6.2 High-level SSA form 64
3.6.3 Original GSA form o oL 64
3.6.4 Program Dependence Graphs 66
3.6.5 Semantics 66
3.7 Summary ... 67

4 Symbolic Expressions

4.1
4.2

4.3

4.4

4.5

4.6

4.7
4.8

Introductiono
Value Graphs
4.2.1 Formation Lo
4.2.2 Congruence
4.2.3 Equivalence oo
Value Numbering o
4.3.1 Partitioning
4.3.2 Hashing o
Rewriting
44.1 Constant Folding
4.4.2 Shallow Normalization
4.4.3 Arithmetic Simplification.
4.4.4 Recurrence Recognition
Comparing Program Expressions
4.5.1 Constant Differences 00
4.5.2 Exploiting Bounds
4.5.3 Dependence Testing L.
454 Slicingo
Evaluation of Performance
4.6.1 Expected Complexity L.
4.6.2 Experimental Results 0.
Related Work oo
SUMIMATY « « v v v v v e v e e e e e e e e e e e

5 Symbolic Predicates

5.1

5.2

Introduction L
5.1.1 Predicates vs. Expressions
5.1.2 Sources of Predicates
5.1.3 Outline of Chapter
Structure of Predicates
5.2.1 Predicates on Variables or on Values?
5.2.2 Self Predicates vs. Relational Predicates

5.2.3 Combining Predicates

Vil

68
68
71
71
72
73
76
76
7
78
79
79
80
82
84
84
84
84
86
86
86
87
91
94

5.3 Predicate Propagation Graphs 102
5.3.1 Control Flow Graph 103
5.3.2 Control Dependences 104
5.3.3 Mixing Control and Dataflow Predicates 105
534 Efficiency 106

5.4 Pairwise Linear Equalities L. 107
5.4.1 Construction L L 107
54.2 Composition L 109
5.4.3 Merge 110
5.4.4 Combination with Constant Ranges 111
5.4.5 Usage 114

5.5 Using Predicate Information 115
5.5.1 Test Elision oo 115
5.5.2 Dependence Analysis oL 116
5.5.3 Simplifying Uses oo 116

5.6 Related Work oo 117
5.6.1 Equality Predicateso 117
5.6.2 Inequality Predicates 117

5.7 Summary e 118

6 Whole-Program Propagation 119

6.1 Introduction 119
6.1.1 Traditional Interprocedural Analyses 119
6.1.2 Constant Propagation 121
6.1.3 Symbolic Interprocedural Analyses 122

6.2 Interprocedural Strategy oL 123
6.2.1 Separate Analysis and Transformation 123
6.2.2 Distinct Interprocedural Phases 124
6.2.3 Recompilation Analysis.o L. 125

6.3 Annotated Call Graph 125
6.3.1 Procedure Summaries. 126
6.3.2 Propagation 127

6.4 Initial Information oo 128

6.4.1 Prerequisites. Lo Lo 128

6.4.2 Important Symbolic Expressions
6.4.3 Important Symbolic Predicates
6.4.4 Related Annotations
6.5 Propagating Symbolic Information
6.5.1 Backwards Pass oo o
6.5.2 Forwards Pass oo
6.6 Exploiting Symbolic Information
6.6.1 Procedure Compilation
6.6.2 Cloning and Inlining
6.6.3 Recompilation Analysis. L.
6.7 Other Interprocedural Problems
6.7.1 KmLand USE.
6.7.2 Array Section Side Effectso 000
6.7.3 Test Elision oo
6.8 Evaluation o o
6.8.1 Passed Predicateso
6.8.2 Effect on Dependence Testing
6.9 Related Worko
6.9.1 Flow-Sensitive Analysis.
6.9.2 Symbolic Analysis oo oo
6.10 Summary e
7 Conclusions and Future Work
7.1 Contributions
7.2 Evaluation
7.2.1 Intraprocedural Analysis
7.2.2 Interprocedural Analysis
7.3 Future Work
74 Conclusion
Bibliography

A Experimental Benchmarks
A.1 Perfect Club Benchmarks.
A.2 SPEC Benchmarks

X

129
130
130
130
130
132
132
132
132
133
133
134
134
134
135
137
137
140
140
144
146

147
147
148
149
151
151
153

154

A.3 RiCEPS
A.4 NAS Benchmarks

2.1
2.2

3.1
3.2
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

Illustrations

Lattice for Regular Section Subscripts 14
Summarizing the References A[l,2], A[4,8], and A[10,6] 27
Representations of Control o L. 38
More Representations of Control 39
Loop Representations Lo oL 50
Insertion of Preheader, Postbody and Postexit Nodes 51
SSA-form Source, Gy, and v dag for Example 56
SSA size vs. Plain References 62
Comparing size of TGSA and SSA forms 62
TGSA Elements per Plain Reference 63
Total Analysis Time per CFG Element 63
Different versions of GSA formon Gy L oo 65
Building a Value Graph oo oL 70

Saved Value Graph bytes per AST byte 88

2.1
2.2
2.3

3.1

4.1

6.1

7.1
7.2

Al
A2
A3
A4

Tables

Analysis times in seconds (PFC on an IBM 3081D) 24
Effects of Regular Section Analysis on Dependences 25
Parallelization of LINPACK 27
Control-Flow Statistics of Benchmarks 58
ParaScope Data Dependence Edges 90
Interprocedural Predicates on Entry 0L 136
Intraprocedural Analysis Evaluation 149
Interprocedural Analysis Evaluation 150
Perfect Club Benchmarks. 164
SPEC Benchmarks 164
RicEPSPrograms 165
NAS Benchmarks oo 166

2.1
2.2
2.3
24
2.5
3.1
3.2
3.4
3.5
4.1
4.2
5.1
5.2
5.3
6.1

Algorithms

Overview of Regular Section Analysis 12
Standardizing a Range to Lower-Bound-First Form 15
Moving Ranges to the Top Level of an Expression 15
Merging Expressions and Ranges 16
Translating a Summary Section L. 20
Building Loop-Nesting Tree 40
Building Control Dependences 42
Modified SSA Form Construction 52
Replacing a ¢ withadagofvs.o L. 54
Building a loop-termination predicate 58
Scoring an Expression for Sorting 81
Value numbering a go 83
Converting Symbolic Expressions to Pairwise Equalities 108
Merging Sets of Pairwise Equalities 110
Converting Pairwise Equalities to Symbolic Expressions 113
Translating a Return Valueo 0oL 131

Chapter 1

Introduction

In the past decade, the computer power available to scientific programmers has ex-
panded greatly. Part of this gain comes from the continuing speed improvements of
single-chip microprocessors. But much of the gain, especially for the most computa-
tionally expensive programs, has come from employing many processors in parallel.
Computer architects have discovered how to connect multiple processors with
high-speed memory and communication networks. Application programmers have
found ways to make these processors cooperate on single problems. The challenge
remains to make the same program solve these problems on different parallel archi-
tectures. As things stand, a program originally written for a mainframe computer
might have been rewritten several times for novel architectures over the past two

decades:
e in the mid-1970s, with vectorizable DO-loops for a Cray-style vector processor

e in the early 1980s, with multitasking for parallel vector big iron (two to four

processors)

e in the mid-1980s, with DOALL loops for shared-memory multiprocessors (eight

to 24 processors connected by bus or switch)

e in the late 1980s, using array section notation for a SIMD parallel computer

(such as the CM-1, CM-2, or Maspar)

e today, with explicit message-passing for distributed-memory computers

These are a few of the general architectural categories. Different programming sup-
port on machines of similar architecture lead to additional reprogramming, a par-
ticular problem given the high rate of attrition among vector and parallel computer
vendors.

Mere portability is no solution to this Sisyphean task. Demanding programmers

will insist on hand-tuning their programs for specific machines so long as they achieve

speedups. Computationally intensive applications need portable performance, which
must be supplied through expressive languages, ingenious run-time support, and so-
phisticated compilers.

Compilers play many roles in this task:

e For a clearly written sequential program, relying primarily on array computa-
tions, different compilers may be able to produce good code for the most of

parallel architectures listed above.

e For an explicitly parallel program, written with parallel language primitives
or added libraries, compilers can be important to optimizing both the parallel

synchronization and communication and the sequential computation.

e For any program, compilers must optimize the sequential fragments inside and
in between the parallel components. Because of Amdahl’s Law, slow execution

of sequential components can greatly limit the gains of parallelism.

While language support for machine-independent programming is hard to provide,
it is the preferred solution. It would allow continued flexibility in computer architec-
tures and would simplify the programming process by hiding machine details, so that
programmers can focus on the application problem.

This thesis presents work on symbolic analysis: compile-time methods for reason-
ing about program values that may not be constant. While symbolic analysis is only
a piece of the language support puzzle, it is fundamental. Most useful programs have
important computations governed by non-constant values, which must be analyzed
to determine what the program does before it can be transformed. Symbolic analysis
is essential to successtful dependence analysis of realistic programs. Our techniques
have proven helpful in several high-level compilation methods, including optimization

of run-time support.

1.1 Program Analysis and Transformation

The heart of an optimizing compiler is analysis of what a program does and trans-
formation of the program to do it more efficiently, using less time or storage. Recent

years have brought a number of challenges.

Proliferation of Uses

Program analysis and transformation are not just for compilers any more; further-

more, compilers are asked to generate more flexible code.

¢ Run-time support. Run-time analysis involves the insertion of code, perhaps
by the compiler, that answers questions about the program’s meaning as it
runs. Increasing use of run-time techniques, especially for parallelization, create

more opportunities for optimization. Examples include data race detection and

scheduling of run-time data-dependent loops [HKMC90, DSvH93].

e Interactive tools. The analysis used for compilation can also help the authors
and maintainers of programs. Analysis and transformation must be cleanly sep-
arated; a programmer will be unhappy if the smart editor changes the program,

even by just propagating constants, without being asked [KMT91a].

Larger-scale transformations

Continually improving processor technology has made it harder to build memories
with high enough bandwidth and low enough latency to keep the processor supplied
with data. Computer architects address this problem in several ways. For a single
processor, levels of cache can be added between the processor and main memory,
giving the illusion, at least for some access patterns, that the large main memory has
much lower latency. In a distributed-memory system, several microprocessors, each
with its own local memory, are connected through a network. The aggregate memory
bandwidth to all the processors can be much higher than is possible to deliver to a
single processor with current technology. (These two methods are independent and
generally combined.)

Optimization for these advanced architectures requires the the hiding of memory
latency and frequently the introduction of explicit parallelism. These entail extensive
rewriting of loops, and often moving code across procedure boundaries as well.

Many compilers in the past have gotten by with analyzing small sequences of
instruction to improve instruction selection and register allocation. Two such tech-
niques were called peephole optimization, examining a small instruction window, and
local analysis, examining straight-line instruction sequences.

Current compilers generally do some analysis of the entire procedure being com-

piled; this scale is generally called global analysis. However, since we also wish to

consider the whole program, this name seems confusing. We will call this scale sub-
procedural analysis. Once we start looking past the interface of call sites, we require

new, interprocedural techniques.

Increasing procedure counts

Programs are growing larger and more modular. The former is a result of larger
computer memories and more complicated applications; the latter is the attempt of
overtaxed programmers to manage the complexity of their task. These trends combine
to produce rapid growth of the number of procedures in a typical program.

One approach to interprocedural analysis would be to bring the whole program —
complete representations of every procedure — into memory at once. This could be
done while keeping the procedures separate, or some procedures could be expanded
inline, replacing their call sites with the procedure body. But any approach which

analyzes the whole program monolithically has disadvantages:

e Whole programs can be too large. Programs of 100,000 or one million state-
ments are not unheard of, and they may simply not fit in any affordable amount

of memory.

e Monolithic recompilation can be too slow. Even the whole program fits in
memory, or we find some way that it doesn’t need to, we must be careful about
giving up separate compilation. In the past, the only part of rebuilding a
program that required access to all the procedures was the linkage phase. We
do not want every procedure to be recompiled from scratch every time a small

change is made.

Advanced programming tools for today’s architectures need interprocedural anal-
ysis methods that are informative, yet maintain some semblance of efficiency and

separate compilation. Symbolic analysis is one area seriously in need of such meth-

ods.

1.2 Symbolic Analysis

Symbolic analysis, in its most general sense, encompasses any method capable of
representing and comparing non-constant values. While methods for dealing with
constants and some simple symbolics have long been used in compilers, the enlarging

scope of analysis and transformation motivates a general approach.

1.2.1 Symbolic Questions

Symbolic analysis is an intermediate step in optimization; it does not improve the
program directly but improves knowledge of the program’s meaning to increase the
power of later phases. Several components of analysis and transformation could ex-
ploit knowledge of j, k, and n in the following fragment.
subroutine foo(j,k,n)
call init(j,k,n)
doi1=1,n
A(i+])
A(i+k)
enddo

return

end

Common subexpression elimination deletes redundant computations of equiva-
lent expressions [ASU86]. If j and k can be proven equivalent, then the two
subscript expressions are also the same and their value need only be computed

once per iteration.

Constant propagation replaces variable references and expressions with equivalent
constants [WZ91]. Interprocedural versions need ways of representing values
that are not constant yet [CCKT86, GT93]. In the example, the values of j, k,

and n passed to init are constant if the values passed into foo are constant.

Test elision removes branches and (unexecutable) dead code when comparisons and
boolean expressions can be evaluated [WZ91]. If we have (n == 1) on entry
to the do loop, then it only executes once and can be rewritten as straight-line

code. If we have (n < 1), then the loop does not execute at all and may be

deleted.

Array section analysis needs to manipulate and compare symbolic subscript ex-
pressions in order to summarize subarray accesses. The subarray modified by
the loop can be described as A[(1 + j) : (n + k)] if we know (k > j); if we
know nothing, the section descriptor would have to be more complicated or less

precise.

Dependence testing also needs to compare symbolic subexpressions, in order to
determine which array accesses overlap in memory and which are independent
(and thus may run in parallel). Above, if (|j—k| > n), then the two assignments
never hit the same location, so there are no dependences, and the loop may be

parallelized.

Performance estimation can better determine which parts of a program are most
computationally intensive when loop bounds can be compared to each other or

to constants. If (n > 1), it may be profitable to run the loop in parallel.

1.2.2 Partitioning the Problem

We divide the symbolic analysis problem into two parts to be solved separately.

Expression matching represents and compares program expressions based on their
form. In a sense, this focuses on how expressions are computed, without caring

if they are computed.

Predicate analysis exploits other information about values, not necessarily tied to
their form of expression. Particularly important are the control decisions, error
conditions, and programmer assertions that govern whether or not expressions

are executed.

Why the distinction? Informally, we feel that the form of expressions captures
a fundamental notion of what is computed, whereas predicate analysis deals mainly
with the context in which a computation is used. Consider the following fragment:
read 1
j=ix2
A[31 = ...
if P then
Alix2] = ...
else
Al31 = ...
endif
Ignoring the context of the references, the three subscript expressions clearly have
the same value, so that the assignments all hit the same element of A. The predicate

P may give us additional constraints on the subscript values, and we can see that

only one of the later definitions executes. We expect to get much more benefit from
analyzing the forms of expressions than from analyzing predicates. The main purpose

of partitioning the problem is to keep the latter from interfering with the former.

1.3 Research Overview

1.3.1 Goals

Our goal in this work is to design and test an efficient, effective, general technique
for analyzing symbolic values over whole programs.

Experimental Implementation

We have implemented the central components of our symbolic analysis method in the
ParaScope programming environment for Fortran [KMT91b, KMT91a]. They form

the basis for manipulation of non-constant expressions in:
e interprocedural constant propagation [GT93]
e interprocedural array section analysis [Tsa94]
e interprocedural performance estimation
e symbolic dependence testing within procedures
e optimization of run-time preprocessing [DSvH93]

The implementation is stable enough to run on most of the well-known Fortran bench-
mark applications listed in Appendix A. We hope it will serve as a foundation both
for further enhancement of symbolic analysis and for its application in program opti-

mization.

Effectiveness

Our main criterion for the value of symbolic analysis is its effect on dependence
analysis and parallelization. ParaScope currently lacks an automatic parallel code
generator, so we judge our success by comparing ParaScope dependence graphs built
with symbolic information against those built without. A dependence tester using our
symbolic analysis infrastructure should prove more effective in disproving dependences

than the demonstrably successful method in pPrc [GKT91]. However, the current

implementation of dependence analysis in ParaScope is not yet mature enough for a

fair comparison of the underlying symbolic analysis systems.

Efficiency

A significant contribution of this work is a useful symbolic analysis method that is
efficient enough to use in a compiler. We would consider this research unsuccessful
had the memory and time usage of the implementation grown disproportionately with
the size of the programs analyzed.

While such overall efficiency measurements are important, they are no longer suffi-
cient. The exceptional performance needs of an interactive programming environment
compel the provision of incremental analysis techniques.

True incrementality involves the maintenance of special data structures that need
only be partially modified after an edit — as opposed to the non-incremental tech-
nique of throwing everything away and starting over. While we have chosen analysis
methods that we believe can be adapted to incremental updates, we are much closer

to achieving weaker forms of incrementality:

Demand-driven analysis is not strictly an incremental feature, because it does not
save old data structures for use after an edit. However, by building symbolic
information only on demand, we reduce the need for immediate reanalysis after
an edit. If the information demanded between edits is substantially less than

the complete solution, we can save significant time.

Recompilation analysis provides a degree of incrementality at the procedure level.
Interprocedural analysis is driven by initial analysis files derived from each
procedure, and produces solution files for use in optimizing each procedure.
When one source procedure of a compiled program is edited, we need only
rebuild that procedure’s initial information. The interprocedural analysis is re-
peated in toto, but recompilation of an individual procedure is only required if
the previous compilation relied on interprocedural solutions that have changed

[Tor85, Hal90].

None of these incremental techniques are included in our implementation, but they

will be important considerations in a production system.

1.3.2 Organization

This dissertation describes the design and implementation of two symbolic analysis
systems. Chapter 2 describes an implementation of interprocedural array section anal-
ysis. Experience with that system convinced us that an improved symbolic analysis
framework was needed.

Chapter 3 presents the program representations which form the foundation for
our symbolic analysis. Chapter 4 describes how we recognize and compare symbolic
expressions using a combination of global value numbering and arithmetic simplifi-
cation. Chapter 5 shows how symbolic predicate information can be combined with
our symbolic expressions.

Chapter 6 presents an interprocedural symbolic propagation framework that ad-
dresses the recompilation problem. Chapter 7 discusses future research directions and
considers the contributions and implications of this work. Appendix A describes the

benchmarks used in the experiments of Chapters 3, 4 and 6.

10

Chapter 2

Array Section Analysis

2.1 Introduction

A major goal of compilation research is to generate efficient code from high-level
language constructs. However, most current compilers, even for supercomputers,
lack the ability to analyze multiple procedures simultaneously. In the absence of
better information, compilers must assume that any procedure call reads and writes
every accessible variable, hindering optimization. They discourage programmers from
using modular programming style, in which large blocks of code are split into multiple
procedures.

Were interprocedural analysis and optimization better supported, programmers
could write in a more readable style and compilers still manipulate large regions of
code. Wide-ranging compiler optimization would be particularly helpful with parallel
computers, many of which still require a large granularity of work for efficiency.

Array side effects require special attention in interprocedural analysis. Consider

the following loop:

DO 100 I =1, N
CALL SOURCE(A,I,M)
B(I) = A(INDEX(I),I)
100 CONTINUE

If SOURCE only modifies locations in the Ith column of A, then parallel execution of the
loop is deterministic. Classical, scalar interprocedural analysis only discovers which
variables are used and which are defined as side effects of procedure calls. We must
determine the subarrays that are accessed in order to safely exploit the parallelism.
Callahan and Kennedy proposed a method called regular section analysis for
tracking interprocedural subarray side-effects. Regular sections describe side effects
to common substructures of arrays such as elements, rows, columns and diagonals
[CK88a, Cal87]. This chapter describes our adaptation of regular sections and the

design and implementation of array side effect analysis in the Rice Parallel Fortran

11

Converter (PFC) [AK84], an automatic parallelization system that can also export de-
pendence information to the ParaScope programming environment [KMT91b]. The
overriding concern in the implementation is that it be effective and efficient enough
to be incorporated in a practical compilation system.

Algorithm 2.1 summarizes the steps of the analysis, which is integrated with
the three-phase interprocedural analysis and optimization structure of PFC [ACKS6,
CCKT86]. Regular section analysis adds less than 8000 lines to PFC, a roughly
150,000-line PL/I program which runs under IBM VM /CMS.

This project successfully demonstrated that interprocedural subarray analysis is
useful and inexpensive. However, the implementation has several limitations which
could be improved by better support for the representation and comparison of sym-
bolic subscripts. Most of these results were previously reported in [HK91].

The remainder of this chapter is organized as follows. Section 2.2 describes our
framework for representing bounded subarrays. Sections 2.3 and 2.4 describe the
construction of initial sections and their propagation, respectively. Section 2.5 ex-
amines the performance of regular section analysis on various Fortran applications.
Section 2.6 discusses related work on computing array side effects. Section 2.7 dis-

cusses future work, and we conclude in Section 2.8.

2.2 Bounded Sections

A simple way to improve dependence analysis around a call site is to perform inline
expansion, replacing the called procedure with its body [ACT2]. This precisely rep-
resents the effects of the procedure as a sequence of ordinary statements, which are
readily understood by existing dependence analyzers. However, even if the whole pro-
gram becomes no larger, the loop nest which contained the call may grow dramatically,
causing explosive growth in resource requirements due to the non-linearity of array
dependence analysis and other single-procedure compilation algorithms [CHT91].
To gain some of the benefits of inline expansion without its drawbacks, we must
find another representation for the effects of the called procedure. For dependence
analysis, we are interested in the memory locations modified or used by a procedure.
Given a call to procedure p at statement S; and an array parameter or global variable

A, we wish to compute:

o the set M§‘1 of locations in A that may be modified via p called at S; and

o the set Uél of locations in A that may be used via p called at S5j.

12

Initial_Analysis:
for each procedure
for each array (formal parameter, global, or static)
save section describing shape
for each reference
build ranges for subscripts
merge resulting section with summary MOD or USE section
save summary sections
for each call site
for each array actual parameter
save section describing passed location(s)
for each scalar (actual parameter or global)
save range for passed value

Interprocedural Propagation:
solve other interprocedural problems
build call graph
compute scalar MOD and USE
propagate constants
mark section subscripts and scalars invalidated by modifications as L
iterating over the call sites
translate summary sections into call context
merge translated sections into caller’s summary

Dependence_Analysis:
for each procedure
for each call site
for each summary section
simulate a DO loop running through the elements of the section
test for dependences (Banerjee’s, GCD)

Algorithm 2.1 Overview of Regular Section Analysis

13

We need comparable sets for simple statements as well. We can then test for de-
pendence by intersecting sets. For example, we assume a true dependence from a

statement S7 to a following statement S5, based on an array A, unless we can prove
that
Mg nUg ==4.

Bounded regular sections comprise the same set of rectangular subarrays that
can be written using triplet notation in the proposed Fortran 90 standard [X3J89].
They can represent sparse regions such as stripes and grids and dense regions such

as columns, rows, and blocks.

2.2.1 Vectors of Ranges

The descriptors for bounded regular sections are vectors of elements from the subscript

lattice in Figure 2.1. Lattice elements include:

e invariant expressions, containing only constants and symbols representing the

values of parameters and global variables on entry to the procedure;

e ranges, giving invariant expressions for the lower bound, upper bound, and

stride of a variant subscript; and

e | . indicating no knowledge of the subscript value.

While ranges may be constructed from invariants through a sequence of meet opera-
tions, they may also be built directly from the bounds of a loop induction variable.
Since no constraints between subscripts are maintained, merging two regular sec-
tions for an array of rank d requires only d independent invocations of the subscript
meet operation. We test for intersection of two sections with a single invocation of
standard d-dimensional dependence tests. Translation of a formal parameter section
to one for an actual parameter is also an O(d) operation (where d is the larger of the

two ranks).

2.2.2 Operations on Ranges

Ranges are typically built to represent the values of loop induction variables, such as

I in the following loop.

14

Expressions

Ranges of Size 2

Ranges of Size 3

Finite Ranges

Unknown

Figure 2.1 Lattice for Regular Section Subscripts

DOI =1, u, s
A(I) = B(2%I+1)
ENDDO

We represent the value of T as [: u : s]. While [and u are often referred to
as the lower and upper bound, respectively, their roles are reversed if s is negative.
We can produce a standard lower-to-upper bound form if we know [< w or s > 1;
this operation is described in detail in Algorithm 2.2. Standardization may cause loss
of information; therefore, we postpone standardization until it is required by some
operation, such as merging two sections.

Expressions in ranges are converted to ranges; for example, 2*%I+1 in the above
loop is represented as [(2*% {4+ 1) : (2*u+ 1) : (2% s)]. Only invariant expres-
sions are accurately added to or multiplied with a range; Algorithm 2.3 constructs
approximations for sums of ranges.

Ranges are merged by finding the lowest lower bound and the highest upper bound,
then correcting the stride. An expression (without embedded ranges) is merged with

a range or another expression by treating it as a range with a lower bound equal to

15

function standardize([/: u : s])
begin
diff ;= u —{
perfect := false
if diff and s are both constant then
if sign(diff) # sign(s) then return(T) /* empty range */
direction := sign(diff)
u := u - direction * (abs(diff) mod abs(s))

perfect := true

else if diff is constant then direction := sign(diff)
else if s is constant then direction := sign(s)
else return(L)

select direction
when == 0 return(/)
when > 0 return([/: u : s])
when < 0 if perfect then return(u: [: (-s)])
else return(u:!:1])
end select
end.

Algorithm 2.2 Standardizing a Range to Lower-Bound-First Form

function build_range(e)
begin
if e is a leaf expression (constant, formal, or global value; or 1) then
return(e)
for each subexpression s of e
replace s with build_range(s)
select form of e
when [l7 1wy @59+ [lo: ug @ so] [[1 : u) :s}] := standardize([l; : u; : 51])
[1 : uh @ s5)] := standardize([l5 : uy : s2])
veturn([(/y + 1) : (t; +) : ged(s}, 54)])
s]+a return([(a+1):(a+ u): s])
[(

s]*xa return([(a 1) : (a*xu): (a*s)])

=~

when a+ [l :u: s]or [l
when a* [l :u:s]or [l
otherwise return(Ll)

Lu
LU

end select
end.

Algorithm 2.3 Moving Ranges to the Top Level of an Expression

16

function merge(a, b)

begin
ifa == 1 or b == 1 then return(l)
ifa == T or a == b then return(b)

ifb== then return(a)
if a is a range then let [/, u,, s,] := standardize(a)
else let [l,,uy,$4] := [a,a, T]
if b is a range then let [l;, us, s3] := standardize(b)
else let [l;, up, sp] = [b,b, T]
I :=min(ly, 1) /* min, max, gecd, and abs can return 1L */
u' := max(ug, up)
s' 1= ged(sq, Sp,abs(ly, — 1)) /* ged(T, a) returns a */
if I' == then return(L)
else if s’ == 1 then return([I’: v’ : 1])
else return([l' : v’ : §])

end.

Algorithm 2.4 Merging Expressions and Ranges

its upper bound. Algorithm 2.4 thus computes the same result for 1 A 3 A 5 as for
[L:5:4] A3; namely, [1:5:2].

Array references whose subscripts refer to scalar formal parameters and global
variables can be converted to parameterized sections. We build symbolic expressions
for such subscripts, attempting to put the constants at the top, and assign them

global value numbers so that the symbolic parts can be quickly tested for equality.

2.3 Initial Analysis

For each procedure, we construct symbolic subscript expressions and accumulate ini-
tial regular sections with no knowledge of interprocedural effects. The precision of
our analysis depends on recording questions about side effects, but not answering

them until the results of other interprocedural analyses are available.

17

2.3.1 Symbolic Analysis

Constructing regular sections requires the calculation of symbolic expressions for ar-
ray subscripts. While there are many published algorithms for performing symbolic
analysis and global value numbering [Kar76, RT81, RWZ88], their preliminary trans-
formations and complexity make them difficult to integrate into PFC. Our imple-
mentation builds on PFC’s existing dataflow analysis machinery to represent symbolic
expressions by global value numbers.

Leaf value numbers denote constants and the global and parameter values available
on procedure entry. We build value numbers for expressions by recursively obtaining
the value numbers for subexpressions and reaching definitions. Value numbers reach-
ing the same reference along different det-use edges are merged. If either the merging
or the occurrence of an unknown operator creates a unknown (L) value, the whole
expression is lowered to 1.1

Induction variables are recognized by their defining loop headers and replaced
with the inductive range. (For historical reasons, auxiliary induction variables are not

identified in this initial analysis.) For example, consider the following code fragment.

SUBROUTINE S1(A,N,M)
DIMENSION A(N)
DOI =1, N

A(M*I) = 0.0
ENDDO
RETURN
END

Dataflow analysis constructs def-use edges from the subroutine entry to the uses
of N and M, and from the DO statement to the use of I. It is therefore simple to
compute the subscript in A’s regular section, M * [1 : N : 1], which is converted to
the range [M: M* N : M| (the names M and N are actually replaced by value numbers
referring to their formal parameter indices). Note that expressions that are nonlinear
during initial analysis may become linear in later phases, especially after constant

propagation.

!Chapter 4 gives a more subtle treatment of this and other issues in symbolic expression analysis.

18

2.3.2 Avoiding Compilation Dependences

To construct accurate value numbers, we require knowledge about the effects of call
sites on scalar variables. However, using interprocedural analysis to determine these
effects can be costly.

A programming support system using interprocedural analysis must examine each
procedure at least twice: once when gathering initial information to be propagated
between procedures, and again when using the results of this propagation in depen-
dence analysis and/or transformations.? By pre-computing the initial information,
we can construct an interprocedural propagation phase which iterates over the call
graph without additional direct examination of any procedure.

To achieve this minimal number of passes, all interprocedural analyses must gather
initial information in one pass, without the benefit of each others’ interprocedural
solutions. However, to build precise initial regular sections, we need information
about the side effects of calls on scalars used in subscripts. In the following code
fragment, we must assume that M is modified to an unknown value unless proven

otherwise:

SUBROUTINE S1(A,N,M)
DIMENSION A(N)
CALL CLOBBER(M)
AM) = 0.0
RETURN

END

To achieve precision without adding a separate initial analysis phase for regular
sections, we build regular section subscripts as if side effects did not occur, while
annotating each subscript expression with its hazards, or side effects that would
invalidate it. We thus record that A(M) is modified, with the sole parameter of
CLOBBER as a hazard on M. During the interprocedural phase, after producing the
classical scalar side effect solution, but before propagating regular sections, we check
to see if CLOBBER may change M. If so, we change S1’s array side effect to A(L). A
similar technique has proven successful for interprocedural constant propagation in

pPFC [Tor85, CCKT86].

2 Another pass is needed to examine call sites for building the call graph, but this can be combined
with the initial information gathering. For some problems, the initial pass and the usage pass can
be combined, but then a separate pass is still needed to build the call graph

19

Hazards must be recorded with each scalar expression saved for use in regular
section analysis: scalar actual parameters and globals at call sites as well as array
subscripts. When we merge two expressions or ranges, we take the union of their

hazard sets.

2.3.3 Building Summary Sections

With the above machinery in place, the USE and MOD regular sections for the local
effects of a procedure are constructed easily. In one pass through the procedure, we
examine each reference to a formal parameter, global, or static array. The symbolic
analyzer provides value numbers for the subscripts on demand; the resulting vector
is a regular section. After the section for an individual reference is constructed, it is

immediately merged with the appropriate cumulative section(s), then discarded.

2.4 Interprocedural Propagation

Regular sections for formal parameters are translated into sections for actual param-
eters as we traverse edges in the call graph. The translated sections are merged with
the summary regular sections of the caller, requiring another translation and propa-
gation step if this changes the summary. To extend our implementation to recursive

programs and have it terminate, we must bound the number of times a change occurs.

2.4.1 Translation into a Call Context

If we were analyzing Pascal arrays, mapping the referenced section of a formal pa-
rameter array to one for the corresponding actual parameter would be simple. We
would only need to replace formal parameters in subscript values of the formal section
with their corresponding actual parameter values, then copy the resulting subscript
values into the new section. However, Fortran provides no guarantee that formal
parameter arrays will have the same shape as their actual parameters, nor even that
arrays in common blocks will be declared to have the same shape in every procedure.
Therefore, to describe the effects of a called procedure for the caller, we must translate
the referenced sections according to the way the arrays are reshaped.

One straightforward translation method is to linearize the subscripts for the ref-
erenced section of a formal parameter, adding the offset of the passed location of the

actual parameter [BC86]. The resulting section would give referenced locations of the

function translate(boundsr, refg, boundsy, passy)
begin
if refg == T then return(T)
consistent := true
for ¢ := 1 to rank(4)
if not consistent then ref,[i] ;== L
else if ¢ > rank(F) then ref,[¢] := pass,[i]
else
replace scalar formal parameters in boundsg and ref
with their corresponding actual parameters
bounds;:= boundsg[i] - lo(boundsg[i]) + pass,[i]
ref ;= refg[i] - lo(boundsg[i]) + pass|[i]
consistent := (bounds; == boundsy[])
if consistent then ref[i] := ref,;
else if stride(ref,;) == hi(boundsa[i + 1]) - lo(boundsa[t + 1]) then
/* delinearization is possible */
if (¢ == rank(F)) and ((ref; fits in bounds,[i]) or assume fit) then

refp[1] := ref;

else ref,[i] :== L /* conservative answer */
end for
return(ref,)
end.

Algorithm 2.5 Translating a Summary Section

20

21

actual as if it were a one-dimensional array. However, if some subscripts of the origi-
nal section are ranges or non-linear expressions, linearization contaminates the other
subscripts, greatly reducing the precision of dependence analysis. For this reason, we
forego the effort of linearization and translate significantly reshaped dimensions as L.

Algorithm 2.5 shows one method for translating a summary section for a formal
parameter F into a section for its corresponding actual parameter A. Translation
proceeds from left to right through the dimensions, and is precise until a dimension is
encountered where the formal and actual parameter are inconsistent (having different
sizes or non-zero offset). The first inconsistent dimension is also translated precisely
if it is the last dimension of F and the referenced section subscript value(s) fit in the
bounds for A. Delinearization, which is not implemented, may be used to recognize
that a reference to F with a column stride the same as the column size of A corresponds

to a row reference in A.

2.4.2 Treatment of Recursion

The current implementation handles only non-recursive Fortran. Therefore, it is
sufficient to proceed in reverse invocation order on the call graph, translating sections
up from leaf procedures to their callers. The final summary regular sections are built
in order, so that incomplete regular sections need never be translated into a call site.
However, the proposed Fortran 90 standard allows recursion [X3J89], so it must be
handled someday. Unfortunately, a straightforward iterative propagation of regular
sections will not terminate, since the lattice has unbounded depth.

Li and Yew [LY88b] and Cooper and Kennedy [CK88b| describe approaches for
propagating subarrays that are efficient regardless of the depth of the lattice. How-
ever, it may be more convenient to implement a simple iterative technique while
simulating a bounded-depth lattice. If we maintain a counter with the summary
regular section for each array and procedure, then we can limit the number of times
we allow the section to become larger (lower in the lattice) before going to L. We
suggest keeping one small counter (e.g., two bits) per subscript. Variant subscripts
will then go quickly to L, leaving precise subscripts unaffected. If we limit each
subscript to being lowered in the subscript lattice k& times, then an array of rank d
will have an effective lattice depth of kd + 1.

Since each summary regular section is lowered at most O(kd) times, each associ-

ated call site is affected at most O(kdv) times (each time involving an O(d) merge),

22

where v is the number of referenced global and parameter variables. In the worst
case, we then require O(kd?ve) subscript merge and translation operations, where e
is the number of edges in the call graph. This technique allows us to use a lattice
with bounds information while keeping time complexity comparable to that obtained

with the restricted regular section lattice.

2.5 Experimental Results

The precision, efficiency, and utility of regular section analysis must be demonstrated
by experiments on realistic programs. For these experiments, our candidates for
realistic programs are the LINPACK library of linear algebra subroutines [DBMST9]
and the Rice Compiler Evaluation Program Suite. We ran the programs through
regular section analysis and dependence analysis in PFC, then examined the resulting
dependence graphs by hand and with the ParaScope editor [BKK*89].

2.5.1 Benchmarks

LINPACK

Analysis of LINPACK provides a basis for comparison with other methods for analyzing
interprocedural array side effects. Both Li and Yew [LY88a] and Triolet [Tri85] found
several parallel calls in LINPACK using their implementations in the University of
Illinois translator, Parafrase. LINPACK proves that useful numerical codes can be
written in the modular programming style for which parallel calls can be detected.
However, LINPACK is a set of library routines, not a complete program. To test
our interprocedural analysis, we constructed a dummy program which calls all the
main LINPACK entry points, passing unknown values for each parameter. Realistic
programs have sparser use of linear algebra, but consistently pass the same constant

value for certain library parameters (such as 1 for an array stride).

RiCEPS

The Rice Compiler Evaluation Program Suite is a collection of complete applications
codes from a broad range of scientific disciplines. Our colleagues at Rice have already
run several experiments on RiCEPS. Porterfield modeled cache performance using an
adapted version of PFC [Por89]. Goff, Kennedy and Tseng studied the performance
of dependence tests on RiCEPS and other benchmarks [GKT91]. Some RiCEPS and

23

RicEPS candidate codes have also been examined in a study on the utility of inline
expansion of procedure calls [CHT91]. The six programs studied here are two RiCEPS

codes linpackd and track) and four codes from the inlining study.’?

2.5.2 Precision

The precision of regular sections, or their correspondence to the true access sets, is
largely a function of the programming style being analyzed. LINPACK is written in
a style which uses many calls to the BLAS (basic linear algebra subroutines), whose
true access sets are precisely regular sections. We did not determine the true access
sets for the subroutines in RiCEPS, but of the six programs analyzed, only dogleg
and linpackd, which actually call LINPACK, exhibited the LINPACK coding style.
While there exist regular sections to precisely describe the effects of the BLAS, the
initial analysis phase was unable to construct them under complicated control flow.
With changes to the BLAS to eliminate unrolled loops and the conditional computation
of values used in subscript expressions, our implementation was able to build minimal
regular sections that precisely represented the true access sets. The modified DSCAL,

for example, looks as follows:

SUBROUTINE DSCAL(N, DA, DX, INCX)
DOUBLE PRECISION DA, DX(*)
IF (N .LE. 0) RETURN
DO I = 1, N*INCX, INCX
DX(I) = DA * DX(I)
ENDDO
RETURN
END

Obtaining precise symbolic information is a problem in all methods for describing
array side effects. Triolet made similar changes to the BLAS; Li and Yew avoided them
by first performing interprocedural constant propagation. The fundamental nature
of this problem indicates the desirability of a clearer Fortran programming style or

more sophisticated handling of control flow (such as that described in Section 2.7).

3Note that this set of programs is disjoint from the RicEPs programs described in Appendix A.
We omitted 1inpackd from the experiments of later chapters because it is not a genuine application
program, and we used another version of track included in the Perfect Club benchmarks [CKPK90].

24

program IP IP %
name Lines | Procs | only | +RS | Change
efie 1254 18 1 209 | 232 +10
euler 1113 13] 117 | 138 +15
vortex 540 19 65 87 +25
track 1711 34 | 191 225 +15
dogleg 4199 48 | 272 | 377 +28
linpackd | 355 10 28 44 +36
total 9172 142 | 882 | 1103 +25

Table 2.1 Analysis times in seconds (PFC on an IBM 3081D)

2.5.3 Efficiency

We measured the total time taken by PFC to analyze the six RiCEPS programs.
Parsing, initial analysis, interprocedural propagation, and dependence analysis were
all included in the execution times. Table 2.1 compares the analysis time required
using classical interprocedural summary analysis alone (“IP only”) with that using
summary analysis and regular section analysis combined (“IP + RS”).*

The most time-consuming part of our added code is the symbolic analysis for
subscript values of the initial sections, which includes an invocation of dataflow anal-
ysis. More symbolic analysis would improve the practicality of the entire method.
Overall, the additional analysis time is comparable to that required to analyze pro-
grams after heuristically-determined inline expansion in Cooper, Hall and Torczon’s
study [CHTO91].

Absolute timings for the array side effect analyses implemented in Parafrase by
Triolet and by Li and Yew, have not been published, though Li and Yew do state that
their method runs 2.6 times faster than Triolet’s [LY88a]. Both experiments were run
only on LINPACK; it would be particularly interesting to know how their methods

perform on complete applications.

2.5.4 Utility

We chose three measures of utility:

*We do not present times for dependence analysis with no interprocedural information because that
analysis is cut short in the presence of call sites. Little can be done to parallelize a loop containing
calls with unknown side effects.

25

All Array Dep. on Calls in Loops

Dependences loop carried loop independent
source IP| RS|%U|] IP| RS|%U] IP| RS[%V
efie 12338 | 12338 e 17 81 81
euler 1818 | 1818 70 70 30 30
vortex 1966 | 1966 220 | 220 73 73
track 4737 | 4725 | 0.25 68 67 1.5 27 26 | 3.7
dogleg 1858 | 1675 | 9.8 || 226 | 168 | 25.7 80 59 | 26.2
linpackd 496 399 | 19.6 || 191 | 116 | 39.3 67 45 | 32.8
Rickps 23213 | 22921 | 1.25 | 952 | 818 | 14.1 || 358 | 314 | 12.3

LINPACK | 12336 | 11035 | 10.5 || 3071 | 2064 | 32.8 | 1348 [1054 | 21.8 |

Table 2.2 Effects of Regular Section Analysis on Dependences

e reduced numbers of dependences and dependent references,
e increased numbers of calls in parallel loops, and

e reduced parallel execution time.

Reduced Dependence

Table 2.2 compares the dependence graphs produced using classical interprocedural
summary analysis alone (“IP”) and summary analysis plus regular section analysis
(“RS”).

LINPACK was analyzed without interprocedural constant propagation, since li-
brary routines may be called with varying array sizes. The first set of three columns
gives the sizes of the dependence graphs produced by PFC, counting all true, anti
and output dependence edges on scalar and array references in DO loops (includ-
ing those references not in call sites). The other sets of columns count only those
dependences incident on array references in call sites in loops, with separate counts

for loop-carried and loop-independent dependences. Preliminary results for eight of

5The dependence graphs resulting from no interprocedural analysis at all are not comparable, since
no calls can be parallelized and their dependences are collapsed to conserve space.

26

the 13 Perfect benchmarks indicate a reduction of 0.6 percent in the total size of the

dependence graphs.®

Parallelized Calls

Table 2.3 examines the number of calls in LINPACK which were parallelized after
summary interprocedural analysis alone (“IP”), after Li and Yew’s analysis [LY88a],
and after regular section analysis (“RS”). (Triolet’s results from Parafrase resembled
Li and Yew’s.)

Most (17) of these call sites were parallelized in ParaScope, based on PFC’s depen-
dence graph, with no transformations being necessary. The eight parallel call sites
detected with summary interprocedural analysis alone were apparent in ParaScope,
but exploiting the parallelism requires a variant of statement splitting that is not yet
supported. Starred entries (x) indicate parallel calls which were precisely summa-
rized by regular section analysis, but which were not detected as parallel due to a
deficiency in PFC’s symbolic dependence test for triangular loops. One call in QRDC
was mistakenly parallelized by Parafrase [Li90].

These results indicate, at least for LINPACK, that there is no benefit to the gener-
ality of Triolet’s and Li and Yew’s methods. Regular section analysis obtains exactly
the same precision, with a different number of loops parallelized only because of

differences in dependence analysis and transformations.

Improved Execution Time

Two calls in the RiCEPS programs were parallelized: one in dogleg and one in
linpackd. Both were the major computational loops (1inpackd’s in DGEFA, dogleg’s
in DQRDC).” Running linpackd on 19 processors with the one call parallelized was
enough to speed its execution by a factor of five over sequential execution on the

Sequent Symmetry at Rice.

5This implementation does not propagate information for arrays in common blocks. This deficiency
certainly resulted in more dependences for the larger programs in Perfect.

“In the inlining study at Rice, none of the commercial compilers was able to detect the parallel call
in dogleg even after inlining, presumably due to complicated control flow [CHT91].

27

routine calls in Parallel Calls
name DO loops || IP | Li-Yew | RS
-GBCO
-GECO
-PBCO
-POCO
-PPCO
-SICO
-SPCO
-TRCO
-GBFA
-GEDI
-GEFA
-PODI
-QRDC
-SIDI
-SIFA
-SVDC
-TRDI
other
total(36) 144 8 27 | 31

—_ = = = e e e
N N R S T s T o T e S e e e T

LY W W T DN M — = = = = = = = =
*
o

e —
IR U1 W O O B WY WO W = — 00 00 00 00 OO
>*
— =1 W

Table 2.3 Parallelization of LINPACK

Classical Summary Triolet Li & Yew
A {A['lv]] | .7 S 2i19j Z 4 + 1413j S 28 — 2} {A[172]1A[418]1A[1016]}

Burke & Cytron
{*(A+ 10),*(A + 73),%(A + 59)}

[| | |]
Regular Sections DAD/Simple Section
Without Bounds With Bounds & Strides {Al;,7]111<4<10,2< 5 <8,
A[L, 1] A[(1:10:3),(2:8:2)] 3<i+j<16,-4<i—j<4}

Figure 2.2 Summarizing the References A[l,2], A[4,8], and A[10, 6]

28

2.6 Related Work

Several representations have been proposed for representing interprocedural array
access sets. The contrived example in Figure 2.2 shows the different patterns that they
can represent precisely. Evaluating these methods involves examining the complexity

and precision of:
e representing the sets Mg“l and U§‘2 of accessed elements,

e merging descriptors to summarize multiple accesses (we call this the meet op-

eration, because most descriptors may be viewed as forming a lattice),
e testing two descriptors for intersection (dependence testing), and
e translating descriptors at call sites (especially when there are array reshapes).

Handling of recursion turns out not to be a major issue. Iterative techniques can
guarantee convergence to a fixed point solution using Cousot’s technique of widening
operators [CCT7, Cou8l]. Li and Yew proposed a preparatory analysis of recursive
programs that guarantees termination in three iterations [LY88b, LY88c¢]. Either of

these methods may be adapted for regular sections.

2.6.1 Summary Methods

Summary methods describe each kind of side effect using a single subarray descriptor
for each array. They include the many variations of regular sections developed at
Rice, described separately below. FEarlier summary methods include the classical
all-or-none summary and the convex regions of Triolet et al.

Summarizing multiple array references with one descriptor is potentially less ac-
curate than keeping separate descriptors. However, it is cheaper to translate this a
single descriptor during interprocedural propagation than a list of them, and cheaper
to test two descriptors for intersection than do a quadratic-time pairwise intersection

between two lists.

Classical Methods

The classical methods of interprocedural summary dataflow analysis compute MOD
and USE sets indicating which parameters and global variables may be modified or

used in the procedure [Ban78, Bar77, CK85]. Such summary information costs only

29

two bits per variable. Meet and intersection may be implemented using single-bit
or bit-vector logical operations. Also, there exist algorithms that compute complete
solutions, in which the number of meets is linear in the number of procedures and
call sites in the program, even when recursion is permitted [CK88b].

Unfortunately, our experiences with PFC indicate that this summary information
is too coarse for dependence testing and the effective detection of parallelism [CK88a].
The problem is that the only access sets representable in this method are “the whole
array” and “none of the array” (see Figure 2.2). Such coarse information limits the
detection of data decomposition, an important source of parallelism, in which different

iterations of a loop work on distinct subsections of a given array.

Convex Regions

Triolet, Irigoin and Feautrier proposed to calculate linear inequalities bounding the
set of array locations affected by a procedure call [TIF86, Tri85]. This representation
and its intersection operation are precise for convex regions of access. Other patterns,
such as array accesses with non-unit stride and non-convex results of meet operations,
are given convex approximations.

Operations on these regions are expensive in the worst case; the meet operation
requires finding the convex hull of the combined set of inequalities and intersection
uses a potentially exponential linear inequality solver [Ban86]. A succession of meet
operations can also produce complicated regions with potentially as many inequalities
as the number of primitive accesses merged together. Translation at calls sites is
precise only when the formal parameter array in the called procedure maps to a
(sub)array of the same shape in the caller. Otherwise, the whole actual parameter
array 1s assumed accessed by the call.

The region method can maintain arbitrary convex array accesses precisely, but if
the important array accesses prove to be regular sections, the additional complexity is
wasted. Recently, researchers on the PIPS project have extended the region method

to handle common cases more efficiently [Iri93].

2.6.2 Reference Lists

Some proposed methods do not summarize, but represent each reference separately.
Descriptors are then lists of references, the meet operation is list concatenation (possi-

bly with a check for duplicates), and translation and intersection are just the repeated

30

application of the corresponding operations on simple references. However, this has

two significant disadvantages:

e translation of a descriptor requires time proportional to the number of refer-

ences, and
e intersection of descriptors requires time quadratic in the number of references.

Reference list methods are simple and precise, but are asymptotically as expensive

as in-line expansion.

Linearization

Burke and Cytron proposed representing each multidimensional array reference by
linearizing its subscript expressions to a one-dimensional address expression. Their
method also retains bounds information for loop induction variables occurring in the
expressions [BC86]. They describe two ways of implementing the meet operation. One
merely keeps a list of the individual address expressions. The constructs a composite
expression that can be polynomial in the loop induction variables. The disadvantages
of the first method are described above. The second method appears complicated
and has yet to be rigorously described. Linearization in its pure form is ill-suited to
summarization, but might be a usetul fallback for a true summary technique because

of its ability to handle arbitrary reshapes.

Atom Images

Li and Yew extended Parafrase to compute sets of atom images describing the side
effects of procedures [LY88a, LY88b]. Like the original version of regular sections de-
scribed in Callahan’s thesis [Cal87], these record subscript expressions that are linear
in loop induction variables along with bounds on the induction variables. Any refer-
ence with linear subscript expressions in a triangular iteration space can be precisely
represented, and they keep a separate atom image for each reference.

The expense of translating and intersecting lists of atom images is too high a
price to pay for their precision. Converting atom images to a summary method

would produce something similar to the regular sections described below.

31

2.6.3 Summary Sections

The precise methods described above are expensive because they allow arbitrarily
large representations of a procedure’s access sets. The extra information may not be
useful in practice; simple array access patterns are probably more common than oth-
ers. To avoid expensive intersection and translation operations, descriptor size should
be independent of the number of references summarized. Operations on descriptors
should be linear or, at worst, quadratic in the rank of the array. Researchers at Rice
have defined several variants of reqular sections to represent common access patterns

while satisfying these constraints [Cal87, CK88a, Bal89, BK89].

Original Regular Sections

Callahan’s thesis proposed two regular section frameworks. He dismissed the first,
resembling Li and Yew’s atom images, due to the difficulty of devising efficient stan-

dardization and meet operations [Cal87].

Restricted Regular Sections

The second framework, restricted regular sections [Cal87, CK88al, is limited to access

patterns in which each subscript is

e a procedure-invariant expression (with constants and procedure inputs),
e unknown (and assumed to vary over the entire range of the dimension), or

e unknown but diagonal with one or more other subscripts.

The restricted sections have efficient descriptors: their size is linear in the number
of subscripts, their meet operation quadratic (because of the diagonals), and their
intersection operation linear. However, they lose too much precision by omitting
bounds information. The restricted section lattice has the finite descending chain
property, which we originally thought necessary for efficient handling of recursive
programs. However, we can obtain fixed-point solutions on more complicated lattices

by applying the techniques of Cousot or of Li and Yew [CCT7, LY88¢]

Bounded Regular Sections

Anticipating that restricted regular sections would not be precise enough for effective

parallelization, Callahan and Kennedy proposed an implementation of regular sections

32

with bounds. That proposal led to our development of the bounded regular section
framework in this chapter. Our sections include bounds and stride information, but
omit diagonal constraints. The resulting analysis is therefore less precise in the rep-
resentation of convex regions than Triolet regions or the Data Access Descriptors
described below. However, this is the first interprocedural summary implementation
with stride information, which provides increased precision for non-convex regions.
As noted above, the size of bounded regular section descriptors and the time re-
quired for the meet operation are both linear in the number of subscripts. Intersection
is implemented using standard dependence tests, which also take time proportional

to the number of subscripts.

Data Access Descriptors

Concurrently with the original work reported in this chapter, Balasundaram and
Kennedy developed Data Access Descriptors (DADs) as a general technique for de-
scribing data access [Bal89, BK89, Bal90]. DADs represent information about both
the shapes of array accesses and their traversal order; for our comparison we are in-
terested only in the shapes. The simple section part of a DAD represents a convex
region similar to those of Triolet et al., except that boundaries are constrained to be
parallel to one coordinate axis or at a 45° angle to two axes. Stride information is
represented in another part of the DAD.

Data Access Descriptors are probably the most precise summary method that can
be implemented with reasonable efficiency. They can represent the most likely rect-
angular, diagonal, triangular, and trapezoidal accesses. In size and in time required
for meet and intersection they have complexity quadratic in the number of subscripts
(which is reasonable given that most arrays have few subscripts).

The bounded sections implemented here are both less expensive and less precise
than DADs. Tsalapatas subsequently extended our methods to a DAD implemen-
tation in ParaScope, but no empirical comparison of the relative benefits of regular
sections vs. DADs has been completed [T'sa94].

2.7 Lessons

More experiments are required to fully evaluate the performance of regular section
analysis on complete applications and find new areas for improvement. Based on the

studies conducted so far, extensions to provide better handling of conditionals and

33

flow-sensitive side effects seem promising. Both extensions require better support
from the symbolic analysis infrastructure. Both have now been implemented, to

differing degrees, by Tsalapatas [Tsa94].

2.7.1 Conditional Symbolic Analysis

Consider the following example, derived from the BLAS:

SUBROUTINE D(N, DA, DX, INCX)
DOUBLE PRECISION DA, DX(*)
IF (INCX .LT. 0) THEN

IX = (-N+1)*INCX + 1
ELSE

IX =1
ENDIF
DOI =1, N

DX(IX) = DA * DX(IX)
IX = IX + INCX
ENDDO
RETURN
END

The two computations of the initial value for IX correspond to different ranges for
the subscript of DX: [(1 4+ INCX* (1l —N)): 1 : INCX] and [1 : (1 + INCX*(N—1)) : INCX].
It turns out that these can both be represented by [1 : (1 + |INCX| * (N — 1)) :
|INCX|]. For the merge operation to produce this precise result requires that it have
an understanding of the control conditions under which expressions are computed.

One way to address this problem is to represent explicitly the conditional compu-
tation of IX; e.g.,

IX == if (INCX < 0) then « else ¢ fi.

This is written as v((INCX < 0),a, ¢) in the notation of Chapter 3. By writing DX in
this form, we can encode its dependence on the passed value of INCX.

If we delay merging sections until after interprocedural MOD and constant infor-
mation are available, we will usually find that INCX is 1. In that case, the subscript
expressions can be simplified to the point where the section merge is precise. In short,
a richer symbolic representation would allow us to save conditional computations for

later evaluation when more information is available.

34

2.7.2 Killed Regular Sections

We have already found programs (scalgam and euler) in which the ability to rec-
ognize and privatize temporary arrays would cut the number of dependences dra-
matically, allowing some calls to be parallelized. We could recognize interprocedural
temporary arrays by determining when an entire array is guaranteed to be modified
before being used in a procedure. While this is a flow-sensitive problem, and therefore
expensive to solve in all its generality, even a very limited implementation should be
able to catch the initialization of many temporaries.

The subscript lattice for killed sections is the same one used for USE and MOD
sections; however, since kill analysis must produce underestimates of the affected
region in order to be conservative, the lattice needs to be inverted. In addition, this
approach requires an intraprocedural dependence analysis framework capable of using
array kill information, such as those described by Rosene [Ros90] and by Gross and
Steenkiste [GS90].

While the computation of array kills does not necessarily require better symbolic
information than that implemented in PFC, KILL analysis is particularly sensitive to
improvements. Flow-insensitive summaries of MOD and REF sections describe ele-
ments that may be accessed. If our subscript analysis is imprecise in one dimension,
we can say that it is L (assuming the subscript ranges over all values) while still
keeping information about other dimensions. However, if we give up on a subscript
in a killed section, we say that it is T and we are not sure that any of the array is
definitely modified. Failures of symbolic analysis hurt more when computing KILL

information.

2.7.3 Plan of Attack

We chose to focus our attention on symbolic analysis, to improve the efficiency of

array section analysis and to support dependence testing.

Intraprocedural dataflow analysis is very expensive in PFC. This is particularly
true when call sites are treated as non-killing definitions of all interprocedural
variables. We need a better way of handling call sites, and a better dataflow
representation than traditional def-use chains. Both needs are addressed in

Chapter 3.

35

Value numbering is still rather primitive. The class of expressions represented
could be much larger, and more aggressive efforts should be made to rearrange
expressions to a standard form. Chapter 4 gives more general methods for

representing and rewriting symbolic expressions.

Symbolic comparisons are made differently in the array section analysis and in de-
pendence testing for historical reasons. The new implementation in ParaScope
employs a single representation of symbolic expressions supporting multiple

analyses.

Conditional branches are not exploited. Inferring bounds and evaluating branches
could both have significant payoff. Chapter 5 shows how to propagate predicates

derived from branches.

2.8 Summary

Regular section analysis can be a practical addition to a production compiler. Its
initial analysis and interprocedural propagation can be integrated with those for other
interprocedural techniques. The required changes to dependence analysis are trivial—
the same ones needed to support Fortran 90 sections. Our experiments demonstrate
that regular section analysis is an effective means of discovering parallelism, given

programs written in an appropriately modular programming style.

36

Chapter 3

Program Representations

3.1 Introduction

Any program analysis method requires some abstract representation of the program
on which to operate. The initial representation is the source code as ASCII characters,
for which the abstract syntax tree (AST) is a parsed, hierarchical equivalent. The
analysis parts of the ParaScope system derive more convenient representations from
the AST and then derive facts about the program. The transformation parts use these
facts to rewrite the AST. Ultimately, the back end converts the AST to machine code,
which we hope will run faster after all this work than if we had just left it alone.

This chapter deals with basic program representations for an individual procedure
which are close to the AST: control-flow graphs; control-dependence graphs; data-flow
graphs, including simple def-use chains and static single-assignment (SSA) form; and
gated single-assignment (GSA) form, a data-flow representation which also encodes
information about conditional control over data-flow. Handling of multiple procedures
is described in Chapter 6.

Control-flow graphs are a traditional foundation of compile-time analysis, the
framework on which every kind of data-flow analysis proceeds. This remains true for
sequential programming models, but we now know how to write and compile programs
in a dataflow model — in which all computation involves expressions passing their
results to other expressions, and control decisions are just another kind of result.
Control flow can be rewritten as data flow. Both control dependence graphs and
GSA form descend from this realization.

There is a more subtle dichotomy involving the very nature of control-driven exe-
cution. En route to a particular statement .S, we typically encounter many conditional
branches. Some decide whether or not we reach S. Other branches decide only which
other statements (possibly including variable definitions) are encountered on the way.
GSA form provides a framework for reasoning about this distinction, which will be

exploited in Chapter 4.

37

3.2 Control over Execution

Both control-flow and control-dependence graphs encode conditional execution of
statements in individual procedures. The control-flow graph plus variable declarations
encodes all the information needed for execution, but the control-dependence graph

omits sequencing of variable references that must be enforced separately.

3.2.1 Control Flow Graphs

Building the control-flow graph is a first step in compiler optimization. Informally,
a sequential computer executing a procedure will start at some entry point, step
through the statements one at a time, jump around as dictated by structure and
GoTOs, follow calls to and returns from other procedures, and finally either return
to the caller or abort the whole program because of a serious error.! The implied
execution sequencing is made explicit as edges in a graph for ease of analysis.

Figure 3.1 shows an example of the control-flow graph G . Each node represents
a basic block of zero or more statements in straight-line sequence. Edges represent
the potential flow of control from the end of the source node to the beginning of the
sink node. The distinguished node START has no incoming edges, and has outgoing
edges to each node with a procedure entry point; the distinguished node END has no
outgoing edges, and has incoming edges from every node with a return point.

A node with multiple out-edges is a branch, with each out-edge labeled by the
corresponding value of the branch condition (such as negative, zero, and positive for
the arithmetic IF). A node with multiple in-edges, such as PRINT and END in the
example, is a merge, and its in-edges are ordered (as indicated by the notations on
the in-edges to the PRINT).

Maps enable us to find the source statement(s) corresponding to a GG oy node and
vice versa. Several other annotations on the control flow graph are easily derived, the

most useful are described below.

! More sophisticated exception handling than this is difficult for a compiler to analyze; witness the
simplification of PL/1 to PL/8 by removing all non-fatal exceptions [AH82].

38

START START
SUBROUTINE P

I=/0) :

I=f() I=f()
10 IF (I) 20, 30, 40
20 RETURN Y ‘
(D
30 I=5
GOTO 50

40 CONTINUE

50 PRINT I
PRINT I PRINT I
GOTO 10
END
END END
Control Flow G'(p Pre-Dominator Tree

Figure 3.1 Representations of Control

Dominance Trees

Dominance trees give information about which nodes must be encountered on route
to or from other nodes. They are necessary to the efficient construction of control
dependences and SSA form, and useful in many other ways as well.

A node a pre-dominates a node b (a < b) if all G -y paths from START to b include
a. The pre-dominance relation is reflexive and transitive. Eliminating the reflexive
cases in the relation (where a = b) we get the irreflexive but still transitive strict
pre-dominance relation (@ < b). Strict pre-dominance forms a partial ordering on the
nodes and can be represented as a forest of trees, with all the reachable nodes in a
tree rooted by START.

The post-dominance relation is equivalent to the pre-dominance relation computed
on Gy with the direction of edges reversed. A node b post-dominates a (b = a) if all
G op paths from a to END include b. The strict post-dominance relation (b > a, with
a # b) also forms a partial order. In the forest of post-dominance trees, any node not

in the tree rooted by END is dead-end code, presumably in an infinite loop.

39

@2]
=
=
{;|
[@2]
=
=
i|
[@2]
=
=
I

PRINT I

PRINT I PRINT I

Post-Dominator Tree Loop Nesting Tree Control Dependence G'p

Figure 3.2 More Representations of Control

Loop-nesting Tree

Most general-purpose procedural languages allow arbitrary control flow through the
use of GOTOs. To understand the loop structure of the program — to both discover
iterative computations and locate parallelism — we must recognize natural loops in
arbitrary control-flow graphs.

Algorithm 3.1 builds a loop-nesting tree for G, It is essentially Tarjan’s algo-
rithm for recognizing flow-graph reducibility, except that it does not fail for irreducible
graphs [Tar74]. Reducible graphs are those in which each nested strongly connected
region has a unique entry node, the loop header, that pre-dominates all other nodes
in the SCR.?

We adapt Tarjan’s method to recognize each irreducible loop and arbitrarily se-
lect one of its multiple entry nodes as the header. The letter labels to the left in
the algorithm (a:, etc.) correspond to the same labels in Tarjan’s algorithm. FIND
and UNION refer to the operations of Tarjan’s almost-linear disjoint-set union-find

algorithm; UNION(z,y, z) combines two sets represented by x and y and makes z the

2A nested SCR is a cycle which is still strongly connected after deleting the headers of all surrounding
SCRs.

procedure build_intervals(G -y, START)

a:

build DFST of G using depth-first search from START,
numbering START 0 and the rest in preorder from 1 to [N p| — 1
for w :=0to [N p|—1do
nonCycPreds[w] := cyclePreds[w] := ()
header[w] =0 // default “header” is START
reducible[w] := true
foreach edge (v, w) entering w do
if isAncestor(w, v) then add v to cyclePreds|w]
else add v to nonCycPreds[w]
header[0] := nil // START is root of header tree
for w := [N p| — 1 to 1 step —1 do
P:=10
foreach node v € cyclePreds[w] do
if (v # w) then add FIND(v) to P
Q:=P
while (Q # 0) do
select and delete a node z from @)
foreach node y € nonCycPreds[z] do
y' := FIND(y)
if not(isAncestor(w, y’)) then reducible[w] := false

else if (y' ¢ P)and (y' # w) then

add y’' to P and to Q
foreach node =z € P do
if (header[z] == 0) then header[z] := w
UNION(z, w, w)

Algorithm 3.1 Building Loop-Nesting Tree

40

representative of the new set. After executing UNION(z,y, z), we have FIND(z) ==
FIND(y) == z.

As in the original, the first step (@) is to build a depth-first spanning tree of
G oy, beginning at START. We number the nodes by the preorder of the DFST, and
henceforth equate the name of each node with its number. By saving the number
of the last descendent of each node w as last[w], we can easily test for w’s being an

ancestor of a node v:
isAncestor(w,v) = ((w < v) and (v < last(w)))

The next step (b) builds lists of cycle edges and non-cycle edges into each node.
Cycle edges go an ancestor in the DFST, others go to descendents or non-ancestors.
Actually, since we are only interested in the sources of these edges, we build the sets
cyclePreds and nonCycPreds of (G, predecessors which lie along cycle and non-cycle
edges, respectively. We initialize the new field reducible[] to true.

The loop at (¢) steps through the DFST in reverse postorder. The set P represents
the loop children of the current node w, the set of nodes in its loop (if any). At (d),
cycle predecessors of the current node are added to P. In loop (e), we chase up the
non-cycle edges from each cycle predecessor, adding nodes to P, until we reach w.
If, before reaching w, we encounter a non-cycle predecessor which lies above w in the
DFST, then w is one of multiple entry points to an irreducible loop. We select w as
the header of the irreducible loop, setting reducible[w] to false.

Finally, all the nodes in P are marked with w as their header. The exception is w
itself, which will later be marked with the header of the immediately enclosing loop
(or with START, if there are no outer loops).

Having built the loop-nesting tree, back-edges are edges going from a node to the
header of an enclosing loop. We have frequent need of the forward control-flow graph

Fep, which is Gy with loop back-edges removed.

3.2.2 Control Dependence Graphs

The control dependence graph G consists of the basic blocks from G with a

3

different set of edges.” Given a G, edge e with label L from a branch node B,

3Another common form, the factored control dependence graph, contains these nodes plus region
nodes wherever there are control dependence merges [BMO90, FOW87].

42

procedure build_control_deps(G oy, G ¢p)
Nep = Nep
Eop =10
foreach edge (v,w) € £, do
lab := label of edge
yi=w
{:= INDEPENDENT
while (y ¥ v) do
z := deepest_common_header(y, v)
if (¢ == INDEPENDENT) and (z == w) then
£ = level(w)
add (v,y) with level ¢ and label lab to E
y := immediate post-dominator of y

Algorithm 3.2 Building Control Dependences

control dependence edges, also labeled L, go from B to every node that must execute
if e is taken [CFR*91].

Algorithm 3.2 gives a method for building control dependences, extended by us
to mark each dependence with the loop carrying it [CFS90a]. Loop-carried control
dependence edges run from conditional branches out of a loop to the header block of
the loop, and are labeled with the level of the header. Note that statements post-
dominating the header, but not post-dominating the exit branch, must lie inside the
loop. Ignoring the loop-carried edges leaves the acyclic forward control-dependence

graph F, [CFS90b].

3.3 Data Flow

We ultimately require a representation of the flow of values through variables and
expression trees that captures the essentials of what is computed but disregards if it
is computed. Such a representation will help us to compare computations that are ex-
ecuted in different contexts. For example, consider performing testing for dependence
between array references in the following fragment:
do 1i=1, 10
A[i] := ...
if P then
:= A[i]

43

endif
unaliaserddo

It’s obvious from looking at the code that the two subscripted references to A[1i]
access the same memory on the same iteration of the loop, and that different iterations
access different memory. While we can perhaps refine these facts even further by
looking at P, we should not allow the presence of control flow to confuse us.

The representations of control flow given above are important in themselves, but
they also give us a framework for analyzing the flow of information in a program.
The missing part is what happens within a statement (or basic block) and an under-
standing of variable references.

A basic block consists of a list of simple statements that modify or use variables.

The most interesting type of statement for our purposes is the assignment, which
does both, and has the form

Vg 1= f(vOa) ‘Un)

where the v; are variables and f is an expression with embedded references to the v;.

We wish to analyze the flow of values between statements so as to build def-use
chains, linking definitions of each variable v, such as assignments with v on the left-
hand side, with uses, such as assignments with v on the right. In Chapter 4, we
combine this dataflow graph with the program’s expression trees, producing a value

graph as a unified representation of how values are computed.

3.3.1 Variable References

We focus on the analysis of scalar values in the absence of aliasing (where multiple
names refer to the same memory) and ambiguous references (where the same name
applies to multiple memory locations). We can handle some cases of aliasing and

ambiguity:

o If a set of overlapping EQUIVALENCEd variables are all scalars of the same size,
they are treated as a single scalar variable. Otherwise, they are treated as

described below for a single array. FanOut

e Formal arguments (parameters) to procedures are treated as . This is allowed
by the Fortran standard. If two variables are later found to be aliased, one or
both modified and both referenced, we give up on all computations involving

those variables.

44

e Subscripted array references are treated as compositional functions of mono-

lithic variables [CFR*91].

> Each array definition is modeled with the update function:
Ali] := £(3j)
is treated as
A := update(A, i, £(j))
where the first argument of update() is the array (this use will get edges
from the reaching definitions), the second is the subscript, and the third
is the new value of the subscripted location(s). The result is taken to be a

new monolithic array value.

> Each array reference is modeled with the access function:
:= A[i]
is treated as
:= access(A, 1)
where the first argument of update() is the array (this use will get edges
from the reaching definitions), and the second is the subscript. The result

is taken to be the scalar value of the subscripted element.

e Pointers are not handled. They are not present in Fortran 77. A system which
did handle pointers could benefit from a preliminary scalar symbolic analysis
(e.g., to recognize pointers that step through memory like auxiliary induction

variables).

A commonly used method of connecting definitions of variables with their uses
is using traditional bit-vector data-flow analysis [ASU86]. This builds def-use chains
linking every definition with all reachable uses of the same variable (where reachable
implies no intervening definition). A definition at SI reaches a use at 52 if there
are one or more control flow paths p; from SI to S2, the references are believed to
access overlapping memory locations, and for some p; there is no intervening definition
known to overwrite the same memory locations.

By careful insertion of pseudo-definitions, the linking of definitions and uses can
be made much simpler and faster, with the added benefit that only a single definition

will reach each use.

45

3.3.2 SSA Form

Converting the original program to static single-assignment (SSA) form makes the
process of dataflow analysis simple and efficient. Any interesting program will have

points where multiple definitions of a variable reach a particular use:

x = f(...)

if (x > 0)
X = -X

endif

print x

Both definitions of x reach the use. This may not seem like much of a problem,
but if there were n conditionally executed definitions of x and m uses, we could end
up with O(nm) def-use chains.

Static single-assignment (SSA) form enables efficient construction of program
data-flow information [CFR*91]. From constant propagation to register allocation,
SSA-based algorithms have proven more powertul and efficient than those based on
traditional def-use edges [WZ91, BCT92].

A distinctive feature of SSA form is the placement of a minimal number of
pseudo-assignments at program merge points so that no statement, except a pseudo-
assignment, is reached by multiple definitions. These pseudo-assignments use ¢-
functions to select which of the merged definitions flows to successive uses. Fach
input to a ¢-assignment is associated with a unique control-flow edge along which
that value reaches the merge. For example, in the following fragment, knowing the
value of P would tell us which path to the merge is executed and allow us to prove a
constant value for vs.*

vy =1

if (P) then vy := 2

vg 1= P(vg,v1)
Note that both v; and vy may both execute; we must know not only which nodes but
which edges execute in order to select the correct input [WZ91].

The necessity of examining control-flow edges when interpreting SSA form lim-
its its utility for many purposes. For example, global value numbering techniques
based on standard SSA form cannot safely find a3 and c3 equivalent in the following

fragment.

*We use the subscripted variable name v; to indicate definition i of v or the value of that definition.

46

a; =16y :=1; ¢; :=1;

if (P) then ay := 2

as 1= ¢(az, a1)

if not (P) then by := 2

bs := ¢(by, by)

if (P) then ¢; :=2

¢z 1= Pz, 1)
Both a3 and ¢3 have the same value, provided P does not change. However, to pattern-
match only on the ¢-functions and their inputs would mistakenly find b5 equivalent
to asz and c¢3. To be conservative, we must assume that ¢-assignments at different
program points have independent values [AWZ88].

SSA form was introduced by researchers at IBM and at Brown University [RWZ88,
AWZ388]. The ¢-assignments are direct descendants of Reif et al.’s birthpoints, used
to refine def-use chains for symbolic analysis [RT81, RL86].

The construction of SSA form makes it a good basis for a dataflow graph. Pseudo-
assignments of the form vy := ¢(v1,- -+, v,) are inserted so that exactly one definition
of a variable v reaches any non-¢ use of v. The ¢-assignments are placed at the earliest
control flow merge where multiple definitions reach. For a given ¢-assignment, there
is one-to-one correspondence between arguments to the ¢ and in-edges of the control
flow merge. This allows us to annotate each G352 edge e into a ¢ with e.CfEdge, the
last Gy edge on the path by which its definition reaches the control flow merge.

Algorithm 3.3 gives the method for adding ¢-assignments, modified for construc-
tion of GSA form as described later. While the worst-case complexity is cubic in the
size of the program, SSA construction takes linear time in practice [CFR*91]. Edges
linking definitions to uses are added during a walk over the pre-dominator tree, in
time proportional to the number of edges [CFRT91]. We keep a stack for each variable

of the definitions encountered as we walk down from the root.
e At a definition of v, push the index of that definition onto the stack for v.
e At a non-¢ use of v, add an edge from the top definition of the stack for v.

e At each node n, for each edge to a node m with (n £ m), add edges to the
¢-assignments at m from the top definitions of the appropriate stacks. These
def-use edges must be associated with the edge (n,m), either explicitly, by a
map, or implicitly, by their ordering.

47

e When returning from a subwalk, pop any definitions that were at the current

node.

Linking definitions to uses in SSA form is often referred to as renaming, because each
use of a variable is now reached by a unique definition, so that the different live ranges
(a definition and its uses) can be thought of a separate variable [CFR*91].

3.4 GSA Form: Dataflow and Conditionals

Gated Single-Assignment (GSA) form extends SSA form with information about
branch predicates controlling merges. That is, the most visible difference is the re-
placement of ¢ functions with new functions giving not just the merged definitions
but the predicates determining which definition reaches. This extension enables GSA

form to represent some, but not all, control information:

e It does represent which control over which definitions reach which statements,

assuming those statements are executed.
e It does not represent control over which statements execute.

For example, in the following:

read a0

if P:(a0 < 0) then
al := -a0

endif

a2 := gamma(P, al, a0)
we have a complete representation of the conditions under which each definition
reaches a2. Examining the statement defining a1, GSA form gives us no direct way

to tell us whether or not that statement executes.

3.4.1 Definition of TGSA Form

Alpern et al. introduced the first gated version of static single-assignment form as
high-level SSA form [AWZ88]. Ballance et al. introduced the terminology of gated
single-assignment form [BMO90]. TGSA form is an extension of high-level SSA form
to unstructured code, for which we use the more convenient GSA-form notation
[Hav93]. Detailed comparisons with the prior versions are given in Section 3.6.

Building TGSA form involves adding pseudo-assignments for a variable V:

48

(v) at a control-flow merge when disjoint paths from a conditional branch come

together and at least one of the paths contains a definition of V;
(1) at the header of each loop that contains at least one definition of V; and

(n) at every exit from each loop that contains at least one definition of V.

The first two cases, merges in forward control flow and at loop entry, are handled
with ¢ nodes in SSA form. The third case, merging iterative values at loop exit, is

ignored by SSA form.

Gamma: Merge with Predicate. The pseudo-assignment inserted for a dataflow
merge in forward control flow employs a v function. In a simple case, the fragment
Vii= ..
if (P) then V; := ...
is followed by V3 := v(P, V5, V4). This indicates that if control flow reaches the merge
and P was true, then V has the value from definition V5.

We insert v functions only to replace ¢ functions at merges of forward control
flow. Whenever otherwise disjoint F ., paths from an n-ary conditional branch (with
predicate P) come to a merge, and at least one path redefines a variable V', we
insert a definition V' := (P, V1,...,V,,) at the merge point. Each of the V; is the last
definition (possibly another pseudo-assignment) occurring on a path from subprogram
entry, through the branch, to the merge. The V; are called the value inputs, P the
predicate input. A « is strict in its predicate input only; when the predicate has value
t, the quantity from the it value input is produced.

In unstructured code, paths from multiple branches may come together at a single
merge. Replacing the ¢ then requires multiple v functions, explicitly arranged in a
dag. Such a v dag is structured so that the immediate pre-dominator of the merge
provides the predicate for the root of the dag, and paths in the dag from the root to
the leaves pass through ~ functions with predicates from branches in the same order
that Fp paths from the immediate pre-dominator to the merge pass through the
branches themselves.

If some edges from a branch cannot reach a merge, then the corresponding loca-
tions in « functions are given as T, indicating that no value is provided. We disallow

the case where all non-predicate arguments save one are T, as in

(P, T, T,V T, T)

49

If execution reaches the merge, then definition V; must be providing the value. This
simplification is one difference between thinned GSA form and original GSA form,

which we exploit in our algorithms for building TGSA form.

Mu: Loop Merge. A pseudo-assignment at the header of a loop uses a p function.
For each variable V' defined in a loop body, we insert a definition V' := u(Vipit, Viter)
at the loop header, where V}, ;¢ is the initial input reaching the header from outside
(Io in Figure 3.3) and Vjie, is the iterative input, reaching along the back-edge (Iz).
If every loop header has one entry edge and one back-edge, then every ¢ at a loop
header can be replaced exactly by one p (otherwise, a v dag may also be required to
assemble one or both of the two inputs).

Since TGSA form is organized for demand-driven interpretation, there is no control
over values flowing around a loop. A g function can be viewed as producing an infinite
sequence of values, one of which is selected by an 5 function at loop exit. (In original

GSA form, p functions have a predicate argument controlling iteration.)

Eta: Loop Value Selection. Pseudo-assignments inserted to govern values pro-
duced by loops use 7 functions. Given a loop that terminates when the predicate P
is true, we split any def-use edge exiting the loop and insert a node V' := n(P, Vg,a1),
where V.1 is the definition (I; in Figure 3.3) reaching beyond the loop. In general, a
control-flow edge may exit many loops at once; for a variable that has been modified
in the outermost L loops exited, we must insert a list of L 5 functions at the sink of

the edge. The n function in TGSA form corresponds to the n” function in original
GSA form.

Loop-variance Level. The level of a node in G%# is the nesting depth of the
innermost loop with which it varies (or zero, for loop-invariant values). The level of
a p function equals the depth of the loop containing it; the depth of an 5 function
equals the depth of the loop exited less 1. For any other function, the level is the
maximum level over all its inputs.

Level information is required to distinguish g functions that vary with different

loops in a nest. For other nodes, level information is just a convenient annotation.

Interpretation. We give no formal semantics for the interpretation of TGSA form.

In Chapter 4, we define a value graph combining GSA-form def-use chains with the

20

I=1+1
20 PRINT I
GCF

G5

Figure 3.3 Loop Representations

procedure’s expression trees. Expressions represented by congruent (isomorphic) sub-
graphs have the same value when they both execute, provided that they are loop-

invariant or that both executions are on the same iteration of corresponding loops.

3.4.2 Construction of TGSA Form

We present algorithms for the two crucial steps in converting from SSA form to TGSA
form: replacing a ¢ function with a directed acyclic graph of v functions and building
the controlling predicate of a loop for use in its functions.

Augmenting G, and G35

For convenience, we assume that every GG oy node is reachable from START and reaches
END (neither unreachable nor dead-end code exists). Loops are assumed reducible,
so that all cycles pass through a unique header. (In the implementation, irreducible
loops are conservatively left alone.) We build tree representations of loop nesting
and of the pre- and post-dominator relations [LT79, Tar74]. By saving a preorder
numbering of each tree, we can test for transitive as well as immediate loop nesting
and dominance in constant time.

We augment loops, as shown in Figure 3.4, to provide suitable places for the

placement of p and n nodes. For each loop we add a preheader node (PH), if the

ol

0’66 @e‘:e

Figure 3.4 Insertion of Preheader, Postbody and Postexit Nodes

’0

header has multiple forward in-edges, and a postbody node (PB), if the header has
multiple backward in-edges or if the source of the back-edge is in an inner loop. The
postbody node for each loop then terminates each complete iteration, and is post-
dominated by the header. Wherever the sink of a loop-exit edge has other in-edges,
we split the loop-exit edge with the addition of a postexit node (PE) [CFS90b]. These
changes cause threefold growth in GG, at worst.

The dominance and loop nesting trees are easily updated, and control dependence
construction proceeds normally on the augmented G, [CFS90a]. As none of the
new nodes are branches, control dependence edges among the original G - nodes are
unaffected.

Construction of SSA form proceeds normally except for tweaks to the ¢ placement
phase, given in Algorithm 3.3. Having ensured that each loop header has exactly two
in-edges, we place g nodes at loop headers instead of ¢ nodes. Every p node added
represents a variable modified in the loop, and we immediately add an 7 (“eta-hat”)
definition for the same variable at the postexit node for the loop.> These trivial
pseudo-assignments (V' := (V) hold the place for later creation of 5 functions with
predicates, and ensure proper placement of ¢ assignments for merges of values from

different exits.

5If the postexit node is shared with a surrounding loop, we add nothing, as the appropriate # will
be added for the outer loop.

52

procedure build_SSA(G ¢y):
build dominance frontiers;
insert_¢s(G oy);
build def-use chains G%Sf;

procedure insert_¢s(G .):
foreach variable V do

Worklist .= {};
foreach assignment Defto V do Worklist += Def;
while Worklist # {} do

remove statement X from Worklist;
foreach Y in X’s dominance frontier do

if there is no pseudo-def of V at Y then add_pseudo_def{ V, Y);

procedure add_pseudo_def(V, Y):
if Yis a loop-header statement then
add a p for Vat Y,
foreach exit from Y’s loop do add an 7 for V at the loop exit node;
else add a ¢ for V at Y;

Algorithm 3.3 Modified SSA Form Construction

Once ¢, p, and 7 assignments have been placed, the linking of definitions to uses
(often referred to as renaming in the SSA literature) proceeds as for standard SSA
form, producing an variant of G3;2. Def-use edges are loop-independent unless they
go to a p assignment at the header of a loop from a definition inside the loop, in

which case their level is the nesting depth of that header.

Data Structures

With g and 7 assignments out of the way, the main work of building TGSA form lies
in converting the remaining ¢ functions to dags of + functions, and building other

6 Qur solutions for these similar

~v dags to represent loop-termination conditions.
problems share many data structures, described below.
The procedure replace_¢s(), shown in Figure 3.4, examines one ¢ function at a

time and replaces it with a dag of v functions. The ~ dag has the same dataflow

6These algorithms are described in terms of building G§3/; they also can be used to build the

GSA-form value graph on the fly.

23

predecessors and successors as the original ¢, except that each ~ function also takes
the result of a branch predicate as input. All of the + functions in the dag replacing a
¢ are placed at the beginning of the basic block where the merge happens (¢eBlock).

Likewise, build_loop_predicate() proceeds one loop at a time. The 5 functions
making up the dag for the loop-termination condition are placed at the postbody for
the loop.

Branch.Choices: for a G node Branch, a vector of one choice per out-edge. Each
choice represents a value that will reach the merge if the branch goes the right
way. A choice is either a leaf definition (pointing to a value computed at an-
other GG node), another branch (representing the value chosen there), or T

(indicating a choice to avoid the merge node).

In ¢-replacement, a leaf definition is the choice if all the paths through the
corresponding out-edge to the ¢ merge point pass through the same final def-
inition. This chosen definition may occur before or after Branch. If there are
instead multiple final definitions on these paths, then the branch choosing be-
tween them is specified as the choice for this out-edge. Such a branch must lie
between Branch and the ¢ merge point. If no path through an out-edge reaches

the ¢ merge point, then its corresponding choice entry is T.

When building loop predicates, a leaf choice is true if an out-edge must lead to
the postbody or false if it cannot. If some paths through the out-edge lead to
the postbody and some do not, then a branch choice involved in the decision is

specified.

Selectors: a set of G branch nodes whose predicates will be used in building the

~ dag for the current loop predicate or ¢.

In ¢-replacement, a branch is added to Selectors it and only if it affects, directly
or indirectly, the choice of definition reaching the control flow merge. We add
the branch to Selectors when we detect that two of its Choices are different
and not T. More precisely, the selectors of a ¢ assignment comprise the set of
n € Ngp such that (1) 3 at least two paths in Fp, from n to ¢.Block, disjoint
except for their endpoints, and (2) 3 such a path containing a definition of the
¢’s variable not at n or at ¢«Block.

o4

procedure replace_¢s(Merge):
Predom := Mergesdpredom;
foreach ¢ at Merge do
foreach CfEdge entering Merge in Fp do init_walk(CfEdgesSource);
Selectors := {};
foreach DefEdge entering ¢ in Fp; do
CfFdge := DefFEdgesCl{Edge; Def := DefEdgesSource;
process_choice(Def, CfEdgesLabel, CfEdgesSource);
recursively build a dag v from Predom.Choices;
replace ¢ with ~;

procedure init_walk(Node):
if (NodesFanout > 1) then
Nodes Visits++;
if (Node. Visits == 1) then NodesChoices[*| := Node«First Choice := T;
if (Node == Predom) or (Node.Visits # 1) then return;
/* on our first visit to non- Predom */
foreach edge Cd entering Node in Fp do init_walk(C'dsSource);

procedure process_choice(Choice, Label, Node):
NewChoice := Choice;
if (NodesFanout > 1) then
NodesChoices[Label] := Choice; Nodes Visits——;
if (NodesFirstChoice == T) then Node.FirstChoice := Choice;
else if (Node.FirstChoice # Choice) then
Selectors += Node;
if (Node == Predom) or (Node.Visits # 0) then return;
if (Node € Selectors) or
((not Thinned) and (Merge ¢ post-dominators(Node))) then
NewChoice := Node;
/* on our last visit to non- Predom */
foreach edge ('d entering Node in F(;, do
process_choice(NewChoice, CdsLabel, CdsSource);

Algorithm 3.4 Replacing a ¢ with a dag of ~s

)

When building loop predicates, Selectors contains all branches inside the loop
whose immediate post-dominator is outside the loop (i.e., the nodes within the

loop on which the postbody is transitively control dependent).

Branch.FirstChoice: used only in replace_¢s(); it saves the first choice propagated
back to the branch. Fach choice propagated back to Branchis compared against
this field. If the FirstChotce field already holds a different value besides T, then

another choice has already been propagated, and we add Branch to Selectors.

Branch. Visits: a counter, used only in replacing a ¢. Initialized to zero, the multiple
calls to init_walk increment Visits for branch nodes until it reaches the number
of edges from Branch that can lead to the merge. Later, calls to process_choice
decrement Visits each time an edge from the Branch is processed. When Visits
reaches zero again, then all paths from Branch to the merge have been exam-
ined. We then propagate to Branch’s G, predecessors the appropriate choice:

Branch itself, if it is a selector, else the one non-T value from its choices.

CfNodesExits This is the v dag representing when the loop exits. While we could
compute distinct conditions for each exit, it is sufficient to determine termina-

tion test for the entire loop.

Miscellaneous:
CfNode.Ipredom = immediate pre-dominator;
SsaDuldge.CfEdge = final G, edge along which a definition reaches a ¢;
CfEdgesLabel distinguishes edges sourced in the same conditional branch;
dominators CfNode. = the number of out-edges from a Gy node.
Thinned is true for all examples given here; when false, extra T entries are left

in 7 functions.

~ Conversion

The routines in Figure 3.4 show how to replace a ¢ function with a dag of v functions.
We call replace_¢s() for each node in topological order on Fp, and it replaces any ¢
functions located there. The replacement proceeds one ¢ at a time. Auxiliary routines
visit each control-dependence ancestor of Fop predecessors of ¢«Block in two passes.

Consider their effects during replace_¢s(A3) for the only ¢ assignment in Figure 3.5.

26

10, 20, 30
goto 99

~—

Go
if (x
if

10if (¢

S~—

a
goto 40

20 if (p) goto 10

30 if (s) agy := ...

40 a3 := ¢(ay, az, ap)

H
I

Figure 3.5 SSA-form Source, GG, and v dag for Example

The first pass, by recursive calls to init_-walk(), initializes fields for each node
that might be a branch point for distinct paths to the merge. Node.Visits counts
the number of visits in this walk; we will count back down on the next walk. At
the end of this pass, the values for Visits in the example are: 1 for Q (because the
other out-edge cannot reach A3), 2 for S, 2 for P, and 3 for X. All choice vectors and
FirstChoice fields are T.

The second walk routine, process_choice(), propagates each reaching definition
backwards from the ¢ until a branch is encountered. It is then entered as a choice for
that branch. If another, different choice has already been entered (Node.FirstChoice),
then the branch Node is added to Selectors for this ¢. When we have finished all visits
to a branch, we then push a choice (the branch itself, if it has been marked a selector)
upwards from this branch to its controlling branch.

If we process G, edge (a1, as3) first, we execute process_choice(a, nil, A1). As
this recurses, we decrement Q. Visits to 0, and continue propagating a; as the choice,
since that was Q’s first and only choice. When we return to the top level, we have
P.Choices = [ay, T] with one visit left, and XeChoices = [ay, T, T| with two visits left.
(However, Visits is not always the same as the number of T choices left.)

If we next process G, edge (az,as), we execute process_choice(asy, nil, A2). We
then call process_choice(as,, true, S). We return having S«Choices = [az, T], with one
visit left.

57

The last edge processed at the top level is (ag,as3), and causes us to call pro-
cess_choice(ay, true, S). This finishes off S’s visits and makes it a selector, and finishes
off P and X directly. We are left with Selectors = {S,P, X}, with their choice vectors
[az, ao], [a1,S], and [a;, P, 8], respectively.

When the second walk is done, Node.Choices is fully defined for each selector. We
then read off the v dag starting at Predom. The ~ function at the root of the dag
takes its predicate input from the predicate controlling Predom’s branching, and its
value inputs from the corresponding entries in the choice vector. Choices that are leaf
definitions are made direct data inputs to the v; a choice that is a selector is replaced
with a 4 function built recursively, in the same fashion, from the predicate and choice
vector for the selector. The resulting « dag for as is shown rightmost in Figure 3.5.

We give no formal proof for the correctness of this procedure. Informally, one can
easily show that Selectors is properly computed. To show correctness of the v dags,
we prove a one-to-one correspondence between paths in the v dag replacing a ¢ and
sequences of selectors encountered in execution paths reaching ¢«Block in G, based
on the labels produced by the predicates at the selectors. The last definition on a
G oy path from START to ¢«Block is the same as the leaf definition selected by the
corresponding path through the v dag.

n Construction

Algorithm 3.5 shows the procedures to build the v dag for a loop-termination pred-
icate. For each loop header, we pass its unique back-edge predecessor (its postbody
node) to build_loop_predicate(). The v dag built represents the negation of its control
conditions, which correspond to the conditions for loop exit. We store this condition
as LoopeExits.

We now expand each 77 — inserted earlier, one per loop-exit G edge — so that
there is one 1 per loop exited, and make the predicate input of each 5 refer to the
loop-termination predicate for the corresponding loop. Each n takes input from the
n from the next-inner loop exited on the same Gy edge, and feeds the 5 for the
next-outer loop exited, except that the innermost n gets the input of the original 7

and the outermost 7 feeds the original uses of the 7.

28

procedure build_loop_predicate(End):
Loop := EndsHeader; Selectors := {};
process_cds(End);
Predom := Loop;
while (Predomelpostdom pre-dominates End) do Predom := Predomslpostdom;
recursively build a dag from Predom.Choices;
save negated dag as LoopsExits;

procedure process_cds(Node):
foreach edge (C'd entering Node in Fp do
Pred := CdsSource;
if (Pred == Loop) or (Loop pre-dominates Pred) then
if (Pred ¢ Selectors) then /* assume all branches exit */
Pred.Choices[*] := true;
Selectors += Pred,
process_cds(Pred);
if (Node == End) then Pred.Choices[CdsLabel] := false; /* non-exit */
else /* possible exit path */
PredsChoices|CdsLabel] := Node;

Algorithm 3.5 Building a loop-termination predicate

3.5 Efficiency

We extended the ParaScope system to build control-flow graphs, dominator trees,
loop-nesting trees, control-dependence graphs, SSA-form def-use chains and TGSA-
form def-use chains. We focus on the asymptotic and empirical performance of GSA
form, because the prior work used a different algorithm and gave no experiments

[BMO90).

Per Procedure Mean | 90th Quant. 99th Quant. | Max
Max branch arity ch 1.9 3 7 22
Max unstruct. depth Cy 4.0 9 16 31
Max loop(exits times depth) c¢q¢ 2.0 8 21 | 156

Table 3.1 Control-Flow Statistics of Benchmarks

29

3.5.1 Control-Flow Characteristics

The time and space required to build TGSA form are closely related to the size
of SSA form, especially if reasonable bounds hold for a few procedure control-flow
characteristics: the fan-out of conditional branches (¢;), the depth of loop nesting (¢;),
the number of exits from any single loop (¢,), and the length of any F'.j, path from the
immediate pre-dominator of a merge node to an F, predecessor of the merge (also
referred to here as “the depth of unstructured control,” ¢,). Our notation reflects the
belief that these quantities can be treated as small constants.

Table 3.1 give the maximum and mean, over all the benchmark procedures of
Appendix A, of each procedure’s maximum branch fanout, maximum depth of un-
structured code, and maximum loop exit branches times loop headers. While the
average maximums is quite low for all three measurements, the maximum over all
procedures is high. The value at the 9Qth quantile is still low. While not all the pro-
cedures with large values for these quantities showed extra-linear growth in analysis

time, those that did show extra-linear growth had large values.

3.5.2 Asymptotic Complexity

Here we reason about the asymptotic complexity of these methods, as related to
various program metrics. While our methods may take exponential time and space for
contrived examples, they take linear time for programs satisfying loose and reasonable

structural requirements.

Auxiliary Analyses and Data Structures.

Efficient methods exist for computing each of pre- and post-, Tarjan intervals and
control dependences [LT79, Tar74, CFR*91, CFS90a]. While the asymptotic time
bounds range from almost linear to quadratic, for practical purposes, these methods
are linear in the number of G, edges (Ep).

The addition of blocks and edges to ¢ - is bounded by the number of loop headers
and loop-exit edges. The total observed growth in GG, nodes was eight percent; the
maximum growth in any procedure was a factor of two.

The addition of ¢ functions for SSA form affects the size of the dataflow graph.
While the number of additional ¢ assignments can be quadratic in the number of
original references, it is linear throughout extensive practical experiments [CFR*91].

The number of edges in G} is linear in the number of references if the arity of

60

merges is constant. In practice, G371 should be far smaller than traditional def-use
chains, which are often quadratic in the number of references. Our results agree with
the prior literature here.

Auxiliary data structures required to build GSA form from SSA form, such as

the vectors of choices, are reused by different calls to build_loop_predicate() and re-

place_¢s(). Their total size is O(E).

¢ and n Functions.

There is one p per loop per variable defined in the loop, which is exactly the number of
¢ functions at loop headers in standard SSA form. There are two cases of 5 functions.
For variables defined in a loop, we need create only one 7 per level exited, so those 5
functions are at most c,¢; times as numerous as the p functions. Other 5 functions
must be created for predicates, when multiple loop-exit branches merge outside the
loop. At the very worst, there are c¢,¢; of these n functions per v dag (i.e., per old
¢). So the total number of n functions is O(cqci(#p)). Our experiments confirm this
tight linear relationship, with an average of 1.5 functions per p. However, there is
wide variation in the number of p and 5 functions per loop, presumably because of
differences in loop size.

The predicate input of an 5 refers to the corresponding loop’s termination predi-
cate, a v dag with at most (¢, — 1) v functions for each block in the loop. (This worst
case would require that every block end with a a multi-way loop exit.) The termi-
nation predicate is built in time proportional to its size. Since each block can be in
at most ¢; loops, the total size of all loop-termination predicates is O(c;¢;Ngp). Our

measurements do not distinguish + functions in loop predicates from those replacing

@s.

~ Functions.

In structured code, there is only one merge point for each branch (i.e., paths from
a branch merge only at its post-dominator). In this situation, the v dag replacing
each ¢ has exactly the same inputs and space requirements as the ¢, except for the
addition of the predicate inputs.

In unstructured code, every branch between the merge point of a ¢ and the pre-
dominator of the merge can potentially contribute to the size of the v dag. A coarse

bound for the maximum dag size in this case is min(N p, c;*). For structured code,

61

¢; is smaller, so the time and space required to build the 4 functions is linear in
the number of ¢ functions. For unstructured code (large ¢,), N p is smaller, so the

resource requirements can be at worst quadratic (O(NopN53)).

3.5.3 Experimental Performance

We tested our implementation on over 1000 scientific Fortran programs described in
Appendix A.

Figure 3.6 plots the total size of G351 (nodes and edges, with p and 7, but with
not v conversion) against the number of plain variable references (i.e., programmer-
specified definitions and uses). While there is some spread, the relationship appears
to be linear. The significant outlier is master from the RiICEPS program boast, with
over 30 SSA nodes and edges per plain reference. This routine contains one loop with
an exceptionally large number of loop exit branches, with the second highest value
for the maximum product of loop exits and loop depth (c.¢; == 81)

Figure 3.7 compares the total size (nodes and edges) of G534 and G354, The
total growth over all procedures was 18 percent. The outlier mosfet, from the SPEC
version of spice, had a the third highest maximum depth of unstructured control
(c, == 27).

Figure 3.8 plots the total size of G534 divided by the number of plain variable
references. Only a very few small procedures have more than 20 TGSA elements per
plain reference. The trend on this graph seems flat, implying a linear relationship
between the size of TGSA form and the size of the program.

The total time required to build everything from G to G§34 is plotted as mil-
liseconds per GG ;- node and edge in Figure 3.9. This graph is also quite flat, suggesting
a linear relationship between analysis time and program size. The average time re-
quired per Gy element on the entire sample was 2.4 ms; the average of the procedure
averages was 3.1 ms.”

These results confirm prior results that SSA form has time and space requirements
linear in the size of the procedure [CFR*91]. They also show that GSA form is

generally about the same same size as SSA form.

“These measurements were taken inside the ParaScope programming environment, optimized with
gcc version 2.4.5, running on a Sun MicroSystems Sparc 10 with 64 Mbytes of memory.

SSA Nodes + Edges

TGSA Nodes + Edges

o
S
o -
S
«
o
S
O -
S
i
S.'-H‘
o | et g
0 1000 2000 3000 4000 5000
Plain Variable References
Figure 3.6 SSA size vs. Plain References
o
S
o -
S
<
o
S
o -
S
N
o 1 ==
0 5000 10000 15000 20000 25000

SSA Nodes + Edges

Figure 3.7 Comparing size of TGSA and SSA forms

62

TGSA N+E per Plain Reference

CFG+SSA+GSA Time (ms per CFG N+E))

60

40

20

50

30

10

."_"-..'.. ., . L
mﬂﬁuw.‘u Baren B Tl

T T T T T T

0 1000 2000 3000 4000 5000

Plain Variable References

Figure 3.8 TGSA Elements per Plain Reference

] m%w’ wapt et ST e
0 500 1000 1500 2000
CFG N+E

Figure 3.9 Total Analysis Time per CFG Element

63

64

3.6 Related Work
3.6.1 Groundwork

Control-flow graphs, dominator trees, control-dependence graphs and SSA form are
covered extensively in the literature [ASU86, LT79, CFR*91]. However, while con-
struction of loop-nesting trees is well-known tool, it is seldom documented. We use
the algorithm of Tarjan’s algorithm for testing reducibility [Tar74] extended to rec-
ognizing irreducible loops in a way that isolates the problems they cause.

Whether a particular control dependence is loop-independent or loop-carried may
seem obvious in sufficiently structured code. Our algorithm is the first we have seen
to compute the carrying level for control dependences in any reducible control-flow
graph. (We also compute these levels in irreducible graphs, but their interpretation

is more problematic when the carrying loop is irreducible.)

3.6.2 High-level SSA form

Alpern et al. presented SSA form and proposed extensions to improve handling of
conditional merges and loops [AWZ88]. For structured programs, their ¢if, denter,
and ¢eyxit are exactly equivalent to the TGSA-form versions of v, y, and 5, respec-
tively. They showed how to find the partition of nodes in a value graph based on SSA
form that gives the maximum number of congruent nodes (equivalent expressions)
without rewriting the graph.

TGSA form is identical to high-level SSA form for structured code. The same value
partitioning methods apply to TGSA form, extending these results to unstructured

programs.

3.6.3 Original GSA form

Ballance et al. introduced GSA form as a component of their program dependence

web (PDW) [BMO90]. GSA form was inspired both by high-level SSA form [AWZ88]
and PDGs with valve nodes [CF89].

65

I'=~PI,,1,)
Jr=~(P,J1,J2)

Ballance et al. G&3A Thinned Ggf;A

Figure 3.10 Different versions of GSA form on G

Original GSA form has a third input to the g function, the loop-continuation
predicate. In addition, it allows v functions to have a single non-T value input, as in
Figure 3.10.%

Ballance et al. need this additional information to drive the insertion of switches,
creating the data-driven form of their PDW. For symbolic analysis, it is sufficient to
control values flowing out of a loop, and the predicates for n functions in thinned
GSA form satisfy this purpose. Omitting the predicates on p functions clarifies the
independence of iterative sequences, such as induction variables, from the iteration
count.

Extra ~ functions can obscure equivalences. The original form’s 4 dags include
both the predicates determining which definition reaches the merge and those deter-
mining whether or not the merge would execute.? In Figure 3.10, if I; and I, were
equal, it would be much easier to notice the simplification for I in TGSA form than

in the original GSA form.

8Actually, they use L, which makes sense in their dataflow interpretation, where unexecutable
expressions are treated as divergent. In a demand-driven interpretation, unexecutable expressions
can be assumed to have any value (T), since that value will never be demanded.

9Because conditions for branches preceding the pre-dominator of the merge are implied through the
predicate of the 7, the extra functions occur only for unstructured merges.

66

Original GSA form can be converted to thinned GSA form by globally simplifying
the extra v functions and ignoring the predicate inputs to g functions. While both
algorithms for building GSA form seem to have the same asymptotic complexity,
ours is simpler to implement, especially when working with an unfactored control
dependence graph.

The Program Dependence Web researchers have recently developed another re-

vised definition of GSA form, which retains the major differences between with

thinned GSA form described above [CKB93].

3.6.4 Program Dependence Graphs

Ferrante, Ottenstein and Warren introduced the program dependence graph, com-
prising data dependences and their now-standard formulation of control dependence
[FOWS8T]. Groups at Wisconsin and Rice have developed semantics for PDGs [HPRSS,
CF89, Sel92]. Selke gives semantics for programs with arrays and arbitrary control
flow, and shows how to insert valve nodes efficiently.

Despite the greater maturity of PDGs as a program representation, they are infe-
rior to TGSA form for value numbering. The inputs to each node include the control
dependences under which that node executes, which would make value numbering
overly conservative for dependence testing. However, ignoring control dependences in
value numbering would produce results similar to those for SSA form; we would be
unable to compare merged values from different parts of the program.

Perhaps rewriting systems can be defined for PDGs that have the same power as

value numbering, but the practical efficiency of such an approach is uncertain.

3.6.5 Semantics

Recent work by John Field gives a formal treatment of graph rewriting on a represen-
tation resembling original GSA form [Fie92]. Field’s work still focuses on data-driven
models of execution, where control dependence is converted to data dependence.
(Doing this by use of control dependences is much more efficient than IF-conversion.)

The program representation graph of Horwitz et al. also resembles GSA form
[YHRB8Y], and is also used to recognize a form of equivalence between program frag-

ments.

67

3.7 Summary

The major result of this chapter is the introduction of thinned gated single-assignment
(TGSA) form. Like SSA form, TGSA form adds pseudo-definitions in carefully se-
lected places so that there are fewer def-use chains and they are easier to build.

All versions of GSA form support the conversion of conditionally merged values
to a functional form. The originally published algorithms for GSA form are based
on a factored control dependence graph. Our algorithms are shorter, simpler, and
use a statement-level control dependence graph, as required for integration with the
ParaScope programming environment.

Testing on several hundred scientific Fortran procedures confirms that while GSA
form is dozens of times larger than the Gy in a few cases, its growth is linear over
the vast majority of procedures. The few procedures for which GSA form is much
larger than SSA form have are either very unstructured or else have many loop exit

branches.

63

Chapter 4

Symbolic Expressions

4.1 Introduction

Symbolic analysis requires the ability to represent and manipulate unknown values.
We believe that the most important feature of each unknown value is the way that
it is computed; for example, is it a completely mysterious value from outside this
procedure, or is it computed from other unknown values and constants?

We need a representation for computations that is as complete as is possible at
compile time, that makes identical values easy to spot, and that can easily be rewritten
to exploit arithmetic properties and other higher-level knowledge.

In Fortran and related languages, values are built up by expression evaluation
and loads and stores of variables. By combining expression trees with the global,
GSA-form dataflow graph, we produce a value graph [AWZ88] for the procedure’s
computations that enables powerful symbolic pattern-matching and rewriting tech-

niques.

Pattern Matching

The « functions we build to represent merges are, like arithmetic operators, com-
positional: the meaning of a phrase such as v(P, v1,...,v,) (or its equivalent graph)
is dependent only on the operator (v) and the meanings of the inputs (P, vy, ..., v,).
Another occurrence of the same operator with the same (or same-meaning) inputs
therefore has also the same meaning.?

This gives us an extremely powerful tool for handling non-constant values. The
compiler doesn’t have to understand the meanings of expressions. It only needs to

discover some primitive phrases with the same meanings, such as identical constants or

1One small caveat is necessary: a 7 function giving the value of a variable at a program point, like
any other expression, only has meaning if execution reaches that program point. We can ignore this
distinction during construction and matching of value graph phrases, but enforce it to our profit
when relating these values to particular program points.

69

uses of the same definition of the same variable. By combining dataflow information
and expressions into one compositional value graph, we can apply graph pattern-

matching to discover complex phrases with the same meaning.

Rewriting from Domain Knowledge

Pattern matching alone is not adequate to our needs, because many values with
interesting relationships do not look exactly the same. Some can be rewritten to be
the same, such as (2 #) and (z +). Others are fundamentally inequivalent but
related, such as two auxiliary induction variables that can both be expressed as linear

functions of a main loop induction variable.

Overview

The use of gated single-assignment form allows us to represent merges of different
variable definitions with « functions controlled by the control condition selecting the
definition. When combined with expression trees, the resulting value graph models
all the computations in the procedure. Conservative approximations are only for
external values provided by other procedures or by system input. We maintain a
many-to-one map from source-level program expressions and variable references to
their representative value graph nodes. Section 4.2 gives the details of value graph
construction.

Simply combining G474 with expressions would produce a naive value graph with
a unique node for every expression. To detect distinct occurrences of equivalent
expressions, we have to discover the matching subgraphs. Section 4.3 gives methods
for pattern matching and assigning value numbers to sets of congruent nodes.

Pure value numbering applies a very narrow rule of exact isomorphism in dis-
covering identities. To increase the power of our methods, we exploit arithmetic
properties such as distributivity, associativity, and commutativity, simultaneous with
value numbering, as discussed in Section 4.4.

Earlier researchers have employed value numbering to find identities, or graph
rewriting to achieve more ambitious results. Section 4.7 explores the prior work
in detail. The novelty of our work lies in combining value numbering and graph

rewriting, expounding on the details, and giving experimental results.

70

| z3 := (P, 21,22) |
23

a. Control Flow b. Expression Forest c. Data Flow

d. Value Graph

Figure 4.1 Building a Value Graph

71

4.2 Value Graphs

4.2.1 Formation

A value graph combines information from expression trees and def-use chains to rep-
resent the computations in a procedure. This much it has in common with other pro-
gram representations, such as some varieties of program dependence graphs. Value
graphs, in particular, are tuned to maximize the cases where computations with iden-
tical values have identical representations.

The expression forest of a procedure comprises the union of the expression trees
from all its statements. Top-level expressions are found on the right-hand side of
assignments and in the output list of WRITE statements. The forest is a graph (U U
S, E'), with nodes for variable and constant uses (/) and for operators (5). Edges are
in (U US) xS, going from uses and subexpression operators to operators of parent
expressions. Some expressions represent the right-hand sides of variable assignments.
For convenience of presentation, the root of each subexpression is assumed to be an
operator (possibly the identity function).?

The other precursor of the value graph is the dataflow graph, linking the expression
trees together with edges from definitions of variables to their uses. The dataflow
graph G&74 = (DUU, C) has definition nodes D representing reads and left-hand sides
of assignments, use nodes U representing writes and right-hand sides of assignments,
and edges C, also known as def-use chains. Each chain (d,u) € C' connects a variable
definition d € D with a reference u € U to the same variable.

Figure 4.1 shows a value graph built from the expression forest and the GSA-form

dataflow graph by the following steps
1. Form the naive value graph Vo = (DU U U S,C U E).

2. For each assignment statement, fuse the left-hand side (definition) node with

the root node of the right-hand side expression.

3. For each def-use edge, fuse the source (definition) node with the sink (use)
node and delete the edge. (This handling also applies to the special edges from

conditional expressions in branches to uses as the predicates of v functions.)

2Qther researchers have expression edges going the opposite direction, from operators to uses
[AWZ88], or have subexpressions pictured below their parent expressions [ASU86]. We adopt our
conventions for ease of combination with dataflow graphs depicted in the traditional way.

72

4. For each copy node (operator node employing the identity function), combine

the copy node with its input and delete the input edge.

If using SSA form, tag each ¢ function with the statement identifier for the

ot

merge point. If using GSA form, tag each p function with the level of the loop
header where it was added, and each 5 function with one less than the level of

the loop exited.

6. Tag each external input (value passed on entry, value returned by call, or value
returned by READ) with function identifier unique to that input and with the

level of the deepest containing loop.

7. Keep a map from original definition and use nodes to their representatives in

the value graph.

The resulting value graph V' has combined all nodes that are equivalent due to copies,
while remaining compositional. We have not yet combined repeated occurrences of

the same subgraph generated from distinct original statements.

4.2.2 Congruence

Structural congruence is a form of graph isomorphism. Let the slice for a node be
the subgraph of all nodes and edges reachable by tracing backwards through the
flow graph. Two nodes are congruent if their slices are isomorphic — if they can
be matched node to node, with corresponding nodes having the same operators, and
edge to edge, with corresponding edges going from matched source nodes to the same-
numbered inputs of matched sink nodes. To recognize congruence without actually

extracting slices and comparing them, we employ the following, equivalent definition
[AWZ88].
Definition: Two nodes are congruent if and only if:

e they are labeled by the same function,

e they have the same number of inputs (incoming edges), and

e corresponding input nodes (sources of incoming edges) are congruent.

73

Since nodes for constants have no inputs, they are congruent if they are labeled
by the same constant function. Nodes for externally generated values (formal param-
eters, READ results, and unanalyzed side effects of procedure calls) have no inputs,
but are never congruent because we label each with a unique function.

We maintain a map from program expressions to their representative value graph
nodes. Program expressions with congruent representatives are said themselves to
be congruent. Because congruent nodes cannot be distinguished, they may as well
be combined in the representation. In the resulting collapsed value graph, congruent
expressions are represented by the same value node.

Potential ordering problems complicate recognition of congruence for nodes with
inputs. If the portion of value graph reachable from the nodes forms a directed acyclic
graph, matching for congruence can be done in topological order, working from the
leaves to the roots. However, if the graph has cycles, we need another method.

Resolution of this problem is discussed in Section 4.3.

4.2.3 Equivalence

Recall that we maintain a map from program expressions to nodes in the value graph.
If two expressions map to congruent value graph nodes, then by extension we call
them congruent expressions. Here we discuss the conditions under which congruent
expressions produce equivalent values.

In straight-line and branching code, each program expression executes once or not
at all. Congruent expressions will produce the same value if they both execute. GSA
form enforces this in merging code. In SSA form, we must conservatively assume every
pair of ¢ functions to be different (to have distinct operators) unless they occurred
at the same program point.

When loops are present, expressions may execute multiple times, producing differ-
ent values each time. An expression is not necessarily even equivalent to itself across
all loop iterations. We need to detect when values vary with loops, and which loops

are involved.

Dags without Merges

For program fragments with straight-line code (basic blocks) or with branching code

and no merges (extended basic blocks), value graphs are the same dags used in tra-

74

ditional value numbering [ASU86]. Expressions with congruent value nodes have the
same value on the same execution of the basic block.

To demonstrate this, first consider congruent zero-height value dags (leaf nodes).
In this case, there are no input edges, but the function labels are identical. For
constants, the function labels are the values, so congruent constants are equivalent.
Other leaf nodes indicate externally computed variables, such as parameters or globals
passed from the calling procedure, side effects of called procedures, or variables READ
from the input/output system. These are all given unique function labels. The only
way that two expressions can get congruent value nodes for external values is if they
derive from references or copies of the external value, which are equivalent.

Now assume that all congruent value dags of height (n — 1) or less correspond
to equivalent run-time values. Do congruent value dags of height n correspond to
equivalent run-time values? Their corresponding inputs are congruent, of height less
than n, and therefore equivalent. Their function labels are the same. So long as
the functions involved are compositional (producing values dependent only on their
inputs), the run-time values will be equal.

Calls to non-compositional functions are treated the same as READ above. While
these are treated as having inputs in the construction of GSA form, for value num-
bering we treat them as being leaf expressions with unique function labels, so they
will not be found congruent to any value not copied from themselves.

Note that to produce these dags we may have combined nodes to eliminated def-
use chains and identity functions. But so long as there is only one definition reaching
each use (as is true with SSA and GSA forms), a use always has the same value as its
reaching definition, so this is safe. Neither way of copying values introduces spurious

congruences.

Dags with Merges

When there are merges in the code but no loops, then multiple definitions of a variable
may reach a use in the original code. Conversion to SSA or GSA form adds new
assignments so that, in the resulting value graph, ¢ (in SSA) or v (in GSA) function
nodes combine the multiple reaching values and select the appropriate one.

The ¢ function is not compositional: it depends on the context of the merge in the

control-flow graph. Therefore, we mark each ¢ to uniquely indicate the control-flow

75

merge where it was built. Congruent ¢ function nodes must not only have congruent
inputs, but also derive from the same control-flow merge.

We therefore prefer GSA form, which gives us compositional v functions for merged
values. We can therefore identify congruent merged values computed at different
points in the control-flow graph. GSA form helps us to reason about merged val-
ues independent of location. The 7 functions encode the predicates selecting which
input value is used at the merge point. Equivalent predicates selecting equivalent

corresponding data inputs imply equivalent v function results.

Cycles

When statements execute multiple times, we need to know which executions we are
comparing before we assert that congruence implies equivalence. On GSA form,
inclusion of loop level in the function labeling for p and 7 is sufficient to guarantee
that if two expressions are congruent, their run-time values are equivalent when both
execute for the same iteration of the relevant surrounding loops.

The relevant loops are those with which the expression varies.

Definition: The loop-variance level of a node is

e for a u operator, the nesting depth of the loop header where the GSA-form p

was originally built;
e for an 7 operator, one less than the depth of the outermost loop exited;

e for return values of calls and READs in a loop, the nesting depth of the innermost

loop containing the original statement;
e for constants and values on entry, zero; and

e for all other operators, the maximum level of all inputs.

Pattern matching need only explicitly consider levels on the first three categories of
nodes, which will then induce the appropriate matches and mismatches on the other
operator nodes.

Congruent expressions necessarily have the same variance level. If that level is
{, then the expressions assume the same value whenever the outermost ¢ loops sur-
rounding each program expression have executed the same number of times — with

the iteration counts for each corresponding loop matching exactly.

76

For example, if we are trying to evaluate a comparison test in a branch statement,
we need not worry about the loop variance levels. All the expressions of concern are
being compared for the same execution of the same statement.

If, however, we are involved in dependence testing, just saying whether expres-
sions are equivalent within one iteration is not very interesting. We will need more
aggressive arithmetic manipulation, as described in Section 4.4 to answer the right
questions. Section 4.5.3 shows how to use level information in comparing values across

iterations.

4.3 Value Numbering

The process of finding congruent expressions is frequently called value numbering.
We assign a unique integer, or value number v to each set of congruent value graph
nodes. Depending on the method used, we may combine congruent nodes in the value
graph or leave them separate.

A precise value numbering method gives two nodes the same value number if and
only if they are congruent. It is, however, still safe to assign different numbers to
congruent nodes.

While the equality of run-time values is undecidable, value numbering is a conser-
vative approximation that is both decidable and computable. Techniques for deciding

congruence vary with their generality.

4.3.1 Partitioning

Because congruence is commutative and transitive, it constitutes an equivalence rela-
tion on value nodes. The set of all value nodes can therefore be partitioned completely
into non-overlapping subsets (equivalence classes) of mutually congruent nodes.”
Almost-linear algorithms exist for finding this partition, starting with the assump-
tion that all nodes are congruent (putting them all in one class) and progressively
splitting congruence classes [AWZ88]. Termination occurs when no nodes assumed in

the same class can be proven not congruent.

3Just because a relation is an equivalence relation doesn’t mean that it is the equivalence relation
(i.e., equality of value). However, congruence does happen to be connected to equality. To avoid
further confusion, we will write no further on the general notion of equivalence relations, but only
on congruence in particular.

7

By starting with an optimistic assumption, the partitioning method is able to
solve the congruence problem exactly. This is particularly important for value nodes
involved in cycles, which are very difficult to prove congruent if they are first assumed
not to be.

However, this strength is outweighed, for our purposes, by a related weakness.
The partitioning process never adds nodes to a class, but only divides them. In order
to recognize two nodes congruent, it must have the congruence asserted and then fail

to disprove it. Therefore, partitioning must either

e execute only the full value graph, or

e execute on incomplete value graphs first, then on the full graph.

The first option rules out most interesting kinds of graph rewriting, such as order-
ing commutative arguments according to their value numbers. The second could be
prohibitively expensive, because partitioning incomplete graphs doesn’t make parti-
tioning the full one any easier.

While we cannot rule out tricks to improve value numbering by partitioning, we

chose to use a pattern-matching method more compatible with graph rewriting.

4.3.2 Hashing

One trivial method of building value numbers is to traverse the value graph in topo-
logical order, keeping a list of all patterns found. When a particular combination of
operator and input value numbers is not found in the list, it is added. Whether we
have newly added it or found an old copy, we return the position in the list as the
value number [ASUS6].

Value hashing is exactly this method, optimized by substituting a hash table for
the list. So long as we have no cycles in our value graph, it will discover exactly the
same congruences as the partitioning method. It is inexpensive, as the expected cost
of looking up a pattern is the size of the pattern being hashed plus a constant.

A particular benefit of value hashing is that it can be made demand-driven. In our
implementation, the expression forest and the GSA-form dataflow graph constitute
the naive value graph, which we value number by recursively requesting value numbers
for the inputs, then looking up the operator and input value numbers in the table.

Like all bottom-up pattern-matching schemes, hashing is essentially pessimistic,
assuming nodes are not congruent until proven otherwise. It therefore cannot prove

congruence of cyclic expressions. We address this problem in two ways:

78

o When the original code is reducible, a p operator node must occur at the entry
to every cycle in the value graph. We can conservatively number cycles by

giving a distinct value number to every p node.

e We can use more powerful techniques than pattern-matching to analyze iterative

values.

Note in particular that the most interesting related values in loops are not exactly
equivalent. More common are auxiliary induction variables and other values which are
a function of the loop iteration count and loop-invariant values. The linear auxiliary
induction variables, such as j in the following, are particularly amenable to symbolic
manipulation.

doi=1,n
J=1+k
A[31 = ...
enddo
The value of j at the beginning of each iteration, before being incremented, can be
written as (jo + (i-1)*k). No pure pattern-matching technique can recognize this
relation between i and j, or between them and other inductive values.

Thus, while hashing is limited in its ability to handle cycles, even partitioning,
a precise pattern-matching technique, cannot derive many important properties of
loop-variant values. We therefore feel justified in value numbering by hashing, which

gives us more freedom to rearrange expressions.

4.4 Rewriting

Properties of particular operators may allow us to rewrite the value graph. This
can be especially useful when using value hashing, as inputs to commutative and
associative operators can be sorted based on their value numbers as the value graph
s buslt.

Rewriting floating-point expressions is controversial with scientific programmers,

because

e the machine compiled on may have different floating-point precision than the

target machine, and

e even if the compile-time precision is the same as the run-time precision, the

magnitude of roundoff error may change with the order of evaluation.

79

Some programmers will want simplification of floating-point expressions, but it should
not be the default. We will rewrite those floating-point expressions whose inputs and

result are all integer-valued constants.

4.4.1 Constant Folding

When the arguments to an arithmetic operator or built-in function are integer or
logical constants, we can frequently evaluate the expression. If we know the size of
the target machine’s integers, we can even spot overflow.

For example, the following operations can be folded when constant; we also give
simple rules for detecting overflow. In evaluating constant floating-point expressions,
we should check for overflow using integers with the same length as the mantissa in

the floating-point representation.

Addition overflows if the inputs have the same sign but the result sign is different
(or, in unsigned arithmetic, if the result is smaller than one or both of the

inputs).
Subtraction is converted to addition.

Integer division can alway be applied (with truncation) to integer inputs, but can

only be applied to integer-valued floats if the remainder is 0.

Multiplication of j and k overflows if and only if [log,(j)| + [log, (k)] is equal to

or greater than the number of bits available.

Logical and comparative operators never overflow (although we must be careful
to avoid intermediate overflows in comparing very negative and very positive

numbers).

4.4.2 Shallow Normalization

Some normalizations can be applied while only looking to a constant depth. By
performing these on the fly (as each expression is added to the value graph), we can

guarantee that the inputs to every node are normalized.

Commutative operators (+, *, and, or) should have their inputs consistently or-

dered.

80

e If one input is constant, put it on the right side.

o If both inputs are symbolic, put the one with smaller value number on
the right (this requires that value numbers and value graph construction

proceed in tandem).

Division can sometimes be evaluated. Where ¢ and k are constant, and k divides ¢,

e replace (c* x)/k with (¢/k) * x
e replace (¢* x) mod k with 0
Comparisons should be converted, using subtraction and the not operator, to one
of a few forms:
o c>10
o c ==

e c>0
~ functions can sometimes be normalized:

o Y(P,v1,v1) — vy
e (true,vy,vy) — vy

o y(false, vy, v3) — vq

(
(
(
o Y(not(F),v1,v2) = (P, vz,v1)

Arithmetic constants should be pulled out of 4 functions in a consistent way to

expose them to simplification of next section. For constant ¢, ¢;

[} "}/(P, (%] —|— C1,U2 —|— CQ) — "}/(P, U1, U2 —|— (CQ — Cl)) —|— (8]

o ’Y(Pa ’01617’0202) - QV(Pa ‘U1€1/97‘U262/9)
where ¢ == ged(eq, ¢2)/sign(er)

4.4.3 Arithmetic Simplification

Integer arithmetic operations are relatively common and are so often used in combi-
nation in such a way that aggressive rewriting is both possible and useful. We perform
arithmetic normalization on the fly while building the value graph and value num-

bering. Multiplication is distributed fully over addition, and we sort factors within

81

function score(e)
if (e is a constant) then
return 0
else if (e has the form ¢ * ¢) then
return score(t)
else
return (level(e), valnum(e))

Algorithm 4.1 Scoring an Expression for Sorting

a product and terms within a sum. In the following, we use letters to designate the

various forms:
e s — sum of two or more terms
e { — term: leaf value or expression with non-additive operator

> ¢ — constant
> p — product of two or more sub-terms (not sums)

> x — external input or non-arithmetic operation

All products and sums are maintained as sorted lists of factors and terms, respectively.
The score used in sorting is very important, because it makes sure that constants
come out at the top of expressions so they can be combined, and terms identical to
each other (except for constant coefficients) come out next to each other and can be
cancelled. The method for computing the score is shown in Algorithm 4.1.

Both products and sums are sorted into left-leaning trees, with lowest-scored items
nearest the top. As the sort progresses, items with the same score are combined. This
gives the constant coefficient for products, and gives a constant term and cancels
adjacent terms for sums.

Breaking down every new arithmetic expression and sorting from scratch could
be prohibitively expensive. However, most operations can be handled with minor
adjustments of the sorted input subexpressions, avoiding a complete sort. Letting |s|
denote the number of terms in a sum s, (s) the number of factors in an average term
in s, and |p| the number of terms in a product p, the complexity of building a sorted

expression given various forms of operators and subexpressions is as follows.

82

e copc

O(1): Combine to a single constant (constant folding).

e cxx,c+t,t+1

O(1): Put in order at top level (shallow normalization).

e ckp,c+s
O(1): Combine new constant with any existing constant coefficient or term

(found at top level) and leave new constant on the right side at the top level.

® Cks
O(ls|): Distribute over the sum and combine new constant with old constant

coefficient of each term. Renumber, but do not re-sort.

e Lxp, T+ S, p+sS
O(|p|), O(]s|): Search through sorted list and insert in proper place. Renumber

list while unwinding, but do not re-sort.

® p1 ok Pg,S1+ S

O(|p1| + |p2|), O(|s1]| + |s2]): Merge sorted lists and renumber; do not re-sort.

® T xS
O(]s| * (s) + |s|log|s]): Distribute over the sum. Insert = in each term of sum,

renumber each term, sort the sum, renumber the sum.

® pxs
O(]s|*(|p| + (s)) +|s|log |s|): Distribute over the sum. Merge product into and

renumber each term, sort and renumber the sum.

® 51 % S9
O(]s1|* |s2|* ((s1) + (s2)) + |s1] * |s2|log(|s1]* |s2|)): Multiply out the two sums.

Merge and renumber terms, sort and renumber the new sum.

4.4.4 Recurrence Recognition

Our original plan was to use value numbering to recognize and simplify recurrences
(iterative computations). First, mark each p at the beginning of a recurrence with a

placeholder value M. Then value number normally. If the iterative input to that u

83

function number(GsaNode, Level)
if (G'saNodes Value has been defined) then
return GsaNodes Value;
... handle other types ...
else if (GsaNodesType == 1) then
if (GsaNodesLevel < Level) then
return new_variant(GsaNode);
else if (p € MuStack) then if (u == top(MuStack)) then
return M; /* placeholder */
else return new_variant(GsaNode);
else push p onto MuStack;
init := number(GsaNodedInitsSource);
iter := number(GsaNodedltersSource);
pop p from MuStack;
recursively unnumber and renumber G'saNodesItersSource;
GsaNodes Value := new_hashed(init, iter, GsaNodesLevel);
return GsaNodes Value;

Algorithm 4.2 Value numbering a y

ends up being, for example, (M + 1), then we have an auxiliary induction variable
with step 1.

This trick, with a few more details, seems to work fine for single loops. We are
forced to repeat value numbering for those values depending on the p after it has
been replaced with an inductive expression.

However, renumbering each iterative input can become burdensome with multiply
nested loops. Assume that there is an induction variable used by all the loops, but
modified (incremented by 1) only in the innermost loop. We would end up making
multiple passes of value numbering and renumbering as we recognize the induction
variable at each level, the total number of passes being quadratic in the nesting depth.

Our implementation uses Algorithm 4.2 to recognize auxiliary induction variables
varying at one loop level. For nested loops, we should use analytical techniques for

identifying induction variables [Wol92].

Induction Variables

An auxiliary induction variable’s value will be an invariant iterative function of the

placeholder; e.g., (M 4 1). When this function is an invariant increment, this can be

84

normalized to a linear expression of the loop iteration count. Similar conversions are
even possible with non-additive increment functions such (M #*2), which is the initial

value times 2 to the power of the iteration count.

Other Reductions

We can have a variant yet analyzable iterative function: for example, M + A[:]. If s
is the loop index variable and A is not modified in the loop, then we are computing

a sum over a section of A.

4.5 Comparing Program Expressions

4.5.1 Constant Differences

We can compare values v and w in straightforward fashion by building (v — w) and
simplifying. A constant difference that is positive, zero, or negative tells us that v
is greater than, equal to, or less then w, respectively. Building and simplifying the
difference will take linear time at worst.

In practice, this test can be done in constant time, without building the difference.
Because the constant terms in sums are always kept at the top of the left-leaning tree,
we can compare arbitrarily long sums by just checking first, to see if the two non-
constant parts have the same value number, and if they do, comparing the constant

terms.

4.5.2 Exploiting Bounds

If the difference (v — w) is not constant, then our options are limited. We can either
give up (which we must do in some cases regardless), or we can construct the full
difference and try to use bounds information, described in Chapter 5, to determine if

it is positive or negative.

4.5.3 Dependence Testing

When testing for dependence at level ¢, we can handle all the index values varying
with level £ or less and all the non-index values which vary less than ¢ (call the latter
loop-invariant with respect to £). Any values varying with deeper loops will have to
be analyzed on the basis of range information alone.

Consider the following loop:

85
doi1=1,n

Afci*i + k1] := ...
:= Alc2*i + k2]
enddo
If we are testing for any possible dependence between the definition and the use of A,

then we must determine whether or not
cl*xaxy+kl==c2*xy+ k2

for any x; and a3 € [1 : n]. If there is a reuse, then the dependence distance (x5 — 1)
is the number of loop iterations between definition of a location in A and its use (if
the distance is negative, then the use came first). The distance is constant when

cl == c2, and is then given by
ry — a1 == (k1 —k2)/cl

Since iterations are numbered by integers, there is no dependence if the distance is
fractional (if c1 == 2 and k1 — k2 is odd, this corresponds to one of the references
stepping through the even-indexed elements, the other through the odd). There is
also no reuse if the magnitude of the distance is greater than or equal to n — the sets
of accessed elements do not overlap (and there are no iterations that far apart).

If k1 and k2 are not constant, we need symbolic analysis techniques to tell us first,
if they are loop invariant, and second, the value of their difference.

To organize the process of symbolic dependence testing, we parse the two sub-
scripts being compared according to loop-variance level, producing two vectors for

each subscript:

o cocffs[i], holding the constant coefficient of the level-: index variable, or for

1 == 0, any constant added part, and

e variant[i], holding terms of the sum which are variant with level ¢ but not linear

in the index variable; or for ¢ == 0, the loop-invariant symbolic terms.
In testing for dependence for the example loop, coeffs == [k1,c1] for the definition
of A, while for the use of A, coeffs == [k2, c2|. Testing for dependence carried at level

{ then proceeds as follows:

o If variant[i] # 0, for ¢ >, then give up (assume dependence).

86

e If remaining terms of variant are all equal (between the two subscripts being

tested), we have reduced the problem to non-symbolic dependence testing using

coeffs.

e Otherwise, attempt to compute a dependence distance ignoring variant, then

add in all terms of variant and compare against the bounds.

4.5.4 Slicing

Both the naive value graph (obtained by unioning G/%7# with the expression forest)

and the collapsed value graph (obtained by collapsing copies and congruent nodes in
the naive value graph) are useful for slicing [DSvH93]. Given a program expression,
chasing backwards from its value node will give everything that affects its value. While
this will omit the decision whether or not to execute the expression, that omission
may be useful in recognizing identical slices that can be combined.

If the slice must be converted to actual code, the naive value graph is somewhat
easier to deal with. There is still a close correspondence between values and the
intermediate variables they were stored in. When using the collapsed value graph for
slicing, one must replicate the entire slice back to the atomic values: constants and
external values (transmitted through formal parameters and globals on entry, actual

parameters and globals on return from call, and variables in READ statements).

4.6 Evaluation of Performance

4.6.1 Expected Complexity

Our manipulation of symbolic expressions has three major sources of expense:
e construction of the expression forest and dataflow graph,
e hashing of values during value graph construction, and
e rewriting of values during value graph construction.

The expression forest is a subgraph of the abstract syntax tree, and therefore
trivially linear in the size of the program (represented by the AST). As shown in
Chapter 3, construction of the GSA-form dataflow graph appears linear for all but a

few outlying procedures.

87

It takes time proportional to the size of the keys to evaluate the hash function
and, assuming a uniform and sufficiently pseudo-random hash distribution, constant
time to perform the lookup in the hash table [Knu73b]. In numbering the whole
value graph (assuming that we do no rewriting), we hash the operator name and
input value numbers of each node in topological order, adding those which are not
yet present in the table. The size of the keys is thus proportional to the in-edges, and
the total number of items in the hash table is the number of nodes minus the number
of identities found. Assuming effective hashing, value numbering without rewriting
takes linear time.

Shallow normalization adds at most a constant amount of time to the processing
of each operator. Arithmetic normalization, on the other hand, can take a linear
sequence of assignments and turn them into an exponential value tree. For example,
consider the fragment

To =1

Ty =T * (Y1 + 21)

T 1= Tpo1 * (Yn + 2n)
During arithmetic simplification, each x; will have a value graph fragment twice as
large as that for x;_; because nothing cancels out. Distribution and sorting will also
greatly reduce sharing between the subgraphs representing each of the z; values. The
value subgraph contributing to x, will have 2" terms, each of length n.

We predict, without proof, that such chains of multiplying sums will be short in
practice. They are not a factor at all in the current implementation, which takes the
short-cut of not distributing multiplications involving sums (except for multiplication
by a constant). Under multiplication by a non-constant term, sums are scored as
atomic terms.

If the arithmetic expressions that we are free to manipulate have size bounded
by a constant, then the simplification of all value numbers takes linear time. If large
expressions occur often enough to slow the whole system, we can limit simplification

to expression dags of limited height.

4.6.2 Experimental Results

Efficiency

Saved Value Graph (bytes per Parsed Fortran byte)

\ \ \ \ \
0 50000 100000 150000 200000

Parsed Fortran (bytes on disk)

\
250000

Figure 4.2 Saved Value Graph bytes per AST byte

88

89

Since the value graph is built directly from the expression forest and the SSA or GSA
dataflow graph, it is generally about the same size.

Figure 4.2 charts the size of the (uncompressed) value graph built using GSA form
and saved as initial information for interprocedural analysis, in bytes per byte of the
saved AST. This initial symbolic information constitutes a slice of the value graph,
giving every node that contributes to an interprocedurally visible value. Because the
value graph file is stored in ASCII and the AST in binary, the comparison makes
the value graph look larger by a constant factor. Still, except for a few outliers, the
ratio of value graph size to AST size is bounded by a constant, so the value graph is

roughly linear in the size of the procedure.

Effectiveness

Symbolic analysis should primarily be judged by how much it improves the precision
of subsequent analyses and the results presented to the programmer. Final results
can include reduced execution time of the compiled program or improved debugging
abilities.

We experimented primarily with the use of symbolic expressions in dependence
testing. Previous research shows that symbolic information can greatly improve de-
pendence testing.

We ran ParaScope’s dependence analysis on all the procedures in our benchmarks,
then eliminated 71 procedures from consideration because of bugs in the analysis. We
counted only dependences resulting from pairs of subscripted array references in the
same procedure. Table 4.1 gives the cumulative counts of intraprocedural array de-
pendences for each benchmark program under different levels of symbolic analysis.
The column “Constants” gives counts when the value graph is used for constant prop-
agation and constant folding only. The next two columns, under “Symbolic”, give the
absolute and percentage reduction in the edge count when symbolic pattern matching
and rewriting are enabled. The final two columns, under “Arrays”, give the further
reductions (beyond those with scalar symbolic analysis) when pattern matching on
array operations is enabled. For these dependence tests and these benchmarks, use
of GSA form vs. SSA form to build the value graph made no difference.

While the overall reduction in dependence edges is small (just over three percent),
for some programs the reduction is over 35 percent. These results are in the same

range as those for the symbolic dependence analysis in PFC [GKT91]. The sym-

Constants | Symbolics | Arrays
total deps A ‘ A% | A ‘ A%
NAS: bt 9890 | 873 | 8.8
cg 116 3| 2.6
ep 6
ft 256 72 | 28.1
is 15 41 26.7
lu 2955 63| 2.1
ng 75 3| 4.0
Sp 3437 | 445 | 12.9
Perfect: adm 1406 | 447 | 31.8
arc2d 1260 | 285 | 22.6
bdna 4076 | 121 | 3.0 | 51| 1.3
dyfesm 1262 | 177 | 14.0
flo52 527 60 | 11.4
ndg 2982 3| 0.1
mg3d 3063 7] 0.2
ocean 1358 411 3.0
qcd 3573 4| 1.2
spec77 3373 | 834 | 24.7
track 547 6| 1.1
trfd 233
RiCEPS: boast 46379 33| 0.1
ccm 31181 | 498 | 1.6
hydro 919
simple 642 22| 34
sphot 422
wanall 544 58 | 10.7
wave 4063 | 603 | 14.8
SPEC: doduc 428 41 0.9
fpppp 8505 49 1 0.6
matrix300 1
nasa7 933 32| 34
spice 19921 51| 03| 1] 0.0
tomcatv 43 14 | 32.3
Total: 154391 | 4852 | 3.1 | 52| 0.0

Table 4.1 ParaScope Data Dependence Edges

91

bolic analysis implemented in ParaScope is more extensive than that in PFC, except
for the limitations of the auxiliary induction variable recognition in Section 4.4.4.
Unfortunately, ParaScope’s dependence testing is still incomplete [GKT91], limiting

any comparison of the underlying symbolic analysis. In particular, ParaScope

e combines all distance and direction vectors between two references (forward and

backward) into one vector, and

e fails to test for dependence carried by particular levels (i.e., freezing outer loops

to test for inner-loop-carried dependences).

4.7 Related Work
Basic Blocks

Value numbering on basic blocks has a long history [ACT2, ASU86|. It was generally
employed in common subexpression elimination; that is, detecting multiple evalua-
tions of the same operation and replacing them with one evaluation. The saved result

can then be used in place of the other occurrences.

SSA Form

Global common subexpression elimination (over whole procedures) was one motiva-
tion in the development of static single-assignment form by Wegman, Zadeck, and
others [AWZ88, RWZ88]. Their work inspired our use of a value graph to represent
symbolic expressions. However, the method used for detecting congruence requires
the whole value graph to be built before any congruences are detected. This severely
limits rewriting of the graph, as it would have to be reanalyzed after rewriting to see
if new congruences were exposed. A few tricks are shown for handling commutative
operators [AWZ88], but they are unlikely to generalize. While this method should
prove powerful in detecting exactly equivalent expressions, it is inadequate to the
more general comparisons needed for dependence testing and other symbolic analysis

clients.

PFC

The Parallel Fortran Converter (PFC) takes Fortran 77 and converts it to vector, par-

allel, or parallel/vector form [AK84, AK87]. As it evolved from a single-procedure

92

vectorizer to a whole-program parallelization system, several symbolic analysis sys-
tems, all using symbolic expressions, were implemented.

The original symbolic analysis method relies on forward substitution and simpli-
fication of expression trees [All83]. Whenever there is a single definition of an integer
variable reaching a use, the right-hand-side of the expression is substituted in place
of the use — provided that none of the variables in the replacement expression are
redefined between the two points. The resulting expression is then simplified.

This method has proven a very powerful tool in symbolic dependence analysis.
Forward substitution pushes expression information into subscripts, where it is con-
veniently available to the dependence tester. Some 12 percent of all subscript pairs
proven independent and 25 percent of all subscript pairs whose dependence relations
are precisely computed are enabled by symbolic analysis [GKT91].

Despite its success, this method has not been copied exactly for use in interproce-
dural analysis within PFC or in the ParaScope system. The main reasons stem from

the use of AST expressions for representing symbolic values:

e The AST is the internal representation of a single procedure, and would require

significant adaptation for use in interprocedural analysis.

e Since the AST is the canonical representation of the procedure, this method
implements symbolic analysis as a transformation (analysis methods without

side effects are preferred).

e AST expressions are cumbersome; an expression representation tuned for sym-

bolic analysis can be more lightweight.

When interprocedural constant propagation was added to PFC, symbolic expres-
sions were also required to represent not-yet-constant values (that might become
constant during the propagation phase) [CCKT86]. The data structures used resem-
ble a value graph, but are built in an ad-hoc manner whose computational complexity
is hard to control. Because these symbolic expressions are mainly used for represent-
ing but not for comparing values, they were not designed to maximize congruence of
subtrees.

We implemented yet a third symbolic expression framework when we added ar-
ray section analysis to PFC (see Chapter 2). Because the precision of array section
translation and union depends heavily on the ability to compare bounds, we found the

expression framework used for constant propagation to be inadequate. Because of the

93

interprocedural nature of the analysis, we could not use AST expressions. Therefore,
we implemented a value numbering method much like the one presented here, with

the following differences:

e It uses simple def-use chains [Ken81] instead of GSA form. If multiple defini-
tions, with different value numbers, reach a use, then approximate bounds on

the value are built.

e The handling of potential interference from interprocedural MOD is more primi-
tive. A list of the potential modifications affecting each saved value is kept, and
if any are not disproven during interprocedural analysis, the value is marked as

unknown.
e Rewriting is much more limited.
e Auxiliary induction variables are not handled.

These limitations forced us to rewrite the BLAS in a simpler but equivalent form
before being able to accurately summarize their effects. While this is a valid approach
for testing the power of regular sections in describing array side effects, better symbolic

analysis is needed for analyzing realistic programs.

Dehbonei and Jouvelot

Dehbonei and Jouvelot describe a partial symbolic evaluation method based on sym-
bolic expressions with guards [DJ92]. Each value is represented by a list of guards
(logical expressions) followed by a list of symbolic expressions of the same length.
The guards must be mutually exclusive; if the i guard would evaluate to true at
run-time, then the run-time value is given by the " symbolic expression.

Where values are merged, the shuffle operator combines the two lists. Because
shuffle can be expensive, they relax their method to leave shuffle unevaluated. They
also use a value graph to represent symbolic expressions; because, like SSA form, it
descends from the work of Reif et al. [RT81], it probably bears some resemblance to
our value graph.

Unevaluated shuffle operators are closely related to the dags of v operators built in
full GSA form. They both combine some of the conditions under which an expression

executes with symbolic representations of the possible values. With shuffle, these

94

predicates and values are organized in lists; with 7, they are organized in a dag. Both
can be used in pattern-matching. Which method is better awaits further investigation.

Thinned GSA form omits predicates affecting whether or not a program point
is reached, leaving only the predicates selecting among possible reaching values.
This potentially increases the congruences to be found over Dehbonei and Jouvelot’s
method.

Haghighat

Haghighat’s symbolic analysis also relies on symbolic expressions [Hag90, HP90,
HP93]. He has highly developed methods for rewriting expressions and solving re-
currences, while our methods seem stronger in representing and matching patterns of
operators which are poorly understood (except for being known compositional). In
particular, our methods for representing and matching merged values with + functions
do not seem to have equivalents in his work.

Overall, we seem to have taken distinct but complementary approaches to the

problem of symbolic expressions, and a fusion of the two methods should be profitable.

4.8 Summary

Neither value numbering nor arithmetic simplification are new; our innovations lie
in combining them aggressively and using GSA form. Value numbering on GSA
form lets us compare expressions from different basic blocks, as is often necessary
in dependence testing. Careful structuring of simplification enables many symbolic
comparisons to be performed with a very few instructions. The integrated analysis

proves a potent tool in dependence testing.

95

Chapter 5

Symbolic Predicates

5.1 Introduction

In designing an efficient method for symbolic analysis, we have attempted to split
the problem into smaller, more manageable parts. Chapter 4 treats the analysis of
how values are computed; now we give the analysis of facts that hold when values are
used.

In principle, we could jettison our analysis of symbolic expressions and deal in
the more general world of symbolic predicates. These can include linear inequalities,
bounds, and even equality relations representing the same facts as our expressions.
However, our specific techniques for manipulating symbolic expressions can be more
efficient than the general techniques for predicates. Furthermore, the representation
of many symbolic predicates includes expressions in symbolic quantities. Therefore,
we keep our symbolic expressions as part of the necessary infrastructure of a symbolic
predicate method.

We include this discussion of general predicate propagation largely for complete-
ness. It shows the synergies and incompatibilities between our symbolic expressions
and predicate frameworks. We have yet to implement these techniques, except for

the pairwise linear equalities which prove useful in the interprocedural analysis of

Chapter 6.

5.1.1 Predicates vs. Expressions

When building symbolic expressions (and assigning value numbers) in Chapter 4,
we focused on the operations used to compute each value. The congruence of two
expressions implies that the same operations, applied to the same inputs, produce
the same value for both, if both execute.

Despite, or because of, its efficiency, symbolic expression analysis has a few major

limitations:

96

e While our symbolic expressions provide an exact representation for values, ap-
proximations are difficult to represent. A predicate can constrain a value, e.g.

by specifying upper and lower bounds, without specifying it completely.

e Symbolic expressions are naturally built from the GSA-form def-use chains — a
sparse dataflow graph, connecting definitions of each variable to its uses. GSA
form and expressions are less useful in reasoning about relations among variables
not introduced by definitions, such as inequality relations arising from use of a

comparison in a conditional branch.

e Fach definition (and use) of a variable is modeled by a single symbolic expres-
sion. More general frameworks are needed for sets of separate and simultaneous

facts.

e Our symbolic expressions encode arithmetic and control flow determining the
value at a definition, but omit control conditions affecting whether a definition
or use executes. This makes sense, because we wish to compare expressions
in different contexts by their value numbers. Computing the conditions under

which a program point executes can independently improve our results.

Our division of the problem makes the last distinction particularly important; the
value graph concisely represents the way values are computed, but ignores the con-
texts in which they are used. Predicates can combine this context information. For
example, in the following fragment, the element modified is always in the lower tri-
angle of the matrix:
if (i > j) then
Ali,j]
else
Alj,1]

endif

Tracking the inequality relation between i and j could be very useful, independent

of any preceding knowledge of their values.

5.1.2 Sources of Predicates

A predicate can be any fact about a variable or a symbolic expression, or about a set
of either, provided that the fact can be meaningfully communicated to a compiler.

Some sources of predicates are given below.

97

Control conditions

When a statement’s execution is guarded, either explicitly or implicitly, by the value

of a comparison or boolean expression, we can assume that the test value is true.

o conditional branches
These are explicit transfers of control that affect whether or not the statement

is reached.

IF (m .gt. 5) THEN
S1 PRINT *, m
ENDIF

In this case, the predicate (m > 5) holds at S1.

e assertions
Some languages enforce termination if an asserted condition is false. An asser-
tion is the same as a conditional branch to the program exit, but because the
branch is only taken in abnormal termination, we may have more freedom to

rearrange code around it.

ASSERT(n .1t. 100)
S2 D0Oi=1,n
CALL work(i)
ENDDO

Here, the predicate n < 100 holds at S2 and beyond.

e error conditions
These are implicit assertions, which may or may not be checked in practice, but

which must hold for safe program execution.

DIMENSION X(20)
READ *, m
S3 X(m) =0

Because the array subscript must be within the arrays bounds, the predicate
0 <m < 20 holds at $3 and beyond.!

! Array bounds of 1 in the last dimension of a Fortran formal parameter should be ignored, as this
is an anachronistic way of representing unknown bounds.

98

Implications of expressions

While the symbolic expression for a value may be precise for pattern matching, it

can be obscure for other purposes. Some facts are best deduced from the expressions,
then propagated separately.

x = sin(...)

y=x +1
In this case, —1 < x<land 0 <y <2

Merges of predicates

Propagation must start with predicates derived from the sources listed above. How-
ever, summarizing the multiple control-flow paths that can reach a merge point can

require great care in the selection of a predicate framework.

e local merges

The most important cases to exploit are distinct reaching definitions.

IF (P) THEN
j=1
k = 4
ELSE
j:
k =
S4 ENDIF

e call sites

When there are multiple calls to a procedure, constraints for all context must
be merged (alternatively, the procedure can be cloned [BCHT90] and the cloned

copies optimized for the different contexts).

SUBROUTINE bar()
CALL foo(1, 4)

CALL foo(2, 0)

99

SUBROUTINE foo(j, k)

In both cases above, different constants are in the variables at S4, or in the parameters
for foo, depending on the path taken. The different constants in each variable can be
summarized imprecisely by the constant bounds (j € [1:2:2]) and (k € [0:4 : 4]).2
Each reaching pair of (j,k) values represents a point, which can be summarized at
the merge by the line (47 + k == 8).

It is generally impossible to retain precise information after a merge of predicate.

We must balance retaining information against keeping a simple representation.

5.1.3 Outline of Chapter

Having given some idea of what we mean by symbolic predicates, we now sketch
the rest of the chapter. Section 5.2 presents some particular varieties of symbolic
predicates. The efficiency and style of analysis is affected by how many quantities
are constrained by each predicate and whether the quantities modeled are variable
contents or contextless values. Section 5.3 discusses how different program represen-
tations from Chapter 3 can be used for predicate propagation. Section 5.4 describes
the framework of pairwise linear equalities exploited in the interprocedural analysis
of Chapter 6. Section 5.5 describes how to combine symbolic predicate and expres-
sion information in dependence testing and other analysis and optimization tasks.
Section 5.6 describes the extensive prior work on symbolic predicates, and Section 5.7

gives our conclusions.

5.2 Structure of Predicates

The symbolic representation of Chapter 4 produces, for each expression, either a
unique name (for external inputs and other unknowable values) or a complete graph
structure, whose leaves are constants or unique names, and which can be compared or
combined with the value graphs for other expressions. Symbolic predicates encompass

a more general and potentially vague set of facts:

o linear equalities — give equality relations on values without saying how any one

of them is computed

2The triplet expression [l : u : s] here, as in Chapter 2, represents the set of variables {i|(l < i <
s) and ((1 —) mod s == 0)}.

100

o linear inequalities — give bounds on how an unknown value may vary, poten-

tially in terms of other values

e ranges — for a given value, not just upper and lower bounds but stride infor-

mation

e variance information — how a value, such as that of a loop-variant variable
or of a subscripted array reference, changes with successive loop iterations or

subscripts

> is it monotonically increasing or decreasing?

> does it ever repeat a value?

In principle, we could jettison our analysis of symbolic expressions and deal only
with the more general world of predicates. In practice, symbolic expressions are a
way of handling a special case cheaply and efficiently. Efficient analysis of equality
predicates is generally limited to linear expressions, whereas the pattern-matching
techniques of Chapter 4 apply to any complete expression — that is, any expression

free of hidden, unanalyzed references or side effects.

5.2.1 Predicates on Variables or on Values?

Previous research has, with few exceptions [DJ92], generally relied either on sym-
bolic expressions or symbolic predicates, but not both. Predicates have therefore
usually been defined on the current contents of variables [CH78, Kar76, [JT91]. This

complicates analysis in two major ways.

Assignments remove predicates. When a variable is assigned a new value (unre-
lated to its old one), then it must be removed from the predicate set for that
point. If the old predicates relate the modified variable to others, the predicate

sets updated can be large.

Some values are never stored. If a value is never saved to a variable, then it
cannot be reasoned about directly with predicates. When a branch condition
involves a comparison of linear expressions in variables, e.g., (25 > n), it can
be interpreted as a predicate on the variables in many frameworks. However,

frameworks for handling nonlinear expressions in predicates, e.g., (> > n),

101

are not as precise or efficient. Generally, nonlinear relations are ignored in a

variable-based framework.?

Partly for these reasons, but primarily for the greatest compatibility with our
symbolic expression analysis described in Chapter 4, predicates should be maintained
on the values of symbolic expressions (as identified by value numbers), not variables.
This provides a common basis for the deductions of expression rewriting and predicate

propagation, with a relatively clean division of labor:

e Extended value numbering (pattern-matching with rewrites) identifies expres-

sion values that are computed from the same inputs with the same operators.

e Predicate propagation derives facts about these values that apply in particular

contexts.

Note that the meanings of single-assignment values are not tied to context. Since
they are never redefined, we never need to discard a predicate due to the side effects
of some statement. Depending on the exact framework used, this can allow shortcuts

to reduce the amount of propagation.

5.2.2 Self Predicates vs. Relational Predicates

The number of separate values constrained by a predicate is a major feature in eval-

uating a predicate framework. We define two major cases:

Definition: Self predicates constrain the value of one non-constant expression which
is manipulated atomically (that is, without regard to its internal structure) by

the predicate framework.

Definition: Relational predicates constrain multiple expressions which are manipu-

lated independently by the predicate framework.

The same fact can be manipulated as either kind of predicate; it depends on the
framework. For example, the linear equality a + b6 == 2 can be a self predicate on

the value (a + b) or a relational predicate on the values a and b.

3We also ignore them in our value-based framework, but can still manipulate nonlinear expressions
as unanalyzed atomic values in linear expressions. The difference is that other frameworks only
allow this treatment for values currently residing in variables.

102

5.2.3 Combining Predicates
There are two basic operations to be performed on sets of predicates:*

Composition (A): when we discover that multiple predicates apply simultaneously,
we can assume that all are true. The choice of name is influenced by the

successive application of predicates as we descend past conditional branches.

Merge (V): when we discover that different sets of predicates apply on different
executions of the same code, we can only assume a predicate true on every
execution if it exists in all the original sets. The choice of name results from
the use of this operation when propagating sets to a merge (join) point in the

control flow graph.

In many predicate frameworks, it is easier to construct a precise composition than
a precise merge, or even any merge at all. If each predicate set restricts some values to
a convex region, then composition intersects the regions, producing a convex result.
Merging unions the regions, producing a potentially non-convex result. Consider the

case of constant bounds:

o [L:5]A[3:7]=1[3:5]
[1:3]A[5:7] = 0 (i.e., contradiction)

o [1:5]V[3:7]=][1:T]
1:3]V[5:7] = 1,2,3,5,6,7 C[l:7]

Staying in the framework of a convex set may require an imprecise merge operation.
Furthermore, merging sets can produce empty information, while composing sets can
more frequently salvage something: it two sets cannot be precisely composed, we can
at least pick the most informative input set as the result.

Because merge operators may be imprecise, complicated, and expensive, we con-

sider below the effects of ignoring some or all merges.

5.3 Predicate Propagation Graphs

Chapter 3 gives us several program forms which can be useful in predicate propa-

gation. The simplest is the control-flow graph, for which we can define a dataflow

*Composition is conjunction of predicates and intersection of the spaces of allowed values, while
merge is disjunction of predicates and union of value spaces.

103

analysis framework to check the effect of every assignment and every branch on the
sets of predicates. However, this may waste a great deal of effort examining state-
ments which do not affect the predicates, or which affect predicates involving only
a few variables. We show how control-dependence and dataflow graphs can provide

comparable results with better expected performance.

5.3.1 Control Flow Graph

Traditional dataflow analysis methods can be used to propagate arbitrary sets of in-
formation over the control flow graph. We need only define the predicates to be prop-
agated and appropriate functions for the effects of control-flow components [ASUS86].

A dataflow analysis framework consists of

o A set S of values to be propagated. For us, this is the set of subsets of predicates

from an appropriate universe (such as linear inequalities).

o A set of transfer functions from S to S, and a method of deriving a transfer

function for each.
e The merge operation V, to be applied at joins in the control flow graph.

Using the control flow graph allows a more exhaustive propagation of predicates
than the control dependence graph. Both merges of control conditions and merges of

values can be handled.

e Merges of control conditions happen only in unstructured code, where a node

may have multiple incoming control dependences.

e Merges of values happen any time there is a merge in the control flow graph,
bring multiple paths together where there may be a definition after the pre-

dominator of the merge.

Predicate analysis can profit from a more detailed GG, in which all assertions and
potential error points are treated as conditional aborts. The resulting CFG obscures
much program structure, but will expose more control conditions. The same trick
can be used to build a more detailed control dependence graph (which will look less
structured because of the jumps out of nesting).

Traditional iterative methods for dataflow analysis on the control-flow are easily

extended to the propagation of linear predicate vectors. Two obvious problems are the

104

propagation of empty predicate information and that termination is not guaranteed
for many predicate frameworks.

In order to guarantee termination for predicate propagation in cycles of the value
graph, the lattice of predicate information should have finite depth. Each merge
operation of distinct predicate sets (neither containing the other) loses information,
yielding a smaller predicate set lower in the lattice. When a lattice has the finite
descending chain property, a finite number of merge operations on distinct predicate
sets is guaranteed to produce the empty set.

However, one can simulate the efficiency of a finite-depth lattice. Since loop-
variant values (p operators) are the reason why we may continually propagate, we
need a special merge operator, called a widening operator, that is guaranteed to
converge in a finite number of steps [CCT77]. Different widening operators can be
defined for each variety of predicates. One option, used on subscripts of array sections
in Chapter 2, is to attach a counter to the information and take it directly to L (no

information) if the count exceeds some predefined constant.

5.3.2 Control Dependences

Control dependences, as defined in Chapter 3, encode the tests which decide whether
or not statements are executed. Whereas in the control-flow graph, paths correspond
to sequences of statements, in G, paths generally correspond to increasingly re-
stricted execution contexts. Straight-line sequences of statements become siblings in
Geop-

These properties make the control dependence graph particularly suited for an-
alyzing predicates based on context. A statement’s set of control dependence an-
cestors includes only those statements which restrict its execution. Furthermore, in
block-structured code (where all control-flow paths from a branch first meet at its
post-dominator), the forward control dependence graph is a tree.

Each path through the control dependence graph from START to a statement S
contributes one possible control context for the execution of S. The control conditions
for the branches on a path encountered are composed to give the set of predicates
contributed by that path. If Fioj is a tree, we are done; otherwise we must approx-
imate the MOP (meet over all paths) solution by computing predicate sets reaching

each node, and merging sets from predecessors of a control flow merge.

105

The merge operation for many predicate frameworks is more expensive and less
precise than the composition operation. Depending on the ultimate effect on the
derived information, we may want to handle as many merges as possible (directing us
towards the control flow graph), or no merges at all (suggesting the use of a pruned
control dependence graph) or something in between. To eliminate all the merges in
a control dependence graph, prune out all incoming edges to a node m with multiple
incoming edges, and add a new, unlabeled in-edge from m’s immediate pre-dominator
in G oy to m, representing that m’s execution conditions are contained in those of its
pre-dominator. (The resulting pruned G, will be invalid for other uses.)

Computing predicate sets on the pruned control dependence graph will give us the
same answer for block-structured code (for which pruning is a null operation) and

more conservative answers for unstructured code.

5.3.3 Mixing Control and Dataflow Predicates

We must be careful how we mix predicates derived in different ways. Let us make

the following distinction:

Control predicates are those derived from conditional branches; e.g., from the con-

trol dependence graph.

Dataflow predicates are those derived from the form of expressions; e.g., from the

value graph.

The control-flow graph can be used to propagate either or both, via traditional iter-
ative or interval propagation methods.
If we keep these two kinds of predicates separate until we must handle a symbolic

query, we can make special use of them.

e Pure control predicates involve only context information, sets of facts that hold
if a statement executes. When performing dependence analysis, two statements
are examined for reuse of the same memory. Because dependence holds only if
both statements execute, we can compose the two sets of control predicates for

use in dependence testing.

e Pure dataflow predicates involve only information present in the value graph.
Therefore, they can be kept attached to the value graph and applied to multiple

expressions mapping to the same value graph node.

106

The payoft is conceivably quite high if the same variable occurs in two subscript ex-
pressions being tested for dependence, and the context of one is much more restricted
than the other. On the other hand, if the two are mixed, we require distinct predicate
sets for every program point and we must merge predicates, losing precision, before

testing for dependence.

5.3.4 Efficiency

The time and space requirements of predicate propagation are dependent on the
predicate universe, the representation of the predicates, and the propagation method

chosen.

Length of Lattice Chains

First, consider the depth of the predicate lattice. Self-predicates may be considered
independently for each variable. Constant, variance, and stride information all have
lattices with the finite descending chain property. However, constant bounds have an
unbounded lattice. In order to guarantee convergence in iterative propagation, we
must introduce a widening operator, applied when propagating around loops, that
takes the lattice values to L in a bounded number of operations [CH78]. The method
proposed array section subscripts in Chapter 2 can be applied here; simply limit the
number of times a lattice value saved at a loop header can be lowered; if the limit is
exceeded, replace the lattice value with L.

Relational predicates involve multiple variables, which can multiply the lattice

depth over that for a similar self-predicate framework.

Graph Propagation

Propagation of self predicates on the control-flow graph will require at least O(N V)
time and space, because the dense predicate information of length O(V) is stored at
each of the N, control-flow graph nodes. (Here V' is either the number of variables or
the number of symbolic values, depending on how we decided to build our predicates.)
However, if we propagate on a dataflow graph (or value graph) only, then we keep
one predicate for each node (since each node represents only one value). If we wish
to combine control-based predicates, we require a set of predicates for each distinct

control dependence context. In the worst, case, this propagation is O(N V) like

107

that on the control-flow graph. However, propagation of predicates on the control

dependence graph is more readily optimized to the particular situation.

5.4 Pairwise Linear Equalities

Because of the efficiency and power of our value numbering techniques and the com-
putational expense of published methods for handling relational predicates, we have
omitted the latter from our intraprocedural analysis. However, for reasons discussed
in Chapter 6, it is unwise to propagate too much information about symbolic expres-
sions across call boundaries. One simple reason is that different symbolic expressions
may be passed for a parameter at different call sites, and we have no interprocedural
equivalent of v to represent the result of this merge.

In order to carry relations among variables across the interprocedural gap, we
have developed methods to manipulate pairwise linear equality predicates. These are

sets of predicates of the form
€121 + Xy == ¢

where the ¢; are constant. Considering the z; values as indexing two coordinate axes,
such predicates limit the pairs of values to a line in the two-dimensional plane.

Note that we do define these predicate on variables, not values. This is natural,
because the set of variables which can carry information across the interprocedural
boundary is well defined. For each call site, we build all pairwise equalities that we
can derive from intraprocedural information, and save them in a particularly compact

form.

5.4.1 Construction

Pairwise linear equalities are easily built from intraprocedural value numbers. A key
insight is that the relation “z and y are related by a pairwise linear equality” is
transitive. Given linear equalities between x and y and between y and z, we can
always derive a linear equality between x and z.

Algorithm 5.1 shows how to build a set of linear equalities for the variables visible
to a call site. First of all, we only wish to bother with those variables whose values
are used, so we look at the REF set for the called procedure (if USE, that is, used-

before-modified, information is available, that is even better).

108

Cache :=) // initialize cache to empty
foreach z € REF, in canonical order do
if (¢ is constant) then save constant value
else
extract constant coefficient and constant added term from value for z
x==Cyb+ K,
if (3Ip with (b,p) € Cache) then
// obtain expression p == Cpb+ K,
/] Cop — Cpz == C. K, — C, K, (cancel out b)
g = ged(abs(Cy), abs(Cy))

if (C, < 0) then g := —g // normalize parent coeff > 0
// save relation (cpp + czz == k)

¢, :=Cy/g

e :=Ch/yg

ky = (CzK, - CpyK;)/g
else // make z the parent of subsequent vars with same base

Cache := Cache U (b, z)

Algorithm 5.1 Converting Symbolic Expressions to Pairwise Equalities

We require a canonical order for the variables to be analyzed that is consistent
across all our manipulation algorithms and all call sites to the procedure. This allows
us to unambiguously make the first variable that is encountered with each linear base

value be the parent (representative) of all other such variables.

Definition: A basic term is an expression which is not a known constant, and which
does not contain multiplication by or addition of a constant at the top level. The
linear base of an expression z is a basic term b such that (z == ¢b+ k), where ¢, k
are constants. (Note that the linear base of b is itself.)

As we examine each referenced variable x, we extract the linear base of its value
at the current call site. When the linear base b is not already cached, we add (b, z)
to Cache. When we encounter a variable y whose base is already associated with
another variable x, we use the symbolic expressions for x and y, in terms of b, to
derive a direct relationship. We add this relation to the predicate set, with = as the
parent variable representing the class containing = and y.

The resulting predicate set can be represented by a vector giving the parent (if

any) of each variable and the three constants (¢,, ¢, k;) relating the variable z to its

109

parent p. The time required to build these relations is proportional to the number
of referenced variables. If intraprocedural predicate propagation has been performed
separately, and neither analysis subsumes the other, then we can compose the two

sets of pairwise linear equalities and save that set for future use.

5.4.2 Composition

Composition of pairwise linear equalities is highly efficient. However, since we do not
propagate these relations within procedures, we have no use for it in our implemen-
tation.

The relation “z and y have a pairwise linear equality” is an equivalence relation:
it is reflexive, symmetric and transitive. Therefore, it partitions the set of variables
into disjoint classes, with all variables in a class linearly related to the others.

To compose two sets of relations R and S, we proceed as follows:
e Examine the relation between each variable z and its parent p (if any) in R.

o If x and p are also related in S, then either the relation is the same, or else
we have a contradiction. The latter can happen, for example, when code is not

executable.
o If z and p are not related in S, then add the new relation to S.

The modified version of S produced represents (R A S). Addition of a relation to S
can union two previously unrelated classes of variables; this takes almost linear time
using fast UNION-FIND data structures [Tar83]. Composition can therefore be done
in time almost linear in the number of variables involved.

If C(R) is the number of classes in the set of pairwise linear equalities R, then
C(RAS) < min(C(R),C(S)). Either the number of classes is the same, and the
result is the same as one of the inputs, or some of the classes has been merged.
The minimum number of classes is 1 and the maximum the number of variables.
The predicate sets and A thus form a semi-lattice in which the longest chains have
length proportional to the number of variables. Propagation of these constraints is

guaranteed to converge even on a graph with cycles.

110

function merge(@, R) // merge two sets of pairwise equalities
if (size(Q) < size(R)) then swap(Q, R)
S:=R // make a deep copy
foreach p € REF, in canonical order do
if (parent¢(p) == nil) then
// p is the parent (representative) of a set of related variables in
¢ := nil
foreach child y of p do
if same relation (¢,yp + ¢yy == k) applies in both S and @ then
leave relation in result set .S
else if (¢ == nil) then
parentg(y) := ¢ // make y independent of p
q:=1Y
else
parentg(y) := ¢ // make y a child of ¢, independent of p
cancel p in old relations (¢pyp + ¢,y == ky) and (¢cpgp + cqq¢ == ky)
to compute new relation (cyq + ¢, == k)

Algorithm 5.2 Merging Sets of Pairwise Equalities

5.4.3 Merge

Our current algorithm for merge is, unfortunately, quadratic in the number of vari-
ables related. The problem occurs when we start out with large classes of related
variables, and gradually lose information. Algorithm 5.2 gives the method.

First, we compare the two sets of predicates and make a copy of the smaller. The
size of a set of predicates we take to be the number of relations between variables
that it specifies; therefore, this is proportional to the sum of the squares of the sizes
of its classes (recall that each class is a set of variables with the same parent, which
are all mutually related by pairwise linear equalities).

We then examine the variables in the same canonical order used above. This
ordering will always encounter the parent (i.e., representative variable) p of each class
before any of its children. For each child # that maintains the same linear equality
relation to its parent in the both () and 5, set, we keep that relation in S. Otherwise,
we delete the relation. If another child g of p has already been so treated, we make x
a child of ¢ and derive the new relation from the old. Otherwise, we make x its own

representative.

111

The running time of the algorithm is quadratic in the size of the largest class in
the smaller set of predicates. The worst case occurs if we repeatedly process a class,
each time extracting only its parent and selecting a new parent for the rest. Each
pass over a class of original size n then reduces its size by 1, so that the total time
required by the passes is O(n?). In the event that large classes of related variables
are being reduced by merges at call sites, we should clone the called procedures to
exploit the relationships and avoid the merge.

We omit the treatment of constants, which complicate the algorithm somewhat.
The set of constant variables is treated as a class in each predicate set. If two variables
are constant in both) and S, and the constants are the same, then they are left
constant in S. If the constants are different in) and S, we can build a linear relation
between the variables.

Having constants for two variables in one of () and S while they are non-constant
but related in the other allows us to keep the non-constant relation. Constants in one
of () or S which are inconsistent with a linear relation in the other force us to delete
the relation.

For C'(R) the number of classes in the set of pairwise linear equalities R, C(R V
S) > mazx(C(R),C(5)). Either the number of classes is the same and the result
is the same as one of the inputs, or at least one of the classes has been split. The
minimum number of classes is 1 and the maximum the number of variables. The
predicate sets and A thus form a semi-lattice in which the longest chains therefore
have length proportional to the number of variables. Propagation of these constraints

is guaranteed to converge even on a graph with cycles.

5.4.4 Combination with Constant Ranges

Pairwise linear equalities combine naturally with constant ranges. First, let us con-
sider an extended formulation of ranges that separates the information into bounds

and stride information:

Definition: A constant range R = [L : U : SQA] is the intersection of the sets of

integer values given by each of two components:

e Upper and lower bounds: Ve € R, L < x <U

112
e Stride and alignment:® x mod S = A;
t.e., Ve € R,x = A+ aS for some integer a.

in which L, U, S, A are integer constants.
The beauty of the combination is that a constant range predicate on one variable
x can be used to derive a valid range for any variable linearly related to . Consider

again the general form of a pairwise linear equality, with the ¢; representing constants:
€121 + 3 == ¢

Given z1 € Ry == [Ly : Uy : S1@QA,], we can derive the range Ry = [Ly : Uy : S;@A,]

containing all possible values of x,.
® L2

== [(co — c1U1)/ca], if (c1e2 > 0)
== [(co — e1L1)/c2], if (c1e2 < 0)

.U2

= |(co — e1L1)/ca], if (c1¢2 > 0)
= |(co — c1U1) /2], if (c1e2 < 0)

o Sy ==(c151)/ca

o Ay == ((co — c141)/c2) mod S,

Note that there pairwise equalities imply a stride and alignment for each of the related
values. So long as a variable is related to another, separate stride and alignment
information is superfluous. When merges remove all relations of a variable to others,

the separate stride and alignment information is no longer redundant.

Using the Euclidean definition of mod and div, for which z == S - (2 div S) + (z mod S), 0 <
(z mod S) < |z| [Bou92].

foreach z € REF, in canonical order do
if (z == ¢, a constant) then do nothing
else if (parent(z) == nil) then // z is a root variable
Coi=1;, K,:=0
else // we have (¢,p + ¢z == k;) for root variable p := parent(z)
use BEuclidean GCD method to find ¢ == ged(c,, ¢;) and
Po, zo such that (c,po + czz0 == ¢); ¢ divides k,

P = pOkI/gv €y = kal‘/g // CpPo + czx == ka:
// Invent base variable i generating values satisfying original relation
Cy = —¢p/y; K, =2 /] x==Cri+ K,

// Combine (p == (¢z/g)i + p1) with prior relation (p == Cpj + K,)
use Euclidean GCD method to find ¢’ == ged(c,/g,C,) and
io, jo such that ((¢z/g)io — Cpjo == g); ¢’ divides (p1 — K,)
il = iO(pl — I(p)/g/
ps = (cz/g9)in+p1 [/ substitute for ¢ yielding particular p
// New relation: (p =lem((cz/g),Cp)s" + p3), where j' varies freely

Cp :=lem(ez/g,Cp); Kp = ps [l p==Cpi' + Ky
foreach z € V in canonical order do
if (z == ¢, a constant) then entry, := ¢
else if (parent(z) == nil) then // z is a root variable

generate primitive symbolic value base,
entry, = Cpbase, + K,

else // we have (¢,p + ¢z == k;) for root variable p := parent(z)
// substituting entry, for p: cp(Cpbase, + K,) + czx == kg
Cp = —c,Cpf ey Ky = (kg —c, K,)/en

entry, := Crbase, + K,

Algorithm 5.3 Converting Pairwise Equalities to Symbolic Expressions

113

114

5.4.5 Usage

We use pairwise equality predicates to bride the gap between procedure bodies in
interprocedural analysis. Depending on the specific case, it can be difficult or impos-
sible to meaningfully translate a symbolic expression from the context of a call site
to that of the called routine. Chapter 6 describes many reasons, but a simple one is
that we lack a good way of the merge of values from different call sites as a symbolic
expression.

Therefore, we build pairwise linear equalities at call sites and merge these predicate
sets in the interprocedural analysis. When we want to examine values on entry, we
generate expressions from the predicates that represent equivalent information.

Algorithm 5.3 gives the method for building symbolic expressions from pairwise
linear equalities. Note that it would be trivial if in every pair (z,y) of variables, one
(e.g.,) had unit coefficient in their relation. Then we could use y as the base, and
define x by a linear expression in y. But because both can have non-unit coefficients,
and integer division is awkward to manipulate, we must invent a synthetic base value
b, presumed to range over all the integers (except as constrained by constant bounds
on z and y), with each value generating corresponding values of x and y.

We first make a pass over all the variables, once again in the same canonical order
used during construction of the predicate sets. As we encounter each root, we save
coefficient 1 and addend 0, indicating that the root variable may range freely over
the integers (so far as we know).

When we encounter a non-root variable x, we derive from the relationship with its
root p a point (p1,x1) that satisfies the relation. (The Euclidean greatest-common-
divisor algorithm is given in [Knu73a].) We then invent a value ¢, presumed to range
over all the integers, and write p and z in terms of ¢ so that each value of 7 corresponds
to a (p,x) point satisfying their relation.

The expression (p == (¢z/¢)t + p1) is equivalent to specifying a stride and align-
ment for p. We intersect this with the stride and alignment implied by p’s linear
relations with its other children. After processing all the children, therefore generat-
ing a properly limited expression for p, we process all the children again to generate
their expressions in terms of the same base.

This algorithm takes time proportional to the number of variables.

115

5.5 Using Predicate Information

Our notion of the equivalence of scalar expressions is strongly influenced by the de-
mands of our applications: dependence analysis, test elision, and array section ma-
nipulation.

Of particular importance in testing for dependences and in building summary
array sections is the ability to compare expressions computed in different parts of the
program. By maintaining predicates in terms of contextless symbolic expressions, we
can treat congruent value numbers as equivalent in the expressions being compared.

To combine the predicates for the expressions,

o if testing for dependence, compose the predicates, because both statements must

execute for there to be a dependence; and

e if unioning sections for MOD or REF, merge the predicates, because we are

describing the effect if either statement executes.

We say that two loop-invariant program expressions = and y are equivalent if and
only if for any execution of and any execution of y, the results of evaluating x and
y are the same. Two loop-variant program expressions z and y, varying with loop
level ¢, are equivalent if and only if for any execution of xg of x and any execution yq

of y, either
o the results of evaluating x¢ and yq are the same, or

e the loop iteration count for at least one of the ¢ outermost loops surrounding z
is, for execution xg, different from the iteration count of the corresponding loop

surrounding y, for execution yo.

In the latter case, we say that the expressions are equivalent but the particular ex-
ecutions are not. When comparing program expressions whose different contexts
make imbedded values inequivalent, we must say that the result of the comparison is

unknown.

5.5.1 Test Elision

For test elision and generation of predicates, one might be comparing a variable
defined outside a controlled region with one defined inside. But at the point of

comparison, both definitions must have executed (with the same iteration counts),

116

so any equivalences are meaningful. For test elision, value numbers all by themselves
are useful, and information strictly improves when predicate information is used to

refine the value numbers.

5.5.2 Dependence Analysis

For dependence testing, we may be comparing subscript expressions in arbitrarily
distant parts of the program. Of course, if either expression does not execute, then
its associated array reference also fails to execute, so no dependence can exist. So
it is valid to compare loop-invariant value numbers. In the presence of predicate
information, the predicates for both references should be composed and applied to
both value numbers (because both must execute for a dependence to exist) before

comparing.

5.5.3 Simplifying Uses

It may be too expensive to examine every program expression for simplification of its
inputs. But on occasion, a value computed under one control condition may be used

under a copy of that condition.

if (P) then
X =y
else
X =z
endif
if (P) then
1= X
endif

In this case the use of x will have a symbolic expression (P, val(y), val(z)), which

simplifies to val(y) when we combine it with the controlling guard.

117

5.6 Related Work
5.6.1 Equality Predicates
Karr

Karr proposed a framework for analyzing linear equalities of arbitrarily many vari-
ables. The allowable values of the variables define an affine space, represented as a
V x V matrix of simultaneous equations, where V is the number of variables. [Kar76].

Conjoining affine spaces corresponds to our composition operation. Conjunction
involves, in the worst case, putting one V' x V matrix under another and using row
operations to convert to normal form. This operation takes O(V?) time.

Unioning affine spaces corresponds to our merge operation. It requires V' opera-
tions on the matrices, and as each operation appears to be O(V?), the whole union
operation seems to be cubic. The longest chain in the lattice induced by the merge
operation — that is, the maximum number of times a stored matrix can be changed
by a merge operation — is O(V).

Our methods for handling pairwise linear equalities are a factor of V more efficient
in the composition and merge operations, but have a lattice depth that is also O(V).

Many of the benefits of linear equalities seem to be achievable using only the sym-
bolic expressions of Chapter 4, but a full comparison would require an implementation
of Karr’s method.

5.6.2 Inequality Predicates

Symbolic Bounds

Harrison gives ad-hoc techniques for propagating symbolic bounds information, es-
pecially for loop induction variables [Har77]. While his methods have inspired much
later work, including much of our Chapter 2, it is difficult to assess the exact com-

plexity and precision of his techniques.

General Linear Inequalities

Cousot and Halbwachs give a general framework for handling linear inequalities. The

propagate sets of predicates, each predicate of the form predicates of the form

1T+ Cr+ ...+ Ty < ¢

118

or

Ty +cxy + ...+ ey, < Co,

where the ¢; are constants. Each set of such vectors limits the x; values, taken as a
set of points in n-space, to a convex polytope. Unfortunately, manipulation can be

expensive.

e Composition is intersection, a linear programming problem and therefore expo-

nential in the worst case.
e Merge is convex hull, both exponential in cost and imprecise in result.

The implementors of the PIPS system use a similar general framework, but spe-

cialize it to common cases and claim to achieve much greater efficiency in practice

[1JT91, Iri93].

Simple Sections

The simple section framework of Balasundaram’s Data Access Descriptors was de-
veloped to represent predicates on subscripts [BK89, Bal89]. It can also be used
to represent predicates on other values (although we are unaware of prior work in
extending it thus).

Simple sections represent predicates of the form L < x4y < U, i.e., pairwise linear
inequalities where the coefficients are constrained to be 1 or -1. The size of simple
sections, and the time required for meet and intersection operations, are quadratic in

the number of variables mentioned. The lattice depth is unbounded.

5.7 Summary

We consider the most common forms of symbolic predicate information to be too
expensive for use in a compiler. However, in case they can be shown efficient in
practice, we give methods to combine them with our symbolic expression techniques.

Constant bounds information should definitely be worth propagating. We show
that pairwise linear equalities can also be an efficient method for carrying symbolic
information across call boundaries. We investigate the experimental validation of the
latter in Chapter 6.

119

Chapter 6

Whole-Program Propagation

6.1 Introduction

As programs become larger and hardware more idiosyncratic, analysis beyond pro-
cedure boundaries becomes increasingly vital to a compiler. This chapter outlines a
framework for the solution of flow-sensitive program analysis problems, and shows
how whole-program analysis of symbolic values can be achieved in this framework.
Generally speaking, it takes longer to perform analysis than to avoid it. The
question must always be, is the gain worth the expense? Compiler analysis, when it

pays off in optimization, can win in two ways:

e speeding up the compiled program, thereby winning the good will of people who

care deeply about running their programs quickly, and

e speeding up the compiler (for example, by shortening the compiled program
enough to offset the analysis time), thereby pleasing everyone, especially pro-

gramimers.

In order to have a chance, interprocedural analyzers must not only be fast on the
parts of the program they analyze, but they must check new results against old
ones to determine which routines are not affected by changes and thus need not be
recompiled. Without such a means of approximating separate compilation, handling
of large programs would be impractical.

We show how a particular version of interprocedural symbolic analysis can be made
efficient. While the jury is still out on the value of this analysis, the implementation
techniques and evaluation methods are the same that must be applied if more powerful

methods are to be successful.

6.1.1 Traditional Interprocedural Analyses

Many frameworks for computing interprocedural facts are described in the literature.

The basic questions are simple, but solving them efficiently can be difficult. Summary

120

analysis describes the side effects of a procedure to its caller; e.g., which variables
does it read (or write)? Context analysis describes the context of a call site to the
called procedure; e.g., what variables can share storage? Sometimes summary and
context questions are intertwined in one problem, such as the propagation of constants

returned from one call site and passed to another.

MOD and REF

The prime examples of summary information are descriptions of variables that are

potentially accessed by a procedure. Given a code fragment F,

e MOD(F) is a set containing all variables that are modified by any execution of

F.

e REF(F) is a set containing all variables referenced by any execution of F.

For F' a call site, MOD (REF) includes the variables modified (referenced) by this call
to the procedure. For F' a procedure, the access sets accumulate the side effects of
all call sites and other statements in the procedure body. Note that MOD and REF
are conservatively large; they include all variables that may be accessed, but can
include some that are not. For this reason, we call them may-summary problems
[Ban79, BanT78|.

MoD and REF are also called flow-insensitive problems because their precise so-
lution does not depend on the structure of control flow [Ban78]. The side effect
information for a procedure is built from the effects of its statements and calls to
other procedures. When combining summaries for multiple statements (or call sites),
a flow-insensitive summary is the union of the individual summaries, regardless of
whether the statements occurred in sequence or on different branches.

However, even so-called flow-insensitive problems can benefit from the removal of
dead code through test elision. Whenever the last read or write to a variable is proven
unreachable, that variable is removed REF or MOD set, respectively, improving the

information available to an optimizer.

KILL
The flip-side of MOD 1is the set of variables that are always modified:

e KILL(F) is a set containing only variables modified on every execution of F'.

121

Note that KILL is conservatively small; it contains only variables that must be mod-
ified, but potentially omits variables. For this reason, we call it a must-summary
problem. Like USE, described below, it is a flow-sensitive problem. The KILL sum-
mary for a sequence of statements is the union of the individual summaries, but that
for statements on different branches is the intersection.

KILL analysis also benefits from elimination of unreachably dead code. This makes
the KILL set smaller, not larger, by proving paths that avoid modification of a variable

cannot be executed.

USE

USE is a flow-sensitive problem that isn’t naturally described as a must-summary

problem.

e USE(F))is a set containing all variables which may be referenced in an execution
of F without first being redefined.

USE is essentially a flow-sensitive refinement of REF, and can replace REF for most
purposes, such as determining if variable’s value is needed by a procedure.
Removal of unreachably dead code can delete variables to the USE set, by deleting

uses of a variable or deleting paths to a use which would have avoided a definition.

ALIAS

When two variable names refer to the same or overlapping storage, they are called
aliases. In Fortran, static aliases are introduced by EQUIVALENCE statements, which
are easy to analyze. Dynamic aliases are introduced through procedure calls, whereby
the same variable becomes accessible by multiple names (all but one of which must

be formal parameter variables).

e MAY-ALIAS(p) is a set containing all pairs of variables (x,y), where z and y

share storage on some call to the procedure p.

Unlike the four other problems just described, MAY-ALIAS is a context analysis prob-
lem. It describes the storage map passed into each procedure from the outside.
6.1.2 Constant Propagation

Interprocedural constant propagation is a combination of summary and context anal-

ysis.

122

e RETURN-CONSTANTS(p) is a set of pairs (z,v) where z is a variable modified

by procedure p and v is the known constant value produced in x on return from
.

e PASSED-CONSTANTS(p) is a set of pairs (z,v) where z is a variable referenced by
procedure p and v is a known constant which is present in x at every executable

call site for p.

Unlike the previous problems, effective solutions for constants require both forward
and backward propagation on the call graph. Variables are frequently defined in
initialization routines, then returned to a higher level before being passed back down
to their uses. However, given a suitable expression framework, all the return values
can be computed symbolically in one backwards pass, followed by a forward pass

which computes the passed values.

6.1.3 Symbolic Interprocedural Analyses

In keeping with our division of symbolic information into expressions and predicates,
and modeling our interprocedural propagation after that of constants, we divide sym-

bolic interprocedural analysis into four parts.

e RETURN-EXPRESSIONS(p) is a set of pairs (z,v) where x is a variable modified

by procedure p and v is a symbolic expression for the value in x on exit from p.

e PASSED-EXPRESSIONS(p) is a set of pairs (x,v) where x is a variable referenced
by procedure p and v is a symbolic expression for the value(s) present in z at

every executable call site for p.

e RETURN-PREDICATES(p) is a set of predicates, relating the values of the vari-
ables in (MOD(p) U REF(p)) to each other, that holds on exit from p.

e PASSED-PREDICATES(p) is a set of predicates, relating the values of the variables
in REF(p) to each other, that holds at every executable call site for p.

We consider PASSED-EXPRESSIONS a difficult problem to solve, because of the dif-
ficulty of detecting changes in the solution. Of the other three, we have implemented
PASSED-PREDICATES (for pairwise linear equalities) and RETURN-EXPRESSIONS.

123

6.2 Interprocedural Strategy

Interprocedural analysis must be efficient and effective to gain acceptance. Our strat-
egy for interprocedural analysis builds on prior work by many researchers at Rice

working on the ParaScope programming environment'. The key features are:

e separation of analysis and transformation
This philosophy is applied in analyzing single procedures and whole programs.
Where possible, code is analyzed as written, without preliminary transforma-
tions. The products of analysis are then used to change and hopefully improve
the code.

e distinct interprocedural phases

The whole-program compilation process consists of disjoint phases of

> per-procedure gathering of initial information for interprocedural analysis

and exploiting of interprocedural results

> propagation of information among all procedures

Summary representations of procedures are used in the interprocedural propa-

gation phase, so that multiple passes can be made without reading procedure

bodies.

e recompilation analysis
In traditional development environments, the only interprocedural tool is the
linker/loader. To approach the time savings of separate compilation, we must
find ways to recompile only those procedures whose old object files are invali-

dated by new interprocedural facts.

6.2.1 Separate Analysis and Transformation

Why have a special mechanism for analyzing multiple procedures? One can simply
replace each call with the body of the called procedure, then analyze the whole
program at once.

Few advocates of inlining as a substitute for interprocedural analysis would go

quite that far. It is simply impossible to inline everything in a language allowing

!ParaScope’s interprocedural analysis infrastructure is descended from the IR™ programming envi-
ronment, and forms the basis for the new D System at Rice.

124

recursion. And even in non-recursive Fortran, the main focus of this work, exhaustive
inlining can lead to excessive growth in code size — an exponential amount of growth
in the worst case [CHT91].

Inlining:

e cannot always be applied (potential array reshapes)

e can slow program execution (anomalies in register allocation)
e frequently slows down compile time (nonlinear algorithms)

These are not fatal criticisms of inlining as a program transformation. With sufficient
analysis support, we can sometimes fix the obstacles to inlining and determine where
inlining can enable enough optimization to make it profitable.

But to inline intelligently, we need interprocedural analysis. Analysis and trans-

formation must be kept distinct.

6.2.2 Distinct Interprocedural Phases

Why bother with building a summary representation of each procedure, when one
could just analyze the procedures in order? The problem is, which order, and how to
compute it?

Visiting procedures in any interesting order requires construction of a call graph,
in which nodes are procedures and directed edges represent the source procedure
calling the destination. Building the call graph is itself an interprocedural problem,
requiring information about call sites in every procedure.

Having built the call graph, we can compute the order in which to visit procedures
for each interprocedural analysis problem. Analyses of side effects, such as MOD and
REF, describe called procedures to their callers — and therefore require a reverse
topological ordering of visits (in the absence of recursion, this would be a postorder
walk of the call dag). Analyses of context, such as ALIAS and passed constants,
describe the context of call sites to the called routine — and therefore require a
topological ordering of visits (in the absence of recursion, a preorder walk).

Solving these four problems would require three separate traversals, because those
for ALIAS and constants cannot be combined. Reading every procedure on every
pass would take enormous amounts of time. Therefore we combine passes over the

call graph into phases. Each interprocedural phases is preceded by an initial analysis

125

phase, which attaches interesting information about a procedure to its call graph node,
and is followed by an exploitation phase, which uses interprocedural information to

detect further facts and enable transformations.

6.2.3 Recompilation Analysis

Compilers are a central program development tool, and their efficiency is a large deter-
minant in the efficiency of the programming process. For programs of any significant
size, the coding task is dominated by the time spent recompiling after a change, then
testing — the proverbial “edit—compile-link—run” cycle. Progress would be near im-
possible without separate compilation, which permits the recompilation of only the
modified procedures, leaving only a simple linker to stitch together the executable.

Programmers will not give up separate compilation. The difference, for example in
recompiling the ParaScope environment, is one of minutes to recompile one procedure
and relink, versus the bulk of a day to recompile everything. This obstacle would seem
to prohibit interprocedural analysis.

The answer is recompilation analysis. We dare not promiscuously propagate infor-
mation across procedure boundaries, but must instead define solutions which can be
compared from one program compilation to the next. We then need only recompile a
procedure when a interprocedural fact is used in compiling once and that fact changes
on the next compilation.

This is essentially incremental compilation at the procedure level. We cannot in
general expect this to be quite as cheap as separate compilation, but with careful
design hope to keep the cost low enough that the optimization benefits justify its use.

We have not implemented recompilation analysis, but have been careful to make
our methods ready for this extension. We show how to test a new interprocedural

symbolic solution against an old one to see which procedures must be recompiled.

6.3 Annotated Call Graph

The call graph is the basic structure of interprocedural analysis. Initial information is
attached to the call graph, then the interprocedural phase propagates to find solutions,

which are also attached to the call graph for use in compiling each procedure.

126

6.3.1 Procedure Summaries

The annotations for many flow-insensitive problems are extremely simple. For MOD
and REF, each procedure has a set of variables potentially written and another of
variables potentially read, without attention to control flow.

For flow-sensitive problems, the context of each variable access matters as much
as its existence. A variable must be written on every path through the procedure to
be in the KILL set. If on any path it can be read before being written, the variable
is in the USE set. These and other flow-sensitive problems rely on some control-flow
information.

How much information should be attached to the call graph node for each proce-
dure? In prior work, this has ranged from a relatively complete representation [Mye81]
to one highly tailored for KiLL and USE [Cal88]. Concurrently with other researchers
at Rice [HMBCR93|, we have decided to take a middle road of a lightweight control-
flow graph for each procedure, with annotations to the control-flow nodes as needed
for each particular problem.

The core procedure-summary control-flow graph (G%3) consists of five kinds of

nodes:

e a unique entry node, with no in-edges, representing the start of the procedure

after being invoked by some call site?

e a unique exit node, with no out-edges, serving a merge point for all procedure

exits before control is returned to the caller

e for each call site, a call node, representing the state and execution context

immediately before jumping to the called routine

e for each call site, a return node, representing the state and execution context

immediately after returning from the called routine
e plain nodes, which may further be distinguished as

> branch nodes, with multiple out-edges

> merge nodes, with multiple in-edges

?In many language, including Fortran, procedures can have multiple entry points. We will either
model these as plain nodes, branched to from entry depending on the entry name invoked, or else
prohibit them.

127

a plain node can be both a branch and a merge

We maintain a mapping between each pair of entry and exit nodes and the corre-
sponding call graph node, and between each pair of call and return nodes and the
corresponding call graph edge, along with information about the variables through
which values can cross the procedural interface. Otherwise, the G237 nodes are empty
and the edges connecting them unlabeled except as additional information is pro-
vided through the annotation mechanism. This allows the basic framework to be

lightweight and efficient, while supporting more complicated analysis as necessary.

6.3.2 Propagation

Interprocedural propagation proceeds by one or more distinct phases, each preceded
by an initial phase gathering information from each procedure and followed by a post
phase exploiting interprocedural solutions in local problems such as code generation.
When there are multiple interprocedural phases, the post-phase for one and the pre-
phase for the next can be combined, so that we talk of three-phase or five-phase
analysis, typically.

The separation of phases avoids the problem of multiple accesses to the bulky

representations used in analyzing and optimizing single procedures.

Directions

Within each interprocedural phases, we may have multiple passes, each typically, but

not necessarily, propagating information in one of two directions:

e Forward passes push information from routines with call sites to the called rou-
tine. The facts propagated can generally be called context information, because

they describe the outside world surrounding a call site.

e Backward passes pull information from called routines to each routine containing
a call site. The facts propagated can generally be called side-effect information,

because they describe changes in the program state due to the call.

Modes

In flow-sensitive analysis, we may focus a lot of attention on the G%3. for particular
procedure. It is then useful to distinguish the true interprocedural mode of analysis

from the subprocedural mode.

128

To control recompilation, we must be able to measure the information crossing
procedure boundaries and detect when a new solution is different from an old one.
For this reason, subprocedural propagation will often look very different from the true

interprocedural propagation.

6.4 Initial Information
6.4.1 Prerequisites

We need the G%3 so that we can attach our annotations to particular nodes, and
a mapping between call/return nodes and call graph edges. Having the results of
interprocedural MOD analysis is very helpful, but its use can be postponed through
the use of dummy predicates that check the yet-to-be-computed MOD information.
This analysis would be unacceptably crude were we to assume that all potential

aliases did occur. Three ways that our analysis can handle aliases are:

e Assume they never exist (this is supported by the Fortran standard, but may

be violated by common practice)

e Assume they do not exist in the initial analysis, then conservatively degrade

the analysis based on aliases later discovered.
e Compute an approximation to alias information first.

Initial analysis can be much simpler and faster with interprocedural MOD and alias
information than without. Using them in this initial phase puts us in the realm of
five-phase analysis, with two interprocedural phases.

We think that our method of two interprocedural passes will be acceptable for
several reasons. Primarily, we believe that flow-insensitive interprocedural analysis is

trivial in analysis costs and stable in its solutions.

e The classical flow-insensitive problems of MOD, REF and ALIAS have extremely
efficient solutions [CK88b, CK89].

e MOD, REF and ALIAS can be expected to change infrequently across program
edits — adding the first and deleting the last references of a variable are rare
decisions, and aliases are rare both in their occurrence and in their insertion

and deletion.

129

e More modern languages than Fortran frequently include MOD and REF infor-
mation as declarations, and encourage greater use of call-by-value parameters,
which cannot be aliased. (These features are especially helpful for the scalar

integer variables on which our analysis concentrates.)

Therefore, the initial phase for symbolic analysis, as described here, will rely
on a previous pass of MOD, REF and ALIAS alias analysis. If such results are not
available, we can still use this method with imprecise but safe assumptions (or unsafe
assumptions, which are preferred in the case of ALIAS information); or we can use a
more complicated method described later.

To limit recompilation, our strategy restricts interprocedural propagation to vec-
tors of predicates on scalar values. No symbolic facts will be propagated between
procedures except those representable as binary linear equality predicates or con-
stant ranges for globals and formal parameters at ENTRY and EXIT, and for globals
and actual parameters at CALL and RETURN. However, because we represent some
control flow within procedures, we have the opportunity to do some subprocedural

analysis in more detail.

6.4.2 Important Symbolic Expressions

We keep one separate value graph for each procedure, as an annotation on its call
graph node. This graph is (ideally) pruned down from the full value graph to only
that part needed to represent important symbolic expressions. It therefore represents

a union of the slices for these expressions.

e passed values: the values in global variables, actual parameters, and static
variables reaching each call site. Ideally, we save these only for the variables

referenced via the call (in its IP REF set).

e returned values: the values in global variables, formal parameters, and static
variables reaching the end of the procedure. Ideally, we save this information

only for variables modified in this routine (in its IP MOD set).

e branch conditions: the values determining which out-edge from a each branch
node will be taken. For this to be useful, each G%5. edge must also be labeled

with the branch condition value corresponding to its execution.

130

e expressions interesting to other analyses: These include array subscripts and
bounds (for array section analysis), loop bounds (for performance estimation),

and other facts for other uses that we can’t necessarily predict.

6.4.3 Important Symbolic Predicates

With the current structure of this analysis, symbolic predicates are only used at
procedure boundaries and are freely converted to and from symbolic expressions.
These two-variable linear equalities are not used in subprocedural analysis, and do
not need to be gathered in the initial analysis phase.

However, if more complicated predicate sets are used, they may require subpro-
cedural propagation. They can be built from a full predicate propagation graph with
exit branches for assertions and error conditions, then used to annotate a normal G55,
to support test elision without excessive clutter.

At procedure boundaries, symbolic predicates must be in terms of variables, but
within subprocedural propagation, they must be in terms of symbolic expressions

(value numbers).

6.4.4 Related Annotations

These initial annotations for symbolic analysis are made to the same GZ5. that can be
used for other IP analysis problems. By placing annotations for variable modifications
and references on (G£3 nodes, improved KILL and USE analysis can be achieved when
evaluation of tests enables code elimination. This can even benefit MOD and REF,

although at the expense of making them dependent on symbolic analysis.

6.5 Propagating Symbolic Information
6.5.1 Backwards Pass

Algorithm 6.1 gives the method by which return values from called procedures are
incorporated into the return-value descriptions of their callers. Note the usage of
transReturned and getPassed to manage the interprocedural jump between rewrit-

ing expressions from the caller and rewriting ones from the callee.

131

foreach node (procedure) p in reverse topological order on call graph do
load value graph OVals for p
build new value graph NVals
foreach interprocedural variable v € MOD(p) do
NVals.Map(v, END) := NVals.update(OVals, OVals.Map(v, END))

NVals.update(O Vals, oval)
if oval is a return value then
(VarName, CgEdge) := oval.site_info
nval := NVals.transReturned(OVals, VarName, CgEdge)
else
allocate nvalStruct in NVals
foreach field f of oval with input value number v do
nvalStruct. f := NVals.update(OVals, v)
nvalStruct.op := oval.op
nval := N Valslookup(nvalStruct)
return nval

NVals.transReturned(OVals, VarName, CgEdge)
RVals := CgFdge.called.vals
oval := RVals.Map(VarName, cgedge.called.exit)
return NVals.translate(OVals, RVals, oval, CgEdge)

NVals.translate(O Vals, RVals, oval, CgEdge)

if oval is a passed value (used actual/global/static)
VarName := oval.name
nval := NVals.getPassed(OVals, VarName, Cgldge)

else
allocate nvalStruct in NVals
foreach field f of oval with input value number v do

nvalStruct.f := NVals.translate(OVals, RVals, v, CgFdge)

nvalStruct.op := oval.op
nval := N Valslookup(nvalStruct)

return nval

NVals.getPassed(OVals, VarName, CgFdge)
oval := OVals.Map(VarName, CgFEdge.site)
return N Vals.update(OVals, oval)

Algorithm 6.1 Translating a Return Value

132

6.5.2 Forwards Pass

The forward propagation pass uses symbolic expressions in propagating information
subprocedurally and pairwise linear equalities to jump procedure boundaries. During
subprocedural propagation, call sites are handled using the return-value descriptions
saved in the backward pass.

When visiting a call-graph node, we build new value numbers for entry values to
express their linear relationships.

We then visit call nodes of G%3 in topological order (ignoring loop back-edges).
We build the two-variable linear equality relations among all variables in the REF set
of the called routine, and attach this predicate set to the call graph edge. We then
proceed to the next call site.

When we need the return value from a call site (to build a value passed to a
subsequent call site), we translate again the saved return symbolic expressions for the

callee.

6.6 Exploiting Symbolic Information
6.6.1 Procedure Compilation

The main benefits of interprocedural symbolic information are expected to be in anal-
ysis of arrays and of conditional branches. For arrays, improved subscript analysis
should give better dependence information, both by traditional methods and indi-
rectly by improving array section information needed for privatization [TP93]. For
conditional branches, the tests may sometimes be evaluated symbolically, allowing
the deletion of unexecuted code. While the direct speedups from reduced code size
and saving the test would be small, indirect benefits can be large due to reduced
uncertainty. This is especially true in library code, where different combinations of

values enable very different functionality.

6.6.2 Cloning and Inlining

Apply goal-directed methods of [BCHT90]. First, a backwards propagation to deter-
mine which sets of values are important. An initial approximation is the REF set; a
better one is the set of variables used in the slices for array subscripts, conditional
branches and array and loop bounds. Then a forward propagation of the symbolic

information.

133

6.6.3 Recompilation Analysis

Tracking the use of symbolic information within a procedure would be complicated,
and probably more effort than it’s worth. Whatever information is exposed to the
procedure compiler, we should assume that a change in that information compels
recompilation of the procedure. We should expose all the symbolic information on

some set of interprocedural variables, either:

e all the variables directly referenced in the procedure (that is, referenced besides

through a contained procedure call), or

e all variables marked as contributing to interesting values (e.g., conditional

branches and array bounds and subscripts).

Given that our initial phase for symbolic analysis relies on solutions of REF, MOD,
and ALIAS, we also need to test for reanalysis (repeating the initial analysis for the
symbolic information). The tests for reanalysis and recompilation are as follows for

each procedure:

e Repeat initial symbolic analysis if this routine has been edited or if any MOD,

REF, or ALIAS set of a called routine has changed.

e Repeat interprocedural symbolic analysis if any initial symbolic analysis has

been repeated.

e Recompile any procedure reanalyzed in the first step above, plus any routines
whose entry predicate set, or any return symbolic expressions, have changed
(for variables whose information was exposed, as described above, in the previ-

ous compilation).

6.7 Other Interprocedural Problems

The annotated call graph is useful in other flow-sensitive problems. Symbolic infor-
mation is vital to array section analysis. Symbolic evaluation of conditional branch
predicates can improve all interprocedural solutions, and with carefully built initial

information, we can converge to a stable solution in one interprocedural phase.

134

6.7.1 KiLL and Use

Callahan’s Program Summary Graph has separate sets of entry, exit, call and
return nodes for every variable [Cal88]. To model the PSG, we must attach these
variable reference nodes to their corresponding procedure-summary control-flow graph
nodes. Dataflow analysis is performed in the initial phase, with entry and exit nodes
treated as using and defining all formal parameters and global variables. CALL and
RETURN nodes are treated as using and defining all their actual parameters and
global variables. These can be refined if flow-insensitive REF and MOD results are
available. If they are not, we can still reduce the number of edges by treating all
global variables not directly referenced in the procedure as aliased to a single dummy

variable.

6.7.2 Array Section Side Effects

In Chapter 2 we showed how array side effect analysis relies on symbolic information.
The initial sections are built at the same time as the initial value graphs. We must
collect the list of direct array references, building value numbers and, where possible,
constant bounds. Merges should be postponed until after the interprocedural sym-
bolic propagation. The lists of sections are saved with embedded references to the
value graph.

After symbolic and other interprocedural analyses are complete, the array sections
are read back in and their subscript value numbers updated to reflect the results of
interprocedural symbolic propagation. All the sections for a procedure, including
those for call sites, are then merged to produce one each of MOD and USE summaries
for each variable. The summary sections are propagated up the call graph, with a
similar translation used for symbolic subscripts as is used for the symbolic return

values in Algorithm 6.1.

6.7.3 Test Elision

Test elision is the process of evaluating conditional branches, then deleting the the
control-flow edges and nodes proven unreachable. We know of no interprocedural

problem that cannot potentially be improved.

Call Graph Construction. Call sites can be ambiguous in the presence of proce-

dure variables (formal parameters which are bound to procedure names). If test

135

elision removes the last call site binding a particular procedure to a procedure
variable, then the ambiguity of all call sites using that procedure variable is

reduced.

Alias Sets. Test elision may remove the call sites that introduce an alias (either

passing a variable twice, or passing a global as a parameter).

MOD and REF. Test elision may delete the last definition or use of a variable by

a procedure.

KILL. Test elision may delete the last definition-avoiding path, adding the variable
to the set.

USE. Test elision may remove the last definition-free path to a use, removing the

variable from the set.

Array section side effects. MOD, REF, USE and KILL may all be improved for

array sections as well, by the same mechanisms as for the scalars versions.

If we have kept sufficient information about these problems in the initial information,
then we can repeat these analyses in the same interprocedural phase as the symbolic
analysis. All we require is that the variable access and call binding information be
attached the GZ3.. If we have also kept enough information about the effect of these
problems on symbolic information, we can iterate the analyses until convergence (or

until some set number of repetitions is reached) within one interprocedural phase.

6.8 Evaluation

The current implementation provides two forms of interprocedural analysis:

Return value analysis translates expressions saved for called procedures into the

context of their callers.
e A symbolic exit expression is computed for each variable modified in each
procedure.

e Symbolic expressions can be computed to support other analysis, such as

by representing subscripts of array section side effects.

Constants Linear
integers ‘ floats | Equalities
NAS: bt 23 20
cg 9
ep 1
ft 16
is >
lu 21 20
mg 11
Sp 35 20
Perfect: adm 4 2
arc2d 25 16
bdna 2 1
flo52 11 12
mdg 4 d
mg3d 3 1
ocean 3 1
qcd 1
track 11
trfd 1 1
RiCcEPS: simple 7
sphot
SPEC: matrix300 11
Total: 204 60 39
Table 6.1 Interprocedural Predicates on Entry

136

137

Passed predicate analysis computes relations among variables on entry to each
procedure. These relations are used to write interdependent symbolic expres-

sions dependence testing and other uses.

6.8.1 Passed Predicates

Table 6.1 summarizes our results on the benchmarks of Appendix A. Some pro-
grams are omitted due to bugs in the implementation which prevented running the
interprocedural analysis to completion.

The first numeric column gives the total, over all procedures in each program,
the number of variables in each procedure’s REF set that were found to have integer
constant values. The next column gives the number of referenced variables which
were found to have non-integral floating-point constant values in the intraprocedural
analysis. Because fractional values can be changed by conversion to and from floating-
point format, they should be manipulated via the original textual representation,
not as numbers. The current implementation does not support textual propagation;
however, variables with equal fractional values were marked as equal for predicate
propagation.

The third data column gives the number of linear equalities. All classes of related
and referenced variables found contained two or three variables; the former were
counted as one linear equality, the latter as three.

Our value numbering infrastructure has also been used in other tests of interpro-

cedural constant propagation [GT93].

6.8.2 Effect on Dependence Testing

Return value analysis alone did not eliminate any dependence edges in the current
implementation. While the incomplete state of symbolic analysis in ParaScope may

limit the improvements, the dominant factors seem to be:

e Return value propagation only reaches those procedures which called the re-
turning procedure. This misses the common case of initialized values returned

by one procedure, then passed to others for use.

e Some potential gains of symbolic analysis come from auxiliary induction variable
recognition, but our current implementation is ineffective in rewriting cyclic

value numbers into induction variables.

138

The combination of passed predicates analysis with returned value analysis does
somewhat better. (Since we use symbolic expressions for returned values in building
initial symbolic predicates, we did not try passed predicate analysis by itself.) Three
procedures showed reductions in their dependence graphs: one from constants alone,

one from constants and symbolic predicates, and one from symbolic predicates alone.

Procedure arc2d/etadif

There are six dependences to be disproven in etadif, generated by two similar sets
of array references. Two are disproven through constant information, two because
of symbolic pairwise equalities, and two are not disproven, but could be through
propagation of asserted constant bounds. The potential dependences are generated
from two sets of array references like the ones labeled A, B, and C below.
subroutine etadif(jdim,kdim,x,y,xy)
common /base/ jmax, kmax, ..., jbegin, jend,
+ kbegin, kend, ..., klow, kup,
dimension xy(jdim,kdim,4)
do 21 j=jbegin,jend
do 20 k=klow,kup

A xy(j,k,2) = ...
20 continue

k = kbegin
B xy(j,k,2) =

k = kend
C xy(j,k,2) =
21 continue

return
end

The main program arc2d reads common block variables jmax and kmax setting
the size of the problem data. Tracing assignments to other variables and parameter

bindings at two levels of procedure call, we obtain these predicates on entry to etadif:
¢ jend == jmax == jdim
e kend == kup 4+ | == kmax == kdim

e klow =="_.

139

e kbegin == jbegin ==

(Relations on kmax and jmax were not counted in the statistics for etadif because
they are not referenced.)

These facts enable the following proofs of independence:
e No reuse between A and B; because kbegin is 1 ¢ [2: kup] (the bounds of k.
e No reuse between A and C; because kend == kup + 1, so kup ¢ [2 : kup].

But these methods failed to prove independence between B and C, because comparison
of kbegin (1) with kend failed. This could be fixed were constant bounds information
computed; if we assume that arrays span at least two in each dimension, then the

lower bound of kend is 2.

Procedure spice/load

Five dependences are disproven in load due to our propagation of pairwise inequali-

ties. The array references below account for two of the potential dependences.

do 50 j=2,j1
do 45 i=2,il
A p(i,j) =
45 continue
p(1,3) = p(il,J)
p(i2,3) = p(2,7)

50 continue
Propagation form multiple call sites in £1052q gives us these relations on entry, which

are converted to value numbers for use by dependence testing.
¢ j2==3l+1==2%3j2+2
¢ i2==11+4+1==2%1i2+42

A loop-independent output (write-write) dependence from A to C is disproven by
a symbolic bounds check. Since (12 == 11+ 1), and il is the upper bound of i, we
know that (12 > 1).

A loop-independent anti-dependence (read-write) from B to C is disproven by a

comparison of loop-invariant symbols. Again, 12 > il is the important fact.

140

6.9 Related Work

6.9.1 Flow-Sensitive Analysis
Banning

Banning introduced the distinction between flow-sensitive and flow-insensitive inter-
procedural dataflow problems [Ban79, Ban78]. For flow-insensitive problems, the
control structure inside a procedure is irrelevant to summarizing the effects of imbed-
ded calls. For example, a variable is in the MOD set of a procedure if it is potentially
modified via any statement or call site. In contrast, flow-sensitive problems require
control structure for their computation. A Variable is in the KILL set of a procedure
if every path through the procedure passes through a call site or other statement
which kills (must define) the variable.

Banning gives efficient methods for solving flow-insensitive MOD (may write) and
REF (may read) problems. He also gives efficient approximations to a few flow-
sensitive summary problems. A variable can be easily proven in the KILL set of a
procedure if a direct definition to the variable lies on every path, or if a call to another
procedure killing the variable occurs on every path.

Banning’s work has inspired linear-time algorithms for and commercial imple-
mentations of flow-insensitive interprocedural analysis [CK88b, LM94]. While his
approximate solutions for flow-sensitive problems are a valuable starting point, more

precise methods may be profitable today.

Myers

Myers addresses flow-sensitive problems by fusing the internal control flow graphs of
each procedure into one program supergraph [Mye81]. There is no essential difference
between the supergraph and our annotated call graph. Myers refers to our call and
return nodes as CPOINT and RPOINT, respectively, and does not explicitly support
as rich a set of annotations.

Myers gives algorithms for flow-sensitive problems, including:

e MuUST-ALIAS(p): the set of sets of variables accessible by p that are aliased
on some potential execution path to p (ignoring the direction of conditional

branches).

141

e LIVE(?): the set of variables which exist at program point ¢ and may later be
used (in or after the current procedure ends) without first being redefined or

going out of scope.

Myers shows how to solve LIVE precisely (except for ignoring the directions of
conditional branches) using the MUST-ALIAS sets. Under his analysis, the MUST-
ALIAS set for a procedure is potentially a power set of the formal parameters and
globals visible to the procedure — the set of all possible sets of them. Myers also
NPstates that LIVE is NP-complete, giving a proot that LivE is NP-hard by reducing
3-satisfiability to it.

However, Myers’s analysis is overly pessimistic. Even though nesting of procedures
is allowed in his framework (and therefore formals can be global variables), global

variables which are not formal parameters can only be aliased to formal parameters.

Let
e g, be the number of non-formal globals visible to a procedure p,

e h, be the number of formal parameters to nesting parents of p which are visible

as globals to p, and
e f, be the number of formal parameters to p.

Then the set of variables which may be freely aliased to each other has size (h, + f,),
and its power-set, the largest possible set of MUST-ALIAS sets, has size 2(h, + f,).
The g, non-formal globals can be aliased to the other variables, but not to each other,
so there are exactly zero or one non-formal globals in each final alias set. Therefore
the total number of alias sets is O((g, + 1)2(hp + 1))

This bound is not excessive if common usage of procedure nesting and formal
parameters is considered. Common practice does not have arbitrarily nested proce-
dures, so we can assume that the nesting depth is bounded by some small constant,
¢,. Many interesting languages, such as Fortran, C, and C+4, do not allow nest-
ing of procedures (¢, == 1). Furthermore, the number of formal parameters f, to
a procedure is generally bounded by some small constant ¢, (such an assumption
is made in [CK88b]). The global variables that can be aliased to each other arise
only when formal parameters are exposed as globals to nested procedures, so h, is
bounded by (¢, —1)*¢,. Therefore, the total number of MUST-ALIAS sets is bounded
by (g, + 1)2{¢, * ¢,), or, removing the constants, O(g,).

142

With bounded nesting depth and formal parameters, LIVE is no longer -hard.
Myers’s complexity analysis involves no exponential components except in the size
of the alias sets, which by the above analysis are linear in the number of non-formal
globals. His experiments suggest that his methods may be practical.

The improved complexity analysis of Myers’s methods for flow-sensitive analysis
suggest further experiments using our annotated call graph. Aliases are usually rare
in practice, so the MUST-ALIAS computation should not be much more expensive
than the MAY-ALIAS computation [CK89]. An initial interprocedural phase could
gather alias information and allow a pruned supergraph, something like the PSG
described later, to be used for more efficient solution. The solutions to flow-sensitive
analysis could be improved through symbolic evaluation of conditional branches.

The example of Myers’s supergraph also shows that algorithms which appear

exponential in theory may be efficient on programs encountered in practice.

Callahan

Callahan’s Program Summary Graph (PSG) is a pruned version of the supergraph
tuned to the solution of the flow-sensitive summary problems KILL and USE [Cal88].

For a variable v visible in procedure p,
e v € KiLL(p) if every path through p redefines v

e v € USE(p) if there exists a path through p which encounters a use of v before

encountering a redefinition of v

Using the PSG, kill and use can be defined as simple graph connectivity problems.

The nodes of the PSG are essentially the interprocedural interface nodes of G%3.
replicated for each interprocedural variable. The edges are built by dataflow analysis
on the the procedure’s control-flow graph, treating each entry and return node as
a definition of its variable, each call and exit as a use, and direct definitions and
uses normally.

Where an entry or return is a reaching definition for a call or exit, a PSG is
added. Edges are also added from entry or return to a special use node, if they reach
any direct use of the variable. The entry, exit, call, return, and use nodes, and the
edges connecting them, are retained for each procedure. They are stitched together
to build the full PSG by adding call-entry and exit-return edges corresponding

to call sites.

143

Callahan’s methods for solving kill and use are linear on the size of the PSG.

The only significant weaknesses of the method are:

o Aliases are handled imprecisely, by performing the analysis by variable name
and then considering a set of aliased variables to be killed or used only if they

are all killed or used individually.

e Given g global variables and e call sites, the number of nodes in the PSG is at

least ¢ * e, which can be excessive.

These problems can be avoided if the alias, MOD, and REF problems are solved be-
fore building the initial information for the PSG. This would also solve Callahan’s
difficulties Callahan with using the PSG to solve the LIVE problem.

FIAT

FIAT is an acronym of Framework for Interprocedural Analysis and Transformation,
an interprocedural analysis system descended from the IR™ program compiler and
available in the ParaScope programming environment [HMBCR93, Hal90]. Its main
data structure, the annotated call graph is fundamentally a variation of Myers’s su-
pergraph [Mye81]. However, FIAT supports a much richer set of annotations than
Myers proposes, and provides tools for interprocedural analyses and transformations.

Our scheme for symbolic and flow-sensitive analysis has been developed contem-
poraneously and in collaborative discussion with the FIAT authors. Our implemen-
tation of interprocedural symbolic analysis builds on the FIAT implementation in
ParaScope. When the full FIAT design, including procedure-summary control-flow
graphs, has been implemented, this will provide an ideal platform for studying the
effects of test elision during interprocedural analysis. When the deleted code includes
accesses to variables, we should see improvements in the results of side effect analysis
(such as flow-insensitive MOD and REF, flow-sensitive USE and KILL).

The lack of procedure-summary control-flow graphs (G£3) in the current version
of the system led us to postpone analysis of the effects of test elision within the
interprocedural phase.

FIAT is capable of supporting multiple phases of interprocedural analysis, a fea-

ture which should be exploited in future experiments.

144

6.9.2 Symbolic Analysis

Our work constitutes a decomposition of symbolic analysis into independent handling
for expressions and predicates. They are exploited together for various purposes and
converted back and forth in interprocedural propagation, but they are kept funda-
mentally separate. We hope in this way to gain the benefits both of pattern-matching
arbitrary expressions and of manipulating simple linear relations.

Prior work has relied either solely on symbolic relations [Iri93] or symbolic expres-
sions [HP93], or else has combined them in one representation [DJ92]. Combining
our analysis with the first two methods could improve all. We believe that the third
method produces a unified representation that is too difficult to manipulate for the
exploitation of symbolic facts.

Ours is also the first work to explicitly treat the issue of recompilation analysis for
symbolic information. While symbolic predicates on variables can easily be checked
for changes, symbolic expressions for returned values must be implemented carefully.
Precise recompilation analysis on symbolic expressions for passed values is very diffi-
cult; minor changes can produce new expressions without conveying any worthwhile

information.

PIPS

The PIPS system provides interprocedural analysis of side effects and symbolic pred-
icates [IJT91, Iri93]. The symbolic information is exploited in several ways, including
analysis of side effects to array regions (based on a previous implementation by Triolet
[TIF86, Tri85]).

Relying on predicates as the main form of symbolic information can have signifi-
cant disadvantages. The simplest form of predicates to manipulate, linear equalities
and inequalities, miss many interesting cases, such as the equality of identical nonlin-
ear expressions. While it may be possible to handle more complicated predicates, the
linear ones are expensive enough. A set of predicates on n variables is represented
as an n-dimensional polyhedron, with convex hull as the merge operation and linear
programming required for composition. These algorithms take exponential time.

The PIPS researchers write that they have found efficient approximate methods
for manipulating linear predicates. Comparison of the precision and expense of our

methods and theirs is an important area for future work. We expect significant

145

benefits could be achieve by combining our pattern matching for arbitrary expressions

with their linear inequality analysis.

Dehbonei

Dehbonei and Jouvelot describe a partial symbolic evaluation method for interproce-
dural semantic analysis [DJ92]. Their symbolic representation of a program value is
a pair of symbolic expressions; the first representing the conditions under which the
program expression executes and the second giving the value if it executes.

The symbolic value for a variable after a control flow merge is built using the
shuffle function, which produces a list representing the possible control conditions
(each mutually exclusive predicate in the list is OR’d to give the complete execution
conditions) and a list of the possible values. The value assumed is that corresponding
in list order to the predicate that evaluates to true.

Use of a symbolic value unifying control conditions and value content is the impor-
tant difference between their method and ours. Their unified representation should
be simpler to implement. But with regard to precision and efficiency, the unified

representation seems to combine the worst features of predicates and expressions.

e Powerful tools can be used to manipulate some kinds of predicates, such as linear
relations. But the predicates here are just expressions; no single representation

of the relations on all variables is built.

e Symbolic expressions are difficult to manipulate (except when linear), but can
tested for equality by pattern matching. Combining control conditions in the
symbolic value makes identical values in different control contexts appear dif-

ferent.

Dehbonei and Jouvelot build their symbolic values from a value graph that sounds
like a relative of SSA form, being also derived from the earlier work of Reif et al.
[RT81]. Full GSA form could perhaps also be employed in this construction; thinned

GSA form omits some of the predicates they are interested in propagating.

Haghighat

Haghighat’s symbolic analysis relies purely on symbolic expressions [Hag90, HP90,

HP93]. His methods for expression manipulation are more highly developed than

146

ours, while we have more efficient (or at least more explicitly described) techniques
for building an initial expression from dataflow information.

Haghighat uses symbolic expressions to describe the output values of procedures,
much as we do, but he also uses them to describe actual parameter values to a called
procedure. He does not address the recompilation issue, but his method faces several

challenges:

e Interprocedurally propagated expressions must be built carefully to reduce the

occurrence of apparent but meaningless changes in the solutions.

e When there are multiple calls to a procedure, expressions for actual parameter
values must be merged to produce an expression for each formal parameter. The
representation of this merge function should not depend on ephemeral details

of the call graph or of the calling procedures.

As discussed above, we convert information about passed values from symbolic ex-

pressions into equality relations for these reasons.

6.10 Summary

We have devised an efficient scheme for interprocedural symbolic analysis which allows
recompilation analysis. However, the direct improvements in dependence information
are marginal.

Return expression analysis is value for its indirect effects via array section anal-
ysis [T'sa94] and constant propagation [GT93]. Constant range propagation should
be added. The forward propagation of pairwise equalities should be reconsidered,
and either jettisoned, replaced with a richer predicate framework, or replaced with
a passed expression framework, if one can be made compatible with recompilation

analysis.

147

Chapter 7

Conclusions and Future Work

Computer hardware and software are two of the fastest-evolving areas of modern tech-
nology. Designers of optimizing compilers must keep pace with these changes while
answering the unchanging demand to produce efficient machine-specific executables

from maintainable portable source code.

7.1 Contributions

We have given a solid framework for symbolic analysis within procedures and demon-
strated its efficiency and effectiveness on substantial Fortran benchmarks. Our ex-
tension of this technique to interprocedural analysis provides information needed to

support dependence testing and is compatible with recompilation analysis.

Array Section Analysis. We have demonstrated an accurate and efficient tech-

nique for summary side-effect analysis on subarrays.

Thinned GSA Form. We give new algorithms are given for constructing this vari-
ant of SSA form. They are both simpler than those given for original GSA form

and better suited to value numbering on the fly.

Global Value Numbering. Combination with simplification produces a symbolic

analysis method strictly superior to that in PFC.

Interprocedural Symbolic Analysis. We propagate symbolic expressions for re-
turn values and linear equality relations on passed values while remaining com-

patible with recompilation analysis.

Robust Implementation. Other researchers are already using this implementation

to support array section analysis and slicing analysis.

148

7.2 Evaluation

Our implementations and experiments in the course of this research have revealed sig-
nificant differences in the implementation effort, compile-time expense, and run-time
effectiveness of different program analysis methods. Here we give our recommenda-
tions as to which analyses should be included in a modern compiler. The columns in

each table give the following information:

Resources: Gives the expected complexity of the analysis over the programs en-
countered in practice. For example, methods with entry X are asymptotically
linear or almost linear in X, or else have exhibited linear behavior in extensive
experiments. Methods with entry X+ are usually linear in practice, but have

significant potential for nonlinearity with unusual programs.

Implement: An estimate of the programming effort needed to add the analysis to a

compiler, provided that the major prerequisite analyses are already available.

e Simple implementations can be finished by one skilled programmer, work-

ing from published algorithms, in a fraction of a year.

o Moderate implementations require a large portion of a year and more in-

terpretation of the published methods.

e Hard implementations require many prerequisite analyses, much interpre-
tation of the published work, and, especially for a production compiler,

substantial performance tuning not yet addressed in the literature.

Payoff: This assumes that the compiler is testing for array dependences and sub-

stantially restructuring the program’s loops for parallelism and locality.

o [nabler analyses have little benefit on their own, but provide an infras-

tructure for useful techniques.

o High payoff is achieved if many loop-parallelization or other profitable
transformation opportunities will be enabled, and some kind of improve-

ment will be seen in most programs.

o Moderate payoff is achieved if multiple examples of code improvement have

been found, but widespread benefits have not yet been shown.

e Small payoff is reported when few or no profitable transformations of re-

alistic programs have been experimentally derived by this method.

149

Recompile: For interprocedural analysis methods, this refers to the difficulty of

assessing changes in solutions, so as to decide which procedures must be rean-

alyzed or recompiled after an edit.

e Simple recompilation problems require only the comparison of bit vectors

and constant values.

e Moderate problems require the comparison of symbolic expressions that

can be written in a normal form.

e Hard problems require symbolic information that is difficult to isolate to

the context of one procedure.

Recommended (or “Rec’d”) gives our conclusions on which analyses are justified

for a modern production compiler. A check mark indicates that the analysis has

payoff justifying its expense. “Required” indicates that the analysis is part of

the enabling infrastructure for many profitable analyses and transformations.

Blank entries are not recommended, either because the cost is high or their

proven benefits are particularly small.

7.2.1 Intraprocedural Analysis

Table 7.1 gives our assessments of analyses conducted on a single procedure. Here,

N represents the size of the control flow graph (nodes and edges) and V represents

the number of variables or symbolic expressions for which facts are being propagated

at any point.

Resources | Implement | Payoff | Recommended
Tarjan intervals, dominators | NV simple enabler required
Control dependence graph N simple enabler Vv
SSA form N simple enabler required
Constant propagation N simple high Vv
Value numbering N+ moderate | high Vv
Constant ranges N simple high Vv
GSA form N+ moderate small
Relational predicates NV24? hard high?

Table 7.1 Intraprocedural Analysis Evaluation

150

Dominators are essential to the construction of control dependences and SSA form,
as are Tarjan intervals if we wish to know which edges are loop-carried. These four
analyses provide an inexpensive basic infrastructure for a compiler. Once these are
available, constant propagation and constant range analysis are trivial.

Some method for symbolic expression manipulation is needed for dependence test-
ing. Qur value numbering techniques fill this need, while also supporting common
subexpression elimination and test elision. Complicated code inserted by advanced
transformations, such as run-time preprocessing of loops, can also benefit from recog-
nition of redundant computations [DSvH93].

Gated single-assignment form does not show many direct benefits in our exper-
iments. New analysis and transformations may exploit its unique properties in the
future, however [Wol92]. Both GSA form and value numbering show generally linear
behavior in our experiments. However, the worst-case bounds are decidedly non-
linear, as borne out by a few procedures with tangled control flow.

The worst case for exhaustive propagation of relational predicates ranges from
cubic for pairwise linear equalities to exponential for general linear inequalities. While
these seem too time-consuming for use in a compiler, some implementors have had
good experience with propagating such information only on demand of dependence
testing [Iri93]. Limiting analysis to cases where we know (from preliminary checking)
that it may be useful will be increasingly important to producing powerful and fast

compilers.

Resources | Recompile | Implement | Payoff Rec’d
MAY-ALIAS, MOD, REF | nV simple simple high required
Constant propagation | nv simple moderate | high Vv
KiLL, USE, LIVE N simple moderate | high Vv
Constant ranges nv simple moderate | high Vv
Return expressions depends moderate | moderate | enabler Vv
Array MOD, REF nv moderate | moderate | moderate V
Array KILL, USE, LIVE | Nv moderate | hard moderate
Pairwise equalities nv? simple moderate | small
Passed expressions depends hard hard ?

Table 7.2 Interprocedural Analysis Evaluation

151

7.2.2 Interprocedural Analysis

Table 7.2 gives our recommendations on the use of interprocedural analysis. Here,
n represents the size of the call graph (nodes and edges) and N represents the com-
bined size of the call graph and control flow graphs for each procedure. V represents
the number of interprocedurally interesting variables, while v represents the intersec-
tion of the interprocedural variables with the MOD or REF sets of the procedure, as
appropriate.

Basic alias and flow-sensitive side-effect solutions are prerequisites to more exten-
sive analysis. MUST-ALIAS, KILL, USE and even LIVE solutions can be approximated
much more efficiently than the worst case given by Myers and can have substantial
payoff [Mye81, Cal88].

Constant propagation can be very useful, but requires at least an intraprocedural
symbolic representation [CCKT86, GT93]. Propagation of constant ranges is not
quite so simple or effective as that of pure constants, but can have a significant effect
in proving loop bounds to be positive.

Return expressions have little direct effect, but the same representation and trans-
lation infrastructure is essential to propagation of array section information and to
analysis of passed values. Array side effect analysis is important to parallelization,
although the KILL and USE information needed for privatization are flow-sensitive.

Analysis of passed values can be very important to dependence testing, especially
when a program makes extensive use of dynamic problem sizes. While pairwise linear
equalities are an efficient framework, their effectiveness has not been fully confirmed.
Merely using symbolic expressions for passed values introduces difficulties in repre-
senting values computed in other procedures, and knowing what changes to those
values do and do not invalidate previous analysis, forcing a recompilation.

The complexity of propagating return expressions and passed expressions depends
on the size of the expressions. Since building a monolithic whole-program value graph
is ruled out by recompilation issues, symbolic expressions must be copied during
propagation from one procedure to another. In practice, we may require a limit on

the size of expressions propagated.

7.3 Future Work

Several directions suggest themselves for further implementation in ParaScope.

152

Constant ranges. Our experiments have already exposed cases where constant
bounds information will improve dependence testing. Because array addressing fre-
quently runs from a constant lower bound to some symbolic upper bound (varying
with the size of the data), it will pay to determine minimum values for these upper
bounds. The analysis techniques of Chapter 5 are well-suited to the computation
of these ranges within procedures. The interprocedural propagation framework of
Chapter 6 can be used to propagate range information between procedures, where it

combines profitably with the linear equality predicates already handled.

Test elision. Our implementation provides most of the framework needed to delete
unexecutable code based on the values of conditional tests. When compiling a single
procedure (with or without a preceding interprocedural analysis), it is sufficient to
build the symbolic expression for the test. If the simplified expression returned is
a constant such as true or false, then we delete all control flow edges from the
branch save the one so labeled. Test elision may also be employed during interproce-
dural analysis to improve the information used by other interprocedural analyses, as
described in Chapter 6.

More sophisticated predicates. The value of affine inequalities on arbitrary num-
bers of variables (or value numbers) should be investigated. Efficient implementations
exist for composing inequalities into a convex set [Pug91]. However, merging such
sets appears to be more difficult [CH78]. The best approach may be to have a back-
wards pass of analysis that determines which values are particularly interesting, then
restrict the forward analysis to compute predicates only on the interesting values (like

goal-directed cloning) [BCHT90].

More array analysis. The same pattern-matching techniques applied in value
numbering scalar computations can be applied to array operations. We already sup-
port value numbering of subscripted array references treated as access and update
functions [DSvH93]. These techniques can be further improved by noticing when ar-
rays are accessed with only constant subscripts, then analyzing each of those elements

as separate scalars.

153

7.4 Conclusion

We have presented techniques for symbolic analysis, realized them in an efficient im-
plementation, and shown their effectiveness on a variety of publicly-available Fortran
applications.

The use of a consistent framework and the avoidance of ad-hoc techniques make
it possible for programmers using the system to know which constructs are hard to
analyze and which can be handled by the system. In particular, the perceived cost of
procedure calls should be reduced, encouraging the use of modular design. Continued
progress in this area brings us continually closer to the goal, yet so far away, of

automatic parallelization of scientific programs.

[ACT2]

[ACKS6]

[AHS2]

[AKS4]

[AKST]

[A1183]

[ASUS6]

[AWZS3]

[Balg9)

154

Bibliography

F. Allen and J. Cocke. A catalogue of optimizing transformations. In
Design and Optimization of Compilers, pages 1-30. Prentice-Hall, 1972.

Randy Allen, David Callahan, and Ken Kennedy. An implementation
of interprocedural analysis in a vectorizing Fortran compiler. Technical
Report TR86-38, Dept. of Computer Science, Rice University, May 1986.

Marc Auslander and Martin Hopkins. An overview of the PL.8 compiler.
In Proceedings of the SIGPLAN ’82 Symposium on Compiler Construc-
tion, June 1982.

J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to
parallel form. In K. Hwang, editor, Supercomputers: Design and Ap-
plications, pages 186-203. IEEE Computer Society Press, Silver Spring,
MD, 1984.

J. R. Allen and K. Kennedy. Automatic translation of FORTRAN pro-
grams to vector form. ACM Transactions on Programming Languages

and Systems, 9(4):491-542, October 1987.

J. R. Allen. Dependence Analysis for Subscripted Variables and Its
Application to Program Transformations. PhD thesis, Rice University,
April 1983.

Alfred V. Aho, Ravi L. Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading, MA, second
edition, 1986.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of
variables in programs. In Proceedings of the Fifteenth Annual ACM
Symposium on the Principles of Programming Languages, pages 1-11,

San Diego, CA, January 1988.

Vasanth Balasundaram. Interactive Parallelization of Numerical Scien-
tific Programs. PhD thesis, Rice University, July 1989. Available as
Rice COMP TR&89-95.

[Bal90]

[BanT78]

[BanT79]

[Ban86]

[Bar77]

[BBDS93]

[BCS6]

[BCHT90]

[BCT92]

[BGNP93]

[BK8Y]

155

Vasanth Balasundaram. A mechanism for keeping useful internal in-
formation in parallel programming tools: the Data Access Descriptor.

Journal of Parallel and Distributed Computing, 9:154-170, 1990.

J. Banning. A Method for Determining the Side Effects of Procedure
Calls. PhD thesis, Stanford University, August 1978.

J. Banning. An efficient way to find the side effects of procedure calls
and the aliases of variables. In Conference Record of the Sizth Annual
ACM Symposium on the Principles of Programming Languages, San
Antonio, TX, January 1979.

U. Banerjee. A direct parallelization of CALL statements — a review.
CSRD Rpt. 576, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, April 1986.

J. Barth. An interprocedural data flow analysis algorithm. In Confer-
ence Record of the Fourth ACM Symposium on the Principles of Pro-
gramming Languages, Los Angeles, January 1977.

David Bailey, Eric Barszcz, Leonardo Dagum, and Horst Simon. NAS
parallel benchmark results. Technical Report RNR-92-002, NASA Ames
Research Center, February 1993.

M. Burke and R. Cytron. Interprocedural dependence analysis and par-
allelization. In Proceedings of the SIGPLAN ’86 Symposium on Com-
piler Construction, pages 162-175, June 1986.

P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-directed inter-
procedural optimization. Technical Report TR90-147, Dept. of Com-
puter Science, Rice University, December 1990.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerializa-
tion. In Proceedings of the SIGPLAN ’92 Conference on Programming
Language Design and Implementation, pages 311-321, San Francisco,

California, June 1992.

Utpal Banerjee, David Gelernter, Alex Nicolau, and David Padua, ed-
itors. Proc. Sizth Workshop on Languages and Compilers for Parallel
Computing, volume 768 of Lecture Notes in Computer Science, Port-

land, OR, August 1993. Springer Verlag.

V. Balasundaram and K. Kennedy. A technique for summarizing data
access and its use in parallelism-enhancing transformations. In Proceed-
ings of the SIGPLAN 89 Conference on Program Language Design and
Implementation, Portland, OR, June 1989.

[BKK*89]

[BMO90]

[Bou92]

[Cal8T]

[Cal88]

[CCT7)

[COKTS6]

[CF8Y]

[CFR*91]

[CFS90a]

156

V. Balasundaram, K. Kennedy, U. Kremer, K. S. M¢Kinley, and
J. Subhlok. The ParaScope Editor: An interactive parallel program-
ming tool. In Proceedings of Supercomputing ‘89, Reno, NV, November
19809.

R. Ballance, A. Maccabe, and K. Ottenstein. The Program Dependence
Web: a representation supporting control-, data-, and demand-driven
interpretation of imperative languages. In Proceedings of the SIGPLAN
90 Conference on Program Language Design and Implementation, pages

257271, White Plains, New York, June 1990.

Raymond T. Boute. The euclidean definition of the functions div and
mod. ACM Transactions on Programming Languages and Systems,

14(2):127-144, April 1992.

D. Callahan. A Global Approach to Detection of Parallelism. PhD
thesis, Rice University, March 1987.

D. Callahan. The program summary graph and flow-sensitive interpro-
cedural data flow analysis. In Proceedings of the ACM SIGPLAN 88
Conference on Program Language Design and Implementation, pages

47-56, Atlanta, GA, June 1988.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Conference Record of the Fourth Annual ACM
Symposium on the Principles of Programming Languages, pages 238—
252, Los Angeles, January 1977.

D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
constant propagation. In Proceedings of the SIGPLAN 86 Symposium
on Compiler Construction, June 1986.

Robert S. Cartwright and Matthias Felleisen. The semantics of pro-
gram dependence. In Proceedings of the SIGPLAN 89 Conference on

Program Language Design and Implementation, Portland, Oregon, June

1989.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form

and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451-490, October 1991.

R. Cytron, J. Ferrante, and V. Sarkar. Compact representations for

control dependence. In Proceedings of the SIGPLAN 90 Conference on

[CFS90b]

[CHTS]

[CHT91]

[CKS85]

[CK88a]

[CK88b]

[CK8Y]

[CKB93]

[CKPK90]

157

Program Language Design and Implementation, pages 337-351, White
Plains, New York, June 1990.

R. Cytron, J. Ferrante, and V. Sarkar. Experience using control depen-
dence in PTRAN. In D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing. The MIT Press, 1990.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth ACM
Symposium on the Principles of Programming Languages, pages 84-96,
1978.

K. Cooper, M. W. Hall, and L. Torczon. An experiment with inline
substitution. Software—Practice and Fxperience, 21(6):581-601, June
1991.

K. Cooper and K. Kennedy. Efficient computation of flow insensitive
interprocedural summary information. In Proceedings of the SIGPLAN
84 Symposium on Compiler Construction, SIGPLAN Notices Vol. 19,
No. 6, July 1985.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects
in a parallel programming environment. Journal of Parallel and Dis-

tributed Computing, 5:517-550, 1988.

K. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear
time. In Proceedings of the ACM SIGPLAN 88 Conference on Program
Language Design and Implementation, Atlanta, GA, June 1988.

Keith D. Cooper and Ken Kennedy. Fast interprocedural alias analysis.
In Proceedings of the Sizteenth Annual ACM Symposium on the Prin-
ciples of Programming Languages, pages 49-59, Austin, Texas, January
19809.

Philip L. Campbell, Ksheerabdhi Krishna, and Robert A. Ballance. Re-
fining and defining the Program Dependence Web. Technical Report

TR 93-6, Department of Computer Science, University of New Mexico,
March 1993.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer per-
formance evaluation and the Perfect benchmarks. In Proceedings of the
1990 ACM International Conference on Supercomputing, Amsterdam,
The Netherlands, June 1990.

[CKTS6]

[Cou8l]

[DBMS79]

[DJ92]

[DSvHY3]

[Fie92]

[FOWST]

[GKTO1]

[GS90]

[GT93]

158

K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural
analysis and optimization in the R" programming environment. ACM
Transactions on Programming Languages and Systems, 8(4):491-523,
October 1986.

Patrick Cousot. Semantic foundations of program analysis. In S. S.
Muchnick and M. D. Jones, editors, Program Flow Analysis: Theory
and Applications, pages 303—-342. Prentice-Hall,New Jersey, 1981.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK
User’s Guide. STAM Publications, Philadelphia, 1979.

Babak Dehbonei and Pierre Jouvelot. Semantical interprocedural anal-
ysis by partial symbolic evaluation. In Proceedings of the ACM SIG-
PLAN Workshop on Partial FEvaluation and Semantics-Based Program
Manipulation, San Francisco, California, June 1992.

Raja Das, Joel Saltz, and Reinhard von Hanxleden. Slicing analysis and
indirect accesses to distributed arrays. In Banerjee et al. [BGNP93],
pages 152-168.

John Field. A simple rewriting semantics for realistic imperative pro-
grams and its application to program analysis. In Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 98-107, San Francisco, California, June

1992.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program de-
pendence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319-349, July 1987.

G. Goff, K. Kennedy, and C. Tseng. Practical dependence testing. In
Proceedings of the SIGPLAN 91 Conference on Program Language De-

sign and Implementation, Toronto, Canada, June 1991.

T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and
its use in an optimizing compiler. Software—Practice and Experience,

20(2):133-155, February 1990.

Dan Grove and Linda Torczon. Interprocedural constant propagation: A
study of jump function implementation. In Proceedings of the SIGPLAN
93 Conference on Programming Language Design and Implementation,

pages 90-99, Albuqueque, NM, June 1993.

[Hag90]

[Hal90]

[Har77]

[Hav93]

[HK91]

[HKMC90]

[HMBCRO3]

[HP90]

[HP93]

[HPRSS]

[LJT91]

159

Mohammad Reza Haghighat. Symbolic dependence analysis for high
performance parallelizing compilers. Master’s thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, May 1990. Also
available as CSRD Rpt. No. 995.

Mary Hall. Managing Interprocedural Optimization. PhD thesis, Rice
University, October 1990.

W. H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Transactions on Software Engineering, SE-3(3):243-250, May
1977.

Paul Havlak. Construction of thinned gated single-assignment form. In

Banerjee et al. [BGNP93], pages 477-499.

P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis. IEEFE Transactions on Parallel and

Distributed Systems, 2(3):350-360, July 1991.

R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program de-
bugging with on-the-fly anomaly detection. In Proceedings of Supercom-
puting '90, New York, NY, November 1990.

Mary W. Hall, John M. Mellor-Brummey, Alan Carle, and René G.
Rodriguez. Fiat: A framework for interprocedural analysis and trans-
formations. In Banerjee et al. [BGNP93], pages 522-545.

M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis
for high performance parallelizing compilers. In Proceedings of the Third
Workshop on Languages and Compilers for Parallel Computing, Irvine,
CA, August 1990.

Mohammad R. Haghighat and Constantine D. Polychronopoulos. Sym-
bolic analysis: A basis for parallelization, optimization, and scheduling

of programs. In Banerjee et al. [BGNP93], pages 567-585.

S. Horwitz, J. Prins, and T. Reps. On the adequacy of program de-
pendence graphs for representing programs. In Conference Record of
the Fifteenth ACM Symposium on the Principles of Programming Lan-
guages, pages 146-157, San Diego, CA, January 1988.

F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural par-
allelization: An overview of the PIPS project. In Proceedings of the 1991
ACM International Conference on Supercomputing, Cologne, Germany,

June 1991.

[1ri93]

[Kar76]

[Ken81]

[KMT91a]

[KMT91b]

[Knu73a]

[Knu73b]

[Li90]
[LM94]

[LT79]

[LY88a]

[LYS8b]

[LYS8¢]

160

Francois Irigoin. Interprocedural analyses for programming environ-
ments. In J. J. Dongarra and B. Tourancheau, editors, Environments
and Tools for Parallel Scientific Computing. Elsevier Science Publishers,
1993.

M. Karr. Affine relationships among variables of a program. Acta In-

formatica, 6:133-151, 1976.

K. Kennedy. A survey of data flow analysis techniques. In S. S. Much-
nick and M. D. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 1-54. Prentice-Hall,New Jersey, 1981.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Analysis and transforma-
tion in the ParaScope Editor. In Proceedings of the 1991 ACM Interna-
tional Conference on Supercomputing, Cologne, Germany, June 1991.

K. Kennedy, K. S. MCKinley, and C. Tseng. Interactive parallel pro-
gramming using the ParaScope Editor. IEEE Transactions on Parallel
and Distributed Systems, 2(3):329-341, July 1991.

Donald E. Knuth. The Art of Computer Science Vol. 1: Fundamental
Algorithms. Addison-Wesley, Reading, Massachusetts, 1973.

Donald E. Knuth. The Art of Computer Science Vol. 3: Searching and
Sorting. Addison-Wesley, Reading, Massachusetts, 1973.

Zhiyuan Li. Private communication, October 1990.

Jon Loeliger and Robert Metzger. Developing an interprocedural opti-

mizing compiler. SIGPLAN Notices, 29(4):41-48, April 1994.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM Transactions on Programming Languages and
Systems, 1:121-141, 1979.

Z. Li and P.-C. Yew. Efficient interprocedural analysis for program
parallelization and restructuring. In ACM SIGPLAN PPEALS, pages
85-99, 1988.

Z.Liand P.-C. Yew. Interprocedural analysis and program restructuring
for parallel programs. CSRD Rpt. No. 720, Center for Supercomputing
Research and Development, University of Illinois at Urbana-Champaign,
January 1988.

Z. Li and P.-C. Yew. Program parallelization with interprocedural anal-
ysis. The Journal of Supercomputing, 2:225-244, 1988.

[Mas92]

[Mye81]

[Por89]

[Pug9l]

[RLS6]

[Ros90]

[RT81]

[RWZ88]

[Sel92]

[Tar74]

[Tar83]

[TIFS6]

161

Vadim Maslov. Delinearization: An efficient way to break multiloop
dependence equations. In Proceedings of the SIGPLAN °92 Conference
on Programming Language Design and Implementation, pages 152-161,
San Francisco, June 1992.

E. Myers. A precise interprocedural data flow algorithm. In Conference
Record of the Fighth ACM Symposium on the Principles of Programming
Languages, pages 219-230, January 1981.

Allan Porterfield. Software Methods for Improvement of Cache Per-
formance on Supercomputer Applications. PhD thesis, Rice University,

May 1989. Available as Rice COMP TRS88-93.

William Pugh. The Omega Test: a fast and practical integer program-
ming algorithm for dependence analysis. In Proceedings of Supercom-
puting '91, Albuquerque, NM, November 1991.

John H. Reif and Harry R. Lewis. Efficient symbolic analysis of pro-
grams. Journal of Computer and System Sciences, 32(3):280-313, 1986.

C. M. Rosene. Incremental Dependence Analysis. PhD thesis, Rice
University, March 1990. Available as Rice COMP TR90-112.

J. H. Reif and R. E. Tarjan. Symbolic program analysis in almost-linear

time. SIAM Journal on Computing, 11(1):81-93, February 1981.
B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers

and redundant computations. In Proceedings of the Fifteenth Annual

ACM Symposium on the Principles of Programming Languages, pages
12-27, San Diego, CA, January 1988.

Rebecca P. Selke. A Semantic Framework for Program Dependence.
PhD thesis, Rice University, 1992.

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and
System Sciences, 9:355-365, 1974.

Robert E. Tarjan. Data Structures and Network Algorithms. So-
ciety for Industrial and Applied Mathematics (SIAM), Philadel-
phia,Pennsylvania, 1983.

R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL
statements. In Proceedings of the SIGPLAN 86 Symposium on Com-
piler Construction, pages 176-185, Palo Alto, CA, July 1986.

[Tor85]

[TPY3]

[Tri85)

[Tsa%4]

[Uni8Y]

[Wol92]

[WZ91]

[X3J89)

[YHRS9]

162

L. Torczon. Compilation Dependences in an Ambitious Optimizing
Compiler. PhD thesis, Dept. of Computer Science, Rice University,
May 1985.

Peng Tu and David Padua. Automatic array privatization. In Banerjee

et al. [BGNP93], pages 500-521.

R. Triolet. Interprocedural analysis for program restructuring with
Parafrase. CSRD Rpt. No. 538, Dept. of Computer Science, Univer-
sity of lllinois at Urbana-Champaign, December 1985.

Hariklia Tsalapatas. Interprocedural array side effect analysis. Master’s
thesis, Rice University, March 1994.

J. Uniejewski. SPEC Benchmark Suite: designed for today’s advanced
systems. SPEC Newsletter Volume 1, Issue 1, SPEC, Fall 1989.

Michael Wolfe. Beyond induction variables. In Proceedings of the SIG-
PLAN 792 Conference on Programming Language Design and Imple-
mentation, pages 162-174, San Francisco, California, June 1992.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages

and Systems, 13(2):181-210, 1991.

X3J3 Subcommittee of ANSI. American National Standard for Informa-
tion Systems Programming Language Fortran: S8 (X3.9-198z). Ameri-
can National Standards Institute, New York, NY, 1989.

Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program com-
ponents with equivalent behaviors. Technical Report 840, Computer
Sciences Department, University of Wisconsin-Madison, April 1989.

163

Appendix A

Experimental Benchmarks

We have worked hard to make our system robust for realistic programs. In this
process, we have examined its performance and stability on a number of relatively
standard benchmarks. Minor changes were made to the source files to eliminate
constructs poorly handled by ParaScope, such as statement functions and alternate
entries, and to convert some DATA statements to assignments to make them visible to
the symbolic analysis (which does not yet extract constants from DATA initializers).

In cases where a program was available in slightly different versions from multiple
benchmark suites, we chose one version arbitrarily. Procedures never called were
omitted. The line count is the number of Fortran records; the statement count is the
number of executable statements for which we build G, nodes (not counting extra
nodes which correspond to no statements).

A.1 Perfect Club Benchmarks

The Perfect Club Benchmarks are a set of scientific applications collected for eval-
uation of complete supercomputer compiler and hardware systems [CKPK90]. The
copies of these programs used in our experiments were obtained around August 1991.

A.2 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) benchmark suite is the
result of another effort to build a set of complete programs for measuring system
performance [Uni89]. We examine only the Fortran programs in the benchmark,
which were chosen to stress floating-point performance. The programs studied are
from the first set of the benchmarks, SPEC£p89, which we obtained around March of
1991.

A.3 RICEPS

The Rice Compiler Evaluation Program Suite (RiCEPS) is a set of programs chosen to
stress compiler analysis and transformation for advanced architectures. This collec-
tion has been stable since about February 1990, and is available by anonymous FTP
from cs.rice.edu in the public/riceps directory. Some programs from RiCEPS

164

Progranl‘ procedures‘ lines ‘statenjents‘

adm 90 | 5733 3277
arc2d 39 | 3904 1796
bdna 43 | 3808 2702
dyfesm 70 | 6998 1578
flo52 35| 2009 1711
mdg 18 | 1250 743
mg3d 30 | 2851 2247
ocean 38 | 4353 1506
qcd 36 | 2321 1299
spec’7 68 | 3915 2533
track 41 | 3706 1345
trfd 7 323 241
Total 515 | 41141 21795

Table A.1 Perfect Club Benchmarks

Program ‘ procedures‘ lines ‘statenjents‘
doduc 41 | 5334 4469
fpppp 38 | 2729 1615
matrix300 5 431 124
nasa7 17| 1117 609
spice 126 | 18417 13466
tomcatv 1 195 129
Total 228 | 28223 20414

Table A.2 SPEC Benchmarks

165

have been used, along with other programs gathered at the same time, in other com-
piler experiments at Rice [Por89, CHT91].

Program ‘ procedures ‘ lines ‘ statements ‘

boast 49 | 7562 5578
ccm 146 | 23574 7581
hydro 36 | 12474 1483
simple 81 1313 736
sphot 7 1146 625
wanall 11 | 2099 1123
wave 94 | 7840 4478
Total 351 | 56008 22037

Table A.3 RiCcEPSPrograms

A.4 NAS Benchmarks

The NAS (Numerical Aeronautical Simulation) benchmark suite from NASA Ames
Research Center was not designed for evaluation of compilers [BBDS93]. These codes
were instead written as reference implementations solving problems of interest to
supercomputer users at NASA Ames. Vendors benchmarking their machines are
free to use different implementations or even completely different algorithms to get
maximal performance, so long as the numerical results are within tolerance.

These reference versions of the NAS benchmarks can be considered examples of
codes solving interesting problems, but which have not been aggressively tuned. They
therefore make an interesting contrast to the mature codes selected for RicEPsand
Perfect, in which hand optimization sometimes creates obstacles to analysis.

We obtained our copy of the NAS benchmarks from the anonymous FTP site at
Syracuse University in September 1992.

Program ‘ procedures ‘ lines ‘ statements ‘
bt 19 | 4457 1448
cg 13 857 256
ep 4 265 110
ft 11 773 319
is 6 305 128
lu 17| 3285 978
mg 14 598 291
Sp 26 | 3516 1139
Total 110 | 14056 4669

Table A.4 NAS Benchmarks

166

