Philosophy 231
 More Paraphrase; Schematization; Interpretations; Truth-Tables

Sanford Shieh
Wesleyan University

Fall 2014

Class Outline

(1) More Logical Paraphrase
(2) Schematization
(3) Interpretation of Schemata
(4) Truth-Tables

A Message from our Sponsors

A Message from our Sponsors

NEVER, NEVER, NEVER

A Message from our Sponsors

$$
\begin{gathered}
\text { NEVER, NEVER, NEVER } \\
\text { read ' } \supset \text { ' as 'implies' }
\end{gathered}
$$

(1) More Logical Paraphrase

(2) Schematization

3 Interpretation of Schemata
(4) Truth-Tables

The Biconditional

The biconditional sign, \equiv is just an abbreviation.

The Biconditional

The biconditional sign, \equiv is just an abbreviation.

That is to say,

$$
p \equiv q
$$

means exactly the same thing as

$$
(p \supset q) \cdot(q \supset p)
$$

Paraphrasing Conditionals

Paraphrasing into the symbol ' \supset ' poses more difficulties than the other logical symbols. So I want to go over three expressions that can be paraphrased using ' \supset '.

'only if'

- Consider the following statement

'only if'

- Consider the following statement

A car will start only if there's gas in the tank.

'only if'

- Consider the following statement

A car will start only if there's gas in the tank.

- The way to think about paraphrasing this is to consider whether we will take the statement to be \top or \perp, under various conditions.

'only if'

- For example, suppose some car starts, but there's no gas in the tank (because it's a combination gas electricity car) is the statement \top or \perp ?

'only if'

- For example, suppose some car starts, but there's no gas in the tank (because it's a combination gas electricity car) is the statement \top or \perp ?
- Now, suppose a car doesn't start, but there is gas in the tank, is the statement \top or \perp ?

'only if'

- For example, suppose some car starts, but there's no gas in the tank (because it's a combination gas electricity car) is the statement \top or \perp ?
- Now, suppose a car doesn't start, but there is gas in the tank, is the statement \top or \perp ?
- So, our paraphrase is:

'only if'

- For example, suppose some car starts, but there's no gas in the tank (because it's a combination gas electricity car) is the statement \top or \perp ?
- Now, suppose a car doesn't start, but there is gas in the tank, is the statement \top or \perp ?
- So, our paraphrase is:
(That car will start) $\supset($ there's gas in its tank)

Necessary and Sufficient Conditions

If a conditional statement is \top, then

- Its antecedent is a sufficient condition for the consequent

Necessary and Sufficient Conditions

If a conditional statement is \top, then

- Its antecedent is a sufficient condition for the consequent
- Its consequent is a necessary condition for the antecedent

'provided that'

- Let's try to paraphrase the statement

'provided that'

- Let's try to paraphrase the statement

You will pass the course provided that you attend all the lectures.

'provided that'

- Let's try to paraphrase the statement

You will pass the course provided that you attend all the lectures.

- Suppose you attend all the lectures, but I didn't pass you, would you say that I'm a liar?

'provided that'

- Let's try to paraphrase the statement

You will pass the course provided that you attend all the lectures.

- Suppose you attend all the lectures, but I didn't pass you, would you say that I'm a liar?
- What about if you passed the course, despite not having attended all the lectures?

'provided that'

- Suppose you had an enemy, who comes around and reminds me of what I said, and says that I ought to flunk you; would I be right to reply that what I did is consistent with my previous statement?

'provided that'

- Suppose you had an enemy, who comes around and reminds me of what I said, and says that I ought to flunk you; would I be right to reply that what I did is consistent with my previous statement?
- So, here's the paraphrase:

'provided that'

- Suppose you had an enemy, who comes around and reminds me of what I said, and says that I ought to flunk you; would I be right to reply that what I did is consistent with my previous statement?
- So, here's the paraphrase:
(You attend all the lectures) \supset (you will pass the course)

'unless'

- Consider the following sentence:

'unless'

- Consider the following sentence:

I won't go to the party unless I finish the logic problem set.

'unless'

- Consider the following sentence:

I won't go to the party unless I finish the logic problem set.

- Suppose you go to the party without finishing the problem set. Would you have kept your word?

'unless'

- Consider the following sentence:

I won't go to the party unless I finish the logic problem set.

- Suppose you go to the party without finishing the problem set. Would you have kept your word?
- So the statement seems to be \perp in the same condition as

'unless'

- Consider the following sentence:

I won't go to the party unless I finish the logic problem set.

- Suppose you go to the party without finishing the problem set. Would you have kept your word?
- So the statement seems to be \perp in the same condition as
(I will go to the party) $\supset(I$ finish the logic problem set).

'unless'

- Consider the following sentence:

I won't go to the party unless I finish the logic problem set.

- Suppose you go to the party without finishing the problem set. Would you have kept your word?
- So the statement seems to be \perp in the same condition as (I will go to the party) $\supset(I$ finish the logic problem set).
- Is this the right paraphrase?

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,
(I will go to the party) $\supset(I$ finish the logic problem set).

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,
(I will go to the party) $\supset(I$ finish the logic problem set).

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,
(I will go to the party) $\supset(I$ finish the logic problem set).
is \top no matter whether its antecedent is \top or \perp.

'unless'

- You might say no, when you think about possible situations in which you do finish the problem set.
- Given our reading of \supset,
(I will go to the party) $\supset(I$ finish the logic problem set).
is \top no matter whether its antecedent is \top or \perp.
- But, if you in fact finish the problem set, then surely you will go to the party, right?

'unless'

- Really?

'unless'

- Really?
- Even if you do finish the problem set, something else might happen to prevent you from going to the party.

'unless'

- Really?
- Even if you do finish the problem set, something else might happen to prevent you from going to the party.
- Maybe you get a call from a friend who is depressed and you miss the party because you were cheering her up.

'unless'

- Really?
- Even if you do finish the problem set, something else might happen to prevent you from going to the party.
- Maybe you get a call from a friend who is depressed and you miss the party because you were cheering her up.
- So the possibility in which you finish the problem set is compatible with your not going to the party.

'unless' is the same as ' V '

'unless' is the same as ' V '

- If we paraphrase

'unless' is the same as ' V '

- If we paraphrase

I won't go to the party unless I finish the logic problem set.
as

'unless' is the same as ' V '

- If we paraphrase

I won't go to the party unless I finish the logic problem set.
as
(I will go to the party) $\supset(I$ finish the logic problem set),

'unless' is the same as ' V '

- If we paraphrase

I won't go to the party unless I finish the logic problem set.
as
(I will go to the party) $\supset(I$ finish the logic problem set),
then we must take the word

'unless' is the same as ' V '

- If we paraphrase

I won't go to the party unless I finish the logic problem set.
as
(I will go to the party) $\supset(I$ finish the logic problem set),
then we must take the word
'unless' to be the same as ' V '.

'unless' is the same as ' V '

- If we paraphrase

I won't go to the party unless I finish the logic problem set.
as
(I will go to the party) $\supset(I$ finish the logic problem set),
then we must take the word
'unless' to be the same as ' V '.

- Can you see why?

'unless' is the same as ' V '

- If
not p unless q
is paraphrased as

$$
p \supset q
$$

'unless' is the same as ' V '

- If

$$
\text { not } p \text { unless } q
$$

is paraphrased as

$$
p \supset q
$$

- Then

$$
p \text { unless } q
$$

is paraphrased as

$$
-p \supset q
$$

'unless' is the same as ' V '

- Now,

$$
-p \supset q
$$

is \perp only when $-p$ is \top and q is \perp,

'unless' is the same as ' V '

- Now,

$$
-p \supset q
$$

is \perp only when $-p$ is T and q is \perp,

- I.e., only when p is \perp and q is \perp.

'unless' is the same as ' V '

- Now,

$$
-p \supset q
$$

is \perp only when $-p$ is T and q is \perp,

- I.e., only when p is \perp and q is \perp.
- But these are the truth-conditions of $p \vee q$

Some other Paraphrases

- 'just in case'

Some other Paraphrases

- 'just in case'
- This is frequently paraphrased into the biconditional.

Some other Paraphrases

- 'just in case'
- This is frequently paraphrased into the biconditional.
- Why? It may help to think of 'just in case' as 'exactly in the case that'

Some other Paraphrases

- 'just in case'
- This is frequently paraphrased into the biconditional.
- Why? It may help to think of 'just in case' as 'exactly in the case that'
- 'even though'.

Some other Paraphrases

- 'just in case'
- This is frequently paraphrased into the biconditional.
- Why? It may help to think of 'just in case' as 'exactly in the case that'
- 'even though'.
- How would you paraphrase

Some other Paraphrases

- 'just in case'
- This is frequently paraphrased into the biconditional.
- Why? It may help to think of 'just in case' as 'exactly in the case that'
- 'even though'.
- How would you paraphrase

The Wesleyan faculty is productive even though the Wesleyan administration overburdens it?

Standard Paraphrases

- The meanings of ordinary English words obviously don't always match exactly the meanings of our logical symbols.

Standard Paraphrases

- The meanings of ordinary English words obviously don't always match exactly the meanings of our logical symbols.
- In order to avoid the problems of paraphrase, I give a list of Standard Paraphrases in the handout for this class.

Standard Paraphrases

- The meanings of ordinary English words obviously don't always match exactly the meanings of our logical symbols.
- In order to avoid the problems of paraphrase, I give a list of Standard Paraphrases in the handout for this class.
- You will never go wrong if you follow them

Standard Paraphrases

$$
\begin{array}{ll}
\text { ' } p \text { only if } q \text { ' } & \text { ' } p \supset q \text { ', } \\
\text { ' } p \text { provided that } q & \\
\text { 'not } p \text { unless } q \text { ' } & \text { ' } p \supset q \text { ', } \\
\text { ' } p \text { unless } q \text { ' } & \text { ' }-p \supset q \text { ' or ' } p \vee q \text { ' } \\
\text { ' } p \text { if and only if } q \text { ' } & \text { ' } p \equiv q \text { ' } \\
\text { ' } p \text { just in case } q \text { ' } & \text { ' } p q \text { ' } \\
\text { ' } p \text { even though } q \text { ' } & \text { ' } . q \text { ' }
\end{array}
$$

General Approach to Paraphrase

As Goldfarb puts it on p .18 , there are generally speaking, three steps involved in logical paraphrase

General Approach to Paraphrase

As Goldfarb puts it on p .18 , there are generally speaking, three steps involved in logical paraphrase

- Identify the English expressions that are used like our truth functional connectives.

General Approach to Paraphrase

As Goldfarb puts it on p .18 , there are generally speaking, three steps involved in logical paraphrase

- Identify the English expressions that are used like our truth functional connectives.
- Demarcate the constituent sentences of the sentence, and make the appropriate changes to turn these sentences into statements.

General Approach to Paraphrase

As Goldfarb puts it on p .18 , there are generally speaking, three steps involved in logical paraphrase

- Identify the English expressions that are used like our truth functional connectives.
- Demarcate the constituent sentences of the sentence, and make the appropriate changes to turn these sentences into statements.
- Determine the grouping of the constituent statements.

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

What are the truth-functional connectives?

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

What are the truth-functional connectives?

- If . . . then

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

What are the truth-functional connectives?

- If ... then
- and

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

What are the truth-functional connectives?

- If . . . then
- and
- unless

Example of Paraphrase: Truth-functional Connective Phrases

Let's try our hand at paraphrasing a fairly complicated sentence, the first Homework problem on today's Handout:

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

What are the truth-functional connectives?

- If . . . then
- and
- unless
- or

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

- the tree rings have been correctly identified

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

- the tree rings have been correctly identified
- the mace is indigenous

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

- the tree rings have been correctly identified
- the mace is indigenous
- the Ajo culture antedated the Tula culture

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

- the tree rings have been correctly identified
- the mace is indigenous
- the Ajo culture antedated the Tula culture
- the Tula culture was contemporary with the culture of the present excavation

Example of Paraphrase: Finding Constituent Statements

What are the constituent statements?
If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation

- the tree rings have been correctly identified
- the mace is indigenous
- the Ajo culture antedated the Tula culture
- the Tula culture was contemporary with the culture of the present excavation
- the Tula culture was derivative from the culture of the present excavation

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?
- It's a conditional: if ... then ...

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?
- It's a conditional: if ... then ...
- What is the structure of the antecedent?

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?
- It's a conditional: if ... then ...
- What is the structure of the antecedent?
- It's a conjunction:

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?
- It's a conditional: if ... then ...
- What is the structure of the antecedent?
- It's a conjunction:
(the tree rings have been correctly identified).(the mace is indigenous)

Example of Paraphrase: Grouping and Assembling the Paraphrase

If the tree rings have been correctly identified and the mace is indigenous, then the Ajo culture antedated the Tula unless the latter was contemporary with or derivative from that of the present excavation.

- So, what is the logical structure at the highest level?
- It's a conditional: if ... then ...
- What is the structure of the antecedent?
- It's a conjunction:
(the tree rings have been correctly identified).(the mace is indigenous)
- What about the consequent?

Example of Paraphrase: Grouping and Assembling the Paraphrase

- It's a disjunction with three disjuncts

Example of Paraphrase: Grouping and Assembling the Paraphrase

- It's a disjunction with three disjuncts
(the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))

Example of Paraphrase: Grouping and Assembling the Paraphrase

- It's a disjunction with three disjuncts
(the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- So, here's the full paraphrase:

Example of Paraphrase: Grouping and Assembling the Paraphrase

- It's a disjunction with three disjuncts
(the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- So, here's the full paraphrase:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))

(1) More Logical Paraphrase

(2) Schematization

(3) Interpretation of Schemata

(4) Truth-Tables

Schematization

- Schematization is the process of displaying the logical form of English statements by

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then
2. Replacing the sub-statements of the result with sentence letters: p, q, r, s, etc.

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then
2. Replacing the sub-statements of the result with sentence letters: p, q, r, s, etc.

- We have actually been doing this all along, so there is nothing mysterious about it.

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then
2. Replacing the sub-statements of the result with sentence letters: p, q, r, s, etc.

- We have actually been doing this all along, so there is nothing mysterious about it.
- For example, the logical form of the arguments from last class are schematizations:

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then
2. Replacing the sub-statements of the result with sentence letters: p, q, r, s, etc.

- We have actually been doing this all along, so there is nothing mysterious about it.
- For example, the logical form of the arguments from last class are schematizations:

Schematization

- Schematization is the process of displaying the logical form of English statements by

1. Translating them into logical English, and then
2. Replacing the sub-statements of the result with sentence letters: p, q, r, s, etc.

- We have actually been doing this all along, so there is nothing mysterious about it.
- For example, the logical form of the arguments from last class are schematizations:

$$
\begin{aligned}
& p \supset r \\
& q \supset r \\
& p \vee q \\
& \text { Therefore } r
\end{aligned}
$$

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- How many sentence letters do we need?

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- How many sentence letters do we need?
- OK: let's choose p, q, r, s, t.

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- How many sentence letters do we need?
- OK: let's choose p, q, r, s, t.
- What is the schema?

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- How many sentence letters do we need?
- OK: let's choose p, q, r, s, t.
- What is the schema?

Schematization of the Paraphrase Example

- So now, let's schematize what we just paraphrased:
((the tree rings have been correctly identified).(the mace is indigenous)) \supset (the Ajo culture antedated the Tula culture) \vee ((the Tula culture was contemporary with the culture of the present excavation) \vee (the Tula culture was derivative from the culture of the present excavation))
- How many sentence letters do we need?
- OK: let's choose p, q, r, s, t.
- What is the schema?

$$
(p . q) \supset(r \vee(s \vee t))
$$

Convention for Bracketing

We're going to make life a little easier for ourselves: we adopt a convention so as to write fewer brackets. The following tells you how big of a break a connective marks, in increasing order

Convention for Bracketing

We're going to make life a little easier for ourselves: we adopt a convention so as to write fewer brackets. The following tells you how big of a break a connective marks, in increasing order

- $\{-\}$

Convention for Bracketing

We're going to make life a little easier for ourselves: we adopt a convention so as to write fewer brackets. The following tells you how big of a break a connective marks, in increasing order

- $\{-\}$
- $\{\},.\{\mathrm{V}\}$

Convention for Bracketing

We're going to make life a little easier for ourselves: we adopt a convention so as to write fewer brackets. The following tells you how big of a break a connective marks, in increasing order

- $\{-\}$
- $\{\},.\{\mathrm{V}\}$
- $\{\supset\}$,

Convention for Bracketing

We're going to make life a little easier for ourselves: we adopt a convention so as to write fewer brackets. The following tells you how big of a break a connective marks, in increasing order

- $\{-\}$
- $\{\},.\{\mathrm{V}\}$
- $\{\supset\}$,
- $\{\equiv\}$

Example of Convention for Bracketing

This isn't that difficult to understand. All it amounts to is that if we write

$$
-p \cdot q
$$

Example of Convention for Bracketing

This isn't that difficult to understand. All it amounts to is that if we write

$$
-p \cdot q
$$

We mean

$$
(-p) \cdot q
$$

Example of Convention for Bracketing

This isn't that difficult to understand. All it amounts to is that if we write

$$
-p \cdot q
$$

We mean

$$
(-p) \cdot q
$$

Not

$$
-(p . q)
$$

(1) More Logical Paraphrase

(2) Schematization

(3) Interpretation of Schemata

(4) Truth-Tables

Interpretation of Schemata

There are two notions of interpretation of schemata

Interpretation of Schemata

There are two notions of interpretation of schemata

- Replacing each letter appearing in a schema with a statement. This is called interpretation by replacement.

Interpretation of Schemata

There are two notions of interpretation of schemata

- Replacing each letter appearing in a schema with a statement. This is called interpretation by replacement.
- The result is to convert a schema back to a statement of logical English.

Interpretation of Schemata

There are two notions of interpretation of schemata

- Replacing each letter appearing in a schema with a statement. This is called interpretation by replacement.
- The result is to convert a schema back to a statement of logical English.
- Assigning a truth value to each distinct letter of a schema. This is called interpretation by assignment.

Interpretation of Schemata

There are two notions of interpretation of schemata

- Replacing each letter appearing in a schema with a statement. This is called interpretation by replacement.
- The result is to convert a schema back to a statement of logical English.
- Assigning a truth value to each distinct letter of a schema. This is called interpretation by assignment.
- Notation: ' $p:=\perp$ ' means that the sentence letter p is assigned the value \perp.

Interpretation of Schemata

There are two notions of interpretation of schemata

- Replacing each letter appearing in a schema with a statement. This is called interpretation by replacement.
- The result is to convert a schema back to a statement of logical English.
- Assigning a truth value to each distinct letter of a schema. This is called interpretation by assignment.
- Notation: ' $p:=\perp$ ' means that the sentence letter p is assigned the value \perp.
- The result of such an assignment is that the entire schema is determined as \top or \perp.

Example of Interpretation by Assignment

- Let's consider the schema:

$$
p \vee q \supset r
$$

Example of Interpretation by Assignment

- Let's consider the schema:

$$
p \vee q \supset r
$$

- An interpretation by assignment is:

$$
p:=\top, q:=\perp, r:=\top
$$

Example of Interpretation by Assignment

- Let's consider the schema:

$$
p \vee q \supset r
$$

- An interpretation by assignment is:

$$
p:=\top, q:=\perp, r:=\top
$$

- The truth value of this schema under this interpretation is computed by using the rules for the truth functional connectives. Can you tell me what it is?

Example of Interpretation by Assignment

- Let's consider the schema:

$$
p \vee q \supset r
$$

- An interpretation by assignment is:

$$
p:=\top, q:=\perp, r:=\top
$$

- The truth value of this schema under this interpretation is computed by using the rules for the truth functional connectives. Can you tell me what it is?
- It's T, because the schema is a conditional, and its consequent is assigned \top. The assignments to p and to q, in this case, don't matter, because a conditional is T if it has a T consequent, no matter what the truth-value of its antecedent.

(1) More Logical Paraphrase

(3) Interpretation of Schemata
(4) Truth-Tables

Standard Procedure to Write a Truth-Table

There is a standard procedure for constructing truth tables: the rows of the table are written down in a fixed order. Let's look at how it's done with 3 sentence letters, p, q, and r. For 3 letters there are $2^{3}=8$ possible combinations of truth-values. Each letter is T in half of those and \perp in half; i.e., \top in 4 interpretations and \perp in the other 4 .

Standard Procedure to Write a Truth-Table

We begin with p, and first fill the first 4 rows with T.

Standard Procedure to Write a Truth-Table

We begin with p, and first fill the first 4 rows with T.

p	q	r
\top		

Standard Procedure to Write a Truth-Table

We begin with p, and first fill the first 4 rows with T. Then we fill the remaining 4 with \perp

p	q	r
\top		

Standard Procedure to Write a Truth-Table

We begin with p, and first fill the first 4 rows with T. Then we fill the remaining 4 with \perp

p	q	r
\top		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top.

p	q	r
\top		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is T. We fill half of those with \top

p	q	r
\top		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top. We fill half of those with \top

p	q	r
\top	\top	
\top	\top	
\top		
\top		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top. We fill half of those with \top
Then the rest with \perp

p	q	r
\top	\top	
\top	\top	
\top		
\top		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is T. We fill half of those with \top
Then the rest with \perp

p	q	r
\top	\top	
\top	\top	
\top	\perp	
\top	\perp	
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top. We fill half of those with \top
Then the rest with \perp
Then we do the same for the 4 rows in which p is \perp

p	q	r
\top	\top	
\top	\top	
\top	\perp	
\top	\perp	
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top. We fill half of those with \top
Then the rest with \perp
Then we do the same for the 4 rows in which p is \perp

p	q	r
\top	\top	
\top	\top	
\top	\perp	
\top	\perp	
\perp	\top	
\perp	\top	
\perp		
\perp		

Standard Procedure to Write a Truth-Table

Next we work on q, in the 4 rows in which p is \top. We fill half of those with \top
Then the rest with \perp
Then we do the same for the 4 rows in which p is \perp

p	q	r
\top	\top	
\top	\top	
\top	\perp	
\top	\perp	
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	
\top	\top	
\top	\perp	
\top	\perp	
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	
\top	\perp	
\top	\perp	
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	
\top	\perp	
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	\perp
\perp	\top	
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	\perp
\perp	\top	\top
\perp	\top	
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	\perp
\perp	\top	\top
\perp	\top	\perp
\perp	\perp	
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	\perp
\perp	\top	\top
\perp	\top	\perp
\perp	\perp	\top
\perp	\perp	

Standard Procedure to Write a Truth-Table

Now we work on r. It's just alternating \top and \perp down the third column:

p	q	r
\top	\top	\top
\top	\top	\perp
\top	\perp	\top
\top	\perp	\perp
\perp	\top	\top
\perp	\top	\perp
\perp	\perp	\top
\perp	\perp	\perp

A Full Truth-Table

Let's now calculate the truth-table for a fairly simple schema:

$$
(p \supset q) \equiv-r
$$

First we write across the top the parts of the schemata, from less complex to more complex.

p	q	r			
T	T	T			
T	T	\perp			
T	\perp	T			
T	\perp	\perp			
\perp	T	T			
\perp	\top	\perp			
\perp	\perp	T			
\perp	\perp	\perp			

A Full Truth-Table

Let's now calculate the truth-table for a fairly simple schema:

$$
(p \supset q) \equiv-r
$$

First we write across the top the parts of the schemata, from less complex to more complex.

p	q	r	$p \supset q$		
T	T	\top			
T	\top	\perp			
T	\perp	T			
T	\perp	\perp			
\perp	T	T			
\perp	\top	\perp			
\perp	\perp	\top			
\perp	\perp	\perp			

A Full Truth-Table

Let's now calculate the truth-table for a fairly simple schema:

$$
(p \supset q) \equiv-r
$$

First we write across the top the parts of the schemata, from less complex to more complex.

p	q	r	$p \supset q$	$-r$	
T	T	\top			
T	\top	\perp			
\top	\perp	T			
T	\perp	\perp			
\perp	T	T			
\perp	\top	\perp			
\perp	\perp	\top			
\perp	\perp	\perp			

A Full Truth-Table

Let's now calculate the truth-table for a fairly simple schema:

$$
(p \supset q) \equiv-r
$$

First we write across the top the parts of the schemata, from less complex to more complex. Then the whole schema.

p	q	r	$p \supset q$	$-r$	
T	T	T			
T	\top	\perp			
T	\perp	T			
T	\perp	\perp			
\perp	T	T			
\perp	\top	\perp			
\perp	\perp	\top			
\perp	\perp	\perp			

A Full Truth-Table

Let's now calculate the truth-table for a fairly simple schema:

$$
(p \supset q) \equiv-r
$$

First we write across the top the parts of the schemata, from less complex to more complex. Then the whole schema.

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & & & \\
\top & \top & \perp & & & \\
\top & \perp & \top & & & \\
\top & \perp & \perp & & & \\
\perp & \top & \top & & & \\
\perp & \top & \perp & & & \\
\perp & \perp & \top & & & \\
\perp & \perp & \perp & & &
\end{array}
$$

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & & & \\
\top & \top & \perp & & & \\
\top & \perp & \top & & & \\
\top & \perp & \perp & & & \\
\perp & \top & \top & & & \\
\perp & \top & \perp & & & \\
\perp & \perp & \top & & & \\
\perp & \perp & \perp & & &
\end{array}
$$

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & & & \\
\top & \top & \perp & & & \\
\top & \perp & \top & & & \\
\top & \perp & \perp & & & \\
\perp & \top & \top & \top & & \\
\perp & \top & \perp & \top & & \\
\perp & \perp & \top & \top & & \\
\perp & \perp & \perp & \top & &
\end{array}
$$

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.
- A conditional is also T if its consequent is T so we can write T in the rows in which q is T.

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & & & \\
\top & \top & \perp & & & \\
\top & \perp & \top & & & \\
\top & \perp & \perp & & & \\
\perp & \top & \top & \top & & \\
\perp & \top & \perp & \top & & \\
\perp & \perp & \top & \top & & \\
\perp & \perp & \perp & \top & &
\end{array}
$$

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.
- A conditional is also T if its consequent is T so we can write T in the rows in which q is T.

p	q	r	$p \supset q$	$-r$	$(p \supset q) \equiv-r$
\top	\top	\top	\top		
\top	\top	\perp	\top		
\top	\perp	\top			
\top	\perp	\perp			
\perp	\top	\top	\top		
\perp	\top	\perp	\top		
\perp	\perp	\top	\top		
\perp	\perp	\perp	\top		

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.
- A conditional is also T if its consequent is T so we can write T in the rows in which q is T.
- In the remaining rows $p \supset q$ is \perp.

p	q	r	$p \supset q$	$-r$	$(p \supset q) \equiv-r$
\top	\top	\top	\top		
\top	\top	\perp	\top		
\top	\perp	\top			
\top	\perp	\perp			
\perp	\top	\top	\top		
\perp	\top	\perp	\top		
\perp	\perp	\top	\top		
\perp	\perp	\perp	\top		

The Truth-Values of $p \supset q$

- Since a conditional is T if its antecedent is \perp, we can immediately write a T in all the rows in which p is \perp.
- A conditional is also T if its consequent is T so we can write T in the rows in which q is T.
- In the remaining rows $p \supset q$ is \perp.

p	q	r	$p \supset q$	$-r$	$(p \supset q) \equiv-r$
\top	\top	\top	\top		
\top	\top	\perp	\top		
\top	\perp	\top	\perp		
\top	\perp	\perp	\perp		
\perp	\top	\top	\top		
\perp	\top	\perp	\top		
\perp	\perp	\top	\top		
\perp	\perp	\perp	\top		

The Truth-Values of $-r$

This is easy, we just reverse the truth-values of the third column

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & & \\
\top & \top & \perp & \top & & \\
\top & \perp & \top & \perp & & \\
\top & \perp & \perp & \perp & & \\
\perp & \top & \top & \top & & \\
\perp & \top & \perp & \top & & \\
\perp & \perp & \top & \top & & \\
\perp & \perp & \perp & \top & &
\end{array}
$$

The Truth-Values of $-r$

This is easy, we just reverse the truth-values of the third column

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \\
\top & \top & \perp & \top & \top & \\
\top & \perp & \top & \perp & \perp & \\
\top & \perp & \perp & \perp & \top & \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \\
\top & \top & \perp & \top & \top & \\
\top & \perp & \top & \perp & \perp & \\
\top & \perp & \perp & \perp & \top & \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \\
\top & \perp & \top & \perp & \perp & \\
\top & \perp & \perp & \perp & \top & \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \\
\top & \perp & \perp & \perp & \top & \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \perp \\
\perp & \top & \top & \top & \perp & \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \perp \\
\perp & \top & \top & \top & \perp & \perp \\
\perp & \top & \perp & \top & \top & \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \perp \\
\perp & \top & \top & \top & \perp & \perp \\
\perp & \top & \perp & \top & \top & \top \\
\perp & \perp & \top & \top & \perp & \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \perp \\
\perp & \top & \top & \top & \perp & \perp \\
\perp & \top & \perp & \top & \top & \top \\
\perp & \perp & \top & \top & \perp & \perp \\
\perp & \perp & \perp & \top & \top &
\end{array}
$$

Truth-Values of the Entire Schema

Finally, we calculate the final column from the truth-values of the $4^{\text {th }}$ and $5^{\text {th }}$ columns:

$$
\begin{array}{c|c|c|c|c|c}
p & q & r & p \supset q & -r & (p \supset q) \equiv-r \\
\hline \top & \top & \top & \top & \perp & \perp \\
\top & \top & \perp & \top & \top & \top \\
\top & \perp & \top & \perp & \perp & \top \\
\top & \perp & \perp & \perp & \top & \perp \\
\perp & \top & \top & \top & \perp & \perp \\
\perp & \top & \perp & \top & \top & \top \\
\perp & \perp & \top & \top & \perp & \perp \\
\perp & \perp & \perp & \top & \top & \top
\end{array}
$$

Now it's Homework Time

DL p. 254, Problem 4 (a)-(c); paraphrase and schematize:
(a) The curse will be effective and neither Fasolt nor Fafner will retain the Ring.

Now it's Homework Time

DL p. 254, Problem 4 (a)-(c); paraphrase and schematize:
(a) The curse will be effective and neither Fasolt nor Fafner will retain the Ring.
(b) Either Wotan will triumph and Valhalla be saved or else he won't and Alberic will have the final word.

Now it's Homework Time

DL p. 254, Problem 4 (a)-(c); paraphrase and schematize:
(a) The curse will be effective and neither Fasolt nor Fafner will retain the Ring.
(b) Either Wotan will triumph and Valhalla be saved or else he won't and Alberic will have the final word.
(c) Wotan and Alberic will not both be satisfied.

