Point Groups

C_{1} : no symmetry
C_{s} : only a plane of symmetry
C_{k} : only a k rotational axis
C_{i} : only an inversion center
C_{kh} : ak rotational axis and σ_{h}
C_{kv} : a k rotational axis and $\mathrm{k} \sigma_{\mathrm{v}}$
D_{k} : only C_{k} and $\mathrm{k} \mathrm{C}_{2}$ rotational axes
$D_{k h}$: operations of D_{k} and σ_{h} which implies $k \sigma_{v}$
$D_{k d}$: operations of D_{k} and $k \sigma_{d}$ which bisect the angles of C_{2}
S_{k} : only the improper rotation S_{k}
T_{d} : tetrahedral
O_{h} : octahedral

$C_{3 h}$
$\mathrm{C}_{3 \mathrm{v}}$

Point group representations

A point group representation is a basis set in which the irreducible representations are the basis vectors. Shown below is the C2v point group. It has four dimensions. The dimensions are the symmetry operations. There are four basis vectors, which are also known as irreducible representations.

	Symmetry elements for the group				Spectroscopy active component		
	E	C_{2}	sv (xz)	sv' (yz)	Microwave	IR	Raman
Symmetry label	1	1	1	1		z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
	1	1	-1	-1	R_{z}		xy
	1	-1	1	-1	Ry	x	xz
	1	-1	-1	1	R_{X}	y	yz

$D_{\text {kh }}$ point groups

$\mathbf{D}_{2 h}$

$D_{3 h}$

$\mathrm{D}_{4 \mathrm{~h}}$

$D_{5 h}$

$D_{6 h}$

$D_{k d}$ point groups

D3d

D_{kh} character table

The $D_{4 h}$ point group is a second example. It has 16 dimensions. Note that the symmetry operations are listed by class. A class refers to a given type of operation, e.g. reflection, inversion, rotation, etc.

	Symmetry elements for the group										Spectroscopy active component		
	E	$\begin{gathered} 2 \mathrm{C}_{4} \\ (\mathrm{z}) \\ \hline \end{gathered}$	C_{2}	$2 \mathrm{C}^{\prime} 2$	$2 \mathrm{C}^{\prime \prime}$	i	$2 S_{4}$	Sh	2sv	2sd	Microwave	IR	Raman
A1g	1	1	1	1	1	1	1	1	1	1			$\mathrm{x}^{2}+\mathrm{y}^{2}, z^{2}$
A2g	1	1	1	-1	-1	1	1	1	-1	-1	Rz		
B1g	1	-1	1	1	-1	1	-1	1	1	-1			$x^{2}-y^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	1	-1	1	-1	1			xy
Eg_{g}	2	0	-2	0	0	2	0	-2	0	0	($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$)		(xz, yz)
Symmetry A1u	1	1	1	1	1	-1	-1	-1	-1	-1			
A2u	1	1	1	-1	-1	-1	-1	-1	1	1		z	
B1u	1	-1	1	1	-1	-1	1	-1	-1	1			
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	1	-1	1	-1	1	-1			
Eu	2	0	-2	0	0	-2	0	2	0	0		(x, y)	

D_{kh} character table

The $D_{6 h}$ point group is a third example. The molecule benzene belongs to this point group.

$D_{6 h}$		Symmetry elements for the group												Spectroscopy active component Microwave: IR Rama		
		E	$2 \mathrm{C}_{6}$	$2 \mathrm{C}_{3}$	C_{2}			i			Sh	$3 s_{d}$	$3 s_{v}$			
	A1g	1	1	1	1	1	1	1	1	1	1	1	1			($x^{2}+y^{2}$
	A2g	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R_{z}		
	$\mathrm{B}_{1 \mathrm{~g}}$	1	-1		-1	1	-1	1	-1	1	-1	1	-1			
	$\mathrm{B}_{2 \mathrm{~g}}$	1	-1		-1	-1	1	1	-1	1	-1	-1	1			
	$\mathrm{E}_{1 \mathrm{~g}}$	2	1	-1	-2	0	0	2	1	-1	-2	0	0	($\mathrm{R}_{\mathrm{x}}, \mathrm{Ry}$)		(xz, y:
	E 2 g	2	-1	1	2	0	0	2	-1	-1	2	0	0			${ }^{\left(x^{2}-y^{2}\right.}$
Symmetry labe	$\mathrm{A}_{1 \mathrm{u}}$	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1			
	A_{24}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1		z	
	B1u	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1			
	B2u	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1			
	E_{14}	2	1		-2	0	0	-2	-1	1	-2	0	0		${ }_{\text {(}} \mathrm{x}$)	
	E2u	2	-1										0			

High symmetry point groups: Tetrahedral and octahedral

Tetrahedron (T_{h})
Octahedron $\left(\mathrm{O}_{\mathrm{h}}\right)$

The tetrahedral point group

The T_{d} point group is a high symmetry group. Many transition metal complexes belong to this group, but also molecules such as methane, CH_{4}.

		Symmetry elements for the group					Spectroscopy active component		
		E	$8 \mathrm{C}_{3}$	$3 C_{2}$	$6 S_{4}$	$6_{\sigma d}$	Microwave	IR	Raman
Symmetry label	A1	1	1	1	1	1			$x^{2}+y^{2}+z^{2}$
	A2	1	1	+1	-1	-1			
	E	2	-1	2	0	0			$\begin{gathered} \left(2 z^{2}-x^{2}-y^{2}\right. \\ \left.x^{2}-y^{2}\right) \end{gathered}$
	T1	3	0	-1	1	-1	($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}$)		
	T2	3	0	-1	-1	1		($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	($\mathrm{x} y, \mathrm{xz}, \mathrm{yz}$)

Examples of point group assignment

Determining the point group to which a molecule belongs will be the first step in a treatment of the molecular orbitals or spectra of a compound.

It is important that this be done systematically. The flow chart in the figure is offered as an aid, and a few examples should clarify the process.

Systematic assignment of a molecule to a point group

Symmetry properties are used to determine the molecular orbitals and spectral features of a molecule. It is important to have a systematic approach to assignment of the point group.

The scheme gives a systematic series of questions that lead to

Figure 1-6. Flow chart for the determination of molecular point groups the point group assignment.

What are the point groups for the following Pt(II) ions?

Examples of point group assignment

Examples of point group assignment

Examples of point group assignment

Examples of point group assignment

$D_{2 h}$

Examples of point group assignment

Examples of point group assignment

 $\left[\begin{array}{ll:ll}\mathrm{Cl}_{2} & \mathrm{Cl} & \mathrm{Cl} \\ & \mathrm{Br}^{2-} & \mathrm{Cl}^{2} & \mathrm{Br}\end{array}\right]^{2-}$
Examples of point group assignment

$\mathrm{C}_{2 \mathrm{v}}$

Examples of point group assignment

Examples of point group assignment

Examples of point group assignment

$\mathrm{C}_{2 \mathrm{~h}}$

What are the point groups for the following $\mathrm{Pt}(\mathrm{II})$ ions?

A

B

C

A contains three C_{2} axes, i.e., $\left[\mathrm{C}_{\mathrm{k}}\right.$?] is yes with $\mathrm{k}=2$. It contains a plane of symmetry so [σ ?] is yes. The three C_{2} axes are perpendicular, i.e, there is a C_{2} axis and two perpendicular C_{2} 's which means that $\left[\perp \mathrm{C}_{2}\right.$?] is yes. There is a plane of symmetry perpendicular to the C_{2} so [σ_{h} ?] is yes and we arrive at the $D_{2 h}$ point group.
B contains only one C_{2} axis, no $\perp \mathrm{C}_{2}$'s, no σ h, but it does have two σ_{v} 's and is therefore a $\mathrm{C}_{2 \mathrm{v}}$ ion.

C contains a single C_{2} axis and a horizontal plane (the plane of the ion) and therefore has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry.

