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ABSTRACT
of the thesis on
A Rule-Based Approach for Spotting Characters from

Continuous Speech in Indian Languages

Machi ne recognition of conti nuous speech i nvol ves
transformng continuous speech signal into a discrete set of
symbols >each describing a meani ngful speech sound. The objective
of this research is to address issues involved in the devel opment

of a speech-to-text system for an Indian |anguage. The basic

e

idea is to exploit the nature of the ~Indian |anguages for
capturing the phonetic information in the speech signal in a
synbolic form A know edge- based approach for spotting the
characters of a |language in continuous speech is proposed. The
know edge consiscs primarily of acoustic-phonetics of speech
sounds.

Use of know edge for character spotting in continuous speech
in the Indian |anguage, H ndi is discussed. W first discuss
reasons for choosing character as a unit for. signal-to-symbol

__transformation. Acoustic-phonetics of speech in Hindi describe
the sounds in a systematic manner in terms of articulatory
novenents. The manifestation of this acoustic-phonetic know edge

,/:\ in speech signal is studied with the help of a know edge expert

= and speech data analysis. The acoustic-phonetic know edge for
each character of Hndi is then represented in the form of
production rules. A significant feature of this know edge-based

spotting approact s that processing of speech signal 1is done

according to description of a given character



A rul e-based inpl enmentation of know edge- based approach for
character spotting in continuous speech in Hndi is discussed.
While the total nunber of characters including consonant clusters
is estimted to be around:;§002>only a subset of about /gsq;)
characters consisting of Vowels(V) and Consonant-Vowel (CV)
conbinations are considered for inplenentation. The acoustic-
phonetic know edge for all the characters is represented in the
form of production rules. Character spotting systems are
i mpl enented for each character separately. Inaccuracies in
processing the speech signal are represented by assi gni ng
confidence neasur es at every stage of spotting. _Fuzzy
\gygffffflf?[ pongepts are used to relate the character to signal
paranmeters. We denonstrate the flexibility of the system to
provide better performance as nore knowl edge is available for
spotting each <character, without significantly increasing the
overal | conplexity.

The main contributions of this thesis are:

1) Choi ce of characters as a synbol

2) Acquisition and representation of acoustic-phonetic
know edge for characters in H nd

3) A rul e- based system i npl enentation of character spotting

4) Use of Fuzzy mathematical concepts to relate characters

to signal paraneters

5) Perf ormance eval uation of character spotting system



CHAPTER -1

INTRODUCTION TO THE PROBLEM OF SPEECH RECOGNITION

11 Background to the Problem of Speech Recognition

Speech recognition involves transforming i nput speech into a
sequence of wunits called synmbols and converting the synbo
sequence into a text corresponding to the nessage in the speech
signal. The goal of our research is to provide a machine wth
speech input facility to take dictation of continuous speech. The
enphasis is on spotting the characters (synbols) of Hndi, an
| ndi an Language, from continuous speech using know edge-based
approach. The main contributions of this thesis are: (1) Choice
of character as a synbol (2) Acquisition and representation of
acousti c- phonetic know edge for characters in Hndi (3) A rule-
based system inpl enmentation of character spotting (4) Use of
fuzzy mathematical concepts to relate characters to signal
paranmeters (5) Performance evaluation of character spotting
syst ens.

Speech recognition systens vary from sinple isolated word
recognition systenms to highly conplex continuous speech
recognition systens. Continuous speech being the natural node of
human communi cation, recognition of continuous speech is the
ultimate goal in any speech recognition research. Typically,
conti nuous speech recognition is performed in two stages as shown
in Fig.1.1. They are: (1) Speech signal -to-synbol
transformation and (2) Synbol-to-text conversion. 1In the

signal -to-synbol transformation stage, the input speech is
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converted into a synbol sequence. Usually these synbols represent
sone speech units. The synbol sequence is then converted into a
meani ngf ul text by the synbol-to-text conversion stage using
|l exi cal, syntactic and semantic know edge sources. In nmost of
the systems the synbols are extracted fromthe speech signal

using a fixed set of paraneters, |ike spectral coefficients. The
difficulty in such systens is that any loss of infornation at the
signal -to-synbol transformation stage has to be conpensated by
the higher |evel know edge sources. Another major problem

especially for |languages like English, 1is that, the text
consisting of words and sentences has to be expressed as
sequences of synbols for all possible pronunciations. Since a
Anggn symbol representing a speecqwunit may be mapped onto
different characters (or strings of characters) depending on the
context, the synbol-to-text conversion becomes very conpl ex.
Moreover, a lot of manual effort is required to generate the
pronunciation dictionary in terms of the synmbols for new
,vocabul ari esand tasks. Qur approach, in tune with recent trends
(106,23,42] is to focus attention on signal-to-symbo

transformation stage in order to capture as nuch infornmation from
t he signal as possible. The issues involved here are: (1) Choice
of the synmbols and (2) Methods of processing to be done on the
speech signal to derive these synbols. When characters which
correspond to unique pronunciation are adopted as synbols, the
task of synbol-to-text conversion becones trivial. But the burden
of speech recognition then falls on the signal-to-synbo

transformati on stage.

The main objective of this thesis is to discuss the issues
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in the design of a speech signal-to-synbol transformation nodul e
for a speech-to-text conversion system for the Indian |anguage

Hndi. The idea is to use to the maxi mum possible extent, the

language at the signal level itself, in order to capture the

speech information in the signal in a synbolic form. //ﬂg\gpose‘7

characters of H ndi as synbols, and spottrng t he characters in

- e S
conti nuous speech as the basrc approach for srgnal-to synbol \~//

\~_

transfornatron “A knomdedge based systemis proposed for spottin
each character.

In this chapter we present a brief review of the attenpts
being nmade to realize speech recognition by machine. First, we
di scuss in the next section various classes of speech recognition
systems and also bring out the distinction between speech
under st andi ng and recognition. In Section 13 we discuss in sone
detail, the approaches adopted to realize continuous speech
recognition. This discussion denonstrates the inportance of the
acousti c- phonetic block in a speech recognition system Attenpts

e e o A i L

on developing phonetlc engi;;]are di scussed in Section 1.4. The
scope of the current research whi ch focuses primarily on the
acoustic-phonetic block of a speech recognition systemis given
in Section 1.5 This section also dwells briefly on the
characteristics of Indian |anguages relevant for the ideas to be
proposed in this thesis. The specific issues of the acoustic-
phonetic know edge of I ndi an | anguages are discussed in
Chapter III. Since rule-based approach is used to inplenent
character spotting, we present in Section 16 a brief review of

know edge- based approach, especially expert systens, for problem



solving. Finally, we give an outline of the thesis in Section 1.7
where we discuss the organization of the following chapters in

this thesis.

12  Classes of Speech Recognition Systems

A nunber of speech recognition systens [(60] were devel oped
in the past twenty years. They can be broadly classified into
three categories: (1) Isolated Wrd Recognhition (IWR) systens
where words are separated by pauses, (2) Connectéd Wor d
Recognition (CWR) systens where the basic units are still words
but there is no pause between words and (3) Continuous Speec

TN e T T Sl o Jp——

Recognition(CSR) systens_where the basic units of recognition are
\/\./ﬁx\/_,,./\_/, - e e T T
smal | er than words.

Most of the IWR systens are speaker dependent and have a
limted vocabul ary. They consist of two phases: a training phase
and a recognition phase. The speaker was first nade to utter a
word and the corresponding signal is processed and the
information is stored as a tenplate. During the recognition
phase, the sanme type of information is obtained from the input
utterance and this information is conpared with the tenplates
prestored in the menory obtained in the training phase. The match
obtained with least distance is |abeled as the recognized word
The I WR systens do not have the problens of segnmentation and
contextual effects. The reference and test patterns may be
represented using a spectral filter bank output values [18] or
using linear prediction coefficients (70,91] or cepstral
coefficients [39] or paraneters based on group delay processing

[68,101,25] or sonetines by paraneters based on auditory nodels



[35,44,67]. A conparison on the use of some of these paraneters
in speech recognition is given in [17]. In nost of these cases,
because of intraspeaker variability,vlbgig,ﬂgxtppt be time
alignment between the test pattern and reference tenplate. So
some kind of time warping is used to align the tenplates. IWR
systens perform well for speaker dependent and restricted tasks
wth a limted vocabul ary.

I n connected word recognition (CAR) systens the restriction

of pausing between words is renmoved. However, the speaker is

still constrained to speak in a careful manner to mnimze the
i -y
coarticulation effects at word boundaries. In these systens, a

N e S

set of reference patterns are stored for the words in the
vocabulary of the task. Cenerally the units are isolated words.
The connected word pattern is matched to a nodified sequence of
isolated word patterns taking into consideration the context in
whi ch the word occurs and the best matching word pattern is
hypot hesi zed as the spoken sentence. Dynami c Time Warping (DTW)
al gorithns which use dynam c progranmming to perform time warping
are used to provide optinum alignnent between the spoken i nput
and the sequence of nodified reference word patterns. Vari ous
types of dynam ¢ programming (DP) techniques are applied to tine
warping, |ike tw-level DP matching (87], stochastic DTW [76],
one pass DP [7] and enbedded training [79]. A Nunmber of

techniques, like multiple reference patterns, have been used for

speaker independent recognition [81]. To increase the .vocabulary

Size vector quantization techniques [34] have been proposed.
Vector quantization code books give the systemthe flexibility of

speaker independence [92] and | arge vocabulary [S0].

&
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The techni ques used for IWR and CAR systens ¢;nnot easily be
extended to conti nuous speech recognition (CSR) systens. The main
difficulty is with the 1arge~n9mbegwgfm¥ggggjthat are to be

o it

recogni zed. Also the effects of ~~articul ati oat word junctures

make the matching process error prone. So, instégg of using DTW

nmethods, segmentation and Iabeling schemes are used for

S

conti nuous speech recognition. The utterance is normally

e

— e

transcribed in terms of subword units [98,8] |ike phones[93],
phonenes [86], diphones [15,89,90], syllables [73,95,96] and

dem -syllables (85]. It is also possible to spot.the.subword

units rather than dividing the utterance into segments and then

Sogportalien § foliafe o Sprtin s

labeling the segments [88].

Speech recognition systens can also be classified by the
task they perform In this, there are two types of systens: (1)
speech-to-text systens and (2) speech understanding systens. A
speech-to-text system converts input speech into correspondi ng
text, whereas a speech understanding systemtries to capture the
nessage in the speech and respond to it. In literature, the word
"speech recognition system" is used to denote both these systens.
However, in this thesis, when we refer to our system as a speech
recognition system we nean a speech-to-text conversion system
and not a speech understandi ng system

Al t hough many classes of systems are available, the
preferred node of human-machine conmmunication will be through
conti nuous speech mainly because human beings do not pause
bet ween successive words even in such highly restricted tasks
such as readi ng out tel ephone nunbers. W are interested only in

conti nuous speech recognition systens in this thesis.



13  Continuous Speech Recognition Systems

A nunber of CSR systens have been devel oped since 1960. A
maj or thrust towards this goal was received from ARPA- SUR [53]
project in USA in the seventies, the Alvey [104] and ESPIRI T [30]
projects in Europe and the fifth generation conputing systens
project in Japan in eighties. The issues involved in the design

of CSR systens are speaker independence.- copntextual effeets in,

contlnuous speech, choice of appropriate unPL for recognition

N e T e I N s

SRRl

{EE\EBESSE”§|gnaI Sone of the d|ff|cult|es in de5|gn|ng t hese
systens are: (1) the absence of clear boundaries between speech
units in a word or between words, (2) the effect of anticipatory
cdoarticulation which is difficult to nodel in continuous speech,
(3) fgige-varLatLons in speech sounds uttered by different
speakers and sonetines even when the same speaker repeats the
same sentence and (4) problem of obtaining precise rules to
formalize the relation between the signal parameters and the
correspondi ng symbolic representation due to fuzzy nature of
quantities involved. A nunmber of systems were successfully
devel oped for incorporating know edge sources at various |levels
to conpensate the errors caused by the varying nature of the
i nput speech signal, its extracted paraneters and the |inguistic

know edge [61].

1.3.1 Brief Higory d Developed Systems

Reddy ([82] denonstrated an initial capability in connected
word sequence recognition using a 16 word vocabul ary. Four najor

speech understandi ng systens which accept continuous speech were



devel oped during ARPA-SUR project [54] in seventies. They were
(1)sDC system [46], (2)BBN’s HNM [45], (3) CMU’s Hearsay-11 [29]
and (4) cMu’s Harpy [9]). Al these systems had a limted
vocabul ary and were designed for a specific task.

Harpy, one of the successful systens during the ARPA-SUR
[53] project adopted an integrated network approach for know edge
representation. \lIL/LQLE/Ji§LL93§ knomﬂedge sourwggL_such_ as

(i N S o

acoustic-phonetics, |exicon and syntax are integrated into a.

L T T T T T T T

finite state netmork _To each state in this network is associated
e T e T e T

a phone tenplate. The network represents all ophonic variations of
t he phonenes occurring in the sentences. The interpretation of an
input utterance consists of finding a path through the network

mrth naxrnunrl|kelrhood according to the phone transcription of

==

an utterance In order to reduce the conplexity, a beam search
was used.

The fpcus in the devel opnment of Hearsay-11 [29] was toO
design a framework for experinmenting with the representati on and
cooperation of diverse know edge sources such as acoustic-
phonetic, lexical, syntactic, semantic and pragmatic know edge
sources. The know edge sources are independent but they are
required to cooperate in hypothesizing and in correcting other
hypot heses. Thi s cooperation is inplemented in a global data
structure call ed ®lackboard. . The bl ackboard is partitioned into
several levels and each level holds a different representative
pr obl em space.

As against this, the BBN’s HAWNM [45] phil osophy is based on
perceptual process. It includes an acoustic-phonetic recognizer

bl ock, a lexical retrieval block, a word hypothesization bl ock



and a syntax bl ock. The HWM system follows an earlier system
SPEECHLI S [99] devel oped by the sanme group. The contribution from

HWM system is the integration of syntax and senantics through

the design of a parser capable of producing the ~ ~ ~tteeaok a

sentence and its semantic interpretation. The SDC system fol | ows
a strategy that depends on verification of syllables obtained
from processing the speech signal using higher |evel know edge
sources wWith a uniquely designed napper that maps the syllables
t o words.

At the sane tinme when ARPA- SUR project was being undertaken
| BM devel oped a nunber of CSR systens. The system ARCS [60] uses
a hierarchical structure based on segnenting speech into sone
transitional units and using linguistic information to transcribe
the continuous speech. Cther systens based on gcentisecond model.
and phone nodel were devel oped by Jelinek [47] and Bahl [3].

In recent tinmes the inportance of using know edge at the
acousti c- phonetic | evel [106,97] was realized. A few systens have
been proposed where the focus was on using the know edge at the
acousti c- phonetic level [13]. In one system by De Mori (20], a
set of cooperating expert systens, called expert society, is used
for continuous speech recognition based on syll able
hypot hesi zati on before phonene recognition is done. It uses

a sinple structure where @cousti¢-phonetic) and d€xical’ experts
are organized hierarchically and comrunication through them is
achi eved using a nmessage passing network. Another system proposed
by Regel [83] stresses the need for an acoustic-phonetic nodul e
whi ch uses vast anmount of speech know edge. The system uses

phones as synbols for signal-to-synbol transformation. |BM [48]
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al so announced a 20,000 word speaker dependent system BYBLOS
[16], a continuous speech recognition system devel oped by BBN
used speech specific know edge like coarticulation effects to
devel op context dependent nodels of phonenes using hidden Mrkov
model s [80] which are used by the higher |evel know edge sources
for speech recognition. REMORA [72] iS a speech recognition
system aimed at devel oping the acoustic-phonetic decoding using
speech know edge and expert systenms concepts. APHODEX [36] IS a
continuous speech recognition system developed in France which
uses expert system concepts in acoustic-phonetic decoding. SUWM T
[107] system developed at MT uses know edge based approach in
arriving at a phonene lattice using multilevel representation of
spectrograns. ANGEL [71] is an another system devel oped at cMu
that uses location and classification rules to derive a phonene
|attice from speech signal. <SPHINX [62] system devel oped at cMU
uses hi dden Markov nodels t o get triphone and function word nodel
for continuous speech recognition
In the framework of Alvey initiative, VOD'S [104]}, a DIW
based continuous speech recognizer was developed. In the sane
framework experinments on continuous speech recognition systens
are being carried out at the f@nter for Speech Technol ogy and
NResearch I n Edi nbur gh
‘ In Japan, the work on continuous speech recognition ([40]
focused on extracting suitable paraneters fromthe speech signal
and al so devel oping a suitable | anguage nodel [55]. At present in
the framework of Fifth Generation Conputing Systems (FGCS)
project work at various universities and research institutes |ike

ATR Interpreting Labs and NTT Human Interface Labs, continuous



speech recognition systens that use dynam c programm ng concepts
[94], hidden Markov nodels [52,51], expert systens [74,41] and
artificial neural networks [56,88] are being devel oped.

The above nentioned systens followed various approaches for
recogni zi ng conti nuous speech. The next section explains sone of

t hose approaches.

1.3.2 Techniques used in Continuous Speech Recognition

The systens described earlier used a variety of approaches
for recogni zi ng conti nuous speech. Mst of them used a segnentor
to divide the signal into phonetic units and a classifier to
recogni ze the individual phonetic segnments. Much of the
variations in continuous speech due to context, rate of speech
are taken care of in the contextual phonological rules used in
the | abeling process. The sequences of phonetic segnents are then
processed using a | anguage nodel. The | anguage nodel consists of
vari ous know edge sources |ike | exicon, syntax and semantics. The
rules which describe the lexical constraints form the |exica
know edge. Rules in the |anguage which provide information on
word order and other grammar rules form the syntactic know edge
base. The subject verb agreement rules and other rules dealing
with the neaning of the sentence form the semantic know edge.
These systens were devel oped keeping in mnd the necessity of
usi ng speech and linguistic know edge in one form or other. The
techniques used by these systems <can be classified as
(1) Artificial Intelligence techniques that use pattern
recognition and Search, (2) Expert systens, (3) Hi dden WMarkov

Modeling (HMM) and (4) Artificial Neural Networks(ANN).



1.3.2.1 Artificial Intdligence Techniques

Met hods based on Artificial Intelligence were initiated in
1971 in the frame work of ARPA-SUR [54] project. Here the speech
recogni tion problemwas fornmul ated as a search probl em and hi gher
| evel know edge sources were used to reduce the search effort.
Conti nuous speech recognition is achieved using anfaééﬁggic
processor followed by a language processor. The acoustic
processor acts on the speech signal to produce a phonetic
transcription of what has been said. In this stage of processing
some fixed paraneters |ike formant frequencies and other
paranmeters are extracted fromthe digital waveformwhich are used
to derive a phonetic segnment lattice. The next step in the
recognition process is to find candi date words and word sequences
from t he phonetic segnent lattice using |exical, syntactic,
semantic and pragmatic knowl edge. This is done by the |anguage
processor which searches the phonetic segnent l|attice for good
mat chi ng words that can be used as seeds to build |onger partial
sentences. Thus the out put of the language processor is a

T T T T T T
sentence .t hat satlsfles aII the constralnts inposed by the
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various know edge sources. The inportant contrlbutlon to speech
recognition in this framework is the extensive use of heuristic
search techniques to search through the phonetic segnment
lattice. Various system configurations came into existence based
on how the higher |evel know edge sources are nodeled and are
allowed to communicate wth each other. Sone of the nodels are
t he hierarchical nodel, blackboard nodel, integrated network
nodel and |ocus nodel [33]. Activation of the know edge sources

I's governed by heuristic search techni ques and sone of the search



schemes used are depth first search, breadth first search,

probabilistic search and best few (beam)search.

1.3.22 Expat Sygem Techniques

In the early eighties, it was realized that know edge of a
task domain can be explicitly obtained and represented. Thus
expert system or know edge- based approach gained prom nence in
artificial intelligence. The idea in an expert systemis that the
know edge available with a human expert can be extracted and used
by the system which then perforns just |ike a human expert. Al so
mechani sm Knowl edge is represented in different forms with
provision for assigning confidence to the conclusion arrived at
by using the know edge base. This approach inplies that know edge
has to be manually extracted and entered in the system unless
some automatic learning procedure is incorporated. Since in nost
of these systenms knowl edge is separated from the inference
mechani sm updating the knowl edge is a sinple task. A nunber of
systems have been devel oped which use the concepts of expert
society where a nunberf\knovw edge sources in the form of expert
systens interact nostly in a hierarchical fashion. Expert systens
were devel oped for speech recognition based on the know edge
obt ai ned from spectrogram readi ng and from various specialists in

phoneti cs and | anguages.
1.3.2.3 Hidden Markov Modd Approach
Soon it was realized that it is difficult to obtain explicit

knowl edge and update the know edge using expert system approach
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for complex tasks like speech recognition, especially for speaker
independent and task independent systems. |f a large number of
training samples are available, then powerful statistical models
can be used to accomplish speech recognition. Hidden Markov
Model (HMM) is one such statistical technique which is currently
used for modeling continuous speech.

As against the DTw approach, where a reference was
represented by the pattern itself, the hidden Markov model uses a
model to represent the reference. Levinson [64] describes a
hidden Markov model as follows: A probabilistic function of a
(hidden) Markov chain is a stochastic process generated by two
interrelated mechanisms. One is an underlying Markov chain having
a number of states and the second one is a set of random
functions one of which is associated with each state. At discrete
instants of time the process is assumed to be in a unique state
and an observation is generated by the random function
caorresponding to the current state. The underlying Markov chain
then changes state according to its transitional probability
matrix. The observer sees only the output of the random functions
associated with each state and cannot directly observe the states
of the underlying Markov chain and hence the term hidden Markov
model.

There are distinct advantages of this type of statistical
model for speech patterns. It can model the temporal variability
of speech data. 1t can also capture the variability of speech
signal in an analysis vector. Moreover there is an established
technique for training the model namely the Baum-Welch algorithm.

In the experiments described by Levinson [65], which used HMM



with vector quantization, the recognition accuracy was conparabl e
to that of DTW recogni zers. It is further observed that DIW
recogni zers have a very sinmple training phase and a very
conplicated recognition phase, whereas HMM recognizers have a
conplicated training phase and a sinple recognition phase. To be
recogni zed, the input is conpared to a reference nodel. Hi dden
Mar kov Mobdel s have been used for different types of system

configurations [26]. P
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1.3.24 Artificial Neural Networks Approach TR

Artificial neural networks nodels attenpt to achieve real
time response and hunman-1|ike performance using many sinple
processi ng el enents operating in parallel as in biological neural
network system These nodels have great potential for speech
recognition, where many hypotheses are to be pursued in parallel
and high computation rates are required. Performance of the
current systens are far below the performance of humans [63].
Processing elenents or nodes in a neural network are connected
with links with variable weights. The sinplest node suns a |arge
nunber of weighted inputs and passes the result through a
nonlinearity. A node is characterized by an internal offset or a
threshold and by the type of nonlinearity used. The three types
of nonlinearity used are hard limters, threshold |logic elements
and si gnoi dal nonlinearity. Mre conplex nodes may include tine
dependenci es and operations other than sinple summation. Neura
net work nodels are specified by their topology, node

characteristics, and training or learning rules used. These rul es

speci fy how wei ghts have to be adapted during use to inprove



performance. A nunber of systens based on this approach are being

devel oped (43,84,75,88].

1.3.3 Difficulties with the Existing Sysems

Wiile we have said that HMMs and artificial neural networks
show good prom se, many scientists argue that only by integrating
an expert’s know edge with these nodels one can attain a high
recogni ti on performance. In SPH NX, the nost successful speech
recognition systembuilt so far, it is the integration of speech
know edge with the hidden Markov nodel formalismthat gave it a
hi gh recognition rate. Hence the inmportance of know edge in
conti nuous speech recognition cannot be di scounted.

In nost of the speech recognition systens built so far, the
speech signal is first segnented into sone units which are then
| abel ed. The | abeling was done upon subword units nostly based on
phonetic characteristics. These systens do not have hi gh accuracy
because reliable extraction of phonetic features from paraneters
of the speech signal is difficult. It is due to the fuzzy nature
of relations between features and paraneters. Moreover, the

si gnal
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representation in all these cases was_ based on fixed

paraneters irrespective of the phonetic nature of the segnent.
Henc;ﬁ}écent systems are focﬁsing on capturing the phonetic
information in the signal in symbolic form using acoustic-
phonetic know edge and processing the signal in a know edge

di rected nmanner.

14  Acoustic-Phonetic Block in Speech Recognition: Phonetic Engine

The trend in the last few years is to develop a signal-to-



synbol transformation nodul e which captures nost of the phonetic
information in the speech signal in synbolic form They use
extensively the relevant acoustic-phonetic know edge to decode
t he speech signal into phonetic units. This enables one to
devel op systens for large vocabularies in a speaker independent
node. These high performance front-ends for speech recognition
systens are caIIed[BﬂEHZEI;MZHafﬂggg[69]. Based on the synbols
that "are being used in théﬂsignal—to—synbol transformation

various kinds of phonetic engines are being devel oped. Mst of
the earlier systens used some kind of tenplate matching. But the

Lgfesent day phonetic engines use sophi sti cated know edge- based

techni ques for signal-to-.synbol transformation. The phonetic

engi ne concepts are extensively used by De Mori [21], Cole [14] .

and Haton [42].
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15  Scope of the Current Research

Most of the continuous speech recognition systens devel oped
so far were intended to respond to a query in a voice input node.
The systems tend to interpret the input based on the stored
knowl edge akout the vocabul ary of the task. They exploit the
redundanci es of the |anguage and context to correct the errors in
the synmbol string generated from input speech. Hence these
systems perform more of speech understanding than speech
recognition. Thus the performance in ternms of percentage accuracy
of words or sentences is not very relevant. |ndeed understanding
is a nuch nore conplex task than mere recognition, since all the
hi gher |l evels of know edge including pragmatics have to be

represented and used.
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W propose to undertake a well defined task which consists
of recognizing the input speech to generate the corresponding
text. This is like taking.dictation, where the output is unique
in the sense that— -the machine-is ta.reproduce..the. spoken text
‘W thout giving any interpretation. The output text is meant for
human use and hence a few errors are tolerable. Humans seem to
perform this task of taking dictation in an effortless manner
even though the subject matter is not well understood and the

vocabul ary is not conpl etely known.

1.5.1 Speech-to-Text Converson Systems for Indian Languages

Qur main objective is to address the issues relating to the
devel opnent of a signal-to-synbol transformation system for
| ndi an | anguages [102]. Utimtely we are interested in

devel oping a speech-to-text systemthat is speaker independent,

vocabul ary independent and task independent. Accuracy in the

oy i S

output text is not very inportant as long as the text is
understood by the human user. |f necessary, the output text nay
further be corrected by the user manually.

The organization of our speech-to-text conversion systemis
shown in Fig.1.2. It consists of four nodules: the acoustic-
phonetic expert, the |exical expert, the syntactic expert and the
semantic expert, which are connected in a hierarchical fashion
The acoustic-phonetic expert converts the input speech signal
into a synmbol sequence using primarily the acoustic-phonetic
know edge. The | exical expert converts this synbol sequence into
a sequence of words using primarily the |exical know edge. The

syntactic expert converts the word sequence into a sequence of
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phrases and clauses formng a sentence using primarily the
syntactic knowl edge and finally, the semantic expert selects only
meani ngf ul sentences to formthe output text. Each nodul e may use
any type of know edge it needs to performits specified function.
For exanple, the acoustic-phonetic expert may use not only
acousti c- phonetic know edge but also any other know edge needed
for signal -to-synbol transformation

The focus of the present work is on the acoustic-phonetic
expert nodul e. .The key point is the selection of a symbol and its
_recognition-in_continuous speech. In the follow ng subsection we
descri be sonme of the characteristics of Indian | anguages that are
exploited in the selection of a synmbol for the signal-to-synbol

transf ornati on.

1.5.2 Characteristics d Indian Languages
W need synmbols which can capturewwgl]‘ t he _phonetic

variations in speech and at the same time they can be converted
easily into a text form (1]. For this purpose we exploit the
phonetic nature of Indian |anguages. By this we mean that in

Ly €9

I ndi an | anguages |ike Hi ndi "we generally speak what we wite and uivesn.

-—
ta )gi'F 3w

Wwe wite what we speak". That is why we propose the characters of---:
ﬁ-ndi as synbols for signal -to-synbol transformation. The text to
be obtained in this case will be sinply a concatenation of the
witten characters derived from the speech signal. Thus the
conpl ex process of creating a pronunciation dictionary for words
I s avoi ded.

Sonme of the advantages of using characters as synbols are :

(1) The set of characters captures all the perm ssible
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conbi nati ons of consonants and vowel s in the |anguage.
(2) The nunber of characters in Hndi is finite and it is
much smaller than the nunber of words. The nunber of
characters is around 5000.

(3) Characters have a unique relationship to the

articulatory description and also to the synbolic

g representation to which an utterance has to be
ulti mately convert ed.

(4) Description of a character captures the necessary
coarticulation information relevant for its
recognition

(5) The character set is phonetically structured.

Sonme of the disadvantages of the character set are :

(1) They are still too large in nunber to deal wth the
exi sting systens.

(2) There are significant coarticulation effects of
one character over the adjacent character

gre P !
1.5.3 SignaltoSymbol Transformation for Indian Languages b Gitoy ey me b

A

To recognize a character from speech signal two approaches

can be used, nanely, (1) segnentation and |abeling and (2)

spotting. Ve use spotting because the unit is well defined and

contains nost of the required informatjon for deriving..it froma

Speech _signal. Character spotting requires that the infornation

contained in the speech signal be related to the description of
t he character. W propose a know edge- based approach to spotting
characters fromthe speech signal

Al t hough there are nearly 5000 characters in the |anguage,

v
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we consider a subset of about (350 characters which occur about

90% s¢f the tine. To spot a character in speech, a description of

the character is provided in terms of the speech production

mechani sm and the parameters of the speech signl The
bl ol e and_t! arameters ot the 8peach &29°

[ S

description represents the know edge of the character and this

knowl edge is used to spot the character in continuous speech. For

spotting, a\rul_g- based system is proposed-$0 be.used because the -

is/t__g be eraggesseo‘l in order to detect the presence of the
Eﬁar act\gr. To iﬁ-r;pl ement the proposed know edge- based approach for
character spotting, we need the acoustic-phonetic know edge of
the characters of Indian |languages. This will be discussed in

detail in Chapter III.

16  Expet Sydems in Automatic Speech Recognition

Automatic speech recognition is characterized by a close
interaction between a |low |level processing, i.e., acoustic-
phonetic processing and high |level interpretation. Know edge
engi neering techniques are hel pful at both these levels. expert
systens are particularly suitable at both | evels because we have
human experts who possess explicit know edge about the donain.
They al so provide general framework for the architecture of the
recognition system Further, expert systems for speech
recognition are particularly suitable because here the problem
know edge is distributed at various |levels and an expert system
for each level leads to nodularity and flexibility in the design
of speech recognition systens [106,49,11,22].

The acousti c- phonetic decodi ng or speech signal -to-character

n
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transformation in a speech recognition systemconstitutes a najor
bottl eneck in the design of practical speech recognition systens
especially in nultispeaker environments. Prototype-based
approaches, |ike classical pattern matching as explained in the
previous chapter, have proved to be insufficient in order to

obtain high accuracy. On the other hand a rul e- based approach for

e T

recognition yields good results but cannot take into account the
7\_- - -

RPN

| arge anmount of training data. This can be done by capturing the
N e

e;bertise accunul ated over the years by phonetician and speech
scientist, especially in reading spectrograns and other types of
paranetric representation of character. The.strong notivation for
using the expertise can be listed as foll ows:

(1) Availability of expertise.

(2) Expertise can be fornalized by a set of rules.

(3) Expertise is independent of vocabul ary.

The hierarchical nodel proposed for continuous speech
recognition system consists of different experts, the first one
of this being an acoustic-phonetic expert. A good acoustic-
phoneti c expert makes the others redundant because the character
- sequence corresponding to the input utterance is available at the
out put of the acoustic-phonetic block itself.

The expert system approach enables us to use the know edge
sources a human being uses to performthe task of signal-to-
character transformation. In our case the know edge required for
signal -to-synmbol transformation is acquired froma trained
acousti c- phonetic expert who will be able to spell clearly how

t he know edge is used in interpreting speech patterns. This

know edge is used as the rul e base for the expert system
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17 Organization of the Thess

The main focus in this thesis is to denonstrate the
potential of character spotting approach for speech signal-to-
synbol transformation for the Indian |anguage, Hndi. The thesis
is organi zed as foll ows:

W discuss in the next Chapter considerations in the choice

B racy, # IS WR S

haract rg,aSS\/anI s!for signal -to-synbol transformation for

SRR

of

continuous speech in Hndi. W also discuss the advantages of

lcharacter spotting appgoa_éi}:‘l and the need for acoustic-phonetic

know edge to inplenent the approach. Issues in the acquisition of
acousti c- phoneti c knowl edge for Hi ndi characters and the sources
of the know edge are discussed in detail in Chapter 111. The
procedure for acquiring know edge for each character and
representation of this know edge in the Ltgim_et rules ar e
described in Chapter IV. The procedure is illustrated in detail
for one character. In Chapter V we give inplenentation details of

@I e- based expert systems' for character spotting and discuss the

use of —— nathenatical  concepts for interpreting the results
of activation of the rules in a know edge base. In Chapter M the

_performance of ‘the character spotting experts are studied through

i i

several experinments on groups of characters. The inportance of
tuning the rule base and entries in the fuzzy table on the
performance of the system is enphasized. Finally the results of
signal -to-symbol transformation is denmonstrated for two
utterances. Chapter Vi1 gives a brief summary of the thesis work

and di scusses issues for further study.



CHAPTER-//
CHOICE OF UNITS FOR SIGNALTO-SYMBOL TRANSFORMATION

The first task in continuous speech recognition is to
transformthe i nput speech signal into sone synbolic form which
can then be interpreted to determne the correspondi ng text using
hi gher |evel know edge sources such as lexical, syntactic and
senmanti ¢ know edge. Consideration in_the choice of units for
synbolic representation for a speech-to-text conversion system
for Indian |anguages form the main subject matter of this
chapter. The need for identifying such units and the
characteristics these units shoul d possess, are discussed in
Section 2.1. Different types of units used in CSR systens
together with their relative advantages and disadvantages are
presented in Section 2.2 That section al so di scusses probl ens
with sone of these units. In Section 2.3 we discuss phonetic
characteristics of alphabet in Indian |anguages by taking H ndi
as an exanple. This discussion denonstrates the significance of
character of the language as a unit. In Section 2.4 the probl em
of recogni zing a character in continuous speech is addressed and
t he advantages in using a character spotting approach are
described. This section also explains the inportance of using the
acousti c- phoneti c know edge of H ndi character for inplenenting
t he character spotting. Details of the rel evant acoustic-
phoneti c know edge, its acquisition and representation are given

in the Chapter 111,



21  Need for Units/Symbols in Continuous Speech Recognition

The mai n purpose of synbolic representation of speech signal
is to be able to use the higher |evel know edge sources to
interpret the text corresponding to the speech signal. The
units/symbols should represent the phonetic characteristics in )
the input speech signal, since these characteristics uniquely )

o

Sypwrt

|
descri be the speech production process which in turn is unique "T
for a given message/text. The significance of proper choice of o
these units can be seen fromthe |imtations of the system

al ready devel oped. I n nost systens where speech signal is
represented by units corresponding to a fixed set of paraneters,

the paraneters dictate the anount of phonetic information
captured by the synbol sequence. For many systens the
recognition accuracy of units corresponding to dynamc sounds
such as stops is very poor (100]. Loss of crucial information
cannct easily be compensated by the redundancies in the higher

| evel know edge sources. Moreover these know edge sources are

al so inconpl ete in nost cases.

22  Types of Units

Speech signal can be represented in terns of units which are
derived fromthe spectral values of a fixed size (10 to 20 nsec)
segnment of speech. In this, each segnent of speech is
represented by a N dinmensional vector of spectral values. The
value of Nis typically in the range 16 to 32. The vector space
is quantized into a conveni ent nunber of levels (typically 100 to
1000) . In this case the nunber of. distinct |evels formthe

Junber of synbols. The nmain advantage of this schene is that



processi ng the speech signal is straight forward and no know edge
Is used in the processing. However, the synmbols are arbitrary
and have no relation to the phonetic characteristics of speech
sounds. Hence it is extrenely difficult to relate the synbol
sequence to a text consisting of a sequence of words.

A slightly better characterization of speech signal is
t hrough the use of units representing acoustically uniform
segnents called phones as used in [93]. In this, each segnent is
represented by the spectral value of the central frane of data
(10 to 20 nsec) in the segnent. There are about 100 such
units/symbols used in the systens developed at CMU in 70’s [54].
To successfully use this representation, it is necessary to
express all possible sequences of utterances in terns of these
units, which requires a lot of manual effort for a given task

Phoneme is a comon linguistic unit used to describe speech.
There are typically 40 phonemes for a |anguage |ike English.
However phonene is only an abstraction, and in actual speech it
represents several different sounds called allophones. _The
allophones represent the contextual wvariations of a phonene.
Utterances are expressed in ternms of sequences of phonenes. Wile
t he nunmber of phonemes is small and it is relatively easy to
describe a text in terms of them it is very difficult to
identify the phonemes in continuous speech. Segment ati on and
| abel i ng of speech signal becones a nontrivial task in this case.
Recognition accuracy will be very poor, usually in the range 20 %
to 40% [61).

| naccuracies in phoneme |abeling occur due to the

difficulties in segmentation at the phoneme transitions.



Diphone, which represents transitions of a consonant-vowel
sequence, solves the problem of segnmentation, because it is

relatively easy to determne the central region of a consonant

and central region of a vowel. Diphones al so capture the
al | ophoni ¢ variations caused by coarticul ation. But the nunber
of diphones is excessively |arge. Moreover it is difficult to

apply phonol ogi cal rules on diphones to derive diphone sequences
for sentences.

A large unit like syllable is relatively easier to locate
and identify in continuous speech. But it is difficult to define
precisely all syllables. Also the number of syllables in a
| anguage is quite large {73].

Wrd as a unit, elimnates many problens of segnentation and
labeling caused by variability of pronunciation, coarticul ation
etc. But t he number of words in a ianguage is SO large that it
IS impractical to consider it as a unit except for limited
vocabul ary tasks. ot

As we have seen, there are tradeoffs in the choice of units
for representing the speech signal. The larger the unit, the nore
are the number of wunits. Thus at the lower end there are
relatively a few phonenes but as we go towards the larger end to
diphone, syll able or word levels, the number of units becone
excessively 1large. From the point of view of processing
conplexity also, the identification of a phonene in continuous
speech is difficult because the relevant information for
identification of the phoneme is not present in itself due to

coarticulation. Further when conposing phonenes to form |arger

units, a great deal of conposition rules are necessary because
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rul es have to be used for specifying transition between phonenes
and their boundaries. Whereas if the unit is large, then the
above difficulties can be overconme in the sense that nost of the
speech sounds in the units can be easily recognized. This-is
_because the coarticulation information is captured in the unit
itself. Moreover the conposition rules are sinple, since these
units are not greatly affected by the environnent in which they
occur. It Eﬁq/is desirable that there be a natural relationship
bet ween the speech production model, the speech signal, the
intermedi ate representation and the ultimte synbol to which the
signal has to be converted. If this is the criterion, then nost

of the units like all ophones, diphones and syl |l ables do not have

any relationship with the ultimte unit of representation which

AT,
is normally the orfﬁbgrqphig form for the spoken utterance. In 4 ¢

nost of these cases a pronunciation dictionary is necessary tot

relate these abstract units to the orthographic characters. It is
therefore necessary to have a realistic unit with the follow ng
characteristics: (1)) The unit is large enough to make detection
of such wunits possible with conparatively easy processing
nmet hods, (?l)The nunber of units should not be too large and (3)
The units should be able to represent all utterances in the
| anguage.

In the next section we discuss the choice of synbol for

| ndi an | anguages taking these factors into consideration.

23 Choice of Units for Speech Recognition in Indian Languages
In this section we explain our choice of synbol for signal-

to-synbol transformation in Indian |anguages, particularly for

Liw
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H ndi. We propose the characters of the |anguage, H ndi, as units
for the speech signal-to-synbol transformation. The main reason

for this choice is the ynigu/en_hrel ationship between the spoken

e

utterance _and the witten character which is due to the phonetic
™ et e N S S e > -

nature of the |anguage. The characters are nostly consonants,
vowel s and conbi nati ons of consonants (C) and vowels (V) in the
fornms CV, CCV, and CCCV. Identification of the segnents in the
spoken utterance of a character, particularly the stop
consonants, is made easier because we already know the

)

acoustic/phonetic environment in which these occur. Si nce“ﬁj_e_

unit is large, most of the coarticulation information is also

_Captured in the unit itself. Yet, influence of one character over
the other exists, and is to be taken into account. But this
occurs in a few cases only. Also, the conposition of these
characters to form higher Jevel representation units like words
is atrivial task.

The al phabet for Hindi is given in Fig.2.i. It can be
observed that the al phabet are structured according to the place
and manner of articulation. 1In the structure of the stop
consonants like /ka/(& ), /ca/{J ), a ), /ta/( A ) and
/pa/ (T ), the novenent of the articulators is fromthe velar end
to the radiation end. Detailed articulatory description of these
is discussed in the next chapter.

The nunber of distinct units in Hndi is not excessively
large. Typically for Hindi the nunmber including all consonant
clusters is about 5000. This is calculated as follows. There are
totally 33 consonants, 356 CC clusters, 77 CCC clusters and one

CCCC cluster. In this calculation we considered only the valid
33
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Set of characters representing /@D Ja/Fn ) /A &)
vouel speech sounds W) I R i D)
/(3N /a3

Set of characters representing
QU coabinations uhere Cis any
plosive and Uis /a/ (¥

PLACE OF HANNER OF ARTICULATION
INVOICED VO CED
UNASP: RATED ASPIRATED UMSPIMTED[RSPIMTED

ff |

VELAR  |/ka/ (%) |/kha/(R) |/gas (TT) | /gha/CED | /nas( 32)

ARTICULATION NAsAL

[ PALATAL  |/ca/ (T )|/cha/(D) |/ja/ (WT) | /jha/tdD) | /aa/( OT)

RETROFLEX |/ta/ ¢ T ) |/tha/(3) | /da/ (T |/dhar( @) |/mas( O )

DINTI-
ALUEOMR

/ta/ ()| /tha/ () |/das (&) |/dha/ten | /na/t oA )

| BILABIAL |/pa/ ( T ) |/pha/( P /ba/ (&) |/bha/ @D | /ma/( 3T )
1 \ |

Set of other ¢V coabinaiions /ga/(‘a) /ra/( 2) N/ st dH
where U is /a/(3%) 15/t B) s5v () sy masd &)

The characters in Hndi occur in the follouing forw :
G U, QU ccv, ¢cou, ceocy

Pig. 21 Structure of the character set for Hndi

32



consonant clusters of Hindi. Since each of these clusters can
occur wiwth any of the 10 vowels, totally 4680 characters, or
roughly 5000 characters, are possible. Though the nunber appears
to be large there is a unique description for each of the
character. Because of this unique description, it is nuch easier
to spot the character as a whole in an utterance rather than
segnmenting and | abeling sone abstract units, and then formng a
synbol fromthese abstract units. The difficulty in. our approach
is that _the nunber of units is large. W have limted our study
—_— SO
in the present work to vowels(Vv) and consonant- vome{écw
conbinations. This forns a set Ofigiajcharacters consi sting of
the 10 vowels and 330 CV conbinations. In terns of their
frequency, this subset of characters constitute nearly 90 percent
of occurences in a text. It is also not difficult te form
nmeani ngful words fromthis subset. For detailed StUdy\BﬂlX,ZS iof

these'34g’ characters are used in this thesis. Appendix 1 gives

t he 340 character subset together with the notation used to

represent themin this thesis.

24 Our Approach to Signal-to-Symbol Transformation

Havi ng chosen the character as the basic unit, the next step
is howto transforma speech signal into the correspondi ng string
of characters. (ne straight forward nethod is segnmentati on and
| abel i ng, where a fixed set of paraneters are extracted fromthe
speech signal and the characters are identified by matching the
descriptions in terns of the paraneters. |In this thesis we

propose a character spotting approach, -in_which-the-description

of a character is glven |n terns of paraneters and features

- o BN
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relevant to the character. The speech S|gnal is processed in a
A

e o™

. \"‘ —— - hd 44‘

f

manner__ di dictated by the,,qllaracter 1nstead of ‘using a fixedV

strat egy for-processing-

—

The advantages of the character set for Hndi are that they
have uni que description in terms of speech production apparatus.
The characters are al so organi zed phonetically in such a way that

a slight change in the articulatory novenment is nost likely to

“.produce the sound corresponding to the adjacent character. I n

order to take advantage of the phonetic nature and structure of
the character set for spotting a character in speech signal, it
is necessary to have a detailed description of the production of
the character in isolation and in the context of other
characters. The description of each character in terms of speech
production paraneters and their acoustic nanifestation together
with the relationship _efween acoustlc features and signal

[ —

par amet ers constltutes t he acoustic-phonetic know edge. Thi s

e e b IR S ST T

knowl edge is essential to inplenment the character spotting

appr oach. We discuss the acoustic-phonetic know edge of Hindi
character set and issues involved in obtaining this know edge in

t he next chapter.

Summary

In this chapter we discussed the need for transform ng
speech signal into discrete units for continuous speech
recognition. Different kinds of units used in literature are
di scussed. Choice of proper units is essential for reducing the
conmplexity in speech-to-text conversion. In this respect the

suitability of character as a unit for speech recognition in

e e—

/



I ndi an | anguages is brought out. Wth character as the unit, we
proposed an approach based on spotting the characters in an
utterance using know edge- based techniques. In order to inplenent
this approach it is necessary to collect the acoustic-phonetic

know edge which forns the subject matter of the next chapter.
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CHAPTER- IIT

ACOUSTIC-PHONETIC KNOWLEDGE FOR CHARACTER SPOTTING

For spotting the characters in continuous speech, it is
necessary to have a conplete description of each of the
characters in terms of its speech production (articulatory and
phonetic description), its acoustic manifestation (acoustic
features) and the relation of the acoustic features to the
paranmeters of the speech signal. Al this constitutes the
acousti c- phoneti c know edge of the character set. The purpose of
this chapter is to describe the acoustic-phonetic know edge
rel evant for the character set of Hndi. The background needed
to describe the acoustic-phonetic know edge is discussed in
Section 3.1. In particular, we give a brief introduction to the
speech producti on nmechani smand the categories of speech sounds.

We al so discuss characteristics of speech waveform to show the

rel ation between-the acoustic. features and the- paraneters of the_ -

-speech signal. In Section 32 we give a list of the phonetic

features based on speech production. Using this background we
provide in Section 3.3 the phonetic description of the character
set in Hnd. This section illustrates the phonetic nature of
t he al phabet in Indian Languages in general, and in Hindi in
particul ar. Acoustic-phonetic knowledge involves relating the

phonetic features of speech production to the parameters of

speech signal. The sources for acquiring this know edge are
di scussed in Section 3.4, The way the acoustic-phonetic

knowl edge of the character set is derived in our studies is
( QWMLZﬁ?ﬁw“

4 . 2t
Gousoi oy peamadied
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illustrated in Section 3.5 The procedure to derive a conplete
description of the specific know edge for a character and
representation of this knowl edge for inplenmenting the character

spotting approach are discussed in the follow ng chapters.
3.1 Speech Production

3.1.1 Speech Production Mechanism (Articulatory Description)

Fig.3.1 shows various parts of the human speech production
mechani sm The basic source of power for the production of
speech is the respiratory system which noves air in and out of

the lungs. As the air is pushed out of the lungs, it goes up the

trache& and into the laxxnx_ql_which point it nust pass through
t he vocal cords. The vocal cords can be kept either apart or
cl ose together at will. Wen the vocal cords are cl ose together,
the pressure of the air stream through the narrow openi ng causes
the vocal cords to vibrate resulting in nodulation of the air
stream The air passage above the larynx is known as the voca
tract. The vocal tract can be divided into two parts - the ora
tract and the nasal tract. The oral tract is formed by the
pharynx, oral cavity and the mouth. The principal conponents of
t he nasal tract is the nasal cavity and the nostrils.

The nuscul ar flap ‘velum can be either raised to shut off the
nasal tract to the air streamfromthe larynx or lowered to
allowthe air streamto flow through the nasal tract. The velum
tongue and the |lips are the principal articulators in speech
producti on. Characteristics of the speech sounds depend on the

configuration of the vocal tract.
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I. Hard palate
2. Soft palate
3.Velum

4. Nasal cavity
5. Nostrils
6.Lips
7.Tongue

8. Pharynx

9. Epiglottis
10. Glottis

I'. Vocal cords

12. Thyroid cartilage
13. Cricoid cartilage
14. Trachea

|S. Oesophagus

Fig. 3.1. Vocal tract showing oral and nasal tracts
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Figs.3.2 and 3.3 give sections of the vocal tract with the
nomenclature of relevant places on the upper and |ower surfaces
of the vocal tract [59]. The names are used to categorize and
descri be various speech sounds. Wth this background of the
speech production mechani sm and the term nol ogy, |et us now | ook
at the categorization of speech sounds in ternms of articulatory

descri pti on.

3.1.2 Categories of Speech Sounds

Speech sounds are characterized by both dynamic and static
behavi or of articulators. The static behavior of articulators
are usually discussed in terms of static positions of
articulators as well as on the manner of production (or manner of
articulation). The dynami ¢ behavior of articulators are usually
di scussed in ternms of initial position of articulators usually

called place of articulation. One nmay categorize speech sounds

into two broad classes - consonants and vowels. Consonants are
produced when the air stream tthﬁEﬁwThe vocal tract is
obstructed in sone way by the articulators. The classification
of various consonants is based on the place where the obstruction
takes place as well as on the manner of articulation in the
production of the consonant. Vowel s are produced with a
relatively free passage of the air streamin the vocal tract with
t he vocal cords set into strong vibration resulting in sound
generation. The quality of the vowel is a function of the shape

of the vocal tract and hence vowel <classification is based on

t he positions of the articulators which dictate the shape.
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Fig. 32 Uppe surface of vocal tract

Fig. 33 Lova surface of vocal tract

40



Consonant categorization is usually done in two |evels.
The first level is based on the 3 manner qﬂ articulation and the
second level is based on theIBiége{Lt articulation. The
obstruction in the vocal tract 6ould occur in many ways. The
articulation may conpletely close the oral tract for an instant
or a relatively |ong period. They nmay narrow the space
considerably or they may nodify the shape by approaching each
ot her. When conpl ete closure of the oral tract occurs, ’stop’
sounds are produced. The conplete closure of the oral tract
results in pressure building up behind the obstruction. Wen the
articulators come apart, the air stream is rel eased sharply.
When the articulators cone nearer and the air flow is only
partially obstructed, a(Eé;gplehﬁ air flow occurs at the point of
constriction resulting in 'fricative' _ sounds. The air stream
along the center of the oral tract IS obstructed when there is
inconpl ete closure of the tract between the tongue and the roof
and this produces 'lateral’ sounds. 'Trills' are produced Wen
the tip of the tongue intermittently touches the al veol ar ridge.
"Tap’  sounds are produced when the tongue nmakes a single tap
agai nst the al veol ar ridge. ‘Affricates’ are produced when the
tongue tip or blade close on the alveolar ridge as for a stop but
instead of comng freely apart separate only slightly. The
condition of the vocal cords vibration determ nes whether the
consonant is voiced or unvoiced. The second |evel classification
of consonants based on the place of articulation is dictated by
t he position of the maxi mum constriction in the vocal tract.
FHg.3.4 shows the points of constrictions in the vocal tract and

their names for classifying the places of articulation.



Places Of articulation -1 Bilabial ; 2 Labiodental; 3 pental;
4 Alveolar; § Retrofiex ; 6 Palato-Alveolsr - 7 pyjata): 8 Velar.

Fig. 3.4 Position of articulators for different places of

articul ati on
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Vowel categorization is based on the shape of the vocal
tract and the shape is nostly dictated by the position of the
tongue and the shape of the lips. The velumtoo plays a role in
that it dictates whether or not the nasal tract is coupled to the

vocal tract. The position of the tongue is categorized in terms

of the highest point of the tongue. Fig.3.5 shows the tongue
position for different vowels sounds in Hndi. The term'front'

inthe figure refers to positions closer to the mouth and ‘back’
refers to positions inwards away from the nouth. The shape of

the lips is usually either rounded or unrounded.

3.1.3 Nature o Speech Signal

Having |ooked at the characteristics of the speech
production mechani smand the categories of speech sounds produced
by it let us now |look at the speech signal which is the
output of the vocal tract system The speech waveform which
is the time domain representation of the speech signal, depicts
t he instantaneous anplitude of the signal. The speech waveform is
a direct form representation of the sound waves. The nature of
t he speech signal for different categories of speech sounds
w || now be di scussed.

The condition of the vocal cords dictates the gross
characteristics of the speech waveform The open condition of the
vocal cords results in free flowof the air stream and no
specific quality is inmbibed by the air stream On the other
hand, when the vocal cords are vibrating, the air stream
Is also nodulated and this results in periodicity in the speech

signal. These two conditions are characterized as the_unvoiced



front back
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Fig. 3.5. Position of tongue for different vowels

1. /iz/(F) 2. /i/(F) 3. /e/( Q) 4. /er/( Q)
5. /a:/(3M) 6. /u/(IF) 7. /ui/(F)
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and voiced natur of the speech signal respectively. The inverse

of the base period of the periodic speech signal 1is
characterized as the ' 'pitch which directly relates to the
frequency of vibration of the wvocal cords. The speech

wavef orm for the.gggg%sgg§9n2pps show a burst of signal with no
specific periodicity for a short period due to the sharp rel ease
of the air stream The gﬁggg;iygg show a noi se li ke
characteristic in the speech waveform due t o the turbulent nature
of the air stream through the constriction in the vocal tract.
The vowel s are produced with strong vibrations of the vocal cords
and result in high anplitude periodic signal. The quality of the
vowel cones out as the fine structure in the waveform shape

whi ch i s determined by the various resonances of the vocal tract.

The resonances of the vocal tract are terned as the fornmant

frequencies. The formant frequencies are not directly apparent
in the speech waveform They are discernible as the peaks in the
envel ope of the frequency spectrum of the speech waveform The
nasal sounds are produced wth the oral tract closed at or near
the mouth and the nasal tract opened to the air stream The nasal
sounds are always produced wth the vocal cords vibrating. Thus
t he speech waveform for the nasals show periodicity. The fine
structure in the waveform shape reflects the additional
resonances due to the nasal cavity. The closed oral tract can
absorb energy at certain frequgncies and this results in
antiresonances or_antiformants Qﬁfﬁh appear as valleys or dips in
the spectral envelope of the frequency spectrum of the signal

Fig.3.6(a) shows the detail ed speech waveform for sone

categori es of speech sound highlighting the points discussed in
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this section. Fig.3.6(b) shows the frequency spectrum of a

vowel region of the speech signal identifying the fornmant

peaks.

3.2 Phonetic Features of Speech Production

Phonetics deals with the study of pronunciation of speech
sounds of a |anguage. Based on the different categories of speech
sounds, the various phonetic features that are used in describing

t he speech sounds are the following [12]:

1) voiced 2) unvoiced 3) fricative 4) affricate 5) stop
6)semivowe  7) vowd 8)aspiration  9)velar 10) palatal
11)labial 12)denti-alveolar 13)retroflex  14) front 15) back
16) central 17)rounded 18) unrounded 19)close 20) open
21)half-close  22) nasal 23) trill 24) |lateral 25) glide

A Dbrief description of each of the features wth exanples
for the case of Hindi |anguage are given bel ow.
Voiced : Voiced sounds are produced by a nechanism where the
vocal <cords are in a position such that they will vibrate when
there is sufficient air stream Eg. /b/( 4 ), /d/( 3 ) and
/9/C 3L
Unvoi ced : Unvoiced sounds are produced by a mechanism in which
the vocal cords are opened so wide that there can be no voca
cord vibrations. B /p/( 9 ), /t/( Z ) and /k/( & ).
Fricatives : Fricative sounds are those sounds that are produced
by cl ose approximation of two articulators w thout conplete

cl osur e. The t ur bul ent air flow results in noi se-1i ke
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characteristics in the sound. By. /s/( & ) and /s/( ¥ ).

8tops : Stop sounds are produced by the conplete closure of the
vocal tract for a short tinme by the articulators involved so that
air stream cannot escape through the nmouth. Eg. /p/( t{ ),
/b/( ) and /k/( & ).

Affricate : These are conbi nati on sounds where a stop is foll owed
by a fricative. BH. /c/( ﬁq y and /3/( T ).

Semi vowel : Sem vowels are vowel-like sounds with nore
constricted vocal tract than in nost vowels. EB. /y/( ) and
v/ A,

Vowel : Vowel sounds are produced with strong vibrations of the
vocal cords when none of the articulators cone close and
the passage of air stream is conpletely unobstructed. The
different categories of vowels are specified in terns of
position of the tongue and rounding of Iips. BEg. /a ( = ),
/e/( T ) and /i/( § ).

Aspirated : This sound is produced when forced air stream flocws
through open vocal tract with very little or no vocal cord
vibration. The sound produced is that of a turbulent air flow
which inplies that it has noise |ike characteristics but wth
spectral detail dictated by the vocal tract resonances. This
feature is present in certain class of stop consonants. Eg.
/ph/( % ) and /kh/( E{ ) -

Velar : This feature specifies one place of articulation of stop
consonant. The place of articulationis in the vocal tract at the
velum Eg. /k/( & ) and /g/( r).

Pal at al : This feature specifies a second place of

articulation. Here the stop consonant is produced with the blade



of the tongue approaching or touching the hard palate.
Eg. /¢/( =T )-

Denti - al veol ar : This feature specifies a third place of
articulation. Here the stop consonant is produced by the tongue
tip approaching or touching a regi on between dental and al veol ar
ridge. Bg. /t/( a ).

Retroflex : This feature specifies a fourth place of
articulation though it resembles closely the manner of
articulation. Here the sound 1is produced by curling the tip of
the tongue wup and back so that the underside touches the back
portion of the ridge. Eg. /t/( ).

Labial : This feature specifies a fifth place of articulation.
Here the stop consonant is produced by bringing the two |ips
together. Eg. /p/( T ) and /b/ ( gy,

Front : This feature specifies the\type of vowel produced or in a
way it specifies the place of articulation for the vowel. This
type of vowel is produced when the highest point of the tongue is
in the front portion of the oval tract (closer to the nouth).
Eg. /i/( 3 ) and /e/( T ).

Back - A vowel of this type is produced when the tongue is close
to the upper or back surface of the vocal tract inwards away
fromthe mouth. Eg. /u/( 3 ) and /o/( yﬁ ).

Central : This is another feature which specifies the type of
vowel produced. A vowel of this type 1is produced when the
position of the highest point of tongue is at the central portion
of the vocal tract. Eg. /a/( 3T ).

Rounded : This feature specifies the manner in which the vowels

are produced. A vowel of this type is produced with the |lips

(\Y’ ity 3 \3
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rounded. E§. /u/( I ).

Close : This feature specifies the position of the tongue wth
respect to its neutral position. Wien vowels of this type are
produced the body of the tongue is raised above its nornal
position. By /u/( 3 ).

Half_close : Wen vowels of this type are produced the body of
the tongue is inits neutral position. Eg. /o/( =X).

Open : Wen vowels of this type are produced the body of the
tongue is belowits neutral position. B /a( =23 ).

Nasal : Nasal sounds are produced when the air streamis allowed
to pass through the nasal tract instead of the vocal tract.
Eg. /n/( & ) and /m/( H ).

Trill : This feature specifies the degree of vibration of an

articulator Wwhen air stream passes through the vocal tract.

B. /r/( I )-
Lateral : These sounds are produced when a | arge portion of the
air streamflows over the side of the tongue. Here the tips or
the sides of the tongue touch the roof of the oral cavity.
Eg. /1/( & ).

Though a list of features is given, it is not necessary that
the descripticn of a character contain everyone of these
features. A character can be described by a subset of these
features by studying the speech production nechanism In the

next section we describe the organization of the character set

in HnNdi using these features.

33 Phonetic Description of the Alphabet in Hindi

The list of characters in Hndi that formthe basi c al phabet



set is shown in Fig.2.1 of Chapter II. The table in the figure
gives only the basic set of characters and the actual nunber of
al | possi bl e characters is approximately 5000. _The nunber _of
- characters consisting of vowels and consonant vowel conbinations
only is 340 The characters can be described in terms of the
ilﬁiil\ing phonetlc" features descrrbed |n the prevrous sectlon

v T N

Appendix 1 gives a descrrptron of the characters that are

consi dered in our study.

This description fornms one of the key knowl edge bases in our
approach. Having obtained this description, it is necessary to
rel ate the phonetic features to its acoustic manifestation in the

signal. This relationship or in other words the knowledge base
e S e o —_

is what is considered in the next sectron

3.4 Sources of Acoustic-Phonetic Knowledge

Acousti c- phonetic know edge for the character set has to be
collected fromvarious sources. The primary source is an expert
phonetician who will be able to describe the speech production
process for each character interns of the articulators and
acoustic features. Speech spectrogramis a display of visible
speech which is a good tool used by phoneticians to describe the
acoustic manifestation of the production process. A detailed
anal ysis of speech signal using signal processing algorithns wll
enable us to quantify the acoustic features seen in a speech
spectrogram U timtely, it is our ability to process the speech
signal in a desired manner which dictates the wutility of the

acousti c- phonetic know edge for speech recognition.

ClyeTn, =iy phordt:e dostns = acgtic ot
& ’ f27) N

’1“ R QT W
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3.4.1 Expert Phonetician’s Description of Characters

The phonetic features listed in Section 3.2 and the
character descriptions based on these phonetic features have
evolved through interaction with phoneticians. These
categori zations and descriptions help in viewi ng the character
set from a neani ngful perspective with an orthogonal set of
descri pt ors.

The integration of the various sets of features is what

occurs in the actual acoustic signal. It S necessary to estinmate

—_—————e ~——— ——

what features in the acoustic signal account for the various
descriptors or phonetic features to realize the necessary
mapping from the signal to the descriptions. A p{l?lilGElCl an can
descrlbe a character in terns of its.-phonetic featTJres and

N

——

acousti c behaviour.

The expertise in a phonetician is in ternms of the
under standi ng of the interaction of various phonetic features and
their acoustic manifestation arrived at by careful analysis and
interpretation of several cases. This understanding enables a
phonetician to interpret the speech signal and performa reverse
mappi ng from speech signal (or spectrogran) to acoustic features
to phonetic features. It is this know edge that we need to

abstract fromthe phoneti ci an. v LAl

3.4.2 Spectrogram Reading

Phoneti ci ans use spectrogram as the basis for analysis of
speech sounds. Spectrogramis the frequency donmai n representation
of speech signal at various instants of tine. The two-di nensi onal

representation of a speech signal consisting of the signal



anplitude as a function of tine is converted to a three-
di mensi onal representati on consisting of the anplitude (actually
power expressed in dB) of the various frequency conponents in
the signal as a function of tine. The three dinensional
space is represented in two dinmensions by tinme and frequency
inthe x and y axes respectively, wth the anplitude represented
by the gray levels of the display. Peaks in the envel ope of the
frequency spectrum of the signal appear as darker regions in
t he spectrogram Steadiness of the spectral characteristics of
the signal over a certain interval of tinme is reflected as a
steady pattern persisting for sonme tine. Vowel sounds display
regul ar vertical &triationsiin the pattern due to the inpulse-
li ke nature of the vocal cord vibrations. A voice bar is also
present at the low frequency end due to energy concentration
at the pitch frequency. Voiced sounds which in our termnol ogy
correspond to the low energy signal with vocal cord vibrations,
exhibit only the voice bar in nost cases. Noise-Ilike
characteristics in the signal result in patterns wth randomy
distributed dark regions in the frequency axis. Low energy
regions in the signal showlight patterns while high energy
regions exhibit dark patterns. D stribution of signal energy in
the frequency spectrum is conveyed by the distribution of the
dark regions along the frequency axis. In short, the spectrogram
patterns reflect the frequency domain characteristics of the
signal as a function of tine.

Formants, which appear as dark horizontal bands in the
spectrogram are inportant features used in spectrogram readi ng.

Due to the relationship of formants to vocal tract resonances,



the tracks of formants on the spectrogramprovide clues to infer
t he shape of the vocal tract and the position of the articulators
during speech production.

Fg.3.7 shows speech signal and correspondi ng spectrograns
for different vowels of Hindi spoken by a male speaker. The
formant tracks for F1, F2, F3 and in sone cases F4, F5 can be
seen in the figure. It can be clearly seen that differences in
t he spectrogram for various cases of vowel utterances are in the
positions of the formant tracks F1 and F2. Vowels exhibit flat
formant tracks as there are no vocal tract changes during the
production of steady vowels. Diphthongs, on the other hand,
exhibit a change in the shape of the vocal tract in its
production. There is a gradual change of the shape of the voca
tract from one vowel .positionto another vowel position. Thi s
appears in the spectrogram as inclined formant tracks which
start from the position corresponding to the initial vowel and
gradual ly change position to that corresponding to the final
vowel . Fig.3.8 shows the formant tracks corresponding to the
di pht hong saiz( © ) and sau/( s%¥). Semivowels show fornmant
changes in the initial portion of the utterance due to the
qui ck change in the articulatory positions at the begi nning of
the utterance. HF(Qg.3.9 shows the characteristics of the change
in formants for the semvowels /ya/( &), /ra/( T ), /lal (&)
and /va/(d ) of Hndi. Fig.3.10 gives the speech signal and the
correspondi ng spectrogram of a sentence spoken in Hndi by a
mal e speaker. A manual transcription of the different regions of
the signal in terns of the characters of Hndi is also marked

The sentence contains conbinations of CV as well as ¢cv sounds,
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wher e, C 1is a consonant and V is a vowel. Changes t hat
take place in the speech production mechanism in the course of
producti on of the sentence are evident in the spectrogram

The pictorial representation of the spectrogram makes it
possible for us to see the patterns and detect trends in the
signal using our visual capability. The spectrogramthus proves
usef ul in the analysis. One should renmenber that the
spectrograns considered were for the case of speech uttered by a
single speaker. For proper analysis, it is necessary to study
spectrograns for various speech sounds spoken by severa
speakers. This cones under the purview of the phonetician.

At this stage, we are in a position to relate the

_phonetic features_to their acoustic behaviour in terms of the .~

spectrogram  The relationship is still qualitative since we
di scuss in terms of patterns and trends in the spectrogram and
their behaviour. These patterns are nothing but descriptions of
t he acoustic mani festation and hence we can consi der this
rel ati onshi p as between phonetic features and acoustic manifesta-
tion. In sone sense the spectrogram is a faithful repre-
sentation of the signal. Hence it is possible to quantify some
aspects of the acoustic manifestation in ternms of values. But
_Lh[§\is not enough. We need to quantify the patterns and trends,
Eé yéljj %hich is not easily possiBIe. It is better to view the
<a_nal ysSi S based On spectragram as provi ding clues in terms of what
to look for in the signal to establish the presence or absence of
a feature, and use the values obtained from the spectrogram in
"the detection process. This leads us to the next topic of

di scussion, nanely, paranetric analysis of speech signal

-



3.4.3Analysis o Specch Sgnal

A careful analysis of the speech signal is required to
extract features visible on a spectrogram Certain features can
be categorized as gross features and certain others as fine or
detailed features. The gross features are the ones that are
applicable alnost in a universal manner over various categories
of speech sounds. The fine features usually relate to a smaller
set of categories. The choice of the set of paraneters is an
I mportant consideration and is based on the techniques avail able
as well as the efficacy of the parameters in representing
features of interest. Certain features may warrant the
devel opment of speci al techni ques for extracting new
par anet ers.

Sonme of the paraneters that are used in this work to spot
gross features are energy (ENR), spectral flatness ( SPF),
spectral distance or Itakura distance of adjacent franes of
signal /(spPD), high frequency energy to | ow frequency energy ratio
(HLR), and the first coefficient of linear prediction analysis
which reflects the |low frequency energy content (LP1). Fig.3.11
shows the plot of these paranmeters for an utterance. The figure
includes the corresponding speech waveform which is time
aligned with the paraneters. The phonetic transcription of the
speech signal is also indicated in the figure. The plot
also includes the formant tracks or rat her spectral peaks
which we shall discuss later. Instants of change in the signal
are also identified and the types of changes that occur in
vari ous paraneters are clearly visible with respect to the

identified instants of change in the signal.
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The! ENR parameter is chosen due to its direct relationship
to the anplitude or the strength of the signal. The SPF parameter
provi des a gross neasure of the shape of the spectrum It has the
ability to characterize the degree of flatness in the spectrum
which reflects the degree of noise-like behavior in the signal.
Thi s paraneter i's obtained by linear prediction analysis of the
signal. It quantifies the dynam c range of the nodel ed spectrum
The SPD / parameter quantifies the degree of change in spectra
characteristics of adjacent regions of the signal. This paraneter
Is also obtained from |linear prediction analysis of the signal.
This quantifies the spectral difference between the nodeled
spectrum of the signal in adjacent regions. The HLR paraneter
refers to the ratio of energies in regions above and bel ow

_A.25 kHz. The paraneter is conmputed fromthe Fourier transform
magni t ude spectrum The LP1 paraneter quantifies the enphasis of
the [ ow frequency in the nodel ed signal. The paranmeter has chara-
cteristics akin to the inverse of the HLR paraneter, but the
quantification has differences in enphasis. The former is node
based while the latter has an arbitrary point of demarcation
bet ween t he high and | ow frequency rggions.

Thus, these set of [parameters) provide a gr oss

p——

characterization of the signal and formthe basis for detecting

N ks

the presence. or absence of relevant gross acoustic features. A

rsoramm e 7

detail ed analysis of these paraneters is called for in arriving
at the ranges and thresholds for different parameters for
various acoustic categories of the signal. This is done by neans
of plots of the form shown in Fig.3.11 of a large set of

utterances.
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As seen in Section 3.4.2, the detailed acoustic features in
the signal are nost often inferred from the trends in fornant
tracks. Hence wobtaining formant tracks of the signal should
contribute significantly to the detailed acoustic categorization
of the signal. A well known technique for obtaining formants is
by peak picking the linear prediction nodeled spectrum [78].
This gives spurious peaks in nmany cases. <5~§§922ig53_99§§gw92
\QLPUP\EE'aX,EEEEEFP? [25] was used in our studies. The formant
contours*;hown in the bottom plot of figure are obtained by
this technique. A point to be noted with reference to the
frequency verses tine plot of the formshown in figure is that
it should not be read |like a spectrogram The plot only shows
the location of peaks in the spectral envel ope. Ot her details
are masked. An inportant aspect of the technique is that it is
nonnodel based and hence peaks obtained from this should reflect
the formant information better than that the obtained by model-
based techni ques. Note that in these plots the peaks for unvoiced
segnents of data were nasked

Formant contour plots of the formshown are analyzed for a

| arge set of utterances to arrive at the ranges, thresholds and

trends of these paraneters for various acoustic features.

3.5 Acoustic-Phonetic Knowledge for Character Set

The phonetic features shared by the character set suggests
some form of grouping anongst them The grouping facilitates
conpil ation and organi zati on of the know edge base. In addition,
it helps in working out some common control strategies and rules.

The details of the classifications of rule base for the character



set based on phonetic features are given in Section 3.5 1 The
derivation of acoustic correlates for various phonetic features
for each character is discussed in Section 3.5 2 Section 353
covers the derivation of invariant acoustic cues to overcone

variability associated with the signal.

3.5.1 Grouping o Characters

W can group all the character occurring in Hndi into two
groups - voméés and %th%Vé. The second group consists of
consonants occurring on their own and conbination of consonants
with vowels. In order to achieve this grouping we try to use
some gross phonetic features. For exanple, the feature vocal i cl
can be used to separate vowel regions from other consonant al
regi ons. This feature together with other features |ike burst

and aspiration can be used to separate regions in the utterance

into two groups nanely vowels and others. A rule that can be
used is:
Rule 1 If vocalic region is preceded by stop or burst

—_—
—_———e

or aspiration or a combination of any of these

4 then it is elimnated or rejected as a vowe

occurring on it own. If the silence region

1. vowel as a phonetic feature is termed vocalic here to

di stinguish it fromvowel as a character

65



preceding the vocalic region is longer in
duration, then this region can be considered as a

vowel occurring on its own.

In the above classification the speech sounds under the
first group are listed as vowels occurring on their own. Thi s
list for the case of Hndi is as follows: /a/( 3x), lal( A7),

/i/C 3 ). /i/( §' Yo /9/C I ), /as/(T ), /e/(TQ ), /ai/( a )
/o/(}ﬁ), and /au/(.y*). The first rule for all the characters

in this list will be the same, nanely, Rule 1 This rul e when
applied on the input wutterance will identify regions
corresponding to these sounds. This group can be further

subdi vi ded into subgroups based on features like front, back and
central . This particular feature set is chosen because the
nunmber of vowels occurring with central feature is | ess in nunber
and a | arge nunmber of vowels are distinguished by front and back
features. Based on this classification, the vowels under first
group can be subdivided as front vowels, back vowels and central
vowel s. For exanple, the subgroup having the common feature
front which consists of characters /i/( 3 ), /i:/( 3 ), /e/( Q)
wi Il have a common rule called front detection rule. Wereas the
characters su/( 3 ), /u:/(3 ), /o/( }%) wi |l have a-conmon rul e
called back detection rule and the rest of the vowel characters

will have a rule called the central detection rule. Each of the

sub-groups is further subdivided into smaller groups based on
features |ike high, high-mid, Hid’ Igmtnid and [Bﬂfmhich are the
remai ni ng features distinguishing nmenbers within each sub group.
These renmi ning features di stinguish individual character within

each sub group. Hence each character in the subgroup.;.,wll have



the necessary rule to detect the appropriate features. <
it -

Thus, in writing the rules for each of the character
corresponding to vowel group there can be a set of rules conmon
to a nunber of characters but there will be at |east one rule
t hat distingui shes one character fromthe other. The same set of
rules can be used with slight modifications to account for
contextual effects when these sounds are considered in the
context of consonants, nanely, recognize the vowel part in cv,
CCV and CCCV conbi nati ons.

The second group corresponding to the other category can be
further subgrouped based on suitable distinguishing features. In
this group each character has a consonant part followed by vowel

part. The consonantal part can be a either a single consonant or

a cluster of consonants. Each single consonant can be either a
stop, a fricative, an affricate, a lateral, a trill or a glide

A cluster can be a conbination of the above. Using suitable
features a nunber of subgroups can be forned. Menbers of the

subgroup can use suitable distinguishing features to either form
subgroups or reach individual characters. This can be carried
t hrough until each characters has appropriate distinguishing
rul es.

The grouping is done based on

(1) The conplexity of observing the feature. The | ess

complex it is the easier it is to form the
correspondi ng group. The nore conplex features are
chosen as we form further subgroups. In this manner in

the set of rules used for each character the gross

features _are all chosen first and .the-finer-features

((V



are chosen at the end. This improves the performance
of character spotting.
(2) The feature chosen should group the characters based on
S . .
the/;hé simlarity of the corresponding sounds. Anobng
the characters with confusable sounds that are forned
into a group nore conplex features are used to separate
out individual characters. The conplexity of a feature
is based on deriving the feature from the paranetric
representation of the signal
Based on these principles the feature voiced is chosen to
classify the second group into voiced and unvoiced subgroups.

Here the decision is based on the characteristics of the

consonant occurring at the beginning of a speech sound. The

———

voiced feature is used because it is easier to identify the
/‘“\‘“‘ . S . _ .

— P e — T

presence or absence of this feature in the signal when EEEPared

e T e e o T e e o A e

LQLLhﬁ,Lea[yL§§dgﬁmglgce_agglgg;gtion.

NN

Further grouping of speech sounds can be obtained by
consi dering each one of the subgroups and their distinguishing
characteristic. For exanple in the case of unvoiced subgroup
the classification can be based on the place of articulation
nanmely, bilabial, dental, alveolar, retroflex and velar. The
aspirated feature is nmoved to the |last stage of grouping because
when produci ng such speech sounds it is observed that not many
speakers produce this difference in sound though this is a
di stingui shing feature.

At the final stage of classification, once the initial
consonant segnment is identified the groupings based on clusters
can be done. Here the same know edge base used for the

\;.

L med <0
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consonant al segments can be used to identify the different
consonants in the clusters.

Once the consonant region is identified, the groupings
devel oped for the vowel group can be applied to lead to the
conpl ete character. It is to be remenbered that the groupings
are done only to facilitate the listing of rules but ultinmately

each character will have its own set of acoustic correlates to

\7{@’,\%-1:«5»:\@_ a(ga//kc o 1’;1‘0
g 14 Pt

< 'd:;'.« u/u‘_ﬁi" ’
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3.5.2 Acoustic Correlates of Character S A

reflect its individual nature.

Having classified the character set into a taxonony based on

features and putting it in the formof a rule base as a starting
point, it is now necessary to determne the acoustic correlates
for the phonetic features in the context of each character

The followng list gives sone of the paraneters and features

they determ ne as obtained from an acoustic-phonetic expert:

Par anet er Description Feature Indicated
0-5 KHz. sonorant vowel or voiced

consonant. A high value al so
i ndi cat es absence of unvoi ced
consonant and nasal s.

ry first auto A high val ue indicates |ack
correlation of high frequency ener gy
(not a fricative)

Zero Crossing - A high value indicates fric-
ative, voicel essness, silence
or pause.

Fo Fundanent al Its presence indicates

frequency voi ci ng

F,, F, and F4 First three These signify the place of
articulation of vowels.

Burst Spectrum Peak of burst Its value indicates place of

spectrum articulation for stops and
(f requency) nasal s.

Di ps Dips in | ow It indicates presence of

frequently fricative, aspiration and

ener gy bur st .



Based on the above as well as other studies covered in
Section 3.4, a general set of parameters which are useful in
identifying phonetic feature in the signal are given below.

(1) From the time waveform and autocorrelation function

(a) Fundamental frequency or pitch
(b) Zero crossing rate
(2) From the Fourier transform spectra
(a) Root mean square energy
(b) Total Energy
(c) Very low frequency energy
(d) Ratio of high frequency to low frequency energy
(e) logarithm of energies mWwfrequency

~

(3) Autocorrelation coefficients

(a) re - total energy
(b) =, - low frequency energy
or

Linear Prediction Coefficients

(a) First LPC - low frequency energy

(b) Spectral Flatness measure

(c) Formants 1, 2 and 3

(d) Nonoverlapping frequency bands of energy.
(4) Changes in parameters described above

(a) rCips in spectral parameters

(b) Sharp changes in intensity

(c) Abrupt drop in energy

(d) Gradual drop in energy
The parameters listed above are not exhaustive and it is not

necessary that all these parameters be used in each character



expert. The description of the character dictates the type of
parameter to be used and also the nmethod of extracting the
parameters from the speech signal. For exanple when vowel
segments are being identified in a character it may be necessary

to have better spectral resolution whereas when consonanta

segnents are being analyzed, particularly in the case of stop
consonants, it may be necessary to have better _tenporal
resolution. Thus, know edge-based signal processing can be done
to extract relevant paranmeters using specific signal processing
t echni ques.

In the case of vowels it is generally considered that
position of first three formants are sufficient cues for
identifying various features like central, back, front,  high,

high-md, md, lowmd, |ow, rounded and unrounded. Vowel speech

sounds or their description in ternms of phonetic features are
conceived as points in an acoustic vowel space in which the

coordinates are first and .second formant frequencies. I n

addition, third fornaqg_i§_used to decide the feature rounded to
nrounded. Cenerally for Hiaa{ vowels it is observed that there
iIs a quality difference as well as durational difference between
long and short vowels. These are evident when conparing fornmant
plots for the vowels /a/ (x) and /a:/ (3¥) in the Figs.3.12 and
3.11 respectively.

There are several acoustic cues that contribute to the

identification of a stop consonant [2,5,6,8,10,38]. The acoustic

subunits that can be used for classification of stops are silence

followed by burst followed by -presence-or absence of aspiration.

We use spectral distance neasure [37] and spectral flatness
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nmeasure to take a decision about voiced and unvoiced silence.
Location of the burst region can be acconplished by using the
condition that there is predom nance of high frequency energy
over |ow frequency energy in case of unvoiced stop consonants.

P —

In case of voiced stop consonants pitch or voice bar is present

and there is effect of low frequency energy in addition to high
frequency energy. The abrupt changes in burst release are
i ndi cated by spectral distance neasure. This is clearly evident
in Fg. 3. 13. The duration of the burst is generally of the order
of 5to 15 mlliseconds and that of transition varies from 20 to
70 mlliseconds depending on whether the consonant is aspirated
or not.

Frequency spectrum of the burst gives some clues to the
pl ace of articulation of the stop consonants [4,24]. This is
normal |y obtained by doing special kind of signal processing in
the regions which are identified as end of silence or in the
burst regions or in the regions which are to the left of vocalic
regi ons when either burst or aspiration is not correctly
hypot hesi zed. The | ocation of peak of the burst frequency

spectrum gives information about the place of articulation. In

1’1
{.,‘4:*

addition, the formant transitions into the vocalic region give—kﬁ(f

addi tional information about the place of articulation of the ,.u

stop consonant. This clue is better utilized when we consider
the stop consonant in context. The advantage of the written
characters of a |anguage as symbols in our case is very much
evident here. Because nobst of the characters we consider are CV
conbi nations, the required transition information is captured in

the grossly hypothesized region of the character. W |ook for
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place of articulation cues after identifying a particular segment

—T

as CV, where Cis a stop consonant and Vis a vowl. W know the

variations of the formants a priori because we know the kind of
vowel that follows the consonant. The formant frequency
transitions are al so known because the target vowel is known.

The peak of the burst spectrum takes on different values in
terms of frequency for different places of articulation. |If this

frequency is very low, then it corresponds to _labial place of

articulation. Wen it is high it corresponds to dental place of

articul ation. A value in between the two corresponds to velar
pl ace of articul ation.

The voi ced and unvoi ced nature of the stop consonants can be
i dentified using number of cues [2,27]. These are the voice
onset time, transition of first formant, duration of closure and

also the duration of the preceding vowel. _In case of unvoiced

—stops the duration of closure is.found to be smaller--as conpared

to that of voiced closures. Voice onset tinme is less for voiced
stops when conpared with that of unvoiced stop consonants. The
rising transition of first formant clearly indicates that the
manner of articulation of stop is voiced whereas steady nature of
the first formant indicates an unvoiced stop consonant. These
cues are evident in nost of the data analyzed and a few exanpl es

are shown in Fig.3.14.

The égginatedﬁandmnnaspirateg nature of the stop consonants
characterized by the duration of the stop consonant. In nost of

the aspirated consonants there is a definite delay in the onset
of vowel after the release of the burst. In addition, these

regi ons have formant structure. Formant structure is indicated by
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| ow and nediun. val ues of spectral flatness (SPF) measure and
presence of noise energy is indicated by a high value if high
frequency to |low frequency energy ratio (HLR). These
characteristics are indicated by spectral flatness neasure as
well as HLR  This is clearly evident as shown by Fig.3.15.

The onset of formant frequencies and formant transitions
give the required acoustic correlates for finding the place of
articulation of pasal stops (19,31]. In addition, the dips in
vocalic regions can be used to locate the nasal stops in case
they occur as intervocalic nasals. |Irrespective of the place of
articulation the nasal consonants indicate presence of a dom nant
| ow frequency conponent around 250 Hz, which gives a gross clue
for the location of nasal consonants in addition to the dips in
energy. This fact is clearly evident in the Figs.3.16 and 3.17.

Identification of laterals, trills and glides depend on the

R SN

- -

\89§SE/££ggggpgig§Mand’g££§g§%?ngi;ipgnant_tgggg;;ions. For
example, if the formant transitfaﬁ;‘are rising relative to the
steady state frequency of the vowel, then it can be identified as
AZGEDE In contrast, if F, is falling and F5 is steady, then
it can be identified as /1/¢( ) - In all these cases the fornmant
transitions are nmuch l[onger than in the case of stops. The
threshold here is of the order of 60 nsec

Primary acoustic cues for fricatives [32] are their manner
of articulation and their place of articulation. These can be
voi ced or unvoiced fricatives. The onset of noise should be
gradual . The distribution of the spectral peaks of the noise

contribute to the identification of the place of articulation

fricatives.
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3.5.3 Acoustic Invariance and its Use in Character Spotting

I nvari ant acoustic cues [66] refer to acoustic patterns
derived fromthe signal which remain stable despite the fact that
there are many sources of variability affecting the structure of
the speech signal. The variations in features arise due to (1)
different vocal tract sizes and shapes, (2) different contexts in

whi ch the speech sounds occur and (3) rate of speech and stress.

In summary, some of the invariant properties that have been
identified are: - ‘

(1) The generalized patterns in the frequency and anplitude
domain. That is spectral patterns which will not be
dependent on fine acoustic structure such as fornmant
frequencies say for place of articulation of stop
consonants.

(2) Onset properties can be used for discrimnating
consonant place of articulation and vowel quality.

(3) The anplitude characteristics and the way the acoustic
energy changes, and the frequencies at which these
acoustic changes occur can be used to discrimnate stop
consonants, fricatives glides and vowel speech sounds.

(4) Presence of additional peékd in case of nasals and

&
nasal i sed sounds. A

~

(5) Low frequency periodicity and nature of its change.

(6) Voice onset tinme and vowel onset tine.

Summary
In this chapter the derivation of the acoustic-phonetic

knowl edge for character spotting is discussed. A brief

\



description of the speech production nechanism is given to
provi de the necessary background. & set of phonetic features is
identified based on the articulatory description and the conpl ete

character set is defined in terns of this feature set. Various

e e e

sources of knomﬂedge are identified to study the phonetic

e

features in terms of acoustic behavior. The choice of paraneters

P e T

deri ved from the S|gnal and their characteristics are
hi ghl i ghted. The use of various sources of know edge to inpl ement
t he character spotting approach i s di scussed. In the next chapter

we shall see the details of illustration of one character expert.



CHAPTER -1V
ILLUSTRATION OF A CHARACTER EXPERT

We propose to develop a rule-based expert system for each
character to inplenent the character spotting approach. For this
it is necessary to collect the acoustic-phonetic know edge for
each character and represent the know edge in a suitable form In
the previous Chapter we have presented the basics of acoustic-
phonetics and the sources of this know edge. In this Chapter we
will illustrate bpmqugu}ggwthe knowledge f-or a;-char acter and

2?9%“%;19;5%‘%%%%%.&&5%93{];%‘359 in the 1t‘worm of rules. We take the
character /ka:/( &l ) for illustration. Speech production
mechani sm for the character and the description of the character
in terms of phonetic features are given in Section 4.1. The
description of the character in terns of speech paraneters is
derived in Section 4.2. Conbining the descriptions given in the
Sections 4.1 and 4.2, the categories of rules for the character
are presented in Section 4.3. This Section also explains the
organi zation of the rules for a character. Representation of the
knowl edge in the form of IF.. .THEN rules is illustrated in

Section 4.4. lssues in the implementation of a character spotting

expert system are discussed in the next Chapter.

4.1 Phonetic Description of the Character /ka:/ (81)
The character /ka:/( S ) is a consonant-vowel (CV)
conmbi nation. speech production mechanism of the consonant and

vowel parts of the character /ka:/(oBl ) and the phonetic



description of the character based on the speech production
nechani smare presented in this Section.

The speech production mechani sm of the consonant part of
the character /kxa:/ ( &) is as follows (57): The back part of
the tongue is engaged in the formation of a conplete barrier
whi ch prevents the air stream from passing through the nouth
cavity. The velumis raised and the passage of the air stream
t hrough the nasal cavity is blocked. The lips as well as the
lower jaw are in neutral position. The central and back part of
the tongue are raised to the velo-palatal area, filling the arch-
| i ke space of the back part of the roof of the nouth, so that air
streamng through the lungs is not able to break through. The tip
of the tongue lies behind the |ower front teeth. A shallowvalley
is forned in the front part of the tongue and the mddl e portion
of it is raised. The front part and the tip of the tongue are
| oose and the md and back part display tensity especially in the
area where the contact between the tongue and the roof of the
nmouth is formed. The vocal cords are silent and the consonant is
voi cel ess. The air stream which is stopped in the laryngo-
pharyngeal cavity is not conpressed.

The sudden rel ease of the back barrier results in a burst
which is, from the point of view of European | anguages,
exceptionally short. It is shorter than the plosive /k/ in
English words |ike /keg/. The burst is very abrupt and clear. The
mai n characteristics of burst of Hndi plosive [kl (&%) is the
absence of aspiration wunlike the French, Italian and English
/¥/. The area of articulation for H ndi plosive /k/( &) in

/ka:/ ( )y is considerably wder. It is largely related to the



position of the tongue for the following vowel. If a back vowel
follows the sound /k/ ( &) as in /ka:/ (&1 ) then it will be
articulated in the pal ato-vel ar region.

During the production of the vowel part of the character
/ka:/ (M), the jaw angle is open and the tip of the tongue is
pl aced behind the ridge of the |lower teeth, not pressing it. The
front part of the tongue is slightly hollowed in its md area and
m ddl e part of the tongue is elevated to a slight degree towards
the position of the back part of the tongue which is pulled back
to a gently sloping position. This vowel is long in duration but
is not dipthongised and the quality is stable. There is no
rounding of lips during its pronunciation.

The duration of the sound /a/( &% ) in /ka:/(F1)varies a
great deal. It is usually long, but it may be reduced to the
l ength of a short vowel w thout losing its quality. The Iength of
t he sound depends on the context such as stress, degree of
enphasis, position in the word and speaker. The variability of
the length of this vowel does not affect its quality. This is
simlar to the observation nade by ohala[77] that both quality as
determned by the formants and length characterize this vowel
part in /ka:/(c6V).

The speech production nmechani sm as gi ven above the phonetic
description of the character /ka:/(o®l ), in terns of the

features presentec in the previous Chapter, is as follows

i - ) 1 IN'C

| Voiced Long Open Back Vowe ac

1
3 o

o et e et

The rel ationship between each of these features and the speech'

signal paraneters is derived in the next section.

|"Unvoiced Unaspirated \/dlar Plosive followed by Ic . fod e ¥



42 Parametric Description of the Character /ka:/(@)

As we have to obtain the features in the phonetic
description of a character from the speech signal in order to
spot the character, it is necessary to derive the relationship
bet ween t hese phpqgiigﬁfeatU(gs and sone neasur abl e speech signal
paraneters. This relationship is, in general, one to many because
the same feature may be related to speech parameters in different
ways in different contexts. Therefore, the paranetric description
of the phonetic features has to be derived by taking a particul ar
context into account. In this section, we derive the relationship
bet ween t he phonetic description of the character /ka:/(&% ) and
speech paraneters. The paranmeters used for analysis of speech

sounds in the present study are described in the previous

chapter.

According to the phonetic description of the character
/ka:/ (&), the consonant part is an unvoiced plosive. The speech
signal of an unvoiced plosive is characterized by a silence k“m;
regi on corresponding to the closure part of the plosive, follomedg%h%wJ

_ . tr
by a burst of energy corresponding to the release part. The;fﬁhb

v

silence region c¢f an unvoiced plosive is characterized by | omféﬁﬂ;
!

values of the total energy (ENR) and the |ow frequency energy| (s,

(represented by the parameter LP1), and a high val ue of spectralngwJ

flatness nmeasure (SPF). The burst region of the plosive is:

characterized by a high value of the parameter HLR which is the}

ratio of the high frequency energy to the |ow frequency energy, |

and a md value of the total energy (ENR). s
Though the consonant part of the character is described as

an unaspirated plosive, according to the expert phonetician there



iIs a slight ampbunt of aspiration present in the production of
this particular consonant. This has been confirmed through
spectrographic studies. The duration of the aspiration region in
the character ska:/(J1 ) is nmuch less than that of the aspirated
consonant in tho, character /kha:/(2V ). So, the plosive in
/ka:/(wV) is described as having a short period of aspiration
al so. The aspiration region is characterized by the spectra

fl atness measure (SPF) which is neither high nor low The high
frequency energy (represented by the parameter HLR) in this
region is high. The duration of the aspiration region is obtained
as the period between the end of the burst region and the voice
onset time (VOT) of the follow ng vowel. The VOT is detected by a
very high value of the spectral distance (SPD) just before the
vowel - Ii ke region.

The place of articulation of the plosive, Velar, in the
context of the character /ka:/(c®l ) is identified by the presence
of a peak in the |ow frequency region of the burst spectrum This
feature is also characterized by the falling transition of the
second formant (F2) and com ng together of the second and third
formant frequencies (F2 and F3) of the follow ng vowel.

Having given the paranmetric description of the consonant
part, we now derive the relationship between the phonetic
description of the vowel part of the character /ka:/(&5) and the
speech parameters. The speech signal in the vowel part is
characterized by high values of the total energy (ENR) and the
| ow frequency energy (LPl). These parameters are used to identify
vowel -l1i ke regions in the speech signal. The phonetic description

of the vowel as such is represented mainly by the first and



second formant frequencies (F1 and F2) and the difference between
F1 and F2. The Long feature of the vowel in Hindi is
characterized by the duration of the vowel region as well as the
quality of the vowel. The quality of the vowel is mainly
represented by the formant frequencies. The Back feature of the
vowel is identified by a |low value of the difference between F2
and F1. The feature Open is characterized by a high value of F1
and t he feature Unrounded by a | ow val ue of F2.

Because of the variant nature of the speech signal, it is
not possible to fix a range of values for each of the paraneters
describing a feature such that the range will hold good always.
Therefore a range of values is arrived at for each paranmeter
describing a feature after analyzing the speech data for many
instances of the character.  Fuzzy mathematical techniques
(discussed in the next chapter) are used to take care of the

T

cases in which the parameter takes a val ue just outside the range

P

speci fi ed.

The phonetic description of the character and the parametric
representation derived for each of the features in the
description are used to develop the know edge base of the
character spotting expert system The method of formng the

acoustic-phonetic rules and organization of the rules is the

7 ;.,_,-{t‘(. kot
topi c of the next section. . S Mﬁfa
Wm'ﬁ:‘ P'L,,,\,;.i»\’c {2atune
E NN
_ D prgwatid Footurs
43 Categories of Rules for the Character /ka:/ot) Crarer)

A character spotting expert system activates the acoustic-
phonetic rules to estimate the presence of the phonetic

description of the character in the speech signal and then

88



hypot hesi ze the presence of the character in the speech signal
In this process, it extracts the necessary paraneters from the
speech signal. Extraction of paranmeters like formant frequencies
i nvol ves conputationally intensive processing of speech signal.
In order to reduce the total conputation tinme, it is decided to
first locate the regions of the speech signal in which the
character is likely to be present based on SONE- gross f eat ures,
Furt her processing of speech signal is done only in these |ocated
regions to extract the paraneters necessary for capturing other
features in the description of the character and then hypot hesi ze
t he presence or absence of the character.

The set of Lug_r“_(‘)'sﬂs._:t;me_giﬁu“rhgs for a character consists of
features that capture sone description of different segnments of
t he character using paraneters which can be extracted by sinple
processi ng of speech signal. Location rules conbine these gross

ST
features in a manner governed by the description of the character
to identify the regions in which the character is likely to be
present. Subsequently, hypothesization rules representing the
intrinsic cues, coarticulation cues and context-dependent cues

are activated in the located regions to hypothesize the presence

or absence of the character [28].

N

Intrinsic cues capture the invariant properties of the

segments in the character._cCoarticulation rules capture the

variations in the acoustic correlates of speech segnents due to
t he influence of other segments within a character. contexts
~gﬁpeQ§£nL cues capture the variations that the acoustic
correl ates of a character undergo in different contexts.

The rul es for spotting the character /ka:/( & ) are

organi zed into different categories as shown in Table 4.1.

f”// e



Table 41 Rules for 8potting the Character /ka:/( It )

GROSS FEATURES
Rules to | ocate vocalic regions

* Rules to locate closure regions
* Rules to locate burst regions
*

Rul es to | ocate aspirated regions
LOCATI ON RULES
* Rules to check whether the above gr oss
features conformto the description of
the character /ka:/(36) to hypot hesi ze
t he possi bl e presence of the character
RULES FOR | NTRI NSI C CUES

* Rules to identify the vowel by checking
the formants

* Rules to identify the place of articu-

. lation by checki ng burst spectrum

Rul es t o provide appropriate confidence

for identification of character
RULES FOR CQARTI CULATI ON CUES

* Rules to check the effect of vowel on
t he consonant as given in description

* Rules to check the effect of consonant
on vowel

*

Rul es t o provi de appropriate confidence
with which the character is identified
RULES FOR CONTEXT- DEPENDENT CUES

* Rules to check the effect of adj acent

characters as provided by the description
to arrive at an overall confidence value wth

whi ch the character is identified

e
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4.4 Acoustic-Phonetic Rules for the Character /ka:/&s)
The gross features, |location cues, intrinsic cues,
coarticul ation cues and context-dependent cues for the character

/ka:/ () are enunerated in this section.

(1) Gross Features
The gross features for /ka:/(o® ) and the paraneters used
for their identification are as follows :

S8ilence mwmiém;;;éqhéhby energy, spectral flatness and
total energy

Bur st Total energy and ratio of high frequency
energy to | ow frequency energy

Vocal i c Low frequency energy and total energy

Aspiration Presence of high frequency energy after
burst, spectral flatness and definite delay

in the onset of vowel

Parameter plots for two utterances in which the character
/ka:/ (&1 ) is present are given in Fig.4.1 and Fig.4. 2. The
regi ons where ska:/(\) is present are marked in the figures. The
paraneters log energy (ENR), spectral flatness (SPF), spectra
di stance (SPD), high frequency to |ow frequency energy ratio
(HLR) and first linear prediction coefficient (LP1) are
normali zed with respect to their maxi mum and m nimum values in
the utterance. Normalized values range from o0 to 255. The

threshol d ranges for each paraneter used in the rules for



pe ta:lage: ne ka: a? deé dl ye:
T AT & WE AR o

Speech
signal

Log energy
(ENR)

Spectral
flatness(SPF)

Spectral
distance(SPD)

High low energy
r ati o(HLR)

First LP
Coeff . (LP1)

+
: RS VR
5 ! % Resonance peaks
< + : + 4\ from GD spectrum
,ﬂ ; et
g *
: / + - \
‘.
D e N *
Oq n ~ al e
h +
+e A + Sy '% /:
(1) | ry |
0 0.5 1.0 1.5
Time in secs
Fig. 41 Paranmeter plotsto illustrate the gross features

for /ka:/(<b71)



Speech
Signal

Log energy
(ENR)

Spectral
flatness(SPF)

Spectral
distance(SPD)

High low energy
rati o(HLR)

First LP
Coeff . (LP1)

ST, & 4
ML YU O
’+{‘ + 9 (
i +
N RT AN
. A\ 'S
% B s ¢ Resonance peaks
x . ﬁvf. » from GD spectrum
31 s F i * + &ﬁ +*i
& il h\ -
B q )
] ¥ ¢« '
IS / :W ;\
+
o . fv?':"ﬂh“
I
0.5 1!0 1.5

Time in secs
Fig. 42 Paraneter plots to illustrate the gross features
for ska:/(ahT)



identification of gross features are specified in terms of the
normal i zed values. The rules for identification of gross

features are as foll ows:

(1) | F ((LP1 is below 100) and
(SPF is above 175) and

(ENR is bel ow 100))
THEN | ocate (si. [ﬁéﬁE”é"F”eEi on N
(2) IF ((ENR is in the range 100 to 150) and
(HLR i s above 150))

.

THEN locate\bﬁfégwregioﬁ

>

(3) | F ((LP1 is above 175) or

(ENR is above 200))

7 e N i -l

THEN | ocate

(4) IF  ((SPF is between 125 and 200) and
(HLR is between 100 and 200))

THEN | ocate spiré_gibh region

g

(2) Location Rule

The location rules use the description of character
/ka:/ (V) to conbine the gross features detected and |ocate the
regi ons where the character is likely to be present. The

| ocation rule for /ka:/(dnt) is as follows:
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| F ((silence is followed by burst) and IR
((burst is followed by voiced) or o 5 '
((burst is followed by aspiration) and |
(aspiration is followed by voiced)))) \/

THEN mark the region as a |located region

In the case of /ka:/( @7 ) the gross features are silence,
burst, aspiration and vocalic. As per the description of
/ka:/( &'), silence should be followed by burst before onset of
vowel . Sonetinmes the features detected may not be in sequence.
There may be overlapping regions of gross features. A tines
some features may be conpletely mssing. This is taken care of by
the location rules in the way the gross features are conbi ned.

It is observed that the feature aspiration which does not
form part of the description of /ka:/ ( @t )is used in the
| ocation rules because from the signal and paraneter plots we
observe certain anmount of aspiration in ska:/( &T ). Wen the
| ocation rules are satisfied, the beginning of silence regionto
the end of vocalic region is marked as a |ocated region of

character /ka:/( &1 ).

(3 Intrindc Cues
The rule for capturing the intrinsic cues of the vowel part
of ska:/( @& ) are based on formant frequency information. F1 and

F2 inthe rule indicate the first and second formant frequencies.



| F ((F1 is in 600-700 Hz) and
(F2 is in 1000-1200 Hz) and
((F2-F1) is 300-600 Hz))

The invariant feature for place of articulation of the
pl osive is the presence of burst in the signal and the frequency
of the peak of the burst spectrum The corresponding rule is as
fol | ows:

| F (Frequency of the peak of the burst spectrumis in the

range 1000- 1200 Hz)

——

THEN hypot hesi ze t he pl ace ?velagl&of /kaz/ ( d»t)

S
—
I

(4)  Coarticulation a.Es (qﬂwléﬁ°ﬁ>
These are obtained only for the consonant part within the
character in a ¢cv context based on formant transitions. The
correspondi ng coarticul ati on cues are
i) F2 transition is falling \%

ii) F2 and F3 come cl oser T

(5) Contat-dependent Cues (T @&) s \

These are obtained for adjacent character context from
readi ng spectrograns. The correspondi ng context-dependent cues
are:

i) Frequency of the peak of the burst spectrumis in

t he range 900- 1200 Hz, if preceded by a back vowel.
ii) Frequency of the peak of the burst spectrum is in

t he range 1500- 2000 Hz, if preceded by a front vowel.



The acoustic-phonetic rules derived from the phonetic and
paranetric descriptions of the character are represented in the
formof IF...THEN rules in the character expert. Issues involved
in the inplementat — . of the character expert are discussed in

t he next chapter.

Summary

In this chapter the concept of character spotting in signal-
to-synmbol transformation is explained with the help of an
illustration. The speech production nechanism of the character
/ka:/(oBV) is presented and the phonetic description of the
character is given. The process of deriving the rules from
parametric representation of the utterance of a character is
e

di scussed. The next chapter gives the details of implementation

of character expert systens-
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CHAPTER -V

IMPLEMENTATION OF A RULE-BASED SYSTEM

Acqui sition and representation of the acoustic-phonetic
know edge is to be followed by activation of the know edge to
acconplish the task of spotting characters in continuous speech.
The objective of this chapter is to discuss the issues in
i mpl enmenting a rul e- based system for character spotting. Expert
system approach is followed in the proposed inplenmentation. In
Section 5.1 different nmethods of activating a rule base are

di scussed followed by a discussion of the nmethod adopted for

ac_t_uLaI_l_D_q-t-hEJcoustlc—thnetlc knowledge. The inprecise nature

of the know edge at the phonet|c and paraneter 1levels calls for
interpreting rules suitably to provide confidence neasures for
the outcomes of the rule interpreter. W propose the use of
fuzzy mathematical concepts to derive the confidence measures.
These concepts are discussed in Section 5. 2 Wth this
background t he expert system inplenentation of character spotting
IS presented in Section 5.3. The section also discusses the
design issues involved in the inplenentation. Finally in Section
54 we give the detailed working of a character spotting expert
system  Performance of the expert system for several characters

is illustrated in Chapter V.

5.1 Adctivation of Acoustic-Phonetic Knowledge
The rul e-based character expert consists of three
conponents, nanely, (1) productl on rulg,s whi ch describe the

b -
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rel ati on between the character and speech paraneters, (2) a data
nenory and a working nenory, where the data nenory consists of
speech data and the working menory contains the results of the

processing when a rule is fired and (3) an inference engine to

interpret the rules. Each production rule is an expression which
consists of two parts called antecedents and consequents. They
typically take the follow ng forns:

| F (condition) THEN (assertion)

| F (ant ecedent) THEN (consequent)

| F (condition) THEN (action)

Based on the control strategy that is used to activate the
productions, rul e-based (or production) systens may be classified
as pure production systenms or application oriented.(or
per formance) production systens. In pure production systens a
simple recogni ze-act control strategy is used. In this strategy,
all conditions in each production are evaluated, the action
specified by one of the applicable productions (which is
determined a priori) is executed and the status of the working
menory updat ed. This is repeated until there are no nore
appl i cabl e productions or the goal condition has been satisfied.
In contrast, performance production systens are conplicated. The
rules may be grouped into subclasses and sophisticated cenflict.
Eggggggiggﬂsgggggg;gs_maymgg»emp;gyed t o choose the appropriate
rule. In performance production systens, there are two different

control strategies that are used to activate the know edge base,

namel vy, antecedent driven (or data driwven) strategy and
consequent driven (or expectation driven) strategy.

In the antecedent driven strategy the IF portion of a rule



Is conpared with the current state of the working nmenory, if the
conditions are matched, then the rule is fired, and the contents
of the working nenory are updated. This process is repeated
until a goal is reached. On the other hand, in the consequent
driven strategy, the activation starts with the goal elenent it
is wishes to establish. The rule base is then searched to find a
rul e whose THEN portion is the required goal. The IF portion of
this rule provides new subgoals. The rule base is again searched
for rules to establish these subgoals which may in turn require
t hat new subgoals be established. This procedure is repeated
until all the subgoals are established.

Conflict resolution is an inportant part of perfornmance
producti on systens. Conflict resolution 1is a strategy that is
enpl oyed t o choose one rule froma set of rules whose |F portions
satisfy the current status of the working nenory. Several nmethods
exi st for handling conflict resolution [58].

The proposed character expert belongs to the class of
,BEEEQEEQES§“E£SSgSEiBBn5¥5t9”5- The control strategy enployed is
nei t her antecedent driven or consequent driven. The strategy is
goal oriented, but the goal which is spotting a character is
fixed. \The organi zation of the rules is such that they- ook only
for those features (or parameters) in the speech signal that are

lfievant to the description of the particular character. There

S - RN AP |

is no necessity for a conplex conflict resolution strategy in

this system This is because each character is described
uni quel y. In addition, the productions are ordered as |ocation
cues, intrinsic cues, coarticulation cues and context- dependent

cues. In each of these groups the rules are again ordered, based
fre=sf
RS

e
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on the description of the character. Thus the control strategy
is built into the ordering of the production rules based on the
description of the character. Once the order of the rules is
arrived at, it is a sinple operation of sequentially firing each
rule until there are no nore rules to be fired.

Anot her inportant variation from the normal production
systens is that at each stage of analysis the hypothesis is not
binary. We explain in the next section why it is so and how we

interpret the results in the signal-to-symbol transformation.

53 Hizzy Mathematical Concepts Applied to Knowledge Activation
I n rul e- based deci sion nmaking using the know edge obtai ned
froma human expert, it is accepted that the human supplied rules

not only have inconsistencies but are also inconplete. In the

e ]

e

character spotting expert, in addition to the acoustic-phonetic

know edge which is ambiguous, the paraneters that are extracted

)
from the speech signal are also stpreci se. This conplicates the

etz

pu—"

i nferenci ng nechani sm when spotting a character in continuous

speech. In order to conpensate for these deficiencies, the rules
of the expext system for character spotting,instead of taking a
binary decision, award a confidence neasure for the inferences
made and sonmetimes to the rule itself. The awardi ng of
confi dence neasures is acconplished using Zadeh’s theory [105]
whi ch proposes the use of fuzzy relations and restrictions to

represent the know edge as correctly as possible.

5.2.1 Reation between the Phonetic Description and Numeric Values

Fuzzy restriction is a "™ relation which acts as an elastic



constraint on the values that may be assigned to a variable".
Such restrictions play an inportant role in speech recognition
and particularly in signal-to-synbol transformation because the
envi ronnment there happens to be fuzzy or uncertain.

Let ’£’ denote a nunerically valued variable correspondi ng
to the second formant frequency which ranges over the interval
900- 2700 Hz. Wth this interval regarded as the universe of
di scourse, U back nay be interpreted as the |abel of a fuzzy
subset of U which is characterized by a conpatibility function
p(f). The function u(f) may be viewed as the nenbership function
of the fuzzy subset back. The value peg = p(f) at the
correspondi ng frequency ‘'f', represents the grade nenbership of
'f* in back. For exanple, let back a fuzzy subset of U consi st
of the frequencies in the range 1200-1600 Hz. Now u(f) for a
value '£' in the range 1200-1600 will be 1.0 while for f taking
val ues 2000, 2500, 2700, w(f) mght take values of 0.5 0.2, 0.0
respectively, depending upon the fuzziness desired at the
boundari es of the set back.

A fuzzy subset of a universe U consisting of the elenents

A
U, Uy, ... u, My be expressed as : {hack) ”H): T
! (s jhea 1O ?;:uj::’? ‘f’
_ W
A= {<pq1,u9>,...,<pp,up>)} (5.1)

where ui's represent grade nembership of wy in A Normally uy
are assunmed to be in the range [0.0 ... 1.0] where 0.0 represents
no nenbership and 1.0 represents full nenbership. In our case the
range of nenbership indication is chosen to be an integer

range [0 .. 127] for ease of conputation.



An arbitrary fuzzy subset of the universe U may be expressed
as

A= U <pf(u),u> (5.2)

ueA

where pe - U~ [0.0 ... 1.0] is the menbership or conpatibility
function of A A denotes the union of fuzzy singletons over the
universe U The points in U where the value pge(u) > 0.0
constitutes the support of A and points at which ug(u) = 0.5 are
the cross over points of A

For exanple if the universe of discourse is all the second
formant frequencies from 900 to 2700 Hz in steps of 50 Hz, then

| et

back

i

(1000, 1050, 1100)

and

backfuzzy {<0.1,900>, <0.2,950>, <0.5,1000>,
<0.7,1050>, <0.5,1100>, <0.2,1200>)
where back and backfuzzy represent nonfuzzy and fuzzy subsets of
U.

In a continuous domain if U is the universe of discourse
containing all second formant frequencies in the range

900- 2700 Hz, then A might be expressed as

A= U <(1/(1+(pg(u))?)),u> (5.3)

uch
That is Ais a fuzzy subset of the unit interval.

In many cases it is advantageous to conpute the nenbership
function of a fuzzy subset of the real line in terms of a
standard function whose paraneters my be adjusted to fit a
speci fied nenbership function in an approxinmate fashion. Three

such functions 8, s™1 and = (Fig.5.1) are defined bel ow
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s (U x,y,2z) =0 i f u < x
= 2[ (u-x)/(z-%)1° , if x<uxgy (5.4)
=1~ (2[(u-2)/(z-x)]°) if y < U 2z
=1 i f u >z

s7l(u: x,y,z) =1 if u<x
=1- (2[(u-x)/(gx)]1%) if x<u<y (5.5)
= 2[(u-2)/(2-x)] if y<ux<z
=0 if u > z

w(u: x,y) = S(y: (y=x),(y =(x/2)),Y) if u<y (5.6)
=8 “(u: y,(y + (x/2)),(y+x)) 1if u >y

In s curve the paraneter y is equal to (x+z)/2 and is the
crossover point. In » curve the paranmeter x is the bandw dth and
it is the difference between the crossover points. In the same
curve y is the point at which confidence is unity.

In our experinmentation the nmenbership function is nmade to
vary from o to 127 instead of 0.0 to 1.0 in all the three cases

for ease of conputation

5.22 Use of Fuzzy Mathematical Conceptsin Character Spotting

An exanpl e of fuzzy representation of acoustic paraneters of
the speech signal is given Table 5 1. Table 5 1 gives the
confidence neasure that a second formant frequency of 1200 Hz
exhibits when it is considered as an argunent for the different
conpatibility functions s™1, s and ~. The s™1, s and = curves
are used as conpatibility functions for the features back, front
and central respectively. In Table 51 ppacks Bfront aNd Bcentral

represent the corresponding confidence nmeasures obtai ned.
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Table 5.1 Confidence neasures for
a second formant frequency of 1200 Hz
for different conpatibility functions

Quantitative Fuzzy
Val ue Menber shi p

m =07
Second back
For mant ] Bfront = 0.0
Frequency 1Is
1200 Hz Becentral = 0,2

To propagate this uncertainty the concept that the degree
of uncertainty of a conbined proposition is a function of the
degree of uncertainty of the conponent propositions is also used.
In order to do this the logical connectives of fuzzy relations

are used. For exanpl e,

X1 OR X2 = maxi num (X1,X2)
X1 AND X2 = mnimum (X1,X2)
NOT X1 = NOT(X1) or (127 = X1)

To prevent the exponential blow up of inferences at various
stages of signal-to-synbol transformation, the inferences are
pruned by using only those whose certainty exceeds a certain
threshold. For exanple let us consider the follow ng rule

| F (1) Low frequency energy is high or

(2) Total energy is high

THEN  vocalic.

Here the vocalic decision wll be assigned a confidence
or certainty measure which is the maxi mum of confidences
obtained from inferences (1) and (2) but the vocalic decision
will conpletely fail when the confidence of both (1) and (2) fal

bel ow a certain predeternined threshold.

—



53 Expet Sysem for Character Spotting
The acoustic-phonetic block is designed as an expert system

The design can follow two different nethods. In one rrethod we

have an expert system where the acoustic-phonetic knovvl edge of
all the characters can be integrated based on grouping of

/

characters. In the second met hod an expert system is provided for
\m——.—-

each character.

In the expert system based on grouping of characters, it is
assuned that the characters can be grouped based on the
commonal ity that exists in the descriptions of the characters.
The advantage of such a grouping would be that the sane
paranmeters need be derived from the speech signal for a
particul ar group. The grouping of characters should be based on

. While the confusability across groups. |s Iess Arriving at such
4\_/_\.”.//_‘_,.-’—*-\._\_\ ............

a grouping is a difficult as there are a nunber of issues that
need to be addressed. In addition, as the know edge base
increases in size to include the descriptions of all the
characters, the conplexity of the expert system increases. In

t he character spotting approach a single expert is used for each

character.

5.3.1 Expet System for Each Character
The advantages of having an expert system for each
character are:
(1) The description of each character is unique, and it can
be represented by a small nunmber of rules. The

know edge base of a character expert can be easily



modi fied while evaluating the performance of the
system

(2) The know edge base also dictates the signa
processing strategy. It is possible to extract
parameters relevant to each character fromthe signa
as determned by its description.

(3) Exception handl i ng is sinple, because it i's
possible to incorporate additional rules wthout

excessively increasing the number of rules.

Al'l the character experts can act sinmultaneously on the
speech signal to spot the respective characters. This structure
enabl es parallel processing techniques to be applied to take care
of the large number of character experts. The expert system
consists of (1) Acoustic-phonetic know edge base, (2) Inference
engi ne, (3) Acoustic Processor and (4) Wrking nenory

The proposed model for implementation of individua
character experts and conbining them to get a synbol sequence
corresponding to the speech signal is indicated in Fg.52  The
out put of each character expert gives the confidence level with
which the character is hypothesized. It is expected here that
each expert is spotting the associated character w th maxinum
confidence, whereas other characters incorrectly spotted by any
particular expert have | esser confidence. The integration of the
outputs of the experts is done by some sinple threshol ding
scheme. The alternatives at any point of time are limted by
rejecting all characters which have confidence | evel below a

certain threshold. The output of the acoustic-phonetic expert
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5.3.2 Isues in Dedgning a Character &pert

The functional block diagram of a character expert is given
in Fgb5. 3. The main issue in designing a character expert is
the integration of nunmeric and synbolic know edge.

From Section 5.1 we see that there is a necessity for
integrating the qualitative and quantitative data when the
character expert is to spot a character in a given utterance. For
exanpl e the | ocation cues of /ka:/ ( ] ) are described in terns
of gross features like silence, vocalic, aspirated and burst. But
the features are to be interpreted fromthe speech signal using
numerical data. So in order to hypothesize the |ocation of
/kas/(dA]) it is necessary to match the description of the
character in terns of features which are thenselves read from
nuneri cal data obtained by signal processing.

Various signal processing techniques are used on the speech
signal under the control of the inference nechanismto extract
the paraneters from the speech signal that are relevant for a
particul ar feature. Algorithns are witten to extract paraneters
from the speech signal. The relevant paraneters extracted for
that character are stored in buffers. The data in the buffers is
analyzed to match the paranetric description of a feature. The
results of the matching are stored in a special type of data
structure, like pointers, and the details available in this data
structure are feature name and its attributes like time of

begi nning, tinme of ending and the duration. Speci al procedures
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are written to convert the acoustic description given by the
phonetician to a set of IF..THEN rules. The results obtained
after a rule has been fired are stored in another data structure
which contains a description of the character in ternms of its

attributes. simlarly, procedures are. vvrltten 10 take care of

S e e "o

the f1ne features, namely_,,,,__\_:be ‘ntrl nSI C Cues coart_llhg_gwlg,tlon\

e e s, e TN ___ —— o
I S e o S e

cues and_context - dependent cues. The procedures or functions

T —

i T e aim

check for the particular parameter or feature to be in the
specified range, and based on the results returns a confidence
measure. Thus the expert’s description of a character which is
nostly synbolic in nature and the paranetric representation of
synbol s which involves nunerical or quantitative analysis are
integrated in the expert system using E/[)_eglfic data structures

. and procedures. The rul e base for spotting the character /ka:/ ¢l

and t he associ ated fuzzy table are given in Appendi x 2

54 Implementation Details of a Character Spotting Expert System

5.4.1 Deription o Working of a Character Spotting Expert Sysem

The operations during signal-to-character transformation are
mai nly nunerical conputation, analyzing the paranetric data and
synbolic manipulation. It 1is advantageous to encode this
operational know edge as IF..THEN rules. The rule base is divided
into nunber of groups in order that the search in the rule base
can be reduced. This al so gives structuredness to the rul e base.
Generally a group is made up of rules which are applicable to a
particul ar context of analysis. So a context nane is associated

wth each of the groups. A sinple and flexible grammar is used



for the rules, the syntactic and semantic details of which are as
fol |l ows:

Fuzzy concepts are introduced into the expert system by
assigning grade membership to the conditions and
predicates (antecedents) in the IF...THEN rules, are evaluated.
The grade menbership is usually a value between 0.0 to 1.0.
However in our case we assign integer values between 0 to 127 to
reduce the conputational conplexity. The action part of a rule
can be a predicate. In this case, if the condition part of the
rul e succeeds, then the maximum of the condition value and the
current value of the predicate is assigned to it as its new
value. Sometimes a rule cannot be trusted beyond a [imt
irrespective of its condition being true (i.e., grade memnbership
val ue of 127). In this case the predicate appearing in the action
part should not be assigned nore than a maxinmum limt set for
that rule. This is taken care of by an option < const > included
in the grammar of the rule base. This sets the above said limt
and is called the gramaticality of the rule. Fig. 54 shows the
grammar of the rul e base.

There are two types of functions pernmitted in the rule. One
of them the system functions, are directly inplemented into the
inference engine. This increases the efficiency of the system
when eval uating these functions. Another inportant characteristic
of these functions is that they do not change the external data
memory. The other type of function are the user defined
functions.

The rules are created as a text 'file. The rules are

compiled and internally represented in a formthat is suitable



Rul e Base

$ <cont ext >

{ <const> ) | F <cond>

THEN <action> { , <action> )

$ <context>

<cond> --> func() | func(param,param) |pred|const
<action> --> func() | func(param,param) |pred
<param> -—> func() | func(param, param) | pred|const |v

cond = condition, func = function, param — paraneter,

pred - predicate, const - constant, v = variable

Fig.5.4. Grammar of the rule base



for the inference engine. The inference engine uses a "single
pass" strategy. Successful rules are fired in the order they
occur. Conditions are checked first and if the condition value is
greater than or equal to the threshold, the rule is triggered
i.e., the action part is executed. Facility is provided to
remenber the value of the evaluated condition function until any
ot her user function is executed. An assunption made here is that
execution of the condition in the rule with same argunent does
not change the state of the system unless a user function is

fired.

5.4.2 Procedural Block D agram of Expert Sysem

The internal block diagram of the expert systemis shown in
Fig.5.5 The overall design is highly modular. The 1/0
requi renents of each of the procedures are clearly specified. Al
constants, thresholds and fuzzy curves are kept in a |ook-up
table of records of variable size. The inference engine is
permtted to communicate with function/action procedure bl ock and
the know edge base. It can also use a section of working nenory
in case of backtracking. Test functions and action procedure
bl ocks can communi cate with other blocks as shown in Fig.5.5.

It is this block which can read/write into the internediate
data structure and which can call the parameter examine routi nes
for feature detection. The parameter examine routines are self
contai ned and general enough to detect all the features in all
situations. The routines refer to the tables for various
constants and fuzzy curves. Another aspect of the design is to

provide interactive tracking and tuning facility which can help
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in interactive debugging in rule base. This facility provides the
setting and resetting of break points, skipping a rule and
displaying/modifying a data. This unit can access all state
vari abl es of the engine and al so data and tabl e nenory.

A detailed description of the various blocks in Fg.55 may

be found in the Appendi x 3.

54.3 Inference Flow and Working of the Expert System

The sequence of steps followed by character expert for
spotting a character in a continuous speech recognition are as
fol |l ows

(1) Initialization

(2) Hypothesizing the possible |ocation

(3) Intrinsic cues to identify vowel and consonant segments

(4) Coarticulation cues to identify the consonant al

segnents in a character

(5) Context dependent cues to identify the character.

The inference engine works on the rules of the know edge
base and speech data. On successful matching of premses of a
rule, the action specified in the rule is performed and the
working nmenmory is updated. The acoustic processor in the
character expert processes the speech signal under the control of
t he inference engi ne whenever any rule in the know edge base
requires specific signal processingto be perfornmed on the speech
signal. The output of the processor is stored in the working
nmenory from where the inference engine can access it whenever

required. The activation of rules in the know edge base is



continued until there are no nore rules to be triggered. The
confidence with which the character is spotted is obtained from

t he wor ki ng nenory.

Summary

This chapter discussed in detail the different know edge
representation schemes and our choice for representing the
acousti c- phonetic know edge. Organi zation of this rule base and
its activation are also discussed. Reasons for choosing the
met hod of devel opi ng an expert system for each character are
expl ained. The issued involved in the design of expert system
with particular reference to the use of fuzzy mathematical
concepts for know edge activation are discussed in detail.
Wor ki ng of various blocks of character spotting expert systemis
expl ained. The results obtained by testing a |arge nunber of
character spotting systems on a l|large data base and the
performance eval uation of prototype expert systens are discussed

In the next chapter.



CHAPTER-VI

PERFORMANCE EVALUATION OF CHARACTER SPOTTING EXPERTS

The objective of this chapter is to illustrate the
performance of the character spotting expert systems on

continuous speech of several utterances. Seventy five character

T et gt

experts are chosen for use |n th|s study Sixty nine sentences

S SR Lt e e i e e

collected from a story book In H|nd| form the test data for r.,

performance evaluation studies. The characters and sentences used
Iin this study are listed in the Appendix 4. The chapter Is
organized as follows: In Section 6.1 we describe the experimental
conditions under which the performance evaluation is carried out.
The section also describes the proposed experimental studies to
ilfTustrate the working of the spotting expert for different
groups of confusable characters. In Section 6.2 we discuss the
performance of the system for spotting the gross features used in
locating the possible regions of characters. The performance of
various stages in the working of a character spotting expert is
discussed in Section 6.3 for a few characters. Results for
several groups of characters over all the utterances are
presented in Section 6.4. In this section we show that with
proper tuning of the rules and fuzzy tables it is possible to get
good performance for several confusable character sets. Finally,
the results of signal-to-symbol transformation using seventy five
well tuned character experts orlbtn\{v’o uttetanefs are illustrated in
Section 6.5. These results show the promise of the approach

presented in the thesis, although extensive tuning of the rule

t?7



base for |arge nunmber of characters is needed before the approach

can be used in practice.

6.1 Experimental Conditions and Proposed Studies
Before we actually start to analyze the results and eval uate
the performance of the character spotting systens, we again

stress here that our goal is signal-to-synbol transformation to

capture the phonetic information in the speech signal as much as
DAL rnrne speetlil 2 glidl a S

possi ble. This reduces the conmplexity of the synmbol -to-text
conversion stage in a continuous speech recognition system In
our case we have chosen the characters of the Indian |anguage,
Hi ndi, as synbols, and the data used is fluent speech spoken by
nati ve speakers. The structured nature of the |anguage and the

. : ; utterance d the written
uni que Telationship between the spoken utierance and the yritten
~1aar]

script of the language angzgfnéxxgxp;ggr;xﬁ%igigg _____ tha rul es

governing the transformation from speech to characters in H ndi

Qur approach to the solution of the problemis unique in the ,

sense that we are attenpting here to spot the synbols in a given
utterance. The synbols are well defined in terns of articulatory,
phoneti c and acoustic features. W use a know edge- based
approach wherein the rules relating various characters and their
representation in terns of features or paraneters of speech data
are obtained from different sources. Spotting of the characters
is done by activating the know edge and using fuzzy nathemati cal
concepts to derive confidence levels to the results of spotting.
The nunber of characters is | arge (about 5000) but the rules that
are used for each character spotting systemare only a few (about

The spotting systens use a sinple inferencing nechanism



Performance is evaluated by |ooking at the confidence |levels wth
whi ch a character is spotted in continuous speech

The speech data consists of utterances of the test sentences
(See Appendix 4) in Hindi read by a native speaker. Each
utterance is at least 1.0 second long and is spoken normally.
The data is recorded in an ordinary |aboratory room using a
di rectional m crophone. The data is sanpled at 10 kHz and
digitized using 12-bit precision. The data is processed on a
VAXSTATI ON system (details of the system are gi ven in
Appendi x 5). For these studies all the paraneters are extracted
off line. Fuzzy tables were constructed for different character
experts. Except for a few gross cues, which help in
hypot hesi zi ng the possible presence of a character and its
boundaries, each character has its own fuzzy table. The fuzzy
tables were prepared initially with the help of expert
phonetician. These tables were refined based on the results of
experinments conducted on a | arge set of data.

The performance evaluation studies are mainly neant to
illustrate how different segnments of knowl edge in the form of
rul e- base apd fuzzy tables influence the confidence level of
character Spotting.‘fgnggipggngggximgnt I's on spotting the

gross features which are used to | ocate the possible regions of a

it e e

char act er. It is essential that the rules and fuzzy tables

related to these rules are tuned in such a way that the features
- 2

are identified with high confidence. \ggswigggqgigxgsrjnent isto

illustrate the qfffi}gdwnnf§ipg of spotting experts for a few

characters. The main purpose of this is to show how the

anbiguities at the gross feature identification level are



@)
resolved using the intrinsic and contextual rules. _Qur next set
of experinments are designed to illustrate performance of the

character spotting experts for/5$veral confusabl e character sets

e e e

over all the test utterances. dur final experiment consists of

running all the seventy five character spotting experts on
utterances of two sentences to illustrate the overall performance
of the proposed signal-to-synbol transformation for continuous
speech in Hndi. These experinments are discussed in detail in

the follow ng sections.

62 Experimental Studies for Spotting Gross Features

Spotting of a character is done in two stages, nanely,
| ocating the possible presence of the character based on gross
features and identifying the character using intrinsic and
contextual cues in the |ocated regions. We describe an
experinent to spot the gross features corresponding to the CV
characters where C is any of the five unvoiced unaspirated stop
consonants, and the V portion is the vowel /a/( ¥T). The gross
features are vocalic for vowel portion and unvoiced closure
(unvoi ced silence), burst and aspiration for consonant portion of
a character. The parameters used for these features are:
energy(ENR) , first linear prediction coefficient(LP 1), high-Iow
frequency energy rati o(HLR), spectral distance(SPD) and spectral
flatness(SPF). The results of spotting these features are given
in terms of the confidence with which each feature is spotted.
Only the rules relevant to feature spotting are used on all '"the
test utterances. The gross features occur in various contexts in

the test data. Table 6.1 shows the results of testing the expert
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Table 6.1 Perf ormance characteristics
for gross feature identification

GROSS GROSS FEATURES IDENTIFIED
FEATURES UOCALIC|SILENCE |BURST ASPIRA-
TESTED TED
UOCALIC 420,420 - - -
127
SILENCE - 120/120|10/120 (10,120
(120 (100, (100>
URST - 19/120 (120/120|1%/420
B ?100) (120 ?1%0)
ASPIRATED - 20100 |20/120 |120/120
(100, (100 %120)

Not ati on used in the table : P/Q
CCONF>
P indicatas the number of times feature

is hypothesized

Q indicates the number of times the feature
occurred in the data

CONF indicates the confidence with whioh
the character is hypothesized. M nimum
confidence is indicated for diagonal
terms. Maximum confidence is indioated
for off diagonal terms



systems for |locating the features using their paranmetric
descri ption. Entries in the table are of the type P/Q which
i ndicate the nunber (Q of occurrences of the feature in all the
utterances and the nunmber (P) of tinmes the feature is spotted.
The entry also gives in parentheses the |owest confidence. level

J—— e

among the occurrences in the case of the correctly identified

feature and the highest. confidence level in the case of wongly
identified feature. '_I'here are a |large nunber of vocalic regions
present in the data. This is minly because nobst of the
characters end with a vowel. The confidence level in spotting
the vocalic regions is the maxi mum possible in alnost all the
pl aces where these regions are present. This is indicated as 127
in parentheses corresponding to the vocalic feature in Table 6.1

Simlarly the features unvoiced closure, burst and aspiration are
spotted and their confidence levels are given in Table 6.1 | t
is seen that there are sone ﬂl?ﬁl as‘sﬁ.miﬁjications by t he closure,

;_b”giétwapq Q§pi rati on feat ﬁr ehs', Wher eas t here are no
m scl assi fi Cat i ons by th; chal ic features.

63 Illustration & Performance of a Character Expert

In this section we discuss the results of applyi ngw

rul es and hypothesization rules of character experts. We
\MM\,/WM - -
consider the following nine characters for illustration:

/ka:/(dV), fca:i/(ar), /ta:/( TT), /taz/( &), /pa:/(TT ),
/daz/(2V), sbat/(&V), /ma/( W ) and /na/(F ). In particular we

show how evi dences (though vague) from different rules can be
effectively conbined to arrive at correct decisions. Mor eover ,

the discussion also shows that the performance of a character



spotting expert can be inproved continuously by nodlixtpg_yhg

entries in thg_fuz;ywtgble and al so by nodifying the rule base as

the character expert is run on nore and nore data

First we consider the character /kxa:/(dnl) for illustration.
The experinent with /ka:/(del) spotting system consists of
applying the rules on the speech data corresponding to an
utterance of a sentence which has some occurrences of the
character. Fg.6.1 shows the confidence |evels at various stages
in spotting the character. The fuzzy table was initially
constructed based on the expert phonetician’s know edge and on
the data anal yzed for sonme utterances containing the character
The paraneters used to | ocate the gross features consist of total
energy, the first linear prediction coefficient, high-Iow
frequency energy ratio and sone transient features based on plots
such as spectral flatness and spectral distance. The gross
features to be identified here are silence, burst, aspiration and
vocal i ¢ regions. The expert system was able to spot the gross
features wherever they occurred in the utterance. Sone ot her
regi ons which do not correspond to these features were also
spotted. We notice that a |arge number of burst regions are
hypot hesi zed. This is because the paraneter val ues have a wide
range for burst detection so that they are not mssed if present.
But spurious regions are taken care of when conbining evidence
obtai ned by applying different rules. The figure shows that there
are three regions which are | ocated by the rul es using gross
f eat ures. But the final hypothesized region based on intrinsic
and context dependent rules is only one and that is the correct

region for the character /ka:/(p1).
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Next we consider the character /ca:/( < ) where the
consonant is described as an unvoiced unaspirated affricate. For
an affricate the burst region is followed by a frication region.
So frication is included as a gross feature for this character.
Fig.6.2 shows the confidence | evels with which the gross features
of the characters are spotted. This illustrates that gross
features need not be sane for all the characters and that they
are decided by the description of the character.

Simlarly, results of character spotting systens for the
ot her unvoiced, unaspirated consonants, nanely, /ta:/( @U),
/ta:/( dV) and /pa:/(T1) are shown in Figs.6.3 to 6.5 It can be
seen fromthese figures and also fromF g.6.1 that aspiration is
included as a gross feature, though the consonants of these
characters are described as unaspirated. This is done mainly
because it is observed experinentally and also from the expert
phonetician’s know edge that these consonants contain certain
anount of aspiration. The extent of aspiration as neasured by the
duration is nmuch |less than that of the unvoiced aspirated
consonants. It is also observed that the duration of the
aspiration region is different for each of the unaspirated
consonants. This information is used in the |ocation rules when
the gross features are conbined to |ocate the character region.

Though the gross features are same, the way they are
conbined in the location rules need not be same for all
characters. This is illustrated by conparing spotting of voiced
unaspi rat ed consonant characters with the spotting of wunvoiced
unaspi rated consonant characters. Fg.6.6 and Fig.6.7 illustrate

spotting of characters /ba:/( &) and /da:/( 1), respectively.
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In the case of these voiced aspirated characters the gross
features silence, burst and aspiration appear within the vocalic
region, whereas they generally precede a vocalic region in the
case of wunvoiced consonant characters. Location rules use this
i nformation when the gross features are conbi ned.

Anot her inportant point to note here is that the threshold
ranges for the paranmeters used in the rules for identifying a
gross feature are not sane for all characters. For exanple, the
characteristics of silence and burst regions are different for
unvoi ced consonants from that of voiced characters. So different
t hreshol ds may be used in identifying the gross features for each
character.

Hypot hesi zation rules are different for each character. The
| ocation rules for a character are tuned such that the character
region i s not missed. The hypot hesization rules are tuned to spot
t he character with high confidence wherever the character is
present. This is illustrated in Figs. 6.1 to 6.7 for different
characters. Results of spotting the nasal characters /ma/( I )
and /na/( &1 ) are given in FQg.6.8 and Fg.6.9 respectively.

The confidence |level plots shown so far in this section
i ndicate the results corresponding to individual character
experts where the rules are refined to get the best performance
fromthe character expert. In order to study the effectiveness of
character spotting approach it is necessary to obtain the results
of running all the character experts on an utterance. |n our
experiments this is done in stages where we consider sets of
confusabl e characters and eval uate their performance. This study

Is explained in the next section
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6.4 Performance Evaluation for Groups of Characters

In this section we study the performance of character
spotting experts for groups of characters, mainly to illustrate
the results anong characters considered to be confusable. In
particular, we consider the follow ng groups of characters. The

results for these groups are shown in the respective tables.

(1) Table 6.2 : Unvoiced, unaspirated consonants with sane vowel
ending. {/ka:/ (&), a c(r), /tas/(er), /ta:/(dQU ),
/paz/ (91 ))

(2) Table 6.3 : Voiced, wunaspirated consonants with sane vowel
ending. (/ga:/(IM), /ja:/(ST), /da:/(81), /da:/( 3T ),
/ba:/(&l))

(3) Table 6.4 : Nasals (/ma:/( ¥{l) and /na:z/(AT7))

(4) Table 6.5 : Sonorants {/ya:/(al), /ra:/(J{ ), /la:/(<\),
/vaz/(dr1))

(5) Table 6.6 : Fricatives /sa:/ () and /éa:/ (V).

(6) Table 6.7 : Consonant /k/( & ) with different vowel endings.
((/ka/(F ), /kaz/ (&), /ki/(B), /kit/(RN), /ku/( %)

(/ku:/( &), /ke/( b ), /ko/())

Al'l these character experts were tuned using |arge data
before they were tried on all the test utterances. The
performance is good in nost of the cases. Even highly confusable

characters such as /ta:/ (&%), /ta:/( @) and /pa:/ (ot ) have not

shown nuch confusi on anong t hensel ves.



Table 6.2 Performanoe characteristics of
experts for consonant- vowel <CU> oombi nation
Cis /k/,/0/,/t/,7t/and /p/ and V is Zaz/

CHARACTER IDENTIFIED CHARACTERS
EXPERTS kar/|Z/cav/ /%ﬁ:/ 7tar/|/pat
¢HFI | dDh | <Bh ATy | can
10/10] - - /7 -
skatsC )y (128> 165>
< > - - - -
sear/ <] 31%>
/tai/C QD - - / - -
el ($1%,
Jtar /< > |2/1@ - - 12,172 -
&t il 2483, 114%3
/pat /(¢ ) - - - - 6/
P ki 48>

Not ati on used in the table 1 P/Q

(CONPF>

P indicates the number of times ohzracter
isS hypothesized

Q indicates the number of times the oharaote
occurred in the data

CONF indicates the confidence with which
the character is hypothesized. Minimum
confidence is indicated for diagona
terms. Maximum confidence is indicated
for off diagonal terms



Table 6.3 Performance characteristics of

experts for consonant - vowel

(CVY) combi nati ons

Cis rg/,737,74/,74/and /bl and V is /a/
CHARACTER IDENTIFIED CHARACTERS
EXPERTS /gas/|/das/ | /dar/ | /dar/ | /ba
' ¢ | ¢oh | ¢B [« Eo|cal )
4/4 - - - -
Zgat/¢ Iy (115
jas/¢ ) - /2 - - -
/daz/C G §15,
1 /¢ > - - 3/ - -
7da ST 313,
1 /¢ ) - - - 4/ -
7da @T £13,
/ba:z /¢ ) - - - - 2/2
a: /¢ & 16
Not ation used in the table 1 P/Q
(CONF)

P indicates the number of times character
is hypothesized
Q indicates the number of times the character
occurred in the data
CONF i ndi cates the confidence with whioh
the character is hypothesized. HMinimum
confidence is indicated for diagona
terms. Maxi mum confidence is indioated
for off diagonal terms
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Tabl e 6.4 Performance oharaoteristios of
experts for consonant- vowel<(¢VU> combi nations
Cis r-m7and /n/ and U is ~sa:/

| DENTI FI ED
CHARACTER CHARACTER
EXPERTS /Mmar/ |\ /nas/
¢HT > | ¢y
/ s /( ) 4/4 -
maz/CHl 110
: /(< b - 5/9
/nat/C Al J1E,
Notation used in the table : P/Q
CCONF)

P indicates the number of times character
is hypothesized

Q indicates the number of times the oharacter
occurred in the data

CONF

indicates the confidence with which
the character is hypothesized. Hinimum
confidence is indiaated for diagonal
terms. Maxi mum confidence is indicated
for off diagonal terms



Table 6.5 Performance characteristics of
experts for consonant- uowel <¢cV¥) combinations
¢ is /9y/,/r/,71/ and s/v/ and V is [a:l

CHARACTER
EXPERTS
Ayar/ |\ s/ras /s | /Nar s\ Avar s
CATH [ Y| CaRly [ ¢aT

4/4 6/6 373 2/
(108> ((185) | (1@6) (10%)

Not ation used in the table : P/Q

CCONF>
P indicates the number of times character
is hypothesized

Q indicates the number of times the character
occurred in the data

CONF i ndicates the confidence with which
the character is hypothesized.
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Table 6.6 Performance characteristics of

experts for consonant- vowel <CVU> combinations

¢ is /s/and /s/ and V is /a/
| DENTI FI ED
CHARACTER CHARACTER
EXPERTS /sar/|/éar/
¢ H D
7/ 1 /< ) Yo &4 -
sa: /¢l <116
/$as/¢ > - 1/2
$ar/< M ¢i18
Not ation used in the table P/Q
(CONF>
P indicates the number of times character
is hypothesized
Q indicates the number of times the character

occurred in the data

CONF indicates the confidence with which

the character is hyrothesized. Minimum

confidence is indicated for diagona

terms. Maximum confidence is indicated

for off diagonal terms



Tabl e 6.7 PERFORMANCE CHARACTERI STICS OF EXPERTS FOR CONSONANT
VOWEL ¢<CuU> COMBI NATIONS - C

'S /k/

AND

U IS ANY VOUWEL

CHARACTER | DENTI FI ED CHARACTERS
EXPERTS |/ka/ |[/kas/|/ki/ |/kis/|/ku/ |/7kus/|/kes /%0 ~
(F) [ @ | " (@) [(Z) [ (D) [&®) ()
sxase &y | dge |74kl | T - - B - -
ekl A ez I
/kiz ) - - (gg%> - - - - -
/kit/ ¢ D - - - 343, - — _ _
Zkus( %) - - - <(15./26a> - - -
/ku:/(C& > - - - - - ) - -
/kes/C & D - - - - - = 104490 -
/ko/¢C ghd _ _ _ _ _ _ _ 33,
Not ati on used in the table P/Q
CCONF)

P indicates
Q indicates

CONF indicates
hypot hesi zed.
di agonal

of f

di agonal

the number of times character
the number of times the character occured

Minimum confidence is

terms.
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6.5 Illustration of Signal-to-Symbol Transformation

In order to study the effectiveness of signal-to-synbol
transformati on, we have considered spotting of all of 75
character experts on two utterances. Limtations due to the
systems available made us chose only 75 character experts for
this study. The two utterances contain characters from various
groups we have considered earlier. The two utterances are
/ma:ta: pita: ko bula: bheja:/(Him gar H qST )
/pita:ji: ko/ (  farsh ot ).

The results of these experinents for the two utterances are
given in Figs.6.10 and 6.11. Al the character spotting systens
are tuned in order to reduce the msclassifications. Any
m scl assifications that have occurred are given as alternate
choices for that synmbol or character. In the case of the first
utterance we see that all the characters present in the utterance
wer e hypot hesized with high confidence level. The character
/bhe/( X ) was not recognized because it does not form part of
75 character spotting systens. In the second case also the
characters contained in the utterance are identified wth high
confidence level although there were sone msclassifications as
shown by the character lattice in Fg.6. 11

The results of this experinment suggest that character
spotting does help in achieving signal-to-synbol transformation
in Indian |anguages. The nmin advantage here is the unit chosen
for signal-to-synmbol transformation and also the spotting
approach adopted for signal-to-synbol transformation. It also
suggests that a l|arge nunmber of experts to recognize the
characters is really not an issue since each expert uses only a

fewrules and refining the rule base is not a conpl ex task.
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CHAPTER-VII

SUMMARY AND CONCLUSIONS

This thesis addressed some issues in the development of a
speech recognition system for Indian |anguages. The ultinmate
goal of this research is to develop a speech-to-text conversion
system for Indian |anguages. The system should give text output
that can be understood by a human reader. |In this respect the
text need not be error free. The system shoul d however be _task

_independent, speaker independent and vocabulary independent. It
peare’ 1t A oca: ry 1inde €

should accept speech carefully read out froma text in an
ordinary office roomenvironnent. The objective is to adopt an
approach in the design which wll eventually acconplish these
goal s.

Speech-to-text conversion involves two stages, namel y,
speech signal -to-synbol transformation stage and synbol -to-text
conversion stage. Review of literature suggests that the nost
important block in a continuous speech recognition systemis the

transformation of speech signal into synbolic formin order to

e e st i -

capture the significant phonetic information in the input.
Therefore in this thesis we have di scussed sone issues related to
the signal-to-synbol transformation for the |Indian |anguage,
Hindi. The nost inportant issue is the choice of synbol itself.
Proper choice of the synbol significantly reduces the conplexity
of the synbol-to-text conversion stage. In nost Indian |anguages
generally "we write what we speak and we speak what we write".

Due to this phonetic nature of these | anguages we have chosen
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characters as basic wunits or synbols. Characters consist of
vowels(V), consonants(C), consonant-vowel combinations(cv, CCV,
CCCV). Spotting the characters in continuous speech is adopted as
t he basic approach for signal-to-symbol transformation. Since the
number of characters in Hindi is |arge (about 5000), we have
considered in this study only a subset of characters, nunbering
|340, consi sting of the vowels(V) and t he consonant-vowel(CV)
conbi nations. This choice was primarily dictated by the fact that
t hese characters occur frequently in Hndi text and al so because
t he design philosophy' can be extended to other characters in a
straightforward nanner. Moreover, characters consisting of
consonant clusters such as CCV and CCCV have nmuch nore redundancy
and are relatively easier to spot in continuous speech.

To realize the character spotting approach it is necessary
to acquire the relevant acoustic-phonetic know edge for each
character and to represent the knowedge in a suitable form
Description of the characters .in terns of the speech production
mechani sm the acoustic manifestation of speech for each
character and the description of acoustic features in terms of
the paraneters of the speech signal, all these constitute t he

acousti c- phonetic know edge. The main source of this know edge is

an expert acoustic-phonetician who can express the features of
the characters in terms of the articulatory and acoustic
paraneters and relate themto the features and paraneters
derivable from the speech signal. The other sources of know edge
are the literature and experinmentation. W have adopted all of
these to derive the acoustic-phonetic know edge for the 340

characters. This know edge. is represented in the form of



production rules. The rules for each character are organized in

and _cont ext _dependent rul es, Gross _features such as vocalic,

aspiration, burst and silence were used to identify possible
regi ons of the location of the character. Rules for spotting are
activated by wusing an expert systemfor each character. Due to
t he anbi guous nature of the features and their relation to speech
paraneters, fuzzy mathemati cal concepts were used to infer the
results of activation of the rules. The confidence values are
derived with tho help of a fuzzy table for the paranmeter val ues
while activating the rules. The advantage of this approach is
that the fuzzy table entries can be refined based on the
experimental results on a large set of speech data. The rul e base
can also be continuously updated by adding, deleting and
nodi fying the rules.

Only/75\of the 350 characters were tested over a | arge data.
The rul e base and fuzzy tables for these 75 character experts was

refined  during experinentation in order to get a good

T T T

performance for character spotting. The performance of the
character spotting experts was studied on utterances of 69 test
sentences in Hndi. The performance eval uati on studi es show t hat
the gross features used for location are spotted with high
confidence level. Experinments were also conducted on subsets of
confusable characters. The results show that the normally
confusabl e characters such as /ta:/( & ), /ta:/( a) and
/pa:/( ©r) and sma:/ (W) and /na:/ (A7) could be spotted with
a high level of confidence. Signal-to-synbol transformation of an

utterance of a sentence generates a character lattice which

A



suggests that significant phonetic features in the signal can be

captured through a string of characters. Al these results were

denonstrated using only 75 character spotting experts.

The nmain contributions of this thesis are the follow ng:

(1) Denonstration of the significance of the acoustic-phonetic
know edge to extract the phonetic information in the
speech signal in synbolic form

(2) Inportance of the choice of characters as synbols in the
devel opnent of a speech-to-text conversion system for
| ndi an | anguages.

(3) Acquisition and representation of acoustic-phonetic
know edge for characters in H ndi.

(4) Developnent of a rule-based expert system for character
spotting in conti nuous speech in H ndi

(5) Use of fuzzy nathenatical. concepts in interpreting the
results of activation of the rules for character spotting.

(6) Denonstration of the potential of character spotting
approach for continuous speech recognition in |Indian
| anguages.

This thesis is only an attenpt to showthe possibility of
using a character spotting approach for continuous speech
recognitionin Hndi. The scope of the study was restrictedto a
few characters occurring in Hndi. But it requires a |ot of

manual efforts to collect the acoustic-phonetic knowledge and to
T /\___//\N_ - T s e R R ~ ST e
|

5
i

tune theirule base and the entries in the fuzzy tables. However,

this is only a one tine effort. Once it is done, it helps to
devel op a speech-to-text systemthat is task independent and

vocabul ary independent. Tuning the rules and tables is also
;oo L
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needed to acconplish a good recognition performance i ndependent
of speaker.

Basically the whole set of character experts have to be inp-
| emented and the results of these systems acting sinultaneously
on the speech signal have to be studied fromvarious angles |like
better performance and real-time response. It is observed that in
a few spotting systens'thefuzzy tables have to be refined based

on speech from various speakers. This refinenent is done manually
_W/\/ " e -

. at present. \lt has_tc-be automated. This neans that the system

has to be provided with the learning capability to refine the

rules automatically. A system that conbines the learning capa-

bilities of neural networks at the |ower stage (speech parameters"

to acoustic feature transformation) with the know edge- based |

approach in feature to character conversion can be inplenented.
It is possible to achieve real-time response fromthe system f
all the character spotting experts are inplenmented in parallel
It is also possible to explore grouping the characters so that
any common rul es need be applied only once. )

There is scope to inprove the performance of the character
spotting by using other approaches |ike the hidden Markov nodel
(HMM) and artificial neural networks(ANN). |t appears that a
conmbi nation of these nmethods may have to be developed to deal
with the variations and anbiguities in speech. The main thrust in
,this Hdevelogggﬂl should be to provide nethods to process the
signal-fﬁ E/ﬂannek suitable to spot a given character. \Wile the
;harac{é} spottiné approach seens to be promsing for phonetic
| anguages |ike Indian |anguages, it is not clear at this stage

how successful this will be for |anguages |ike English
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Appendix |
DESCRIPTION OF CHARACTER SET

In this appendi x, we list all the 340 characters occuring as
consonant - vowel conbi nati ons. For each Hi ndi character, the
notation we follow to represent it and the equival ent Conputer
Ponetic Al phabet (CPA):L notation are provi ded. The description
of the character is given in detail. Sone of the characters
could not be represented using Conputer Phonetic A phabet. V¢
have used the nearest fit.

The notation which we follow for the description of the
character in terns of phonetic and articulary features is
expl ained below In this notation we have used the diacritic ’h’
to represent aspirated sounds. For sonme sounds in Hndi where
there is no equivalent in CPA nearest diacritics are used to
represent the equival ent CPA notation.

In this report, all noncluster characters in H ndi are

described in terns of the follow ng set of features:

(1) Front !'(8) Unr ounded | (15)Unaspirated  (22) Retrofi ex

(2) Back f-( 9) Short ;I-(lc)Velar (23)Fricative

(3) Central '(10) Long (17) Pal at al (24) Lateral

'(4) Open (11) D pht hong (18) Al veol ar (25)Trill

(5) d ose (12) Voi ced (19) Dent al (26) Seni vowel

(6)Halfclose (13)Unvoiced (20) Bil abi al (27) Nasal

’(7) Rounded “(14) Aspirated (21) Labi o- dent al

Not at i on:
{ '+ Beginning and end of the description. || ‘Followed by’
( , , ) Al features within parentheses separated by comas

shoul d be present sinultaneously,



lm] map mont (m]
Computer phonetic aiphabet “CPA) compared with the inter- [n]  nip md {n)
national phonenie alphadet (1.'A), including keywords for en- {t']  bottle (syllabic) i
viish and trench (r']  bird, heater (syllabic) [a]
- = ——— — [m’] bottom (syllabic) [m]
CPA English keyword French keyword IPA (n’]  button (syllabic) (n]
e —  (ql oignon (n]
Ll cream cri (i] [g] sing camping (9]
"l b fiche (Que) bl ift  foe fait [t]
[e!  bait fée [e] vl very vie {v]
IE] bor taite €] [T] thin {0}
3] bird fr-less variant) {4 (D] they (9]
(@] bat [ie] {s] sit sou [s]
u) patte [a] le]  zip bisr [2]
IA)  father pate la] [8] chute champs (5]
1 but ial [2]) vision Jje [3]
(e boeot coup {u] fhl it hal hal ih}
o foot toute (Que) ] [p]  pit pont [p]
o] boat veau (0] {b]  bond bon [b]
[0} cuught note, fert [5] ft] teu ton 1s
[v) vu ] (d] dip donc [d]
ty! butte (Que) [¥] k]  cake cape (k]
ix) leu o] el give gant g
IX] bSweef, Qeur ] [1S]  cheek {15}
*1 synthesuze quatre [a]t [dZ] jeep (d3
laj] by o] (2] (glottal stop) (2}
law!l  cow faw (-] (silence)
LOj] boy 2]
el vin (Que) [}
£ vin i3]
7] vent (Quc) &)
1A7] vent {a]
o] pont (6]
X1 brun &l
0 yunk maillo! 1l
tHi huit {4}
tw] o wick ou: [w]
[hw)  which (hw
(f hp ht (1}
{r] rap (retroflex) rond (apical) r]
(R] rond (uvular) [R]

Conmput er Phoneti c Alphabet(CPA) reproduced from
Ret. 1. Matthew Lennig and Jean Paul Brassard, "Machine-Readable

Phonetic Alphabet for English and FrenchV, Speech Communication,
Vol.3, pp 166, 1984.
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No. Phon- Hindi aA

etic Description
Code Symbol Code

1 lal AT D ] ( (Short, Open, Central/Back, Unrounded)
2 /a:/ Rl LA] { (Long, Open, Back, Unrounded) )
3 /i/ 4 [_I] ( (Short, Close, Front, Unrounded))
4 /i=/ g Ll] { (Long, Close, Front, Unrounded)}
5 [ul EJ] { (Short, Close, Back, Roundedj )
6 /u:/ N EJJ {(Long, Close, Back, Rounded)}
7 /e { o LE] {(Short, Half-close, Front, Unrounded))
8 Jail . Eaj] {((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong))
9 /O/ Z,JT ] { (Short, Half-close, Back, Rounded))
10 /au{ = {((Short, Open, Back, Unrounded) ||
JT an] (Short, Close, Back, Rounded),

Diphthong))



No. Phon- Hi ndi CPA

etic Descri ption
Code Synbol Code
11 /xa s Xk Unvoi ced, Unaspirated, Velar
/ -+ L’ J (EShort, Qpen, Bgck, Unroundedg)II

12 /ka:/ [%AJ ((Unvoi ced, Unaspirated, Velar) ||
(Long, Open, Back, Unrounded))

13 Jki | i {%I] ((Unvoi ced, ~naspirated,Velar) ||
(Short, C ose, Front, Unrounded))

14 [ki:/ = ki ((Unvoi ced, Unaspirated, Velar) ||
/ EE [— “} (Long, Cose, Front, Unrounded))

s by Do) dygeedy Brelzstedaihey) |

16 [kaz/, kel (ppyeiced, Unaspirated, velar) |

ong, ose,

17 ke -+ KE ((Unvoi ced, Unaspirated, Velar) ||
/ / EE [l J (Short, Hal f-close, Front, Unrounded)

18 [xai) &5 a {(Unvoi ced, Unaspirated, Velar) ||
((Short, Open, Central, Unrounded) ||
(Short, C ose, Front, Unrounded),
, Di pht hong) )
19 /ko/ o Igdj {(Unvoi ced, Unaspirated, Vel ar)
(Short, Half-close, Back, Rounded))

20 ﬁkau[

e
o
&

(EUnvoiced, Unaspi r at ed, |
(Short, Qpen, Back, Unrounded) ||
(Short, d ose, Back, Rounded),

Di pht hong) )



No. Phon- Hi ndi CPA

etic Description
Code Synbol Code

21 / ma/ T [xP~] ((Unvoiced, Aspirated, Velar) ||
(Short, Open, Back, Unrounded))

22 /kha:/ [kPA]  ((Unvoiced, Aspirated, Velar)
(Long, Open, Back, Unrounded))

23 khi 57 [xP1]  ((Unvoiced, Aspirated, Velar)
/kni/ F_‘f ((Short, Cl ose, Front, Unrounclitlad))

24 /khi:/ nYe [khi] ((unvoi ced, Aspirated, Velar)
(Long, Close, Front, Unrounded))

25 / khu 7 [xhul Unvoi ced, Aspirated, Velar) |}!
’ / v—i : (((Short, Closg, Back, Round)ed)'

26 /khu:/

!
C
~
x
=2
£
—

{(Unvoi ced, Aspirated, Velar) ||
(Long, O ose, Back, Rounded) j

27 /khe/

—
o

TxPel  ((Unvoi ced, Aspirated, Velar) ||
Short, Half-close,Front, Unrounded))

28 /Xhai/ Bl [xPaj] ((Unvoiced, Aspirated, Velar) ||

B ((Short, Open, Central, Unrounded) ||

(Short, C ose, Front, Unrounded),

Di pht hong) }

29 /kho / —t (xPol (§Unvoiced, Aspirated, Velar) ||
Short, Half-close, Back, Rounded))

A

30 /khau/ I khaﬁj ((Unvoi ced, Aspirated, Velar
2 jT s ( ((Short, Operﬁ), Back, Unr ou)nde(|j) [
(Short, Cl ose, Back, Rounded),
Di pht hong) )



No. Phon- Hi ndi CPA
etic Descri ption
Code Synmbol Code

31 ga gr {(Voi ced, Unaspirated, Velar) ||
f92/ LS (Short, Open, Back, Unrounded))

32 /ga:/ (93] ((Voi ced, Unaspirated, Velar) ||
(Long, Open, Back, Unrounded))

33 gi/ - gl Voi ced, Unaspirated, Velar
/ ACES ((Short Closg Front , Unro%mt!lclad))

34 /gi:/ T gi]  ((Voiced, Unaspirated, Velar)
ToE (Long, O ose, Front, Unrounded))

35 AW 7 [e0]  ((ygced. Waspirgief. elar) |

36 gu:/ I gu Voi ced, Unaspirated, Vel ar
/ I L ] ((( ong, Closep Back, Rounde%j)ll

37 ge r gE ((Voiced, Unaspirated, Velar) |]
3¢/ T [oE] (Short, Half-close, Front, Unrounded)

38 ai Ens gaj ((Voi ced, Unaspirated, Velar
/9ai/ [923] (((Short, Opeﬁ, Central, Un?ounded) ||
(Short, Cose, Front, Unrounded),
3 Di pht hong) )
39 /9o/ T [99]  ((Voiced, Unaspirated, Velar)
(Short, Half-close, Back, Rounded))

40 gau — gaw ((Voi ced, Unaspirated, Velar)

/gau/ ” L 2 ((Short, Open, Back, Unrounded) ||
(Short, O ose, Back, Rounded),
Di pht hong) )



No. Phon- Hindi aA
etic Description
Code Symbol Code

41 /gha/ =T [gh"] ((Voiced, Aspirated, Velar) ||
- (Short, Open, Back, Unrounded) }

42 /ghaz/ [ghA] ((Voiced, Aspirated, Velar)
(Long, Open, Back, Unrounded))

43 /ghi/ T [ghI] ((Voiced, Aspirated, Velar)
B (Short, Close, Front, Unrounded))

44 /ghiz:/ r:lT [ghij ((Voiced, Aspirated, Velar)
' (Long, Close, Front, Unrounded) }

45 hu/ =T rqfu Voiced, Aspirated, Vela
/9 9 ] {((Short Clgse Back, Rou)nde(I:I)}

46  [ghu:/ - [ghu] { (Voiced, Aspirated, Velar) ||
-~ (Long, Close, Back, Rounded))

hg]

47  Jghe/ = 9B (YQLSRd: ASPIraiede, VEIAN:, |JJnroundedj

48 /ghai/ 4 [ghaj] ( (Voiced, Aspirated, Velar) ||
((Short, open,Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong))

49  /gho/ < Mol ((Voiced, AsPlrated Velar) k
(Short, f-close, Back ounded) }

50 /ghau/ Eﬂ [ghan ((Voiced, Aspirated, Velar) ||
((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong))
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51 /| ~al ¥=7 [(ts~] ((Unvoiced, Unaspirated, Pal atal; H
(Short, Open, Front, Unrounded))

52 /ecaz/ =] [tsA] ((Unvoiced, Unaspirated, Palatal) ||
(Long, Open, Back, Unrounded))
53  Jci/ f= [ts1] ((Unvoiced, Unaspirated, Palatal)
(Short, Close, Front, Unrounded))
54  Jei:/ I (tsi] {(Unvoiced, Unaspirated, Palatal) ||
(Long, O ose, Front, Unrounded))
55 /cu/ =] [tSU nvoi ced,  Unaspirated, Palatal
et 1 (esul S\ﬁolrt, d ose, plBac‘(, Rounded) )) I
56 /cu: =T (tsu] Unvoi ced, Unaspirated, Palatal
cus/ 4 C (((Long, Cl ose, Back, Rounded)) ) 1
57 /ce/ = [tSE] ((Unvoiced, Unaspirated, Palatal) ||

(Short, Half-close, Front, Unrounded)

58 /cai/ #{ (tsaj] ((Unvoiced, Unaspirated, Palatal) ||
((Short, Open, Central, Unrounded) ||
(Short, C ose, Front, Unrounded),

Di pht hong) )

59  /co/ = [tso] ((Unvoiced, Unaspirated, Palatal) ||
(Short, Half-close, Back, Rounded))

60  /cau/ =t (tsaw] ((Unvoiced, Unaspirated, Palatal)
g(Short , Open, Back, Unrounded) |
Short, Close, Back, Rounded),
Di pht hong) )
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61 kcha/ =~ 5 thU>u { (Unvoiced, Aspirated, Palatal) ||
(Short, Open, Front, Unrounded) )

62 /cha:/ 74 [tsPal ((unvoiced, Aspirated, Palatal) ||
(Long, Open, Back, Unrounded) )

63 /chi/

MWmsHu { (Unvoiced, Aspirated, Palatal) ||
(Short, Close, Front, Unrounded))

64 /chi:/ o [tsPi]l ((unvoiced, Aspirated, Palatal) ||
(Long, Close, Front, Unrounded) )

65 /chu/ ] (tshul AAcs<owomQ.,>mvamﬁma~ Palatal) ||
et (Short, Close, Back, Rounde®)}
66 /chu:/ T3 [tshu] { (Unvoiced, Aspirated, Palatal) ||

(Long, Close, Back, Rounded)}

67 /che/ mw hhmsmu { (Unvoiced, Aspirated, Palatal) ||
(Short, Half-close, Front,Unrounded) )

68 ichai/ o (tsMajl { (Unvoiwe®, Aspirate d,Palatal) ||
- ((Short, oOpen, Cen tnl, Unrounded) ||
(Short, Closg. Fro nt Unrounded),
. Diphthong) )
69 /cho/ wﬂﬁ Hhmwou { (onvoiced, Aspirat:sd, Palatal) ||
(Short, Half-closZ, Back, Rounded))

70 /chau/ mma HhmsmsuAAc340womas Aspirated, Palatal) ||
((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong) )}
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Phon- Hi ndi
etic

72

73

74

75

76

77

78

79

80

Code Synbol
fial
/3a:/
CEVAR
fiid T
/u/ 51
3w/ T
fe/  H
a =
o/
faw S

dz1,

(dZ1i]

[dazuvj

[dZu]

(dZE]

[azaj]

[azo]

(dzaw]

((Voi ced, Unaspirated, Palatal) ||
(Short, Open, Front, Unrounded))

((Voi ced, Unaspirat ed, Palatalg | |
(Long, Open, Back, Unrounded))

((Voi ced, Unaspirated, Palatal) ||
(Short, C ose, Front, Unrounded))

((Voi ced, Unaspirated, Palatal)
(Long, dose, Front, Unrounded))

((Vajsed: Hhaseiraed: Ral

((YR5 838" ALk rbEnded)) !

((Voi ced, Unaspirated, Palatal) ||
(Short, Half-close, Front, Unrounded)

{(Voi ced, Unaspirated, Palatal) ||
((Short, QOpen, Central, Unrounded) ||
(Short, Close, Front, Unrounded),

Di pht hong) }

voi ced, Unaspirated, Pal atal l
(((Short, Halfpclose, Back, RoLn&ed)}

{(Voi ced, Unaspirated, Palatal) ||
((Short, Open, Back, Unrounded) j|
(Short, C ose, Back, Rounded),

Di pht hong) )




No. Phon- Hi ndi CPA o
etic Description
Code Synbol Code

81 Anha/ = azP~] ((Vvoiced, Aspirated, Palatal) |l
=t k ( (Short, %pen, Front, Unr)ounded))

82 /3ha:/ =21l (dzPa] ((Voiced, Aspirated, Palatal) ||
(Long, Open, Back, Unrounded))

83 ihi/ ; zhy Voi ced, Aspirated, Pal atal
3 T—'JT [az"1] (((Short, Clgse, Front, Unro)unéltled))

84 jhi:/ & azPi] ((voiced, Aspirated, Palatal
A =L ((Long, Cloge, Front, UI’WOUI)’ldé(!i)}

. - h . .
95 el Dol ygger, 6B Bk T RBLALLa)

se  Amui/ o™ ((Vphest ofSRL Apedy, PRBSRALY )|

87 Ahe/ =zl  [azPE] ((Voiced, Aspirated, Palatal) ||
(Short, Half-close, Front, Unrounded)

88  /dhai/ Zi ([azPaj]((Voiced, Aspirated, Palatal) ||
' ((Short, Open, Central, Unrounded) ||
(Short, Cose, Front, Unrounded),
Di pht hong) }
89  /iho/ Zf [azPoJ ((Voiced, Aspirated, Palatal) ||
(Short, Half-close, Back, Rounded))

90 SAhaw/ &l [azPaw] ((Voiced, Aspirated, Palatal) ||
((Short, Open, Back, Unrounded) ||
(Short, d ose, Back, Rounded),
Di pht hong) }
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91 | = tA Unvoi ced, U irated, Retroflex) ||
% i ((( re, Opgﬁ,spcgﬁtfal, Unrounde%j)J

92  Jta:/ T [tA]  ((Unvoiced, Unaspirated, Retroflex) ||
(Long, Open, Back, Unrounded))

93  /ti/ [t1] ((Unvoi ced, Unaspirated, Retroflex) ||
) (Short, Cose, Front, Unrounded)}

94 /i .‘JT tif ((Unvoi ced, Unaspirated, Retroflex) |}
’ - (Long, Close, Front, Unrounded))

. |
A R G sae e it SRl

: - ' i
0 el T Ll pugeey ogneepERteRsuRaLEp) @) 1!
97 /f‘-e/ .—x EJ Unvoi ced, Unaspirated, Retrofl
y - t (((Short, Hal'f-cl ose, Front, Unrga(%dééi)
98  /tai/

[ba3]  ((Yougbped: HBASPILAL S . RehF BLhGEY ||
(Short, Cose, Front, Unrounded),
Di pht hong) )
99 /t:_o/ 1 (to] {(Unvoi ced, Unaspirated, Retroflex) ||
) (Short, Hal f-close, Back, Rounded))

100 Aau/ [taw] ((Unvoiced, Unaspirated, Retroflex) |]
) ((Short, Open, Back, Unrounded) ||
(Short, close, Back, Rounded),
Di pht hong) )
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No. Phon- Hi ndi CPA

etic Description
Code Synbol Code

Parat e ep P ERhera ethPhlRALa)

102 /tha:/ [tPA] ((Unvoiced, Aspirated, Retroflex) ||
(Long, Qpen, Back, Unrounded))

((payolcedy Aspirpied; Rehrolhady !

8

103 Ahi/

=
M
oy
jo 2
(]
[

104 /chis/ ‘:,-qu [thi] ((vamce Aspll':ated et of l.e é;)H

ong, ose ront nd

105 Ahu/ - Tthul ((unvoiced, Aspirated, Retroflex) ||
) b (Short, Cose, Back, Rounded))
106  Ahus/ - [tPu] (Unvoiced, Aspirated, Retroflex) ||
v (Long, O ose, Back, Rounded))
h
107 Ane/, PR](haygl podyafPPLI BL8% FRBH O LSKdubde
108 /t.hai/ E? [t ha 3] ((Unvoiced, Aspirated, Retroflex) ||
((Short, Open, Central, Unrounded) ||
(Short, Cose, Front, Unrounded),
Di pht hong) }
109  Aho/ & [tPo] ((Unvoiced, Aspirated, Retroflex) ||
(Short, Hal f- cl ose, Back, Rounded ))
110 /thau/ ‘»:" [than ((Unvoi ced, Aspirated, Retrofl exg H
((Short, Open, Back, Unrounded

(Short, O ose, Back, Rounded),
Di pht hong) )
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No. Phon- Hindi A

etic Description
Code Symbol Code

111 Aa/ =, d~ Voiced, Unaspirated, Retroflex
[d~] { ((Short: Open,pCentrIaI, Unroun(}e(J)l)
112 /c}a:/ cAl [dA] ((Voiced, Unaspirated, Retroflex) ||

(Long, Open, Back, Unrounded))

113 /<_ii/ [dI] { (Voiced, Unaspirated, Retroflex) ||
e (Short, Close, Front, Unrounded))

114 //?i:/ A tdil ((Voiced, Unaspirated, Retroflex) ||
(Long, Close, Front, Unrounded))

115 /du/ “ [AU] ((Voiced, Unaspirated, Retroflex) ||
* > (Short, Close, Back, Rounded))
116 /du/ = [du] { (Voiced, Unaspirated, Retroflex) ||
=N (Long, Close, Back, Rounded)}
17 ge/ T tdEl (Ygigd HERRBL RSO Rdubbiea
118 fai/ F

o p entral, Unround
(Short, Close, Front, Unrounded),
3 ) Diphthong) }
119 /do/ -+ [doJ ((Voiced, Unaspirated, Retroflex) ||
: - (Short, Half-close, Back, Rounded))

(dai] ((\(/E)'é%eqt,ud;aes#iréted, Retroflex) ej:ii |

120 /dau/ ~ [daw] {(Voiced, Unaspirated, Retroflex)
* S ((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong))



No. Phon- Hirdi aA
etic Description
Code Symbol Code

121  /dha/ ~ th"] ((Voiced, Aspirated, Retroflex) | |
& (Short, Open, Central, Unrounded))

122 /Qha:/ =T [aba] ((voiced, Aspirated, Retroflex) ||
- (Long, Open, Back, Unrounded))

123 /ghi/ Tf: [aP1] ((Voiced, Aspirated, Retroflex) ||
* (Short, Close, Front, Unrounded))

124 /ghi:/ T;T [ahi] ((Voiced, Aspirated, Retroflex) ||
e (Long, Close, Front, Unrounded))

Labul ((Vvoiced, Aspirated, Retroflex) ||

125 /dhu/
(Short, Close, Back, Rounded))

66y

126 /ghu:/ - Labu] ((Voiced, Aspirated, Retroflex) | |
& (Long, Close, Back, Rounded))

127 /Qhe/ (:} [aPE] ((Voiced, Aspirated, Retroflex) ||
o (Short, Half-close, Front, Unrounded)
128 /(_ihai/ «'f [dhajJ ((Voiced, Aspirated, Retroflex) ||
((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong))
129 /dhq/ .:’T [alo] ((voiced, Aspirated, Retroflex) [
* (Short, Half-close, Back, Rounded))

130 /dhau/ (—-‘:T LaPaw] ((voiced, Aspirated, Retroflex) ||
‘ . ((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong))
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No. Phon- H ndi CPA
etic Description

Code Synbol Code
131 fa/ q00T ((Unvoi ced, Unaspirated, Denti-alveolar) ||
(Short, pen, central/Back, Unrounded))

132 ka:/ AT [ra] ((Unvoiced, Unaspirated, Denti-alveolar) ||
(Long, Qpen, Back, Unrounded))

133 A/ r:{ [TI] ((unvoi ced, Unaspirated, Denti-al veolar) ||
(Short, dose, Front, Unrounded))

134 Ai:/ (il ((Unvoi ced, Unaspirated, Denti-alveolar) ||
; (Long, d ose, Front, Unrounded))

135  Au/ 1 {TU] {((Unvoi ced, Unaspirated, Denti-alveolar) ||
T (Short, d ose, Back, Rounded))

136 Au:/ =~ [Tu)  ((Unvoi ced, UnasE;iir ated, Dentj-alveolar) ||
S (Long, d ose, ck, Rounded))

137 /ee/ (TEJ ((unvoi ced, Unaspirated, Denti-alveolar) ||

(Short, Half-close, Front, Unrounded))

_i v

138 ai / =t {Taj] ((Unvoi ced, Unaspirated, Denti-alveolar) |j
((Short, pen, Central, Unrounded) ||
(Short, dose, Front, Unrounded),
D pht hong) )
139 Ao/ Al Crol  (Wnvoiced, Unaspirated, Denti-alveolar) ||
' (Short, Hal f-cl ose, Back, Rounded) )}

140 /tau/ R (Taw] ((unvoiced, Unaspirated, Denti-alveolar) ||
< ((Short, Qpen, Back, Unrounded) ||
(Short, d ose, Back, Rounded) ,
D pht hong) )
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No. Phon- Hi ndi CPA o
etic Description
Code Synbol Code

142  khay . [TPa]  ((Unvoiced, Aspirated, Denti-alveolar) ||
(Long, Open, Back, Unrounded) }

143 /fthi/ 1 [TP1]  ((unvoiced, Aspirated, ent ti-alveolar) ||
(Short, Cose, Front, Unrounded))

144 Ahi:/ (TPi] ((Unvoiced, Aspirated, ent ti-alveolar) ||
- (Long, dose, Front, Unrounded))

145  Ahu/ 77 [ThUJ ((Unvoi ced, Aspirated, Denti-alveolar) ||
et (Short, C ose, Back, Rounded)}

146  khu:/ 4 [Thul ((Unvoiced, Aspirated, Denti-alveolar) ||
> (Long, Cl ose, Back, Rounded))

147 /4:he/ *T (The ] ((Unvoi ced, Aspirated, Denti-alveolar) ||
(Short, Half-close, Front, Unrounded))

148 /thai/ "*:'I [_Thaj_] ((Unvoi ced, Aspirated, Denti-alveolar) |]
v (Short, Open, Central, Unrounded) ||
Short, Cose, Front, Unrounded),
Di pht hong) )
h . . .
149 Aho/ « [T o] ((Unvoiced, Aspirated, Denti-alveolar) ||
(Short, Half-close, Back, Rounded))

150  /Ahau/ 53’[ [Thaw] ((Unvoiced, Aspirated, Denti-alveolar) ||
- ((Short, Open, Back, Unrounded) ||
(Short, d ose, Back, Rounded),
D pht hong) }
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151 ha 5 [P ((Yehepe, HpaRP! kahefal DeDhi oahygRy3) 1!
: Voi ced, U [ d, Denti-al I
B I (- o ST At
153 /aif = PTd ((Yehgeeh HPasR! "2t e, PBAFbuRhyap) @) I
s/ : i ' ' i - al |
o Al Er DU e PR ER Biroundesss ) !
155  fdu/ = [pU]  ((Voiced, Unaspirated, Denti-alveolar) ||
& (Short, Close, Back, Rounded))
156  fdu:/ = [Du] {(Voi ced, Unaspirated, Denti-alveolar) ||
3. (Long, O ose, Back, Rounded) j
faa/ = 3 ; : ;
157 Qe = PEJ (VR8P PRPPPLFRSEY kPSRE! - BhY§Shakl) ) |
158 @ai/ & [pa3] ((VpiRef:, VBBSRI T BhAEr al S oBhERRRT) | 1]
(Short, d ose, Front, Unrounded),
_ Di pht hong) )
159 Ao/ ; (po] ((Voi ced, Unaspirated, Denti-alveolar) |}
- (Short, Half-close, Back, Rounded))
160 Maw/ 3} dawl  ((Vpifgfh, URBERITRERR; Bnfbdagbyeo|p) Il

(Short, d ose, Back, Rounded),
Di pht hong))




ND. Phon- Hi ndi CPA
etic Descri ption
Code Synbol Code
161  Aha/ 7 (DP~]  {(Voiced, Aspirated, Denti-alveol ar; |
B (Short, Open, Central, Unrounded)

162  Aha:/ 10 [DhA] ((Voi ced, Aspirated, Denti-alveolar) ||
(Long, Open, Back, Unrounded))

163  /dhi/ T“I [pP1I] ((Voiced, Aspirated, Denti-alveol ar) I
- (Short, d ose, Front, Unrounded))

164 /ani:/ &4t [0PiJ ((Voiced, Aspirated, ent ti-alveolar) ||
(Long, O ose, Front, Unrounded))

165 /Ahw/ =] fphul  ((Voiced, Aspirated, Denti-alveolar) | |
i (Short, O ose, Back, Rounded))

166  /dhu:/ T (pMul {(Voi ced, Aspirated, Denti-alveolar) ||
=y (Long, C ose, Back, Rounded)j

167 /dhe/ =% fpPE]  ((\Vvoiced, Aspirated, Denti-alveol ar) iJ
(Short, Half-close, Front, Unrounded

168 Ahai/ =l pPa3] ¢(Voiced, Aspirated, Denti-alveolar; |
((Short, Open, Central, Unrounded) |
(Short, d ose, Front, Unrounded),
‘ D pht hong))
169 AMho/ “Il  [pPol ((Voiced, Aspirated, Denti-alveolar) ||
(Short, Half-close, Back, Rounded))

170  /dhau/ ETT [DPaw] ((Voi ced, Aspirated, Denti-alveolar) li
((Short, Open, Back, Unrounded) ||
(Short, d ose, Back, Rounded),
Di pht hong))
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No. Phon- Hi ndi CPA

etic Description
Code Synmbol Code

171 a = p*]  ((Unvoiced, Unaspirated, Bilabial)
fea/ L (Short, Open, Central, Unrounded))
172 Jpa:/ [PA]  ((Unvoiced, Unaspirated, Bilabial) ||
(Long, Open, Back, Unrounded))
173 /pi/ " I ((Unvoi ced, Unaspirated, Bilabial
' I (p1] ((Short Cl ose, IOFront Unr ounded;) :
174 fpi:/ f;ﬁ [pi] ((Unvoi ced, Unaspirated, Bilabial) ||
' (Long, Cose, Front, Unrounded))
175  /pu/ rpUl  ((Unvoiced, Unaspirated, Bilabial) |]
o (Short, C ose, Back, Rounded))

176  /puy/ q  [puJ ((Url\é%'gc,ed oggas 'rﬁteﬁoundegb' al )

177  /fpe/ r PE]  ((Unvoiced, Unaspirated, Bilabial) ||
j L (Short, Half-close, Front, Unrounded)

178 /fpai/ r a {(Unvoi ced, Unaspirated, Bil abial
é) a1 P ( ((Short, Open, pCent ral, Unr oundt)ed)I | | |
(Short, dose, Front, Unrounded),
Di pht hong) )
179  Jpo/ It [ po] ((Unvoi ced, Unaspirated, Bilabial) ||
. (Short, Half-close, Back, Rounded))

180 jpau ¥  rpaw] ((Unvoiced, Unaspirated, Bilabial) ||
/ QT [pav] ((Short, Open, Back, Unrounded) |
(Short, O ose, Back, Rounded),
Di pht hong) )



ND. Phon- Hi ndi CPA
etic Description
Code Synbol Code

181 [/ ~hal pP~T  ((Unvoiced, ~~pir at edBil abi al |
R [ ] ((Short, Open,pCentraI, Unroun%jetlj))

182 /pha:/ TR [phA] ((unvoi ced, Aspirated, Bilabial) ||
(Long, Open, Back, Unrounded))

183 /phi/ J['.'.—}'-: [phI:l {(Unvoi ced, Aspirated, Bilabial) ||
(Short, Close, Front, Unrounded))

184 /phi:/ I p"‘i:[l {(Unvoi ced, Aspirated, Bilabial)
L (Long, C ose, Front, Unrounded))

185 /phu T p"u! {(Unvoiced, Aspirated, Bilabial) ||
/ / q— J (Short, Close, Back, Rounded))

7
186 hu: h {(Unvoi ced, Aspirated, Bilabial)
R / s (p u_l {Long, C ose, Sack, Rounded)} H

187 /phe/ O ‘;phEﬁ {(Unvoi ced, Aspirated, Bilabial) |
/ / k J (Short, Half-close, Front, Unrodr|1ded)

unvoi ced, Aspirated, Bilabial) ||
((Short, Qpen, Central, Unrounded) ||
(Short, Close, Front, Unrounded),

Di pht hong) }
[ ho] {(Unvoi ced, Aspirated, Bilabial) ||
(Short, Half-close, Back, Rounded))

188 /phai/ [?h;i} (

189 /pho/ |

L

190 /phau/ [ [bhaw] ((Unvoi ced, Aspirated, Bilabial)
/ / FFT ((Short, Open, Back, Unrounded)| |
(Short, dose, Back, Rounded),
Di pht hong) )
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191 /ba/ = {p~)  ((Voiced, Unaspirated, Bilabial) | |
(Short, Open, Central, Unrounded))

192 /ba:/ AT [pa)  ((Voiced, Unaspirated, Bilabial) ||
(Long, Open, Back, Unrounded))

193 /bi / ;:—f- {bI] {(Voi ced, Unaspirated, Bilabial) ||
' (Short, d ose, Front, Unrounded))
194 /bi:/ & [bi] {((Voiced, Unaspirated, Bilabial) |]
(Long, O ose, Front, Unrounded))
/ ! = [ . . . .
195 jeuj S (wod (vgeed Urgselraked RbLABLE)) I

196 feus/ . Dol d(¥phggd B3RP EALRY RELKARL) I

197 /be / TT [PE] ((Voiced, Unaspirated, Bilabial) ||
) (Short, Half-close, Front, Unrounded)

198 /bai/ = {baj] ((Voiced, uUnaspirated, Bilabial) ||
' ((Short, Open, Central, Unrounded) |]
(Short, C ose, Front, Unrounded),
D pht hong) )
199 /bo / _,]T [bo:,' {(Voi ced, Unaspirated, Bilabial) ||
! (Short, Half-close, Back, Rounded))}

200 /bau/ ;ﬂ {ban {(\Voi ced, Unaspirated, Bilabial) |
= ((Short, Open, Back, Unrounded) ||
(Short, C ose, Back, Rounded),
D pht hong) )
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No. Phon- Hi ndi CPA
etic Descri ption
Code Synbol Code
201 /bha/ |2 {bh’\] {(Voi ced, Aspirated, Bilabial) Il
(Short, Open, Central, Unrounded))

202 /bha:/ A ha] ((Voiced, Aspirated, Bilabial) ||
@ (Long, Open, Back, Unrounded))

203 /bhi/ 7 ["1] {(Voiced, Aspirated, Bilabial) ||
(Short, Close, Front, Unrounded))

204 //bhi:/ 'tﬁ [bhi] {(Voiced, Aspirated, Bilabial) |
(Long, Close, Front, Unrounded))

205 /bhu,/ T {;huj {(Voiced, Aspirated, Bilabial) |j
~ (Short, Close, Back, Rounded))

206 ,/bhu:/ T [phul] {( ’d of'spirated B,

| abi
e, Back, Roun

|
58&3)"

/ / - - . . . .
207 /bhe o fvhp1 {(Voiced, Aspirated, Bilabial)
/ / ij |PTE] (Short, Half-close, Front, Unrounded)

208 ybhai/ % [ba 3] ((Voiced, Aspirated, Bilabial) ||
((Short, Open, Central, Unrounded) ||
(Short, Cose, Front, Unrounded),
Dlphthong))

209 /%ho/ iit {Pho] {(yshced As |ra ed, Bllaﬁlak%u*éed))

ort Hal f - c ose, Bac

210 /bhau/ [bPaw] ((Voiced, Aspirated, Bilabial) ||
t ((Short, Open, Back, Unrounded) ||
(Short, Cl ose, Back, Rounded),
Di pht hong) )

174



No. Phon-Hindi A

etic Description
Code Syml ol Code

211 /?al o7 [r}'\] { (Retroflex, Nasal) N
(Short, Open, Central, Unrounded))

212 /na:/ o [nAj { (Retroflex, Nasal)
* (Long, Open, Back, Unrounded))

213 /pi/ T {nIJ { (Retroflex, Nasal) ||
(Short, Close, Front, Unrounded))

214 /ni:/ r_Tﬂ ni] ((Retroflex, Nasal) ||
[+ ' (Long, Close, Front, Unrounded) }
215 /nu/ T [QUJ { (Retroflex, Nasal)
/= - (Short, Close, Back, Rounded))
216 /nu:/ 7 [nul] { (Retroflex, Nasal) ||
* (Long, Close, Back, Rounded) }
217 /ne/ UT ,fl;iE] { (Retroflex, Nasal)
' (Short, Half-close, Front, Unrounded)
218 /r_lai// [paj 7 ({(Retroflex, Nasal)

((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),

Diphth?ng)}

219 /no { (Retroflex, Nasal) ||

* / U’T [130«7 (Short, Half-close, Back, Rounded))
220 /r_mau/ ”ﬁ [naw] ((Retroflex, Nasal)

((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong))



etic Description
Code symbol Code
221 /na/ T n ( (Alveolar, Nasal)
(Short, Open, Central, Unrounded))

222 /na:/ =l [na} ((Alveolar, Nasal) ||
(Long, Open, Back, Unrounded))

223 [ni | M (a1l  ((Alveolar, Nasal) ||
(Short, Close, Front, Unrounded))

224 [ni:/ At [ni] ({(Alveolar, Nasal) ||
/ (Long, Close, Front, Unrounded))

= (Ul
225 //nu/ N LU (('%é\ﬁ%?{?ruggéal al:!(, Rounded) )

/ nu: - 1 |
226 / nu:/ [nu3 {(?]_l(\)/r?go,l kel olglégtsaé)ac!(,' Rounded) )

227 /ne/ = [nE]  {(Alveolar, Nasal) ||
(Short,Half-close,Front, Unrounded))

228 /nai/ 2 [ma3l ((Alveolar, Nasal) ||
((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong) )

229 |/n0/ all (nO] {(f‘éﬁg?g?rl’—lal}lfa—sgposlel, Back, Rounded))

/ -
230 [rau/ 3t [naw] ((ﬁggﬁg'r?,r’o'r\)'éa}]s,a' abk. Unrounded) ||

(Short, Close, Back, Rounded),
Diphthong) )

——— — — ——— — ———————— — ————— ———————— P — D = = —————— — —— —— - ———————— —— ———————



No. Phon- Hindi CPA
etic Description
Code Symbol Code

23 /al @ [m~) ((Bilabial, Nasal)
(Short, Open, Central, Unrounded))

232 ma: I [mAl ((Bilabial, Nasal) ||
(Long, Open, Back, Unrounded))

233 /mi/ 17 (m1] ((Bilabial, Nasal) ||
(Short, Close, Front, Unrounded))

234 /mi:/ ™ [mi] ((Bilabial, Nasal) ||
(Long, Close, Front, Unrounded))

235 /mu/ g [mu] ((Bilabial, Nasal) ||
NS (Short, Close, Back, Rounded))

236 /mu:/ gy [mu) ((Bilabial, Nasal) !

(Long, Close, Bac Rounded)

237 [me/ 11 [mE)} ((Bilabial, Nasal) || _
(Short, Half-close, Front, Unrounded)

238 [mai/ TI ([maj] ((Bilabial, Nasal) || _
((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong) )}
239 /mo / It [mo] ((Bilabial, Nasal)
/ (Short, Half-close, Back, Rounded))

240 /mau/ Ot [maw] ((Bilabial, Nasal) ||
' ((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong) )



242 /ya:/ [jA] ((Voi ced, Palatal, Sem vowel) ||
(Long, Open, Back, Unrounded))

243 /yi/ BT [311  ((Voiced, Palatal, Senivowel) ||
N (Short, Close, Front, Unrounded))

244 yi: k ji ((Voi ced, Palatal, Sem vowel) ||
/ / —]T L ] ((Long, Cl ose, Front, Unrounded))

’ 9 . . ‘
4 / g jU Voi ced, Pal atal, Sem vowel
245 [yu, T [Fud g e, Pal el e k) |
246 /yu:/ =1 [3ju]  ((Voiced, Palatal, Semvowel) }|
/ - v (Long, O ose, Back, Rounded))

247 [ye/ T JE]  ((Voiced, Palatal, Semvowel) |]
/ / € [ (Short, Half-close, Front, Unrounded)

248 [yvaif I [3a3] ((Ypiggf, PRbRRA! ceREMhl OBk obded) ||

(Short, dose, Front, Unrounded),
Di pht hong) )
249 Jyo/ T [30] ((Voiced, Palatal, Semivowel) ||
- L (Short, Half-close, Back, Rounded))

250 [ yau . [ ((Voi ced, Palatal, Semivowel) ||
/ / ((Short, Open, Back, Unrounded) ||
(Short, Cdose, Back, Rounded),
Di pht hong) )
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No. Phon- Hindi aA
etic Description
Code Symbol Code

251 a / T Lr’\] { (Voiced, Alveolar, Trill) | |
) (Short, Open, Central, Unrounded))

252 /ra:/ | YrA} ((Voiced, Alveolar, Trill) |]
b (Long, Open, Back, Unrounded))

253 /ri e rI Voiced, Alveolar, Trill
/ T-T [ ] (((Short, Close, Front, U)nrl)Lnded)}
s . | r"+ . - . '
24 [fris) Gt (] (Yiged ALYEOBIo T kobhded) )
255 i/ru// == {rU} {(Voiced, Alveolar, Trill) }]|

(Short, Close, Back, Rounded))

256 /ru:/  mx  [ru]  {(Voiced, Alveolar, Trill) ||
(Long, Close, Back, Rounded! }

257 /re/ 5 [rE_'j (Voiced, Alveolar, Trill) ||
(Short, Half-close, Front, Unrounded)

258 rai 1 raj7j Voiced, Alveolar, Trill)

/xai; 0 [rai] d, Alveol 11y ||
((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),
Diphthong) )

259 /ro/ o ((Voiced, Alveolar, TriIIL ||£
I / (Short, Half-close, Back, Rounded) )

260 /rau/ I [ran { (Voiced, Alveolar, Trill)
) ((Short, Open, Back, Unrounded) | /|
(Short, Close, Back, Rounded),
Diphthong))



262 /la:/
263 /11/
264 /li::

265 /lu/

266 /lu:/

oy
267 /le/
268 /1ai/
/ /
260 [10/
I
270 /lau/

Symbol Code

=1 [1A] ((Voiced, Alveolar, Lateral) ||
’ (Short, Open, Central, Unrounded))

=T (1a] ((Voiced, Alveolar, Lateral) ||
' (Long, Open, Back, Unrounded))

=7 [11] ((Voiced, Alveolar, Lateral) ||
’ (Short, Close, Front, Unrounded))

;#T [liJ ((Voiced, Alveolar, Lateral) |]
i (Long, Close, Front, Unrounded))

A [lU] ((voiced, Alveolar, Lateral) !|
" (Short, Close, Back, Rounded))
A 1 ((Voiced, Alveolar, Lateral) ||
=S (Long, Close, Back, Rounded; ;

((Voiced, Alveolar, Lateral) |}
(Short, Half- close, Front, Unrounded)

£k

=
(]
tx3

g

Maj] ((Voiced, Alveolar, Lateral) ||
((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),

Tﬂ. Diphthong) }

L [10] ((voiced, Alveolar, Lateral) ||

' (Short, Half- close, Back, Rounded))

3
N

[law] ((Voiced, Alveolar, Lateral) ||
((Short, Open, Back, Unrounded) ||
(Short, Close, Back, Rounded),
Diphthong))
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No. Phon- Hi ndi CPA

etic Descri ption
Code Synbol Code

271 -I ~a/ & | [v~]l  {((Voi ced, Labio-dental, senivowel) ||
(Short, Open, Front, Unrounded))

272 /va:/ =i (vA]l {(Voiced, Labio-dental, Sem vowel) ||
Long, en, Back, Unrounde
k ded

273 /vi/ ~ [vi] ((Voiced, Labio-dental, Semvowel) ||
: (Short, Cose, Front, Unrounded))
274 /vi:/ st [vii  ((Voiced, Labio-dental, Seni vowelg I
(Long, C ose, Front, Unrounded)
275 /vu / T [vUl ((Vojiced, Bilabial, Senivowel) £|
/ A (Short, Close, Back, Rounded)
276 /vu:/ , [vu]  ((Voiced, Bilabial, Sen vowel; I
/ -~ (Long, C ose, Back, Rounded))

277 [ve/ = ‘'VE]  ((Voiced, Labio-dental, semi vowel) ||
/ / L (Short, Half-close, Front, Unrounded)

278 [vai/ &  [vaj] ((Voiced, Labio-dental, Semivowel) ||
- ’ ((Short, Open, Central, Unrounded) ||
(Short, Close, Front, Unrounded),

D phthong) ) _
279 fvo/ a0 ((YEgef Bl foLRbseSPEER " Rbubded)
280 //vau/ ;ﬂ [vaw] ({(Voiced, Labio-dental, Semi vowel) | | l

((Short, Open, Back, Unrounded)
(Short, C ose, Back, Rounded),
Di pht hong) )




etic
Code

Synbol

Code

283

284

285

286

287

289

290

-

= 2% =

.J-.’}l

A3,

1

5n’

[8i]
fsuz
[su]
[$E ]
[$ai]

[s0]

[saw ]

((Unvoi ced, Palatal, Fricative) ||
(Short, Open, Front, Unrounded))

((Unvoi ced, Palatal, Fricative; | ]
(Long, Open, Back, Unrounded))

((Unvoi ced, Pal atal, Fricative) ||
(Short, Close, Front, Unrounded))

((Unvoi ced, Palatal, Fricative) ||
(Long, dose, Front, Unrounded))

(PRr81 £°%a 686X Back " RSEHUES] ) !

i I
Ay !

R 058! B3k, TRod

((Unvoi ced, Palatal, Fricativa) [
(Short, Half-close, Front, Unrounded)

((Prgpieed. fanatal, Fricagive) Ll ]
(Short, close, Front, Unrounded),
Di pht hong) )

{(Unvoi ced, Palatal, Fricative) ||
(Short, Half-close, Back, Rounded))

((Unvoi ced, Palatal, Fricative) ||
((Short, Open, Back, Unrounded) ||

(Short, C ose, Back, Rounded),
Di pht hong) )
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No. Phon- Hi ndi CPA

etic Descri ption
Code Synbol Code
291 pal o [ZA] ((Unvoi ced, Retroflex, Fricative) | |
(Short, Open, Central, Unrounded))

292 /§a=/ oI (zal ((Unvoi ced, Retrof lex, Fricative) ||
(Long, Open, Back, Unrounded))

293 /?i/ [ZIJ {(Unvoi ced, Retroflex, Fricative)
(Short, Cose, Front, Unrounded))

294 /§i=/

=
=
L:J

((Unvoi ced, Retroflex, Fricative) ||
(Long, Cose, Front, Unrounded))

/su/ : . —
205 /¥ N [2v] (Yeygieedg ek oBhek: RbLAabLYS 1
06 [ewi/ L () ppughoeds oBRtTpEler. bihaakYe)
297 /§e Tj{ [zE] ((Unvoi ced, Retroflex, Fricative) ||
(Short, Half-close, Front, Unrounded)

298 /sai : (zaj] nvoi ced, Retroflex, Fricative) |
’* / & (zaif ?( Shor t , Qpen, Centr af:, Unroun%leél)l ||
(Short, d ose, Front, Unrounded),
Di pht hong) )
299 /§0/ =] [zo] ((Unvoi ced, Retroflex, Fricative) |]
‘ (Short, Half-close, Back, Rounded))

hort, Open, Back, Unrounded
Short, C ose, Back, Rounded),
D pht hong) )

300 /gau/ i fzaw] (l l(,l?\éoi ced, Retroflex, Fricati ve} | |
(
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No. Phon- Hi ndi CPA
etic Descri ption
Code symbol Code

301 / ~al F?J {(Unvoi ced, Alveolar, Fricative) ||
(Short, Open, Central, Unrounded))

302 /sa:/ < [sAd  {(Unvoiced, Alveolar, Fricative; |
(Long, Open, Back, Unrounded)

303 /si [/ [s1] {(Unvoiced, Alveolar, Fricative) ||
(Short, Close, Front, Unrounded))

304 /si:/ =t [si] {(Unvoiced, Alveolar, Fricative) ||
(Long, Cl ose, Front, Unrounded))

/ r . : b ive:
305 feu/ S [su] ((ugicedy Alyeokar, Frigatiys) |l

306 /su:/ ™ [su] ([Unvoiced, Alveolar, Fricative) ||
- (Long, Close, Back, Rounded))

307 /se/ -~ SE {(Unvoi ced, Alveolar, Fricative
/ / [ y ((Short, Hal f - cl ose, Front, Un?o&%ded)
308 /sai/ fj saj] | i ced, Al I Fricati |
jei/  F ) gieee Mueokery 1 egivel |,

(Short, Close, Front, Unrounded),
— Di pht hong) )
309 /so/ [so] {(Unvoiced, Alveolar, Fricative) ||
/! (Short, Half-close, Back, Rounded))

310 sau saw {(Unvoi ced, Alveolar, Fricative) |
// / :?W [saw] ((Short, Open, Back, Unrounded) ||
(Short, Cl ose, Back, Rounded),
Di pht hong) )

- —— . — — —— — ————— —— A ————— e W W — - e G —— Y i ——— S e - . - —— > ————
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etic Descri ption
________ Code__symbol __Code e
311 /ha/ 7 [n~]  ((Uvoiced, Qottal, Fricative)
(Short, pen, Central, Unrounded))

312 /ha:/ &1 {na] ((Uhvoiced, Qottal, Fri cative} [
(Long, Qpen, Back, Unrounded))

313 /hi/ f& {(Unvoi ced, Qottal, Fricative) ||
. (Short, dose, Front, Unrounded))

314 /hi:/ T [h] (Unvoiced, Qottal, Fricative) ||
(Long, 4 ose, Front, Unrounded))

£

[hU_J {(Unvoi ced, dottal, Fricative) ||
ort, dose, Back, Rounded))

315 /nu/
16 [ [ (] (YT edsed LR BlGRL) YO 1

/ —_— r ~ . . -
317 he =, hE Unvoiced, Jottal, Fricative
e LRE] {((Short , Hal f-close, Front, L%rcl)llmded)

r‘u_

318 /hai/ [na3j] {((Unvoiced, Qottal, Fricative) ||
/ ((Short, Qpen, Central, Unrounded) ||
(Short, dose, Front, Unrounded),
. D pht hong) )
319 / ho / =i fho]  ((Unvoiced, dottal, Fricative) ||
-7 (Short, | f-cl ose, Back, Rounded) )

320 /hau =1 fhaf  {(Unvoiced, Qottal, Fricative) ||
/ / N L g(Short, pen, Back, Unrounded) ||
Short, d ose, Back, Rounded),

D pht hong) )



—— - — . ——— ——— ———— ——— - — — T — — — T — —  Gm— T A . h G D S G S G S S . SN D e T - G S S - S ———

No. Phon- Hi ndi CPA
etic Descri ption
Code Synbol Code

(Unvoi ced, Retroflex, Fricative) ||
(Short, Open, Central, Unrounded))

322 /kga:/ x7  [xza] ((Unvoiced, Unaspirated, Velar) {|
(Unvoi ced, Retroflex, Fricative) ||
(Long, Open, Back, Unrounded))

323 /ksi by ((Unvoi ced, Unaspirated, Velar
/ $1/ R [kZIJ (Unvoi ced, Retroflex, Fri cat|)ve) | |
(Short, Cose, Front, Unrounded))

324 [ksiz/ aft [x2i]  ((PoKGbredy, URBSPLTAESY: FYELEERVY] ||

(Long, Cose, Front, Unrounded)}

325 ksu T ((Unvoi ced, Unaspirated, Vel ar
/ / - [kZU_? (Unvoi ced, Retroflex, Fri catl)ve) ||
(Short, d ose, Back, Rounded))

326 /ks.u:/ AT [kZuj ((Unvoi ced, Unaspirated, Velar) ]I
! “d {Unvoiced, Retroflex, Fricative) ||
(Long, O ose, Back, Rounded))

327 [xse/ 5  (kzE] ¢(Unvoiced, Unaspirated, Velar) ||
- (Unvoi ced, Retroflex, Fricative) |]
(Short, Hal f-close, Front, Unrounded)

i s 3 { i T i !
328 Jxsai/ gy [xza3l ((PoKoLredy, YRaEPAFRERY FYPLAN) ve) ||
((Short, Open, Central, Unrounded) ||
(Short,Close, Front,Unrounded) , Diphtho
329 /k§o/ . [kzo] ((Unvoi ced, Unaspirated, Velar) ||
(Unvoi ced, Retroflex, Fricative) ||
(Short, Half-close, Back, Rounded))

330 /ks_au/ 5t [kzaw] ((Unvoi ced, Unaspirated, Velar) ||
(Unvoi ced, Retroflex, Fricative)
((Short, Open, Back, Unrounded) |
(Short, C ose, Back, Rounded),
Di pht hong) )
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Appendix 2

RULE BASE AND FUZZY TABLE FOR THE CHARACTER /ka:/(&)

In this appendix we give a list of the rule base used for
spotting the character /kw:/ (&) and the associated fuzzy table.
The rule base with the associated fuzzy table uses the various
paraneters and the thresholds used |locating different gross
features and the character. The fuzzy table gives an idea as to
how these paraneter values are used to conpute the confidence
neasures. For exanple, in the detection of vocalic regi on we use
Log Energy (ENR) or first linear prediction coefficient (LpP1) and
this is indicated in the antecedents of the rule for voicing
The nunber shown along with the paraneter indicates the entry in
the fuzzy table that has to be used for cal cul ati on of confi dence
nmeasure. In order to find the confidence |level the second
arguenent in the fuzzy table indicates the type of fuzzy curve to
be used. This table gives the threshold to be used for
cal cul ati on of confidence. For exanple the rule corresponding to
voi cing says that it should consider ENR and rPi. The function
chk_enr_limit(ENR 4) neans' that this function uses the threshol ds
provided by the 4 th row in the fuzzy table. This has 4
arguenents represented by argl, arg2, arg3 and arg4 as indicated
in the fuzzy table. The first arguenent says that S curve be used
to obtain the ccnfidence and the other three arguenents provide
t he necessary thresholds for S curve. The values provided in the
4th row of fuzzy table ar e O,ZOO,Z;L[and 220. Thi s shows that
the confidence measure i s obtai ned using a S curve represented by
the first zero and the limts on S curve are given by 200, 210

¥
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and 220. This shows that any val ue of energy above 220 will have
a maxi num confi dence and any value below 200 will have m ni num
confidence. The internediate values have a confidence ranging
from naximum to mninum The maxi num and m ni num val ues in our
study are 127 and o respectively. Simlalrly other functions and
predicates of a rule can »e evaluated. The ’d’s indicated in the
col um correspondi ng to nunber of arguenents relate to the nunber
of arguenents used by a function when conputing confidence
factors. The nunber of arguenments a function can take when using
the fuzzy table differ and this is indicated by the nunber of

’'d’s in the second col um.

Rul e Base for spotting character /ka:/ (cbl)

~Sstart
| F Max
THEN initi(),init2().
| F Max
'"THEN initialize(),init_no(Cur_smpl _no),CHNG_CNTXT(Ssilence)
(ﬁsilence
| F check-end-file()
THEN initialize(),CHNG_CNTXT( $unaspirated).
"IF chk_param_limitl( LE 15)
“THEN confl.
| F chk_param_limit (HLR 14)
THEN conf2.
| F chk_param _limitl(LP1 25)
THEN conf3.
| F AND(conf3 AND(conf2 confl))
THEN conf.
| F Max



' THEN | oad_cf(conf 1),CHNG_CNTXT( $sil ence).

}$unaspirated
-1 F check-end-file()

THEN initialize(), CHNG _CNTXT( $burst) .

| F chk_param_limitl(LE 9)

THEN confl .

| F chkgaram.limit1(LP1 8)

THEN conf2.

IF chk_param_limit(HLR 28)

THEN conf3.
rﬁ&F AND(confl AND ( conf3 conf2))

THEN conf .

| F Max

THEN | oad—cf (conf 2),CHNG CNTXT( $unaspirated).

Egiurst

"I'F check-end-file)

THEN initialize(), CHNG_CNTXT( $voiced).

IF chk_param limitl(LP1 11)

THEN confl.

| F chk_param limitl( LE 12)

THEN conf 2. = it
'IF chk param_limit(TRN 13) o
{THEN conf3. o
i‘IF chk_param_ limit (HLR 24)

'\§§THEN conf4.
SIF OR{conf4 AND(confl AND(conf3 conf2 )))
THEN conf .
\IF Max
%HEN load _cf(conf 3),CHNG_CNTXT( $burst).

N
J$voi ced
M
NG
'
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"IF check- end-file()
THEN initialize(), CHNG_CNTXT( $find_ka).
| F chk_param_limit(LP1 5)
THEN conf I .
,IF chk_param_limit(LE 4)
{ THEN conf2.
IF OR(confl conf2)
THEN conf.
| F Max
THEN load_cf(conf 0),CHNG_CNTXT( $voi ced).
gfind_ka
| F Max
THEN find_ka_region() .
| F Max
THEN init3(),load_cf2(127 4) ,CHNG_CNTXT( S oop) .
Sl oop
f# check ka_cnt ()
VTHEN enit2(), exit(1).
| F check- formants()
§fTHEN confl.
| F check_burst ()
"THEN conf2.
| F AND(confl conf2)
THEN conf .
| F Max

THEN | oad_cfl(conf 5),emit(conf), CHNG_CNTXT( $loop).

LE - Log energy LP1 - first Linear predection coefft.
HLR - ratio of high frequency energy to | ow frequency energy

SPD - spectr| distance SPF - Spectral fnatness conf- confidence



Fuzzy Table

S. Number

No. of Arg Arg Arg Arg Arg Arg
Arguements 1 2 3 4 5 6

1 ddd 250 170 2

2 dddddd 1 120 0 140 60 250

3 dddd 0 240 245 250

4 dddd 0 150 160 170

5 dddd 0 230 240 250

6 dddd 0 30 80 130

7 dddd 0 120 150 180

8 dddd 0 180 190 200

9 dddd 0 120 125 130

10 dddd 0 120 160 200

11 dddd 0 150 165 180

12 dddd 0 120 125 130

13 dddd 0 150 160 170

14 dddd 0 130 140 150

15 dddd 0 120 125 130

16 dddd 0 100 130 160

17 dddd 0 120 130 140

18 ddddd 1 120 140 60 500

19 dddd 0 10 15 20

20 dddd 0 60 70 80

21 dddd 0 5 10 15

22 dddd 1 0 80 160

23 dddd 1 135 165 195

24 dddd 0 200 230 250

25 dddd 1 100 160 220

26 dddd 1 0 50 100

27 dddd 0 150 175 200

Arg Arguement
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Appendix 3

{

MODULES OF THE CHARACTER SPOTTING EXPERT

The nodules in the character spotting expert system are the
fol | ow ng

(1) Rul e preprocessor

(2) Inference Engi ne

(3) Look-up table

(4) Segnment data and wor ki ng menory

(5) Paraneter exam ne routines

(6) Test functions and action routines

(7) Interactivetracing and tuning unit (ITT)

A brief explanation of each of the above nodules is given in the

fol |l owi ng sectiens.

A3,1 Rule Preprocessor

This nodul e converts the rule text into a formsuitable to the
I nference engine. The rules are witten following the syntax
nmenti oned previously. This nodul e generates a coded rul e object file,
whi ch contains exact triplet matching of the text file. Each triplet
consists of three bytes. First byte consists information about/the
the type of triplet ( function, context, predicate etc.) and the
ot her two contain a unique nunber associated with each distinct
entity. For exanple, predicate 1 mght be stored as shown in

Fig.A3.1.

Filg. A3.1. Structure of atriplet for a predicate
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The second file generated by this nodule is neant for /¢’
conpiling and linking to the other nodul es of the expert system It
stores the addresses of all the functions and variables and al so the
offset address of each context group. This nodule also generates a
file which contains all the names used in the rules. The nanes are
grouped together according to their type and are arranged in
al phabetical order in each group. Each nanme in a group wll
accordingly be given a nunber and t hese nunbers are stored along wth
the names. This is to be used in tracing and debugging the whol e
system The processor perforns sinple syntactic analysis and uses

synbol table | ook-up to generate the table files.

A32 Inference Engine

The function of this nmobdule is to execute the rule base
according to the triplets in the coded rule object file. In the
cyclic operation it first reads the current triplet in the ruie base,
advances the current triplet pointer to the next and takes action
according to the type of triplet just read. By the syntax of the rule
itself, it knows whether it is evaluating a condition part of the
rule or it is firing an action procedure. During the condition
evaluation it stores the identity of the function in the hash tabl e.
The stored value is used if the same function is being used again
before any user witten action is fired. It clears the hash table as
soon as a user witten action function or procedure is found. The
argunments are nade available to the user witten functions by a
gl obal array.

A nunber of systemfunctions like AND, OR, PLUS, ..., ASSICN are
i npl enented directly into the engine thereby acquiring faster
execution of frequently used functions. The hash table is not

affected by an action procedure having only systemfunctions.



Condition is evaluated for the current rule. If the condition
value is greater than the current threshold then the rule is fired,
otherwi se the next rule is processed. If the rule is fired and
consequent action is triggered, it then goes to the next inmmediate
rule or the first rule of the next context. The above procedure is
repeated for every rule that is narked as a current rule. In the
training and debug node it transfers control to the ITT unit after
reading each triplet, so that | TT can take appropriate action at any

poi nt of execution.

A3.3 Look-up table

It is a collection of record structures of variable size. Al
t he necessary constants, thresholds and fuzzy curves are stored in
this table using appropriate record. Any of the records can be
referenced by specifying the table-entry nunber corresponding tec it.
An array returns pointer to that record by indexing with table-entry
nunber. The contents of the record are read froma file in the first
initialization process. A the sane tinme the array is also
initialized. The table file is created using a text editor in a
prescribed format. The table is referred to the ITT unit so that it

can be verified or nodified at any tine.

A34 Segment Data Section and Working Memory

Context information is necessary to hypothesize a synbol for e
given segnent. The segnent data section is neant to store all the
i nformati on about a segnment which has been anal yzed. This stores e
conci se history of the analysis made on any segnent. It is alsc
useful when the higher |level expert wants additional analysis to be

done on a particular segnent. Wrking nenory includes all the
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tenporary and internmediate features. Several global paraneters are

al so stored in this nenory.

A35 Parameter Examine Routines

The paraneter examne routines are witten to extract any of the
descriptive features from any of the paraneters specified. These
routi nes are very general in nature taking care of all the cases. The
main routines witten are conputation of l|level, tracking for a
constant level with specified tol erances and | ocation of regions with
particul ar characteristics.

Each paraneter nunber, table entry nunber and others tells how
the analysis has to be performed. For level routine the table entry
nunber determnes the napping to be performed after conputing the
absol ute val ues. For exanpl e, the absol ute vaiue can be mapped using
a particular fuzzy curve to determne a grade mempership tc a
l'inguistic nodifier say very high energy |evel.

A function is witten which takes the actual value and one of
the fuzzy curves and returns the napped grade nenbership val ue. For
exanpl e, the procedure ER_level(param _no, table-entry-no, 1-span,
r span, cur-snpl-no) wll find the average absolute level in the
range between cur-snpl-no - 1_span and cur-snpl-no + r_span for the
i ndi cated paraneter nunber and then the average value wll be
transforned by the curve indicated by the table_entry-no. It returns
the transforned integer. The track function is neant for tracking a
paranmeter curve for a constant |level specified till it violates the

i ndi cat ed t ol er ances.

A3.6 Test Functions and Action Routines
These are col | ection of functions and procedures whi ch appear in

the rules. These are witten by user and linked to the engine. Test
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functions perform tests on various data and return an integer value
in the range between 0 - 127 while the action procedures nodify or
create these data val ues and al SO communicate W th other nodul es. The
test functions nake use of exam ne routines to verify the presence or

absence of certain properties:n the paraneter.

A3.7 Interactive Tracking and Tuning

The unit provides interactive facility for tracking and tuning
the system during the execution of the rule base. It provides the
facilities (1) to evaluate and stop at next rule or action procedure
(2) to skip and stop at next rule or action procedure (3) to display
data values (4) to nodify data values and (5) to set and reset break
points and (6) to execute rule functions.

This uses a straight forward inmplementation. All the data,
vari abl es, tables, system status variables are given access tc it. In
case of display/modify data enough information (name, address of
field in record) is stored and/or asked by the user about the data to
calculate its address. Then that particular |ocation is accessed and
di splayed or nodified. In break point node the ITT unit keeps track
of the current rule nunber and as soon as it becones equal to one of

the set points it stops execution and waits for user response.
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Appendix 4
LIST OF CHARACTERSAND SENTENCESUSED IN PERFORMANCEEVALUATION
OF SIGNALTO-SYMBOL TRANSFORMATION

A41 Listofcharacters

a1, o ka ) 18, 7 da: o ( &)
we. o ka o/ ( at) 39. / du: (g
Wi o ki o (B ) 8. / di ~ ()
.~ kit o &) a1, ~ di: )
5. ~ ke - (&) 42. / da ~ (&)
6. ~ ko ~ (&) 43. / da: ~» (@)
as. ~ ca .~ (&) 44. / ba ~ (&)
98, ca: o (W) 45. / ba: ~ (&)
9. ~ ci ~ (&) 6. ~ bu  ( §)
9. ~ cu .~ (9g) 47. / bo o (@)
11. / cu: ~ (9 ) 48, ~ kha ~ ( &)
2. S ta .~ (&) 49. ~ kha: ( &)
135. ~ ta: » (@) s@. ~ khi ~ ( fa)
14. 7~ ti - k) S1. ~ khiz, (@)
15. 7 ti: » C38) 52. / khe ~ (. 8)
16. ~ tu . (g) 53. / kho ~» (&)
L O G- 54. / tha ~ cu)
i8. ~te ~ (2) 55. / pha / (%)
19. /to ~ (aA) 56. / pha:/ ( @)
20. / ta ~ Ca) 57. 7 phi » (&)
.ot s (R 58. / pho ~ (@)
22. ~ ti: ~ &) 58. “ na .~ (9)
°3.  tu ~ Cq) 60. ./ na. C A1)
ed. ~ tur ) 61. / ne ~ ()
5. ~ to o~ Cat) 62. / ni: / CH)
26. ~ pa ~ (-4) 63. <~ ma s (H)
°7. / pa o (@) 64. ~ ma ~  (H)
’8. < pi ~ (R 5. / me ~ (H)
29. / pu: ~ (Y9) 66. ~ mo. /  C®)
50, ga o () 67. » mi » (f1)
31. ~ ga ~ (M) 68. ~ mi: .~ (®)
32. ~gi ~ (f) 69. < ya: ~ (W)
33 gt~ () 70. / ra: ~ 3g)
34. ~ jar o (ST 71. 7/ la ~ cda)
35, o jis o ¢ ) 72. / la ~ Ca)
$6. 2 ju o () 73. ~va -~ (d)
37. ~ da s C3) 74. / va / Car)

75. / sa: / &)



M.2 List of sentences

61 yadi: alsa: hal
od QW &
02 to mai bhi: pu:rn
a A it g
03 amaratva nahi: ca:hta: hu:n
I g g d
04 mai yah ca:hta: hu:n
| ug g d
05 ki yagn karte samay
B uw Hd HEG
06 agni mujhe . ghodon se
af i ag Y
o7 juta: -hua: rath prada:n karen
S B < B O B >3
o8 yahi: var mai a:pse
adl ax A c: 803}
29 cathta: hu:n
agH d
10 is praka:r mai a:msik
M ogwx A Fifire
11 amaratva ki: ka:mna: karta: hu:n
i IaE TS | A& HIA 3
12 ra:van Dbhi: sapariva:r
I it Hafi@a
13 narmada: nadi: ke:
ada 4 &
14 kina: re pahu: nca:
228 B
15 ra:van sada: apne sa:th
Iqu < SE ] wa
16 ek sone ka: sivaling rakha:
s A Rak=r =
17 karta: tha:
HIA o
18 narmada: nadi:
ada =a
19 pu:rvi: disa: se
EC P A
20 pasc im ki: or bahti: hai
gfiaq a - AR st g
21 aur pasc .im sa:gar men
M affan IR :
22 gir ja:ti: hai
fir st 3
23 aca:nak yah nadi:
AP ug 4
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24

25

26

27

28

29

3

31

32

33

38

39

40

41

42

43

44

15

46

47

pasc im se pu:rab ki:
afem QA g4 A
bahne lagi:

aga e

razvan hne unhen

T LI i

is ba:t ka:

g4 sid ol

pata: laga:ne ka a:des diya:
Ry D & & wEn Ru

usne ek din'

IF1 &k RA
donon ko bula:kar
a3 a b LR
khu:b._ da:nta:
q T
pita: ji: ko
Qs &
santust karne kelie
HH k1Y
mai ne tumhen ek upa:y
. S I @& IaG
bata:ta: hu:n
AN {

bata:o krisn canara bola:
qAN C o0 B - T
pratyek ha:r Kki:
I R #

visesata: bata: ne laga:

froyer qaa
da:rogas: ne

AW - I

sacca:i: ka pata: laga:ne
S ol qen e
ke lie in donon ke

Y T AA o

ma:ta: pitaz. ko bula: bheja:

2 S | far & g O
ek . chota: ba:dal

B gda | a&sd
varsa: karke

asf HIb

cupca:p laut a:ya:
gag de . I
are - Dbeta:

R der.

tu:' ne yah kya Kkiya

g I uUg T  ou



48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

yah ca:hta: tha: ki

a 2
prasansa: ka pastr ko
i & a9 =
uska: kisa:n pita:

IqEH R b
bi:mar pada

dnR a3

pha:yda: utha:kar ghar lauta:
wag IaBI = e
aisi: . athiti men

xR Rufy A

kya: karna: ca: hiye

E24 ] Cin s
din bhar is prasn ‘par
B R -2 I L a3

vica:r Kkarti: rahi:

e o S

tulasi: ne apne so:ne Kki:
gt 3 3w @ A
cu:diyo se . paisa: juta:ya:
i A o
krisp  candr ne

k Qal T 3

mu:nh se bol phu:ta:
e ¥ W @

indr ne apa:r

-1 I IR

para: kram. .pradarsit Kiya

9T wefia e
tumhare a:deson ka

TR e L
pa:lan karenge

FAS M

koi: aisa: upa:y  bata:o

L CE aTARN
nahi:n juta: pa:zya: hu:n
L] g @& . ¥
thoda: sa: pa:ni: barsa:ne
as o ot C RS ]
ki: sSara:rat nahi:n Kkarta

AV V4 T e
ba:dal ke dva:ra: pa:ni: pa:kar

d a3 =% WHI

:



Appendix 5

VAXSTATION SYSTEM DETAILS

Thi s appendi x descri bes the hardware and software support in
t he VAXSTATION II/GPX system on which the character spotting
expert systenms are inplenented. The VAXSTATI ON system provi des an
environment for performng signal processing work. The VAX ab
system is a conbination of hardware and software conponents that
creates the environnent that the LabStar software requires. The
VAXl ab system can be used to control the real time hardware which
consists of the AD converter, the DA converter and a real tine
clock. But the LabStar software actually provides a set of
routines to performreal time 1/0 using the VAXl ab hardware. The
followi ng two sections describe the VAXIab hardware and the

LabSt ar software.

AS.1 VAXlab Hardware for 1/0 Support

The aAvV11-D is a two-channel 250-kHz digital -to-anal og (D/A)
converter with direct nmenory access (DVA). ADV11-D is a 50-kHz
anal og-to-digital (A/D) converter with programmable gain and DVA
The Kwvl1l-C clock module is used as a steady frequency source for
the AAD and DA devices. File 1/0, a LabStar nodul e devi ce, nobves
data to a disk file using Queued Input Qutput (QO. In QO the
user program queues buffers to the device for continuous
processing of data. The device noves the data directly to disk
using block 1/0. As each file is read or witten in blocks of
512 bytes each, the transfer is done very fast.

When the A'D and the DA devices are set to do continuous

Direct Menory Access (DWA), the DVA hardware runs continuously



instead of stopping at the end of each buffer. The DMA can run
at top speed without interruptions because it is confined to a
64K- byte block of nenmory that it waps around. Al the software
has to do is to keep filling or enptying the buffers as fast as
the DMA enpties or fills them W have used continuous DVA for

the analog to digital conversion.

Al.2 LabStar Software for 1/0 Support

The LabsStar | nput Qutput (LI O routines provide two types of
interfaces: (a) synchronous read/write 1/0 and (b) asynchronous
gueued I/0. Synchronous 1/0 enables the user program to transfer
a set of values to the device with one routine call. The routine
call stops the program until the 1/0 conpletes. Asynchronous 1/0
enabl es the user program to queue several sets of values to be
transferred. Tuhe program continues execution during 1/0
operations, enabling 1/0 operations to continue on one or nore
devi ces sinultaneously. Asynchronous 1/0 has been used in the
speech editor package.

Each asynchronous 1/0 device has a device queue and a user
queue. The user program puts a buffer in the device queue to
send it to the device. The device processes the buffer and puts
the buffer in the user queue to return it to the program
LIOSENQUEUE and LIOSDEQUEUE are the routines for acconplishing
this. Wth devices set for asynchronous I/0, a program can set a
device to forward conpleted buffers to another device. Wen the
first device conpletes a buffer it immediately enqueues the
buffer to the secand device.

The Labstar G aphi cs Package (LGP) is a set of routines that
can plot both real time data as well as data produced by

cal cul ations. These routines use the GKS software for plotting.
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