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Magnetic mirrors. Radiation belts.

Adiabatic invariants.

([8], p.28-47; F.Chen, Introduction to plasma
physics and controlled fusion, 1984, v.1, p.30-34,
41-49]

Consider an axisymmetric magnetic field:

~B = (Br, 0, Bz), ∂ ~B/∂θ = 0

Figure 1:

and make use of equation

div ~B = 0
1
r

∂

∂r
(rBr) +

∂Bz

∂z
= 0
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If ∂Bz/∂z is given at r = 0 and does not change
much with r, then

rBr =
∫ r

0

r
∂Bz

∂z
dr ≈ −1

2
r2

(
∂Bz

∂z

)

0

Br = −1
2
r

(
∂Bz

∂z

)

0

Variation of |B| with r causes ∇ B drift
perpendicular to ∇B and ~B, that is in θ direction.

Calculate components of the Lorentz force
~F = q/c(~v × ~B):

Fr =
q

c
(vθBz︸ ︷︷ ︸

©1

−vz 6Bθ)

Fθ =
q

c
(−vrBz︸ ︷︷ ︸

©2

+ vzBr︸ ︷︷ ︸
©3

)

Fz =
q

c
(vr 6Bθ − vθBr︸ ︷︷ ︸

©4

)

Terms 1 and 2 describe Larmor gyration. Term 3
describes drift in radial direction following the lines
of force.
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Consider term 4

Fz = −q

c
(vθBr) =

q

2c
vθr

(
∂B

∂z

)

0

vθ = −sign(q) · v⊥
is a constant during a gyration. Therefore, the
average force is:

Fz = − sign(q) · q
2c

v⊥rL

(
∂Bz

∂z

)

0

Here,
rL =

v⊥
ωc

=
v⊥mc

|q|B
Then,

Fz = −1
2

mv2
⊥

B

(
∂Bz

∂z

)

0

≡ −µ
∂Bz

∂z
,

where

µ =
1
2

mv2
⊥

B
is the magnetic moment of the gyrating particle.

Compare this with the standard definition of
magnetic moment of a moving particle with a
circular orbit:
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Figure 2: Magnetic moment µ = 1
c I ·A.

The effective current is I = dQ/dt = q/P , where P

is the period of rotation; P = 2π/ωc, A = πr2
L.

Then,

µ =
q

c

2π

ωc
πr2

L =
1
2

mv2
⊥

B

In general, the force on a gyrating particle is:

~F‖ = −µ∇‖ ~B

The important property of the magnetic moment is
that it remains invariant. When the particle moves
in regions of stronger field the Larmor radius
changes but µ remains constant.

Let’s proof this. Multiply the equation of motion of
the particle by v‖:

m

2

dv2
‖

dt
= −µ

∂B

∂z
v‖ = −µ

dB

dt
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because dz/dt = v‖. Here, dB/dt is the variation of
B as seen by the particle.

The particle kinetic energy is conserved:

d

dt

(
mv2

‖
2

+
mv2

⊥
2

)
= 0

Using the definition of the magnetic moment and
the equation of motion we get:

d

dt

(
mv2

‖
2

+ µB

)
= −µ

dB

dt
+

d(µB)
dt

= B
dµ

dt
= 0

Thus, µ = const.

If B increases as particle moves then v⊥ increases,
hence v‖ decreases, and may become zero. At this
point the particle stops and reverses the direction
of motion. This is the effect of magnetic mirror.
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Figure 3: A plasma trapped between magnetic mir-
rors made of a pair of coils.

The trapping is not perfect. For instance, particles
with v⊥ = 0 have µ = 0 and do not feel any force
along ~B. These particles are not trapped. Also,
particles that reach the points at the maximum
magnetic field strength with non-zero v‖ escape.
These are particles with small v⊥/v‖ ratio.

Consider a particle with v⊥ = v⊥0, v‖ = v‖0 and
the total velocity, v0, (v2

0 = v2
⊥0 + v2

‖0) in the
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middle of the trap where B = Bmin = B0, and with
v⊥ = v⊥m and v‖ = v‖m at the turning point where
B = Bmax = Bm.

Obviously, particles that reach Bm with v‖m ≥ 0
escape. For these particles from conservation of
energy:

v2
⊥m + v2

‖m = v2
⊥0 + v2

‖0 = v2
0

we get
v2
⊥m ≤ v2

0

Then because of invariance of µ:

1
2

mv2
⊥0

B0
=

1
2

mv2
⊥m

Bm
,

v2
⊥m =

Bm

B0
v2
⊥0.

Hence, particles with

v2
⊥0

v2
0

≤ B0

Bm

escape.

If the angle between the velocity vector and z-axis
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is α (pitch angle):

sin α =
v⊥0

v0

then particles escape when

α ≤ αm,

where

sin2 αm =
B0

Bm
=

1
Rm

Rm is called the mirror ratio (the ratio of max B to
min B).

The cone of α ≤ αm in the velocity space is called
the loss cone.

The loss cone is independent of q and m. Hence
electrons and ions are equally trapped. However,
due to collisions the pitch angle may change, and
since electrons collide more frequently than ions,
thus they are lost more easily.
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αm α

Figure 4: The loss cone α ≤ αm.

Fermi suggested that particles trapped between two
magnetic mirrors moving towards each other
accelerate. This is Fermi acceleration mechanism.
It is suggested to explain acceleration of cosmic
rays.
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Time-varying magnetic field

Consider now effects of magnetic field variations
with time. We have discussed that magnetic field
cannot change the particle energy. However,
electric field associated with varying magnetic field
can accelerate particles.

∇× ~E = −1
c

∂ ~B

∂t

Let ~v⊥ = d~l/dt be the transverse velocity along
path ~l (with v‖ neglected). Taking the scalar
product of ~v⊥ and the equation of motion

m
d~v⊥
dt

= q ~E

we have

d

dt

(
1
2
mv2

⊥

)
= q ~E · ~v⊥ = q ~E · d~l

dt
.

The energy change during one gyration

δ

(
1
2
mv2

⊥

)
=

∫ 2π/ωc

0

q ~E · d~l

dt
dt =

∮
q ~E · d~l =



Phys312 5. Magnetic mirror. Radiation belts. Adiabatic invariants. 11

= q

∫

S

(∇× ~E)d~s = −q

c

∫

S

~̇B · d~s.

Here ~S is the area of the Larmor orbit, and a
direction given by the right-hand rule when the
fingers point in the direction of ~v.

The direction of gyration is opposite for ions and
electrons. Therefore, ~B · d~s < 0 for ions, and
~B · d~s > 0 for electrons. Hence,

δ

(
1
2
mv2

⊥

)
= sign(q)q

1
c
πr2

LḂ =
1
2mv2

⊥
B

2πḂ

ωc
= µδB,

where δB is the change of δB during one period of
gyration. Thus

δ

(
1
2
mv2

⊥

)
= µδB

Since

δ

(
1
2
mv2

⊥

)
= δ(µB)

then
δµ = 0.

This means that the magnetic moment is invariant
in slowly varying magnetic fields.
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When the magnetic field strength increases the
particle energy also increases. This is used for
plasma heating.

Theorem. Magnetic flux through a Larmor orbit
is constant.

Proof:

Φ = Bπr2
L = πB

v2
⊥

ω2
c

= πB
v2
⊥m2c2

q2B2
=

2πc2m

q2
µ = const.

The Van Allen radiation belts

The radiation belts were discovered by James Van
Allen using data taken from Geiger counters on the
first US satellite, Explorer 1. There two radiation
belts. The inner belt extending from about 1 to 3
Earth radii in the equatorial region is populated by
protons with energies greater than 10 MeV. The
protons are produced from decay of neutrons which
are emitted from the atmosphere bombarded by
cosmic rays. The lifetime of particles in this belt
range from few hours to 10 years. The outer belt at
3-9 Earth radii consists mostly of electrons with
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energies below 10 MeV. The electrons are ejected
from the outer magnetosphere. This belt is very
dynamic, changing on the time scale of few hours.

Figure 5: The radiation belts.
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The Earth’s magnetic field can be approximated as
a dipole field in spherical coordinates (r,Θ, Φ) (Θ is
colatitude):

Br =
2ME

r3
cosΘ

BΘ =
ME

r3
sinΘ

|B| = ME

r3
(1 + 3 cos2 Θ)1/2

where
BE =

ME

R3
E

≈ 0.3 G

Equation for magnetic field lines:

dr

Br
=

rdΘ
BΘ

or
dr

2 cos Θ
=

rdΘ
sinΘ

has solution
r = const · sin2 Θ

Since at the equator, Θ = π/2, r = req (where req is
the radial distance to the field lines in the
equatorial plane, we have:

r = req sin2 Θ
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or in terms of latitude θ = π/2−Θ:

r = req cos2 θ

Hence,

B =
ME

r3
eq

(1 + 3 sin2 θ)1/2

cos6 θ

or in terms of L-shell parameter, L ≡ req/RE :

B =
BE

L3

(1 + 3 sin2 θ)1/2

cos6 θ

where BE = ME/R3
E = 3.11× 10−5 T is the

equatorial magnetic field strength on the Earth’s
surface.

Practical formulas for particle motion in the
radiation belts (for θ = 0):

Cyclotron frequencies:

νe =
eB

2πmec
= 5.46

1
L3

MHz

νp = 2.98
1
L3

kHz
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Gyroradii:

rL,e

RE
=

√
EMeV

(
L

38.9

)3

rL,p

RE
=

√
EMeV

(
L

11.1

)3

For the MeV radiation belt particles at L < 10 the
cyclotron frequencies are much higher than the
typical rates of magnetic field variations (on the
scale hours or days). Also, the gyroradii are much
smaller than the typical variations of the
geomagnetic field (on the scale of RE). Hence, the
particles are trapped in the Earth’s magnetic field.
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Figure 6: A typical trajectory of a charged particle
in the radiation belts.

Define the pitch angle α:

tan α =
v⊥
v‖

Because of invariance of the magnetic moment:

sin2 α

sin2 αe

=
B

Beq

where Beq = BE/L3.
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The loss cone is:

sin2 αeq,m =
Beq

Bm
=

cos6 θm

(1 + 3 sin2 θm)1/2

where Bm is the magnetic field strength at the
mirror points, θm is the latitude of the mirror
points (which depends only on the equatorial pitch
angle).

Particles with large pitch angle are lost at low
latitudes. Particles with small pitch angle have
large parallel velocities, and their mirror points are
at high latitudes. If the pitch angle is too small
then the mirror point may be located at very small
r, in the atmosphere, or, formally, even below the
Earth’s surface. Such particles are also lost.

If the magnetic field lines intersect the Earth
atmosphere (r = RE) at latitude θE then the loss
cone:

sin2 αl =
cos6 θE

(1 + 3 sin2 θE)1/2

Since r = req cos2 θ and L = req/RE

cos2 θE = 1/L
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sin2 αl =
1

L5/2(4L− 3)1/2

For a typical L = 6.6 (a geostationary orbit):
αl ≈ 3◦.

The loss cone is very small.

The bounce period:

τb = 4
∫ θm

0

ds

v‖

where ds is an element of arc length along the field
lines.

For protons:

τb,p ' 2.41
L√

EMeV

(1− 0.43 sin αeq,m) sec

for electrons:

τb,e ' 5.62× 10−2 L√
EMeV

(1− 0.43 sin αeq,m) sec

Typically, this is less than a second for electrons,
and 1-10 sec for protons.
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The ring current

Particles in the radiation belts move in
non-uniform magnetic field with curved field lines.
Hence we have to consider a combined centrifugal
and gradient drift.

~vd =
mc~Rc × ~B

qR2
cB

2

(
v2
‖ +

v2
⊥
2

)
.

This drift is in the azimuthal direction: ions drift
westward, electrons drift eastward. This is so-call
ring current.

Figure 7: A typical trajectory of a charged particle
in the radiation belts including azimuthal drift (ring
current).
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The drift period for electron and ions is:

τd =
2πLRE

vd
' 1.05

EMeVL
(1 + 0.43 sinαeq,m)−1 hours

The ring current causes a small reduction of the
Earth’s magnetic field in equatorial regions. The
size of this reduction is a good measure of the
number of particles in the radiation belts. During
geomagnetic storms charged particles are injected
into the Van Allen belts from the outer
magnetosphere.

Figure 8: Dst data for January 2005 showing geo-
magnetic storms. The storm on January 16-17 was
caused by a strong solar flare.
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Adiabatic invariants

Adiabatic invariant is a lowest order approximation
to the more fundamental type of invariant, a
Poincare invariant:

J =
∮

C(t)

~p · d~q,

where ~p and ~q are generalized canonical coordinates
and momentum, and C(t) is a closed curve in the
phase space.

Lagrangian of a charged particle in magnetic field
is:

L =
m~v2

2
+

e

c
~v · ~A

where A is the vector potential: ~B = ∇× ~A.

Canonical momentum:

~p =
∂L

∂~v
= m~v +

e

c
~A

Consider a circular path (gyration):

J =
∮

~p⊥ · d~l =
∮

m~v⊥ · d~l +
e

c

∮
~A · d~l =
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=
∮

mωcr
2
Ldθ +

e

c

∫

S

~B · ~nds =

= 2π mωc︸︷︷︸
eB/c

r2
L +

e

c
Bπr2

L = 3π
e

c
Φ

where Φ = πr2
LB is the magnetic through the orbit.

J ∝ Φ ∝ mv2
⊥

B
∝ µ

Hence, µ is adiabatic invariant. It is called the
first adiabatic invariant.

The second adiabatic invariant is associated
with the particle bouncing motion between the
magnetic mirrors:

J =
∮

p‖ds

where ds is an element of arc-length along the field
line.

~p = m~v +
e

c
~A

J =
∮

v‖ds +
e

c

∮
A‖ds = m

∮
v‖ds +

e

c
Φ

where Φ is the total flux enclosed by the curve. In
this case, it is zero. Thus, the second adiabatic
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invariant is:

J =
∮

v‖ds

Invariance of µ means that |B| at the mirror points
is the same. Invariance of

∮
v‖ds fixes the length of

the magnetic line.

Consider a mirror-trapped particle slowly drifting
in longitude around the Earth. If the magnetic field
were perfectly symmetric the particle would return
to the same field line. However, the actual field is
distorted, and the particle may return to a different
line at different altitude. However, this cannot
happen if J is conserved, because it determines the
length of the field line between to turning points,
and no two lines have the same length between two
points with the same |B|.
The third adiabatic invariant is associated with
the precession of particles around the Earth.

K =
∮

pφds

pφ = mvφ +
e

c
Aφ



Phys312 5. Magnetic mirror. Radiation belts. Adiabatic invariants. 25

Since the drift velocity is very small:

K ≈ e

c

∮
Aφds =

e

c
Φ,

where Φ is the total magnetic flux by the orbit of
the bounce center around the Earth. Flux Φ is
constant only if the magnetic field varies on the
time scale much longer than the drift period τd,
which is of order an hour.

Suppose the strength of the solar wind increases
slowly, compressing the Earth’s magnetic field. The
invariance of Φ would cause particle move closer to
the Earth to conserve the flux enclosed by their
orbits. This means an increase of the ring current,
causing a decrease of the Earth’s magnetic field
(reduction of Dst index) and an geomagnetic storm
because of increased particle precipitation (auroral
activity etc).


