

REPORT ON

BIOPROSPECTING OF INDONESIAN MEDICINAL PLANTS

ALAS PURWO NATIONAL PARK

Center for the Pharmaceutical and Medical Technology

Deputy for Agroindustry and Biotechnology

Agency for the Assessment and Application of Technology

BPPT Building II, 15° Floor Jl. MH Thamrin No. 8 Jakarta 10340 Phone / Fax : + 62 21 - 316 9505

TABLE OF CONTENT

I.	Background	1
II.	Aim	2
III.	Activities Outline	2
IV.	Methodology	3
v.	Results	6
VI.	Conclusion	9
VII.	Plant Specimens Collected from Alas Purwo National Park	10

I. BACKGROUND

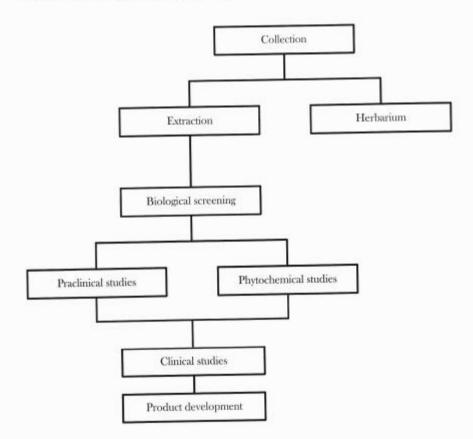
Compounds isolated from plants have been shown to play an important role in drug discovery for the treatment of various diseases. Countries with rich biodiversity are usually also rich in medicinal plants that have been used for many generations. The use of these plants, especially if supported by ethno-pharmaceutical data, would be very useful in the discovery of new drug candidates. Medicinal plants could also be developed into herbal medicine that is relatively safer and less toxic compared to chemically synthesized drugs. The development of global herbal industries is increasing due to a tendency of increase number of self-medication using natural products. In the last two decades the Government of Indonesia is supporting the research and production of Indonesian herbal medicine. However, besides the documented medicinal plants, Indonesia still has large potential bio resources for the health and welfare of mankind that is still unknown and can be explored.

Indonesia is recognized as a major world center for biodiversity with its wide range of natural habitats, rich plant and animal resources and high numbers of island endemics. Indonesia is in the top five on plant diversity with an estimated 38,000 higher plant species; heads the world list in palm diversity with 477 species, 225 of them endemic; and has over half of the 350 species of dipterocarp trees, with 155 being endemic in Kalimantan. Indonesia also ranks behind only Brazil and possibly Columbia in freshwater fish diversity, about 1,400 species. Some species were discovered only in the 20th century.

Many of Indonesia's biological resources are economically important. Several plant species of global and national importance originated in Indonesia and more than 6000 species of plants and animals are utilized on a daily basis by Indonesian citizens, either harvested from the wild or cultivated. Seven thousand species of marina freshwater fish are the major sources of protein for the Indonesian people. Agriculture and fisheries is the mainstay of the nation's subsistence economy. Numerous wild plants and animals are harvested for domestic or commercial consumption including for medicinal uses.

Indonesia with its rich biodiversity also has a large and diverse amount of medicinal plants. However, it is difficult for Indonesian traditional medicine to be accepted into the formal medical system due to lack of information and scientific report to support in the evidence based medicine. It is estimated that more than 1.000 species of the more than 28.000 plants species found in Indonesia can be used for medicinal purposes but currently only around 300 medicinal plants is used in Indonesian traditional medicine and even those medicinal plants has not been intensively studied especially for its chemical components, activities and safety.

Therefore Indonesia biodiversity has a large potential as a source of active compound for medicinal purpose. History has shown that a significant number of modern drug are extracted from natural products or derivatives of compound extracted from the nature. These compounds have shown important pharmacological activities such as antibiotics, anti-diabetes and anti-cholesterol.


II. AIM

The aims of the Bioprospectingof Indonesia Medicinal Plants activities are:

- To collect, identify and characterize the unexplored medicinal plants of Indonesia.
- To explore the potential of Indonesia medicinal plants especially as herbal medicine.
- To develop herbal medicine from Indonesia unexplored medicinal plants.

III. ACTIVITIES OUTLINE

The outline for the activities in Bioprospecting of Indonesia Medicinal Plants is as follows:

IV. METHODOLOGY

The methodology used in Bioprospecting of Indonesia Medicinal Plants is as follows:

A. Collection of Plant Specimens

The collection of plant specimens was conducted in Alas Purwo National Park -East Java. The expeditions were conducted between 12 July - 19 July 2011. During the expedition 150 plant specimens was collected from Alas Purwo National Park.

Alas Purwo National Park is representative of a typical lowland tropical rain forest ecosystem in Java. Peculiar and endemic species of plant that grow in this Park include sawo kecik (Manilkara kauki) and manggong bamboo (Gigantochloa manggong). Among the other plants that can be found here are ketapang (Terminalia cattapa), nyamplung (Calophyllum inophyllum), kepuh (Sterculia foetida), and keben (Barringtonia asiatica).

A local guide accompanied the expedition team and provided with ethnopharmacological information. A minimum of 400 grams of plant specimens were collected along with herbarium specimen, digital images, location using Global Positioning System (GPS) and all related data were noted to support specimen identification and database purposes.

B. Identification and Preparation of Herbarium Specimens

Vernacular name (local name) and general/specific characterization were noted for each specimen on the spot (location where the specimen is collected) before further identification. The specimens were labeled properly using pencil on paper labels and then wrapped using used newspaper. A group of specimens was tighten by plastic rope, put in the big plastic bag and wet thoroughly with ethanol 75-95% before proper and further processing in the Laboratory.

1. Repacking and drying of specimens

After the specimens arrive in the Laboratory, the specimens were treated as follows:

- Repacking by changing the newspaper and cleaning the specimens from any visible contamination such as fungi.
- The specimens were then dried in an oven at 80°C for 2-3 days.

2. Mounting of specimen on duplex paper

The dried specimens were treated as follows:

a. The dried specimens were mounted on to duplex paper using cellophane tape and any important loose part of the specimen is put into an envelope and stuck to the specimen. b. Mounted specimens were collected and wrapped together in a large plastic bag and stored in a -20°C freezer to avoid any contamination.

3. Identification and labeling

Identification was based on

- Taxonomy identification book
- Herbarium collection of Herbarium Bogoriensis
- Online herbarium identification sites

After the specimens have been identified the identification data were written on the herbarium label and stuck to the herbarium specimens.

4. Storage of herbarium specimens

Herbarium specimens have been identified and labeled; they were grouped according to the Family and stored in cardboard boxes with camphor. These cardboard boxes were then stored in special aluminum cupboards in a 16°C room with constant humidity.

C. Extraction of Plant Specimens

The wet samples were weight and directly dried using solar dryer for 2-3 days. The samples were then dried further using bed dryer until the water content is less than 10% (ten percent). For samples that are very wet, the drying process was conducted directly in the bed dryer to minimize the destruction of the samples. The temperature of both dryer was a maximal of 40°C. The dried samples were grind using grinder. The grinded dry samples were weight and stored in sealed plastic bags away from direct sunlight.

The grinded dry samples were extracted using maceration method. The extraction was conducted at 25°C (room temperature) using 2 L beaker glass with mixing for certain period. The solvent used was distillated methanol with proportion of the raw material:solvent = 1:10 w/v. The extraction process was conducted two times. The first extraction was conducted for 24 hours. After the first extraction, the extracts were filtered using Whatman paper to separate the filtrate and the waste/raw materials. The second extraction was conducted like the first one. The filtrated yielded from both extraction processes were then mixed and saturated by evaporation using rotary vapor. The evaporation process was conducted at 40°C, 175 mmHg, and 75 rpm with chilled water at 7-8°C. The evaporation process was stopped when there was no distillate dropped from the condenser. The obtained saturated extracts were then weighted, put into capped dark/grey bottle and stored at 4°C.

D. Biological Activity Assay

The extracts were then screened using three different biological activity assay:

1. Cvtotoxicity Assay (MTT Assay)

The MTT assayis a colorimetric assaysthat is used to assess the viability (cell counting) and the proliferation of cells. It can also be used to determine cytotoxicity of potential medicinal agents and toxic materials, since those agents would stimulate or inhibit cell viability and growth

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is reduced to purpleformazan in living cells. These reductions take place only when reductase enzymes are active, and therefore conversion is often used as a measure of viable (living) cells. A solubilization solution is added to dissolve the insoluble purple formazan product into a colored solution. The absorbance of this colored solution can be quantified by measuring at 570 nm by a spectrophotometer.

Briefly, 1× 10 Raw264.7 cells/well was adhered to 96 well plate for 4 hours at 37 °C, 5% COs. Samples were then added and incubate for a further 24 hours. After 24 hours, MTT was added, incubated for 4 hours then DMSO was added and allowed to react for 10 minutes before measuring the absorbance at 570nm.

2. Anti-Inflammation (NO Inhibition) Assay

Nitric oxide (NO) is one of the inflammatory mediators causing inflammation in many organs. NO is produced from L- arginine by a chemical reaction catalyzed by the enzyme inducible nitric oxide synthase (iNOS) in living systems. After stimulation with bacterial lipopolysaccharide (LPS), many cells including macrophages express the iNOS which is responsible for the production of large amount of NO. The anti inflammatory potential medicinal agents are measured for their inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines.

Briefly, 5× 10 Raw264.7 cells/well was adhered to 96 well plate for 4 hours at 37 °C, 5% COs. Samples were then added and incubate for a further1 hour. After 1 hour, LPS (lipopolysaccharide) was added and incubated for a further 24 hours. After 24 hours, the supernatant was removed and placed into a new multi well plate. Then Griess Reagent Solutionwas added and allowed to react for 10 minutes at RT, protected from lightbefore measuring the absorbance at 540 nm.

3. Insecticidal Activity Assay

The larvicidal activity of the plant extracts was evaluated as per the method recommended by WHO. Batches of 10 third instar larvae were transferred to a 6 well cell culture plate, each containing 10 ml of water. Three replicate were set up for 500 ppm and an equal number of control were set up using tap water. The percent mortality of larvae for each treatment was recorded at 24 hours.

V. RESULTS

A. Preparation of Herbarium

For each plant specimen at least one copy of herbarium, each herbarium was labeled with information regarding plant specimen. The information includes specimen ID, date of collection, collector, location, island, habitat, determinator, family, genus, species and vernacular name.

Example of the herbarium

B. Identification of Plant Specimens

The plant specimens collected from Alas Purwo National Park was identified (Attachment 1).

The identification of the 150 (one hundred and fifty) plant specimens is listed in Table 1 below.

Table 1 Recapitulation of Specimen Identification from Alas Purwo National Park

NO	IDENTIFICATION OF PLANT SPECIMENS	NUMBER OF PLANT SPECIMEN
1	Complete identification (Family, Genus and Species)	149
2	Partial identification (Family and Genus)	1
3	Partial identification (Family)	0
4	Unidentified	0
	TOTAL	150

The family of all the 150 plant specimens collected has been identified. They belong to 52 different families as listed in Table 2 below.

Table 2 Family of Plant Specimens Collected from Alas Purwo National Park

NO	IDENTIFICATION OF PLANT SPECIMENS	NUMBER OF PLANT SPECIMEN
1.	Acanthaceae	6
2.	Amarillydaceae	1
3.	Anacardiaceae	3
4.	Apocynaceae	7
5.	Arecaceae	5
6.	Asparagaceae	3
7.	Asteraceae	7
8.	Athyriaceae	1
9.	Bignoniaceae	1
10.	Burseraceae	2
11.	Calophyllaceae	1
12.	Clusiaceae	1
13.	Colchicaceae	1
14.	Combretaceae	1
15.	Convolvulaceae	3
16.	Cordiaceae	1
17.	Cyperaceae	2
18.	Dioscoreaceae	1
19.	Dryopteridaceae	1
20.	Ebenaceae	3
21.	Euphorbiaceae	8
22.	Fabaceae	14
23.	Gnetaceae	1
24.	Goodeniaceae	1
25.	Hernandiaceae	1
26.	Lamiaceae	3
27.	Lecythidaceae	3
28.	Lythraceae	1
29.	Malyaceae	8
30.	Marantaceae	1
31.	Meliaceae	4
32.	Moraceae	11
33.	Muntingiaceae	1
34.	Myrtaceae	
35.	Oxalidaceae	

NO	IDENTIFICATION OF PLANT SPECIMENS	NUMBER OF PLANT SPECIMEN
36.	Phyllanthaceae	4
37.	Piperaceae ,	2
38.	Poaceae	2
39.	Primulaceae	1
40.	Pteridaceae	1
41.	Pteridophyta	1
42.	Putranjivaceae	1
43.	Rubiaceae	4
44.	Rutaceae	1
45.	Sapindaceae	4
46.	Sapotaceae	4
47.	Simaurubaceae	1
48.	Solanaceae	1
49.	Ulmaceae	1
50.	Verbenaceae	3
51.	Vitaceae	4
52.	Zingiberaceae	3
	TOTAL	150

C. Biological Activity Assay

The plant specimen collected from Alas Purwo National Park have been extracted and are currently being screened for their biological activity including cytotoxicity, anti inflammatory and insecticidal activity.

VI. CONCLUSION

After the plant specimens were collected, they were identified and extracted. The three different bioassays, namely cytotoxicity assay, anti-inflammation assay and insecticidal activity assay, were used to screen the extracts for potential medicinal plants that can be used as anti-asthma, anti-inflammation, anti-cancer and for insecticidal activity.

Intensive literature and patent review will be conducted on these plant to analyse whether these plants have been used in patented for these indication or used in commercially available products. Reconfirmation on the identification of plants specimens is also crucial using both morphological and molecular method.

If the results from these preliminary studies show that these plants have potential to be developed into products then further preclinical and phytochemical studies will be conducted.

The plant have been identified and extracted and are currently being screened for their biological activity.

VII. PLANT SPECIMENS COLLECTED FROM ALAS PURWO NATIONAL PARK

No	Specimen ID	Vernacular	Scientific Name			
140	Specimen ID	Name	Family	Genus	Species	
1.	PMT 1262	Kedawung	Fabaceae	Parkia	Parkia roxburghii G.Don	
2.	PMT 1263	Kemiri	Euphorbiaceae	Alcurites	Aleurites moluccana (L.) Willd.	
3.	PMT 1264	Sirih Tanah/Rambat	Piperaceae	Piper	Piper sarmentosum Roxb.	
4.	PMT 1265	Sirih cabe	Piperaceae	Piper	Piper retrofractum Vahl.	
5.	PMT 1266	Salam	Myrtaceae	Syzygium	Syzygium polyanthum (Wig ht) Walp.	
6.	PMT 1267		Moraceae	Ficus	Ficus variegata Blume	
7.	PMT 1268		Moraceae	Ficus	Ficus septica Burm, f.	
8.	PMT 1269	Sawo kecik	Sapotaceae	Manilkara	Manilkara kauki (L₄) Dubard	
9.	PMT 1270	Belimbing wuluh	Oxalidaceae	Averrhoa	Averrhoa bilimbii L.	
10.	PMT 1271	Ketangi	Lythraceae	Lagerstroemia	Lagerstroemia speciosa (L.) Pers.	
11.	PMT 1272		Malvaceae	Pterospermum	Pterospermum javanicum Jungh.	
12.	PMT 1273	Suren	Meliaceae	Toona	Toona sureni (Blume) Merr.	
13.	PMT 1274	Cembirit	Apocynaceae	Voacanga	Voacanga grandifolia (Miq.) Rolfe	
14.	PMT 1275	Kanggolasri	Goodeniaceae	Scaevola	Scaevola taccada (Gaertn.) Roxb.	
15.	PMT 1276	Bogem	Lechytidaceae	Barringtonia	Barringtonia asiatica (L.) Kurz	
16.	PMT 1277		Calophyllaceae	Calophyllum	Calophyllum inophyllum L.	
17.	PMT 1278	Borogondolo	Hernandiaceae	Hernandia	Hernandia sonora L.	
18.	PMT 1279	Lampeni	Primulaceae	Ardisia	Ardisia humilis Vahl.	
19.	PMT 1280	Ketapang	Combretaceae	Terminalia	Terminalia catappa L.	
20.	PMT 1281		Vitaceae	Leea	Leea simplicifolia Zoll. & Moritzi	
21.	PMT 1282		Fabaceae	Pongamia	Pongamia pinnata (L.) Pierre	
22.	PMT 1283	8	Sapindaceae	Schleichera	Schleichera oleosa Willd.	
23.	PMT 1284	Beringin	Moraceae	Ficus	Ficus benjamina L.	
24.	PMT 1285	Dadap Cangkring	Fabaceae	Erythrina	Erythrina fusca Lour.	
25.	PMT 1286	Laban	Lamiaceae	Vitex	Vitex glabrata R.Br.	
26.	PMT 1287	Muni	Phyllanthaceae	Antidesma	Antidesma montanum Bl.	
27.	PMT 1288	Kendal	Cordiaceae	Cordia	Cordia obliqua Willd.	

No	C TO	Vernacular					
INO	Specimen ID	Name	Family	Genus	Species		
28.	PMT 1289		Acanthaceae	Hemigraphis	Hemigraphis javanica Bremek		
29,	PMT 1290		Moraceae	Ficus	Ficus virens Aiton		
30.	РМТ 1291		Moraceae	Ficus	Ficus tinctoria G. Forst. subspecies gibbosa (Blume) Corner		
31.	PMT 1292	Johar	Fabaceae	Senna	Senna siamea (Lam.) Irwin & Barneby		
32.	PMT 1293		Asteraceae	Chromolaena	Chromolaena odorata (L.) R.M. King & H. Rob		
33.	PMT 1294	Ketepeng	Fabaceae	Senna	Senna alata (L.) Roxb.		
34.	PMT 1295	Soka hutan	Rubiaceae	Ixora	Ixora paludosa (Bl.) Kurz		
35.	PMT 1296	Paku laut	Pteridophyta	Acrostichum	Acrostichum aureum L.		
36.	PMT 1297		Moraceae	Ficus	Ficus subulata Blume		
37.	PMT 1298	Pakis	Athyriaceae	Diplazium	Diplazium esculentum (Retz.) Sw		
38.	PMT 1299	Jarong	Verbenaceae	Stachytarpheta	Stachytarpheta jamaicensis (L.) Vahl		
39.	PMT 1300		Malvaceae	Urena	Urena lobata L.		
40.	PMT 1301	Kenitu	Sapotaceae	Chrysophyllum	Chrysophyllum cainito L.		
41.	PMT 1302	Cangcang kuda	Malvaceae	Sida	Sida acuta Burm. f.		
42.	PMT 1303	Kelayu	Sapindaceae	Erioglossum	Erioglossum rubiginosum (Roxb.) Blume		
43.	PMT 1304		Vitaceae	Leca	Leea aculeata Blume ex Spreng		
44.	PMT 1305	Kedoya	Meliaceae	Dysoxylum	Dysoxylum gaudichaudianum (A.Juss.) Miq.		
45.	PMT 1306		Apocynaceae	Alstonia	Alstonia spectabilis R.Br.		
46.	PMT 1307		Anacardiaceae	Buchanania	Buchanania arborescens(Blume) Blume		
47.	PMT 1308		Putranjivaceae	Drypetes	Drypetes serrata (Maycock) Krug & Urb.		
48.	PMT 1309		Malvaceae	Hibiscus	Hibiscus tiliaceus L.		
49.	PMT 1310		Vitaceae	Tetrastigma	Tetrastigma laevigatum (Blume) Gagnep		
50.	РМТ 1311		Sapotaceae	Palaquium	Palaquium amboinense Burck		
51.	PMT 1312	Gadung	Dioscoreaceae	Dioscorea	Dioscorea hispida Dennst.		
52.	PMT 1313		Marantaceae	Donax	Donax canniformis (G. Forst) K. Schum.		
53.	PMT 1314	Hangasa/Resah	Zingiberaceae	Amomum	Amomum maximum Roxb		
54.	PMT 1315		Anacardiaceae	Dracontomelon	Dracontomelon dao (Blanco) Merr. & Rolfe		

No	Specimen ID	Vernacular	Scientific Name				
140	specimen ID	name Name	Family Genus Species				
55.	PMT 1316		Lamiaceae .	Leucas	Leucas zeylanica (L.) W.T.Aiton		
56.	PMΓ 1317		Arecaceae	Corypha	Corypha utan Lam.		
57.	PMT 1318		Euphorbiaceae	Cleistanthus	Cleistanthus sumatranus (Miq.) Muell. Arg.		
58.	PMT 1319		Ebenaceae	Diospyros	Diospyros buxifolia (Blume) Hiern		
59.	PMT 1320		Verbenaceae	Lantana	Lantana camara L.		
60.	PMT 1321		Convolvulaceae	Merremia	Merremia mammosa (Lour.) Hallier f.		
61.	PMT 1322	Cembirit	Apocynaceae	Tabernaemonta na	Tabernaemontana sphaerocarpa Blume		
62.	PMT 1323		Apocynaceae	Voacanga	Voacanga globosa (Blanco) Merr.		
63.	PMT 1324	Angkrung	Muntingiaceae	Muntingia	Muntingia calabura L.		
64.	PMT 1325	Jambu air	Myrtaceae	Syzygium	Syzygium aqueum (Burm. f.) Alston		
65.	PMT 1326		Apocynaceae	Hoya	Hoya diversifolia Blume		
66.	PMT 1327		Vitaceae	Cissus	Cissus diffusa (Miq.) Amshoff		
67.	PMT 1328	jambu batu	Myrtaceae	Psidium	Psidium guajava L.		
68.	PMT 1329	Mata buta	Euphorbiacea	Excoecaria	Excoecaria agallocha L.		
69.	PMT 1330	Laban	Euphorbiaceae	Vitex	Vitex paniculata Lam.		
70.	PMT 1331	Kayu kambing/wiyu	Burseraceae	Garuga	Garuga floribunda Decne.		
71.	PMT 1332	Serut	Moraceae	Streblus	Streblus asper Lour.		
72.	PMT 1333	Bendo	Moraceae	Artocarpus	Artocarpus elasticus Reinw. ex Blume		
73.	PMT 1334	Serut berduri	Moraceae	Streblus	Streblus spinosus (Blume) Corner		
74.	PMT 1335	Pangkal buaya	Rutaceae	Zanthoxylum	Zanthoxylum rhetsa DC.		
75.	РМТ 1336		Euphorbiaceae	Mallotus	Mallotus philippensis (Lam.) Müll.Arg.		
76.	PMT 1337	Pule	Apocynaceae	Alstonia	Alstonia scholaris (L.) R.Br		
77.	PMT 1338	Putat	Lechytidaceae	Barringtonia	Barringtonia acutangula subs p. spicata (Blume) Payens		
78.	PMT 1339		Phyllanthaceae	Bridelia	Bridelia tomentosa Blume		
79.	PMT 1340	Semutan	Sapindaceae	Tristiopsis	Tristiopsis acutangula Radlk.		
80.	PMT 1341	Wareng	Verbenaceae	Gmelina	Gmelina elliptica Sm.		
81.	PMT 1342	(Phyllanthaceae	Phyllanthus	Phyllanthus reticulatus Poir.		
82.	PMT 1343		Meliaceae	Azadirachta	Azadiraetha indica A. Juss.		
83.	PMT 1344	Jambe	Arecaceae	Areca	Areca catechu L.		
84.	PMT 1345	Talok	Euphorbiaceae	Mallotus	Mallotus paniculatus (Lmk) M.A. var. paniculatus		

No	Carrieron TO	Vernacular Vernacular		Scientific Name		
	Specimen ID	Name	Family	Genus	Species	
85.	PMT 1346	jabon	Rubiaceae	Nauclea	Nauclea obtusa Blume	
86.	PMT 1347		Clusiaceae	Garcinia	Garcinia dulcis (Roxb.) Kurz	
87.	PMT 1348		Moraceae	Ficus	Ficus racemosa L.	
88.	PMT 1349	Glintungan	Bignoniaceae	Bischofia	Bischofia javanica Blume	
89.	PMT 1350	Timoho	Malvaceae	Kleinhovia	Kleinhovia hospita L.	
90.	PMT 1351		Ebenaceae	Diospyros	Diospyros cauliflora Blume	
91.	PMT 1352		Asteraceae	Elephantopus	Elephantopus scaber L.	
92.	PMT 1353	Besole	Lecythidaceae	Chydenanthus	Chydenanthus excelsus (Blume) Miers.	
93.	PMT 1354	Asem Jawa	Fabaceae	Tamarindus	Tamarindus indica L.	
94.	PMT 1355		Burseraceae	Protium	Protium javanicum Burm. f.	
95.	PMT 1356	Ribandil (Duri Bandil)	Simaurubaceae	Harrisonia	Harrisonia perforata (Blanco) Merr.	
96.	PMT 1357		Poaceae	Dinochloa	Dinochloa scandens (Blume ex Nees) Kuntze	
97.	PMT 1358	Wuwu	Colchicaceae	Gloriosa	Gloriosa superba L.	
98.	PMT 1359		Arecaceae	Caryota	Caryota mitis Lour.	
99.	PMT 1360		Asteraceae	Blumea	Blumea lacera (Burm. f.) DC	
100.	PMT 1361	Paku Jajalokan	Dryopteridaceae	Tectaria	Tectaria zeylanica (Houtt.) Sledge	
101.	PMT 1362	Patian	Euphorbiaceae	Euphorbia	Euphorbia hirta L.	
102.	PMT 1363	Gempur batu	Rubiaceae	Spermacoce	Spermacoce alata Aubl.	
103.	PMT 1364	Gandarusa	Achanthaceae	Justicia	Justicia gendarussa Burm. f.	
104.	PMT 1365	1	Fabaceae	Entada	Entada phaseoloides (L.) Merr.	
105.	PMT 1366		Fabaceae	Cassia	Cassia fistula L.	
106.	PMT 1367	Gondang hijau	Moraceae	Ficus	Ficus racemosa L.	
107.	PMT 1368	Huni	Phyllanthaceae	Antidesma	Antidesma ghaesembila Gaertn.	
108.	PMT 1369	Kacangan	Fabaceae	Uraria	Uraria lagopodoides (L.) DC.	
109.	PMT 1370		Solanaceae	Solanum	Solanum donianum Walp.	
110.	PMT 1371		Asteraceae	Struchium	Struchium sparganophorum (L.) Kuntze	
111.	PMT 1372		Asteraceae	Sphagneticola	Sphagneticola trilobata (L.) Pruski	
112.	PMT 1373		Acanthaceae	Ruellia	Ruellia tuberosa L.	
113.	PMT 1374	Lempuyang	Zingiberaceae	Etlingera	Etlingera coccinea (Blume) S.Sakai & Nagam.	
114.	PMT 1375		Arecaceae	Licuala	Licuala spinosa Wurmb	
115.	PMT 1376		Arecaceae	Livistona	Livistona rotundifolia (Lam.) Mart	

No	Specimen ID		n ID Vernacular				
0.00			Name	Name Family Genus		Species	
116.	PMT 1	377		Asparagaceae,	Dracaena	Dracaena elliptica Thunb. & Dalm.	
117.	PMT 1	378	Honje	Zingiberaceae	Hornstedtia	Hornstedtia sp.	
118.	PMT 1	379		Asparagaceae	Dracaena	Dracaena reflexa var. salicifolia (Regel) Baker	
119.	PMT 1	380		Acanthaceae	Acanthus	Acanthus ilicifolius L.	
120.	PMT 1	381		Cyperaceae	Schoenoplectiell a	Schoenoplectiella lateriflora (J.F.Gmel.) Lye.	
121.	PMT 1	382		Sapindaceae	Harpullia	Harpullia arborea (Blanco) Radlk.	
122.	PMT 1	383		Euphorbiacea	Aleurites	Aleurites moluccana (L.) Willd.	
123.	PMT 1	384		Poaceae	Schizostachyum	Schizostachyum iraten Steud.	
124.	PMT 1	385		Anacardiaceae	Mangifera	Mangifera indica L.	
125.	PMT 1	386	Beluntas	Asteraceae	Pluchea	Pluchea indica (L.) Less.	
126.	PMT 1	387		Asteraceae	Sphaeranthus	Sphaeranthus africanus L.	
127.	PMT 1	388		Pteridaceae	Acrostichum	Acrostichum speciosum (Fee) C. Presl.	
128.	PMT 13	389		Acanthaceae	Hygrophila	Hygrophila erecta (Burm.f.) Hochr.	
129.	PMT 13	390	Jati Pasir	Rubiaceae	Guettarda	Guettarda speciosa L.	
130.	PMT 13	391		Ebenaceae	Diospyros	Diospyros maritima Blume	
31.	РМТ 13	392	Carang Purut	Sapotaceae	Palaquium	Palaquium amboinense Burck.	
32.	PMT 13	393	Walangan	Malvaceae	Pterospermum	Pterospermum diversifolium Blume	
33.	PMT 13	394	Melinjo	Gnetaceae	Gnetum	Gnetum gnemon L.	
34.	PMT 13	39.5	Waru Laut	Malvaceae	Thespesia	Thespesia populnea (L.) Sol. ex Correa	
35.	PMT 13	396		Fabaceae	Cynometra	Cynometra cauliflora L.	
36.	PMT 13	397		Meliaceae	Xylocarpus	Xylocarpus granatum Koen.	
37.	PMT 13	398		Fabaceae	Caesalpinia	Caesalpinia bonduc (L.) Roxb.	
38.	PMT 18	399	Widuri	Apocynaceae	Calotropis	Calotropis gigantea (L.) Dryand.	
39,	PMT 14	001		Acanthaceae	Avicennia	Avicennia marina (Forssk.) Vierh.	
40.	PMT 14	101		Cyperaceae	Scleria	Scleria lithosperma (L.) Sw.	
41.	PMT 14	102 5	Suji	Asparagaceae	Dracaena	Dracaena angustifolia (Medik.) Roxb.	
42.	PMT 14	103	Bakung	Amarillydaceae	Crinum	Crinum asiaticum L.	
	The second name of the second		0.1	Fabaceae	Erythrina	Fratales becautes	
43.	PMT 14	104	Dedep serep	rabaceae	Erymma	Erythrina hypaphorus Boerl. ex Koord.	

NT-	Specimen ID	Vernacular	Scientific Name			
No	Specimen ID	Name	Family	Genus	Species	
145.	PMT 1406		Convolvulaceae	Merremia	Merremia tridentata (L.) Hallier f.	
146.	PMT 1407		Fabaceae	Desmodium	Desmodium umbellatum (L.) DC.	
147.	PMT 1408		Ulmaceae	Celtis	Celtis wightii Planch.	
148.	PMT 1409		Fabaceae	Abrus	Abrus precatorius L.	
149.	PMT 1410		Lamiaceae	Ocimum	Ocimum basilicum L.	
150.	PMT 1411		Convolvulaceae	Ipomoea	Ipomoea pes-caprae Roth.	