A Survey of Quantifier Elimination: Syntactic and Semantic Approaches

> Ting Zhang Stanford June 7, 2002

Alfred Tarski

- Preliminaries
- Basic Theory
- Syntactic Approaches
- Semantic Approaches

Notations

- \mathscr{L} : a first-order language.
- C: an arbitrarily large set of new constants.
 The size of C is arbitrarily large so that we never run out of constant symbols to name objects under consideration.
- \mathscr{L}_C : the new language augmented by C.
- \mathfrak{A} : a \mathscr{L} -structure with domain A.

We identify A with a set of constants such that each of objects in domain A is named by itself in \mathscr{L}_A . Also write $\mathscr{L}_{\mathfrak{A}}$ for \mathscr{L}_A when it is clear from the context.

• (\mathfrak{A}, A) : the expansion structure of \mathfrak{A} in language $\mathscr{L}_{\mathfrak{A}}$.

Diagrams

Definition 0.1 (Diagrams). Let \mathfrak{A} and $\mathscr{L}_{\mathfrak{A}}$ as defined above. A digram $\Delta_{\mathfrak{A}}$ is the set of all basic sentences (i.e., atomic sentences or negated atomic sentences) of $\mathscr{L}_{\mathfrak{A}}$ which are true in \mathfrak{A} . Similarly an elementary digram $\Theta_{\mathfrak{A}}$ is the set of all sentences of $\mathscr{L}_{\mathfrak{A}}$ which are true in \mathfrak{A} , i.e., the theory $Th(\mathfrak{A}, A)$ in language $\mathscr{L}_{\mathfrak{A}}$.

An elementary digram is a complete description of \mathfrak{A} in language $\mathscr{L}_{\mathfrak{A}}$ and diagram is a partial description using only quantifier-free sentences.

Lemma 0.1 (Robinson's diagram Lemma). Let \mathfrak{A} and $\mathscr{L}_{\mathfrak{A}}$ as defined above. Let \mathfrak{B} be a $\mathscr{L}_{\mathfrak{A}}$ -structure.

1. If $\mathfrak{B} \models \Delta_{\mathfrak{A}}$, then \mathfrak{A} can be embedded into $\mathfrak{B} | \mathscr{L}$.

2. If $\mathfrak{B} \models \Theta_{\mathfrak{A}}$, then \mathfrak{A} can be elementarily embedded into $\mathfrak{B} | \mathscr{L}$.

Quantifier Elimination

Definition 0.2 (Quantifier Elimination). A first-order theory T is said to have quantifier elimination if for any formula $\phi(\bar{x})$ there is a quantifier free formula $\psi(\bar{x})$ such that

 $T \models \forall \bar{x}(\phi(\bar{x}) \leftrightarrow \psi(\bar{x}))$

Remark 0.1. Assume \mathscr{L} contains at least one constant symbol or $\phi(\bar{x})$ contains at least one free variable.

Remark 0.2. For any first-order theory T there is a conservative extension T' of T such that T' has elimination of quantifiers.

Remark 0.3. If T has elimination of quantifiers, then for any model \mathfrak{A} of T, $Th(\mathfrak{A}, A)$ also admits elimination of quantifiers.

Elimination Set

Definition 0.3 (Elimination Set). Let **K** be a class of \mathscr{L} -structures. We say a set Φ of formulas is an elimination set for **K** if

any formula $\phi(\bar{x})$ is equivalent (in every structure of **K**) to a formula $\psi(\bar{x})$ which is a boolean combination of formulas in Φ .

We say Φ is an *elimination set* for theory T if Φ is an elimination set for Mod(T).

Hence T admits quantifier elimination if and only if the set of quantifier-free formulas forms an elimination set of T.

We say a \mathscr{L} -structure \mathfrak{A} has elimination of quantifiers if $Th(\mathfrak{A})$ does.

Elimination Set (Cont'd)

Theorem 0.1. Let Φ be a set of formulas. Suppose that

- every atomic formula or negated atomic formula of $\mathscr L$ is in Φ , and
- for every formula $\theta(\bar{x})$ of \mathscr{L} which is of form $\exists y \wedge \psi_i(\bar{x}, y)$ with ψ in Φ (called primitive formula with respect to Φ), there is a formula $\theta^*(\bar{x})$ of \mathscr{L} which

- is a boolean combination of formulas in Φ , and

- is equivalent to θ in every structure in **K**.

Then Φ is an elimination set for **K**.

Critirion of Elimination Set

Desired properties of an elimination set Φ of a theory T.

- 1. Φ is reasonably small and nonredundant.
- 2. Every formula in Φ has straightforward mathematical meaning.
- 3. There exists an effective procedure to reduce every formula to a boolean combination of formulas in Φ .
- 4. There exists an effective procedure to decide whether a formula in Φ is provable or refutable from T.

With (1)-(4) T is a complete and decidable theory.

The Point of Quantifier Elimination

- Classification up to elementary equivalence
- Completeness proofs
- Decidability proofs
- Constructive decision procedures
- Description of definable relations
- Description of elementary embeddings

Slogan: "..., the method [of elimination of quantifiers] is extremely valuable when we want to beat a particular theory into the ground." (Chang & Keisler)

Schema for syntactic approaches

- Reduce formulas to certain normal forms.
- Guess an elimination set Φ .
- Let Ψ be a set of formulas of the form $\exists x \phi$ where ϕ is a boolean combination of formulas in Φ . Find a ranking function $rank: \Psi \to \mathbb{N}$.
- For every formula ϕ in Ψ find a *T*-equivalent formula ϕ in Ψ with $rank(\psi) < rank(\phi)$.
- Reduce ϕ of rank 0 to a boolean combination of formulas in Φ .

Logical Theories

- Dense linear orders (DeLO)
- Discrete linear orders (DiLO)
- Presburger arithmetic (PA)
- Atomless boolean algebras (ABA)
- Algebraically closed fields (ACF)
- Real closed fields (RCF)

Dense Linear Orderings (DeLO)

Dense linear orders with first and last elements.

- Language: $\mathscr{L} = \{<, 0, 1\}.$
- Axioms:
 - Axioms of linear orders.
 - Axiom of denseness
 - $* \ \forall x \forall y (x < y \rightarrow \forall z (x < z \land z < y))$
 - Axioms of boundedness.

$$* \ \forall x (x < 1 \lor x = 1$$

$$* \ \forall x (0 < x \lor x = 0)$$

QE of DeLO

Primitive formulas of DeLO are of the form

$$\exists x (\bigwedge_{i < l} t_i < x \land \bigwedge_{j < m} x < u_j \bigwedge_{k < n} x = v_k)$$

where t_i , u_j and v_k are terms not involving x.

Without loss of generality assume n = 0. It suffices to show how to eliminate the quantifier in

$$\phi(x) = \exists x (\bigwedge_{i < l} t_i < x \land \bigwedge_{j < m} x < u_j)$$

Define $rank(\phi(x)) = l + m$.

QE of DeLO (con'd)

1. l > 1. The formula $\phi(x)$ is equivalent to

$$\left\{ t_0 < t_1 \land \exists x (t_1 < x \land \bigwedge_{1 < i < l} t_i < x \land \bigwedge_{j < m} x < u_j) \right\}$$

$$\bigvee \left(\neg t_0 < t_1 \land \exists x (t_0 < x \land \bigwedge_{1 < i < l} t_i < x \land \bigwedge_{j < m} x < u_j) \right)$$

- 2. m > 1. Similar to l > 1.
- 3. l = m = 1. The formula $\phi(x)$ is equivalent to $t_0 < u_0$.
- 4. l = 0, m = 1. The formula $\phi(x)$ is equivalent to $u_0 \neq 0$.

5. l = 1, m = 0. The formula $\phi(x)$ is equivalent to $t_0 \neq 1$.

Discrete Linear Orderings (DiLO)

Discrete linear orders with first and last elements.

- Language: $\mathscr{L} = \{<, S\}.$
- Axioms:
 - Axioms of linear orders.
 - Axiom of discreteness.

 $* \ \forall x \forall y (x < y \leftrightarrow y = Sx \lor Sx < y))$

- Axioms of unboundedness.

*
$$\forall x \exists y (x = Sy)$$

* $\forall x \exists y (Sy = x)$

QE of DiLO

Primitive formulas of DiLO are of the form

$$\exists x (\bigwedge_{i < l} t_i < S^{p_i} x \land \bigwedge_{j < m} S^{q_j} x < u_j \bigwedge_{k < n} S^{r_k} x = v_k)$$

where t_i , u_j and v_k are terms with no occurrence of x.

Since $S^i x < t \leftrightarrow S^{i+j} < S^j t$, by uniforming all terms $S^i x$ to $S^n x$ and replacing $S^n x$ by a new variable y, the primitive formulas of DiLO can be written in the same as those of DeLO.

As before it suffices to show how to eliminate the quantifier in

$$\phi(x) = \exists x (\bigwedge_{i < k} t_i < x \land \bigwedge_{j < l} x < u_j)$$

QE of DiLO (Cont'd)

• k = l = 1:

$$\phi(x) \leftrightarrow t_0 < u_0 \land St_0 \neq u_0$$

• k = 0 or l = 0:

$$\phi(x) \leftrightarrow x = x$$

Remark 0.4. Similar approaches can apply for DeLO, DiLO with all following combinations of conditions on existence of first and last elements.

DeLO/DiLO + w/o "the first element" + w/o "the last element"

Presburger Arithmetic

- Language: $\mathscr{L} = \{0, 1, +, -, <\}.$
- Axioms:
 - Axioms of commutative group.
 - Axioms of linear orders with respect to group structure: * $\forall x \forall y (x > 0 \land y > 0 \rightarrow x + y > 0)$ * $\forall x \neg (x > 0 \land -x > 0)$ * $\forall x (x = 0 \lor x > 0 \lor -x > 0)$
 - Axiom of discrete orders
 - $* \ \forall x (x > 0 \leftrightarrow (x = 1 \lor x 1 > 0))$

Presburger Arithmetic (Cont'd)

The theory in \mathscr{L} doesn't admit elimination of quantifiers. E.g.,

$$\exists y(y+y=x)$$

is not equivalent to any quantifier-free formulas.

- Extended language: $\mathscr{L}' = \{0, 1, +, -, <, n \mid n \nmid \text{ for each } n > 1\}.$
- Definitional axioms: $\forall x(\neg n \mid x \leftrightarrow n \nmid x)$ for each n > 1.
- Axioms of divisibility

 $- \forall x(n \mid x \leftrightarrow \exists y(x = ny)) \text{ for each } n > 1$ $- \forall x(n \mid x \lor n \mid x + 1 \lor \cdots \lor n \mid x + n - 1) \text{ for each } n > 1$

QE of PA

• Eliminate negations. Replace $\neg t_1 = t_2$ by $t_2 < t_1 \lor t_1 < t_2$. Replace $\neg(t_1 < t_2)$ by $t_2 < t_1 \lor t_1 = t_2$. And replace $\neg n \mid x$ by $n \nmid x$ and $\neg n \nmid x$ by $n \mid x$.

Atomic formulas are in the following forms

$$ax < t, u < bx, e \mid cx + v, f \nmid dx + w$$

where t, u, v and w are terms not involving x and a, b, c, d, e, fare positive integers. It suffices to show to how to eliminate quantifiers of $\exists x \varphi(x)$ with $\varphi(x)$ be a positive boolean combination of atomic formulas of the above form.

$$\exists x\varphi(x) = \exists x\mathcal{B}^+(a_i x < t_i, \ u_j < b_j x, \ e_k \mid c_k x + v_k, \ f_l \nmid d_l x + w_l)$$

 Unify the coefficient of x. Let n be the LCM of all coefficients of x in φ(x). Raise the coefficient of x to n by multiplying appropriate factors. Observe that

$$\exists x \phi(x) \leftrightarrow \exists x \phi'(nx)$$

where ϕ' is obtained from ϕ by multiplying appropriate factors to terms.

• Eliminate the coefficient of x. Use the fact that

$$\exists x \phi(nx) \leftrightarrow \exists x (\phi(x) \land n \mid x)$$

• Instantiate x with all combinations.

 δ : the L.C.M. of all e, f in $\phi(x)$.

 $\varphi_{-\infty}(x)$: the formula obtained from $\varphi(x)$ with formulas of form x < t replaced by *true* and formulas of form u < x replaced by *false*.

The formula $\exists x \phi(x)$ is equivalent to

$$\bigvee_{i=1}^{\delta} \varphi_{-\infty}(i) \vee \bigvee_{i=1}^{\delta} \bigvee_{u_j} \varphi(u_j + i)$$

• Example

 $\exists x \varphi(x) = \exists x F(3x < y + 2, \ 2y + 1 < 5x, \ z < 2x, \ 2 \nmid 3x)$

where F is a positive boolean function.

• Normalization

 $\begin{aligned} \exists x \varphi(x) \\ \leftrightarrow \quad \exists x F(30x < 10y + 20, \ 12y + 6 < 30x, \\ 15z < 30x, \ 20 \nmid 30x) \\ \leftrightarrow \quad \exists x \big(F'(x < 10y + 20, \ 12y + 6 < x, \\ 15z < x, \ 20 \nmid x) \land 30 \mid x \big) \end{aligned}$

• Instantiation

$$\bigvee_{i=1}^{30} F' (true, false, false, 20 \nmid i, 30 \mid i) \lor$$

$$\bigvee_{i=1}^{30} \left(F'(12y + 6 + i < 10y + 20, 12y + 6 < 12y + 6 + i, 15z < 12y + 6 + i, 20 \nmid 12y + 6 + i, 30 \mid 12y + 6 + i) \right)$$

$$\wedge F'(15z + i < 10y + 20, 12y + 6 < 15z + i, 15z < 15z + i, 20 \nmid 15z + i, 30 \mid 15z + i))$$

Atomless Boolean Algebra

- Language: $\mathscr{L} = \{0, 1, +, \cdot, -, <\}.$
- Axioms:
 - Axioms of boolean algebra.
 - Axioms of dense partial ordering:
 - * $\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y)), \text{ or equivalently}$ $\forall x (0 < x \rightarrow \exists z (0 < z \land z < x))$
- Example

$$\mathcal{A} = \langle \ \mathbb{Q}^*, \ \cup, \ \cap, \ \backslash, \ \emptyset, \ \mathbb{Q}^+ \ \rangle$$

where \mathbb{Q}^+ are non-negative rational numbers and \mathbb{Q}^* is the set of finite unions of intervals of the form [a, b) with $a, b \in \mathbb{Q}^+$.

QE of ABA

• Eliminate symbol <.

$$x < y \leftrightarrow x \cdot y = y \land x \neq y$$

• Normalize equalities and inequalities.

$$t_1 = t_2 \leftrightarrow t_1 \cdot (-t_2) = 0 \land (-t_1) \cdot t_2 = 0$$

$$t_1 \neq t_2 \leftrightarrow t_1 \cdot (-t_2) \neq 0 \lor (-t_1) \cdot t_2 \neq 0$$

$$t_1 + t_2 = 0 \leftrightarrow t_1 = 0 \land t_2 = 0$$

$$t_1 + t_2 \neq 0 \leftrightarrow t_1 \neq 0 \lor t_2 \neq 0$$

• Primitive formulas are in the following form:

$$\exists x\varphi(x) = \exists x(f(x) = 0 \land \bigwedge_{i} g_i(x) \neq 0)$$

Theorem 0.2. Let $f_x(a)$ denote the formula obtained by replacing all occurrence of x in f by a.

• for boolean algebra

$$\exists x (f(x) = 0 \land g(x) \neq 0) \leftrightarrow$$
$$f_x(0) \cdot f_x(1) = 0 \land (-f_x(1)) \cdot g_x(1) + (-f_x(0)) \cdot g_x(0) \neq 0$$

• for atomless boolean algebra

$$\exists x (f(x) = 0 \land \bigwedge_{i} g_{i}(x) \neq 0) \leftrightarrow \bigwedge \exists x (f(x) = 0 \land g_{i}(x) \neq 0)$$

Algebraically Closed Fields

- Language: $\mathscr{L} = \{0, 1, +, -, \cdot\}.$
- Axioms:
 - Axioms of fields.
 - Axioms of algebraic closure.

for all $n \ge 0$,

$$\forall x_0 \cdots \forall x_n \exists y (x_n \cdot y^n + \cdots + x_1 \cdot y + x_0 = 0)$$

QE of ACF

The primitive formulas of ACF are of the form

$$\exists x (\bigwedge_{i < m} t_i = 0 \land \bigwedge_{j < n} u_j \neq 0)$$

Note that $u \neq 0$ is equivalent to

$$\exists z(z \cdot u - 1 = 0)$$

So it suffices to show how to eliminate the quantifier in

$$\varphi(x) = \exists x (\bigwedge_{i < m} t_i = 0)$$

- m = 1. $\varphi(x)$ is equivalent to 0 = 0.
- m > 1. Let the term of the highest degree in t_i be $a_i x^{n_i}$. Define $rank(\phi(x)) = \sum_{i=0}^m n_i$. Assume that $n_0 \ge n_1$. Let

$$t'_0 = a_1 t_0 - a_0 x^{n_0 - n_1} t_1$$
 and $t'_1 = t_1 - a_1 x^{n_1}$

The formula $\varphi(x)$ is equivalent to (by Euclidean algorithm)

$$(a_1 = 0 \land \exists x(t_0 = 0 \land t'_1 = 0 \land \bigwedge_{1 < i < m} t_i = 0))$$
$$\bigvee (a_1 \neq 0 \land \exists x(t'_0 = 0 \land t_1 = 0 \land \bigwedge_{1 < i < m} t_i = 0))$$

Note that $deg(t'_0) < deg(t_0)$ and $deg(t'_1) < deg(t_1)$, i.e., the rank is decreasing.

• Example

$$\varphi(x) = \exists x (6x^2 + 3x + 10 = 0 \land 3x + 1 = 0)$$

$$\leftrightarrow (3 = 0 \land \exists x (6x^2 + 3x + 10 = 0 \land 1 = 0))$$

$$\bigvee (3 \neq 0 \land \exists x (x + 10 = 0 \land 3x + 1 = 0))$$

$$\leftrightarrow 3 \neq 0 \land ((3 = 0 \land \exists x (x + 10 = 0 \land 1 = 0)))$$

$$\bigvee (3 \neq 0 \land \exists x (29 = 0 \land 3x + 1 = 0)))$$

$$\leftrightarrow 3 \neq 0 \land 29 = 0 \land \exists x (3x + 1 = 0)$$

$$\leftrightarrow 29 = 0$$

Real Closed Fields

- Language: $\mathscr{L} = \{0, 1, +, -, \cdot, <\}.$
- Axioms:
 - Axioms of ordered fields.
 - * Axioms of fields.
 - * Axioms of linear orders.
 - $* \forall x \forall y \forall z (x < y \to x + z < y + z)$
 - * $\forall x \forall y \forall z (x < y \land 0 < z \rightarrow x \cdot z < y \cdot z)$
 - Axioms of real closure.
 - $* \ \forall x (0 < x \rightarrow \exists y (y^2 = x))$
 - * for all odd n > 0

$$\forall x_0 \cdots \forall x_n \exists y (x_n \cdot y^n + \dots + x_1 \cdot y + x_0 = 0)$$

QE of RCF

• Normalization.

Let $\varphi(y_1, \ldots, y_m)$ be a formula with y_1, \ldots, y_m free. The formula φ can be written in the following prenex form

 $Q_1x_1,\ldots,Q_nx_n\psi(y_1,\ldots,y_m,x_1,\ldots,x_n)$

where $Q_i \in \{\exists, \forall\}$ and ψ is a boolean combination of polynomial equalities and inequalities of the following two forms:

$$f_i(y_1, \dots, y_m, x_1, \dots, x_n) = 0$$
$$f_i(y_1, \dots, y_m, x_1, \dots, x_n) > 0$$

Let \mathcal{F} denote all polynomials which occur in ψ .

- Cylindrical algebraic decomposition. Construct a sequence of finite partitions Π_1, \ldots, Π_{m+n} with the following properties.
 - Each Π_i is a finite partition of \mathbb{R}^i . The elements in Π_i are called *i*-dimensional "cells".
 - Π_{i+1} is a refinement of $\Pi_i \times \mathbb{R}$ in the sense that the cells of Π_i are exactly projections of cells of Π_{i+1} and for each cell C of Π_i we can effectively construct the stack of cells C_{i+1} of Π_{i+1} which partition $C \times \mathbb{R}$.

- Cylindrical algebraic decomposition (Cont'd).
 - Each cell C in Π_m is described by a quantifier free formula $\delta_C(y_1, \ldots, y_m).$
 - For each cell C in Π_{m+n} , \mathcal{F} is sign invariant and there is a sample point α_C which is described by a quantifier free formula.
- Complexity

$$\left(|\mathcal{F}| \cdot deg(\mathcal{F})\right)^{2^{O(m+n)}}$$

where $|\mathcal{F}|$ is the number of polynomials in \mathcal{F} and $deg(\mathcal{F})$ is the maximum degree of any polynomial in \mathcal{F} .

- Construct decision trees from partitions $\Pi_{m+1}, \ldots, \Pi_{m+n}$. For each cell C in \mathbb{R}^m build a decision tree T_C as follows.
 - The tree is of depth n with the root C at depth 0.
 - If C is a node at depth i, its children are all cells of Π_{m+i+1} which are cylindrical over C.
 - If Q_i is \forall (resp. \exists) then all nodes at depth i 1 is conjunctive (resp. disjunctive).
 - Let the valuation of T_C be $\theta_C(y_1, \ldots, y_m)$. Then formula $\varphi(y_1, \ldots, y_m, x_1, \ldots, x_n)$ is equivalent to

$$\bigvee_{C\in\Pi_m} \delta_C(y_1,\ldots,y_m) \wedge \theta_C(y_1,\ldots,y_m)$$

(

Sample points for the CAD of $\{y^2 - x\}$ are as follows:

$$\left\{ \begin{array}{c} (-1,0) \end{array} \right\}, \quad \left\{ \begin{array}{c} (0,1) \\ (0,0) \\ (0,-1) \end{array} \right\}, \quad \left\{ \begin{array}{c} (1,2) \\ (1,1) \\ (1,1/2) \\ (1,0) \\ (1,-1/2) \\ (1,-1) \\ (1,-2) \end{array} \right. \right\}$$

The equivalent quantifier-free sentence is

$$(0 - (-1) > 0)$$

$$\bigvee \quad ((1 - 0 > 0) \land (0 - 0 > 0) \land (1 - 0 > 0))$$

$$\bigvee \quad ((4 - 1 > 0) \land (1 - 1 > 0) \land (1/4 - 1 > 0)$$

$$(0 - 1 > 0) \land (1/4 - 1 > 0) \land (1 - 1 > 0) \land (4 - 1 > 0))$$

which is *true*.

A Bit of History on RCF

- Artin & Schreier [1927]
- Tarski [1948, 1951], Seidenberg [1954]
- Lojasiewicz [1964, 1965]
- Fischer & Rabin [1974]
- Collins [1975], Monk & Solovay [1972]
- Grigor'ev [1988], Renegar [1992]
- Basu, Pollack & Roy [1996], Basu [1999]

Model Completeness

Definition 0.4. A first-order theory T is said to be model complete if for every model \mathfrak{A} of $T, T \cup \Delta_{\mathfrak{A}}$ is a complete theory in language $\mathscr{L}_{\mathfrak{A}}$.

Theorem 0.3 (Robinson). A first-order theory T is model complete if and only if every formula is equivalent (modulo T) to an existential formula.

Remark 0.5. Completeness and model completeness are two different properties of a theory. Generally neither one implies the other. The theory $Th(\mathfrak{N})$ of Peano arithmetic is a complete theory, but obviously it is not model complete. The theory of algebraically closed field is model complete, but not complete.

Amalgamation Property

Definition 0.5. Let \mathbf{K} be a class of \mathscr{L} -structures. We say that \mathbf{K} has amalgamation property if the following property holds:

If \mathfrak{A} , \mathfrak{B} , \mathfrak{C} are in \mathbf{K} and $e : \mathfrak{A} \mapsto \mathfrak{B}$ and $f : \mathfrak{A} \mapsto \mathfrak{C}$ are embeddings, then there exists \mathfrak{D} in \mathbf{K} and embeddings $g : \mathfrak{B} \mapsto \mathfrak{D}$ and $h : \mathfrak{C} \mapsto \mathfrak{D}$ such that $e \circ g = f \circ h$, i.e., the following diagram commutes.

Theorem 0.4. If **K** is closed under direct product, then **K** has amalgamation property.

Existentially Closed Structures

Definition 0.6. Let \mathbf{K} be a class of \mathscr{L} -structures. We say that a structure \mathfrak{A} in \mathbf{K} is existentially closed (e.c.) if

for every existential formula $\phi(\bar{x})$ of \mathscr{L} and every tuple \bar{a} in A, if there exists a structure \mathfrak{B} such that $\mathfrak{A} \subseteq \mathfrak{B}$ and $\mathfrak{B} \models \phi(\bar{a})$, then $\mathfrak{A} \models \phi(\bar{a})$.

Theorem 0.5 (Hilbert's Nullstellensatz). If \mathfrak{A} is a algebraically closed field, then a finite system of equalities and inequalities is solvable in an extension field \mathfrak{B} of \mathfrak{A} if and only if it is already solvable in \mathfrak{A} .

Corollary 0.1. Existentially closed fields are exactly algebraically closed fields.

Eklof-Sabbagh's Test

Theorem 0.6. Let \mathbf{K} be a class of \mathscr{L} -structures. If the class of all substructures of structures in \mathbf{K} has amalgamation property, then the class of all existentially closed structures in \mathbf{K} admits quantifier elimination.

Theorem 0.7. A first-order theory T has elimination of quantifiers if and only if T is model complete and T_{\forall} has amalgamation property.

Eklof-Sabbagh's Test (Cont'd)

Example 0.1. Algebraically closed fields have elimination of quantifiers. Justification:

- The class of existentially closed fields is exactly the class of algebraically closed fields.
- The class of substructures of fields is exactly the class of integral domains.
- The class of integral domains has amalgamation property since it is closed under direct product.

Shoenfield's Test I (Submodel Completeness)

Definition 0.7. A first-order theory T is said to be submodel complete if for every substructure \mathfrak{A} of a model of $T, T \cup \Delta_{\mathfrak{A}}$ is a complete theory in language $\mathscr{L}_{\mathfrak{A}}$.

Equivalently the following diagram commutes where \mathfrak{A} is a common substructure of models \mathfrak{B} , \mathfrak{C} and \mathfrak{D} of T, and e is an elementary embedding of \mathfrak{C} over \mathfrak{A} into \mathfrak{D} .

Theorem 0.8 (Shoenfield). A theory T admits elimination of quantifiers if and only if T is submodel complete.

Type

Definition 0.8. Let \mathfrak{A} be a structure and X a subset of domain of \mathfrak{A} . A set $\Phi(x)$ of formulas with parameters of X is called to be a 1-type over X with respect to \mathfrak{A} if there exists an elementary extension \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \Phi(b)$ for some $b \in B$. $\Phi(x)$ is called a complete 1-type if it is maximal w.r.t. the above property.

A complete 1-type over X w.r.t. \mathfrak{A} is all that we can say about a possible element using parameters in X. Such an element may already exist in \mathfrak{A} or only exists in an elementary extension of \mathfrak{A} . **Example 0.2.** Consider the structure $\mathfrak{A} = \langle \mathbb{Q}, \langle \rangle$. Since \mathfrak{A} admits elimination of quantifiers, all 1-types are quantifier-free 1-types. The subset of \mathbb{Q} defined by a 1-type over X ($X \subseteq A$) is a finite union of open intervals or points.

Saturation

Definition 0.9. A \mathscr{L} -structure \mathfrak{A} is said to be λ -saturated if

For any $X \subseteq A$ with $|X| < \lambda$, \mathfrak{A} realizes all types over X with respect to \mathfrak{A} .

We say that \mathfrak{A} is saturated if \mathfrak{A} is |A|-saturated.

Example 0.3. Consider again the structure $\mathfrak{A} = \langle \mathbb{Q}, \langle \rangle$. By the property of denseness, \mathfrak{A} realizes all 1-types over any X of finite cardinality. Hence \mathfrak{A} is saturated.

Shoenfield's Test II

Theorem 0.9. A theory T admits elimination of quantifiers if and only if the following condition is satisfied.

For any models \mathfrak{A} , \mathfrak{B} of T such that $|A| \leq \lambda$ and \mathfrak{B} is λ^+ -saturated, any embedding f of a substructure \mathfrak{A}_0 of \mathfrak{A} into \mathfrak{B} can be extended to an embedding e of \mathfrak{A} into \mathfrak{B} . I.e., the following diagram commutes.

Shoenfield's Test II (Cont'd)

Example 0.4. ACF admits elimination of quantifier.

Let f be an embedding of a substructure \mathfrak{A}_0 of \mathfrak{A} into \mathfrak{B} . Suppose $A_0 \neq A$ and let $a \in A \setminus A_0$. Find corresponding a' in B as follows.

1. The element a is algebraic over A.

Let g be minimal polynomial defining a with coefficients from A_0 . Choose solution a' in B such that g(a') = 0.

2. The element a is transcendental over A. Let $\Phi(x)$ be

 $\{g(x) \neq 0 : g(x) \text{ is a polynomial with coefficients from } A_0.\}$

Choose $a' \in B$ such that $\mathfrak{B} \models \Phi(a')$.

Almost Universal Theories

Theorem 0.10. A theory T is said to be almost universal

if \mathfrak{A} , \mathfrak{B} , \mathfrak{C} are \mathscr{L} -structures such that \mathfrak{B} , \mathfrak{C} are models of T, $\mathfrak{A} \subseteq \mathfrak{C}$ and $\mathfrak{B} \subseteq \mathfrak{C}$, then there exists models \mathfrak{D} , \mathfrak{E} of T such that $\mathfrak{A} \subseteq \mathfrak{D} \subseteq \mathfrak{B}$, $\mathfrak{A} \subseteq \mathfrak{E} \subseteq \mathfrak{C}$ and $(\mathfrak{D}, A) \cong (\mathfrak{E}, A)$.

Lemma 0.2. Universal theories are almost universal.Theorem 0.11. LOR, FEI, ORF are almost universal theories.

Model Completion

Definition 0.10. Let T, T^* be two theories with $T \subseteq T^*$. T^* is said to be model-completion of T if

For any three \mathcal{L} -structures \mathfrak{A} , \mathfrak{B} , \mathfrak{C} such that \mathfrak{B} , \mathfrak{C} are models of T^* , \mathfrak{A} is a model of T and $\mathfrak{A} \subseteq \mathfrak{B}$, $\mathfrak{A} \subseteq \mathfrak{C}$, there exists an elementary extension \mathfrak{D} of \mathfrak{B} such that \mathfrak{C} can be elementarily embedded into \mathfrak{D} over A. I.e, the following diagram commutes.

Robinson's Test

Theorem 0.12. If T is almost universal theory and T^* is the model completion of T, then T^* admits quantifier elimination. **Lemma 0.3.** Each of the following pairs of theories have the model completion relation.

- ACF is the model completion of FEI.
- RCF is the model completion of ORF.
- DeLO is the model completion of LOR.

Corollary 0.2. *ACF*, *RCF* and *DeLO* all admit quantifier elimination.

Existence of *T*-Closure

Definition 0.11. Let T be a theory in \mathscr{L} and \mathfrak{A} be a substructure of a model of T. A structure \mathfrak{C} is said to be a T-closure of \mathfrak{A} if

 \mathfrak{C} is a model of T and \mathfrak{C} can be embedded over \mathfrak{A} into any model \mathfrak{B} of T which extends \mathfrak{A} . In other words, the following diagram commutes.

A theory T is said to have T-closure property if every substructure of a model of T has a T-closure.

Specializability of Selected Elements

Definition 0.12. A theory T is said to have the property of specializability of selected elements if it satisfies the following condition:

If \mathfrak{A} is a model of T and \mathfrak{B} is a proper substructure of \mathfrak{A} , then there are an element $b \in B \setminus A$ and a set $\Phi(x)$ of quantifier-free formulas such that $\mathfrak{B} \models \bigwedge \Phi(b), \Phi(x)$ determines quantifier-free type of b over A and for any finite subset $\Psi(x)$ of $\Phi(x), \mathfrak{A} \models \exists \bigwedge \Psi(x)$.

Dries-Hodges' Test

Definition 0.13. A theory T is said to be 1-model-complete if

For any two models \mathfrak{A} and \mathfrak{B} of T with $\mathfrak{A} \subseteq \mathfrak{B}$, any quantifier-free formula $\varphi(\bar{x}, y)$ of \mathscr{L} and any tuple $\bar{a} \subseteq A$, $\mathfrak{B} \models \exists y \varphi(\bar{a}, y)$ implies $\mathfrak{A} \models \exists y \varphi(\bar{a}, y)$

Theorem 0.13. A theory T admits quantifier elimination if it satisfies either of the following two conditions:

- T has properties of existence of T-closure and specializability of selected elements. (Dries)
- T has T-closure property and is 1-model-completeness. (Hodges)

Dries-Hodges' Test (Cont'd)

Example 0.5. Real closed fields have quantifier elimination. Justification:

Theorem 0.14 (Artin-Schreier). The following properties hold for a real closed field \mathfrak{A} .

- If $f(X) \in A[X]$, and $a, b \in A$ such that a < b and f(a) < f(b), then there exists $c \in A$ such that a < b < c and f(c) = 0.
- If 𝔅 is an ordered subfield of 𝔅, then there exists a smallest real closed field 𝔅 such that 𝔅 ⊆ 𝔅 ⊆ 𝔅. Moreover, if 𝔅' is any real closed field extension of 𝔅, then 𝔅 is embeddable into 𝔅' over 𝔅. (𝔅 is called the real closure of 𝔅 in 𝔅.)

Feferman's Test

Theorem 0.15. Let T be a first-order theory of \mathscr{L} . Let \mathfrak{A} , \mathfrak{B} be models of T and \bar{a} , \bar{b} tuples from \mathfrak{A} , \mathfrak{B} respectively. The following are equivalent.

- 1. T has elimination of quantifiers.
- 2. If $(\mathfrak{A}, \bar{a}) \equiv_0 (\mathfrak{B}, \bar{b})$, then $(\mathfrak{A}, \bar{a}) \Rightarrow_1 (\mathfrak{B}, \bar{b})$.
- 3. If $(\mathfrak{A}, \bar{a}) \equiv_0 (\mathfrak{B}, \bar{b})$, then $(\mathfrak{A}, \bar{a}) \equiv (\mathfrak{B}, \bar{b})$.
- 4. If $(\mathfrak{A}, \bar{a}) \equiv_0 (\mathfrak{B}, \bar{b})$, then (\bar{a}, \bar{b}) is a winning position for player \exists in the game $EF_n[(\mathfrak{A}, \bar{a}), (\mathfrak{B}, \bar{b})]$ for each $n < \omega$.

Feferman's Test (Cont'd)

Example 0.6. The theory of atomless boolean algebra admits quantifier elimination. Justification:

Let \mathfrak{A} , \mathfrak{B} be two models of atomless boolean algebra and $\overline{a} \subseteq A$, $\overline{b} \subseteq B$. Let $\mathfrak{A}_0 = \langle \overline{a} \rangle_{\mathfrak{A}}, \ \mathfrak{B}_0 = \langle \overline{b} \rangle_{\mathfrak{B}}.$

- $(\mathfrak{A}, \bar{a}) \equiv_0 (\mathfrak{B}, \bar{b})$ implies \mathfrak{A}_0 is isomorphic to \mathfrak{B}_0 .
- Assume $f_n : \mathfrak{A}_n \mapsto \mathfrak{B}_n$ is an isomorphism. For any $a \in A \setminus A_n$, find $b \in B \setminus B_n$ such that for every atom $x \in A$

$$(a \cdot x) = 0 \quad \leftrightarrow \quad (b \cdot f(x)) = 0$$
$$((-a) \cdot x) = 0 \quad \leftrightarrow \quad ((-b) \cdot f(x)) = 0$$

Such b can always be found since \mathfrak{B} is atomless.

Feferman's Test (Cont'd)

- Extend f_n to f_{n+1} with a being mapped to b.
 Note that atoms of 𝔄_{n+1} are of forms a ⋅ x or (-a) ⋅ x where x is an atom of 𝔄_n. Moreover, f_{n+1} is a 1-1 mappings from atoms of 𝔅_{n+1} to atoms of 𝔅_{n+1}.
- Let $A_{n+1} = \langle A_n \cup \{a\} \rangle_{\mathfrak{A}}$ and $B_{n+1} = \langle B_n \cup \{b\} \rangle_{\mathfrak{B}}$. Clearly, f_{n+1} is an isomorphism between A_{n+1} and B_{n+1} since any element of \mathfrak{A}_{n+1} (resp. \mathfrak{B}_{n+1}) is a unique sum of disjoint atoms of \mathfrak{A}_{n+1} (resp. \mathfrak{B}_{n+1}).
- (\bar{a}, \bar{b}) is a winning position for player \exists .

More ...

- Term algebras
- Separable boolean rings
- Vector spaces
- Finite fields
- p-adic fields
- Differentially closed fields
- Real fields with exponentiation
- Generic algebraic curves
- ...