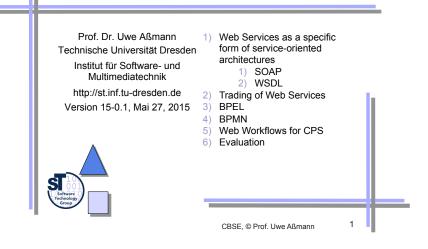


ISC, Chapter 2.4

CBSE

U. Aßmann,

Prof.

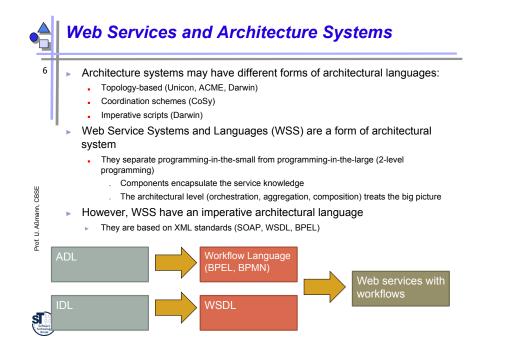

Software Software Software

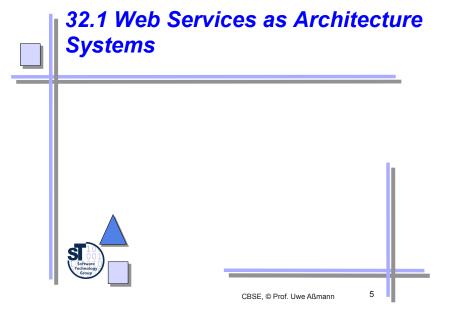
. .

- Lohmann, Niels, Verbeek, Eric, Dijkman, Remco. Petri Net Transformations for Business Processes – A Survey. In : Transactions on Petri Nets and Other Models of Concurrency II, Editor: Jensen, Kurt, van der Aalst, Wil, Lecture Notes in Computer Science 5460, 2009, Springer Berlin / Heidelberg
 - http://www.springerlink.com/content/n7464131r6751453/
- W.M.P. Van der Aalst. Don't go with the flow: Web services composition standards exposed. IEEE Intelligent Systems, Jan/Feb 2003. <u>http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf</u>
- P. Wohed, W.M.P. Van der Aalst, M. Dumas, A. ter Hofstede. Analysis of Web Service Composition Languages: The Case of BPEL.
- http://www.bpmn.org/ BPMN home page at OMG
 - http://www.omg.org/cgi-bin/doc?dtc/10-06-02 BPMN by example
- http://www.bpmnforum.com/FAQ.htm FAQ of BPMN

	The Ladder of Composition Systems			ems
		asive Composition Piccola Gloo		
Aspect Systems Aspect Separation Crosscutting		Aspect/J AOM		
ш		View Systems	Composition Operators	Composition Filters Hyperspaces
Alsmann, CB		Architecture Systems	Architecture as Aspect Connectors	Darwin BPMN BPEL HRC
Prof. U. Aßmann, CB iE		Classical Component Systems	Standard Components Reflection	.NET CORBA Beans EJB ArchJava
	Object-Oriented Systems		Objects as Run-Time Components	C++ Java UML components
	Modular Systems		Modules as Compile- Time Components	Shell scripts Modula Ada-85

32. Web Services, Workflows and Service-Oriented Architectures

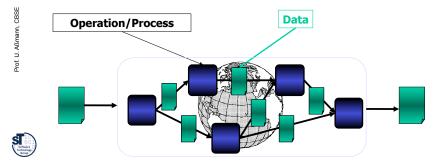

Other Literature


3

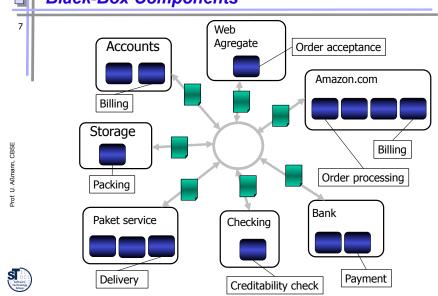
U. Aßmann,

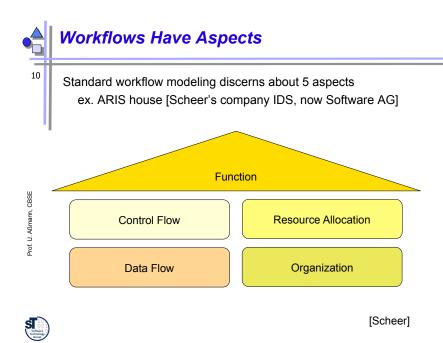
rof.

- Matthias Weske. Business Process Management Concepts, Languages, Architectures. Springer. 2007
 - YAWL http://sourceforge.net/projects/yawl/
- H. P. Alesso, C. F. Smith. Developing Semantic Web Services. A K Peters Ltd, Natick, Massachusetts, 2004.
- BPMN 2.0 language specification
 - http://www.omg.org/spec/BPMN/2.0/PDF/
- http://www.bpmb.de/index.php/BPMNPoster
- List of BPMN tool companies <u>http://www.bpmn.org/BPMN_Supporters.htm</u>
- Scheer, A.-W. ARIS Business Process Frameworks. Springer, Berlin, 1998, ISBN 3-540-64439-3
- Michael C. Jaeger. Modelling of Service Compositions: Relations to Business Process and Workflow Modelling. ICSOC 2007, LNCS 4652.



Web Service Architectures are Described by Workflows


- Web service architectures are the first step to service-oriented architectures (SOA), based on traders
 - Services are offered, searched and discovered, downloaded, executed
 - Workflow specifications combine control and data flow


8

- Enterprise services transfers web services to business systems
- Customer services serve the end-user of the web

Web Services are Black-Box Components

Ex. Buying a Book from Amazon Workflows can be specified graphically as activity diagrams

E.g., with UML activity diagrams [Alesso/Smith] • Locate book Put In ShoppingBasket Begin Checkout One-Click Buv Create Account Create Account Aßma Load User Profile Create User Profile 5 Prof. Commit Checkout Payment Selection Fill in Delivery Details ST 00 Software Technolog Commit Purchase

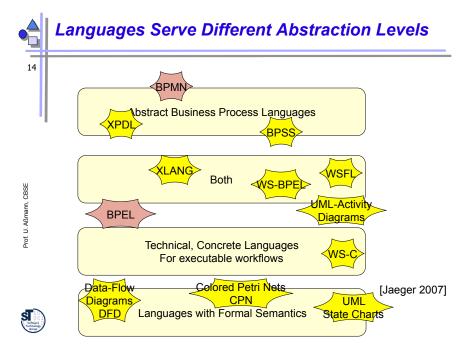
Workflow Languages

- A **workflow language** specifies control and data flow over a set of operations
 - The workflow is executable with an interpreter, the workflow engine
 - A single operation need not be executed automatically, but can be performed by humans (... for people)
 - The workflow runs in parallel
- Workflows are usually compiled to Colored Petri Nets, to Statecharts, or to data-flow diagrams
 - YAWL (van der Aalst, Einhoven)
- Workflow Nets
- Industrial Examples:
 - Lotus Domino (IBM)
 - Business Process Execution Language (BPEL)
 - ARIS system for SAP, based on EPC (event process chains)
 - Business Process Modeling Notation (BPMN), also in use at SAP

Which Types of Operational Specifications Exist for Workflows?

- ¹¹ **Data-flow graphs** (data flow diagrams, DFD) focus on data flowing through operations
 - Activity diagrams: data flows through actions
 - See courses Softwaretechnologie II, Software-Entwicklungswerkzeuge
 - **Control-flow graphs** (CFG) focus on control dependencies
 - Nodes are control-flow operations that start other operations on a state
 - The standard representation for imperative programs
 - State systems focus on transitions between states
 - Finite State Machines (FSM): events trigger state transitions
 - Statecharts: Hierarchical FSM
 - Mixed approaches

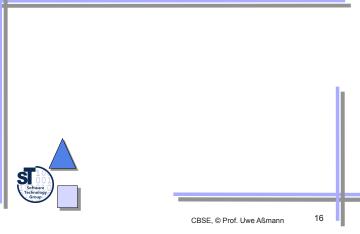
Prof.


- Colored Petri nets: tokens mark control and data-flow, see course
 Softwaretechnologie II
- Cyclic data-flow graphs (also called static-single assignment graphs, SSA)
 - . Cycles are marked by phi-nodes that contain control-flow guards
- Workflow languages mix control and data-flow
 - Provide specific split and join operators for control and data flow

Software (

12

CBSE


U. Aßmann,

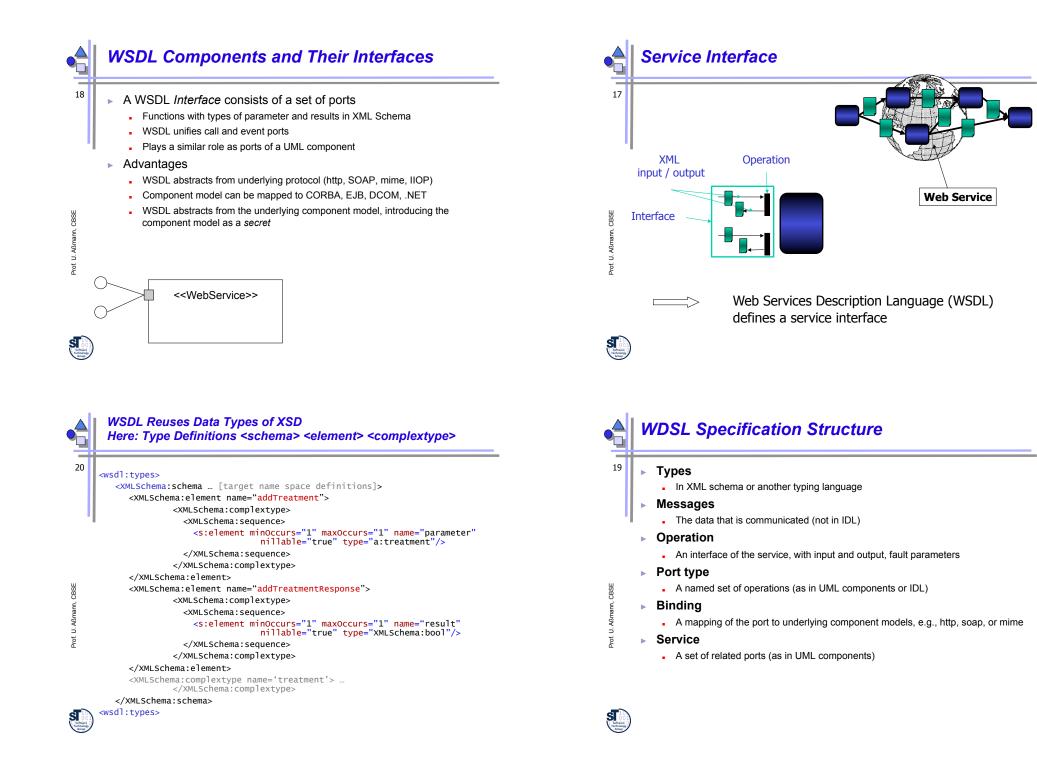
What is a Business Process? Business Processes are Abstract Workflows

- ¹³ Business processes are partial or abstract workflows describing processes in enterprises
 - A business process is described on the modeling level, can be abstract, underspecified and need not be executable
 - A business process can be refined iteratively to become executable.
 - An executable business process is called a workflow (executable business process).
 - "A collection of related, structured activities--a chain of events--that produce a specific service or product for a particular customer or customers." www.gao.gov/policy/itguide/glossary.htm
 - "A business process is a recipe for achieving a commercial result. Each business process has inputs, method and outputs. The inputs are a pre-requisite that must be in place before the method can be put into practice. When the method is applied to the inputs then certain outputs will be created." en.wikipedia.org/wiki/Business process

32.3 WSDL for the Definition of Interfaces of Web Services

What are Workflow Engines?

- ¹⁵ Workflow engines are interpreters of workflows
 - They maintain the parallelism in a workflow and synchronize all processes
 - Usually, they also support for interactive applications
 - Undo
 - Transactions with rollback and commit
 - Compensation (in case of error)
 - They are, for web services and component systems, composition engines that execute a composition program, the workflow


Prof.

Aßma

5

Prof.

Software Software Technology

Example: Binding WSDL to SOAP

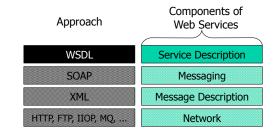
32.3 Business Process Execution and Web Service Workflows with BPEL

BPEL, a web service composition language

Different Kinds of Port Types Event- or message-based ports Notification: data-out port One-way: data-in port Call ports: Request-Response: procedure port (callee port) Solicit-Response: send, then receive (caller port) <wsdl:definitions [name space definitions]> <wsdl:types> ... </wsdl:types> <wsdl:message name="addTreatmentSOAPIn"> <part name="parameters" element="addTreatment"/> </wsdl:message> <wsdl:message name="addTreatmentSOAPOut"> called addreamenters(>/> </wsdl:message> <wsdl:porttype name="TreatmentAdminSOAP"> <wsdl:operation name="addTreatment"> <wsdl:input message="addTreatmentSoapIn"/> <wsdl:output message="addTreatmentSoapOut"/> </wsdl:operation> </wsdl:porttype> <binding [binding to SOAP / HTTP Protocols] ...</pre> </wsdl:definitions>

- WSDL is a Interface Definition Language (IDL)
 - Part of BPEL (see later)
 - W3C Recommendation (standard)
- Further development:

21


Aßmann,

. ت

Prof.

23

- USDL <u>http://theseus.pt-dlr.de/de/1309.php</u> with quality specifications
- Linked USDL <u>http://www.linked-usdl.org/</u> for connection to Linked Data

CBSE

Aßmann.

5

Prof.

22

Ingredients of BPEL

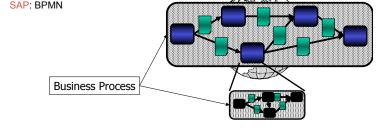
- BPEL is an executable language for workflows, executable business processes
 - An architectural language for web services
 - Based on workflow languages
 - Mixing control and data flow operators
 - BPEL is a composition language composing web services at their ports
 - BPEL uses WSDL for service interface descriptions, as IDL
 - BPEL adds connection types (partner link types)

Business Process Definition

- BPEL is the major language for execution of business processes today
 - Business process on the web
 - IBM & Microsoft

25

Aßme


5

Prof.

ST 10

27

- There are many languages proposed today: ►
 - WSFL, WSCL, WSCI, XLANG, WSEL, UML, WSUI, WSXL, BPML, BPMN ...
 - **OASIS: WS BPEL**
 - W3C: OWL-S, SML (Service Modeling Language)
- SAP: BPMN

- Process definition: Header with namespace declarations
- Variables: global variables of the process
- PartnerLink declarations: interface declaration
 - with whom is the process connected?
- Partners: actual partners of the communication
- Correlation sets: Which instance of a process is talking to which other instance?
- **Fault handler**: What happens in the case of an exception?
- Compensation handler specifies compensation actions for inconsistencies or damages a fault has provoked
 - Optimistic transactions with compensations
- Event handler: what happens in case of a certain event?
- ► A (structured) main operation
 - e.g., sequence or flow

CBSE

U. Aßmann.

Prof.

BPEL Made Simple

- BPEL is a activity-diagram like language,
 - with parallelism and transactions
 - with different kind of join and split operators
 - with ports and connections
 - BPEL can be edited graphically, and has an XML abstract syntax
 - To create a web service, becomes a similar activity as editing an UML activity diagram or Petri Net
- **BPEL uses XML syntax** .
 - WSDL definitions to define types, message types, and port types
 - WSDL definitions can be without binding
 - Bindings can be added when the BPEL process is deployed
 - That increases reuse of the process
 - This achieves component model transparency (independence of the underlying component model)
 - ► Partner link types (connector types) describing typed connections

Prof.

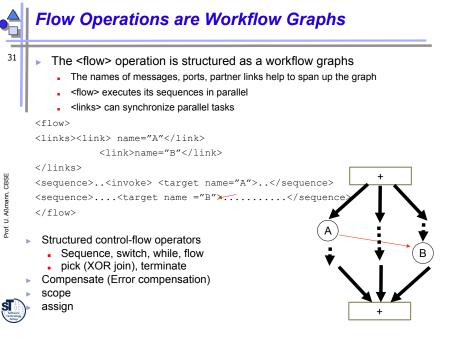
ST 10 Software Technology

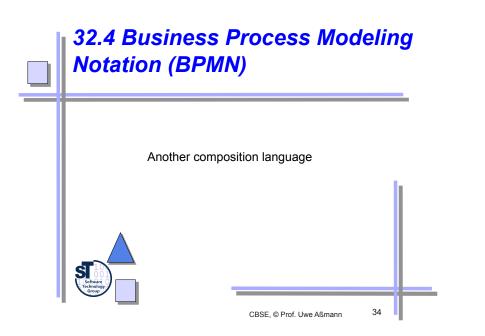
26

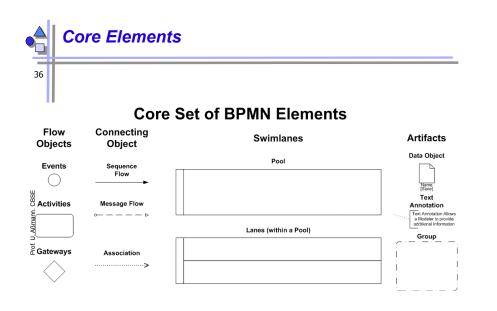
CBSE

Aßmann.

5


Prof.


Typical Control-Flow Operators in BP and Workflow Languages (Gateways) 30 Control-flow operators in Workflow languages are more complex than simple transitions in Petri Nets, which support only AND-split and -join AND-split: all AND-join: all of n CBSE ► XOR-split: 1 of n Aßmann, XOR-join: 1 of n 5 Prof. OR-split: m of n OR-join: m of n S



	A Simple Pizza Order
29	Process definition
	<process <="" name="OrderPizza" pre="" suppressjoinfailure="yes"></process>
	<pre>xmIns="<u>http://schema.xmlsoap.org/ws/2003/03/business-process</u>" pns="<u>http://www.pizza.org/schema</u>"></pre>
. 1	<partnerlinks></partnerlinks>
	<pre><partnerlink myrole="PizzaOrderer" name="PizzaService" partnerlinktype="pns:OrderChannel"></partnerlink></pre>
	Connecto
	Global Variables
	<variables></variables>
	<variable messagetype="PizzaOrder" name="input"></variable>
2	<variable messagetype="PizzaDelivery" name="output"></variable>
5	
Ď.	<faulthandlers> </faulthandlers>
	<sequence name="body"></sequence>
	<invoke <br="" name="order" partnerlink="PizzaService" porttype="PizzaOrder">operation="body" variable="output"></invoke>
	<receive <br="" name="acknowledgement" partnerlink="PizzaService" porttype="Pizza">operation="body" variable="input"></receive>
10 001 Softwere ()	
Group	

Aßmann, . Prof.

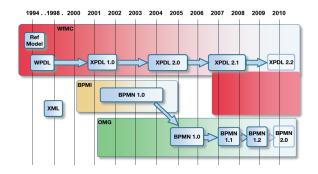
Software Software Technology Group

	Business Process		
33			
"	Approach	Components of Web Services	λ
CBSE	BPEL BPMN OWL-S	Workflow	
ßmann,	UDDI	Service Discovery	
Prof. U. Aßmann, CBSE	UDDI	Service Publication	
<u>a</u> .	WSDL	Service Description	
	SOAP	Messaging	
_	XML	Message Description	
ST DO	HTTP, FTP, IIOP, MQ,	Network	

History

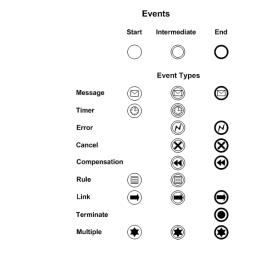
35

CBSE

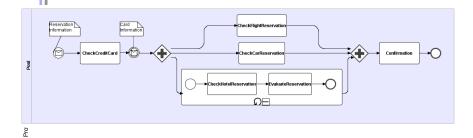

Aßmann,

Prof. U.

Software Software Technology Group


(

- The Business Process Modelling Notation (BPMN)
- Graphical notation for conceptual business processes
- Covers control, data, authorization, exception
- Standardized by OMG


Events and Activities

Events affect the flow of the process and usually have a cause (trigger) or an impact (result): 'Email received', 'Warehouse empty'

Example: Travel Process Control Flow

More refinement leads to business process specifications (with control and data flow)

Activities and Processes

37

Aßmann,

5

Prof.

Software Software Technology

XOR

(DATA)

XOR

(EVENT)

OR

COM-

PLEX

AND

(

 $(\mathbf{+})$

CBSE

E.

Softward Softward Group An **activity** in BPMN is a generic type of work that a company performs.

An activity can be atomic (task) or compound (process, sub-process).

³⁹ A gateway is used to split or merge multiple process flows. It will determine branching, forking, merging and joining of paths.

Gateway control types

- We conclusion of a state of the st
 - Data based inclusive decision or merging.
 - Complex condition (a combination of basic conditions)
 - Parallel forking and joining (synchronization).

Normal	
sequence flow Conditional	~ ·
sequence flow Default	
sequence flow	\rightarrow
Message flow	0>
Association	\longrightarrow

Graphical connectors

5

Prof.

Software Software Technology Group

40

Why BPMN?

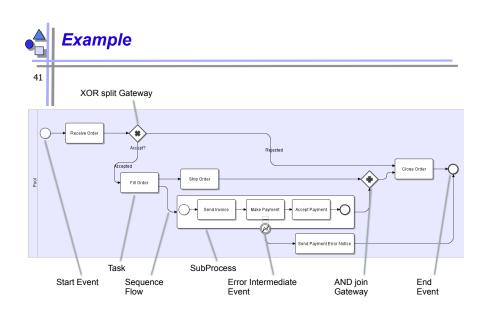
BPMN v2.x

Modeling language for business processes: no execution semantics, only a partial mapping to Business Process Execution Language (BPEL)

Explicit service mapping to web services (as components)

Engines are available (jBPM for jBoss)

BPMN geared towards business analysts:


BPMN constructs are simplified

The Complete Hierarchy

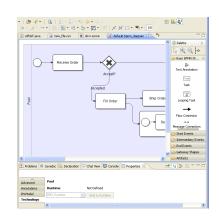
UML notation too bloated

BPMN is on the platform-independent level, BPEL nearer the platform-specific level

Components of

43

Give BPMN a try


Free BPMN Editor from Eclipse Included in the SOA

Tools Project

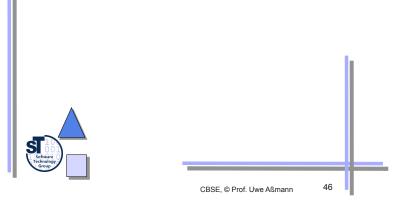
http://www.eclipse.org/bpmn/

http://www.eclipse.org/ bpmn2-modeler/

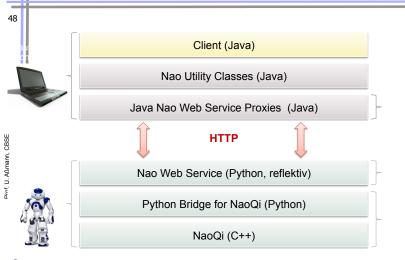
SAP has decided to use BPMN in their products

	Web Services	
WS-Security		
BPEL BPMN OWL-S	Work Flow	
UDDI	Service Discovery	
UDDI	Service Publication	Se
WSDL	Service Description	ecurity
SOAP	Messaging	Ţ
XML	Message Description	
HTTP, FTP, IIOP,	Network	

Aßmann,


. ت

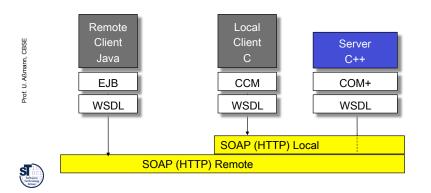
Prof.

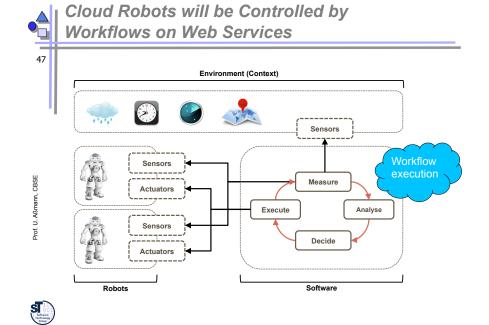

ST.

44

32.5 Web Workflows for Cyber-Physical Systems

Communication Layers between a Client and the Web Server on a a NAO Robot




Web Services – Component Model Transparency

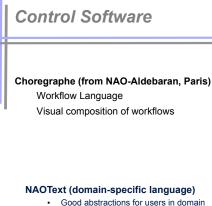
- ▶ Language adaptation: XML Schema + WSDL
 - ► Remote transparency: SOAP (+ HTTP)

45

 Component model transparency (EJB, COM+, CORBA, CCM, Beans, etc...)

Control by Tablet

50 NAO Droid


Scripts can be started by buttons and "apps" Dynamic scripting possible

Commands are transported to robot and executed on the web server

Film about Petri-Net controlled robot on ResUbic site

https://www.youtube.com/watch? feature=player_embedded&v=37DcE9e7 phl

Expressive

49

ABn

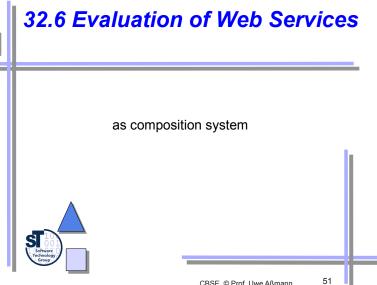
. ت

Prof.

Software Software Software

52

CBSE


Aßmann,

5

Prof.

Component Model

- Mechanisms for secrets and transparency: very good
 - Location, language, component model transparency
 - Communication protocol transparency
 - Interface specification is flexible with WSDL and USDL
 - Different black-box component models can be hidden under WSDL specifications •
- ▶ Generic BPEL Web Services are possible (without bound WSDL ports)
- BPMN Web Services can be stepwise refined from abstract to concrete

Composition Language

- BPEL, BPMN are flexible composition languages for web services
 - Based on ADL
 - Not yet full exchangeability of connector types
 - But graphic support for workflow specifications
 - Sophisticated control- and data-flow operators (gateways) .
 - Parallel execution semantics
 - Abstract (business processes) and executable level (workflows)
- Metacomposition fully supported
 - The generation and composition of a BPEL or BPMN script is easy
 - because it is XML based
 - Development environments generate workflow from other specifications
 - Generic workflow architectures will be possible

Composition Technique

- 53 Mechanisms for connection •
 - Protocol transparency allows for flexible connections
 - WSDL binding is flexible
 - Mechanisms for aspect separation
 - Separate modeling from execution (abstract business processes from workflows)
 - Scalability: Better

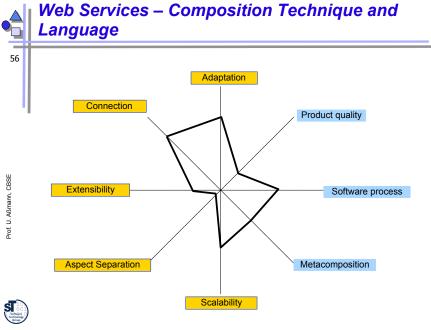
Aßmä

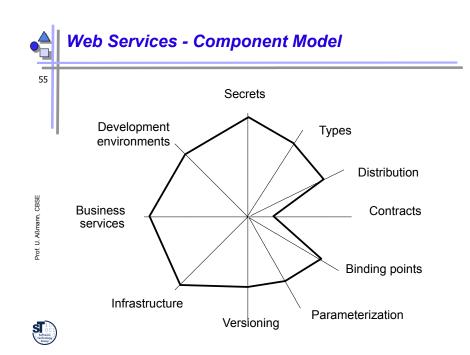
5

Prof.

Software

- Changes of protocol possible
- Changes of distribution easy
- Changes of workflow easy

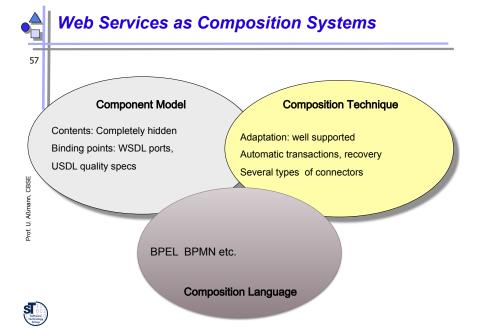



54

CBSE

Aßmann,

5



	So Far: Blackbox Composition Systems			
58				
		Software Composition Systems	Composition In Language	vasive Composition Piccola Gloo
'		Aspect Systems	Aspect Separation Crosscutting	Aspect/J AOM
<u> </u>		View Systems	Composition Operators	Composition Filters Hyperspaces
Prof. U. Aßmann, CB		Architecture Systems	Architecture as Aspec Connectors	ct Darwin BPMN BPEL HRC
Prof. U.	Classical Component Syste		Standard Components Reflection	s .NET CORBA Beans EJB ArchJava
	0	bject-Oriented Systems	Objects as Run-Time Component	C++ Java ts UML components
S	Modular Systems		Modules as Compile- Time Components	Shell scripts Modula Ada-85

The End

- Many slides inherited from
- Stig Berild's talk on the Nordic Conference on Web Services, Nov. 2002
- Prof. Welf Löwe, Web Service Competence Center (WSCC), Växjö Linnaeus University

60

The Second Part of the Course: **Greybox Composition**

59

lann,

U. Aßr

Prof.

Generic programming Invasive software composition Generic program elements Home-made connectors Novel Forms of View-based programming Composition Formal foundations (lambda N, pi-calculus) Record calculi, Scala Hyperspace programming Aspect-oriented systems development Aspect-oriented programming Aspect-oriented design

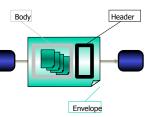
Slots and hooks Uniform composition Active document composition: Architectural styles for active documents and web Roundtrip engineering and composition

Some URLs

62

Prof. U. Aßmann, CBSE

Software Software Socialized


64

CBSE

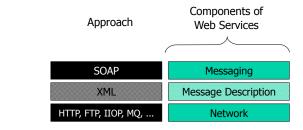
U. Aßmann,

Prof.

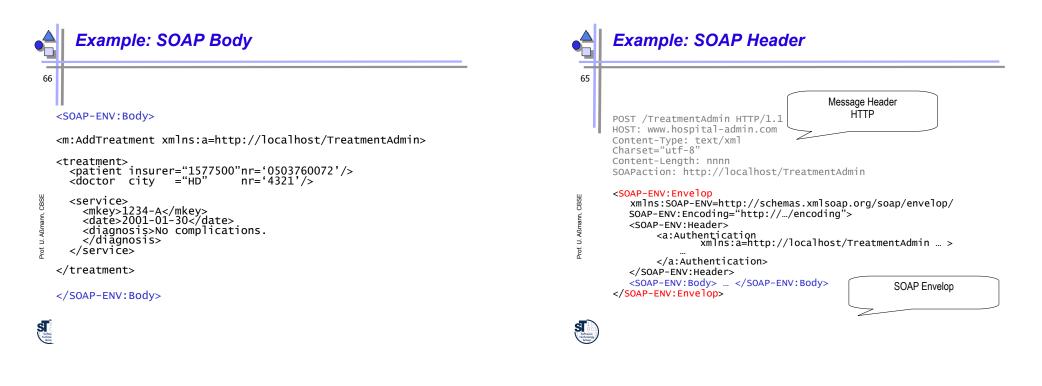
- www.ebxml.org
- www.uddi.org
- www.oasis-open.org
- www.uncefact.org
- www.w3.org
- www.omg.org ►
- www.biztalk.org
- www.soapclient.com
- www.soapware.org
- www.xml.com
- www.xml.org
- www.webservices.org
- www.webservicesarchitect.com
- www.ws-i.org
- 32.1.2 Communication with SOAP, an XMLbased Interaction Protocol
- Simple Object Access Protocol (SOAP) defines a message format
 - Message contains target address and an envelope
 - with name space, encoding attributes and
 - Header (fixed format) contains
 - Authentication (Sender, Receiver),
 - Transactions,
 - Error handling information,
 - Routing information ... Body contains user data (free format)
 - Transport is transparent, predefined channels:
 - HTTP (with back channel, de facto standard)
 - SMTP, TCP (with back channel)

Some Abbreviations

61	•	ebXML: UDDI:	Electronic Business XML Universal Description, Discovery and Integration
	•		plications Group
- 4	•	OASIS:	Organization for the Advancement of Structured Information Standards
	•	SOAP:	Simple Object Access Protocol
	•	HTTP:	Hypertext Transfer Protocol
	•	tpaML:	Trading Partner Agreement Markup Language
	•	UML:	Unified Modeling Language
Ш	•	UN/CEFACT:	United Nations Centre for the Facilitation of Procedures and Practices in Administration, Commerce and Transport
Prof. U. Aßmann, CBSE	•	WSFL:	Web Services Flow Language
nann	•	WSDL:	Web Services Description Language
Aßn	•	WSIL:	Web Services Inspection Language
	•	WSXL:	Web Services Experience Language
Pro	•	WSCL:	Web Services Conversation Language
	•	WSUI:	Web Services User Interface
	•	WSML:	Web Services Meta Language
	•	WSCM:	(Web Services Component Model) Numer omdöpt till WSIA
	•	WSIA:	Web Services for Interactive Applications
	•	WSEL:	Web Services Endpoint Language
Software Software Technology Group	•	WSRP:	Web Services for Remote Portals

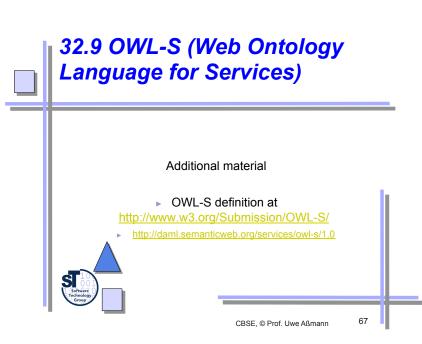


- + W3C Recommendation (standard)
- + Implements RPC


63

. ت

- Untyped user data, types to encode in the message
- Interpretation of SOAP messages required
- High overhead / low performance



OWL Web Ontology Language

- Classes and relationships
 - Expressions to compute (derive) new classes and relationships (derived model)
 - Union, intersection of relations and classes
 - Cardinality restrictions
 - Existential quantifiers
- Roughly speaking, OWL corresponds to UML-class diagrams without methods + OCL + class expressions
- Instead of plain XML, OWL can be used to type data
 - Beyond trees and context-free structures, graphs, knowledge webs, semantic nets can be described (context-sensitive structures)

CBSE

68

Software Software Software Software

⁷⁰ • Atomic

- Cannot be decomposed
- Can be called and executed
- Can be mapped to WSDL process descriptions (grounding), and hence, to SOAP

Simple

- Cannot be decomposed
- Can be executed, but not be called from outside

Composite

- Build from atomic and simple processes

OWL-S

69

Aßmann,

5

Prof.

Software Technology Group

- Based on OWL, a language for specification of web services has been developed by the OWL-S coalition
 - Specification has three parts:
 - Service profile: semantic service description, service offer, service functionality (what does the service provide?)
 - . Based on domain ontologies in OWL, i.e., OWL-specified attributes
 - Service model: service realization, decomposition of a service (how does the service work?)
 - . Service is also called a process
 - . Here, OWL-S provides a process ontology
 - Service grounding: service mapping to underlying mechanisms (how is the service mapped to a component model and transport protocol?) Similar to WSDL grounding

72

CBSE

Aßmann,

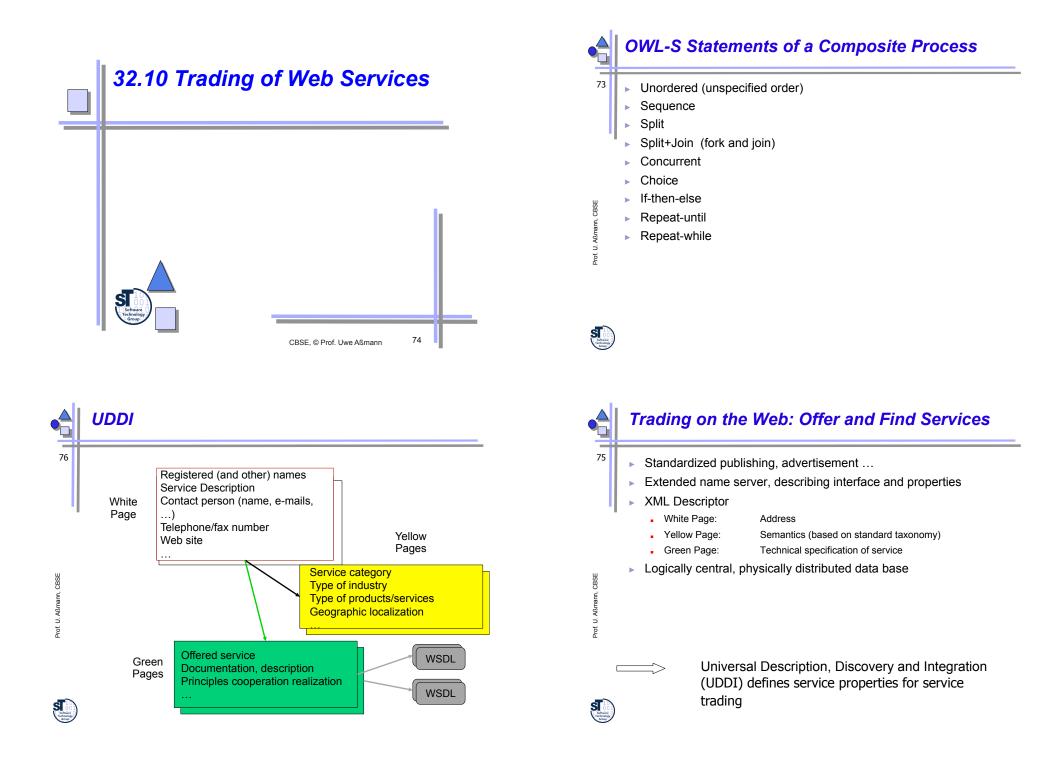
5

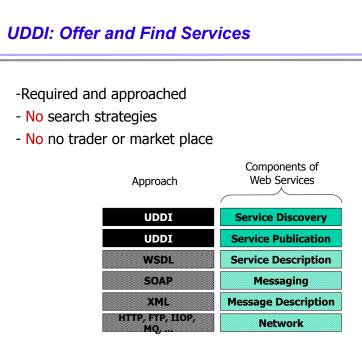
Prof.

Creating an OWL-S specification

- Describe atomic processes
- Describe grounding of atomic processes
- Describe compositions
- Describe simple processes
- Describe profile of service

Service Model (Process Model) of OWL-S


- ⁷¹ Process Ontology
 - Describes a service (process) with an IOPE specification
 - . Inputs
 - . Outputs
 - Parameters
 - Effects
 - Process control ontology (for composite processes)
 - Internal realization with state, activation, execution, completion (control-flow specification)



Aßmann,

. ت

77

Prof. U. Aßmann, CBSE

ST Lotheare Technology Seus