PROBLEM SET 6, PART 1: TOPOLOGY (H) DUE: APRIL 6, 2022

- (1) [More on LCH]
 - (a) [Structure of noncompact LCH]
 - (i) Let K be a compact Hausdorff space, $p \in K$ and $X = K \setminus \{p\}$ is non-compact. Prove: X is LCH.
 - (ii) Conversely, suppose X be a non-compact LCH. Let $X^* = X \cup \{\infty\}$ be the one-point compactification of X. Prove: X^* is compact and Hausdorff.
 - (b) [The evaluation map could fail to be continuous without local compactness] Consider the evaluation map

 $e:\mathbb{Q}\times\mathcal{C}(\mathbb{Q},[0,1])\to[0,1],\quad (x,f)\mapsto e(x,f)=f(x).$

- (i) Prove: \mathbb{Q} is not locally compact.
- (ii) Prove: for any $q_1 \in \mathbb{Q}$ and any closed subset $A \subset \mathbb{Q}$ with $q_1 \notin A$, there is a continuous function $f_1 \in \mathcal{C}(\mathbb{Q}, [0, 1])$ such that $f(q_1) = 1, f(A) = 0$.
- (iii) (Not required) Now let $f_0 \in \mathcal{C}(\mathbb{Q}, [0, 1])$ be the zero map $f_0(\mathbb{Q}) = 0$, and take any $q_0 \in \mathbb{Q}$. Prove: *e* is not continuous at (q_0, f_0) (where we endow $\mathcal{C}(\mathbb{Q}, [0, 1])$ with the compact convergence topology). [Hint: For any open neighborhood *U* of q_0 and any compact set *K* in \mathbb{Q} , there exists $q_1 \in U \setminus K$. Construct a continuous function using (b).]
- (2) [More on compact-open topology]
 - (a) Prove Proposition 2.4.22, i.e. (Y, d) is a metric space, then $\mathscr{T}_{c.c.} = \mathscr{T}_{c.o.}$
 - (b) Prove Proposition 2.4.23, i.e. if Y s LCH, then the composition map is continuous with respect to $\mathscr{T}_{c.o.}$.
 - (c) Prove: If X is locally compact and Hausdorff, then

$$S(\{x\}, U) = \bigcup_{\text{compact neighborhood } K \text{ of } x} S(K, U).$$

[Hint for (b) and (c): Use Proposition 2.4.16]

- (3) [Compactly generated spaces]
 - (a) Read the materials on compactly generated spaces (page 99), and prove: any locally compact space is compactly generated.
 - (b) Prove: Any first countable space is compactly generated.
 - (c) Find a compactly generated space that is not locally compact. [Hint: PSet5-2]
 - (d) Let (X, 𝒴) be any topological space. Prove: there exists a topology 𝒴' ⊃ 𝒴 such that (X, 𝒴') is compactly generated, and a set is compact with respect to 𝒴' if and only if it is compact with respect to 𝒴.
 [Hint: Construct topology by needs!]

1

- (4) [Applications of Arzela-Ascoli]
 - (a) Suppose $k = k(x, y) \in \mathcal{C}([0, 1] \times [0, 1], \mathbb{R})$. For any $f \in \mathcal{C}([0, 1], \mathbb{R})$, define

$$Kf(x) = \int_0^1 k(x, y) f(y) dy.$$

Prove: K is a compact operator, i.e. it maps any bounded subset in $(\mathcal{C}([0,1],\mathbb{R}), d_{\infty})$ into a compact subset in the same space.

(b) (Not required) We want to minimize the functional $\Phi[f] := \int_{-1}^{1} f(t) dt$. Consider the set

$$\mathcal{F} = \{ f \in \mathcal{C}([-1,1], [0,1]) \mid f(-1) = f(1) = 1 \}.$$

- (i) What is $\inf_{f \in \mathcal{F}} \Phi[f]$? Is the infimum attained?
- (ii) For any constant C > 0, let

$$\mathcal{F}_C = \{ f \in \mathcal{F} \mid |f(x) - f(y)| \le C|x - y| \}.$$

Prove: The infimum $\inf_{f \in \mathcal{F}_C} \Phi[f]$ is attained. Can you find the function? (c) (Not required) Prove Theorem 2.5.12.