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Definition: A lossless source code is a mapping from the set of source 

sequences into the set of binary sequences so that one can fully recover 

the original source sequences from the compressed binary sequences.

Lossless memoryless codes: A lossless memoryless code is a lossless 

source code which encodes source sequences symbol by symbol. 

It is characterized by a mapping C from the source alphabet into the set of 

binary sequences:     

X1X2···Xn ··· Source

encoder
X1X2···Xn

x C(x)

The output of the source encoder in response to the input u1u2···un is

C(u1)C(u2)···C(un) (Symbols ui’s are encoded separately).



111111101/8x3

110011011/8x2

1001001/4x1

0011/2x0

C3(x)C2(x)C1(x)P(x)Symbol x

Suppose we are presented with the binary sequence 00100100

For C1, C1(x1)C1(x0)C1(x1) C1(x0) C1(x1) = 00100100

C1(x1)C1(x3)C1(x2) C1(x1) = 00100100

The sequence 00100100 can be decoded by C1 either as x1x0x1x0x1 or as 

x1x3x2x1. Thus C1 is not lossless.

Lossless memoryless codes: Example



111111101/8x3

110011011/8x2

1001001/4x1

0011/2x0

C3(x)C2(x)C1(x)P(x)Symbol x

For  C2

0   01  0    01  0   0

x0    x1 x0 x1 x0 x0

For  C3

0   0  1 0    0  10 0

x0    x0 x1 x0 x1 x0 

One can check that C2 and C3 are a lossless memoryless code; the 

outputs of the corresponding source encoder in response to different 

input sequences are all different.

Lossless memoryless codes: Example (Continued)



• A lossless memoryless code is also called a uniquely decodable code. In this 

course, we consider only lossless codes. Memoryless codes always mean 

lossless, memoryless (or uniquely decodable codes).

• In both C2 and C3, 0 is a codeword corresponding to x0. However, there is a 

striking difference between the decoding process of C2 and C3. 

– In the decoding by C2 {0, 01, 011, 111}, one cannot decode 0 

immediately as x0. One has to wait to see several future digits before 

making a decision. For example, if the next digit is 1, then we cannot 

decode 0 as x0. 

– On the other hand, in the decoding by C3 (0, 10, 110, 111}, One can 

decode 0 immediately as x0 without waiting to see future digits. A 

memoryless code having this kind of property is referred to as an 

instantaneous code.

Lossless memoryless codes: Example (Continued)



0 1

0 1

0 1

• The difference between C2 and C3 lies in the fact that C3 satisfies the so-

called prefix property while C2 does not. In C3 each codeword is not a prefix of 

other codewords—this property is called the prefix property. 0 is not a prefix 

of 10, 110, and 111. Similarly, 10 is not a prefix of 110 and 111; 110 is not a 

prefix of 111. C3 can be represented by a binary tree.

• A memoryless code satisfying the prefix property is called a prefix code. C3 

is a prefix code. The prefix property and the instantaneously decodable 

property are the same.

• The construction of prefix code using tree:

The code is from the terminal node. It guarantees

that one code is not extended from another code.

Lossless memoryless codes: Example (Continued)

The tree representation of C3



Decoding of prefix code: Example
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Performance of memoryless codes

• Let             be a discrete stationary source with a common marginal pmf

p(x), x є {x0, x1, ···, xn}. Let C be a memoryless code. Let nj be the 

length of the codeword C(xj). The performance of C is measured by its 

average codeword length in bits/symbol
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|C(x)| = the length of C(x).        is the average rate of the output of C. In 

memoryless source coding, we look into how to construct a memoryless code 

C to minimize
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Kraft-McMillan Inequality

• Any memoryless code C satisfies the following Kraft inequality
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where nj is the length of the codeword C(xj). (necessary condition)

• Given a set of codeword lengths nj (0≤j≤J-1) that satisfy the Kraft 

inequality, there exists a prefix code C such that |C(xj)|=nj for any 0≤j ≤J-1.

(sufficient condition)

Theorem 2.3.1:



Proof of necessary condition

• For any m>0

• is the code length for n symbols

Let
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Proof of necessary condition (Cntd)

� Ak is the number of sequences such that 

� Since C is lossless, and the number of binary sequences with length k is 

2k , it follows that Ak≤2k. Thus
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Proof of Sufficient condition (Cntd)

Assume n0≤ n1 ≤··nJ-1.

Since 0 11
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Proof (Cntd)
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11 1 1
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In general, we have 

Next we generate prefix codes by constructing a tree

a) Construct a full tree with nJ-1 order.

b) Select a node with n0 order as a terminal node, and assign a codeword 

accordingly. The total number of nodes is reduced by            after removing 

nodes in the subtree of the node. The number of nodes remaining is 

c) Next we select a node with n1 order as a terminal node, and assign a 

codeword accordingly, the total number of nodes is reduced by 

The number of nodes remaining to be assigned is 

d) Continue this process till the nodes with nJ-1 th order. The number of nodes 

left is                       .  Since                          , we can get a codeword with 

lengnth nJ-1.

This completes the construction of the prefix codes.
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Example

3
1 2 3 3

0

2 2 2 2 2 1jn

j

− − − − −

=

= + + + =∑

X:             x0 x1 x2 x3

P(X) ½ ¼ 1/8     1/8

Code word length: n0=1, n1=2, n2=n3=3

As the codeword length satisfies the Kraft inequality,

we can find a prefix code.



x0 p(x0)=1/2   C(x0)=0      n0=1

x1 p(x1)=1/4   C(x1)=10    n1=2

x2 p(x2)=1/8  C(x2)=110  n2=3

x3     p(x3)=1/8  C(x3)=111  n3=3

Average codeword length is 14/8 bits/symbol

x0 p(x0)=1/2   C(x0)=111  n0=3

x1 p(x1)=1/4   C(x1)=110  n1=3

x2 p(x2)=1/8  C(x2)=10    n2=2

x3     p(x3)=1/8  C(x3)=0      n3=1

Average codeword length is 21/8 bits/symbol

Prefix code 1

Prefix code 2

Prefix code 1 is better as it makes use of source statistics.



Source Coding Theorem

Theorem 2.3.2

Let {Xi} be a stationary source with a common marginal pmf p(x), xєX = { x0, 

x1···, xJ-1}. 

(a) The average codeword length     of any memoryless code C satisfies 

(b) There is a prefix code C* such that
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Proof of Source Coding Theorem

(a) Let nj=|C(xj)|. Apply the log sum inequality, we get
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The last inequality is due to Kraft inequality.
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Proof of Source Coding Theorem (cntd)

(b)  Assume that p(xj)>0 for any 0≤j≤J-1.

Let nj =            ,           0≤j≤J-1.

where for any real number y,         is equal to the least integer m such that m≥y. 

An important property of the function          is 

log ( ) log ( ) 1j j jp x n p x− ≤ ≤ − +
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From part (b) of theorem 2.3.1, it follows that there exists a prefix 

code C* such that |C*(xj)|=nj. This implies that
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Block Memoryless Codes

• There is at most 1 bit difference between the average length of the 

best momoryless code and the entropy H(x1).

• A block memoryless code can be used to reduce this difference. It is 

a lossless source code which encodes source sequences block by 

block. The block length is n. 

• It can be described by a mapping C from the extended alphabet 

Xn={ u1, u2, ··, un: ui є X, 1≤i≤n} to the set of binary sequences:

u1, u2, ··, un               C (u1, u2, ··, un)

• All definitions and properties of memoryless codes can be carried 

over to the case of block memoryless codes.



Block Memoryless Coding Theorem

Theorem 2.3.3

Let {Xi} be a stationary source with a common pmf p(x), x є X.

(a) For any block memoryless code C with block length n
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(b)    There is a prefix code C* with block length n such that
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(c)   The ultimate compression rate in bits/symbol of {Xi} is given by
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Proof of Theorem 2.3.3 c)

H(X1, ···, Xn)=H(X1)+H(X2|X1)+···+H(Xn|X1 ···, Xn-1)

Because H(Xn|X1 ···, Xn-1)≤ H(Xn|X2 ···, Xn-1)= H(Xn-1|X1 ···, Xn-2)
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The quantity )(XH∞ is called the entropy rate of the stationary source {Xi}.

It  represents the content of the source {Xi} in terms of bits/symbol.



Huffman Coding

• Huffman coding is used to encode or compress data such as fax, 

ASCII text.

• It is proposed by Dr. David A. Huffman in 1952

“A Method for the Construction of Minimum Redundancy Codes”

• Huffman coding is a form of statistical coding, an optimal 

memoryless code C such that the average codeword length of C is 

minimized.

• Code word lengths vary and will be shorter for the more frequently 

used characters.



Huffman coding algorithm

a)     Merge two symbols with the least probabilities into a symbol 

whose probability is equal to the sum of the two least probabilities.

b)     Repeat a) until one symbol is left.

0.35     x0

0.30    x1

0.20    x2

0.10    x3

0.04    x4

0.005  x5

0.005  x6
0.01

0.05

0.15

0.35

0.65

P(x)     x

We get a binary tree in which the terminal nodes represent symbols in the 

original source alphabet and all other nodes represent merged symbols.



Huffman coding algorithm (Cntd)

c)      Label two braches (leaves) emanating from each non-terminal node as 

0 and 1. The code codeword of xj is the binary sequence read from the 

root to the terminal node corresponding to xj
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P(x)     x
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C is a prefix code. H(X)=2.11 and       =2.21  
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Huffman coding algorithm (Cntd)

Examples 2 and 3 in pages 55 and 56

1) The code given by the Huffman coding algorithm is a prefix code and 

has the minimum average codeword length.

2) The Huffman encoding process is not unique. Different methods for 

labeling branches and different choices of merging symbols will give 

rise to different prefix codes.


