
Coding for Discrete Sources

离散信源编码

Discrete

source

Binary

Sequence

b1b2 ···bn ···

at rate R

Source

decoder

Noiseless

Channel

Fig 2.5 Lossless source coding

Definition: A lossless source code is a mapping from the set of source

sequences into the set of binary sequences so that one can fully recover

the original source sequences from the compressed binary sequences.

Lossless memoryless codes: A lossless memoryless code is a lossless

source code which encodes source sequences symbol by symbol.

It is characterized by a mapping C from the source alphabet into the set of

binary sequences:

X1X2···Xn ··· Source

encoder
X1X2···Xn

x C(x)

The output of the source encoder in response to the input u1u2···un is

C(u1)C(u2)···C(un) (Symbols ui’s are encoded separately).

111111101/8x3

110011011/8x2

1001001/4x1

0011/2x0

C3(x)C2(x)C1(x)P(x)Symbol x

Suppose we are presented with the binary sequence 00100100

For C1, C1(x1)C1(x0)C1(x1) C1(x0) C1(x1) = 00100100

C1(x1)C1(x3)C1(x2) C1(x1) = 00100100

The sequence 00100100 can be decoded by C1 either as x1x0x1x0x1 or as

x1x3x2x1. Thus C1 is not lossless.

Lossless memoryless codes: Example

111111101/8x3

110011011/8x2

1001001/4x1

0011/2x0

C3(x)C2(x)C1(x)P(x)Symbol x

For C2

0 01 0 01 0 0

x0 x1 x0 x1 x0 x0

For C3

0 0 1 0 0 10 0

x0 x0 x1 x0 x1 x0

One can check that C2 and C3 are a lossless memoryless code; the

outputs of the corresponding source encoder in response to different

input sequences are all different.

Lossless memoryless codes: Example (Continued)

• A lossless memoryless code is also called a uniquely decodable code. In this

course, we consider only lossless codes. Memoryless codes always mean

lossless, memoryless (or uniquely decodable codes).

• In both C2 and C3, 0 is a codeword corresponding to x0. However, there is a

striking difference between the decoding process of C2 and C3.

– In the decoding by C2 {0, 01, 011, 111}, one cannot decode 0

immediately as x0. One has to wait to see several future digits before

making a decision. For example, if the next digit is 1, then we cannot

decode 0 as x0.

– On the other hand, in the decoding by C3 (0, 10, 110, 111}, One can

decode 0 immediately as x0 without waiting to see future digits. A

memoryless code having this kind of property is referred to as an

instantaneous code.

Lossless memoryless codes: Example (Continued)

0 1

0 1

0 1

• The difference between C2 and C3 lies in the fact that C3 satisfies the so-

called prefix property while C2 does not. In C3 each codeword is not a prefix of

other codewords—this property is called the prefix property. 0 is not a prefix

of 10, 110, and 111. Similarly, 10 is not a prefix of 110 and 111; 110 is not a

prefix of 111. C3 can be represented by a binary tree.

• A memoryless code satisfying the prefix property is called a prefix code. C3

is a prefix code. The prefix property and the instantaneously decodable

property are the same.

• The construction of prefix code using tree:

The code is from the terminal node. It guarantees

that one code is not extended from another code.

Lossless memoryless codes: Example (Continued)

The tree representation of C3

Decoding of prefix code: Example

a

b

r

0 1

110c

1110d

1111r

10b

0a

codeSymbol

c

d

0

0

0

1

1

1

010111101100111001011110

= abracadabra

Performance of memoryless codes

• Let be a discrete stationary source with a common marginal pmf

p(x), x є {x0, x1, ···, xn}. Let C be a memoryless code. Let nj be the

length of the codeword C(xj). The performance of C is measured by its

average codeword length in bits/symbol

+∞
=1}{ iiX

j], |)(| [)(
1

0

__

∀==∑
−

=

XjCEnxpR j

J

j

j

|C(x)| = the length of C(x). is the average rate of the output of C. In

memoryless source coding, we look into how to construct a memoryless code

C to minimize

__

R

__

R

Kraft-McMillan Inequality

• Any memoryless code C satisfies the following Kraft inequality

122
1

0

)|(| ≤=∑∑
−

=

−−
J

j

nxc j

where nj is the length of the codeword C(xj). (necessary condition)

• Given a set of codeword lengths nj (0≤j≤J-1) that satisfy the Kraft

inequality, there exists a prefix code C such that |C(xj)|=nj for any 0≤j ≤J-1.

(sufficient condition)

Theorem 2.3.1:

Proof of necessary condition

• For any m>0

• is the code length for n symbols

Let

1 2

1 2

1 1 1 1

0 0 1 1

2 2 2 ... 2j jj jm

m

m
J J J J

n nn n

j j j j

− − − −
− −− −

= = = =

=

∑ ∑ ∑ ∑

()21

1 2

1 1 1
...

1 1 1

... 2
j j jm

m

J J J
n n n

j j j

− − −
− + + +

= = =

=∑∑ ∑

1 2
...

mj j jn n n+ + +

()
1 2max max , ,...,

mj j jn n n n=

1 2 max... m
mj j jm n n n n≤ + + + ≤

max1

0

2 2j

m
mnJ

n k

k

j k m

A
−

− −

= =

=

∑ ∑

1 2
...

mj j jn n n k+ + + =

max1

max

0

2 2 2 1j

m
mnJ

n k k

j k m

mn m
−

− −

= =

≤ = − +

∑ ∑

Proof of necessary condition (Cntd)

� Ak is the number of sequences such that

� Since C is lossless, and the number of binary sequences with length k is

2k , it follows that Ak≤2k. Thus

1 1
1/

max

0 0

2 (1) 2 1 when mj j

J J
n nm

j j

mn m
− −

− −

= =

≤ − + ⇒ ≤ →∞∑ ∑

Therefore

Proof of Sufficient condition (Cntd)

Assume n0≤ n1 ≤··nJ-1.

Since 0 11

1

1

1
1

2

0

2

0

2 2 2 1

we have

2 1 2

Mutiply the two sides by 2 , we get

1 2 2

J

jJ

J

nJ
jJ

n nn

J
nn

j

n

J
nn

j

−

−

−

−
−

− −−

−
−−

=

−
−

=

+ + ≤

≤ −

≤ −

∑

∑

⋯

Proof (Cntd)

2

1

11 2 1

2

0

3

0

3

0

F r o m t h e g i v e n c o n d i t i o n , w e a l s o h a v e

 2 1

. . , 2 1 2

M u l t i p l y t h e t w o s i d e s b y 2 , w e g e t

 2 2 2

C o n t i n u e ,

 2

j

jJ

J

J jJ J J

J
n

j

J
nn

j

n

J
n nn n n

j

n

i e −

−

−− − −

−
−

=

−
−−

=

−

−
−−

=

≤

≤ −

≤ −

∑

∑

∑

11 3 1

1 1 1 1 0

4

0

2 2

 2 2 2

J jJ J J

J J J

J
n nn n

j

n n n n n

−− − −

− − −

−
−−

=

− −

≤ −

≤ −

∑
⋮

11 1 1

1

0

2 2 2 , 0,1,..., 2jJ J J i

j
nn n n n

i

j J+− − −

−
− −

=

≤ − = −∑

1 1 02 2J Jn n n− − −−

1 02 Jn n− −

In general, we have

Next we generate prefix codes by constructing a tree

a) Construct a full tree with nJ-1 order.

b) Select a node with n0 order as a terminal node, and assign a codeword

accordingly. The total number of nodes is reduced by after removing

nodes in the subtree of the node. The number of nodes remaining is

c) Next we select a node with n1 order as a terminal node, and assign a

codeword accordingly, the total number of nodes is reduced by

The number of nodes remaining to be assigned is

d) Continue this process till the nodes with nJ-1 th order. The number of nodes

left is . Since , we can get a codeword with

lengnth nJ-1.

This completes the construction of the prefix codes.

1 1

1

0

2 2J J in n n

i

− − −

=

−∑

1 12 Jn n− −

1 1

2

0

2 2J J i

J
n n n

i

− −

−
−

=

−∑ 1 1

2

0

1 2 2J J i

J
n n n

i

− −

−
−

=

≤ −∑

Example

3
1 2 3 3

0

2 2 2 2 2 1jn

j

− − − − −

=

= + + + =∑

X: x0 x1 x2 x3

P(X) ½ ¼ 1/8 1/8

Code word length: n0=1, n1=2, n2=n3=3

As the codeword length satisfies the Kraft inequality,

we can find a prefix code.

x0 p(x0)=1/2 C(x0)=0 n0=1

x1 p(x1)=1/4 C(x1)=10 n1=2

x2 p(x2)=1/8 C(x2)=110 n2=3

x3 p(x3)=1/8 C(x3)=111 n3=3

Average codeword length is 14/8 bits/symbol

x0 p(x0)=1/2 C(x0)=111 n0=3

x1 p(x1)=1/4 C(x1)=110 n1=3

x2 p(x2)=1/8 C(x2)=10 n2=2

x3 p(x3)=1/8 C(x3)=0 n3=1

Average codeword length is 21/8 bits/symbol

Prefix code 1

Prefix code 2

Prefix code 1 is better as it makes use of source statistics.

Source Coding Theorem

Theorem 2.3.2

Let {Xi} be a stationary source with a common marginal pmf p(x), xєX = { x0,

x1···, xJ-1}.

(a) The average codeword length of any memoryless code C satisfies

(b) There is a prefix code C* such that

__

R

1()R H X≥

*

1() | *() | () 1R p x C x H X= < +∑

Proof of Source Coding Theorem

(a) Let nj=|C(xj)|. Apply the log sum inequality, we get

1

1 1
0

1
0 0

0

1

0

()
()

() log () log
2

2

 = -log 2 0

j
j

j

J

jJ J
j j

j jn J
nj j

j

J
n

j

p x
p x

p x p x

−

− −
=

− −
−= =

=

−
−

=

≥

≥

∑
∑ ∑

∑

∑

The last inequality is due to Kraft inequality.

1 1

0 0

1

1

0

1
() () log

2

 () log () ()

j

J J

j j j n
j j

J

j j

j

R p x n p x

p x p x H X

− −

−
= =

−

=

= =

≥ − =

∑ ∑

∑

Proof of Source Coding Theorem (cntd)

(b) Assume that p(xj)>0 for any 0≤j≤J-1.

Let nj = , 0≤j≤J-1.

where for any real number y, is equal to the least integer m such that m≥y.

An important property of the function is

log () log () 1j j jp x n p x− ≤ ≤ − +

log ()jp x −

y

y 1y y y≤ ≤ +

Therefore

We then have

log ()1 1 1

0 0 0

2 2 () 1
j

j

p xJ J J
n

j

j j j

p x
− − −

−

= = =

≤ = =∑ ∑ ∑

From part (b) of theorem 2.3.1, it follows that there exists a prefix

code C* such that |C*(xj)|=nj. This implies that

1 1
*

1

0 0

() ()[log () 1] () 1
J J

j j j j

j j

R p x n p x p x H X
− −

= =

= < − + = +∑ ∑

Block Memoryless Codes

• There is at most 1 bit difference between the average length of the

best momoryless code and the entropy H(x1).

• A block memoryless code can be used to reduce this difference. It is

a lossless source code which encodes source sequences block by

block. The block length is n.

• It can be described by a mapping C from the extended alphabet

Xn={ u1, u2, ··, un: ui є X, 1≤i≤n} to the set of binary sequences:

u1, u2, ··, un C (u1, u2, ··, un)

• All definitions and properties of memoryless codes can be carried

over to the case of block memoryless codes.

Block Memoryless Coding Theorem

Theorem 2.3.3

Let {Xi} be a stationary source with a common pmf p(x), x є X.

(a) For any block memoryless code C with block length n

1

1 1 1

1 1 1
() | () | ()

n
n

n n n

u u X

R p u u C u u H x x
n n n∈

= ≥∑
⋯

⋯ ⋯ ⋯

(b) There is a prefix code C* with block length n such that

1

1 1 1

1 1 1 1
() | *() | ()

n
n

n n n

u u X

R p u u C u u H x x
n n n n∈

= ≤ +∑
⋯

⋯ ⋯ ⋯

(c) The ultimate compression rate in bits/symbol of {Xi} is given by

1

1
() lim ()n

n
H X H x x

n
∞ →∞

= ⋯

Proof of Theorem 2.3.3 c)

H(X1, ···, Xn)=H(X1)+H(X2|X1)+···+H(Xn|X1 ···, Xn-1)

Because H(Xn|X1 ···, Xn-1)≤ H(Xn|X2 ···, Xn-1)= H(Xn-1|X1 ···, Xn-2)

We have is nonincreasing and nonnegative.∞
=− 111)}|({ nnn XXXH ⋯

exists)|(lim
11 −∞→

nn
n

XXXH ⋯Therefore

)|(lim

)]|()([
1

lim)|(
1

lim

11

11111

−
∞→

−∞→−∞→

=

++=

nn
n

nn
n

nn
n

XXXH

XXXHXH
n

XXXH
n

⋯

⋯⋯⋯

The quantity)(XH∞ is called the entropy rate of the stationary source {Xi}.

It represents the content of the source {Xi} in terms of bits/symbol.

Huffman Coding

• Huffman coding is used to encode or compress data such as fax,

ASCII text.

• It is proposed by Dr. David A. Huffman in 1952

“A Method for the Construction of Minimum Redundancy Codes”

• Huffman coding is a form of statistical coding, an optimal

memoryless code C such that the average codeword length of C is

minimized.

• Code word lengths vary and will be shorter for the more frequently

used characters.

Huffman coding algorithm

a) Merge two symbols with the least probabilities into a symbol

whose probability is equal to the sum of the two least probabilities.

b) Repeat a) until one symbol is left.

0.35 x0

0.30 x1

0.20 x2

0.10 x3

0.04 x4

0.005 x5

0.005 x6
0.01

0.05

0.15

0.35

0.65

P(x) x

We get a binary tree in which the terminal nodes represent symbols in the

original source alphabet and all other nodes represent merged symbols.

Huffman coding algorithm (Cntd)

c) Label two braches (leaves) emanating from each non-terminal node as

0 and 1. The code codeword of xj is the binary sequence read from the

root to the terminal node corresponding to xj

0.35 x0

0.30 x1

0.20 x2

0.10 x3

0.04 x4

0.005 x5

0.005 x6
0.01

0.05

0.15

0.35

0.65

P(x) x
0

10

10

10

10

10

1

C(X)

0

10

110

1110

11110

111110

111111

C is a prefix code. H(X)=2.11 and =2.21
__

R

Huffman coding algorithm (Cntd)

Examples 2 and 3 in pages 55 and 56

1) The code given by the Huffman coding algorithm is a prefix code and

has the minimum average codeword length.

2) The Huffman encoding process is not unique. Different methods for

labeling branches and different choices of merging symbols will give

rise to different prefix codes.

