Sodium Correction in Hyponatremia

Meredith C Manning, PharmD Critical Care Clinical Pharmacist Tulane Medical Center

October 30, 2020

Objectives

- Utilize applicable labs, physical exam findings, and patient history to diagnose and classify hyponatremia
- Compare and contrast guideline recommendations for the management of hyponatremia
- Discuss data regarding safety and efficacy of vasopressin receptor antagonists and oral urea
- Design a therapeutic regimen for the management of hypovolemic, hypervolemic, and euvolemic hypotonic hyponatremia

Sodium

- Normal range: 135-145 mEq/L
- Main extracellular cation
- Functions:
 - Extracellular volume and water distribution
 - Membrane potential
 - Active transport

Chessman et al. Pharmacotherapy: a pathophysiologic approach.

Sodium regulation

- Serum sodium is regulated by changes in water balance
 - Increased water → hyponatremia
 - Decreased water \rightarrow hypernatremia
- Processes affecting serum sodium level:
 - Osmoregulation
 - Antidiuretic hormone (ADH); thirst
 - Volume regulation
 - Renin-angiotensin-aldosterone system (RAAS); atrial natriuretic peptide (ANP); ADH

Rennke et al. Renal pathophysiology: the essentials

Sodium regulation

- Osmoregulation
 - Increased plasma osmolality ightarrow increased ADH
 - Decreased plasma osmolality \rightarrow decreased ADH
- Volume regulation
 - Decreased effective circulating volume ightarrow
 - RAAS activation \rightarrow sodium reabsorption
 - ANP release \rightarrow sodium excretion
 - ADH secretion \rightarrow water retention

Hyponatremia

• Na < 135 mEq/L

• Risk factors:

- More common in patients > 30 years old
- Medications
- Low solute/protein diet
- Significant solute-free fluid intake

Chessman et al. Pharmacotherapy: a pathophysiologic approach.

Classification

- Severity
 - Mild: > 125-135 mEq/L
 - Moderate: 115-125 mEq/L
 - Severe: < 115 mEq/L
- Symptoms
 - Mild: attention, gait, and posture impairments
 - Moderate: headache, nausea, vomiting, fatigue, confusion
 - Severe: seizures, respiratory arrest, coma, obtundation

Classification

Duration

- Hyperacute: within the previous few hours
- Acute: within the previous 24 hours
- Subacute: within 24-48 hours
- Chronic: more than 48 hours <u>OR</u> duration unknown

Types of hyponatremia

Verbalis et al. Am J Med. 2013 Oct;126(10):S1-S42

SIAD

- Type of euvolemic hypotonic hyponatremia
- Pathophysiology
 - <u>Increased</u> activity of ADH results in water retention and excretion of concentrated urine
 - Labs: urine osmolality > 100 mOsm/kg, urine sodium > 30 mEq/L
- Management
 - Correction of underlying cause
 - Fluid restriction
 - NaCl ± loop diuretic
 - Oral urea

Sanghvi et al. Am J Kidney Dis. 2007 Oct;50(4):673-80

Beer potomania

- Type of euvolemic hypotonic hyponatremia
- Pathophysiology
 - Fluid intake exceeds kidneys' ability to excrete the extra fluid
 - Poor diet; low sodium intake
 - Decreased activity of ADH
 - Labs: urine osmolality < 100 mOsm/kg, urine sodium < 30 mEq/L
- Management
 - Fluid restriction
 - IV fluids ONLY if symptomatic

Sanghvi et al. Am J Kidney Dis. 2007 Oct;50(4):673-80

2014 European Guidelines diagnostic strategy

Spasovski et al. Intensive Care Med. 2014;40:320-331

2014 European Guidelines diagnostic strategy

Spasovski et al. Intensive Care Med. 2014;40:320-331

<u>Isotonic</u> hyponatremia • Lab value breakdown

- Serum osmolality: ~280 mOsm/kg
- "Pseudohyponatremia"
 - Associated with an outdated lab test used to measure Na
 - Seen in patients with hyperlipidemia or hyperproteinemia

Sterns RH. *N Eng J Med*. 2015;372:55-65 Chessman et al. Pharmacotherapy: a pathophysiologic approach.

<u>lsotonic</u> hyponatremia

- Lab value breakdown
 - Serum osmolality: ~280 mOsm/kg

"Translocational" hyponatremia

- Presence of additional osmoles causes extracellular fluid shift
- Example:
 - Glucose (hyperglycemia)

<u>Hypertonic</u> hyponatremia • Lab value breakdown

- Serum osmolality: > 280 mOsm/kg
- "Translocational" hyponatremia
 - Presence of additional osmoles causes extracellular fluid shift
 - Examples:
 - Glucose (severe hyperglycemia)
 - Mannitol
 - Intravenous immunoglobulin (IVIG)

<u>Hypotonic</u> hyponatremia

• Lab value breakdown

• Serum osmolality: < 280 mOsm/kg

Verbalis et al. Am J Med. 2013 Oct;126(10):S1-S42

<u>Hypovolemic</u> hypotonic hyponatremia

- Lab value breakdown
 - Serum osmolality: < 280 mOsm/kg
 - Urine osmolality: > 450 mOsm/kg
 - Urine sodium: > 30 mEq/L
 - Renal losses
 - Urine sodium: < 30 mEq/L
 - Non-renal losses

<u>Hypovolemic</u> hypotonic hyponatremia

- Etiology
 - Renal losses
 - Diuretics
 - Primary adrenal insufficiency
 - Cerebral salt wasting
 - Kidney disease
 - Non-renal losses
 - Vomiting*
 - Diarrhea
 - Blood loss
 - Sweating
 - Third-spacing

<u>Hypervolemic</u> hypotonic hyponatremia

- Lab value breakdown
 - Serum osmolality: < 280 mOsm/kg
 - Urine osmolality: > 100 mOsm/kg
 - Urine sodium: < 30 mEq/L
- Etiology
 - CHF
 - Cirrhosis
 - Renal failure
 - Pregnancy

Verbalis et al. *Am J Med.* 2013 Oct;126(10):S1-S42 Adrogué et al. *N Eng J Med.* 2000;342:1581-89 <u>Euvolemic</u> hypotonic hyponatremia

• Lab value breakdown

- Serum osmolality: < 280 mOsm/kg
- Urine osmolality: > 100 mOsm/kg
- Urine osmolality: < 100 mOsm/kg

<u>Euvolemic</u> hypotonic hyponatremia

- Lab value breakdown
 - Serum osmolality: < 280 mOsm/kg
 - Urine osmolality: > 100 mOsm/kg
 - Urine sodium: > 30 mEq/L
 - SIAD, secondary adrenal insufficiency, hypothyroidism(?)
 - Urine osmolality: < 100 mOsm/kg
 - Urine sodium: < 30 mEq/L
 - Primary polydipsia, low Na intake, beer potomania

Verbalis et al. *Am J Med.* 2013 Oct;126(10):S1-S42 Adrogué et al. *N Eng J Med.* 2000;342:1581-89 2014 European Guidelines diagnostic strategy

Spasovski et al. Intensive Care Med. 2014;40:320-331

Management

2014 European Guidelines management algorithm

2014 European Guidelines management algorithm

Spasovski et al. Intensive Care Med. 2014;40:320-331

Severe symptoms

- Goal: rapid increase in serum sodium concentration within 1 hour
 - Immediate risk of cerebral edema outweighs risk of ODS
- Guideline recommendations:
 - 100-150 mL of 3% hypertonic saline over 10-20 min
 - *Consider 2 mL/kg in patients who are significantly under- or overweight
 - Repeat boluses 2-3 times every 20-30 min as needed to reach target serum sodium concentration increase of 5 mEq/L within the first hour
- Alternative: sodium bicarbonate ("6% saline")
 - 1 amp (50 mL) of sodium bicarb ≈ 100 mL of 3% saline
 - Osmolarity of 3% saline = 1027 mOsm/L
 - Osmolarity of 8.4% sodium bicarb = 2000 mOsm/L

Spasovski et al. *Intensive Care Med*. 2014;40:320-331 Verbalis et al. *Am J Med*. 2013;126:S1-S42 Bourdeaux & Brown. Neurocrit Care. 2010 Aug;13(1):24-8

Severe symptoms

- Symptomatic improvement after 5 mEq/L increase in serum sodium concentration
 - Stop hypertonic saline infusion
 - Determine etiology of hyponatremia and initiate cause-specific management
 - Limit further serum sodium increase
 - First 24 hours: \leq 10 mEq/L total (including initial 5 mEq/L)
 - First 48 hours: \leq 18 mEq/L total (including initial 5 mEq/L)
- NO symptomatic improvement after 5 mEq/L increase in serum sodium concentration
 - Investigate alternative explanations for symptoms
 - Give hypertonic saline for additional 1 mEq/L increase in serum sodium
 - Do not exceed 10 mEq/L limit in 24 hours
 - If symptoms not improved after 10 mEq/L increase in serum sodium and/or if after reaching serum sodium of 130 mEq/L, hyponatremia unlikely to be the cause of the symptoms

Moderately severe symptoms

- Goals:
 - Prevent further decrease in sodium level
 - Determine etiology of hyponatremia and initiate cause-specific management
- Guideline recommendations for initial management:
 - US: continuous infusion of 3% hypertonic saline at 0.5-2 mL/kg/hr
 - European: 150 mL bolus of 3% hypertonic saline over 20 min x 1
 - *Alternative: sodium bicarbonate

JAMA Internal Medicine

RCT: Risk of Overcorrection in Rapid Intermittent Bolus vs Slow Continuous Infusion for Symptomatic Hyponatremia

POPULATION

80 Men, 98 Women

INTERVENTION

178 Patients randomized

Adults aged >18 y with symptoms of hyponatremia and glucose-corrected serum sodium ≤125 mmol/L

Mean (SD) age: 73.1 (12.2) y

SETTINGS / LOCATIONS

3 General hospitals in the Republic of Korea

87 Rapid intermittent bolus Hypertonic saline, 3%, infusion of 2 mL/kg over 20 min every 6 h O.5-1 mL/kg/h

PRIMARY OUTCOME

Overcorrection at any given period, defined as increase in serum sodium level by >12 mmol/L within 24 h or >18 mmol/L within 48 h

FINDINGS

Both rapid intermittent bolus and slow continuous infusion for treating symptomatic hyponatremia are effective and safe with no difference in overcorrection risk (17.2% vs 24.2%, respectively; absolute risk difference, -6.9% (95% CI, -18.8% to 4.9%); P = .26)

Baek SH, Jo YH, Ahn S, et al. Risk of overcorrection in rapid intermittent bolus vs slow continuous infusion therapies of hypertonic saline for patients with symptomatic hyponatremia: the SALSA randomized clinical trial. *JAMA Intern Med.* Published online October 26, 2020. doi:10.1001/jamainternmed.2020.5519

Baek et al. JAMA Intern Med. Published online October 26, 2020

© AMA

Moderately severe symptoms

- Goals:
 - Prevent further decrease in sodium level
 - Determine etiology of hyponatremia and initiate cause-specific management
- Guideline recommendations for initial management:
 - US: continuous infusion of 3% hypertonic saline at 0.5-2 mL/kg/hr
 - European: 150 mL bolus of 3% hypertonic saline over 20 min x 1
 - *Alternative: sodium bicarbonate
- Rate of correction:
 - Suggest <u>aiming</u> for 5 mEq/L increase in the first 24 hr
 - Suggest <u>limiting</u> to 10 mEq/L increase in the first 24 hr
 - Suggest <u>limiting</u> to 8 mEq/L increase on subsequent days until serum sodium reaches 130 mEq/L

Spasovski et al. *Intensive Care Med*. 2014;40:320-331 Verbalis et al. *Am J Med*. 2013;126:S1-S42 Bourdeaux & Brown. *Neurocrit Care*. 2010 Aug;13(1):24-8

Acute hyponatremia*

*without severe or moderately severe symptoms • Goals:

- Determine etiology of hyponatremia and initiate cause-specific management
- · Prevent further decrease in sodium level

• Guideline recommendations for initial management:

- 150 mL bolus of 3% hypertonic saline over 20 min x 1
 - *Alternative: sodium bicarbonate
- Rate of correction
 - No suggested limitations or aims in regards to rate of correction

Chronic hyponatremia*

*without severe or moderately severe symptoms

- Goals:
 - Determine etiology of hyponatremia and initiate cause-specific management
 - Avoid harm through treatment
- Guideline recommendations:
 - Stop non-essential fluids, medications, and other factors that may contribute to hyponatremia
 - Mild hyponatremia
 - Recommend against treating for the sole purpose of increasing sodium level
 - Moderate or profound hyponatremia**
 - Recommend <u>limiting</u> to 10 mEq/L increase in the first 24 hr
 - Recommend <u>limiting</u> to 8 mEq/L increase every 24 hr thereafter

**weigh risks vs. benefits of correcting based on severity of hyponatremia and underlying diagnosis

Reduced circulating volume

- Unique characteristics:
 - · Deficits in both sodium and water
 - Appropriate ADH secretion \rightarrow simultaneous dilutional hyponatremia
 - Places patients at higher risk for overcorrection of sodium level
- Guideline recommendations:
 - Continuous IV infusion for volume repletion
 - Normal saline or balanced crystalloid
 - 0.5-1.0 mL/kg/hr
 - In the setting of hemodynamic instability
 - Need for rapid fluid resuscitation overrides concern over rapid increase in serum sodium level
 - In the setting of imminent overcorrection
 - If additional fluid resuscitation still needed, suggest changing to glucose solution (i.e. D₅W)

Expanded extracellular fluid

- Guideline recommendations:
 - Expand recommendation against treating for the sole purpose of increasing sodium level to hyponatremia that is moderate
 - Refrained from making any recommendations for profound hyponatremia in this patient population
 - Suggest fluid restriction to avoid worsening fluid overload
 - Recommend <u>against</u> vasopressin receptor antagonists (vaptans)
 - Recommend <u>against</u> demeclocycline or lithium

SIAD

- Guideline recommendations:
 - First line: fluid restriction
 - Second line: increase solute intake
 - Oral urea (0.25-0.50 g/kg per day)
 - Oral sodium chloride + low-dose loop diuretic
 - Recommend <u>against</u> demeclocycline or lithium
 - Regarding vasopressin receptor antagonists (vaptans)
 - In moderate hyponatremia: <u>do not</u> recommend
 - In profound hyponatremia: recommend <u>against</u>

Vasopressin receptor antagonists • Tolvaptan (PO)

- Selective vasopressin V2-receptor blocker
- FDA-approved for euvolemic and hypervolemic hyponatremia
- Conivaptan (IV)
 - Mixed vasopressin V1- and V2-receptor blocker
 - FDA-approved for euvolemic hyponatremia
- Promote excretion of electrolyte-free water in order to increase serum sodium levels
- Included in the US guidelines for SIAD and hypervolemic hyponatremia

Otsuka Pharmaceutical Co., Ltd. 2012 Astellas Pharma US, Inc. 2005 Vasopressin receptor antagonists • Concerns:

- Unable to predict extent of free water excretion
- Samsca[®] (tolvaptan) associated with overly rapid correction of sodium levels (US Boxed Warning)
- Tolvaptan linked to serious hepatic injury (US Boxed Warning)
 - REMS program for Samsca[®] (tolvaptan) in autosomal dominant polycystic kidney disease due to risk of hepatotoxicity
 - Jynarque[®] (tolvaptan) is only available through a REMS program due to risk of serious liver injury
- Cost
- Consistently not recommended or recommended against in the European guidelines

Otsuka Pharmaceutical Co., Ltd. 2012 Astellas Pharma US, Inc. 2005

Oral urea

- Osmotic agent that increases urinary free water excretion and decreases ongoing natriuresis
 - Used for treatment of euvolemic and hypervolemic hyponatremia
- Classified as medical food and Generally Recognized as Safe (GRAS) by the FDA
- Available as ure-Na® powder
 - 15 g USP urea per pouch
 - Should be mixed with water or juice
 - Lemon-lime flavor to improve tolerability
- Significantly less expensive than vasopressor receptor antagonists

Nephcentric LLC. 2020 Soupart et al. *CJASN.* 2012 May;7(5):742-47

Oral urea: efficacy

- Comparison study of urea vs. vasopressin receptor antagonists:
 - 13 patients with chronic SIADH first received a vaptan for 1 year followed by an 8-day holiday period, after which they received oral urea for 1 year
 - Urea demonstrated similar efficacy, with both agents increasing serum sodium levels to ~135 mEq/L
- Retrospective study of urea in the ICU
 - Mild hyponatremia group (n = 50; initial sodium 128 ± 4 mEq/L) received urea
 - Mean increase of 4 mEq/L in the first 24 hours and 7 mEq/L in 48 hours
 - Severe hyponatremia group (n = 35; initial sodium 111 ± 3 mEq/L) received isotonic saline + urea
 - Mean increase of 11 mEq/L in the first 24 hours
 - 2 patients received desmopressin to re-lower sodium
 - No cases of ODS

Soupart et al. *CJASN.* 2012 May;7(5):742-47 Decaux et al. *Crit Care*. 2010;14(5):R184 Oral urea: safety

- Provides "limited and predictable" excretion of free water
 - Less likely to cause sodium overcorrection and ODS
- Data from animal studies indicate that oral urea may actually protect against ODS
 - Rapid correction of hyponatremia with urea compared with lixivaptan or hypertonic saline:
 - Significantly decreased brain microglial activation
 - Significantly reduced changes in blood brain barrier permeability
 - Increased astrocyte viability
 - Reduced brain histological evidence of demyelination 6 days after the beginning of correction of hyponatremia

Nervo et al. *Clin Endocrinol (Oxf)*. 2019 Jun;90(6):842-48 Gankam et al. *Kidney Int.* 2015;87(2):323-31

Oral urea: safety

• Not nephrotoxic or hepatotoxic

- Expect to see isolated increase in BUN levels
 - NOT indicative of kidney function
 - Exogenous urea administration has been shown to be safe even in patients with advanced renal failure
- Metabolism into ammonia
 - Concern that oral urea could trigger hepatic encephalopathy
 - However, given the complexity of the pathogenesis of hepatic encephalopathy, oral urea (and any resultant increase in ammonia) may be considered "probably safe" for many patients with cirrhosis
 - Some studies have successfully used oral urea for hyponatremic cirrhosis with ascites resistant to diuretics, without causing encephalopathy
- Data showing lack of toxicity even in long-term use

Decaux et al. *Crit Care*. 2010;14(5):R184 Johnson et al. *Mayo Clin Proc*. 1972;47(1):21-9 Decaux et al. *Nephron*. 1986;44(4):337-43 Soupart et al. *CJASN*. 2012 May;7(5):742-47

How safe and effective is oral urea for the treatment of hyponatremia in hospitalized patients?

Conclusions In this retrospective review of urea use in the hospital, urea was safe, well-tolerated, and effective for the correction of hyponatremia.

Helbert Rondon-Berrios, Srijan Tandukar, Maria K. Mor, Evan C. Ray, Filitsa H. Bender, Thomas R. Kleyman, and Steven D. Weisbord. *Urea for the Treatment of Hyponatremia.* CJASN doi: 10.2215/CJN.04020318

Rondon-Berrios et al. *CJASN*. 2018 Nov;13(11):1627-1632

Overcorrection

- If increase in serum sodium concentration exceeds 10 mEq/L in the first 24 hours or 8 mEq/L in any subsequent 24 hour period
- Guideline recommendations:
 - Recommend re-lowering serum sodium concentration
 - Recommend stopping active hyponatremia treatment
 - Recommend consulting an expert to assist in determining appropriate next steps and options for re-lowering sodium
 - If appropriate, consider infusion of 10 mL/kg of electrolyte-free water over 1 hour
 - Should include strict monitoring of urine output and fluid balance
 - If appropriate, consider IV desmopressin (DDAVP) 2 mcg
 - Doses not to be repeated more frequently than every 8 hours

Summary of guideline recommendations

Subject	United States Guideline (2013)	European Guideline (2014)
Acute or symptomatic hyponatremia	 Severe symptoms: bolus 3% saline (100 mL over 10 min x 3 prn) 	 Severe symptoms: bolus 3% saline (150 mL over 20 min x 2-3 prn)
	 Moderate symptoms: continuous infusion 3% saline (0.5-2 mL/kg/hr) 	 Moderate symptoms: bolus 3% saline (150 mL over 20 min x 1)
Chronic hyponatremia		
SIAD	 Fluid restriction (1st line) Demeclocycline, urea, or vaptan (2nd line) 	 Fluid restriction (1st line) Urea or loop diuretic + PO NaCl (2nd line) Vaptans: Na < 130: do not recommend Na < 125: recommend against Recommend against lithium and demeclocycline
Hypovolemic hyponatremia	- Isotonic saline	- Isotonic saline or balanced crystalloid
Hypervolemic hyponatremia	 Fluid restriction Vaptans (risk vs. benefit in liver cirrhosis) 	Fluid restrictionRecommend against vaptans

Hoorn & Zietse. JAm Soc Nephrol. 2017;28:1340-1349

Summary of guideline recommendations

Subject	United States Guideline (2013)	European Guideline (2014)
Correction rates	 Minimum: 4-8 mmol/L per day High risk of ODS: 4-6 mmol/L per day 	- Minimum: (none)
	 Limit: 10-12 mmol/L per day High risk of ODS: 8 mmol/L per day 	- Limit: 10 mmol/L per day
Management of overcorrection	 Baseline Na ≥ 120 mmol/L: probably unnecessary 	- Start once limit is exceeded
	 Baseline Na < 120 mmol/L: start re-lowering with electrolyte-free water or desmopressin after correction exceeds 6-8 mmol/L per day 	 Expert consultation to discuss giving electrolyte-free water (e.g. D5W) and/or desmopressin IV

Questions?

Thank you!