
© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Google Protocol Buffers 
for Embedded IoT 

Integration in a medical device project



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Quick look

1: Overview
• What is it and why is useful

• Peers and alternatives

• Wire format and language syntax

• Libraries for Embedded

2: Project integration
• Why did we choose it

• How it was used and integrated

• Custom communications stack

• Lessons learned



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

The what?

 Portable data interchange format for serialization across machine boundaries

 Used in producer/ consumer scenarios like:
• Data blobs storage
• Networks
• PC to embedded devices
• Multi-processor/ controller

 Specified wire exchange format 

 Implementation not mandated

 Official implementation available

 Under BSD



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

The why?

• Language and platform portable

• Full scalar data type coverage

• Wire size efficient (but not optimal)

• Fast runtime performance (but not optimal)

• Basis for a “Remote Procedure Protocol”

• Backbone of an OSI stack (Layers 2-5)

• Excellent documentation

• No magic tricks, straightforward spec



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

What is it not?

• No encryption/ decryption features

• No compression beyond encoding

• No RPC framework built in 

• … but these things can be added

• It’s not self describing, the contract must be available!



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Serialization has been around the block…

What could it replace?

• Tried and “true” methods include:
• Soap, Corba, COM/ DCOM

 Flexible and comprehensive

X Heavy weight integration/ use

X Not necessarily language/ platform neutral

• JSON, XML, Raw Text
 Highly portable

 Human readable (kind of)

X Not cheap to parse

X Not cheap to encode

X Not cheap to store

X Not cheap to send



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Apache Thrift

What are it’s peers?

• From an ex-googler (2007)… similarities

• was internal at Facebook, now open source

• Similar to PB in performance 

• Similar feature set to PB and even more languages

• Full built in RPC layer

• Less documentation

• Still slightly less efficient

http://thrift.apache.org/


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Apache Avro

The latest craze

• JSON Schema always available 

• Payload can be binary or JSON

• Schema robust to changes (alias’s, defaults)

• Can read/ write PB and Thrift!

• Similar speed/ space to PB

• Comparatively limited language support

• Only recently stable (2016)

http://avro.apache.org/


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

We need to go faster…

But wait… there’s more!

• “Protocol Buffers” spawned streamlined “zero copy” serialization formats.

• Why do we even need to encode/ decode?! Why can’t we mmapthe data?!

• April 2013: Cap’nProto from author of “Protocol Buffers” v2

• December 2013: SBE (Simple Binary Encoder) for financial trading

• June 2014: Flat Buffers from Google for game development

• By nature faster than Google’s PB implementation, but beware the gotchas…



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Roll your own

You could…

 Specify only what you need

 Can be faster

 Can be smaller

X But …. lions, tigers, and bears… oh my!



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

It’s been awhile!

Short history

• Developed internally at Google circa 2001

• Used as core glue for google services

• Released open source (2008) to public as stable and well tested

• Google’s implementation’s security has been verified

• Reward for finding XSS exploit in Google maps w/  Protobuf

https://medium.com/@marin_m/how-i-found-a-5-000-google-maps-xss-by-fiddling-with-protobuf-963ee0d9caff


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Overview and integration

IDL

• Interface definition language specified by Google

• Two versions Proto2/ Proto3

• Files have .proto suffix

• Google compiler converts IDL to boilerplate

• Runtime libraries decode and encode streams

• Simple to read and write



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Proto2 example

IDL syntax

/ / Generic definitions in other proto
import “base.proto”

enum OperationType
{

IDLE= 0;
SLEEP = 1;
DOWORK= 2;

}

message OperationRequest
{

required OperationType requestType = 1;
optional uint32 timeout = 2;
optional bool sleepOnFinish = 3;

}

message Result
{

required string resultString=1;
optional uint32 timestamp=2;

}

message OperationResponse
{

repeated Result result=1;
}



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Wire format

Above covers signed numbers (two possible encodings) and floats (@fixed32).
Separate type for 64-bit fixed sized numbers



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

A bit on the heavy side

But we didn’t use Google’s tools

Google C++ implementation under BSD
• But it depends on STL…

• Dynamic allocation

• … code space starts around 100KB or more

You could strip it down,

… but Embedded was not the target market!



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Alternatives

PB for embedded

• Various C libraries from third parties over the years:
• … lwpb, Protobuf-embedded-c, empb

• The actives ones:
• Protobuf-c

o New BSD license
o Feature complete to google specification
o Dynamic allocations, but customizable with allocators
o > 20 KB rom

https://github.com/protobuf-c/protobuf-c


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Nanopb

The winner is…

• Z-lib license

• Fully static by default

• Smallest @: ~ 2-10 rom KB and ~ 300 bytes ram

• Favors small size over serialization speed

• Strings/ Byte Arrays use custom field options to specify size

• Precompile flags to tailor fit (ex. Field-tag size)

• For dynamic sized fields there are callbacks

• IDL processing: Google PB compiler + python plugin

• Complete documentation Unit tests included!

http://jpa.kapsi.fi/nanopb/


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

You still have a spec!

May sound crazy…

• Optimize for your use case

• Example: Custom PB Serializer

• But still… 

https://www.farsightsecurity.com/2015/04/17/mschiffm-nmsg-protobuf-deserialize/


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Thanks for the overview but….



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Why NanoPB was our choice?

• No custom serialization spec, no XML/JSON

• Portability: C#, C/C++, and Java

• Size: Must run on mid-range microcontrollers

• License: Sell it on the customer



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Scenario and Constraints

• Remote procedures:
• Device operation through Host App(s) in C# and Java

• Services on Master controller <-> Services on hard real time controller

• Main controller:
 Plenty of ROM (> 1MB)

 RAM 256KB

 Middleware Embedded OS

• Real time controller:
 256 KB RAM + ROM

 Tight real time requirements

 No OS

Main Real time
Calculations

PC/ Host

USB
UART

UART



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Diesel and Gaudi provide the glue

• No RPC in Protocol Buffers but easy to add!

• Diesel DSL approach with ruby, rake, and Gaudi

• Our DSL target:
• System - Shared definitions (types, enums, defines)

• Services – remote API for on device functional modules

https://www.zuehlke.com/blog/en/diesel-part-1/
https://github.com/damphyr/gaudi


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Example
%% Provides an interface to control LEDs on the device.
service LED=15 {
namespace = LED
version = 2.0.0
platform = main_controller

%% Defines the types of LEDs.
enum LEDType {

prefix = eLDT

mapping {
Red = 0
Green = 1

}
}

%% Turns on and off LEDs on the controller.
command SetSteadyState=1 {

encodable_from = host

fields {
%% The type of LED to update
LEDType led_id = 1
%%  Desired status of the LED
bool enabled = 2

}
}



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Generate whatever you can!

NanoPBboilerplate:

• DSL                  Proto IDL                 NanoPBstructs+

C++ boilerplate classes per service:
• Decoders:  byte streams           NanoPBC-structs          service API calls

• Encoders:   API Calls          NanoPBC-structs           PB streams

Diesel PB compiler



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Custom meta format

Packet structure

• Two PB based packets back to back for each RPC.

1) Shared Header: Manually serialized using library.

2)Payload: Full PB message serialized using generated code.

No separator!

Header
CRC,ID,Address

Payload
Parameters

00



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Packet streams

• Zero byte terminators

• Bytes reencoded with Consistent Overhead Byte Stuffing 

• No “reserved” zero bytes in payload

 Packets can be defined of unlimited size

 Overhead minimum of 1 byte and maximum of n/ 254

x Errors require full resend

1 11 22 00 33 03 11 22 02 33 00

2 11 22 33 44 05 11 22 33 44 00

3 11 00 00 00 02 11 01 01 01 00

https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Did we get the right message

Packet integrity

1. First field is CRC

2. CRC uses Fixed32 type 

3. Initialize CRC to zero

4. Encode header and payload

5. Calculate CRC over encoded stream

6. Encode CRC value in zero’d bytes

7. Reverse the steps to verify



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

A fork in the road

Stream integrity

Custom ACK/NACK packet
• Just CRC header and sequence number payload

• Can be distinguished easily by field tags

• Lower bandwidth and faster performance



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

Lessons learned

 Reliability from mature predefined protocol saves a lot of time

 NanoPB implementation solid and efficient

 Custom light weight RPC more than enough

 Zlib license is low stress

 Docs from Google and Nanopb comprehensive

 Rarely needed to peek in the box

 … and when we did it wasn’t scary

– More flexibility and features than needed

– Efficient but not optimal (4 byte minimum fixed size)



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

It’s perfect right?

Open source…

• Advantages are clear when the project is popular!

• But free is not always appropriate:
• Consider the licensing model … Is what’s free today free tomorrow?

• Verification doesn’t come for free, is the choice temporary or will it go the distance?

• And for the maintainers….
• https:/ / blog.marcgravell.com/ 2018/ 04/ having-serious-conversation-about-open.html

https://blog.marcgravell.com/2018/04/having-serious-conversation-about-open.html


© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

About Zühlke
Facts and figures

 Founded 1968 

 Owned by partners

 Teams in Germany, United Kingdom, 
Austria, Bulgaria, Serbia, Singapore, Hong 
Kong and Switzerland

 Over 10,000 projects implemented

 1,000 employees and a turnover 
of CHF 154 million (2017)

 Certifications: ISO 9001 and 13485



© Zühlke 2018Google’s Protocol Buffers for Embedded Riot 2018 | Morgan Kita 09. September 2018

That’s all folks!

Morgan Kita
Expert Software Engineer
+49 174 302 9332
morgan.kita@zuehlke.com
https:/ / de.linkedin.com/ in/ morgan-kita-6513a343
https:/ / www.zuehlke.com

mailto:morgan.kita@zuehlke.com
https://de.linkedin.com/in/morgan-kita-6513a343
https://www.zuehlke.com/ch/en/

	Google Protocol Buffers �for Embedded IoT �Integration in a medical device project
	Quick look
	The what?
	The why?
	What is it not?
	What could it replace?
	What are it’s peers?
	The latest craze
	But wait… there’s more!
	You could…
	Short history
	IDL
	IDL syntax
	Wire format
	But we didn’t use Google’s tools
	PB for embedded
	The winner is…
	May sound crazy…
	Thanks for the overview but….
	Why NanoPB was our choice?
	Scenario and Constraints
	Diesel and Gaudi provide the glue
	Example
	Generate whatever you can!
	Packet structure
	Packet streams
	Packet integrity
	Stream integrity
	Lessons learned
	Open source…	
	About Zühlke
	That’s all folks!

