CHM 514 MODÉLISATION MOLÉCULAIRE

Armand Soldera Professeur – Département de Chimie

<u>1^{ère} Partie</u> : les ensembles de bases (Basis Sets)

Calculs des propriétés moléculaires

CPH 514 - Armand Soldera Hiver 2014 (Armand.Soldera@USherbrooke.c

Dr. Vasile Chiş, Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca

Théorie Hartree-Fock-Roothaan

"Basis set"

- ✓ "Basis set" : ensemble de bases = BS
- ✓ Définition

Ensemble de fonctions mathématiques qui permettent de résoudre l'équation de Schrödinger

 Chaque fonction est centrée autour d'un certain point de la molécule

Pas forcément le noyau, mais généralement le cas

 Chaque fonction est une fonction des coordonnées cartésiennes de l'électron

Analogie

Pourquoi utiliser un BS?

- ✓ Que veut-on faire :
 - Calculer l'énergie électronique d'une molécule
 - Connaître la fonction d'onde de cette molécule ce qui va nous permettre de calculer ses autres propriétés telles que :
 - Moment dipolaire
 - Polarisabilité
 - Densité électronique
 - •

✓ Il faut pour ce faire résoudre l'équation de Schrödinger

Résolution de l'Équation de Schrödinger

Introduction des BS

- Il nous faut connaître ψ, qui n'est véritablement connue que pour des systèmes à 1 électron
- Pour tout autre système, il nous faut ESTIMER cette fonction d'onde
- Une manière de procéder : on utilise les orbitales hydrogénoïdes
- On peut alors dire qu'un ensemble de bases (BS) correspond à un ensemble de fonctions telles que que celles décrivant s, p, d, f ...

Une résolution approximative de l'ÉdS

 $\checkmark \acute{\mathsf{EdS}} \qquad \qquad \hat{H}\psi = E\psi$ $E_o = \frac{\int \psi^* \hat{H}\psi d\tau}{\int \psi^* \psi d\tau} = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$

✓ Approximation

$$\psi \rightarrow \varphi$$

$$\varepsilon = \frac{\int \varphi^* \hat{H} \varphi d\tau}{\int \varphi^* \varphi d\tau} = \frac{\left\langle \varphi \right| \hat{H} \left| \varphi \right\rangle}{\left\langle \varphi \right| \varphi \right\rangle}$$

On peut toujours trouver une énergie ε , Le principe variationnel dit que $\varepsilon \ge E_o$

Si
$$\Psi \approx \varphi$$
 alors $\varepsilon \approx E_o$

Principe variationnel

✓ Soit l'état fondamental: $E_0 = \frac{\langle \psi_0 | \hat{H} | \psi_0 \rangle}{\langle \psi_0 | \psi_0 \rangle}$

$$\hat{H} = -\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$
$$\psi_0 = \psi_{1s} \left(r_j \right) = \left(\frac{Z^3}{\pi} \right)^{1/2} e^{-Zr_j/a_0} \qquad j = 1, 2$$

Principe variationnel:

On trouve: $E(7) - 7^2 - \frac{27}{7}$

$$\frac{\partial E_{\phi}(Z) - Z}{\partial Z} = 0 \implies Z = \frac{27}{16} \implies E_{\phi} = -2.8477 \text{ au}$$

Charge nucléaire effective:
$$Z = \frac{27}{16} = 1.6875 < 2$$

En fait chaque é agit comme un écran pour les autres é

Comparaison fonction radiale H_{1s}

McQuarrie, p. 384

Constant	es		r	ψ(r)	φ(r)						
			0.0	1.000	0.490						
Z	1		0.5	0.607	0.457						
ao	1	bohr	1.0	0.368	0.369						
α	0.28294		1.5	0.223	0.25						
ρ	3.53429		2.0	0.135	0.15	1 000	Fo	nction	d'ond	e 1s d	eН
Ν _ψ	1.0000		2.5	0.082	30.0	0.900 -					
Ν _φ	0.4901		3.0	0.050	0.03	0.800 -					
			3.5	0.030	, 10.0	0.600	k l				
			4.0	0.018	0.0	0.500	\mathbf{A}				
			4.5	0.011	0.0	0.300 -					
			5.0	0.007	0.00	0.200 -					
			5.5	0.004	0.00	0.100					
			6.0	0.002	0.00	0.0	1.0	2.0	3.0	4.0	5.0
			6.5	0.002	0.00			r (u	.a.)		
			7.0	0.001	0.000						
			7.5	0.001	0.000						
			8.0	0.000	0.000						

Comparaison fonction radiale H_{1s}

McQuarrie, p. 384

Constant	es		r	ψ(r)r	φ(r)r						
			0.0	0.000	0.000						
Z	1		0.5	0.303	0.228						
ao	1	bohr	1.0	0.368	0.369						
α	0.28294		1.5	0.335	0.38						
ρ	3.53429		2.0	0.271	0.31	0 5 0 0	Pr	opa 1s	de H		
N $_{\Psi}$	1.0000		2.5	0.205	0.20	0.450 -					
Ν _φ	0.4901		3.0	0.149	0.1:	0.400 -					
			3.5	0.106	/5 (r	0.300 -	<i>{</i> ``				
			4.0	0.073	0.0	0.250 -					
			4.5	0.050	0.0	0.150 -					
			5.0	0.034	0.0	0.100 -					
			5.5	0.022	0.0	0.050	1	1			
			6.0	0.015	0.0	0.0	1.0	2.0	3.0	4.0	5.0
			6.5	0.010	0.0			r (u	.a.)		
			7.0	0.006	0.000						
			7.5	0.004	0.000						
			8.0	0.003	0.000						

Orbitales atomiques de H

Équation de Schrödinger pour H

 $-\frac{\hbar^{2}}{2\mu}\nabla^{2}\psi(r,\theta,\varphi)+U(r)\psi(r,\theta,\varphi)=E\psi(r,\theta,\varphi)$ $\nabla^{2}=\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\varphi^{2}}$ $U(r)=-\frac{e^{2}}{4\pi\varepsilon_{o}r}$ $-\hbar^{2}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)-\hbar^{2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right)+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\varphi^{2}}\right]+2\mu r^{2}[U(r)-E]\psi=0$ $\stackrel{\checkmark}{\checkmark}$ Solutions

 $\Psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_{l}^{m}(\theta,\varphi)$ $Y_{l}^{m}(\theta,\varphi) = \left[\frac{(2l+1)(l+|m|)!}{4\pi(l-|m|)!}\right]^{1/2}P_{l}^{|m|}(\cos\theta)e^{im\varphi}$ $R_{nl}(r) = -\left[\frac{(n-l-1)!}{2n[(n+1)!]^{3}}\right]^{1/2}\left(\frac{2}{na_{0}}\right)^{l+3/2}r^{l}e^{-r/na_{0}}L_{n+l}^{2l+1}\left(\frac{2r}{na_{0}}\right)$

Fonctions hydrogénoïdes

Quan	tum N	lumbers	
n	l	m_l	Eigenfunctions
1	0	0	$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$
2	0	0	$\psi_{200} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$
2	1	0	$\psi_{210} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos\theta$
2	1	±1	$\psi_{21\pm 1} = \frac{1}{8\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin \theta \ e^{\pm i\varphi}$
3	0	0	$\psi_{300} = \frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(27 - 18\frac{Zr}{a_0} + 2\frac{Z^2r^2}{a_0^2}\right) e^{-Zr/3a}$
3	1	0	$\psi_{310} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \cos\theta$
3	1	±1	$\psi_{31\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \sin \theta \ e^{\pm i\varphi}$
3	2	0	$\psi_{320} = \frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} (3\cos^2\theta - 1)$
3	2	±1,	$\psi_{32\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin\theta \cos\theta e^{\pm i\varphi}$
3	2	±2	$\psi_{32\pm 2} = \frac{1}{162\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin^2 \theta \ e^{\pm 2i\phi}$

Mathematica

Ce qui se traduit graphiquement par ...

	s (I=0)	p (I=1)			d (I=2)						f (I=3)					
n=1																
n=2	o m=0	0 m=-1	%) m=1												
n=3	6 m=0	6 m=-1	% m=0	()) m=1	9 m=-2	33 m=-1	* m=0	% _{m=1}	m =2							
n=4	(m=0	6 m=-1	% m=0	m =1	6 m=-2	8 m=-1	* m=0	% m=1	m=2	% m=-3	% m=-2	% m=-1	* m=0	% m=1	% m=2	1 m=3
n=5	(m=0	6 m=-1	% m=0) m=1	6 m=-2	1 m=-1	8 m=0	3 m=1	() m=2							
n=6	(m=0	%	% m=0) m=1												
n=7	(m=0															

Et le spin ...

Principe d'exclusion de Pauli

Deux électrons ne peuvent présenter les mêmes nombres quantiques Un maximum de 2 é peuvent occuper la même orbitale spatiale ssi leurs spins sont antiparallèles

- ✓ Partie essentielle à la compréhension de la structure des atomes avec plus d'un é
- ✓ En fait que se passe-t-il si 2 é sont interchangés

 $\psi(1,2) \to \psi(2,1)$

Les propriétés physiques ne doivent pas être affectées: particules indiscernables Donc $\langle \psi | \psi \rangle$ doit rester inchangée

De ce fait, on peut avoir:

$$\psi(1,2) = \psi(2,1)$$
ou
$$\psi(1,2) = -\psi(2,1)$$

fonctions d'onde sont antisymétriques

Remarque: la fonction d'onde est totale, et doit donc inclure le spin

Introduction du spin

- ✓ Introduction du spin dans Ψ pour He
 - 4 possibilités de spin pour les 2 é de He: $\alpha(1)\alpha(2)$ $\beta(1)\beta(2)$ $\alpha(1)\beta(2)$ $\beta(1)\alpha(2)$ $\alpha(1)\beta(2) - \beta(1)\alpha(2)$ $\alpha(1)\beta(2) - \alpha(2)\beta(1)$ $\alpha(1)\beta(2) - \alpha(2)\beta(1)$

Fonctions de spin:

- Symétrique
- Antisymétrique
- Fonction d'onde totale doit être antisymétrique, et dans l'état fondamental, elle vaut:

$$\psi(1,2) = \psi_{1s}(1)\psi_{1s}(2) \frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) - \alpha(2)\beta(1)\right]$$

On retrouve le principe de Pauli !

Autre forme d'écriture
Déterminant de Slater
$$\psi(1,2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_{1s}(1)\alpha(1) & \psi_{1s}(1)\beta(1) \\ \psi_{1s}(2)\alpha(2) & \psi_{1s}(2)\beta(2) \end{vmatrix}$$

 $\psi_{1s}(i)\alpha(j)$: spin orbitale

Fonctions orbitales de spin pour He

Écrire le déterminant des fonctions d'onde pour chaque cas

Unités atomiques

 $\checkmark \text{ Constantes}$ $\hbar = 1 \quad m = 1 \quad e = 1 \quad 4\pi\varepsilon_0 = 1$ $a_0 = \frac{4\pi\varepsilon_0\hbar^2}{me^2} = 1 \quad \text{bohr}$ $E = \frac{me^4}{16\pi^2\varepsilon_0^2\hbar^2} = 1 \quad \text{hartree}$ $R_{10} = 2\left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-Zr/a_0}$ $R_{21} = \frac{1}{2\sqrt{6}}\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}\left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$ $R_{20} = \frac{1}{\sqrt{2}}\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}\left(1 - \frac{1}{2}\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$ $R_{32} = \frac{1}{9\sqrt{30}}\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}\left(\frac{2Zr}{3a_0}\right)^2 e^{-Zr/3a_0}$ $R_{31} = \frac{2\sqrt{2}}{9\sqrt{3}}\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}\left(\frac{2Zr}{3a_0}\right)\left(1 - \frac{1}{4}\frac{2Zr}{3a_0}\right) e^{-Zr/3a_0}$ $R_{30} = \frac{2}{3\sqrt{3}}\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}\left(1 - \frac{2Zr}{3a_0} + \frac{1}{6}\left(\frac{2Zr}{3a_0}\right)^2\right) e^{-Zr/3a_0}$

Équation de Schrödinger pour He

$$\hat{H} = -\frac{1}{2} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$

Construction de la fonction radiale de H_{1s}

McQuarrie, p. 324

Travail : faire le même type de diagramme pour l'OA 2s de H

Fonction de distribution radiale de H_{1s}

Constant	tes		r	P(r)	
			0.0	0.000	
Z	1		0.5	0.368	
ao	1	bohr	1.0	0.541	
n	1		1.5	0.448	
ρ	1		2.0	0.293	Fonction de distribution radiale de l'OA 1s de H
N _R	2.0000		2.5	0.168	0.600
N _Y	0.2821		3.0	0.089	0.500 -
			3.5	0.045	0.400 -
			4.0	0.021	- 0.300 -
			4.5	0.010	° 0.200 −
			5.0	0.005	0.100 -
			5.5	0.002	0.000
			6.0	0.001	
			6.5	0.000	r (u.a.)
			7.0	0.000	
			7.5	0.000	
			8.0	0.000	

Travail : faire le même type de diagramme pour l'OA 2s de H

Choix de l'ensemble de bases

✓ Généralités

✓ Orbitales de Slater

$$R_{nl}(r:n,\zeta) = (2\zeta)^{n^{*}+(1/2)} \left[(2n^{*})! \right]^{-1/2} r^{n^{*}-1} \exp(-\zeta r)$$

Application : Li_{2s}

Choix de l'ensemble de bases

- ✓ Problèmes avec STO
 - Pas de nœuds
 - Ensembles de *double-zeta*: 2 STO pour chaque orbitale → utilisation du principe variationnel pour déterminer le poids de chaque composantes de la base + orthonormalité
 - Demandes en calcul importantes
- ✓ Utilisation de fonctions gaussiennes
 - Fonctions de Slater remplacées par des gaussiennes
 - Idée datant de 1950, mais réelles applications débutent avec l'utilisation accrue des ordinateurs
 - Se trouvent au cœur de tous les calculs modernes d'OM
 - Les intégrales compliquées se simplifient

Cas d'étude : atome H

✓ ÉdS résolue

- ψ = 1s, 2s, 3s, ... et aussi les fonctions p, d, ...

L'état d'énergie la plus basse

$$E_0 = -1/2 \text{ a.u.} \quad \psi_0 = |1s\rangle = 2\left(\frac{1}{4\pi}\right)^{1/2} e^{-r}$$

Le 1^{er} état excité :

Fonctions gaussiennes |sto-3g>

✓ Fonction gaussienne

$$g(r:n,\alpha) = N_g r^{n-1} \exp\left(-\alpha r^2\right)$$
$$N_g = \left[\frac{2^{n+1/2}}{\Gamma\left(\frac{1}{2}+n\right)}\right]^{1/2} \alpha^{(2n+1)/4}$$

✓ Une fonction gaussienne '1s' normalisée

$$g(r:1s,\alpha) = \left(\frac{2\alpha}{\pi}\right)^{0.75} \exp\left(-\alpha r^2\right) \qquad g(r:1s,\alpha) = (2\alpha)^{3/4} \frac{\alpha^{1/2}}{\pi^{1/4}} \exp\left(-\alpha r^2\right)$$

Attention: normalisation porte uniquement sur la partie radiale

Dans le cas *n* = 1, il faut multiplier par
$$\left[\frac{1}{4\pi}\right]^{1/2}$$

- Produit de 2 gaussiennes
 - Produit de 2 gaussiennes 1s centrées autour de 2 positions se réduit à une 3^{ème} gaussienne centrée autour d'une position intermédiaire

$$\alpha_p = \alpha_1 + \alpha_2$$

$$R_p = \frac{\alpha_1 R_1 + \alpha_2 R_2}{\alpha_1 + \alpha_2}$$

$$K = \exp\left[-\frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2} |R_1 - R_2|^2\right]$$

Gaussiennes contractées

- ✓ Une fonction gaussienne unique est dite primitive
- ✓ On peut difficilement améliorer son ajustement
- Une fonction de base peut s'écrire comme une combinaison de gaussiennes primitives

$$\chi_{\mu} = \sum_{\rho=1}^{N} d_{\mu\rho} g_{\mu\rho}$$

- *N* est le degré de contraction
- $d_{\mu\rho}$ sont les coefficients de contraction, ils sont fixés dans le BS choisi, et ne varient pas durant les calculs
- g_{μρ} sont les primitives gaussiennes, et peuvent être des fonctions gaussiennes représentant les s, p, ...

BS minimale

- Les ensembles de bases minimales sont construites de telle façon à ce que l'on trouve UNE SEULE fonction par OA de coeur et de valence
- ✓ H, He : 1 fonction correspondant à la 1s (valence)
- ✓ Li-Ne : le comportement des électrons est représenté par 5 fonctions :
 - 1 fonction pour l'OA 1s de coeur
 - 4 fonctions pour les électrons dans la couche de valence n = 2:
 - 1 fonction pour 2s
 - 3 fonctions pour les 3 2p

STO-nG

✓ STO-*n*G

- STO : Slater Type Orbital
- *n* ∈ ℕ^{*} : *n* gaussiennes primitives (*G*), représente le degré de contraction utilisé pour approximer la STO correspondante
- Habituellement, n = 3

$$\checkmark \text{STO-3G} \quad \chi_{\mu} = \sum_{\rho=1}^{N} d_{\mu\rho} g_{\mu\rho} \quad \Rightarrow \quad \chi_{1} = d_{11} g_{11} + d_{12} g_{12} + d_{13} g_{13}$$

Primitive	$d_{1 ho}$	$\alpha_{1\rho}$ / bohr ⁻²
1	0.10840	0.14830
2	0.21640	0.65770
3	0.15750	4.23920

|STO-nG> (Reeves)

Constant	tes						r	sto-1g:1s>	sto-2g:1s>	sto-3g:1s>	sto-4g:1s>	1s>
							0.00	0.651	0.419	0.482	0.520	0.564
α1	0.28294	0.00000	0.00000	0.00000	sto-1g:1s>		0.20	0.644	0.405	0.451	0.463	0.462
d1	0.65147	0.00000	0.00000	0.00000			0.40	0.623	0.366	0.381	0.376	0.378
α2	0.20150	1.33200	0.00000	0.00000	sto-2g:1s>		0.60	0.588	0.314	0.308	0.310	0.310
d2	0.17600	0.24250	0.00000	0.00000			0.80	0.544	0.258	0.251	0.254	0.254
α3	0.14830	0.65770	4.23920	0.00000	sto-3g:1s>		1.00	0.491	0.208	0.208	0.207	0.208
d3	0.10840	0.21640	0.15750	0.00000			1.20	0.433	0.167	0.172	0.169	0.170
α4	0.12330	0.45520	2.02580	13.70080	sto-4g:1s>		1.40	0.374	0.136	0.141	0.139	0.139
d4	0.07560	0.18740	0.16200	0.09470			1.60	0.316	0.113	0.114	0.114	0.114
												0.093
				Encom	hlos do az	uccionn	11 مە ئە	c				0.076
			0.700]	LIISEIII	bies de ga	ussienn	esueni	3				0.063
												0.051
			0.600 -									0.042
			0.500									0.034
									— s	to-1g:1s>	_	0.028
			0.400						— s	to-2g:1s>	_	0.023
		P(r)							— s	to-3g:1s>	_	0.019
			0.300 -							to-4σ·1s>	_	0.015
			0.200 -						[1			0.013
			0.200						-11	\$>		0.010
			0.100 -									0.008
											_	0.007
			0.000			-		1			_	0.006
			0.00	0.50	1.00 1	.50 2	.00 2.5	0 3.00	3.50	4.00		0.005
						r (u.a.)					0.004
							5.20	0.000	0.001	0.002	0.005	0.003

Ce qui est utilisé actuellement : approximation de Hehre, Stewart, et Pople

✓ Nécessité de plus d'1 gaussienne pour exprimer une STO

- Exemple: Pour Al, il faut 12 1s et 9 2p gaussiennes pour obtenir des résultats aussi bons que 1 STO double-zeta
- Cette combinaison
 linéaire = 'contraction'
- En fait, les coefficients
 α des différentes
 gaussiennes sont
 définies 1 fois
- Exemple: comparaison
 |sto-3g> pour H_{1s} avec
 résultat STO

Orbitales Moléculaires (OM)

✓ En analogie avec CLOA (*LCAO*), construction des OM à partir des fonctions de base :

$$\psi_i = \sum_{\mu}^{N_{bases}} c_{\mu i} \chi_{\mu}$$

- $c_{\mu i}$: coefficients de l'OM *i*; les seules variables que l'on peut faire varier pour obtenir l'énergie la plus basse, ε
- ✓ STO-3G pour H
 - Les coefficients $c_{\mu i}$ ne peuvent être variés

 $\varepsilon = -0.46658185$ a.u. = -12.699 eV \neq -13.606 eV

$$\Delta \varepsilon = 87.7 \text{ kJ/mol}$$

Améliorations

- ✓ Augmentation du nombre de fonctions de base
- ✓ Étape suivante : « split valence » BS
 - On autorise plus d'une fonction pour OA de valence
 - Terminologie :
 - 2 fonctions de base par OA de valence : *double zeta* BS
 - 3 fonctions de base par OA de valence : *triple zeta* BS
 - 4 fonctions de base par OA de valence : *quadruple zeta* BS
 - Exemples de double zeta : 3-21G ou 6-31G
 - Exemples de triple zeta : 6-311G

Terminologie

- ✓ Notation générale des BS selon Pople
 *M-ijk…*G
 - M est le degré de contraction pour la fonction de base unique pour chaque OA de cœur
 - Le nombre d'entiers : nombre de fonctions de base pour l'OA de valence
 - La valeur de chaque entier : degré de contraction pour l'OA de valence

3-21G

✓ Explication

- Chaque OA de cœur d'un atome est représentée par une gaussienne unique contractée composée de 3 primitives
- C'est un double zeta BS pour la valence car 2 entiers
- La 1^{ère} fonction de base pour l'OA de valence est représentée par 1 une gaussienne contractée de 2 primitives
- La 2^{ème} fonction de base est représentée par 1 primitive

6-311G

✓ Explication

- Chaque OA de cœur d'un atome est représentée par une gaussienne unique contractée composée de 6 primitives
- C'est un triple zeta BS pour la valence car 3 entiers
- La 1^{ère} fonction de base pour l'OA de valence est représentée par 1 une gaussienne contractée de 3 primitives
- La 2^{ème} et 3^{ème} fonctions de base sont toutes les deux représentées par 1 primitive

Nombre de fonctions de base

✓ STO-3G

- H et He : 1 fonction de base
- Li Ne : 1 pour le cœur et 4 pour la valence = 5

✓ 6-31G

- H et He : 2 fonctions de base
- Li Ne : 1 pour le cœur et 8 pour la valence = 9

✓ 6-311G

- H et He : 3 fonctions de base
- Li Ne : 1 pour le cœur et 12 pour la valence = 13

3-21G pour H

- Pas de OA de cœur

Η

- 2 fonctions de base de type s pour décrire 1s

3-21G pour H : après minimisation

✓ Coefficients OM à faire varier

$$\psi_i = \sum_{\mu}^{N_{bases}} c_{\mu i} \chi_{\mu}$$

 $\Delta \varepsilon = 9.978 \text{ kJ/mol}$

Augmentation de la BS

BS	Nb de s	ε / h	Erreur / kJ mol ⁻¹
STO-3G	1	-0.4665819	87.718
3-21G	2	-0.4961986	9.978
6-311G	3	-0.4998098	0.499
cc-pVQZ	4	-0.4999455	0.143
cc-pV5Z	5	-0.4999945	0.014
cc-pV6Z	6	-0.4999992	0.002

Liaison entre Atomes

✓ L'énergie du système est minimale

Lors d'une liaison au sein des molécules, les électrons se distribuent dans l'espace, entre les noyaux pour satisfaire cette condition

✓ Hétérogénéité

Parties de l'espace avec forte ou basse densité électronique

✓ Fonctions de base

Elles doivent correctement refléter la densité électronique réel du système

✓ Flexibilité

- Dans la distribution des électrons autour des noyaux
- Variation des coefficients des OM

Flexibilité

- ✓ Augmentation des fonctions de même type
 - Plus de fonctions s :

STO-3G \rightarrow 3-21G \rightarrow 6-311G ...

- Ajouter plus de fonctions de même type I :
 - Les électrons sont plus « étendus »
 - Plus de possibilités de nœuds
- ✓ cc-pV6Z pour H
 - 6 fonctions
 - Extension de la densité électronique
 - Mais ISOPTROPE

Polarisation

- ✓ Introduction de fonctions angulaires de base à plus grand /
 → Directions privilégiées
- ✓ Exemple pour H
 - Fonctions p, et même d : formation de la liaison
- ✓ Li-Ar
 - Fonctions d, f
- ✓ Cas H_2 : coefficients des OM

Fonction	6-311G	6-311G+p
de Base		
s1 (H1)	0.19310	0.18612
s2 (H1)	0.29490	0.28748
s3 (H1)	0.12566	0.13260
p _z (H1)	-	-0.02283
s1 (H2)	0.19310	0.18612
s2 (H2)	0.29490	0.28748
s3 (H2)	0.12566	0.13260
p _z (H2)	-	0.02283
E/a.u.	-1.128038	-1.132491

- Chaque H présente la densité électronique dirigée vers l'autre atome
- Chaque atome H a été "polarisé"

Terminologie

✓ Fonction de polarisation pour atomes lourds i.e.
 > He : * ou (d)

3-21G* = 3-21G(d)

 Fonction de polarisation pour H et He : 2^{ème} * ou (p,d)

3-21G** = 3-21G(p,d)

- Si on ajoute 2 ensembles de fonctions de polarisation (d) pour atomes lourds : (2d)
- ✓ Si on ajoute 2 ensembles de fonctions de polarisation (d) et (f) pour atomes lourds et 2 ensembles de fonctions de polarisation (p) et (d) pour H et He : (2df,2pd) ...

Fonctions diffuses

✓ Définition

- De même type que les fonctions de valence :
 - s et p pour Li-Ar
 - s pour H et He

- Caractérisées par des exposants des BS petits, i.e. de petites valeurs de $\boldsymbol{\alpha}$
- ✓ Quand utiliser des fonctions diffuses
 - Quand la distribution électronique se trouve loin du noyau

	- EX	: an	ION										
	_		HA	tom		H Atom							
\checkmark	Ex:		6-311G	+1 diffuse	6-311G	+1 diffuse	+2 diffuse	+3 diffuse	+4 diffuse				
	_/ \	E/H	-0.499810	-0.499818	-0. 466672	-0.486963	-0.487714	-0.487741	-0.487741				
	+	χ1	0.23804	0.23760	0.17498	0.15313	0.15465	0.15438	0.15439				
	•	χ2	0.50371	0.50640	0.17469	0.29190	0.27555	0.27772	0.27765				
		χ3	0.38357	0.37525	0.76477	0.31512	0.38686	0.37596	0.37635				
		d_1	-	0.00832	-	0.42992	0.21432	0.26041	0.25850				
		d_2	-	-	-	-	0.18420	0.10144	0.10602				
		d_3	-	-	-	-	-	0.05208	0.04641				
		d_4	-	-	-	-	-	-	0.00295				

Benzène : 6-311++G(2df,2pd)

✓ Carbone

- OA 1s : GTO contractée de degré 6
- OA de valence : 3 fonctions, la 1^{ère} est une GTO contractée de degré 3, et les 2 autres sont de simples gaussiennes
- Un ensemble de fonctions diffuses (1 s, 1 p_x , 1 p_y , 1 p_z)
- Un ensemble de fonctions f
- Nombre : 1 (coeur) + 4 OA * 3 pour "311" + 4 fonctions diffuses + 5 OA d * 2 + 7 OA f = 34
- ✓ Hydrogène
 - OA 1s : 3 fonctions, la 1^{ère} étant une GTO contractée de degré 3, et les 2 autres sont de simples primitives
 - Une fonction diffuse s
 - 2 ensembles de fonctions de polarisation p
 - 1 ensemble de fonctions de polarisation d
 - Nombre : 1 OA * 3 pour "311" + 1 fonction diffuse + 3 OA p * 2 + 5 OA d = 15

\checkmark C₆H₆ : 34*6 + 15* 6 = **294** fonctions de base

Autres ensembles de base

- ✓ Dunning et al.
- ✓ Ensembles de bases
 - cc-pVXZ
 - aug- cc-pVXZ
 - cc : "correlation consistent"
 - p : "polarization functions added"
 - aug : "augmented"
 - VXZ : "valence-X-zeta", avec X : D, pour "double", T, pour "triple", ...

Calcul de la structure électronique

✓ Approximation de Born-Oppenheimer

$$\hat{H}\psi\left(\vec{r};\vec{R}\right) = E\left(\vec{R}\right)\psi\left(\vec{r};\vec{R}\right)$$

Énergie électronique

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \nabla_i^2 - \sum_{i=1}^n \sum_{I=1}^N \frac{Z_I e^2}{4\pi\varepsilon_0} \frac{1}{r_{Ii}} + \frac{1}{2} \sum_{i,j=1}^n \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r_{ij}}$$

Le terme de répulsion noyau-noyau est ajouté comme un terme classique \rightarrow mécanique classique

✓ Champ auto-cohérent de Hartree-Fock

 Supposons que le terme d'interaction é-é ne soit pas compliqué à calculer :

$$\hat{H}^{o}\psi^{o} = E^{o}\psi^{o} \qquad \hat{H}^{o} = \sum_{i=1}^{n} h_{i}$$

2. *n* équations à 1 é \rightarrow fonction d'onde totale est le produit de *n* fonctions d'onde à 1 é (OA *a*)

$$h_{i}\psi_{a}^{o}\left(i\right)=E_{a}^{o}\psi_{a}^{o}\left(i\right)$$

$$\psi^{o} = \psi^{o}_{a}\left(1\right)\psi^{o}_{b}\left(2\right)\ldots\psi^{o}_{z}\left(n\right)$$

Remarque : la fonction d'onde dépend de la position du noyau de manière paramétrique

3. Considération du spin de l'é

$$\psi^{o} = (n!)^{-1/2} \operatorname{det} \left| \varphi_{a}(1) \varphi_{b}(2) \dots \varphi_{z}(n) \right|$$

$$arphi_{a}\left(i
ight)\;$$
 est une spinorbitale

Les spinorbitales φ_u sont orthonormales

Fonctions d'onde radiale d'atomes à 2 électrons

$$\psi(1,2) = \varphi(1)\varphi(2)$$

Notation

$$\varphi(1) = \varphi(\vec{r}_1)$$

Pour He :

$$\psi(1,2) = \varphi_{1s}(1)\varphi_{2s}(2)$$

Cette approximation de particules indépendantes n'est pas satisfaisante : raisons de symétrie, répulsion électronique

Déterminant de Slater :

$$\psi(1,2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \varphi_{1s}(1)\alpha(1) & \varphi_{1s}(1)\beta(1) \\ \varphi_{1s}(2)\alpha(2) & \varphi_{1s}(2)\beta(2) \end{vmatrix}$$

Les solutions de ces équations à 1 é : orbitales atomiques

$$\Psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi)$$

Pas de forme analytique

Approche HF

✓ Principe

– Hypothèse de base

chaque é est considéré comme évoluant dans un champ moyen créé par les autres é

ion de :
$$E = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

- ✓ Opérateur de Fock
 - pour 1 é : $f_1 \varphi_a(1) = \varepsilon_a \varphi_a(1)$ $f_1 = h_1 + \sum \{J_u(1) K_u(1)\}$
 - Opérateur de Coulomb

$$J_{u}(1)\varphi_{a}(1) = \frac{Z_{I}e^{2}}{4\pi\varepsilon_{0}}\left\langle\varphi_{u}(2)\right|\frac{1}{r_{12}}\left|\varphi_{u}(2)\right\rangle\varphi_{a}(1)$$

- Opérateur d'échange $K_{u}(1)\varphi_{a}(1) = \frac{Z_{I}e^{2}}{4\pi\varepsilon_{0}}\langle\varphi_{u}(2)|\frac{1}{r_{12}}|\varphi_{a}(2)\rangle\varphi_{u}(1)$

514 - Armand Soldera Hiver 2014 (Armand.Soldera@USherbrooke.ca)

Équations de Roothaan

Opérateur de Fock et fonction d'onde spatiale

 $\mathbf{Fc} = \mathbf{Sc} \mathbf{\epsilon}$

- Ensemble de M fonctions de base
- ✓ Équations de Roothan

 On arrive à un développement qui prend en compte plusieurs intégrales ...

 $\Rightarrow \det |\mathbf{F} - \varepsilon_a \mathbf{S}| = 0$

✓ Éléments de la matrice densité
 Densité électronique totale dans la région de recouvrement entre θ_l et θ_m

$$\psi_i = \sum_{j=1}^M c_{ji} \theta_j$$

à déterminer

 $f_1 \psi_a(1) = \varepsilon_a \psi_a(1)$

$$P_{lm} = 2\sum_{\mu} c_{l\mu}^* c_{m\mu}$$

Champ auto-cohérent

- ✓ Hartree puis Fock et Slater
- ✓ Hypothèse de base

$$H = \sum_{i=1}^{n} h_i + \frac{1}{2} \sum_{i \neq j}^{n} \frac{e^2}{4\pi\varepsilon_o r_{ij}}$$

- Chaque é évolue au sein d'un potentiel dû aux autres é et noyaux, et centré au noyau : champ moyen
- Cette approche suppose que ϕ des autres é est connue
- ✓ Procédure
 - \rightarrow Approximation de ces ϕ
 - \rightarrow Résolution de l'ÉdS pour 1 é
 - \rightarrow Opération est répétée pour les autres é
 - → Après une 1^{ère} ronde, on obtient φ améliorée
 - \rightarrow Procédure reprise jusqu'à une valeur optimale de ϕ
 - → L'énergie est finalement calculée
 - \rightarrow Algorithme d'optimisation

Density Functional Theory

✓ Forces

- Tient compte de la corrélation électronique mais moins demandeur en temps de calcul
- 100 ou plus d'atomes
- ✓ Principe
 - Énergie d'un système électronique peut être écrit en terme de densité de probabilité électronique

$$E[\rho(\vec{r})]$$

— Pour une fonction $\rho(\vec{r})$, il existe une seule énergie correspondante

✓ Les équations

- Hohenberg-Kohn : l'énergie dans l'état fondamental (et autres propriétés de cet état) sont uniquement déterminées par la densité électronique
- Problème : on ne connaît pas la forme de la fonctionnelle
- Équation de Kohn-Sham : ensemble d'équations à 1 é à partir desquelles on obtient la densité électronique

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \nabla_i^2 \qquad E[\rho] = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \int \psi_i^*(r_1) \nabla_i^2 \psi_i(r_1) dr_1 \\ -\sum_{i=1}^n \sum_{I=1}^N \frac{Z_I e^2}{4\pi\varepsilon_0} \frac{1}{r_{Ii}} \qquad -\frac{e^2}{4\pi\varepsilon_0} \int \sum_{I=1}^N \frac{Z_I}{r_{Ii}} \rho(r_1) dr_1 \\ +\frac{1}{2} \sum_{i,j=1}^n \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r_{ij}} \qquad +\frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \int \frac{\rho(r_1) \rho(r_2)}{r_{12}} dr_1 dr_2 \\ +E_{XC} [\rho] ? \qquad \rho(r) = \sum_{i=1}^n |\psi_i(r)|^2$$

- ✓ Orbitales de Kohn-Sham
 - Principe variationnel

$$\begin{cases} -\frac{\hbar^{2}}{2m_{e}}\nabla_{1}^{2} - \frac{e^{2}}{4\pi\varepsilon_{0}}\sum_{I=1}^{N}\frac{Z_{I}}{r_{I1}} + \frac{e^{2}}{4\pi\varepsilon_{0}}\int\frac{\rho(r_{2})}{r_{12}}dr_{2} + V_{xc}[r_{1}] \right\}\psi_{i}^{*}(r_{1}) = \varepsilon_{i}\psi_{i}(r_{1})\\ \frac{\partial E_{xc}[\rho]}{\partial\rho} = V_{xc}[\rho] \\ \frac{\partial E_{xc}[\rho]}{\partial\rho} = V_{xc}[\rho] \\ \psi_{i}(r) \\ \psi_{i}(r) \end{cases}$$