RECTANGULAR CONVEXITY

1. Introduction

Among the problems asked by participants at the 1974 meeting in Oberwolfach, about convexity, the following has attracted our attention:

Let \mathscr{F} be a class of (convex) sets in \mathbb{R}^{n}. We say that a set $M \subset \mathbb{R}^{n}$ is \mathscr{F} convex if, for each two distinct points $x, y \in M$, there exists $F \in \mathscr{F}$ such that x, $y \in F$ and $F \subset M$. Study the \mathscr{F}-convexity for remarkable classes \mathscr{F} (Zamfirescu).

For example, the members of \mathscr{F} may be the usual closed segments, and in this case the \mathscr{F}-convexity is nothing else but the classical convexity; the members of \mathscr{F} may be the lines in a vector space and then the \mathscr{F}-convex sets are exactly its linear manifolds (affine subspaces); or the members of \mathscr{F} may be arcs and $\mathscr{\mathscr { F }}$-convexity becomes the usual arcwise connectedness.

The problem of describing the \mathscr{F}-convex sets may be difficult for easily defined classes \mathscr{F}. It is so-in the opinion of the authors--when \mathscr{F} is the class of all 2 -dimensional rectangles in the Euclidean n-space; this particular \mathscr{F} convexity will be called rectangular convexity or, shorter, r-convexity. The present paper deals with r-convexity for $n=2$ and $n=3$.

Noting first that an open set in \mathbb{R}^{n} is r-convex if and only if it is convex, we immediately pass on to the study of closed r-convex sets. We begin with the case $n=2$; in the following statements, we shall say that a subset of \mathbb{R}^{2} is: a strip if it is similar to $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant y \leqslant 1\right\}$; a half-strip if it is similar to $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant x, 0 \leqslant y \leqslant 1\right\}$; extremely circular if all its extreme points lie on a circle.

THEOREM 1. The following sets are r-convex:
(A) every closed unbounded convex set whose asymptotic cone has its angular measure in $[\pi / 2, \pi] \cup\{2 \pi\}$;
(B) the strips and the half-strips;
(C) the compact 2-dimensional convex sets which are centrally symmetric and extremely circular.
We conjecture that there are no other closed r-convex sets in the Euclidean plane; this is supported by the following results:

THEOREM 2. The only non bounded closed r-convex sets in the Euclidean plane are those described in (A) and (B) of Theorem 1.

THEOREM 3. If P is an r-convex polygon, then P is centrally symmetric and extremely circular.

THEOREM 4. If M is a compact r-convex set which is extremely circular, then M is also centrally symmetric.

THEOREM 5. If S is a compact r-convex set which is centrally symmetric, then S is also extremely circular.

The description of all closed r-convex sets in \mathbb{R}^{n} seems to be an even more difficult task. In the bounded case, we can only give several examples: a centrally symmetric extremely spherical (analogue to extremely circular) convex body without ($n-2$)-dimensional faces, a cylinder $K \times[0,1]$ with an ($n-1$)-dimensional compact convex set K as basis, the intersection of two n-dimensional balls. So, one sees that there exist in $\mathbb{R}^{n}(n \geqslant 3) r$-convex sets which are compact but neither centrally symmetric nor extremely spherical.

In the non-bounded case, we have obtained a result concerning the closed r-convex sets in \mathbb{R}^{3}. Its formulation needs two definitions: Let S_{2} be the unit sphere; a closed spherically convex set $A \subset S_{2}$ will be called q-large if there is no open quarter of S_{2} (a component of the complement on S_{2} of the union of two orthogonal great circles) which includes A. The intersection of the asymptotic cone of a non-bounded convex set B with S_{2} will be called asymptotic set of B.

THEOREM 6. Let B be a non-bounded closed strictly convex set in \mathbb{R}^{3} having a strictly convex asymptotic set $A \neq S_{2}$. Then B is r-convex if and only if A is q-large.

It is clear that the strict convexity conditions in the last theorem do not allow us to consider the non-bounded case as solved. However, we are optimistic and believe that Theorem 6 is true without supposing the strict convexity of A; the detailed investigation remains to be done.

We shall use the following notations: d for the Euclidean metric; $a b$ for the segment joining the points $a, b ;\langle a, b\rangle$ for the line through the points a, b.

The following sections present proofs of the above theorems.

2. Rectangular convexity in the plane

Proof of Theorem 1. Let M be one of the sets described in the statement. It is sufficient to show that any two points of the boundary ∂M are contained in a rectangle included in M. This is clear if M is of type (A) or (B). When M is of type (C), let K be its circumscribed circle. If no supporting line of M through a or b is orthogonal to $a b$, then it is easy to find a rectangle having a, b as vertices and contained in M. If there is a supporting line through a or b (say a) which is orthogonal to $a b$, three cases are possible:
(1) a is not on K. Then a lies on a chord of K contained in ∂M, and the symmetry of M implies that $a b$ is the side of a rectangle included in M.
(2) a is on K and is a regular point of ∂M. Then a and b are diametral points of K and, because M has other extremal points of K (symmetrically disposed), $a b$ is the diagonal of a rectangle contained in M.
(3) a is on K and is not a regular point of ∂M. Let L_{1} and L_{2} be the extremal
supporting lines of M through a and let R_{1} (resp. R_{2}) be the ray with endpoint a, orthogonal to L_{1} (resp. L_{2}) and meeting $K \backslash\{a\}$. As b lies between R_{1} and R_{2} on the boundary of M, which is centrally symmetric, it must belong to the image of L_{1} or L_{2} under the central symmetry which preserves M. Hence $a b$ is contained in a rectangle included in M.

Proof of Theorem 2. Let M be a closed and non-bounded r-convex set which contains no line. It is sufficient to show that if the asymptotic cone of M has its angular measure less than $\pi / 2$, then M is a half-strip. We do this using the following notations: B is the boundary of $M ; d_{1}$ and d_{2} are the extremal directions of infinity of M; and L_{1} is the unique supporting line of M which is orthogonal to d_{1}. Then we choose a Cartesian coordinate system as follows: the x-axis is L_{1} and the upper half-plane contains M; the angle between d_{2} and the positive x-axis is at most $\pi / 2$; the origin O belongs to $M \cap L_{1}$ which is contained in the negative x-axis. Now we distinguish two cases.
(1) $B \cap\{x \geqslant 0\}$ and $L_{1} \cap\{x \geqslant 0\}$ are not tangent. Let T be the ray tangent to $B \cap\{x \geqslant 0\}$ at O and $\{O, p\}$ be the intersection of B with the bissectrice of T and the negative x-axis. It is clear that the segment $O p$ cannot be the side of a rectangle contained in M. As M is r-convex, $O p$ is the diagonal of a rectangle R included in M. But M does not meet the sets $\{y<0\}$ and $\{x<x(p), y<y(p)\}$. Hence R does not intersect these sets and there remains just one position for R, namely the rectangle $\{x(p) \leqslant x \leqslant 0,0 \leqslant y \leqslant y(p)\}$. This implies first that the projection ($k, 0$) of p on L_{1} belongs to M, and further that

$$
M \cap\{x \leqslant 0\}=\{k \leqslant x \leqslant 0, y \geqslant 0\} .
$$

(2) $B \cap\{x \geqslant 0\}$ and $L_{1} \cap\{x \geqslant 0\}$ are tangent. Let C be the part of $B \cap\{x \leqslant 0\}$ which is above the line through O, orthogonal to d_{2}. We define a map $f: C \rightarrow B$ as follows: if $c \in C$, the line through O and orthogonal to the line $\langle O, c\rangle$ cuts B in O and in another point, denoted by $f(c)$. Then f is continuous, monotone (with respect to the natural orders along C and B) and, if c tends to infinity on C, then $f(c)$ tends to O on B. So, there is a point c_{0} of C such that, if $y(c)>y\left(c_{0}\right)$, then $0<x(f(c))<-x(c)$, which implies that the midpoint $m(c)$ of $c f(c)$ is in the half-plane $\{x<0\}$ (see Figure 1). For every point c with this property, we make the following construction: first we remark that the circle with centre $m(c)$ passing through c also passes through O and $f(c)$, but does not contain the arc $\overparen{O f(c)}$ of B in its convex hull, because $B \cap\{x \geqslant 0\}$ and L_{1} are tangent. Hence, the smallest circle with centre $m(c)$ surrounding this arc, say S, has O in its interior. Let s be any point of $S \cap \widehat{O f(c)}$ and t be the point of $C \cap\langle m(c), s\rangle$. It is clear that the segment st cannot be the side of a rectangle contained in M. As M is r-convex, st is the diagonal of a rectangle $R \subset M$. But M does not meet the sets $\{y<0\}$ and $\{x<x(t), y<y(t)\}$. Hence R does not intersect these sets, so

Fig. 1
that it has a vertex, say u, in $\{x(t) \leqslant x<x(s), 0 \leqslant y \leqslant y(s)\}$. Now, u belongs to the circle S^{\prime} with diameter $s t$. As the radius of S^{\prime} is larger than that of S, u cannot be in $\{0 \leqslant x \leqslant x(s)\}$. As the centre $\frac{1}{2}(s+t)$ of S^{\prime} is in $\{x<0\}$, u cannot be in $\{x(s+t)<x<0\}$. Hence u is a point of $\{x(t) \leqslant x \leqslant x(s+t)$, $0 \leqslant y \leqslant y(s)\}$, which means that M has points in this set. Finally, let c tend to infinity on C; then s tends to O and u tends to a point $(k, 0)$ of the negative x-axis (it is clear that u cannot tend to the point at infinity of the negative x-axis). For this reason, $x(t)$ has a lower bound, which must be k. As M is closed, this implies that

$$
M \cap\{x \leqslant 0\}=\{k \leqslant x \leqslant 0, y \geqslant 0\} .
$$

In both cases, we find the same conclusion. Transposing d_{1} and d_{2}, we see that M must be a half-strip.

Proof of Theorem 3. Let P be an r-convex polygon. Let p_{1} and p_{1}^{\prime} be the endpoints of a diameter of P and let m be the midpoint of p_{1} and p_{1}^{\prime}. Let K be a circle with centre m and passing through p_{1} and p_{1}^{\prime}. The segment $p_{1} p_{1}^{\prime}$ cannot be the side of a rectangle contained in P, and the other two vertices p_{2} and p_{2}^{\prime} of this rectangle are diametral points of K. If two points of $P \cap K$ are diametral points, then they are vertices of P. It follows that the number of pairs of diametral points of $P \cap K$ is at least two and is finite, say i_{0}. Let $\left\{p_{1}, p_{1}^{\prime}\right\},\left\{p_{2}, p_{2}^{\prime}\right\}, \ldots,\left\{p_{i_{0}}, p_{i_{0}}^{\prime}\right\}$ be these pairs. The edges of P passing through p_{i} or p_{i}^{\prime} are lying in secants of K, so for each point p_{i} (resp. p_{i}^{\prime}), there is a neighbourhood containing no point of P int conv K (int conv K being the interior of the convex hull of K) different from p_{i} (resp. p_{i}^{\prime}). Clearly
$P \supset \operatorname{conv}\left\{p_{1}, \cdot p_{1}^{\prime}, \ldots, p_{i_{0}}, p_{i_{0}}^{\prime}\right\}$, which is centrally symmetric and extremely circular, and it shall be proved that $P=\operatorname{conv}\left\{p_{1}, p_{1}^{\prime},,,,, p_{i_{0}}, p_{i_{0}}^{\prime}\right\}$.

Otherwise, it may be assumed that $p_{1} p_{2}$ is an edge of $\operatorname{conv}\left\{p_{1}, p_{1}^{\prime}, \ldots, p_{i_{0}}, p_{i_{0}}^{\prime}\right\}$, but not an edge of P. Let H (resp. H^{\prime}) be the half-plane determined by the line $\left\langle p_{1}, p_{1}^{\prime}\right\rangle$ and containing p_{2} (resp. p_{2}^{\prime}). Let L be the intersection of H and a supporting line of P in p_{1} such that L contains an edge of P (see Figure 2).

Fig. 2

Similarly, let L^{\prime} be the intersection of H^{\prime} and a supporting line of P in p_{1}^{\prime} such that L^{\prime} contains an edge of P. Then L meets K in p_{1} and in a point q_{0} with $p_{i} \neq q_{0} \neq p_{i}^{\prime}\left(1 \leqslant i \leqslant i_{0}\right)$. Let us choose $q \in L \cap P$ with $q \neq p_{1}$ and sufficiently close to p_{1} that the angle defined by $q p_{1}^{\prime}$ and L^{\prime} is smaller than $\pi / 2$. Then $q p_{1}^{\prime}$ cannot be the side of a rectangle contained in P. As P is r-convex, $q p_{1}^{\prime}$ is the diagonal of a rectangle contained in P, and the other two vertices u and u^{\prime} of this rectangle are diametral points of the circle T with diameter $q p_{1}^{\prime}$. Since $q q_{0}$ and $p_{1}^{\prime} q_{0}$ are perpendicular, T contains q_{0}. Because of the supporting property of L, the open small arc of T between q and q_{0} does not contain any point of P; it follows that, for example, u is contained in the small arc $\overparen{q_{0} p_{1}^{\prime}}$ of T. Hence $u=q_{0}$ or u is a point in the exterior of K. Now $u, u^{\prime} \in P$ and P is compact; thus, if we choose a suitable sequence of points q tending to p_{1}, the associated points u tend to a point $\bar{u} \in P$, and the associated
points u^{\prime} tend to a point $\bar{u}^{\prime} \in P$. Because u and u^{\prime} are diametral points of the circles T tending to K, \bar{u} and \bar{u}^{\prime} are diametral points of K. As $p_{i} \neq q_{0} \neq p_{i}^{\prime}$ ($1 \leqslant i \leqslant i_{0}$) and because each point p_{i} (resp. p_{i}^{\prime}) has a neighbourhood containing no point of P. int conv K different from p_{i} (resp. p_{i}^{\prime}), it follows that $p_{i} \neq \bar{u} \neq p_{i}^{\prime}$. This contradicts the fact that $\left\{p_{1}, p_{1}^{\prime}\right\}, \ldots,\left\{p_{i_{0}}, p_{i_{0}}^{\prime}\right\}$ are all pairs of diametral points of $P \cap K$.

Proof of Theorem 4. Let K be the circle containing the extreme points of M. If a is an extreme point of M, let us choose a point b in $\{x \in M ; d(a, x) \geqslant$ $d(a, y)$ for all $y \in M\}$. Then b is also an extreme point of M and $a b$ cannot be the side of a rectangle included in M. Therefore, $a b$ is a diagonal of a rectangle included in M. Since the other diagonal must be contained in M, the circle with diameter $a b$ must be equal to K. This implies that the set of extreme points of M is centrally symmetric, and the statement is proved.

Proof of Theorem 5. Let S be a compact r-convex set which is centrally symmetric. Let m be the centre of S and let K be the smallest circle such that $S \subset$ conv K; then m is the centre of K and $S \cap K$ contains two diametral points, say p_{1} and p_{1}^{\prime}. The segment $p_{1} p_{1}^{\prime}$ cannot be the side of a rectangle contained in S. As S is r-convex, $p_{1} p_{1}^{\prime}$ is the diagonal of a rectangle contained in S, and the other two vertices p_{2} and p_{2}^{\prime} of this rectangle are diametral points of K, hence $S \cap K$ contains at least two pairs of diametral points. Clearly $S \supset \operatorname{conv}(S \cap K)$, which is centrally symmetric and extremely circular, and it shall be shown that $S=\operatorname{conv}(S \cap K)$.

Otherwise, there exists a ray starting in m and meeting $\partial \operatorname{conv}(S \cap K)$ in a point c and ∂S in a point different from c (where ∂ means the boundary). Thus $c \notin S \cap K$ and it may be assumed that $c \in p_{1} p_{2}$, hence $p_{1} p_{2} \subset$ $\partial \operatorname{conv}(S \cap K)$. It follows that the open small arc of K between p_{1} and p_{2} does not contain any point of S, and that $p_{1} p_{2} \cap \partial S=\left\{p_{1}, p_{2}\right\}$. Let now H (resp. H^{\prime}) be the half-plane determined by the line $\left\langle p_{1}, p_{1}^{\prime}\right\rangle$ and containing p_{2} (resp. p_{2}^{\prime}). Let L be the intersection of H and the supporting line of S in p_{1} for which the angle α between L and $p_{1} p_{1}^{\prime}$ is minimal. Let L^{\prime} be the image of L under the central symmetry defined by m, and let α^{\prime} be the angle between L^{\prime} and $p_{1} p_{1}^{\prime}$. Clearly $\alpha=\alpha^{\prime} \leqslant \pi / 2$. The two cases $\alpha^{\prime}<\pi / 2$ and $\alpha^{\prime}=\pi / 2$ are treated separately.
(1) $\alpha^{\prime}<\pi / 2$: Let $q \in H \cap \partial S, q \neq p_{1}$ be sufficiently close to p_{1} that the angle between $p_{1}^{\prime} q$ and L^{\prime} is smaller than $\pi / 2$. As L^{\prime} is contained in a supporting line of S which does not meet the exterior of $K, p_{1}^{\prime} q$ cannot be the side of a rectangle contained in S. Since S is r-convex, $p_{1}^{\prime} q$ is the diagonal of a rectangle contained in S, and the other two vertices u and u^{\prime} of this rectangle are diametral points of the circle T with diameter $p_{1}^{\prime} q . T$ meets K, in addition to p_{1}^{\prime}, in a point p. Clearly $q \in p p_{1}$. As q and p_{1} are on the boundary of the convex set S, the open small arc of T between q and p does not contain any point of S; the open small arc of T between p_{1}^{\prime} and p is in the exterior of K, hence it too does not contain any point of S. It follows that u or u^{\prime} is equal to p, hence
$p \in S$. Now p_{1} is in the exterior of T, and because $q \notin p_{1} p_{2}, p_{2}$ is in the interior of T, thus p lies in the open small arc of K between p_{1} and p_{2}, in contradiction to the fact that this arc does not contain any point of S.
(2) $\alpha^{\prime}=\alpha=\pi / 2$: Let a_{1} be a point of the boundary curve of S between p_{1} and p_{2} such that the angle β between $a_{1} m$ and $p_{1} m$ is smaller than $\pi / 2$. Let a_{2} be the unique point of $K \cap H^{\prime} \cap\left\langle a_{1}, m\right\rangle$. Let A be the intersection of H^{\prime} and the line bisecting the angle between $p_{1} m$ and $a_{2} m$. Let $W_{1}, W_{2}, W_{3}, W_{4}$ be the cones with vertex m as in Figure 3. Also, $v \in A, v \neq m, v \in \operatorname{int} S$. We choose now a point $z_{0}(v) \in \partial S \cap W_{1}$ with

$$
d\left(z_{0}(v), v\right)=\sup \left\{d(z, v) ; z \in S \cap W_{1}\right\}
$$

From $\alpha=\pi / 2$ it follows that $z_{0}(v) \neq p_{1}$. Let $z_{0}^{\prime}(v) \in \partial S$ be the image of $z_{0}(v)$ under the central symmetry defined by m. The line $\left\langle z_{0}(v), v\right\rangle$ meets ∂S, in addition to $z_{0}(v)$, in a point $z_{1}(v)$. If $m_{1}(v)$ is the midpoint of $z_{0}(v) z_{1}(v)$, then $\left\langle m, m_{1}(v)\right\rangle$ is parallel to $\left\langle z_{0}^{\prime}(v), z_{1}(v)\right\rangle$. Let $\gamma(v)$ be the angle between $z_{1}(v) z_{0}^{\prime}(v)$ and $z_{0}(v) z_{0}^{\prime}(v)$, which is also the angle between $m_{1}(v) m$ and $z_{0}(v) m$. Let now v tend to m.

Fig. 3
As K is the smallest circle such that $S \subset \operatorname{conv} K$, we have $d\left(z_{0}(v), m\right) \leqslant$ $d\left(p_{1}, m\right)$; on the other hand, $d\left(v, p_{1}\right) \leqslant d\left(v, z_{0}(v)\right)$ for all v, hence $d\left(\lim _{v \rightarrow m} z_{0}(v), m\right)=d\left(p_{1}, m\right)$. As the open small arc of K between p_{1} and p_{2} does not contain any point of S, it follows that $\lim _{v \rightarrow m} z_{0}(v)=p_{1}$. Then
$\lim _{v \rightarrow m} z_{0}^{\prime}(v)=p_{1}^{\prime}$ and $\lim _{v \rightarrow m} z_{1}(v)=p_{1}^{\prime}$. Thus, if v tends to m, the line $\left\langle z_{0}^{\prime}(v), z_{1}(v)\right\rangle$ tends to the line containing L^{\prime}, hence $\gamma(v)$ tends to $\alpha^{\prime}=\pi / 2$. Taking into account those limits, we conclude that there is a $\bar{v} \in A$ with $z_{0}(\bar{v}) \neq a_{1}, z_{1}(\bar{v}) \in W_{4}$, and $m_{1}(\bar{v}) \in$ int W_{3}.

From the definition of $z_{0}(v)$, it follows that $z_{0}(\bar{v}) z_{1}(\bar{v})$ cannot be the side of a rectangle contained in S. As S is r-convex, $z_{0}(\bar{v}) z_{1}(\bar{v})$ is the diagonal of a rectangle contained in S, and the other two vertices of this rectangle are diametral points of the circle T with centre $m_{1}(\bar{v})$ and passing through $z_{0}(\bar{v})$ and $z_{1}(\bar{v})$. Because $T \cap\left(W_{1} \cup W_{2} \cup W_{3}\right)$ contains a half-circle, we get the intended contradiction in showing that this are of T contains no point of S except $z_{0}(\bar{v})$.

Because of $m_{1}(\bar{v}) \in \operatorname{int} W_{3}$, we have $\bar{v} \in z_{0}(\bar{v}) m_{1}(\bar{v}), \bar{v} \neq m_{1}(\bar{v})$. Hence it follows from the construction of $z_{0}(v)$ that $T \cap W_{1}$ does not contain a point of S except $z_{0}(\bar{v})$. Furthermore, p_{1} is in the interior of T. As A bisects the angle between $p_{1} m$ and $a_{2} m$, and because of $d\left(p_{1}, m\right)=d\left(m, a_{2}\right)$ and $m_{1}(\bar{v}) \in W_{3}$, we have $d\left(m_{1}(\bar{v}), p_{1}\right) \geqslant d\left(m_{1}(\bar{v}), a_{2}\right)$, thus a_{2} is also in the interior of T. Hence $T \cap\left(W_{2} \cup W_{3}\right)$ is lying in the exterior of K and does not contain a point of S.

3. Rectangular convexity in 3-space

Proof of Theorem 6. 'If': Suppose A is q-large and prove that B is r-convex.
It suffices to prove that for each pair of points $x, y \in \partial B$, there is a rectangle included in B and having x, y as vertices. Let $\xi=(x-y) / d(x, y)$. Since B is strictly convex, $\xi \neq A$. Let Γ_{1}, Γ_{2} be the great circles through ξ tangent to A and r_{1}, r_{2} the contact points of Γ_{1} and Γ_{2}, respectively. For each point $r \in \partial A \backslash\left\{r_{1}, r_{2}\right\}$, let $j(r)$ be the other intersection point of ∂A with the great circle through ξ and r. The function j, extended to ∂A by setting $j\left(r_{i}\right)=r_{i}$ ($i=1,2$), is then a continuous involution on ∂A with fixed points r_{1}, r_{2}. Now, let $\beta \in \partial A$. The set of all farthest points from β on A is a connected subset of ∂A, since A is q-large. Moreover, this set has only a single point $k(\beta)$, because A is strictly convex. The function k, from ∂A onto itself, is fixed-point-free and continuous. The functions j and k must then coincide at some point $\alpha \in \partial A$. Let Γ be the great circle through ξ and α. Also, let Π be the plane through x parallel to the plane of Γ. The asymptotic cone of $\Pi \cap B$ is $\Gamma \cap A$, whose angular measure is at least $\pi / 2$. Hence, by Theorem 1 there is a rectangle containing x, y and entirely lying in $\Pi \cap B$.
'Only if': Suppose B is r-convex and prove that A is q-large.
Suppose on the contrary A is not q-large, i.e. there is a point $p \in \partial A$ such that the distance δ on S_{2} between p and the farthest point of ∂A is less than $\pi / 2$. Consider the point $v \in \partial B$ having $-p$ as spherical image. ${ }^{(1)}$ Let Γ_{p} be a

[^0]great circle of S_{2} supporting A at p and only at p. Let Π be the plane through v orthogonal to the tangent in p to $\Gamma_{p} . \Pi$ contains the normal N in v to ∂B. Let Π_{+}be the closed half-plane with boundary N that contains all half-lines through v included in $\Pi \cap B$ (if there is only one such half-line, choose Π_{+} to be one of the two half-planes with boundary N). Let Π_{-}be the closure of $\Pi \backslash \Pi_{+}$. The curve $\Pi_{-} \cap \partial B$ either has an asymptote L^{\prime} parallel (but not identical) with N, or has no asymptote. Let L be a line in Π_{-}different from and parallel to N such that, if L^{\prime} exists, the distance between L and L^{\prime} is greater than that between L and N (see Figure 4). Let $w=L \cap \partial B .{ }^{(2)}$

Fig. 4
Let $\varepsilon=(\pi / 2)-\delta$ and suppose there exist two sequences of points $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in L \cap B, y_{n} \in B, d\left(w, x_{n}\right)=d\left(x_{n}, y_{n}\right), d\left(w, x_{n}\right) \rightarrow \infty$, and the measure of the angle $w x_{n} y_{n}$ equals ε. Then a certain subsequence of $\left(w y_{n}\right)_{n=1}^{\infty}$ converges to a half-line originating at w, included in B and forming with L an angle of measure $(\pi-\varepsilon) / 2$. This half-line would correspond to a point in A at the distance $(\pi-\varepsilon) / 2>\delta$ from p, but such a point does not exist.

Hence, for some point $x_{0} \in L \cap B$, each solid circular cone C_{x} with apex x such that $x w \supset x_{0} w$, with axis L and whose generators make an angle ε with $(L-B) \cup x w$ has, as intersection with B, a set completely contained in the solid ball K_{x} of centre x and radius $\max \left\{d(x, y): y \in C_{x_{0}} \cap \partial B\right\}$.
${ }^{(2)}$ We identify a single point set with the point itself.

Let now x be such that $x w \supset x_{0} w$ and let $z_{x} \in \partial K_{x} \cap C_{x_{0}} \cap \partial B$. It is obvious that $d(w, x) \rightarrow \infty$ implies $z_{x} \rightarrow v$. Let z_{x}^{\prime} be an intersection different from z_{x} (if any) of the line through x and z_{x} with ∂B. When z_{x} is sufficiently close to v, z_{x}^{\prime} exists and the ball J_{x} with diameter $z_{x} z_{x}^{\prime}$ contains K_{x}.

Let G_{x} be the great circle of J_{x} tangent in z_{x} to the line orthogonal to L and $x z_{x}$. For z_{x} sufficiently close to v, let H_{x} be the half-sphere bounded by G_{x}, containing w in its convex hull. Let M_{x} be the set of points on H_{x}, the angular distance of which to z_{x}^{\prime} on J_{x} is smaller than ε (see Figure 5).

Fig. 5

Suppose there exist two sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(u_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in L \cap B$, $d\left(w, x_{n}\right) \rightarrow \infty$ and $u_{n} \in B \cap H_{x_{n}} \backslash M_{x_{n}}$. Then a certain subsequence of $\left(z_{x_{n}} u_{n}\right)_{n=1}^{\infty}$ converges to a half-line originating in v, included in B, lying in the half-space containing w and bounded by the plane through N orthogonal to Π, and forming with N an angle of measure at least $\varepsilon / 2$. This half-line would correspond to a point of S_{2} different from p and lying on Γ_{p} or on the open halfsphere bounded by Γ_{p} and disjoint from A, but there is no such point. Hence, there exists a point $x_{0}^{\prime} \in L$ such that $x_{0} \in x_{0}^{\prime} w$, and for each $x \in L$ with $x w \supset x_{0}^{\prime} w, z_{x}=B \cap H_{x} \backslash M_{x}$.

Let M_{x}^{\prime} be the set symmetric with M_{x} with respect to the centre of J_{x}. Suppose again there exist two sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in$ $L \cap B, d\left(w, x_{n}\right) \rightarrow \infty$ and $t_{n} \in M_{x_{n}}^{\prime} \cap B \backslash C_{x_{n}}$. Let α_{n} be the angle between $\left\langle x_{n}, z_{x_{n}}\right\rangle$ and $\left\langle z_{x_{n}}, t_{n}\right\rangle$. Then, on the one hand, $d\left(v, t_{n}\right) \rightarrow \infty$ since $t_{n} \notin C_{x_{n}}$, and on the other some subsequence of $\left(\alpha_{n}\right)_{n=1}^{\infty}$ converges to a value $v \geqslant$ $(\pi-\varepsilon) / 2$. This means that some subsequence of $\left(z_{x_{n}} t_{n}\right)_{n=1}^{\infty}$ converges to a half-line originating in v, included in B and forming with N the angle ν, which is impossible. Thus, for some $x_{0}^{\prime \prime} \in L$ and for all $x \in L$ with $x w \supset x_{0}^{\prime \prime} w$, $M_{x}^{\prime} \cap B \backslash C_{x}=\varnothing$. Since for these points $x, C_{x} \cap B \subset K_{x}$, we also have $M_{x}^{\prime} \cap B \cap C_{x}=z_{x}$, hence $M_{x}^{\prime} \cap B=z_{x}$.

It follows that if $x_{0}^{\prime}, x_{0}^{\prime \prime} \in x w$, then $M_{x}^{\prime} \cap B=z_{x}$ and $B \cap H_{x} \backslash M_{x}=z_{x}$, i.e.

$$
B \cap\left(H_{x} \cup M_{x}^{\prime}\right) \backslash M_{x}=z_{x}
$$

But since B is r-convex, and since the line through x and z_{x} is normal in z_{x} to ∂B, the segment $z_{x} z_{x}^{\prime}$ should be the diagonal of a rectangle included in B. The other two vertices of that rectangle must be diametral opposite points of J_{x}, whence one of them must lie on $\left(H_{x} \cup M_{x}^{\prime}\right) \backslash M_{x}$ and a contradiction is obtained.

Authors' addresses:

R. Blind,

Mathematisches Institut B, Universität Stuttgart, Pfaffenwaldring 57, 7 Stuttgart 80 , W. Germany
G. Valette, Dept. v. Wiskunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
T. Zamfirescu, Abteilung Mathematik, Universität Dortmund, 46 Dortmund-Hombruch, Postfach 500, W. Germany

[^0]: ${ }^{(1)}$ The exterior normal at v to ∂B is parallel to and has the same orientation as the vector $-p$.

