A Survey of Quantifier

 Elimination: Syntactic and Semantic ApproachesTing Zhang
Stanford
June 7, 2002

Alfred Tarski

Outline

- Preliminaries
- Basic Theory
- Syntactic Approaches
- Semantic Approaches

Notations

- \mathscr{L} : a first-order language.
- C : an arbitrarily large set of new constants.

The size of C is arbitrarily large so that we never run out of constant symbols to name objects under consideration.

- \mathscr{L}_{C} : the new language augmented by C.
- \mathfrak{A} : a \mathscr{L}-structure with domain A.

We identify A with a set of constants such that each of objects in domain A is named by itself in \mathscr{L}_{A}. Also write $\mathscr{L}_{\mathfrak{A}}$ for \mathscr{L}_{A} when it is clear from the context.

- (\mathfrak{A}, A) : the expansion structure of \mathfrak{A} in language $\mathscr{L}_{\mathfrak{A}}$.

Diagrams

Definition 0.1 (Diagrams). Let \mathfrak{A} and $\mathscr{L}_{\mathfrak{A}}$ as defined above. A digram $\Delta_{\mathfrak{A}}$ is the set of all basic sentences (i.e., atomic sentences or negated atomic sentences) of $\mathscr{L}_{\mathfrak{A}}$ which are true in \mathfrak{A}. Similarly an elementary digram $\Theta_{\mathfrak{A}}$ is the set of all sentences of $\mathscr{L}_{\mathfrak{A}}$ which are true in \mathfrak{A}, i.e., the theory $\operatorname{Th}(\mathfrak{A}, A)$ in language $\mathscr{L}_{\mathfrak{A}}$.

An elementary digram is a complete description of \mathfrak{A} in language $\mathscr{L}_{\mathfrak{A}}$ and diagram is a partial description using only quantifier-free sentences.

Lemma 0.1 (Robinson's diagram Lemma). Let \mathfrak{A} and $\mathscr{L}_{\mathfrak{A}}$ as defined above. Let \mathfrak{B} be a $\mathscr{L}_{\mathfrak{A}}$-structure.

1. If $\mathfrak{B} \models \Delta_{\mathfrak{A}}$, then \mathfrak{A} can be embedded into $\mathfrak{B} \mid \mathscr{L}$.
2. If $\mathfrak{B} \models \Theta_{\mathfrak{A}}$, then \mathfrak{A} can be elementarily embedded into $\mathfrak{B} \mid \mathscr{L}$.

Quantifier Elimination

Definition 0.2 (Quantifier Elimination). A first-order theory T is said to have quantifier elimination if for any formula $\phi(\bar{x})$ there is a quantifier free formula $\psi(\bar{x})$ such that

$$
T \models \forall \bar{x}(\phi(\bar{x}) \leftrightarrow \psi(\bar{x}))
$$

Remark 0.1. Assume \mathscr{L} contains at least one constant symbol or $\phi(\bar{x})$ contains at least one free variable.
Remark 0.2. For any first-order theory T there is a conservative extension T^{\prime} of T such that T^{\prime} has elimination of quantifiers.
Remark 0.3. If T has elimination of quantifiers, then for any model \mathfrak{A} of $T, T h(\mathfrak{A}, A)$ also admits elimination of quantifiers.

Elimination Set

Definition 0.3 (Elimination Set). Let \mathbf{K} be a class of
\mathscr{L}-structures. We say a set Φ of formulas is an elimination set for \mathbf{K} if

```
any formula \phi(\overline{x}) is equivalent (in every structure of K}\mathrm{ ) to
a formula \psi(\overline{x})\mathrm{ which is a boolean combination of formulas}
in \Phi.
```

We say Φ is an elimination set for theory T if Φ is an elimination set for $\operatorname{Mod}(T)$.

Hence T admits quantifier elimination if and only if the set of quantifier-free formulas forms an elimination set of T.

We say a \mathscr{L}-structure \mathfrak{A} has elimination of quantifiers if $T h(\mathfrak{A})$ does.

Elimination Set (Cont'd)

Theorem 0.1. Let Φ be a set of formulas. Suppose that

- every atomic formula or negated atomic formula of \mathscr{L} is in Φ, and
- for every formula $\theta(\bar{x})$ of \mathscr{L} which is of form $\exists y \bigwedge \psi_{i}(\bar{x}, y)$ with ψ in Φ (called primitive formula with respect to Φ), there is a formula $\theta^{*}(\bar{x})$ of \mathscr{L} which
- is a boolean combination of formulas in Φ, and
- is equivalent to θ in every structure in \mathbf{K}.

Then Φ is an elimination set for \mathbf{K}.

Critirion of Elimination Set

Desired properties of an elimination set Φ of a theory T.

1. Φ is reasonably small and nonredundant.
2. Every formula in Φ has straightforward mathematical meaning.
3. There exists an effective procedure to reduce every formula to a boolean combination of formulas in Φ.
4. There exists an effective procedure to decide whether a formula in Φ is provable or refutable from T.

With (1)-(4) T is a complete and decidable theory.

The Point of Quantifier Elimination

- Classification up to elementary equivalence
- Completeness proofs
- Decidability proofs
- Constructive decision procedures
- Description of definable relations
- Description of elementary embeddings

Slogan: "..., the method [of elimination of quantifiers] is extremely valuable when we want to beat a particular theory into the ground." (Chang \& Keisler)

Schema for syntactic approaches

- Reduce formulas to certain normal forms.
- Guess an elimination set Φ.
- Let Ψ be a set of formulas of the form $\exists x \phi$ where ϕ is a boolean combination of formulas in Φ. Find a ranking function rank $: \Psi \rightarrow \mathbb{N}$.
- For every formula ϕ in Ψ find a T-equivalent formula ϕ in Ψ with $\operatorname{rank}(\psi)<\operatorname{rank}(\phi)$.
- Reduce ϕ of rank 0 to a boolean combination of formulas in Φ.

Logical Theories

- Dense linear orders (DeLO)
- Discrete linear orders (DiLO)
- Presburger arithmetic (PA)
- Atomless boolean algebras (ABA)
- Algebraically closed fields (ACF)
- Real closed fields (RCF)

Dense Linear Orderings (DeLO)

Dense linear orders with first and last elements.

- Language: $\mathscr{L}=\{<, 0,1\}$.
- Axioms:
- Axioms of linear orders.
- Axiom of denseness

$$
* \forall x \forall y(x<y \rightarrow \forall z(x<z \wedge z<y))
$$

- Axioms of boundedness.

$$
\begin{aligned}
& * \forall x(x<1 \vee x=1) \\
& * \forall x(0<x \vee x=0)
\end{aligned}
$$

QE of DeLO

Primitive formulas of $D e L O$ are of the form

$$
\exists x\left(\bigwedge_{i<l} t_{i}<x \wedge \bigwedge_{j<m} x<u_{j} \bigwedge_{k<n} x=v_{k}\right)
$$

where t_{i}, u_{j} and v_{k} are terms not involving x.
Without loss of generality assume $n=0$. It suffices to show how to eliminate the quantifier in

$$
\phi(x)=\exists x\left(\bigwedge_{i<l} t_{i}<x \wedge \bigwedge_{j<m} x<u_{j}\right)
$$

Define $\operatorname{rank}(\phi(x))=l+m$.

QE of DeLO (con'd)

1. $l>1$. The formula $\phi(x)$ is equivalent to

$$
\begin{aligned}
& \left(t_{0}<t_{1} \wedge \exists x\left(t_{1}<x \wedge \bigwedge_{1<i<l} t_{i}<x \wedge \bigwedge_{j<m} x<u_{j}\right)\right) \\
& \quad \bigvee\left(\neg t_{0}<t_{1} \wedge \exists x\left(t_{0}<x \wedge \bigwedge_{1<i<l} t_{i}<x \wedge \bigwedge_{j<m} x<u_{j}\right)\right)
\end{aligned}
$$

2. $m>1$. Similar to $l>1$.
3. $l=m=1$. The formula $\phi(x)$ is equivalent to $t_{0}<u_{0}$.
4. $l=0, m=1$. The formula $\phi(x)$ is equivalent to $u_{0} \neq 0$.
5. $l=1, m=0$. The formula $\phi(x)$ is equivalent to $t_{0} \neq 1$.

Discrete Linear Orderings (DiLO)

Discrete linear orders with first and last elements.

- Language: $\mathscr{L}=\{<, S\}$.
- Axioms:
- Axioms of linear orders.
- Axiom of discreteness.

$$
* \forall x \forall y(x<y \leftrightarrow y=S x \vee S x<y))
$$

- Axioms of unboundedness.

$$
\begin{aligned}
& * \forall x \exists y(x=S y) \\
& * \forall x \exists y(S y=x)
\end{aligned}
$$

QE of DiLO

Primitive formulas of $D i L O$ are of the form

$$
\exists x\left(\bigwedge_{i<l} t_{i}<S^{p_{i}} x \wedge \bigwedge_{j<m} S^{q_{j}} x<u_{j} \bigwedge_{k<n} S^{r_{k}} x=v_{k}\right)
$$

where t_{i}, u_{j} and v_{k} are terms with no occurrence of x.
Since $S^{i} x<t \leftrightarrow S^{i+j}<S^{j} t$, by uniforming all terms $S^{i} x$ to $S^{n} x$ and replacing $S^{n} x$ by a new variable y, the primitive formulas of DiLO can be written in the same as those of $D e L O$.

As before it suffices to show how to eliminate the quantifier in

$$
\phi(x)=\exists x\left(\bigwedge_{i<k} t_{i}<x \wedge \bigwedge_{j<l} x<u_{j}\right)
$$

QE of DiLO (Cont'd)

- $k>1$:

$$
\begin{aligned}
& \left(t_{0}<t_{1} \wedge \exists x\left(t_{1}<x \wedge \bigwedge_{1<i<k} t_{i}<x \wedge \bigwedge_{j<l} x<u_{j}\right)\right) \\
& \quad \bigvee\left(\neg t_{0}<t_{1} \wedge \exists x\left(t_{0}<x \wedge \bigwedge_{1<i<k} t_{i}<x \wedge \bigwedge_{j<l} x<u_{j}\right)\right)
\end{aligned}
$$

- $l>1$. Similar to $k>1$.

QE of DiLO (Cont'd)

- $k=l=1$:

$$
\phi(x) \leftrightarrow t_{0}<u_{0} \wedge S t_{0} \neq u_{0}
$$

- $k=0$ or $l=0$:

$$
\phi(x) \leftrightarrow x=x
$$

Remark 0.4. Similar approaches can apply for DeLO, DiLO with all following combinations of conditions on existence of first and last elements.

DeLO/DiLO $+w / o$ "the first element" $+w / o$ "the last element"

Presburger Arithmetic

- Language: $\mathscr{L}=\{0,1,+,-,<\}$.
- Axioms:
- Axioms of commutative group.
- Axioms of linear orders with respect to group structure:
* $\forall x \forall y(x>0 \wedge y>0 \rightarrow x+y>0)$
* $\forall x \neg(x>0 \wedge-x>0)$
* $\forall x(x=0 \vee x>0 \vee-x>0)$
- Axiom of discrete orders

$$
* \forall x(x>0 \leftrightarrow(x=1 \vee x-1>0))
$$

Presburger Arithmetic (Cont'd)

The theory in \mathscr{L} doesn't admit elimination of quantifiers. E.g.,

$$
\exists y(y+y=x)
$$

is not equivalent to any quantifier-free formulas.

- Extended language: $\mathscr{L}^{\prime}=\{0,1,+,-,<, n \mid, n \nmid$ for each $n>1\}$.
- Definitional axioms: $\forall x(\neg n \mid x \leftrightarrow n \nmid x)$ for each $n>1$.
- Axioms of divisibility
$-\forall x(n \mid x \leftrightarrow \exists y(x=n y))$ for each $n>1$
$-\forall x(n|x \vee n| x+1 \vee \cdots \vee n \mid x+n-1)$ for each $n>1$

QE of PA

- Eliminate negations. Replace $\neg t_{1}=t_{2}$ by $t_{2}<t_{1} \vee t_{1}<t_{2}$. Replace $\neg\left(t_{1}<t_{2}\right)$ by $t_{2}<t_{1} \vee t_{1}=t_{2}$. And replace $\neg n \mid x$ by $n \nmid x$ and $\neg n \nmid x$ by $n \mid x$.
Atomic formulas are in the following forms

$$
a x<t, u<b x, e \mid c x+v, f \nmid d x+w
$$

where t, u, v and w are terms not involving x and a, b, c, d, e, f are positive integers. It suffices to show to how to eliminate quantifiers of $\exists x \varphi(x)$ with $\varphi(x)$ be a positive boolean combination of atomic formulas of the above form.

$$
\exists x \varphi(x)=\exists x \mathcal{B}^{+}\left(a_{i} x<t_{i}, u_{j}<b_{j} x, e_{k} \mid c_{k} x+v_{k}, f_{l} \nmid d_{l} x+w_{l}\right)
$$

QE of PA (Cont'd)

- Unify the coefficient of x. Let n be the LCM of all coefficients of x in $\phi(x)$. Raise the coefficient of x to n by multiplying appropriate factors. Observe that

$$
\exists x \phi(x) \leftrightarrow \exists x \phi^{\prime}(n x)
$$

where ϕ^{\prime} is obtained from ϕ by multiplying appropriate factors to terms.

- Eliminate the coefficient of x. Use the fact that

$$
\exists x \phi(n x) \leftrightarrow \exists x(\phi(x) \wedge n \mid x)
$$

QE of PA (Cont'd)

- Instantiate x with all combinations.
δ : the L.C.M. of all e, f in $\phi(x)$.
$\varphi_{-\infty}(x)$: the formula obtained from $\varphi(x)$ with formulas of form $x<t$ replaced by true and formulas of form $u<x$ replaced by false.

The formula $\exists x \phi(x)$ is equivalent to

$$
\bigvee_{i=1}^{\delta} \varphi_{-\infty}(i) \vee \bigvee_{i=1}^{\delta} \bigvee_{u_{j}} \varphi\left(u_{j}+i\right)
$$

QE of PA (Cont'd)

- Example

$$
\exists x \varphi(x)=\exists x F(3 x<y+2,2 y+1<5 x, z<2 x, 2 \nmid 3 x)
$$

where F is a positive boolean function.

- Normalization

$$
\begin{aligned}
& \exists x \varphi(x) \\
& \leftrightarrow \quad \exists x F(30 x<10 y+20,12 y+6<30 x, \\
&15 z<30 x, 20 \nmid 30 x) \\
& \leftrightarrow \quad \exists x\left(F^{\prime}(x<10 y+20,12 y+6<x,\right. \\
&15 z<x, 20 \nmid x) \wedge 30 \mid x)
\end{aligned}
$$

QE of PA (Cont'd)

- Instantiation

$$
\begin{aligned}
& \left.\bigvee_{i=1}^{30} F^{\prime} \text { (true, false, false, } 20 \nmid i, 30 \mid i\right) \vee \\
& \bigvee_{i=1}^{30}\left(F^{\prime}(12 y+6+i<10 y+20,12 y+6<12 y+6+i\right. \\
& 15 z<12 y+6+i, 20 \nmid 12 y+6+i, 30 \mid 12 y+6+i) \\
& \wedge F^{\prime}(15 z+i<10 y+20,12 y+6<15 z+i \\
& 15 z<15 z+i, 20 \nmid 15 z+i, 30 \mid 15 z+i))
\end{aligned}
$$

Atomless Boolean Algebra

- Language: $\mathscr{L}=\{0,1,+, \cdot,-,<\}$.
- Axioms:
- Axioms of boolean algebra.
- Axioms of dense partial ordering:

$$
\text { * } \begin{aligned}
& \forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y)), \text { or equivalently } \\
& \forall x(0<x \rightarrow \exists z(0<z \wedge z<x))
\end{aligned}
$$

- Example

$$
\mathcal{A}=\left\langle\mathbb{Q}^{*}, \cup, \cap, \backslash, \emptyset, \mathbb{Q}^{+}\right\rangle
$$

where \mathbb{Q}^{+}are non-negative rational numbers and \mathbb{Q}^{*} is the set of finite unions of intervals of the form $[a, b)$ with $a, b \in \mathbb{Q}^{+}$.

QE of ABA

- Eliminate symbol $<$.

$$
x<y \leftrightarrow x \cdot y=y \wedge x \neq y
$$

- Normalize equalities and inequalities.

$$
\begin{gathered}
t_{1}=t_{2} \leftrightarrow t_{1} \cdot\left(-t_{2}\right)=0 \wedge\left(-t_{1}\right) \cdot t_{2}=0 \\
t_{1} \neq t_{2} \leftrightarrow t_{1} \cdot\left(-t_{2}\right) \neq 0 \vee\left(-t_{1}\right) \cdot t_{2} \neq 0 \\
t_{1}+t_{2}=0 \leftrightarrow t_{1}=0 \wedge t_{2}=0 \\
t_{1}+t_{2} \neq 0 \leftrightarrow t_{1} \neq 0 \vee t_{2} \neq 0
\end{gathered}
$$

QE of ABA (Cont'd)

- Primitive formulas are in the following form:

$$
\exists x \varphi(x)=\exists x\left(f(x)=0 \wedge \bigwedge_{i} g_{i}(x) \neq 0\right)
$$

Theorem 0.2. Let $f_{x}(a)$ denote the formula obtained by replacing all occurrence of x in f by a.

- for boolean algebra

$$
\begin{aligned}
& \exists x(f(x)=0 \wedge g(x) \neq 0) \leftrightarrow \\
& \quad f_{x}(0) \cdot f_{x}(1)=0 \wedge\left(-f_{x}(1)\right) \cdot g_{x}(1)+\left(-f_{x}(0)\right) \cdot g_{x}(0) \neq 0
\end{aligned}
$$

- for atomless boolean algebra

$$
\exists x\left(f(x)=0 \wedge \bigwedge_{i} g_{i}(x) \neq 0\right) \leftrightarrow \bigwedge \exists x\left(f(x)=0 \wedge g_{i}(x) \neq 0\right)
$$

Algebraically Closed Fields

- Language: $\mathscr{L}=\{0,1,+,-, \cdot\}$.
- Axioms:
- Axioms of fields.
- Axioms of algebraic closure.
for all $n \geq 0$,

$$
\forall x_{0} \cdots \forall x_{n} \exists y\left(x_{n} \cdot y^{n}+\cdots+x_{1} \cdot y+x_{0}=0\right)
$$

QE of ACF

The primitive formulas of ACF are of the form

$$
\exists x\left(\bigwedge_{i<m} t_{i}=0 \wedge \bigwedge_{j<n} u_{j} \neq 0\right)
$$

Note that $u \neq 0$ is equivalent to

$$
\exists z(z \cdot u-1=0)
$$

So it suffices to show how to eliminate the quantifier in

$$
\varphi(x)=\exists x\left(\bigwedge_{i<m} t_{i}=0\right)
$$

QE of ACF (Cont'd)

- $m=1 . \varphi(x)$ is equivalent to $0=0$.
- $m>1$. Let the term of the highest degree in t_{i} be $a_{i} x^{n_{i}}$. Define $\operatorname{rank}(\phi(x))=\sum_{i=0}^{m} n_{i}$. Assume that $n_{0} \geq n_{1}$. Let

$$
t_{0}^{\prime}=a_{1} t_{0}-a_{0} x^{n_{0}-n_{1}} t_{1} \text { and } t_{1}^{\prime}=t_{1}-a_{1} x^{n_{1}}
$$

The formula $\varphi(x)$ is equivalent to (by Euclidean algorithm)

$$
\begin{aligned}
& \left(a_{1}=0 \wedge \exists x\left(t_{0}=0 \wedge t_{1}^{\prime}=0 \wedge \bigwedge_{1<i<m} t_{i}=0\right)\right) \\
& \bigvee\left(a_{1} \neq 0 \wedge \exists x\left(t_{0}^{\prime}=0 \wedge t_{1}=0 \wedge \bigwedge_{1<i<m} t_{i}=0\right)\right)
\end{aligned}
$$

Note that $\operatorname{deg}\left(t_{0}^{\prime}\right)<\operatorname{deg}\left(t_{0}\right)$ and $\operatorname{deg}\left(t_{1}^{\prime}\right)<\operatorname{deg}\left(t_{1}\right)$, i.e., the rank is decreasing.

QE of ACF (Cont'd)

- Example

$$
\begin{aligned}
\varphi(x)= & \exists x\left(6 x^{2}+3 x+10=0 \wedge 3 x+1=0\right) \\
\leftrightarrow & \left(3=0 \wedge \exists x\left(6 x^{2}+3 x+10=0 \wedge 1=0\right)\right) \\
& \bigvee(3 \neq 0 \wedge \exists x(x+10=0 \wedge 3 x+1=0)) \\
\leftrightarrow & 3 \neq 0 \wedge((3=0 \wedge \exists x(x+10=0 \wedge 1=0)) \\
& \bigvee(3 \neq 0 \wedge \exists x(29=0 \wedge 3 x+1=0))) \\
& \leftrightarrow \\
& 3 \neq 0 \wedge 29=0 \wedge \exists x(3 x+1=0) \\
\leftrightarrow & 29=0
\end{aligned}
$$

Real Closed Fields

- Language: $\mathscr{L}=\{0,1,+,-, \cdot,<\}$.
- Axioms:
- Axioms of ordered fields.
* Axioms of fields.
* Axioms of linear orders.
* $\forall x \forall y \forall z(x<y \rightarrow x+z<y+z)$
* $\forall x \forall y \forall z(x<y \wedge 0<z \rightarrow x \cdot z<y \cdot z)$
- Axioms of real closure.
* $\forall x\left(0<x \rightarrow \exists y\left(y^{2}=x\right)\right)$
* for all odd $n>0$

$$
\forall x_{0} \cdots \forall x_{n} \exists y\left(x_{n} \cdot y^{n}+\cdots+x_{1} \cdot y+x_{0}=0\right)
$$

QE of RCF

- Normalization. Let $\varphi\left(y_{1}, \ldots, y_{m}\right)$ be a formula with y_{1}, \ldots, y_{m} free. The formula φ can be written in the following prenex form

$$
Q_{1} x_{1}, \ldots, Q_{n} x_{n} \psi\left(y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\exists, \forall\}$ and ψ is a boolean combination of polynomial equalities and inequalities of the following two forms:

$$
\begin{aligned}
& f_{i}\left(y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}\right)=0 \\
& f_{i}\left(y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}\right)>0
\end{aligned}
$$

Let \mathcal{F} denote all polynomials which occur in ψ.

QE of RCF (Cont'd)

- Cylindrical algebraic decomposition. Construct a sequence of finite partitions $\Pi_{1}, \ldots, \Pi_{m+n}$ with the following properties.
- Each Π_{i} is a finite partition of \mathbb{R}^{i}. The elements in Π_{i} are called i-dimensional "cells".
- Π_{i+1} is a refinement of $\Pi_{i} \times \mathbb{R}$ in the sense that the cells of Π_{i} are exactly projections of cells of Π_{i+1} and for each cell C of Π_{i} we can effectively construct the stack of cells C_{i+1} of Π_{i+1} which partition $C \times \mathbb{R}$.

QE of RCF (Cont'd)

- Cylindrical algebraic decomposition (Cont'd).
- Each cell C in Π_{m} is described by a quantifier free formula $\delta_{C}\left(y_{1}, \ldots, y_{m}\right)$.
- For each cell C in Π_{m+n}, \mathcal{F} is sign invariant and there is a sample point α_{C} which is described by a quantifier free formula.
- Complexity

$$
(|\mathcal{F}| \cdot \operatorname{deg}(\mathcal{F}))^{2^{2(m+n)}}
$$

where $|\mathcal{F}|$ is the number of polynomials in \mathcal{F} and $\operatorname{deg}(\mathcal{F})$ is the maximum degree of any polynomial in \mathcal{F}.

QE of RCF (Cont'd)

- Construct decision trees from partitions $\Pi_{m+1}, \ldots, \Pi_{m+n}$.

For each cell C in \mathbb{R}^{m} build a decision tree T_{C} as follows.

- The tree is of depth n with the root C at depth 0 .
- If C is a node at depth i, its children are all cells of Π_{m+i+1} which are cylindrical over C.
- If Q_{i} is \forall (resp. \exists) then all nodes at depth $i-1$ is conjunctive (resp. disjunctive).
- Let the valuation of T_{C} be $\theta_{C}\left(y_{1}, \ldots, y_{m}\right)$. Then formula $\varphi\left(y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}\right)$ is equivalent to

$$
\bigvee_{C \in \Pi_{m}} \delta_{C}\left(y_{1}, \ldots, y_{m}\right) \wedge \theta_{C}\left(y_{1}, \ldots, y_{m}\right)
$$

QE of RCF (Cont'd)

Example

$$
(\exists x)(\forall y)\left(y^{2}-x>0\right)
$$

CAD of $\left\{y^{2}-x\right\}$:

QE of RCF (Cont'd)

Sample points for the CAD of $\left\{y^{2}-x\right\}$ are as follows:

$$
\{(-1,0)\},\left\{\begin{array}{c}
(0,1) \\
(0,0) \\
(0,-1)
\end{array}\right\},\left\{\begin{array}{c}
(1,2) \\
(1,1) \\
(1,1 / 2) \\
(1,0) \\
(1,-1 / 2) \\
(1,-1) \\
(1,-2)
\end{array}\right\}
$$

QE of RCF (Cont'd)

The equivalent quantifier-free sentence is

$$
\begin{array}{ll}
& (0-(-1)>0) \\
\vee & ((1-0>0) \wedge(0-0>0) \wedge(1-0>0)) \\
\vee & ((4-1>0) \wedge(1-1>0) \wedge(1 / 4-1>0) \\
& (0-1>0) \wedge(1 / 4-1>0) \wedge(1-1>0) \wedge(4-1>0))
\end{array}
$$

which is true.

A Bit of History on RCF

- Artin \& Schreier [1927]
- Tarski [1948, 1951], Seidenberg [1954]
- Lojasiewicz [1964, 1965]
- Fischer \& Rabin [1974]
- Collins [1975], Monk \& Solovay [1972]
- Grigor'ev [1988], Renegar [1992]
- Basu, Pollack \& Roy [1996], Basu [1999]

Model Completeness

Definition 0.4. A first-order theory T is said to be model complete if for every model \mathfrak{A} of $T, T \cup \Delta_{\mathfrak{A}}$ is a complete theory in language $\mathscr{L}_{\mathfrak{A}}$.

Theorem 0.3 (Robinson). A first-order theory T is model complete if and only if every formula is equivalent (modulo T) to an existential formula.
Remark 0.5. Completeness and model completeness are two different properties of a theory. Generally neither one implies the other. The theory $T h(\mathfrak{N})$ of Peano arithmetic is a complete theory, but obviously it is not model complete. The theory of algebraically closed field is model complete, but not complete.

Amalgamation Property

Definition 0.5. Let \mathbf{K} be a class of \mathscr{L}-structures. We say that \mathbf{K} has amalgamation property if the following property holds:

If $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ are in \mathbf{K} and $e: \mathfrak{A} \mapsto \mathfrak{B}$ and $f: \mathfrak{A} \mapsto \mathfrak{C}$ are embeddings, then there exists \mathfrak{D} in \mathbf{K} and embeddings $g: \mathfrak{B} \mapsto \mathfrak{D}$ and $h: \mathfrak{C} \mapsto \mathfrak{D}$ such that $e \circ g=f \circ h$, i.e., the following diagram commutes.

Theorem 0.4. If \mathbf{K} is closed under direct product, then \mathbf{K} has amalgamation property.

Existentially Closed Structures

Definition 0.6. Let \mathbf{K} be a class of \mathscr{L}-structures. We say that a structure \mathfrak{A} in \mathbf{K} is existentially closed (e.c.) if for every existential formula $\phi(\bar{x})$ of \mathscr{L} and every tuple \bar{a} in A, if there exists a structure \mathfrak{B} such that $\mathfrak{A} \subseteq \mathfrak{B}$ and $\mathfrak{B} \models \phi(\bar{a})$, then $\mathfrak{A} \models \phi(\bar{a})$.
Theorem 0.5 (Hilbert's Nullstellensatz). If \mathfrak{A} is a algebraically closed field, then a finite system of equalities and inequalities is solvable in an extension field \mathfrak{B} of \mathfrak{A} if and only if it is already solvable in \mathfrak{A}.
Corollary 0.1. Existentially closed fields are exactly algebraically closed fields.

Eklof-Sabbagh's Test

Theorem 0.6. Let \mathbf{K} be a class of \mathscr{L}-structures. If the class of all substructures of structures in \mathbf{K} has amalgamation property, then the class of all existentially closed structures in \mathbf{K} admits quantifier elimination.
Theorem 0.7. A first-order theory T has elimination of quantifiers if and only if T is model complete and T_{\forall} has amalgamation property.

Eklof-Sabbagh's Test (Cont'd)

Example 0.1. Algebraically closed fields have elimination of quantifiers. Justification:

- The class of existentially closed fields is exactly the class of algebraically closed fields.
- The class of substructures of fields is exactly the class of integral domains.
- The class of integral domains has amalgamation property since it is closed under direct product.

Shoenfield's Test I (Submodel Completeness)

Definition 0.7. A first-order theory T is said to be submodel complete if for every substructure \mathfrak{A} of a model of $T, T \cup \Delta_{\mathfrak{A}}$ is a complete theory in language $\mathscr{L}_{\mathfrak{A}}$.

Equivalently the following diagram commutes where \mathfrak{A} is a common substructure of models $\mathfrak{B}, \mathfrak{C}$ and \mathfrak{D} of T, and e is an elementary embedding of \mathfrak{C} over \mathfrak{A} into \mathfrak{D}.

Theorem 0.8 (Shoenfield). A theory T admits elimination of quantifiers if and only if T is submodel complete.

Type

Definition 0.8. Let \mathfrak{A} be a structure and X a subset of domain of \mathfrak{A}. A set $\Phi(x)$ of formulas with parameters of X is called to be a 1-type over X with respect to \mathfrak{A} if there exists an elementary extension \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \models \Phi(b)$ for some $b \in B . \Phi(x)$ is called a complete 1-type if it is maximal w.r.t. the above property.

A complete 1-type over X w.r.t. \mathfrak{A} is all that we can say about a possible element using parameters in X. Such an element may already exist in \mathfrak{A} or only exists in an elementary extension of \mathfrak{A}.
Example 0.2. Consider the structure $\mathfrak{A}=\langle\mathbb{Q},<\rangle$. Since \mathfrak{A} admits elimination of quantifiers, all 1-types are quantifier-free 1-types. The subset of \mathbb{Q} defined by a 1-type over $X(X \subseteq A)$ is a finite union of open intervals or points.

Saturation

Definition 0.9. $A \mathscr{L}$-structure \mathfrak{A} is said to be λ-saturated if For any $X \subseteq A$ with $|X|<\lambda, \mathfrak{A}$ realizes all types over X with respect to \mathfrak{A}.

We say that \mathfrak{A} is saturated if \mathfrak{A} is $|A|$-saturated.
Example 0.3. Consider again the structure $\mathfrak{A}=\langle\mathbb{Q},<\rangle$. By the property of denseness, \mathfrak{A} realizes all 1 -types over any X of finite cardinality. Hence \mathfrak{A} is saturated.

Shoenfield's Test II

Theorem 0.9. A theory T admits elimination of quantifiers if and only if the following condition is satisfied.

For any models $\mathfrak{A}, \mathfrak{B}$ of T such that $|A| \leq \lambda$ and \mathfrak{B} is λ^{+}-saturated, any embedding f of a substructure \mathfrak{A}_{0} of \mathfrak{A} into \mathfrak{B} can be extended to an embedding e of \mathfrak{A} into \mathfrak{B}. I.e., the following diagram commutes.

Shoenfield's Test II (Cont'd)

Example 0.4. ACF admits elimination of quantifier.
Let f be an embedding of a substructure \mathfrak{A}_{0} of \mathfrak{A} into \mathfrak{B}. Suppose $A_{0} \neq A$ and let $a \in A \backslash A_{0}$. Find corresponding a^{\prime} in B as follows.

1. The element a is algebraic over A.

Let g be minimal polynomial defining a with coefficients from A_{0}. Choose solution a^{\prime} in B such that $g\left(a^{\prime}\right)=0$.
2. The element a is transcendental over A. Let $\Phi(x)$ be
$\left\{g(x) \neq 0: g(x)\right.$ is a polynomial with coefficients from $\left.A_{0}.\right\}$
Choose $a^{\prime} \in B$ such that $\mathfrak{B} \models \Phi\left(a^{\prime}\right)$.

Almost Universal Theories

Theorem 0.10. A theory T is said to be almost universal
if $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ are \mathscr{L}-structures such that $\mathfrak{B}, \mathfrak{C}$ are models of $T, \mathfrak{A} \subseteq \mathfrak{C}$ and $\mathfrak{B} \subseteq \mathfrak{C}$, then there exists models \mathfrak{D}, \mathfrak{E} of T such that $\mathfrak{A} \subseteq \mathfrak{D} \subseteq \mathfrak{B}, \mathfrak{A} \subseteq \mathfrak{E} \subseteq \mathfrak{C}$ and $(\mathfrak{D}, A) \cong(\mathfrak{E}, A)$.

Lemma 0.2. Universal theories are almost universal. Theorem 0.11. LOR, FEI, ORF are almost universal theories.

Model Completion

Definition 0.10. Let T, T^{*} be two theories with $T \subseteq T^{*} . T^{*}$ is said to be model-completion of T if

For any three \mathscr{L}-structures $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ such that $\mathfrak{B}, \mathfrak{C}$ are models of T^{*}, \mathfrak{A} is a model of T and $\mathfrak{A} \subseteq \mathfrak{B}, \mathfrak{A} \subseteq \mathfrak{C}$, there exists an elementary extension \mathfrak{D} of \mathfrak{B} such that \mathfrak{C} can be elementarily embedded into \mathfrak{D} over A. I.e, the following diagram commutes.

Robinson's Test

Theorem 0.12. If T is almost universal theory and T^{*} is the model completion of T, then T^{*} admits quantifier elimination. Lemma 0.3. Each of the following pairs of theories have the model completion relation.

- ACF is the model completion of FEI.
- RCF is the model completion of ORF.
- DeLO is the model completion of LOR.

Corollary 0.2. $A C F, R C F$ and $D e L O$ all admit quantifier elimination.

Existence of T-Closure

Definition 0.11. Let T be a theory in \mathscr{L} and \mathfrak{A} be a substructure of a model of T. A structure \mathfrak{C} is said to be a T-closure of \mathfrak{A} if
\mathfrak{C} is a model of T and \mathfrak{C} can be embedded over \mathfrak{A} into any model \mathfrak{B} of T which extends \mathfrak{A}. In other words, the following diagram commutes.

A theory T is said to have T-closure property if every substructure of a model of T has a T-closure.

Specializability of Selected Elements

Definition 0.12. A theory T is said to have the property of specializability of selected elements if it satisfies the following condition:

If \mathfrak{A} is a model of T and \mathfrak{B} is a proper substructure of \mathfrak{A}, then there are an element $b \in B \backslash A$ and a set $\Phi(x)$ of quantifier-free formulas such that $\mathfrak{B} \models \bigwedge \Phi(b), \Phi(x)$ determines quantifier-free type of b over A and for any finite subset $\Psi(x)$ of $\Phi(x), \mathfrak{A} \models \exists \bigwedge \Psi(x)$.

Dries-Hodges' Test

Definition 0.13. A theory T is said to be 1-model-complete if
For any two models \mathfrak{A} and \mathfrak{B} of T with $\mathfrak{A} \subseteq \mathfrak{B}$, any quantifier-free formula $\varphi(\bar{x}, y)$ of \mathscr{L} and any tuple $\bar{a} \subseteq A$, $\mathfrak{B} \models \exists y \varphi(\bar{a}, y)$ implies $\mathfrak{A} \models \exists y \varphi(\bar{a}, y)$
Theorem 0.13. A theory T admits quantifier elimination if it satisfies either of the following two conditions:

- T has properties of existence of T-closure and specializability of selected elements. (Dries)
- T has T-closure property and is 1-model-completeness. (Hodges)

Dries-Hodges' Test (Cont'd)

Example 0.5. Real closed fields have quantifier elimination.
Justification:
Theorem 0.14 (Artin-Schreier). The following properties hold for a real closed field \mathfrak{A}.

- If $f(X) \in A[X]$, and $a, b \in A$ such that $a<b$ and $f(a)<f(b)$, then there exists $c \in A$ such that $a<b<c$ and $f(c)=0$.
- If \mathfrak{B} is an ordered subfield of \mathfrak{A}, then there exists a smallest real closed field \mathfrak{C} such that $\mathfrak{B} \subseteq \mathfrak{C} \subseteq \mathfrak{A}$. Moreover, if \mathfrak{A}^{\prime} is any real closed field extension of \mathfrak{B}, then \mathfrak{C} is embeddable into \mathfrak{A}^{\prime} over \mathfrak{B}. (\mathfrak{C} is called the real closure of \mathfrak{B} in \mathfrak{A}.)

Feferman's Test

Theorem 0.15. Let T be a first-order thoery of \mathscr{L}. Let $\mathfrak{A}, \mathfrak{B}$ be models of T and \bar{a}, \bar{b} tuples from $\mathfrak{A}, \mathfrak{B}$ respectively. The following are equivalent.

1. Thas elimination of quantifiers.
2. If $(\mathfrak{A}, \bar{a}) \equiv_{0}(\mathfrak{B}, \bar{b})$, then $(\mathfrak{A}, \bar{a}) \Rightarrow_{1}(\mathfrak{B}, \bar{b})$.
3. If $(\mathfrak{A}, \bar{a}) \equiv_{0}(\mathfrak{B}, \bar{b})$, then $(\mathfrak{A}, \bar{a}) \equiv(\mathfrak{B}, \bar{b})$.
4. If $(\mathfrak{A}, \bar{a}) \equiv_{0}(\mathfrak{B}, \bar{b})$, then (\bar{a}, \bar{b}) is a winning position for player \exists in the game $E F_{n}[(\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b})]$ for each $n<\omega$.

Feferman's Test (Cont'd)

Example 0.6. The theory of atomless boolean algebra admits quantifier elimination. Justification:

Let $\mathfrak{A}, \mathfrak{B}$ be two models of atomless boolean algebra and $\bar{a} \subseteq A$, $\bar{b} \subseteq B$. Let $\mathfrak{A}_{0}=\langle\bar{a}\rangle_{\mathfrak{A}}, \mathfrak{B}_{0}=\langle\bar{b}\rangle_{\mathfrak{B}}$.

- $(\mathfrak{A}, \bar{a}) \equiv_{0}(\mathfrak{B}, \bar{b})$ implies \mathfrak{A}_{0} is isomorphic to \mathfrak{B}_{0}.
- Assume $f_{n}: \mathfrak{A}_{n} \mapsto \mathfrak{B}_{n}$ is an isomorphism. For any $a \in A \backslash A_{n}$, find $b \in B \backslash B_{n}$ such that for every atom $x \in A$

$$
\begin{aligned}
&(a \cdot x)=0 \leftrightarrow \\
&((-a) \cdot x)=0 \leftrightarrow \quad((-b) \cdot f(x))=0 \\
&((-b) \cdot f(x))=0
\end{aligned}
$$

Such b can always be found since \mathfrak{B} is atomless.

Feferman's Test (Cont'd)

- Extend f_{n} to f_{n+1} with a being mapped to b. Note that atoms of \mathfrak{A}_{n+1} are of forms $a \cdot x$ or $(-a) \cdot x$ where x is an atom of \mathfrak{A}_{n}. Moreover, f_{n+1} is a $1-1$ mappings from atoms of \mathfrak{A}_{n+1} to atoms of \mathfrak{B}_{n+1}.
- Let $A_{n+1}=\left\langle A_{n} \cup\{a\}\right\rangle_{\mathfrak{A}}$ and $B_{n+1}=\left\langle B_{n} \cup\{b\}\right\rangle_{\mathfrak{B}}$. Clearly, f_{n+1} is an isomorphism between A_{n+1} and B_{n+1} since any element of \mathfrak{A}_{n+1} (resp. \mathfrak{B}_{n+1}) is a unique sum of disjoint atoms of $\mathfrak{A}_{n+1}\left(\right.$ resp. $\left.\mathfrak{B}_{n+1}\right)$.
- (\bar{a}, \bar{b}) is a winning position for player \exists.

More ...

- Term algebras
- Separable boolean rings
- Vector spaces
- Finite fields
- p -adic fields
- Differentially closed fields
- Real fields with exponentiation
- Generic algebraic curves

