PROBLEM SET 6, PART 1: TOPOLOGY (H) DUE: APRIL 6, 2022

(1) [More on LCH]
(a) [Structure of noncompact LCH]
(i) Let K be a compact Hausdorff space, $p \in K$ and $X=K \backslash\{p\}$ is noncompact. Prove: X is LCH.
(ii) Conversely, suppose X be a non-compact LCH. Let $X^{*}=X \cup\{\infty\}$ be the one-point compactification of X. Prove: X^{*} is compact and Hausdorff.
(b) [The evaluation map could fail to be continuous without local compactness]

Consider the evaluation map

$$
e: \mathbb{Q} \times \mathcal{C}(\mathbb{Q},[0,1]) \rightarrow[0,1], \quad(x, f) \mapsto e(x, f)=f(x) .
$$

(i) Prove: \mathbb{Q} is not locally compact.
(ii) Prove: for any $q_{1} \in \mathbb{Q}$ and any closed subset $A \subset \mathbb{Q}$ with $q_{1} \notin A$, there is a continuous function $f_{1} \in \mathcal{C}(\mathbb{Q},[0,1])$ such that $f\left(q_{1}\right)=1, f(A)=0$.
(iii) (Not required) Now let $f_{0} \in \mathcal{C}(\mathbb{Q},[0,1])$ be the zero map $f_{0}(\mathbb{Q})=0$, and take any $q_{0} \in \mathbb{Q}$. Prove: e is not continuous at $\left(q_{0}, f_{0}\right)$ (where we endow $\mathcal{C}(\mathbb{Q},[0,1])$ with the compact convergence topology).
[Hint: For any open neighborhood U of q_{0} and any compact set K in \mathbb{Q}, there exists $q_{1} \in U \backslash K$. Construct a continuous function using (b).]
(2) [More on compact-open topology]
(a) Prove Proposition 2.4.22, i.e. (Y, d) is a metric space, then $\mathscr{T}_{\text {c.c. }}=\mathscr{T}_{\text {c.o. }}$.
(b) Prove Proposition 2.4.23, i.e. if $Y \mathrm{~s} \mathrm{LCH}$, then the composition map is continuous with respect to $\mathscr{T}_{\text {c.o. }}$.
(c) Prove: If X is locally compact and Hausdorff, then

$$
S(\{x\}, U)=\bigcup_{\text {compact neighborhood } K \text { of } x} S(K, U) .
$$

[Hint for (b) and (c): Use Proposition 2.4.16]
(3) [Compactly generated spaces]
(a) Read the materials on compactly generated spaces (page 99), and prove: any locally compact space is compactly generated.
(b) Prove: Any first countable space is compactly generated.
(c) Find a compactly generated space that is not locally compact. [Hint: PSet5-2]
(d) Let (X, \mathscr{T}) be any topological space. Prove: there exists a topology $\mathscr{T}^{\prime} \supset \mathscr{T}$ such that $\left(X, \mathscr{T}^{\prime}\right)$ is compactly generated, and a set is compact with respect to \mathscr{T}^{\prime} if and only if it is compact with respect to \mathscr{T}.
[Hint: Construct topology by needs!]
(4) [Applications of Arzela-Ascoli]
(a) Suppose $k=k(x, y) \in \mathcal{C}([0,1] \times[0,1], \mathbb{R})$. For any $f \in \mathcal{C}([0,1], \mathbb{R})$, define

$$
K f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Prove: K is a compact operator, i.e. it maps any bounded subset in $\left(\mathcal{C}([0,1], \mathbb{R}), d_{\infty}\right)$ into a compact subset in the same space.
(b) (Not required) We want to minimize the functional $\Phi[f]:=\int_{-1}^{1} f(t) d t$. Consider the set

$$
\mathcal{F}=\{f \in \mathcal{C}([-1,1],[0,1]) \mid f(-1)=f(1)=1\} .
$$

(i) What is $\inf _{f \in \mathcal{F}} \Phi[f]$? Is the infimum attained?
(ii) For any constant $C>0$, let

$$
\mathcal{F}_{C}=\{f \in \mathcal{F}| | f(x)-f(y)|\leq C| x-y \mid\} .
$$

Prove: The infimum $\inf _{f \in \mathcal{F}_{C}} \Phi[f]$ is attained. Can you find the function?
(c) (Not required) Prove Theorem 2.5.12.

