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REVIEW ARTICLE

The use of mycoviruses in the control of forest diseases
E. Jordán Muñoz-Adaliaa,b, M. Mercedes Fernándeza,c and Julio J. Dieza,b

aSustainable Forest Management Research Institute, University of Valladolid – INIA, Palencia, Spain;
bDepartment of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain;
cDepartment of Agroforestry Sciences, University of Valladolid, Palencia, Spain

ABSTRACT
Fifteen families of mycoviruses have been described and 80% of
these catalogued. However, their evolutionary relationship with
fungi is not clear. The mycovirus genome can be formed by
single- or double-stranded RNA or single-stranded DNA. The
effects of mycoviruses range from the induction of a cryptic state
(asymptomatic) to promotion of hyper- or hypovirulence in the
host. Horizontal transmission of mycoviruses is determined by the
presence of different vegetative compatibility types and mating
types. Biocontrol of chestnut blight (Cryphonectria parasitica) has
been found to be a successful mycovirus-based treatment and is
considered a model in forest disease management. Development
of this type of biological control tool for use in other forest
pathologies requires a sound knowledge of viral symptomatology
and transmission. The present review focuses on the application
of mycoviruses and the prospects for future use in the biological
control of forest diseases as well as on advances in mycovirus-
applied research in forestry, landscape and culture of woody plants.
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1. Introduction

Viruses that infect fungi, i.e. mycoviruses, are frequent in the subkingdom Dikarya (phyla
Ascomycota and Basidiomycota), phyla Blastocladiomycota and Neocallimastigomycota
(formerly Chytridiomycota) and Glomeromycota (formerly Zygomycota) (Herrero,
Dueñas, Quesada-Moraga, & Zabalgogeazcoa, 2012; Hibbett et al., 2007). Most fungal
genera, ranging from microscopic yeasts to the more evolved edible mushrooms, have
been described as hosts of mycoviruses (Hammond, Andrewski, Roossinck, & Keller,
2008; Lim et al., 2005; Magae, 2012; Ro et al., 2007; Schmitt & Breinig, 2006; Stielow,
Klenk, Winter, & Menzel, 2011; Strauss, Lakshman, & Tavantzis, 2000). This also
applied to filamentous fungi that cause plant diseases.

Despite the apparent abundance of mycoviruses in nature, research on these infective
agents is relatively scarce. Some recent studies have attempted to uncover the biological
mechanisms that drive viral infection, replication and transmission in fungi and the eco-
logical and management implications. As a result, agroforestry researchers have
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discovered the potential use of these viruses in biocontrol, with special attention given to
mycoviruses that confer hypovirulence (weakened state) in their pathogenic hosts.

In this article, we review studies concerning the use of mycoviruses to control devastat-
ing forest diseases. Our main goal is to provide background information about biocontrol
based on fungal virus research as well as on the degree to which different protection strat-
egies are being implemented.

2. General aspects of mycoviruses

2.1. Taxonomy, diversity and biology

More than 250 fungus-related viral sequences have been identified and sequenced accord-
ing to National Center for Biotechnology Information (NCBI, 2014; Xie & Jiang, 2014),
resulting in 22 genera divided among 15 families according to the list published by the
International Committee on Taxonomy of Viruses (ICTV, 2014) (Figure 1). Nevertheless,
20% of mycoviruses have not yet been catalogued (Pearson, Beever, Boine, & Arthur, 2009;
Van Regenmortel et al., 2010).

Mycoviruses usually replicate in the cytoplasm, although some (e.g. Mitovirus sp.)
replicate in mitochondria of the host species (Göker, Scheuner, Klenk, Stielow, &
Menzel, 2011; Milgroom & Hillman, 2011). Structurally, mycovirus genomes contain
one or more open reading frames (ORFs) that encode proteins required for virus replica-
tion and sometimes for capsid synthesis. The molecular size of mycovirus genomes varies
somewhat, e.g. Rosellinia necatrix quadrivirus 1 (RnQV1) segments range in size from
3.70–4.90 kbp with a single ORF (Chiba et al., 2009), while the maximum size of

Figure 1. General taxonomy of mycoviruses according to ICTV classification criteria, Virus Taxonomy
2014 Release.*Classification under consideration; **Family proposed by Ghabrial et al. (2015).
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Chalara elegans RNA Virus 1 (CeRV1) has been reported to be 5.31 kbp in length and
contain three ORFs (Park, James, & Punja, 2005). Other mycoviruses may be longer, e.
g. Cryphonectria hypovirus 1 (CHV-1) is 12.70 kbp in length and has at least two ORFs
(Allemann, Hoegger, Heiniger, & Rigling, 1999; Shapira, Choi, & Nuss, 1991). Overall,
the size of genome ranges between the extremes of Partitiviridae viruses (1.4–2.4 kbp
and a single ORF) and Hypoviridae viruses (∼9–13 kb and two overlapping ORFs); in
addition, some families such as Alphaflexiviridae may contain several more or less over-
lapping ORFs (e.g. Botrytis virus X: ∼7.0 kb and five ORFs) (Ghabrial, Castón, Jiang,
Nibert, & Suzuki, 2015). In some cases, small RNA molecules may also occur as satellite
elements associated with the main genome particles (e.g. 0.9–1.4 kb elements associated
with 3.7–5.0 kpb mycovirus genome in basydiomicetous yeast Xanthophyllomyces den-
drorhous; anamorph: Phaffia rhodozyma (Flores, Alcaíno, Fernandez-Lobato, Cifuentes,
& Baeza, 2015)).

Mycoviruses can be differentiated on the basis of molecular structure. Thus seven
families possess double-stranded RNA (dsRNA) genomes, and six families have single-
stranded RNA (ssRNA) genomes. The latter are further divided into two subcategories:
five families have ss(+)RNA genomes and one family has a ss(−)RNA genome
(Figure 1). The mycoviruses belonging to ss(+)RNA families possess viral RNA with the
same base sequence as mRNA. The functions of the RNA are similar to mRNA during
replication, serving as a template for protein synthesis such as RNA-dependent RNA
polymerase (RdRp) or capsid. On the other hand, ss(−)RNA mycoviruses require partici-
pation of RNA replicase for their single strain genome to be transcribed into positive sense
RNA. Only a few mycoviruses are formed by single circular molecules of DNA (ssDNA)
(Ghabrial et al., 2015; Pearson et al., 2009).

The evolutionary relationship between mycoviruses and their hosts remains unclear.
Two main hypotheses have been proposed. Briefly, one hypothesis is based on ancient
co-evolution of mycoviruses and fungi whereby the speciation of viruses is closely
related to vertical transmission (see below), and the asymptomatic presence of mycov-
iruses may denote a long period of coexistence between viruses and fungi. This would
explain the complex relationships between host species and mycoviruses, which range
between severe disadvantage to the host (antagonism) and mutualism where the infected
host obtains some benefit under certain conditions, as suggested in other viral associations
(Botella, Vainio, Hantula, Diez, & Jankovsky, 2015; Roossinck, 2015a, 2015b). The other
hypothesis suggests the eventual transfer of viruses from plants to saprophytic or patho-
genic fungi. In this case, viral transmission may take place during co-existence of fungal
endophytes with plants, and small differences detected even within mycovirus families
can be explained by a recent change of host (Chiba et al., 2011; Ghabrial, 1998; Liu
et al., 2010; Pearson et al., 2009).

2.2. Transmission of mycovirus

The mechanism of viral transmission is another important aspect of viral biology. Mycov-
iruses can be transmitted in three ways: by horizontal, vertical or extracellular transfer.
Horizontal transmission takes place when a mycovirus colonises a new host through
hyphal contact and subsequent mycelia fusion (anastomosis) between individuals
during heterokaryon formation (mediated by a self/non-self recognition system).
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Nevertheless, isolates of the same species are not always compatible, even in the same
population. In this type of transfer, different vegetative compatability groups (vc types
or VCGs) play a special role, sometimes restricting movement of the virus (Leslie,
1993). Heterokaryon formation is genetically controlled by a specific het or vic loci. Het-
eroallelism in the het locus is not possible, resulting in reduction in cell lysis or mycelial
growth (Saupe, 2000). At the same time, the presence of different mating types (MATs) in
fungal populations makes transmission more complex (Coppin, Debuchy, Arnaise, &
Picard, 1997; Milgroom & Hillman, 2011).

In vertical transmission, mycoviruses commonly infect asexual spores. Nevertheless,
prevalence rates may vary significantly between species, e.g. in Heterobasidion annosum
only 3% of conidia are infected (Ihrmark, Johannesson, Stenström, & Stenlid, 2002) in
contrast to 100% infection in Cryphonectria parasitica (Ding, Liu, Xu, & Wang, 2007).
Fungal viruses can also colonise sexual spores, infecting a new generation of the host:
8–13% dsRNA infected ascospores of Magnaporthe grisea (Chun & Lee, 2009), whereas
10–84% dsRNA infected basidiospores of H. annosum (Ihrmark, Stenström, & Stenlid,
2004). However, in a more recent study, lower vertical transmission ofHeterobasidion par-
viporum to basidiospores (8.3%) was observed in a spruce forest (Vainio, Müller, Korho-
nen, Piri, & Hantula, 2014). The authors of the latter study suggested that continuous
spore load in stumps may be related to the high rate of infected basidiospores, in contrast
to low rates of infection in standing trees, as previously reported. It is now considered that
the predominant route of viral transmission is via asexual spores, and vertical transmission
has not been reported to occur in many fungal species (Carbone, Liu, Hillman, & Mil-
groom, 2004; Milgroom & Hillman, 2011).

Extracellular transmission, in which purified viral particles of Sclerotinia sclerotiorum
hypovirulence-associated DNA virus 1 (SsHADV-1) infected extracellularly virus-free
protoplasts, intact hyphae and hyphal fragments of white mould fungus (Sclerotinia scler-
otiorum) – either in vitro (PDA culture) or in vivo (leaves of infected plants) – has recently
been described (Yu et al., 2013). These authors also mentioned that purified viral DNA did
not infect mycelia or fungal protoplasts, suggesting that whole viral particles are needed
for extracellular infection.

On a larger scale, transmission of mycoviruses between species has also been reported
(Lee, Yu, Son, Lee, & Kim, 2011; Liu, Linder-Basso, Hillman, Kaneko, & Milgroom, 2003;
Vainio, Hakanpää, et al., 2011), opening up new research lines focusing on the genetic,
evolutionary and ecological factors involved in transmission.

2.3. Hypovirulence process

The effects of mycoviruses infection can range from cryptic symptoms (asymptomatic) to
the promotion of hypervirulence, through variations of colonial morphology and induce-
ment of colour changes (Ghabrial & Suzuki, 2009). In fact, the same mycovirus can have
different effects on their host depending on ecological conditions (Hyder et al., 2013). One
phenomenon caused by mycoviruses, especially interesting for agroforestry science, is
hypovirulence. Only a few mycoviruses reduce spore production, causing slow mycelial
growth or less aggressive invasion in pathogenic hosts, making viruses effective in biocon-
trol (Milgroom & Hillman, 2011; Nuss, 2005) or virocontrol (Chiba, Kondo, Kanematsu,
& Suzuki, 2010). In this sense, hypovirulence have been proved according to Koch’s
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postulates using infectious cDNA of C. parasitica (Chen & Nuss, 1999) and S. sclerotiorum
(Marzano et al., 2015), hyphae infection of Sclerotinia spp. using viral particles (Yu et al.,
2013) and protoplast infection using dsRNA (Chiba, Lin, Kondo, Kanematsu, & Suzuki,
2013; Hillman, Supyani, Kondo, & Suzuki, 2004; Lee et al., 2011). Hence, knowledge
about mycovirus-mediated hypovirulence is improving biocontrol strategies in many
cases of agroforestry health (see next section).

Both hyper- and hypovirulence are strongly related to the presence of specific viruses,
even in co-infection. Four dsRNA mycoviruses have been detected in Nectria radicicola
(anamorph: Cylindrocarpon destructans) (Ahn & Lee, 2001). Removal of one virus, L1
(6.0 kbp), caused a reduction in virulence of the fungus, while later reinfection through
anastomosis recovered the virulence of the isolate. Detailed laboratory studies comple-
mented with pathogenicity field assays are essential for developing virocontrol techniques.

One challenge in plant pathology and the use of mycoviruses is the antiviral response of
fungi or RNA silencing. When viruses infect healthy cells, dicer-type nucleases initiate a
response that produces viral RNA processed segments (sRNAs). The RNA-induced silen-
cing complex then identifies homologous sequences on mRNA and subsequently degrades
sRNAs (Dang, Yang, Xue, & Liu, 2011; Hammond et al., 2008; Nuss, 2011; Schumann,
Ayliffe, Kazan, & Wang, 2010; Tauati, Pearson, Choquer, Foster, & Bailey, 2014; Yaegashi,
Yoshikawa, Ito, & Kanematsu, 2013). In a study attempting to clarify this evolutionary
relationship, Segers, Zhang, Deng, Sun, and Nuss (2007) found symptomatic differences
between hypovirulence-mycovirus-infected C. parasitica isolates. The use of
C. parasitica strains in which RNA silencing genes were disrupted enabled identification
of genes coding for particular dicer and argonaute-like proteins as required elements in
antiviral response (Sun, Choi, & Nuss, 2009; Zhang & Nuss, 2008).

3. Mycoviruses in forest diseases: case studies

3.1. Cryphonectria parasitica

Cryphonectria parasitica is the causal agent of chestnut blight, a severe disease that causes
widespread damage in North America, where it infects American chestnut (Castanea
crenata), in Europe, where it infects the European chestnut (Castanea sativa) and in
Asia, where it colonises Asian species of chestnut (C. crenata and Castanea mollissima).
The disease is characterised by damage to cambial tissues and the appearance of cankers.
These cankers tend to girdle the stem, killing the trees (Milgroom & Cortesi, 2004).

Many ss(+)RNA mycoviruses have been identified in C. parasitica, four of them
belonging to the genus Hypovirus. Cryphonectria hypoviruses 1–4 (CHV-1, CHV-2,
CHV-3 and CHV-4) have been reported in different parts of the northern hemisphere
(Hillman, Halpern, & Brown, 1994; Shapira et al., 1991; Smart et al., 1999). In relation
to dissemination, transmission in conidia has been reported as highly variable, ranging
from 0% to 100%. Transmission through ascospores has not been observed in nature
(Ding et al., 2007). However, the presence of mycovirus in ascospores of field-released
transgenic strains of fungi ranged between 30% and 50% depending on culture conditions
(Anagnostakis, Chen, Geletka, & Nuss, 1998).

The best known example of a mycovirus that causes hypovirulence is CHV-1. When
CHV-1 infects C. parasitica it causes weakness, reducing mycelial growth and sporulation.
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Infected fungi are only capable of forming superficial (healing) cankers on stems, and the
trees can therefore survive the disease. Other symptoms of the presence of CHV-1 in iso-
lates include changes in colony morphology and colour (Peever, Liu, Cortesi, & Milgroom,
2000; Rigling, Heiniger, & Hohl, 1989). CHV-1 originally occurred in Europe (Italy and
France) and Asia (Japan, China and Korea) but was later introduced into the USA (Alle-
mann et al., 1999; Liu, Double, MacDonald, & Milgroom, 2002). Five genetically charac-
terised subtypes of CHV-1 have been identified: F1 and F2 (from France), I (Italy), D
(Germany) and E (Spain) (Allemann et al., 1999; Gobbin, Hoegger, Heiniger, & Rigling,
2003; Zamora, Martín, San Martín, Martínez-Álvarez, & Diez, 2014). CHV-1 is now con-
sidered an important biocontrol tool in European.

CHV-2 and CHV-3 are both common in North America. However, although CHV-2
occurs in native C. parasitica in Asia (Hillman, Tian, Bedker, & Brown, 1992; Peever et al.,
1998), CHV-3 is only present in the USA (Michigan) (Peever, Liu, & Milgroom, 1997).
Both CHV-2 and CHV-3 have proved useful in biocontrol as they induce hypovirulence
in American forests and plantations. The mycovirus most commonly associated with
chestnut blight in American forests (CHV-4) is traditionally considered to induce a
cryptic state and is therefore not useful for biocontrol purposes (Enebak, MacDonald,
& Hillman, 1994; Linder-Basso, Dynek, & Hillman, 2005).

Mycoreovirus 1 (MyRV-1) (Reoviridae) has been identified in hypovirulent strains of
chestnut blight fungus (Suzuki, Supyani, Maruyama, & Hillman, 2004). Viral transmission
of thisMycoreovirus sp. to sexual spores has been reported (Deng, Allen, Hillman, & Nuss,
2007), and reovirus-infected isolates have been shown to produce mature perithecia and
viable ascospores, which in turn host MyRV-1. Other mycoviruses belonging to the Reo-
viridae and Narnaviridae families – respectively Mycoreovirus 2 (MyRV2) and Crypho-
nectria mitovirus 1 (CpMV1) – have also been identified (Hillman & Suzuki, 2004).
This fungus can host many Reoviridae, Partitiviridae, Totiviridae and Megabirnaviridae
mycoviruses that usually infect other fungi (Eusebio-Cope et al., 2015).

3.2. Ophiostoma novo-ulmi

Dutch elm disease (DED), caused by Ophiostoma ulmi and Ophiostoma novo-ulmi, was
the most devastating disease affecting elms (Ulmus spp.) in Europe during the twentieth
Century (some 30 million elms were killed in the UK) (Brasier, 2001; Potter, Harwood,
Knight, & Tomlinson, 2011). These fungi cause death of the tree by vessel cavitation
due to fungal growth in the xylem. Two pandemics have occurred. In the first, which
began in the 1910s, O. ulmi spread through Europe causing severe damage to adult
trees and later spread to North America. In the 1950s, two subspecies of O. novo-ulmi
(Euro-Asian race: O. novo-ulmi subsp. novo-ulmi; and the North American race:
O. novo-ulmi subsp. americana) caused high mortality in European and American
forests. In both cases, bark beetles (Coleoptera, Scolytinae) played an important role as
vectors of the disease (Brasier & Kirk, 2010; Brasier, 1976, 1991; Santini & Faccoli, 2014).

In relation to the presence of mycoviruses, the d-factor has been identified as a cytoplas-
mically transmitted agent. It is characterised as a dsRNA virus, causing a reduction in fungal
growth in wounds made by feeding bark beetles and in amoeboid colonymorphology as well
as lower vigour and growth rates and low conidial viability (Brasier, 1986; Sutherland,
Brasier, & Lodge, 1997). Thirteen dsRNA mycoviruses with similar symptoms to the d-
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factor were later identified as being responsible for infection of a specific isolate called Ld
(Cole, Müller, Hong, Brasier, & Buck, 1998; Doherty, Coutts, Brasier, & Buck, 2006;
Hong, Dover, Cole, Brasier, & Buck, 1999; Hong, Cole, Brasier, & Buck, 1998a, 1998b).
The complete genomes of O. novo-ulmi mitoviruses (OnuMV1a, OnuMV1b, OnuMV3a,
OnuMV3b, OnuMV4-Ld, OnuMV5-Ld and OnuMV6-Ld) have been sequenced and
RdRp sequences for OnuMV1a, OnuMV1b and OnuMV3b have also been established
(Hintz, Carneiro, Kassatenko, Varga, & James, 2013).

In addition, other Ophiostoma species have been demonstrated to harbour mycov-
iruses. Ophiostoma minus (causal agent of blue stain in pine wood), and the saprophyte
Ophiostoma quercus hosts viruses belonging to the Totiviridae and Partitiviridae families
(respectively Ophiostoma minus totivirus (OmV) and Ophiostoma quercus partitivirus 2
(OPV2) (Doherty et al., 2007). A distant relationship between OPV2 and Ophiostoma par-
titivirus 1 (OPV1) was suggested (Doherty et al., 2007). OPV1, which was previously
detected in the pathogenic fungus Ophiostoma himal-ulmi (Crawford et al., 2006), is
not currently used in biocontrol.

3.3. Heterobasidion annosum

H. annosum s.l. is one of the most destructive fungi in the northern hemisphere. It is the
causative agent of root disease in many coniferous species (Abies spp., Calocedrus decur-
rens, Juniperus spp., Larix spp., Picea spp., Pinus spp., Pseudotsuga menziesii, Sequoiaden-
dron giganteum, Thuja plicata and Tsuga heterophylla) as well as in some broadleaf species
(Betula, Fagus and Populus species) (Garbelotto & Gonthier, 2013; Gonthier & Thor,
2013). This fungal infection causes the death of trees (especially on pines and junipers),
severe root and butt rot, general decay and decreased diameter growth in boreal forest
and plantations, making it a major threat to timber production and the forest industry.
Infection can occur in two ways: primary infection is caused by airborne basidiospores,
while secondary infection takes place through colonisation of mycelia after contact with
roots or grafting between infected and healthy trees (Asiegbu, Adomas, & Stenlid, 2005;
Thor, Ståhl, & Stenlid, 2005; Tokuda, Ota, Hattori, Shoda-Kagaya, & Sotome, 2011;
Woodward, Stenlid, Karjalainen, & Hüttermann, 1998).

Additionally, dsRNA mycoviruses in P and S types of H. annosum (Heterobasidion par-
titivirus P (HaV-P) and Heterobasidion annosum virus (HaV)) have been partially
sequenced (Ihrmark, Zheng, Strenstöm, & Stenlid, 2001). The authors included these
mycoviruses in Partitiviridae and reported that H. annosum s.l. harbours dsRNA viruses
at a frequency of approximately 15% in Europe and western Asia. A new putative
member of Partitiviridae, Heterobasidion partitivirus 3 (HetPV3), was subsequently
detected in Chinese strains of Heterobasidion ecrustosum (Vainio, Korhonen, Tuomivirta,
& Hantula, 2010). In a later study, a new dsRNA virus belonging to Partitiviridae and desig-
nated Heterobasidion partitivirus 2 (HetPV2) clearly formed a subcluster with HaV-P due to
their genomic similarities (Vainio, Keriö, & Hantula, 2011). In addition, three new putative
viruses, also included in Partitiviridae, were catalogued and subsequently named Heteroba-
sidion partitivirus 1 (HetPV1), HetPV4 and HetPV5 (Vainio, Hakanpää, et al., 2011). These
authors proposed a close genetic relationship betweenHetPV1 and HaV, while the two other
viruses were found to be more similar to mycoviruses associated with Heterobasidion par-
viporum partitivirus Fr110B and other disease-associated viruses.
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Another three partitiviruses have been identified more recently: Heterobasidion parti-
tivirus 6, 7 (HetPV6 and HetPV7 respectively) (Vainio et al., 2012; Vainio, Piri, & Hantula,
2013b) and Heterobasidion partitivirus 8, strain 1 from Heterobasidion irregulare
(HetPV8-ir1) (Vainio, Capretti, Motta, & Hantula, 2013). All are taxonomically distant
from all other H. annosum s.l. viruses. HetPV6 resembles Fusarium graminearum virus
4 (FgV4), with around 40% of protein level sequence similarities, while HetPV8-ir1
shares only 32% of RdRp similarities with HaV-P and 33% RdRp similarities with
HetPV2 (Vainio et al., 2010; Vainio, Capretti, et al., 2013; Vainio, Piri, & Hantula,
2013a). A recent study showed that four different viral species may be present in the
same plot affected by H. parviporum (Vainio et al., 2014). Three of these were provision-
ally assigned to HetPV6 and two possible congeneric strains of Betapartitivirus sp., named
HetPV2-pa1 and HetPV7-pa1, were also identified.

3.4. Gremmeniella abietina

Many coniferous tree species (mainly Picea, Pinus, Abies and Larix species) in Northern
and Central Europe, North America and Japan host the fungus Gremmeniella abietina
(anamorph: Brunchorstia pinea), leading to the appearance of stem cankers and shoot
dieback and causing severe damage in woods and plantations when weather conditions
are favourable. Three races of this fungus (European, North American and Asian) have
been catalogued. The European race is subdivided into three biotypes (A, B and alpine)
(Botella et al., 2010; Donaubauer, 1972; Hamelin, Lecours, Hansson, Hellgren, &
Laflamme, 1996; Kaitera & Jalkanen, 1992; Romeralo, Botella, Santamaria, & Diez,
2012; Santamaria, Alves-Santos, & Diez, 2005; Senn, 1999), although the taxonomy is cur-
rently under revision (Romeralo pers. com.).

Three families of dsRNA mycoviruses have been detected in this forest pathogen:
Gremmeniella abietina mitocondrial RNA virus S1 (GaMRV-S1, Narnaviridae) (Tuomi-
virta & Hantula, 2003a); Gremmeniella abietina RNA virus L1 (GaRV-L1, Totiviridae);
and Gremmeniella abietina RNA virus MS1 (GaRV-MS1, Partitiviridae) (Tuomivirta &
Hantula, 2003b), with a high frequency of occurrence; e.g. the mycoviruses have been
detected in 89% of Spanish isolates (Botella, Tuomivirta, Hantula, & Diez, 2012) and in
50% of Turkish isolates (Aday, Lehtijarvi, & Doğmuş-Lehtijarvi, 2012). In addition,
three mycoviruses were found together infecting the same isolates of G. abietina var. abie-
tina type A (Tuomivirta & Hantula, 2005). Later, Botella, Tuomivirta, Vervuurt, Diez, and
Hantula (2012) reported the absence of mitoviruses in biotype B from Turkey, biotype A
from North America and European Alpine biotype. On the contrary, biotype A from
Finland and Spain hosted mycoviruses. Specifically, Spanish populations hosted two
mycoviruses (GMV1 and GMV2) in high proportion (74% of isolates hosted dsRNA).
These authors discussed the possible factors determining presence and transmission of
mitoviruses between fungal races and highlighted the role of asexual reproduction in
virus widespread. In fact, the higher proportion of mitovirus presence was detected in
Spain where only asexual reproduction has been reported. Regarding the high presence
and the low genetic variability detected in GMV2 in Spanish isolates, the researchers
suggested a possible recent host switch and a subsequent adaptation to these new con-
ditions. The findings of recent RdRp sequencing studies support the idea of a low
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degree of genetic variation in G. abietinamitoviruses in the European population (Botella,
Tuomivirta, Hantula, Diez, & Jankovsky, 2014).

3.5. Fusarium circinatum

Pine pitch canker is a virulent disease caused by Fusarium circinatum (teleomorph: Gib-
berella circinata) in many pine species and in Douglas fir (Pseudotsuga menziesii) world-
wide. Infections have also been observed to cause significant damage in Abies alba, S.
giganteum, Larix decidua and Picea abies (Martínez-Álvarez, Pando, & Diez, 2014). The
pathogen was first detected in the southeastern USA and Mexico (where it is probably
endemic) and then in Haiti, South Africa, Chile, France, Korea, Spain, Italy, Japan, Portu-
gal, Uruguay and Brazil (Aegerter, Gordon, Storer, & Wood, 2003; Enebak & Stanosz,
2003; Gordon, Kirkpatrick, Aegerter, Wood, & Storer, 2006; Martínez-Álvarez, Alves-
Santos, & Diez, 2012; Pfenning, Costa, Melo, De Costa, & Aires, 2014). This fungus
causes dieback in trees due to the formation of bleeding and resinous cankers on trunk
and branches. Moreover, F. circinatum frequently causes death and damping-off of seed-
lings through both pre- and post-emergence infection, making such infections a significant
threat to nurseries and afforestations (Aegerter et al., 2003; Hammerbacher, Ganley, Steen-
kamp, Gordon, & Coutinho, 2008).

Three putative Mitovirus spp. (Narnaviridae) were recently identified in F. circinatum
isolates from Pinus radiata in northern Spain and named Fusarium circinatum mitovirus
1, 2-1 and 2-2 (FcMV1, FcMV2-1 and FcMV2-2) (Martínez-Álvarez, Vainio, Botella,
Hantula, & Diez, 2014). The genetic structure of the mycoviruses hosted by
F. circinatum isolates from Spain and South Africa has also been studied (Vainio, Martí-
nez-Álvarez, Bezos, Hantula, & Diez, 2015). Only Spanish isolates were found to host
mycoviruses, which showed very similar sequence variants (>95% similarity). Indeed, a
high rate of asexual spore transmission of mycoviruses (ranging between 70% and
100%) has been preliminary observed (Bezos, Martínez-Álvarez, Romeralo, & Diez,
2013), indicating the potential use of the mycoviruses as biocontrol agents.

3.6. Botryosphaeria spp.

Botryosphaeria spp. commonly occur as endophytic fungi in healthy hosts, but may become
virulent when their host is subjected to environmental stress or physical damage (Burgess,
Sakalidis, & Hardy, 2006; Smith, Crous, Wingfield, Coutinho, & Wingfield, 2001; Smith,
Wingfield, Crous, & Coutinho, 1996). Despite its taxonomic complexity, Botryosphaeria
dothidea (anamorph: Fusicoccum aesculi) is cited as the causal agent of stem and branch
cankers on apple trees (Malus domestica), ring spot on pear trees (Pyrus communis) and
dieback and stem cankers on eucalyptus trees (Eucalyptus spp.) among many other
woody species (Brown-Rytlewski & McManus, 2000; Slippers & Wingfield, 2007). Eucalyp-
tus sp. is one of the most common trees planted in commercial and clonal forestry at an
international level. Eucalyptus dieback and cankers are of special interest in forest science
because of the reduced growth, offspring failure and adult tree death caused by the pathogen
(Pérez, Wingfield, Slippers, Altier, & Blanchette, 2010). The gummy exudation produced in
cankers also makes the wood less valuable, causing significant economic losses in the forest
industry (Rodas, Slippers, Gryzenhout, & Wingfield, 2009).
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Two dsRNA mycoviruses were recently detected in non virulent isolates of B. dothidea
infecting Pyrus pyrifolia (Wang et al., 2014). These researchers reported Botryosphaeria
dothidea chrysovirus 1 (BdCV1) as a new member of Chrysoviridae and also identified
Botryosphaeria dothidea partitivirus 1 (BdPV1). Although BdPV1 was included in Parti-
tiviridae, the capsid proteins of the mycovirus do not show significant similarity to any
other capsid proteins. Analysis of the RdRp sequence also suggests the inclusion of this
mycovirus in a new Partitiviridae clade (with 39% RdRp similarity to the most closely
related Chrysovirus sp.).

3.7. Hymenoscyphus fraxineus

Ash dieback is an invasive disease caused by the fungus Hymenoscyphus fraxineus
(synonym: Hymenoscyphus pseudoalbidus; anamorph: Chalara fraxinea). The fungus
infects Fraxinus spp. with notable incidence in common ash (Fraxinus excelsior) and
narrow-leafed ash (Fraxinus angustifolia). This pathogen has been spreading in Europe
since the 1990s and causes severe damage in forests (pure or mixed stands), nurseries
and urban green areas (Hietala, Timmermann, Børja, & Solheim, 2013; Kowalski, 2006;
Timmermann, Børja, Hietala, Kirisits, & Solheim, 2011). It has also been cited in East
Asia and Japan infecting Fraxinus mandshurica and Fraxinus chinensis (Gross, Holdenrie-
der, Pautasso, Queloz, & Sieber, 2014). The fungus infects ash trees of all ages, causing
rapid crown dieback in adult trees, cankers and bark lesions on stem and twigs, and
also leaf wilt. The disease frequently causes the death of young trees a few years after infec-
tion. However, it may become a chronic disease in older trees, reducing the tree’s defences
against other pathogens and pests or environmental factors (Gross et al., 2014; Kowalski &
Holdenrieder, 2009; Timmermann et al., 2011).

A new ssRNA mycovirus that infects this pathogenic fungus was recently discovered
(Schoebel, Zoller, & Rigling, 2014). The authors proposed inclusion of the virus in the
genus Mitovirus (Narnaviridae) and named it Hymenoscyphus fraxineus mitovirus 1
(HfMV1). They noted the possibility of rapid genetic divergence based on their findings
of large differences in the strains isolated in Switzerland, Poland, Germany, Lithuania
and Japan. They hypothesised that the similarities between Swiss and Japanese strains
may denote a European pathogen introduction across infected host material from Asia.
Moreover, the prevalence of this mycovirus was high (90% in Swiss isolates according
to Schoebel et al. (2014)), supporting the most accepted hypothesis of predominance of
vertical transmission via ascospores.

3.8. Other fungal pathogens in woody plants

Botrytis cinerea (teleomorph Botryotinia fuckeliana) causes grey mould disease in more than
200 crops species over the world, including farmland crops, ornamental species and fruit
crops such as grapes (Vitis vinifera), pear trees, raspberries and blackberries (Rubus spp.)
(Rodríguez-García, Medina, Alonso, & Ayllón, 2014; Williamson, Tudzynski, Tudzynski,
& van Kan, 2007). The presence of different genera of mycovirus in this fungus has been
widely reported (Castro, Kramer, Valdivia, Ortiz, & Castillo, 2003; Potgieter, Castillo,
Castro, Cottet, & Morales, 2013; Rodríguez-García et al., 2014; Wu et al., 2007; Zhang, De
Wu, Li, Jiang, & Huang, 2010). These studies highlight the wide diversity of viruses that
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this fungus is able to host and which provide a wide range of opportunities for research in the
field of fungal virology. Another three mycoviruses that infect Botrytis sp. have recently been
sequenced: Botrytis virus F (BVF, Gammaflexiviridae), Botrytis virus X (BVX, Alphaflexivir-
idae) and Botrytis porri RNA virus 1 (BpRV1, dsRNA virus) (Xie & Jiang, 2014).

Verticillium dahliae and Verticillium albo-atrum are both causal agents of Verticillium
wilt disease. They have been cited in a broad range of hosts and more than 200 species,
including bushes and trees (Schall & Davis, 2009; Smith, 1965). Specifically, V. dahliae
can infect economically important woody crops such as gooseberry (Ribes grossularia),
apricot (Prunus armeniana), olive (Olea europea), quince (Cydonia oblonga) and roses
(Rosa spp.), as well as other species of ecological interest such as maple (Acer palmatum),
sycamore (Acer pseudoplatanus), raspberry, honeysuckle (Lonicera sp.) and broom
(Cytisus scoparius). V. albo-atrum causes damage to the tree of heaven (Ailanthus altis-
sima), striped maple (Acer pennsylvanicum), yellow poplar (Liriodendron tulipifera) and
other landscape species (Morehart, Donohue III, & Melchior, 1980; Schall & Davis,
2009; Smith, 1965). Some studies have demonstrated the presence of mycoviruses in
these pathogenic fungi. For example, a Chrysovirus sp. named Verticillium dahliae chry-
sovirus 1 (VdCV1) was identified by Cao et al. (2011). A novel member of the family Par-
titiviridae was identified in V. albo-atrum: Verticillium albo-atrum partitivirus 1
(VaaPV1) (Cañizares, Pérez-Artés, & García-Pedrajas, 2014), although no details were
provided about the pathogenic effect of the mycovirus in its fungal host.

Some opportunistic fungal pathogens of Pinus spp., such as Diplodia pinea (synonym:
Sphaeropsis sapinea) and Diplodia scrobiculata (Smith et al., 1996), also host mycoviruses.
Two dsRNAmycoviruses have been identified in D. pinea: Sphaeropsis sapinea RNA virus
1 and 2 (SsRV1, SsRV2, respectively; Totiviridae) (Preisig, Wingfield, & Wingfield, 1998);
and one in D. scrobiculata: Diplodia scrobiculata RNA virus 1 (DsRV1; related to Chryso-
viridae) (De Wet, Bihon, Preisig, Wingfield, & Wingfield, 2011; De Wet, Preisig, Wing-
field, & Wingfield, 2008).

Another pathogenic fungi of interest in agroforestry is the causal agent of root rot disease,
Rosellinia necatrix (anamorph: Dematophora necatrix). The interest is due to the pathogen-
icity of the fungus in several woody species, e.g. apple, olive, grape and poplar (Populus spp.)
(Pérez-Jiménez, 2006). Many families of mycoviruses are known to infect this fungus, e.g.
Chrysoviridae, Quadriviridae, Partitiviridae, Reoviridae and Totiviridae (Xie & Jiang,
2014). Two dsRNA mycoviruses have also been associated with hypovirulence: Rosellinia
necatrix megabirnavirus 1 (RnMBV1), included in a new family of mycoviruses (Megabir-
naviridae), and Rosellinia necatrix partitivirus 2 (RnPV2) (Xie & Jiang, 2014).

4. Future perspectives for use of mycoviruses in biocontrol

As already mentioned, many forest, horticultural and ornamental species harbour mycov-
iruses to a greater or lesser extent (Table 1). Although many of these have not yet been
found to be of use for biocontrol purposes, many of them provide new opportunities
for research in forestry science. Despite the promising outlook, the use of mycoviruses
in biological control is limited by the need for detailed analysis of (a) the symptoms associ-
ated with mycovirus-caused hypovirulence, (b) transmission mechanisms and biological
and ecological conditions, (c) treatment effectiveness in the field and (d) subsequent per-
sistence in the host population.
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4.1. Identification of factors leading to hypovirulence: research in progress and
lessons learned

The best known example of a disease managed by mycoviruses is chestnut blight. In
Europe, CHV-1 has been used to induce hypovirulence (Robin & Heiniger, 2001) with
goods results in field inoculation trials (Juhásová, Adamcíková, & Robin, 2005; Robin,
Anziani, & Cortesi, 2000; Zamora et al., 2014). CHV-1 and CHV-3 have been used

Table 1. Summary of mycoviruses of agroforestry interest.
Fungus Main hosts Mycoviruses Family References

C. parasitica Castanea spp. CHV-1;
CHV-2;
CHV-3;
CHV-4;
MyRV-1;
MyRV2;
CpMV1

Hypoviridae;
Reoviridae
Narnaviridae

Hillman et al. (1994); Hillman and
Suzuki (2004); Linder-Basso et al.
(2005); Shapira et al. (1991); Smart
et al. (1999); Suzuki et al. (2004)

O. novo-ulmi Ulmus spp. OnuMV1a;
OnuMV1b;
OnuMV1c;
OnuMV2;
OnuMV3a;
OnuMV3b;
OnuMV4-Ld;
OnuMV5-Ld;
OnuMV6-Ld;
OnuMV7-Ld;
DsRNA01_ORF;
DsRNA02_ORF

Narnaviridae Hong et al. (1998a, 1998b, 1999);
Doherty et al. (2006); Hintz et al.
(2013)

H. annosum
complex

Various HaV;
HaV-P;
HetPV1;
HetPV2;
HetPV3;
HetPV4;
HetPV5;
HetPV6;
HetPV7;
HetPV8;
HetPV2-pa1;
HetPV7-pa1

Partitiviridae Ihrmark et al. (2001); Vainio et al.
(2010, 2012, 2013b, 2014); Vainio,
Hakanpää, et al. (2011); and Vainio,
Keriö, et al. (2011)

G. abietina Pinus spp., Picea
spp., Abies spp.,
Larix spp.

GaMRV-S1;
GaRV-L1;
GaRV-MS1

Narnaviridae;
Totiviridae;
Partitiviridae;

Tuomivirta and Hantula (2003a,
2003b)

F. circinatum Pinus spp.;
Pseudotsuga
menziesii

FcMV1;
FcMV2-1; FcMV2-2

Narnaviridae Martínez-Álvarez, Vainio, et al.
(2014)

B. dothidea Pyrus spp., Malus
spp., Eucalyptus
spp.

BdCV1;
BdPV1

Chrysoviridae;
Partitiviridae

Wang et al. (2014)

H. fraxineus Fraxinus spp. HfMV1 Narnaviridae Schoebel et al. (2014)
B. cinerea Various BcMV1 Narnaviridae Wu, Zhang, Li, Jiang, and Ghabrial

(2010)
V. dahliae Various VdCV1 Chrysoviridae Cao et al. (2011)
V. albo-atrum Various VaaPV1 Partitiviridae Cañizares et al. (2014)
D. pinea Pinus spp. SsRV1;

SsRV2
Totiviridae Preisig et al. (1998)

D. scrobiculata Pinus spp. DsRV1 Chrysoviridae-
related

De Wet et al. (2011)

R. necatrix Various RnMBV1;
RnPV2

Megabirnaviridae;
Partitiviridae

Chiba et al. (2009, 2013)
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with less success in the USA than in Europe, with natural hypovirulence being reported in
Michigan (Milgroom & Cortesi, 2004). For other pandemics such as DED, mycoviruses
infecting O. novo-ulmi appear promising for biocontrol, because of the symptoms that
they cause in host isolates, such as slow mycelial growth, abnormal or amoeboid colony
formation, reduction in asexual spore production, low cytochrome oxidase level and for-
mation of mitochondrial DNA plasmids (Hong et al., 1999).

In relation to the application of biocontrol in diseased forests in boreal areas, no clear
relationship between viral presence and fungus growth rate was observed inH. annosum s.
l. (Vainio et al., 2010). However, significant variations in growth and changes in the effects
of virus were observed in relation to the culture conditions. The effect of HetPV6 infection
in relation to multiple variables (geographical, culture conditions and host) has been
investigated in four Heterobasidion species (Vainio et al., 2012). No significant differences
in growth were found in H. parviporum (in vivo and in vitro) or H. annosum (in vivo).
However, significantly increased mycelial growth was observed in infected H. annosum
cultures (laboratory assays condition: 6°C and 15°C culture on MOS agar plates). Conse-
quently, these results do not support a possible use of HetPV6 in virocontrol, although
HetPV6 is very frequent in fungal populations and apparently does not interfere in sub-
sequent viral infection (Vainio et al., 2013a).

Mycoviruses may eventually be used as tools in the management of invasive diseases,
for example in ash dieback. Although Hymenoscyphus fraxineus mitovirus 1 does not
show harmful effects in its host, future perspectives for its application in biocontrol are
promising because of the phylogenetic position of this mitovirus relative to others that
are known to cause hypovirulence (Schoebel et al., 2014). In fact, HfMV1 is closely
related to Cryphonectria cubensis, S. sclerotiorum andHelicobasidium mompamitoviruses.

Several Totiviridae, Chrysoviridae and Partiviridaemycoviruses have been identified in
Fusarium graminearum (Lee et al., 2011; Yu, Lee, Son, & Kim 2011). More specifically, a
mycovirus described in F. graminearum infecting maize in Korea (named Fusarium gra-
minearum virus 1-DK2; FgV1-DK2) is capable of reducing mycelial growth and sporula-
tion, decreasing mycotoxin production and increasing pigmentation (Chu et al., 2002). In
a later study addressing this topic, a mixed infection of two dsRNA viruses was reported,
with no changes in mycelial morphology but with a high rate of transmission in conidia
and ascospores (30–100%) (Chu et al., 2004). A recent study identified a new mycovirus
associated with hypovirulence in Fusarium virguliforme and closely related to
F. graminearum mycoviruses (Marvelli et al., 2014). Moreover, two new putative mycov-
iruses belonging to the Mitovirus genus have been described in Fusarium coeruleum iso-
lates, in addition to one new Alphapartitivirus sp. in Fusarium solani f. sp. pisi (Osaki et al.,
2015). Mycoviruses infecting in F. coeruleum are closely related to FcMV1, which opens
up a new line of phylogenetic research. Together these results encourage the continued
study of hypovirulence induced by mycoviruses in Fusarium spp. (with special focus on
F. circinatum) whose use in biocontrol may prove to be a profitable consequence of in-
depth studies of this species.

Grey mould, caused by B. cinerea, is being investigated by various research groups
around the world because of the global importance of this disease. The rare formation
of multicellular penetration structures (infection cushions) and decreased mycelial
growth are probably caused by hypovirulence induced by mycoviruses (especially Botrytis
cinerea mitovirus 1 (BcMV1), main mycovirus implied in hypovirulence process) as
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suggested by Rodríguez-García et al. (2014); Wang et al. (2014) and Zhang et al. (2010).
These advances are very encouraging in agroforestry technology and are leading the way to
the development of new treatments in the control of tree diseases, at least for incipient
infections, thus possibly reducing economic and ecological damage.

4.2. Mycoviruses transmission and biological conditions

The existence of vegetative incompatibility is a major limitation in virocontrol, due to the
instability of hyphal fusion between fungi that have not the same vc type. In the case of C.
parasitica, fungal viruses can be transferred thought anastomosis among different vc types
(0.13–0.50 transmission rates between CHV-1 strains differentiated by one or two vegeta-
tive incompatibly genes), although slowly and in less proportion (3–4%) (Cortesi, McCul-
loch, Song, Lin, & Milgroom, 2001; Liu & Milgroom, 1996; Peters, Holweg, Rigling, &
Metzler, 2012). This limitation in biocontrol may be reduced with more knowledge
about vc types at the population level. Papazova-Anakieva, Sotirovski, Cortesi, and Mil-
groom (2008) studied CHV-1 transmission between vc types in Macedonia, where only
five vc types were detected and high rates of transmission between isolates with predomi-
nance in one direction were found. So that, vic genes for this species has been characterised
(Choi et al., 2012; Zhang, Spiering, Dawe, & Nuss, 2014) enabling multilocus PCR assays
development in order to analyse incompatibility genes profiles in field populations of
fungus (Short et al., 2015).

Zamora, Martín, Rigling, and Diez (2012) studied vc types and mating types involved in
this disease in the region of Castilla y León (Spain) and 11 vc types were identified. Two of
these accounted for 88% of C. parasitica in the sampled population. Five of the remaining
vc types were scarce (<10 isolates/vc type). In relation to the mating types present in
C. parasitica, two mating types were found: MAT-1 was the most frequent and MAT-2
was only present in two of the provinces studied. It was concluded that the low diversity
of vc types may explain the low incidence of MAT-2, supporting the idea that the fungus
mainly undergoes asexual reproduction. However, the presence of two mating types in the
same area could increase vc type diversity in an scenario where sexual reproduction even-
tually dominates. Elaborating a complex database of vc types among different CHV sub-
types involves a large sampling effort, especially in areas with a high diversity of subtypes
(>130 vc types in China: Wang, Shao, & Lu, 1991), but could greatly improve biocontrol
against chestnut blight disease. Similarly, the main problem in relation to the use of
RnMBV1 (causal agent of hypovirulence process on R. necatrix under laboratory con-
ditions) for biocontrol purposes is the presence of a diverse fungus population (with
numerous vc types) leading to the prevalence of sexual spores over anastomosis (Chiba
et al., 2009). The possibility of observing variations in the hypovirulence phenomenon
caused by environmental conditions and genetic intervention was also suggested (Chiba
et al., 2009). The long-term transmission of virus between incompatible isolates of
R. necatrix was studied in apple trees (Yaegashi, Nakamura, et al., 2013). After 2–3
years, both strains of fungus originally inoculated (one virus-free and other infected by
dsRNA element called N10) and their hybrids were detected in trees. Moreover, isolates
of both lineages (initially infected and non-infected) contained mycovirus, despite the
vegetative incompatibility. The number of viral particles increased during the study
period and six new mycovirus sequences were identified. The authors suggested the
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possible role of mycoparasitic fungi and mycophagous invertebrates as vectors involved in
virus transmission thus enabling the vc types restrictions to be overcome.

More detailed knowledge of the virus transmission process and vc types is needed in the
case of O. novo-ulmi, especially in regions where vc types are limited, e.g. Canada (Hintz
et al., 2013). Such conditions may be favourable for carrying out field assays. In the case of
F. circinatum, the low vc type diversity detected in many locations such as Spain (Iturritxa
et al., 2011; Pérez-Sierra et al., 2007) and other regions where recent introduction of the
pathogen is plausible may be suitable for implementing biocontrol treatments. For
example, the three previously mentioned mitoviruses (FcMV1, FcMV2-1 and FcMV2-
2.) have been identified in Spanish isolates of F. circinatum belonging to the both local
mating types, and it has been suggested that the occurrence of these mitoviruses is not
restricted by the mating type compatibility (Vainio et al., 2015). Therefore, if any of the
three recently identified mycoviruses (Martínez-Álvarez, Vainio, et al., 2014) were
found to cause hypovirulence, inoculation treatments could be implemented as in the
European chestnut blight technique.

Only three different vc types of V. dahliae have been identified in ornamental woody
plants in Illinois (USA) (Chen, 1994). The lower diversification in the population was
suggested to be related to the eventual establishment of the fungus in nurseries with sub-
sequent dispersion. The presence of virus in less aggressive fungal isolates and high affinity
in vc types suggests that the use of VdCV1 or VaaPV1 for biocontrol purposes is feasible.
Indeed, VdCV1 has been isolated in non-defoliating strains of fungus (Cao et al., 2011).
Nevertheless, these mycoviruses have not been shown to induce hypovirulence. Similarly,
in a study of vc types involved in ash dieback in the UK, strong vegetative incompatibility
was found between isolates from the same population (Brasier & Webber, 2013). The
authors concluded that the low degree of compatibility may be caused by the genotype het-
erogeneity as a result of the well-known dominance of sexual reproduction in the species
(Gross, Zaffarano, Duo, & Grünig, 2012; Gross et al., 2014). The mycoviruses that infect
this pathogen are known to be genetically diverse (estimated nucleotide reposition rate
0.16) and able to infect sexual spores (Schoebel et al., 2014). The low compatibly
between isolates may preclude their use in biocontrol. However, rapid changes in the
mycovirus genome and the infrequent role of ascospores as virus vectors imply new
opportunities in virocontrol research for this invasive disease

Regarding inter-specific transmission of mycoviruses, the high level of genetic simi-
larity between HetPV1 strains (98% in polymerase sequence) isolated from different
species of Heterobasidion (Heterobasidion australe and H. parviporum) infecting the
same host suggests that mycovirus transmission is frequent in this fungal complex in
nature (Vainio, Hakanpää et al., 2011). This is also supported by the findings of laboratory
studies withHeterobasidion spp., which demonstrated inter and intraspecific transmission
via anastomosis (Ihrmark et al., 2002; Vainio et al., 2010). Furthermore, the possibility of
protoplasmic transmission of mycoviruses in Fusarium boothii was analysed (Lee et al.,
2011). These authors used the protoplast fusion method to inoculate FgV1-DK21 into
F. graminearum, Fusarium asiaticum, Fusarium oxysporum f. sp. lycopersici and
C. parasitica. They showed that this method could be used for inter- and intraspecific
virus transmission and reported changes in colony morphology caused by mycovirus pres-
ence, even in fungi with no known hypovirulence related to FgV1-DK21. The survival rate
of tomato plants (Solanum sp.) infected with mycovirus-treated Fusarium spp. was higher
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(71.7%) than in virus-free isolates (23.3%). In C. parasitica, FgV1-DK21 was effectively
transmitted via F. boothii protoplast, and the virulence was lower than in virus-free and
CHV-1 infected isolates. These results have clear implications for the development of
management strategies in the medium term, opening the way for a new area of research
involving the use of fungal complex in virocontrol at the community level.

The RNA silencing process was investigated in Rosellinia necatrix partitivirus 2
(RnPV2) infecting a non-natural host (C. parasitica isolates) (Chiba et al., 2013). A
wild-type fungus and another mutant strain with defective protein processing sRNAs
(dicer-like 2) were used. The wild-type C. parasitica showed milder symptoms after infec-
tion than the defective RNA silencing mutant (called Δdcl-2 mutant), suggesting that the
antiviral response mechanism detected non-specific Partitivirus sp. as a target. Further-
more, infections involving a defective interfering dsRNA1 (DI-dsRNA1) strain were less
effective. By contrast, the natural host (R. necatrix) remained asymptomatic after the
same treatments. In conclusion, this study suggests the potential for using mycoviruses
provided by other fungal species in virocontrol and highlights the need for more detailed
knowledge about the RNA silencing process. In a study of transfection of Partitivirus sp.
(RnPV1) and theMycoreovirus sp. (MyRV3) from R. necatrix donor isolates to Diaporthe
sp., C. parasitica and Valsa ceratosperma protoplasts, successful horizontal transmission
into these fungi was reported (Kanematsu, Sasaki, Onoue, Oikawa, & Ito, 2010). Infection
by MyRV3 caused hypovirulence symptoms in all these new hosts. This result suggests a
new line in virocontrol techniques.

Sclerotinia sclerotiorum partitivirus 1 (SsPV1), a mycovirus isolated from hypovirulent
strains of white mould (S. sclerotiorum), has been found to be able to infect B. cinerea and
also to be transferred via anastomosis among vc types and even overcome incompatibility
barriers (Xiao et al., 2014). With regard to the high specificity of this mycovirus in host
selection, biosafety in field use is guaranteed (Yu et al., 2013). These noteworthy findings
demonstrate the possibility of improving the biological control techniques by using differ-
ent mycoviruses, even in different pathogenic fungi. This opens up new research lines
involving forest pathology biocontrol.

4.3. Future challenges in mycovirus-based biocontrol

Hypovirulence caused by co-infection is an interesting topic in biocontrol. Hypovirulence
has been associated with simultaneous infection between MYRV-1 and CHV-1 in
C. parasitica isolates (Sun, Nuss, & Suzuki, 2006). The co-infection produced similar
colony changes as single CHV-1 infection, while conidia production and mycelial
growth decreased when both viruses were present. Furthermore accumulation of
dsRNA and vertical transmission of MyRV1 increased with co-infection, with no negative
effects on CHV-1 genome RNA accumulation. In a more recent study, infection of B.
dothidea isolates with BdPV1 mycovirus alone did not reduce growth, although the
idea of a possible synergistic hypovirulence effect caused by simultaneous infection by
BdCV1 and BdPV1 was suggested (Wang et al., 2014). Indeed, co-infection caused by dis-
tantly related viruses was recently found to be more stable in isolates of Heterobasidion sp.
(Vainio et al., 2014). This has important consequences for the distribution of viruses and
the co-existence of different viral strains in the same host population. A very recent study
showed greater effects of RNA silencing in Rosellinia necatrix victorivirus 1 (RnVV1)
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hosted by C. parasitica than in other mycoviruses naturally hosted by this fungus (CHV1
and MyRV1), suggesting an antagonistic relationship between mycoviruses co-infecting
the same isolates (Chiba & Suzuki, 2015). CHV1 and MyRV1 interfered in replication
and lateral transmission of RnVV1 and were involved in RNA silencing activation;
however, these mycoviruses showed higher resistance of antiviral defence effects and
were mainly RnVV1 suppressed, even when the host dicer or Argonaute genes were dis-
rupted. Further studies focusing on the co-infection process are needed. If the combined
effects of mycoviruses in its hosts are clarified, new advances in the preventive inoculation
of virus complex may be possible.

In depth study of the interactions between mycoviral infections and environmental fea-
tures is also required. In laboratory assays of G. abietina cultures under multiple different
growth conditions, mycelial growth was highest in mycovirus free isolates (Romeralo et al.,
2012). However, it was not clear whether this phenomenon was mediated by mycoviruses
or only by individual virulence of the strain. New studies focusing on this aspect are
required for the development of virocontrol methods.

Research on the persistence of mycoviruses after the use of biocontrol strategies is
scarce. In one of the few studies of this aspect, American chestnut plots were evaluated
12 years after biocontrol implementation against chestnut blight (Liu et al., 2002).
CHV-1 was not detected in any isolate, and biocontrol failure was proposed as a possible
reason for this absence. The persistence of CHV-2 and CHV-3 was limited. By contrast,
although CHV-4 was common in the study area, attributing its origin to the introduction
during biocontrol treatment was regarded as doubtful. Another study reported the disap-
pearance of CHV-1 in European treated plots 24 years after biocontrol application (Robin,
Lanz, Soutrenon, & Rigling, 2010). The authors pointed out that the low diversity of vc is
not necessarily related to low persistence, because similar results have been reported in
other chestnut forests in Europe, and they concluded that differences in CHV-1
subtype fitness may be the most important factor in the persistence of mycoviruses in
field. More research is required to establish the long-term effects of the use of mycoviruses
in the field.

5. Conclusions

1. Mycoviruses represent a relatively unknown group in virology and plant pathology
sciences. However, the taxonomy of mycoviruses based on genetic sequences and bio-
logical characteristics (including antiviral response by hosts) is being improved greatly.

2. Chestnut blight caused by C. parasitica is the best known and most successful mycov-
irus-based biocontrol method in forest pathology. Moreover, it is the only case in which
a mycovirus-based biocontrol technique has been satisfactorily implemented. This
disease serves as a study model in forestry protection, with particular relevance in
the development of new preventive and therapeutic measures centred on several tree
species.

3. Mycovirus research focused on diseases caused by the O. novo-ulmi, H. annosum
complex, G. abietina, F. circinatum, B. dothidea, H. fraxineus and R. necatrix is cur-
rently being developed in the forest context. Further studies involvingD. pinea, D. scro-
biculata, V. dahliae and V. albo-atrum pathologies are also needed.
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4. Mycovirus-mediated hypovirulence is a current challenge in biocontrol research
because of its potential role in the prevention and/or management of plant diseases.
It could become an important tool for maintaining the health of woody species, com-
plementing or totally replacing chemical treatments.

5. Inoculation of fungi with mycoviruses may become a new management tool for forest
protection, as used in the treatment of chestnut blight disease.

6. The main targets of study in mycovirus-based biological control are: (i) the mycov-
iruses that induce hypovirulence in their hosts, (ii) the conditions that affect hypoviru-
lence and the virus silencing process, (iii) the transmission ecology and its biological
limitations, (iv) the taxonomical and phylogenetic relationships between mycoviruses
and (v) the viability of field biocontrol measures.
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