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Abstract

In order to refine the analysis of the computational power of discrete-time
recurrent neural networks (NNs) between the binary-state NNs which are
equivalent to finite automata (level 3 in the Chomsky hierarchy), and the
analog-state NNs with rational weights which are Turing-complete (Chom-
sky level 0), we study an intermediate model αANN of a binary-state NN that
is extended with α ≥ 0 extra analog-state neurons. For rational weights, we
establish an analog neuron hierarchy 0ANNs ⊂ 1ANNs ⊂ 2ANNs ⊆ 3ANNs
and separate its first two levels. In particular, 0ANNs coincide with the
binary-state NNs (Chomsky level 3) being a proper subset of 1ANNs which
accept at most context-sensitive languages (Chomsky level 1) including some
non-context-free ones (above Chomsky level 2). We prove that the determin-
istic (context-free) language L# = {0n1n |n ≥ 1} cannot be recognized by
any 1ANN even with real weights. In contrast, we show that determinis-
tic pushdown automata accepting deterministic languages can be simulated
by 2ANNs with rational weights, which thus constitute a proper superset
of 1ANNs. Finally, we prove that the analog neuron hierarchy collapses to
3ANNs by showing that any Turing machine can be simulated by a 3ANN
having rational weights, with linear-time overhead.
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1. Introduction

The majority of standard techniques used in artificial neural networks
(NNs) such as Hebbian learning, back-propagation, simulated annealing, sup-
port vector machines, deep learning, are of statistical or heuristic nature.
NNs often considered as “black box” solutions are mainly subject to empir-
ical research whose methodology is based on computer simulations through
which the developed heuristics are tested, tuned, and mutually compared on
benchmark data. The efficiency and significance of proposed heuristics are
eventually approved by successful practical applications. Nevertheless, the
development of NN methods has, among others, its own intrinsic limits given
by mathematical, computability, or physical laws. By exploring these limits
one can understand what is computable in principle or efficiently by NNs.
This is a necessary prerequisite for pushing or even overcoming the respective
boundaries in future intelligent technologies.

In order to answer these issues, rigorous mathematical foundations of
NNs need to be further developed, which is the main motivation for this
study. We will thus not provide particular algorithmic solutions to practical
special-purpose machine learning problems, but instead we will explore the
computational potential and limits of NNs for general-purpose computation.
In order to achieve this objective, the computational power of NNs is investi-
gated by comparing them with more traditional models of computation such
as finite or pushdown automata, Chomsky grammars, and Turing machines.

The computational power of discrete-time recurrent NNs with the satur-
ated-linear activation function1 depends on the descriptive complexity of
their weight parameters (Siegelmann, 1999; Š́ıma and Orponen, 2003). NNs
with integer weights, corresponding to binary-state (shortly binary) networks
employing the Heaviside activation function (with Boolean outputs 0 or 1),
coincide with finite automata (FAs) recognizing regular languages (Alon
et al., 1991; Horne and Hush, 1996; Indyk, 1995; Minsky, 1967; Š́ıma, 2014;
Š́ıma and Wiedermann, 1998). Rational weights make the analog-state (short-
ly analog) NNs (with real-valued outputs in the interval [0, 1]) computa-
tionally equivalent to Turing machines (TMs) (Indyk, 1995; Siegelmann and
Sontag, 1995), and thus (by a real-time simulation due to Siegelmann and

1The results are partially valid for more general classes of activation functions (Koiran,
1996; Siegelmann, 1996; Š́ıma, 1997; Šorel and Š́ıma, 2004) including the logistic func-
tion (Kilian and Siegelmann, 1996).
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Sontag, 1995) polynomial-time computations of such networks are character-
ized by the fundamental complexity class P.

In addition, NNs with arbitrary real weights can even derive “super-
Turing” computational capabilities (Siegelmann, 1999). Namely, their poly-
nomial-time computations correspond to the nonuniform complexity class
P/poly while any input/output mapping (including algorithmically undecid-
able problems) can be computed within exponential time (Siegelmann and
Sontag, 1994). Moreover, a proper infinite hierarchy of nonuniform com-
plexity classes between P and P/poly has been established for polynomial-
time computations of NNs with increasing Kolmogorov complexity of real
weights (Balcázar et al., 1997).

As can be seen, our understanding of the computational power of NNs
is satisfactorily fine-grained when changing from rational to arbitrary real
weights. In contrast, there is still a gap between integer and rational weights
which results in a jump from regular languages capturing the lowest level 3 in
the Chomsky hierarchy to recursively enumerable languages on the highest
Chomsky level 0. In order to refine the classification of NNs which do not
possess the full power of TMs (Chomsky level 0), we have initiated the study
of binary-state NNs employing integer weights, that are extended with α ≥ 0
extra analog neurons having real weights, which are denoted as αANNs.

This study has primarily been motivated by theoretical issues of how
the computational power of NNs increases with enlarging analogicity when
we change step by step from binary to analog states, or equivalently, from
integer to arbitrary rational weights. Thus, the proposed model of αANNs
itself has been intended for measuring the expressive power of a binary-
state NN to which analog neurons are added one by one, rather than for
solving special-purpose practical tasks. Nevertheless, as a secondary use, this
analysis may potentially be relevant to practical hybrid NNs that combine
binary and analog neurons in deep networks employing the LSTM, GRU or
ReLU units (Schmidhuber, 2015), which deserves specialized studies such
as recent work by Korsky and Berwick (2019); Merrill (2019); Merrill et al.
(2020); Weiss et al. (2018).

In our previous work (Š́ıma, 2019b), we have characterized syntactically
the class of languages that are accepted by 1ANNs with one extra analog
unit, in terms of so-called cut languages2 (Š́ıma and Savický, 2018) which

2A cut language L<c =
{
x1 . . . xn ∈ A∗

∣∣∑n
k=1 xk β

−k < c
}

contains finite representa-
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are combined in a certain way by usual operations3 under which the classes
of regular and context-sensitive languages are closed. By using this syntac-
tic characterization of 1ANNs we have derived a sufficient condition when a
1ANN recognizes only a regular language (Chomsky level 3), which is based
on the quasi-periodicity4 (Š́ıma and Savický, 2018) of some parameters de-
pending on its real weights. In particular, a 1ANN with weights from the
smallest field extension5 Q(β) over the rational numbers Q including a Pisot
number6 β > 1, such that the self-loop weight w of its only analog neuron
equals 1/β, is computationally equivalent to a FA. For instance, since every
integer n > 1 is a Pisot number (in fact, such integers are the only rational
Pisot numbers), it follows that any 1ANN with rational weights such that
w = 1/n, accepts a regular language. An example of a 1ANN that accepts
the regular language (23), is depicted in Figure 2 with parameters (21). More
complex examples of such neural FAs, are 1ANNs that have rational weights
except for the irrational (algebraic) self-loop weight w = 1/ρ ≈ 0.754878 or
w = 1/ϕ = ϕ−1 ≈ 0.618034 for the plastic constant7 ρ or the golden ratio ϕ,
respectively, which are Pisot numbers.

On the other hand, we have introduced (Š́ıma, 2019b) examples of lan-

tions of numbers in a real base β (so-called β-expansions) where |β| > 1, using real digits
from a finite alphabet A, that are less than a given real threshold c (i.e. a Dedekind cut).
It is known that L<c is regular iff c is quasi-periodic4 while it is not context-free otherwise.

3complementation, intersection, union, concatenation, Kleene star, reversal, the largest
prefix-closed subset, and a letter-to-letter morphism

4For a real base β satisfying |β| > 1, and a finite alphabet A of real digits, an in-
finite β-expansion2,

∑∞
k=1 xk β

−k where xk ∈ A, is called quasi-periodic if the sequence(∑∞
k=1 xn+k β

−k)∞
n=0

contains a constant infinite subsequence. We say that a real number

x is quasi-periodic if all its infinite β-expansions x =
∑n

k=1 xk β
−k are quasi-periodic.

5Recall that in algebra, the rational numbers (fractions) form the field Q with the two
usual operations, the addition and the multiplication over real numbers. For any real
number β ∈ R, the field extension Q(β) ⊂ R is the smallest set containing Q ∪ {β} that
is closed under these operations. For example, the golden ratio ϕ = (1 +

√
5)/2 ∈ Q(

√
5)

whereas
√

2 /∈ Q(
√

5). Note that Q(β) = Q for every β ∈ Q.
6A Pisot number is a real algebraic integer (a root of some monic polynomial with

integer coefficients) greater than 1 such that all its Galois conjugates (other roots of
such a unique monic polynomial with minimal degree) are in absolute value less than 1.
A characteristic property of Pisot numbers is that their powers approach integers at an
exponential rate.

7The plastic constant ρ ≈ 1.324718 is the unique real root of the cubic equation x3 =
x+ 1, which is the smallest Pisot number.
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guages accepted by 1ANNs with rational weights that are not context-free
(CFLs) (i.e. are above Chomsky level 2), while we have proven that any lan-
guage accepted by this model online8, is context-sensitive (CSL) at Chom-
sky level 1. For example, the 1ANN depicted in Figure 2 with parameters
(8), accepts the context-sensitive language LR<1 defined in (20), which is not
context-free. These results refine the analysis of the computational power
of NNs with the weight parameters between integer and rational weights.
Namely, the computational power of binary-state networks having integer
weights can increase from regular languages (Chomsky level 3) to that be-
tween CFLs (Chomsky level 2) and CSLs (Chomsky level 1), when an extra
analog unit with rational weights is added, while a condition when adding one
analog neuron does not increase the power of binary-state networks including
even real weights, was formulated.

In this paper, we establish an analog neuron hierarchy of classes of lan-
guages recognized by αANNs with α extra analog units having rational
weights, for α = 0, 1, 2, 3, . . ., that is, 0ANNs ⊆ 1ANNs ⊆ 2ANNs ⊆ 3ANNs
⊆ · · · , respectively. Note that we use the notation αANNs also for the class
of languages accepted by αANNs, which can clearly be distinguished by the
context. Obviously, the 0ANNs are purely binary-state NNs which are equiv-
alent to FAs and hence, 0ANNs $ 1ANNs because we know that the non-
context-free language LR<1 is accepted by the 1ANN depicted in Figure 2 with
parameters (8). We will prove that the deterministic context-free language
(DCFL) L# = {0n1n |n ≥ 1}, which contains the words of n zeros followed
by n ones, cannot be recognized even offline8 by any 1ANN with arbitrary
real weights. The proof is based on an asymptotic analysis of computations
by 1ANNs whose dynamics is quite restricted for recalling a stored number of
zeros. Since typical CFLs inherently include the language L#, we conjecture
that 1ANNs cannot recognize any non-regular CFL (Chomsky level 2 strictly
above level 3), which has already been shown in the deterministic case (Š́ıma
and Plátek, 2019). In contrast, recall there exist non-context-free languages
(above Chomsky level 2) that are accepted by 1ANNs such as LR<1. Anyway,
we thus know that 1ANNs with real weights are not Turing-complete.

Furthermore, we will show that any deterministic pushdown automaton

8In online input/output protocols, the time between reading two consecutive input
symbols as well as the delay in outputting the result after an input has been read, is
bounded by a constant, while in offline protocols these time intervals are not bounded.
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Figure 1: The analog neuron hierarchy.

(DPDA) can be simulated by a 2ANN with two extra analog neurons hav-
ing rational weights. This means that the DCFLs (included in Chomsky
level 2) are recognized by 2ANNs with rational weights. Thus, 1ANNs $
2ANNs since the DCFL L# is not accepted by any 1ANN. In addition, we
will prove that any TM can be simulated by a 3ANN having rational weights
with a linear-time overhead. It follows that recursively enumerable languages
(Chomsky level 0) are accepted by 3ANNs with rational weights and thus
this model including only three analog neurons is Turing-complete. Since
αANNs with rational weights can be simulated by TMs for any α ≥ 0, the
analog neuron hierarchy collapses to 3ANNs:

FAs ≡ 0ANNs $ 1ANNs $ 2ANNs ⊆ 3ANNs = 4ANNs = . . .

≡ TMs , (1)

which is schematically depicted in Figure 1. The separation 2ANNs $ 3ANNs
of the third level remains open as the most important challenge for further
research. It appears that the analog neuron hierarchy (1) is only partially
comparable to that of Chomsky.

The underlying simulations of DPDAs and TMs by 2ANNs and 3ANNs,
respectively, are based on the classical technique of implementing the PDA’s
stack by two analog neurons, one for the pop operation and the other one for
push, where the stack contents are encoded by analog states using a Cantor-
like set (Siegelmann and Sontag, 1995). Moreover, two stacks are known
to be sufficient for simulating TMs. The technical part of the proof then
consists in synchronizing the swap operation on the states of analog neurons.

The paper is organized as follows. In Section 2, we introduce basic defi-
nitions concerning the language acceptors based on αANNs with an offline8
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input/output protocol using the binary input alphabet {0, 1}. In Section 3,
we prove that the deterministic language L# cannot be recognized by any
1ANN with real weights. Section 4 shows that any DPDA can be simulated
by 2ANNs which is illustrated by an example of a 2ANN recognizing L#,
while the simulation of any TM by a 3ANN is presented in Section 5. Fi-
nally, we summarize and discuss the results, and list some open problems
in Section 6. Preliminary versions of the results in this paper appeared in
extended abstracts (Š́ıma, 2019a, 2018) containing only proof sketches.

2. Neural Language Acceptors with α Extra Analog Units

For an integer constant α ≥ 0, we specify a computational model of
a discrete-time binary-state recurrent neural network αANN with α extra
analog units, N , which will be used as a formal language acceptor. The
network N consists of s ≥ α units (neurons), indexed as V = {1, . . . , s}.
The units in N are assumed to be binary-state (shortly binary) neurons
(i.e. perceptrons, threshold gates) except for the first α neurons 1, . . . , α ∈ V
which are analog units. The neurons are connected into a directed graph
representing an architecture of N , in which each edge (i, j) ∈ V 2 leading
from unit i to j is labeled with a real weight wji ∈ R. The absence of a
connection within the architecture corresponds to a zero weight between the
respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its
state (output) y

(t)
j at discrete time instants t = 0, 1, 2, . . .. The outputs

y
(t)
1 , . . . , y

(t)
α from analog units 1, . . . , α ∈ V are real numbers from the unit

interval I = [0, 1], whereas the states y
(t)
j of the remaining s − α neurons

j ∈ V ′ = V \ {1, . . . , α} = {α+ 1, . . . , s} are binary values from {0, 1}. This
establishes the network state

y(t) =
(
y
(t)
1 , . . . , y(t)α , y

(t)
α+1, . . . , y

(t)
s

)
∈ Iα × {0, 1}s−α

at each discrete time instant t ≥ 0.
For notational simplicity, we assume a synchronous fully parallel mode

without loss of efficiency (Orponen, 1997). At the beginning of a computa-
tion, the αANN N is placed in a predefined initial state y(0) ∈ {0, 1}s. At
discrete time instant t ≥ 0, an excitation of any neuron j ∈ V is evaluated
as

ξ
(t)
j =

s∑
i=0

wjiy
(t)
i , (2)
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including a real bias value wj0 ∈ R which, as usually, can be viewed as the

weight from a formal constant unit input y
(t)
0 ≡ 1 for every t ≥ 0 (i.e. the

set of neurons is formally extended with 0 ∈ V ′ ⊆ V ). At the next instant

t + 1, all the neurons j ∈ V compute their new outputs y
(t+1)
j in parallel by

applying an activation function σj : R −→ I to ξ
(t)
j , that is,

y
(t+1)
j = σj

(
ξ
(t)
j

)
for j ∈ V . (3)

The analog units j ∈ {1, . . . , α} employ the saturated-linear function σj(ξ) =
σ(ξ) where

σ(ξ) =


1 for ξ > 1
ξ for 0 ≤ ξ ≤ 1
0 for ξ < 0 ,

(4)

while for neurons j ∈ V ′ with binary states yj ∈ {0, 1}, the Heaviside acti-
vation function σj(ξ) = H(ξ) is used where

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 .

(5)

This determines the new network state y(t+1) ∈ Iα × {0, 1}s−α at time t+ 1.
The computational power of NNs has been studied analogously to the

traditional models of computations so that the networks are exploited as
acceptors of formal languages L ⊆ Σ∗ over a finite alphabet Σ 6= ∅ (Š́ıma
and Orponen, 2003). For simplicity, we further assume the binary alphabet9,
Σ = {0, 1}. For an αANN N , we use the following offline8 input/output
protocol employing its three special binary neurons inp, out, nxt ∈ V ′. An
input word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0, is
sequentially presented to the finite N , bit after bit, via the so-called input
neuron inp ∈ V ′, at time instants 0 < τ1 < τ2 < · · · < τn after queried by N .
The neuron nxt ∈ V ′ is used by N to prompt a user to enter the next input
bit. Thus, once the prefix x1, . . . , xk−1 of x for 1 ≤ k ≤ n, has been read,
the state of inp is externally set to the next input bit xk ∈ {0, 1} at the

9For an arbitrary alphabet Σ, one can employ one-hot encoding using |Σ| input neurons
so that only one neuron corresponding to a current input symbol that is presented to N ,
is activated (Š́ıma, 2019b).
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time instant τk that is one computational step after N activates the neuron
nxt ∈ V ′, which means the underlying states satisfy

y
(t)
inp =

{
xk if t = τk
0 otherwise

y
(t−1)
nxt =

{
1 if t = τk
0 otherwise

for k = 1, . . . , n . (6)

At the same time, N carries its computation, possibly deciding about
each prefix of the input word x whether it belongs to L, which is indicated
by the output neuron out ∈ V ′ when the next input bit is presented (one
step after the neuron nxt is active):

y
(τk+1)
out =

{
1 if x1 . . . xk ∈ L
0 if x1 . . . xk /∈ L

for k = 0, . . . , n , (7)

where τn+1 > τn is the time instant when the input word x is decided (e.g.
formally define xn+1 = 0 to ensure the consistency with the input protocol (6)

for k = n + 1). For instance, y
(τ1)
out = 1 iff the empty word ε belongs to L.

Note that N may not halt when it does not prompt for the next input bit
(i.e. τk+1 is not defined) or N may not provide the output (i.e. τn+1 is not
defined). We say that a language L ⊆ {0, 1}∗ is accepted (recognized) by
αANN N , which is denoted as L = L(N ), if for any input word x ∈ {0, 1}∗,
x ∈ L iff N halts and accepts x.

Example 1 We illustrate the definition of the αANN language acceptor and
its input/output protocol on a simple 1ANN N with α = 1. This 1ANN is
used for recognizing a non-context-free language while for other parameters
its power reduces to regular languages. The network N is composed of s = 7
neurons, that is, V = {0, 1, 2, 3, 4, inp, out, nxt} where the first neuron 1 ∈ V
is the analog unit whereas V ′ = V \ {1} = {0, 2, 3, 4, inp, out, nxt} contains
the remaining binary-state neurons including the formal unit 0 ∈ V ′ for
biases. The architecture of N is depicted in Figure 2 where the directed
edges connecting neurons are labeled with the respective weights w1,inp =
β−1/ν = (β − 1)/β, w11 = β−1/3, w2,nxt = w32 = wnxt,3 = w41 = w43 =
wout,nxt = 1, and wout,4 = −1, while the edges drawn without the originating
unit 0 ∈ V ′ correspond to the biases w40 = −1 − c/ν = −1 − (β − 1)c and
wnxt,0 = w20 = w30 = wout,0 = −1, where the parameter c is a real threshold
and β > 1 is a real base which defines ν =

∑∞
k=1 β

−k = 1/(β − 1) > 0.
The 1ANN N is employed for recognizing a language L = L(N ) over the

binary alphabet Σ = {0, 1}. For this purpose, the special units inp, out, nxt ∈
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Figure 2: Example of a 1ANN language acceptor with parameters β and c.

V ′ implement the input/output protocol (6) and (7). For example, let

β =

(
6

5

)3

=
216

125
and c = 1 (8)

which determine the parameterized weights and bias of N ,

w1,inp =
91

216
, w11 =

5

6
, w40 = − 216

125
, (9)

and suppose that the input word x = 1011 ∈ {0, 1}4 of length n = 4 is
externally presented to N where x1 = 1, x2 = 0, x3 = 1, x4 = 1, and
formally let x5 = 0. Table 1 shows the sequential schedule of presenting
the bits x1, x2, x3, x4 of x to N through the input neuron inp at the time
instants t = 1, 4, 7, 10, respectively, which is indicated in boldface. Each
input bit is queried by the neuron nxt one step beforehand according to (6).

Thus, the neuron nxt is the only initially active unit, that is, y
(0)
nxt = 1, and

this activity propagates repeatedly around the oriented cycle composed of
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t y
(t)
1 y

(t)
2 y

(t)
3 y

(t)
4 y

(t)
inp y

(t)
nxt y

(t)
out

the result of
recognition

0 0 0 0 0 0 1 0

1 0 1 0 0 1 0 1 ε ∈ L(N )

2 91
216

0 1 0 0 0 0

3 455
1296

0 0 0 0 1 0

4 2275
7776

1 0 0 0 0 1 1 ∈ L(N )

5 11375
46656

0 1 0 0 0 0

6 56875
279936

0 0 0 0 1 0

7 284375
1679616

1 0 0 1 0 1 10 ∈ L(N )

8 5667571
10077696

0 1 0 0 0 0

9 28337855
60466176

0 0 0 0 1 0

10 141689275
362797056

1 0 0 1 0 1 101 ∈ L(N )

11 1625516711
2176782336

0 1 0 0 0 0

12 8127583555
13060694016

0 0 1 0 1 0

13 40637917775
78364164096

1 0 0 0 0 0 1011 /∈ L(N )

Table 1: The rejecting computation by the 1ANN N from Figure 2 with parameters (8),
on the input 1011.

three neurons 2, 3, nxt ∈ V ′ through the edges with the unit weights, which
ensures the neuron nxt fires at the time instants t = 3k for k ≥ 0, when the
next input bits are prompted. In addition, the units 3 and nxt from this
cycle synchronize the incident neurons 4 and out, respectively, so that the
unit 4 can be activated only at the time instants t = 3k, whereas the output
neuron out can fire only at t = 3k+ 1. Hence, the result of the recognition is
reported by the output neuron out as indicated in Table 1 in boldface, even
for each of the five prefixes of x, the empty string ε, 1, 10, 101 and 1011, at
the time steps t = 1, 4, 7, 10, 13, respectively, according to (7).

According to (2)–(4), we obtain the recurrence equation for the analog
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state of unit 1 ∈ V ,

y
(t)
1 = ξ

(t−1)
1 = w1,inp y

(t−1)
inp + w11 y

(t−1)
1 =

β−1

ν
y
(t−1)
inp + β−

1
3 y

(t−1)
1 (10)

at time instant t ≥ 1, where y
(t)
1 = ξ

(t−1)
1 ∈ I by the definition of parameter ν.

Hence, the input bits y
(1)
inp = x1, y

(4)
inp = x2, etc. are encoded in this analog

state as

y
(1)
1 = y

(0)
1 = 0 (11)

y
(2)
1 =

β−1

ν
x1 (12)

y
(4)
1 = β−

1
3 y

(3)
1 = β−

2
3 y

(2)
1 =

β−
5
3

ν
x1 (13)

y
(5)
1 =

1

ν

(
x2β

−1 + x1β
−2) , (14)

which generalizes to

y
(3k−1)
1 =

1

ν

k∑
i=1

xk−i+1 β
−i . (15)

It follows that the neuron 4 ∈ V ′, activating only at the time instant t = 3k,
satisfies y

(3k)
4 = 1 iff ξ

(3k−1)
4 = w40 + w41 y

(3k−1)
1 + w43 y

(3k−1)
3 ≥ 0 iff

−1− c

ν
+ 1 +

1

ν

k∑
i=1

xk−i+1 β
−i ≥ 0 (16)

according to (2), (3), (5), and (15), which reduces to

y
(3k)
4 = 1 iff

k∑
i=1

xk−i+1 β
−i ≥ c . (17)

At the time instant t = 3k + 1, the output neuron out ∈ V ′ computes the
negation of y

(3k)
4 , and hence,

y
(3k+1)
out = 1 iff

k∑
i=1

xk−i+1 β
−i < c . (18)
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It follows from (18) that the neural language acceptor N accepts the
reversal of the cut language2,

L(N ) = LR<c =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n∑
k=1

xn−k+1 β
−k < c

}
. (19)

Since the threshold c = 1 is not a quasi-periodic number4 for the base β = 216
125

and the binary digits {0, 1}, the corresponding instance of (19),

L(N ) = LR<1 =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n∑
k=1

xn−k+1

(
216

125

)−k
< 1

}
, (20)

is a context-sensitive language that is not context-free (Š́ıma and Savický,
2018).

In contrast, if we choose the integer (Pisot) base and a quasi-periodic4

threshold for this base,

β = 33 = 27 and c =
1

52
(21)

(cf. (8)) for defining another instance of the 1ANN in Figure 2, say N ′, then
the language accepted by N ′, which instantiates (19) as

L(N ′) = LR
< 1

52
=

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n∑
k=1

xn−k+1 27−k <
1

52

}
, (22)

is regular (Š́ıma and Savický, 2018). The description of language (22) can
be simplified as

L(N ′) = {x1 . . . xn ∈ {0, 1}∗ |xn = 0} , (23)

since for any x1 . . . xn−10 ∈ {0, 1}∗, we have
∑n

k=1 xn−k+1 27−k <
∑∞

k=2 27−k =
1

702
< 1

52
, whereas

∑n
k=1 xn−k+1 27−k ≥ 1

27
> 1

52
for every x1 . . . xn−11 ∈

{0, 1}∗.

3. Separating One Analog Neuron

In this section, we present an example of a DCFL, L# = {0n1n |n ≥ 1}
containing the words of n zeros followed by n ones, which cannot be accepted

13



offline by any 1ANN with one extra analog unit even with real weights, which
means L# /∈ 1ANNs. This provides a separation of the second level of the
analog neuron hierarchy, that is, 1ANNs $ 2ANNs (see Figure 1) since in
Section 4 we show that 2ANNs can simulate any DPDA.

The main idea of the proof is based on the fact that a 1ANNN that would
recognize L# = L(N ) must remember the count of the initial segment of
zeros in an input word because this must later be compared to the number of
subsequent ones in order to decide whether the input is accepted. However,
this count is unbounded while N has only finitely many possible binary
states. Thus, this number can just be encoded by using a real state of the one
analog neuron. By presenting a series of zeros as an input to N , we obtain
an infinite bounded sequence of these real analog-state values which has
a monotone convergent subsequence according to the Bolzano-Weierstrass
theorem10.

This subsequence is further pruned so that it remains infinite while the
following condition is satisfied. Starting the computation of N with any ana-
log value from this pruned convergent subsequence, the binary states enter
the same cycle in a while when a subsequent series of ones is presented to
N , which induces a periodic behavior of N in the limit. This periodicity
provides only a finite number of thresholds for separating an infinite number
of analog values from each other. However, these analog values that are in-
distinguishable by N , encode the original counts of zeros. This means that
N would not differentiate between two input words composed of a distinct
number of initial zeros and could thus not recognize the language L# cor-
rectly, which is a contradiction. The technical details are presented in the
following proof which is, for clarity, split into subsections and lemmas.

Theorem 1 The deterministic context-free language L# = {0n1n |n ≥ 1}
cannot be recognized by a 1ANN with one extra analog unit having real weights.

Proof. On the contrary, assume that N is a neural network 1ANN with one
extra analog unit such that L# = L(N ). Let y

(t)
j (x) and ξ

(t)
j (x) be the state

and the excitation of neuron j ∈ V at time instant t ≥ 0, respectively, when
an input word x ∈ {0, 1}n of length n is presented to N , which satisfies t <
τn+1 by (6). Formally, we also allow infinite input strings x ∈ {0, 1}ω where
Σω denotes the set of all infinite words (ω-words) over Σ. Denote by y(t)(x) =

10Each bounded sequence of real numbers has a monotone convergent subsequence.
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(
y
(t)
1 (x), . . . , y

(t)
s (x)

)
∈ I × {0, 1}s−1 and ỹ(t)(x) =

(
y
(t)
2 (x), . . . , y

(t)
s (x)

)
∈

{0, 1}s−1 the corresponding global network state, respectively restricted to
binary neurons V ′ = V \ {1}.

3.1. Analog States as β-Expansions When N Reads Zeros

For the infinite input string 0ω, there exists t0 ≥ 0 such that the states of
the analog unit meet

y
(t0)
1 (0ω) ∈ {0, 1} and 0 < y

(t)
1 (0ω) < 1 for every t > t0 (24)

(we know y
(0)
1 (0ω) ∈ {0, 1} by definition), since otherwise there would be

infinitely many time instants t with y
(t)
1 (0ω) ∈ {0, 1}. This means that N

would find in the same state y(t)(0ω) = y for infinitely many t and some
y ∈ {0, 1}s, due to {0, 1}s is finite. Hence, there would exist t1 < t2 such
that y(t1)(0ω) = y(t2)(0ω) = y and n1 < n2 where ni is the number of input
zeros that has been read by N until the time instant ti for i ∈ {1, 2}. Thus,
y(t1)(0n1) = y(t2)(0n2) = y for n1 < n2, which implies y(t1+t)(0n11n1) =
y(t2+t)(0n21n1) for every t ≥ 0. It follows that 0n21n1 ∈ L(N ) because of
0n11n1 ∈ L# = L(N ), which means N would accept incorrectly the input
word 0n21n1 /∈ L#. For the same reason, the self-loop weight meets

w11 6= 0 (25)

since for w11 = 0, the analog unit could produce only a finite number of out-
put values y

(t)
1 ∈

{∑
i∈V ′ w1iyi

∣∣ (y2, . . . , ys) ∈ {0, 1}s−1
}

for t > t0, according
to (2)–(4).

Define the base

β =
1

w11

(26)

which is a correct definition due to (25), and the set of digits,

A =

{
β
∑
i∈V ′

w1iyi

∣∣∣∣∣ (y2, . . . , ys) ∈ {0, 1}s−1
}
∪ {0, β} . (27)

We introduce an infinite sequence of digits, a1a2a3 . . . ∈ Aω as

ak =

{
β y

(t0)
1 (0ω) ∈ {0, β} ⊆ A for k = 1

β
∑

i∈V ′ w1iy
(t0+k−2)
i (0ω) ∈ A for k ≥ 2 .

(28)
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For every t ≥ t0, we obtain the recurrence

y
(t+1)
1 (0ω) =

s∑
i=0

w1iy
(t)
i (0ω) = β−1

(
at−t0+2 + y

(t)
1 (0ω)

)
(29)

by (2)–(4), (26), and (28), which can be solved as

y
(t)
1 (0ω) =

t−t0+1∑
k=1

at−t0−k+2 β
−k . (30)

It follows from formula (30) which represents analog states as β-expansions
using the digits from A, that

|β| > 1 (31)

because 0 < y
(t)
1 (0ω) < 1 for every t > t0, according to (24).

3.2. Monotone Convergent Subsequence of Analog States

Consider an infinite sequence of time instants 0 < t1 < t2 < t3 < · · ·
such that for each n, tn = τn+1 − 1 is the last time instant before the next
(n + 1)th bit is presented to N after the input 0n has been read, that is,

y
(tn)
nxt (0n) = 1 by (6). Since the infinite sequence of real numbers y

(tn)
1 (0n) ∈ I

for n ≥ 1, is bounded, according to Bolzano-Weierstrass theorem10, there

exists its monotone convergent subsequence y
(tnp )

1 (0np) ∈ (0 , 1) for p ≥ 1,
where tn1 > t0, n1 < n2 < n3 < · · · , and denote the respective limit by

c0 = lim
p→∞

y
(tnp )

1 (0np) . (32)

We assume that this subsequence is nondecreasing, that is,

y
(tnp )

1 (0np) ≤ y
(tnp+1 )

1 (0np+1) for every p ≥ 1 , (33)

while the argument for a nonincreasing subsequence is analogous (cf. Foot-
note 11). In the following considerations, we will repeatedly remove some
elements from the sequence (np) given by Bolzano-Weierstrass theorem, so
that infinitely many elements remain, which satisfy additional conditions.
For simplicity, we will keep the original notation (np) for these pruned se-
quences without loss of generality.

There are only finitely many possible states of binary neurons taken from
{0, 1}s−1, and hence, there exists ũ ∈ {0, 1}s−1 which occurs infinitely many
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times in the corresponding subsequence ỹ(tnp )(0np) for p ≥ 1. By skipping
the remaining elements, we can assume without loss of generality that

ỹ(tnp )(0np) = ũ for every p ≥ 1 . (34)

It follows that the subsequence y
(tnp )

1 (0np) for p ≥ 1, is increasing since for

y
(tnp )

1 (0np) = y
(tnp+1 )

1 (0np+1), we would have y(tnp )(0np) = y(tnp )(0np+1) by (34),
and hence, the input 0np+11np /∈ L# would be incorrectly accepted by N .
Thus,

y
(tnp )

1 (0np) < y
(tnp+1 )

1 (0np+1) for every p ≥ 1 . (35)

3.3. Binary States When N Reads Ones

We will inductively construct an increasing infinite sequence (mp) of nat-
ural numbers mp ≥ 0, which satisfies the following conditions by pruning
the corresponding sequence (np) so that the number of elements in (np)
remains infinite. The number mp is the maximum length of the compu-
tational trajectory since the time instant tnp when N starts to read ones,
such that the same binary states are traversed for every greater np. Namely,
for each p ≥ 1 and for every q > p, the binary states in N at the time in-
stants tnp , tnp+1, . . . , tnp+mp , tnp+mp+1 and tnq , tnq+1, . . . , tnq+mp , tnq+mp+1 after
N reads np and nq zeros, respectively, followed by (at most np) ones, will
meet

ỹ(tnp+k)(0np1np) = ỹ(tnq+k)(0nq1np) for every k = 0, 1, . . . ,mp (36)

ỹ(tnp+mp+1)(0np1np) 6= ỹ(tnq+mp+1)(0nq1np) . (37)

This means that for the increasing number np of the initial input zeros
0np that have been read by N at the time instant tnp , the binary states
ỹ(tnp+k)(0np1np) for k = 0, . . . ,mp, further follow the same computational
trajectory for a period of mp computational steps when N reads the subse-
quent input ones 1np . Moreover, this period length mp will be shown below

to be increasing since the corresponding analog state y
(tnp )

1 (0np) is converging
by (32). Observe that by definition, mp ≤ mp+1, and condition (36) holds at
least for k = 0, according to (34), whereas condition (37) is met before the
next input bit is presented to N after the input 0np1np ∈ L# has been read,
due to 0nq1np /∈ L# for q > p.

Suppose m1 < m2 < · · · < mp−1 have been constructed, satisfying (36)
and (37). For the next index p ≥ 1, let m̃p ≥ 0 be the maximal natural
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number that meets (36) with mp replaced by m̃p, which means m̃p ≥ mp−1.
On the contrary assume that m̃p = mp−1. There exists ũ′ ∈ {0, 1}s−1 such
that the set

Q =
{
q ≥ p

∣∣ ỹ(tnq+m̃p+1)(0nq1np) = ũ′
}

(38)

is infinite since there are only 2s−1 possible states of binary neurons. We
omit all the elements nq in (np) such that p ≤ q /∈ Q, while the pruned
sequence (np), including the indices from infinite Q, remains infinite, and
p = minQ is the new succeeding index in the pruned (np). In addition, the
new maximal value of m̃p satisfying (36) for this index p, increases by at
least 1 according to (38), and hence, we have m̃p > mp−1.

Moreover, we can assume without loss of generality that there are in-
finitely many indices q that meet (37) with mp replaced by m̃p, since other-
wise we could skip them in (np), while increasing m̃p. Thus, the constructed
sequence m1, . . . ,mp−1 is extended with mp = m̃p > mp−1 and the sequence
(np) is further pruned by removing those indices q > p for which (37) is
not satisfied. This completes the inductive construction which ensures the
sequence (mp) which corresponds to (np) and satisfies (36) and (37), is in-
creasing, and hence unbounded. Hereafter, we assume there are infinitely
many even numbers in (mp) while the proof for the opposite case when there
are infinitely many odd numbers in (mp), is analogous (cf. Footnote 11).
Thus, by pruning the sequence (np) we can assume without loss of generality
that mp is even for every p ≥ 1.

3.4. Analog States as β-Expansions When N Reads Ones

For each p ≥ 1, define m′p to be the maximum number such that
0 ≤ m′p ≤ mp and

0 ≤ ξ
(tnp+k)

1 (0np1np) ≤ 1 for every k = 0, . . . ,m′p , (39)

which holds at least for k = 0 because ξ
(tnp )

1 (0np1np) = y
(tnp+1)

1 (0np+1) ∈ (0 , 1)
according to (24). We introduce

bk = β
∑
i∈V ′

w1iy
(tnp+k−1)
i (0np1np) ∈ A for k = 1, . . . ,mp + 1 , (40)
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which is a consistent definition for different p ≥ 1, due to (36). We obtain
the recurrence

y
(tnp+k)

1 (0np1np) =
s∑
i=0

w1iy
(tnp+k−1)
i (0np1np)

= β−1
(
bk + y

(tnp+k−1)
1 (0np1np)

)
for k = 1, . . . ,m′p + 1 (41)

by (2)–(4), (26), (39) and (40), which can be solved as

ξ
(t)
1 (0np1np) = β−(t−tnp+1)y

(tnp )

1 (0np) +

t−tnp+1∑
k=1

bt−tnp−k+2 β
−k . (42)

for each p ≥ 1 and tnp ≤ t ≤ tnp + min(m′p + 1,mp).
In the following lemma, we will show that m′p coincides with mp. This

means that the excitation ξ
(tnp+k)

1 (0np1np) of the analog neuron stays in the
unit interval I, satisfying (39) for the whole period of mp computational steps
as long as the corresponding binary states ỹ(tnp+k)(0np1np) for k = 0, . . . ,mp,
follow the underlying computational trajectory that meets (36) and (37).
Informally, if this is not the case, then the analog neuron would saturate at

the same binary state y
(tnp+m

′
p+1)

1 (0np1np) = y
(tnq+m

′
p+1)

1 (0nq1np) ∈ {0, 1} for
different p < q because of (4) and (32). This fact together with the coinciding
states ỹ(tnp+m

′
p+1)(0np1np) = ỹ(tnq+m

′
p+1)(0nq1np) of binary neurons by (36) for

m′p < mp, would not allow N to distinguish between the inputs 0np1np and
0nq1np , which is a contradiction. The technical details are presented in the
following proof of Lemma 1.

Lemma 1 For every p ≥ 1, m′p = mp.

Proof. Clearly, we can skip a finite number of elements in (np) for which
m′p < mp. Thus, on the contrary assume there are infinitely many p such
that m′p < mp. By pruning the sequence (np), we can assume without loss of
generality that for every p ≥ 1, it holds m′p < mp and m′p ≤ m′p+1 because any
sequence of natural numbers contains an infinite nondecreasing subsequence.
According to (42),

lim
p→∞

(
ξ
(tnp+1+m

′
p+1)

1 (0np+11np+1)− ξ(tnp+m
′
p+1)

1 (0np1np)
)
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= lim
p→∞

β−(m′p+2)y
(tnp+1 )

1 (0np+1) +

m′p+1∑
k=1

bm′p−k+3 β
−k

−β−(m′p+2)y
(tnp )

1 (0np)−
m′p+1∑
k=1

bm′p−k+3 β
−k


= lim

p→∞
β−(m

′
p+2)

(
y
(tnp+1 )

1 (0np+1)− y(tnp )

1 (0np)
)

= 0 (43)

due to (31) and (32). By the maximality of m′p, we know ξ
(tnp+m

′
p+1)

1 (0np1np)

/∈ I. Hence, for a sufficiently large p, ξ
(tnp+1+m

′
p+1)

1 (0np+11np+1) /∈ I and

ξ
(tnp+2+m

′
p+1)

1 (0np+21np+1) /∈ I, according to (43), which means m′p = m′p+1 =
m′p+2 < mp+1 − 1 due to m′p < mp < mp+1. It follows from (3) and

(4) that y
(tnp+1+m

′
p+2)

1 (0np+11np) = y
(tnp+2+m

′
p+2)

1 (0np+21np) ∈ {0, 1} which
gives y(tnp+1+m

′
p+2)(0np+11np) = y(tnp+2+m

′
p+2)(0np+21np) by (36) for p + 1 and

k = m′p + 2 ≤ mp+1, implying the contradiction 0np+21np+1 ∈ L(N ). This
completes the proof that m′p = mp for every p ≥ 1. �

It follows from Lemma 1 that formula (42) provides β-expansions of ana-
log states

y
(t)
1 (0np1np) = ξ

(t−1)
1 (0np1np) = β−(t−tnp )y

(tnp )

1 (0np)+

t−tnp∑
k=1

bt−tnp−k+1 β
−k (44)

for every p ≥ 1 and tnp ≤ t ≤ tnp +mp + 1, when N reads ones preceded by
np zeros, using the digits from A, cf. (30).

3.5. Asymptotic Analog States

It follows from (35) and (44) that for every p ≥ 1,

y
(tnp+mp)

1 (0np1np) = β−mp y
(tnp )

1 (0np) +

mp∑
k=1

bmp−k+1 β
−k

< β−mp y
(tnp+1 )

1 (0np+1) +

mp∑
k=1

bmp−k+1 β
−k = y

(tnp+1+mp)

1 (0np+11np) (45)
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due to y
(tnp+mp)

1 (0np1np) = ξ
(tnp+mp−1)
1 (0np1np) and mp is even11. There exists

ṽ ∈ {0, 1}s−1 such that ỹ(tnp+mp)(0np1np) = ṽ for infinitely many p ≥ 1, since
there are only 2s−1 states of binary neurons, and by pruning the sequence
(np), we can assume without loss of generality that

ỹ(tnp+mp)(0np1np) = ṽ for every p ≥ 1 . (46)

Similarly, assume without loss of generality that there exists a binary neuron
j0 ∈ {2, . . . , s} such that

y
(tnp+mp+1)

j0
(0np1np) 6= y

(tnp+1+mp+1)

j0
(0np+11np) for every p ≥ 1 , (47)

according to (37), since there are only s − 1 binary neurons. It follows
from (47) that wj0,1 6= 0 because ỹ(tnp+mp)(0np1np) = ỹ(tnp+1+mp)(0np+11np) by
(36), and we can thus define

c = − 1

wj0,1

∑
i∈V ′

wj0,i y
(tnp+mp)

i (0np1np) , (48)

which is a consistent definition for different p ≥ 1 due to (46).
Hereafter, assume wj0,1 > 0, while the argument for wj0,1 < 0 is analo-

gous12. We have y
(tnp+mp+1)

j0
(0np1np) = 1 iff ξ

(tnp+mp)

j0
(0np1np) ≥ 0 iff

y
(tnp+mp)

1 (0np1np) ≥ c, according to (2), (3), (5), and (48), and similarly,

y
(tnp+1+mp+1)

j0
(0np+11np) = 1 iff y

(tnp+1+mp)

1 (0np+11np) ≥ c because of (46),
which implies

y
(tnp+mp)

1 (0np1np) < c ≤ y
(tnp+1+mp)

1 (0np+11np) (49)

by (45) and (47), corresponding to

0 = y
(tnp+mp+1)

j0
(0np1np) 6= y

(tnp+1+mp+1)

j0
(0np+11np) = 1 . (50)

11 Note that the less-than sign in (45) is replaced by the greater-than sign if either the

sequence y
(tnp )

1 (0np) is nonincreasing which is the opposite assumption to (33) and mp

remains even, or mp is odd and (33) holds.
12Note that for wj0,1 < 0, inequality (49) reads y

(tnp+mp)

1 (0np1np) ≤ c <

y
(tnp+1

+mp)

1 (0np+11np).
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According to (45) and (49), we obtain

y
(tnp )

1 (0np) < βmp

(
c−

mp∑
k=1

bmp−k+1 β
−k

)
≤ y

(tnp+1 )

1 (0np+1) (51)

for every p ≥ 1, due to mp is even, which implies

lim
p→∞

mp∑
k=1

bmp−k+1 β
−k = c (52)

due to (31) and (32). For p ≥ 1, we have

cp = lim
q→∞

y
(tnq+mp)

1 (0nq1np) = β−mpc0 +

mp∑
k=1

bmp−k+1β
−k (53)

according to (32) and (44), which implies

lim
p→∞

cp = c (54)

by (52).

3.6. Periodic Binary States

It follows from (51), (32), and (35) that for every p ≥ 1 and q > p,

βmp

(
c−

mp∑
k=1

bmp−k+1 β
−k

)
≤ y

(tnp+1 )

1 (0np+1) ≤ y
(tnq )

1 (0nq) < c0 (55)

which implies

c ≤ y
(tnp+1+mp)

1 (0np+11np) ≤ y
(tnq+mp)

1 (0nq1np) < cp (56)

by (45), (44), and (53) due to mp is even. For notational simplicity, we
further assume β > 1 while for β < −1 the argument is similar13. Thus, we
can define the intervals,

Ip,r =

[
β−rc+

r∑
k=1

bmp+r−k+1β
−k , β−rcp +

r∑
k=1

bmp+r−k+1β
−k

)
(57)

13For β < −1, the endpoints of intervals (57) are swapped for odd r.
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for every p ≥ 1 and r = 0, . . . , `p − 1, where `p = mp+1 − mp is even, for
which inequality (56) generalizes to

y
(tnq+mp+r)

1 (0nq1np+1) ∈ Ip,r for every q > p , (58)

since β > 1 and

y
(tnq+mp+r)

1 (0nq1np+1) = β−(mp+r)y
(tnq )

1 (0nq) +

mp+r∑
k=1

bmp+r−k+1β
−k

= β−r

(
β−mpy

(tnq )

1 (0nq) +

mp∑
k=1

bmp−k+1β
−k

)
+

r∑
k=1

bmp+r−k+1β
−k

= β−ry
(tnq+mp)

1 (0nq1np) +
r∑

k=1

bmp+r−k+1β
−k (59)

according to (44).
In the following lemma, we show by induction on r that for sufficiently

large p, the intervals Ip,r shrink for fixed r and the binary states become
periodic when N reads ones preceded by np zeros.

Lemma 2 There exists an integer p0 ≥ 1 such that for every p ≥ p0 and
r = 0, . . . , `p − 1,

Ip+1,r ⊂ Ip,r , (60)

ỹ(tnp+1+mp+r)(0np+11np+1) = ỹ(tnp+2+mp+1+r)(0np+21np+2) . (61)

Proof. For a sufficiently large p, we proceed by induction on r = 0, . . . ,
`p−1. For the base case r = 0, the length of Ip,0 = [c, cp) is β`p times greater
than that of the interval

Ip+1 =

[
β−`pc+

`p∑
k=1

bmp+1−k+1β
−k , cp+1

)
(62)

because cp+1 = β−`pcp+
∑`p

k=1 bmp+1−k+1β
−k by (53). It follows from (49) and

(44) that

β−`pc+

`p∑
k=1

bmp+1−k+1β
−k ≤ β−`py

(tnp+1+mp)

1 (0np+11np) +

`p∑
k=1

bmp+1−k+1β
−k

= y
(tnp+1+mp+1)

1 (0np+11np+1) < c , (63)
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which means Ip+1,0 = [c, cp+1) ⊂ Ip+1. Hence, cp+1 < cp and Ip+1,0 ⊂ Ip,0. In
addition,

ỹ(tnp+1+mp)(0np+11np+1) = ỹ(tnp+mp)(0np1np) = ṽ = ỹ(tnp+1+mp+1)(0np+11np+1)

= ỹ(tnp+2+mp+1)(0np+21np+2) (64)

by (36) and (46).
For the induction step, assume

Ip+1,k ⊂ Ip,k , (65)

ỹ(tnp+1+mp+k)(0np+11np+1) = ỹ(tnp+2+mp+1+k)(0np+21np+2) (66)

for every k = 0, . . . , r − 1. According to (40) and (66), we obtain

bmp+k = β
∑
i∈V ′

w1iy
(tnp+1+mp+k−1)
i (0np+11np+1)

= β
∑
i∈V ′

w1iy
(tnp+2+mp+1+k−1)
i (0np+21np+2) = bmp+1+k (67)

for k = 1, . . . , r. Hence, the intervals Ip,r and Ip+1,r have the same left
endpoint by definition (57) which ensures Ip+1,r ⊂ Ip,r due to their right
endpoints satisfy cp+1 < cp, which completes the induction step for (60).

Furthermore, suppose on the contrary that

ỹ(tnp+1+mp+r)(0np+11np+1) 6= ỹ(tnp+2+mp+1+r)(0np+21np+2) , (68)

which means there is j1 ∈ {2, . . . , s} such that

y
(tnp+1+mp+r)

j1
(0np+11np+1) 6= y

(tnp+2+mp+1+r)

j1
(0np+21np+2) . (69)

It follows that wj1,1 6= 0 since by (66) we know

ỹ(tnp+1+mp+r−1)(0np+11np+1) = ỹ(tnp+2+mp+1+r−1)(0np+21np+2) . (70)

We define

c′ = − 1

wj1,1

∑
i∈V ′

wj1,i y
(tnp+1+mp+r−1)
i (0np+11np+1) . (71)

We can distinguish four cases depending on the sign of wj1,1 and the binary

state value y
(tnp+1+mp+r)

j1
(0np+11np+1) ∈ {0, 1}. For example, consider hereafter
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the case when wj1,1 > 0 and y
(tnp+1+mp+r)

j1
(0np+11np+1) = 1 which ensures

y
(tnp+2+mp+1+r)

j1
(0np+21np+2) = 0 by (69), while the argument for the remaining

cases is similar14. By the analogy to (47)–(49), we have

ξ
(tnp+2+mp+1+r)

j1
(0np+21np+2) < 0 ≤ ξ

(tnp+1+mp+r−1)
j1

(0np+11np+1) (72)

which reduces to

y
(tnp+2+mp+1+r−1)
1 (0np+21np+2) < c′ ≤ y

(tnp+1+mp+r−1)
1 (0np+11np+1) . (73)

according to (71) and (70).
Suppose that c′ ∈ Ip+1,r−1 ⊂ Ip,r−1. Since

lim
q→∞

y
(tnq+mp+1+r−1)
1 (0nq1np+2) = β−(r−1)cp+1 +

r−1∑
k=1

bmp+1+r−k+1β
−k (74)

by (53) and (59), which is the right endpoint of the interval Ip+1,r−1 3 c′,

there exists q > p + 2 such that y
(tnq+mp+1+r−1)
1 (0nq1np+2) ≥ c′. Hence,

0 = y
(tnp+2+mp+1+r)

j1
(0np+21np+2) 6= y

(tnq+mp+1+r)

j1
(0nq1np+2) = 1 by (73), which

contradicts (36). We conclude that c′ /∈ Ip+1,r−1, that is, c′ /∈ Iq,r−1 ⊆ Ip+1,r−1
for every q > p, by (65), which ensures

y
(tnq+1+mq+r)

j1
(0nq+11nq+1) = y

(tnq+2+mq+1+r)

j1
(0nq+21nq+2) for every q > p (75)

according to (58) whereas (69) reduces to (73). Since by (71) there are only
(s−1)2s−1 possible values of c′ for different j1 ∈ {2, . . . , s} and ỹ(tnp+1+mp+r−1)

(0np+11np+1) ∈ {0, 1}s−1, there exists p0 such that for every p ≥ p0, any such
value does not belong to Ip+1,r−1 by (54) and (65), which gives

ỹ(tnp+1+mp+r)(0np+11np+1) = ỹ(tnp+2+mp+1+r)(0np+21np+2) . (76)

This completes the induction step for (61) and the proof of Lemma 2. �

14Note that for wj1,1 < 0, inequality (73) reads y
(tnp+1

+mp+r−1)
1 (0np+11np+1) ≤

c′ < y
(tnp+2

+mp+1+r−1)
1 (0np+21np+2), whereas y

(tnp+1
+mp+r−1)

1 (0np+11np+1)

and y
(tnp+2

+mp+1+r−1)
1 (0np+21np+2) are swapped in these inequalities when

y
(tnp+1

+mp+r)

j1
(0np+11np+1) = 0.
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3.7. The Periodicity Prevents from Separating Analog States

It follows from Lemma 2 that for all sufficiently large p ≥ p0,

b′r = bmp+r = bmp+1+r for r = 1, . . . , `p = ` , (77)

according to (40) and (61), which implies

c = B

∞∑
q=1

β−`(q−1) =
B

1− β−`
(78)

where B =
∑`

r=1 b
′
`−r+1β

−r, due to (52). Hence,

βmp−mp0

(
c−

mp−mp0∑
k=1

bmp−k+1β
−k

)

= β`(p−p0)

(
B
∞∑
q=1

β−`(q−1) −B
p∑

q=p0+1

β−`(p−q)

)
= B

∞∑
q=1

β−`(q−1) = c , (79)

which ensures that the expression

βmp

(
c−

mp∑
k=1

bmp−k+1 β
−k

)

= βmp0

(
βmp−mp0

(
c−

mp−mp0∑
k=1

bmp−k+1β
−k

)
−

mp0∑
k=1

bmp0−k+1β
−k

)

= βmp0

(
c−

mp0∑
k=1

bmp0−k+1β
−k

)
= C (80)

is constant for every p ≥ p0. According to (51), we have

y
(tnp )

1 (0np) < C ≤ y
(tnp+1 )

1 (0np+1) (81)

for every p ≥ p0, which is a contradiction. This completes the proof of
Theorem 1. �
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4. Two Analog Neurons Accept Deterministic Languages

We have proven in Section 3 that one extra analog unit in 1ANNs is not
sufficient for recognizing the DCFL L# = {0n1n |n ≥ 1}. In this section, we
show that any DPDA can be simulated by a 2ANN with rational weights.
Thus, the DCFLs including L# (see Example 2) are recognized by 2ANNs
with two extra analog unit, which means DCFLs ⊂ 2ANNs. This provides
the separation 1ANNs $ 2ANNs of the second level in the analog neuron
hierarchy (see Figure 1).

The main idea of simulating DPDAs by 2ANNs is based on the classical
technique of implementing the PDA’s stack by two analog neurons, one for
the pop operation and the other one for push, where the stack contents are
encoded by analog states using a Cantor-like set (Siegelmann and Sontag,
1995). The technical part of the proof then consists in synchronizing the
swap operation on the states of analog neurons.

We recall a formal definition of a deterministic pushdown automaton
(DPDA) which is a septupleM = (Q,Σ,Γ, q0, Z0, F, δ) whereQ 6= ∅ is a finite
set of states, Σ and Γ are finite sets of input and stack symbols, respectively,
which are assumed for simplicity to be the binary alphabet Σ = Γ = {0, 1}.
In addition, q0 ∈ Q is the start state, Z0 ∈ Γ is the initial stack symbol, and
F ⊆ Q is the set of accepting states. Moreover,

δ : Q× (Σ ∪ {ε})× Γ −→ P(Q× Γ∗) (82)

is a transition function that given a current state q ∈ Q ofM, a next symbol
x ∈ Σ ∪ {ε} of an input word which is read from left to right (including the
empty string ε, which means no symbol is read), and a symbol Z ∈ Γ on
the top of the stack, produces either the empty set δ(q, x, Z) = ∅ (i.e. M
halts), or a one-element set δ(q, x, Z) = {(q′, γ)} with a new state q′ ∈ Q
and a string γ ∈ Γ∗ that replaces Z on the top of the stack where the first
symbol of γ becomes the top element. In order to ensure that M is truly
deterministic, it is assumed that for any q ∈ Q, Z ∈ Γ, if δ(q, ε, Z) 6= ∅, then
δ(q, x, Z) = ∅ for every x ∈ Σ.

An input word x ∈ Σ∗ is accepted byM if there is a (unique) sequence of
transitions ofM defined by δ, from the start state q0 with the initial symbol
Z0 on the stack, which, by reading x, terminates in an accepting state from F .
We say that a language L ⊆ Σ∗ is accepted by a DPDAM, which is denoted
as L = L(M), if for any input x ∈ Σ∗, M accepts x iff x ∈ L. The class of
languages accepted by DPDAs establishes the class of DCFLs.
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In addition, we assume without loss of generality that if δ(q, x, Z) =
{(q′, γ)}, then the length |γ| of string γ is at most 2 and γ = Z ′Z for some
Z ′ ∈ Γ, if |γ| = 2. Note that there are only finitely many instructions in
M because the domain Q × (Σ ∪ {ε}) × Γ of δ in (82) is finite. Thus, any
instruction with |γ| > 2 can always be replaced by a unique sequence of new
instructions (for which new states are introduced in Q) that push the string γ
successively symbol by symbol to the stack.

Theorem 2 For any deterministic context-free language L ⊆ {0, 1}∗, there
is a 2ANN N with two extra analog units having rational weights, which
accepts L = L(N ).

Proof. Let L = L(M) be accepted by a DPDAM = (Q,Σ,Γ, q0, Z0, F, δ).
We will construct a 2ANN N with two extra analog units that accepts the
same language L = L(N ) = L(M) by simulating the DPDA M. A scheme
of the architecture of N is depicted in Figure 3 where the directed edges
connecting neurons are labeled with the respective weights, while the edges
drawn without the originating unit 0 ∈ V ′ correspond to the biases.

The stack of M is realized by the two analog neurons 1, 2 ∈ V of N ,
where the first unit implements the top and push operations while the pop

operation is performed by the second analog neuron. The current contents
of the stack, Z1 . . . Zp ∈ Γp = {0, 1}p are encoded by the state of an analog
neuron,

ycurk =

p∑
i=1

2Zi + 1

4i
∈ I for k ∈ {1, 2} , (83)

using a Cantor-like set which allows an efficient neuronal implementation
of the stack operations (Siegelmann and Sontag, 1995), producing the new
states ynew1 , ynew2 of analog neurons:

top = H(2ycur1 − 1) ∈ {0, 1} (84)

push(Z) : ynew1 = σ

(
1

4
ycur1 +

1

2
Z +

1

4

)
∈ I (85)

pop : ynew2 = σ(4ycur2 − 2top− 1) ∈ I (86)

where the activation functions (5) and (4) are used.
The finite control of M which carries out the state transitions defined

by the transition function δ, is implemented by binary neurons. We will
describe its functionality while the omitted technical details are ensured using
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Figure 3: A schema of 2ANNs simulating DPDAs.

known techniques of implementing finite automata by neural networks with
integer weights (Horne and Hush, 1996; Indyk, 1995; Minsky, 1967; Š́ıma
and Wiedermann, 1998). At the beginning of the simulation ofM by N , the
stack is initialized by the initial stack symbol Z0. This is implemented by a
special binary neuron init ∈ V ′ which is only active initially, that is, y

(t)
init = 1

iff t = 0. Thus, init with the bias winit,0 = −1 is connected to the first analog
neuron 1 ∈ V via the weight

w1,init =
2Z0 + 1

4
, (87)

which encodes the stack contents Z0 by analog state y
(1)
1 = (2Z0 + 1)/4,

according to (83). Then, each transition of M is realized by one so-called
macrostep τ ≥ 1 which is composed of 12 computational steps of N , starting
at the discrete global time instant t = 12(τ − 1) + 1 (including one more
step for the stack initialization at t = 1). Hereafter, for simplicity, we use
the local computational time t = 0, 1, 2, . . . , 12 of N which is related to the
macrostep. The state evolution of relevant neurons during the macrostep is
presented in Table 2.

At the beginning of the macrostep when t = 0, the state of the first analog
neuron 1 ∈ V encodes the current contents of the stack, that is, y

(0)
1 = z ∈ I
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by (83). The storage of the stack contents alternates between the two analog
neurons 1, 2 ∈ V which are connected by the weights

w12 = w21 = 1 . (88)

These unit weights copy the state from the first analog neuron to the second
one and back, under the control of binary neuron ctrl ∈ V ′. During the
macrostep, the output of ctrl produces a sequence of binary states given by
the regular expression

1(01)3(110 + 010)(001 + 101) (89)

starting with y
(0)
ctrl = 1, where the substrings 110 and 001 deviating from the

regular signal (01)∗ correspond to the pop and push operations, respectively,
if they occur, as described below. For this purpose, the weights

w1,ctrl = −W , w2,ctrl = W , w20 = −W (90)

are introduced, where W > 0 is a sufficiently large positive parameter exclud-
ing the influence from other neurons. It follows from (3), (4), and (88)–(90)
that

z = y
(0)
1 = y

(1)
2 = y

(2)
1 = y

(3)
2 = y

(4)
1 = · · · (91)

0 = y
(0)
2 = y

(1)
1 = y

(2)
2 = y

(3)
1 = y

(4)
2 = · · · , (92)

as shown in Table 2.
At the time instant t = 1 of the macrostep, the binary neuron top ∈ V ′

reads the top element Z ∈ Γ from the stack, that is, y
(1)
top = Z ∈ {0, 1}, which

is implemented by the weights

wtop,1 = 2, wtop,0 = −1 (93)

according to (84). At the time instant t = 2, the network N finds out for
this top symbol Z whether δ(q, ε, Z) = ∅, where q ∈ Q is a current state of
M encoded by some binary neurons in the subnetwork of N implementing
the finite control of M. If δ(q, ε, Z) = ∅, then the input/output protocol
(6) and (7) is employed at the time instant t = 3, which means N signals

y
(3)
nxt = 1, and y

(3)
out = 1 iff q ∈ F is an accepting state, while reading the

next input symbol y
(4)
inp = x ∈ {0, 1} at the time instant t = 4. Anyway,
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t y
(t)
1 y

(t)
2 y

(t)
ctrl y

(t)
z0 y

(t)
z1 y

(t)

z′0
y
(t)

z′1
y
(t)
top y

(t)
nxt y

(t)
out y

(t)
inp operation

0 z 0 1 0 0 0 0 0 0 0

1 0 z 0 0 0 0 0 Z 0 0 0

2 z 0 1 0 0 0 0 0 0 0

3 0 z 0 0 0 0 0 1 q ∈ F 0 top

4 z 0 1 0 0 0 0 0 0 x

5 0 z 0 0 0 0 0 0 0 0

6 z 0 1 0 0 0 0 0 0 0

7 0 z 1 0 0 0 0 0 0 0
pop

8 0 2z 1 Z = 0 Z = 1 0 0 0 0 0

9 0 z′ = 4z − 2Z − 1 0 0 0 0 0 0 0 0

10 z′ 0 0 0 0 0 0 0 0 0
push11 z′

2
0 0 0 0 Z ′ = 0 Z ′ = 1 0 0 0

12 ≡ 0 z′′ = z′

4
+ Z′

2
+ 1

4
0 1 0 0 0 0 0 0 0

Table 2: The macrostep of 2ANN N simulating one transition of DPDAM (including the
pop and push operations).

the next two steps t = 5, 6 of the macrostep are exploited for evaluating the
transition function δ(q, x, Z) where x = ε is the empty word if δ(q, ε, Z) 6= ∅.
If δ(q, x, Z) = ∅, then the simulation by N terminates (e.g. all the neurons
in the network are reset by a large negative weight) since the computation
of M halts.

Thus, assume δ(q, x, Z) = {(q′, γ)} where q′ ∈ Q is the new state of M,
for which the old one encoded by the binary neurons in N , is substituted,
and γ ∈ Γ∗ replaces the top symbol on the stack. If |γ| ≤ 1, then the top
symbol Z is popped from the stack during the time instants t = 7, 8, 9 of the
macrostep. Namely, at the time instant t = 7, the current contents of the
stack are stored by the second analog neuron as y

(7)
2 = z. The pop operation

is implemented by the weights

w22 = 2 (94)

w2,z0 = −1 , w2,z1 = −3 (95)

from the binary neurons z0, z1 ∈ V ′ whose outputs are activated at the time
instant t = 8 of the macrostep with respect to the top stack element Z so
that

y(8)zb
= 1 iff Z = b ∈ {0, 1} . (96)

Moreover, we know y
(7)
ctrl = y

(8)
ctrl = 1 and y

(9)
ctrl = 0 by (89) when the pop
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operation applies (otherwise, y
(7)
ctrl = 0). Hence, y

(8)
2 = 2z by (94), and

y
(9)
2 = 4z − 2top− 1 = z′ ∈ I (97)

due to (94)–(96), which pops the top symbol Z = top from the stack accord-
ing to (86).

If |γ| ≥ 1, then either γ = Z ′ or γ = Z ′Z, where Z ′ ∈ Γ is the new top
symbol which is pushed to the stack during the time instants t = 10, 11, 12
of the macrostep. Namely, at the time instant t = 10, the current contents
of the stack are stored by the first analog neuron as y

(10)
1 = z′. The push(Z ′)

operation is implemented by the weights

w11 = 1
2

(98)

w1,z′0
= 1

4
, w1,z′1

= 3
4

(99)

from the binary neurons z′0, z
′
1 ∈ V ′ whose outputs are activated at the time

instant t = 11 of the macrostep with respect to the new top stack element
Z ′ so that

y
(11)

z′b
= 1 iff Z ′ = b ∈ {0, 1} . (100)

Moreover, we know y
(10)
ctrl = y

(11)
ctrl = 0 and y

(12)
ctrl = 1 by (89) when the push

operation applies (otherwise, y
(10)
ctrl = 1). Hence, y

(11)
1 = z′

2
by (98), and

y
(12)
2 = z′

4
+ Z′

2
+ 1

4
= z′′ ∈ I (101)

due to (98)–(100), which pushes the symbol Z ′ to the stack according to (85).
At the time instant t = 12, the macrostep of N simulating one transition

ofM using rational weights is finished while the new contents z′′ of the stack
are stored by the first analog neuron as required for the next macrostep. This
completes the simulation and the proof of Theorem 2. �

Example 2 We illustrate Theorem 2 on an example of a 2ANN N# that
accepts the language L(N#) = L# = {0n1n |n ≥ 1}, which cannot be rec-
ognized by any 1ANN according to Theorem 1. For this purpose, we first
shortly introduce a simple DPDA M# = (Q,Σ,Γ, q0, Z0, F, δ) that accepts
L(M#) = L#, where Q = {q0, q1, q2}, Σ = Γ = {0, 1}, Z0 = 1, F = {q2},
while the values of δ not equal to the empty set, are defined as

δ(q0, 0, 1) = {(q0, 01)}, δ(q0, 0, 0) = {(q0, 00)}, δ(q0, 1, 0) = {(q1, ε)} , (102)

δ(q1, 1, 0) = {(q1, ε)}, δ(q1, ε, 1) = {(q2, ε)}. (103)
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Figure 4: Example of a 2ANN N# recognizing L# = {0n1n |n ≥ 1}.

The DPDAM# starts at the state q0 with the initial stack symbol Z0 = 1
which serves for detecting the empty stack at the end of its computation. At
the start state q0, M# pushes the symbol 0 to the stack as long as it reads
the input symbol 0, while M# goes to the state q1 when the symbol 1 first
occurs at the input, according to (102). At the state q1, M# pops one
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symbol 0 from the stack for each input symbol 1 that is read, by (103).
Finally,M# accepts the input in the accepting state q2 iff the stack contains
only the initial symbol Z0 = 1 after the input has been read. Clearly, only
the input words composed of n zeros followed by the same number n of ones,
are accepted by M#, which means L(M#) = L#.

The general construction of a 2ANN N# corresponding to the DPDA
M# as it is described in the proof of Theorem 2, leads to an unnecessarily
complicated architecture of N#, which would not be too illustrative. For-
tunately, this construction can substantially be simplified in the particular
case of L#. Note that M# employs first a sequence of the push operations
and only then the pop operations are applied. Thus, there is no need for
swapping the storage of the stack between the two analog neurons such as
(91) and (92). In addition, M# exploits, in fact, only one stack symbol 0
whereas the initial stack symbol 1 is used solely for detecting the empty stack
which can directly be implemented in N#. Hence, the unary stack contents
0p can be encoded only by the negative powers 2−p−1 which simplifies the
original encoding (83).

The architecture of such a simplified N# is depicted in Figure 4. We

assume that N# starts with the zero initial states except for y
(0)
1 = y

(0)
nxt =

y
(0)
init = 1. Note that the state of binary neuron nxt ∈ V ′ then meets y

(0)
nxt = 1

for every t ≥ 0, because of its positive self-loop weight wnxt,nxt = 1. According
to the input/output protocol (6) and (7), an input word x = x1 . . . xn ∈
{0, 1}n is thus presented online, bit by bit, at each time instant τk = k for

k = 1 . . . , n, which means y
(0)
inp = 0 and y

(t)
inp = xt for t = 1, . . . , n, whereas

y
(t+1)
out = 1 iff x1 . . . xt ∈ L#, particularly, y

(n+1)
out = 1 iff x ∈ L#. The four

binary neurons init, 3, 4, 5 ∈ V ′ in N# serve for processing the rejected inputs
that start with 1 and the accepted single input 01. This part of N# which
is discussed below, illustrates techniques of the finite control design whose
details have been omitted in the proof of Theorem 2.

Thus, we first consider the case when an input starts with the prefix 00.
For example, Table 3 shows the state evolution of relevant neurons for the
input x = 0p1p ∈ L# with p = 4, where the input bits and the resulting
output are indicated in boldface. At the time instant t = 1, the initially
active analog neuron 1 ∈ V divides its state by two as y

(1)
1 = y

(0)
1 /2 = 1

2

because of its self-loop weight w11 = 1
2

and y
(0)
inp = 0. This is further repeated

at the time instants t = 2, 3, . . . , p + 1 when the zero bits from the prefix
0p of input x are processed. This simulates pushing the p input bits 0 to
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t y
(t)
inp y

(t)
1 y

(t)
2 y

(t)
out

0 0 1 0 0

1 0 1
2

0 0

2 0 1
4

0 0

3 0 1
8

0 0

4 0 1
16

0 0

5 1 1
32

0 0

6 1 0 1
16

0

7 1 0 1
8

0

8 1 0 1
4

0

9 0 0 1
2

1

10 0 0 0 0

Table 3: The accepting computation by the 2ANN N# from Figure 4 on the input
00001111.

the stack which results in the analog state y
(p+1)
1 = 1

2p+1 encoding the stack
contents 0p. At the time instant p+ 2 when the first input bit 1 is processed,
this analog value is multiplied by w21 = 2 and moved to the second analog
neuron 2 ∈ V since the weight w2,inp = 4 cancels its bias w20 = −4 when

y
(p+1)
inp = 1, that is, y

(p+2)
1 = 1

2p
, which simulates popping one 0 from the top

of the stack. Note that at the same time, the state of the first analog neuron
resets to y

(p+2)
1 = 0 by the negative weight w1,inp = −1, which is further

clamped because of its only positive self-loop weight.
The underlying popping is then repeated for each bit 1 of the input suf-

fix 1p at the time instants t = p + 2, . . . , 2p until the last bit 1 is presented
to N#, when y

(2p)
2 = 1

4
encodes the stack contents 0. At the time instant

t = 2p + 1 when the last input bit 1 is processed, the output neuron fires
y
(2p+1)
out = 1 iff y

(2p)
1 = 1 and y

(2p)
2 ≥ 1

4
due to its weights wout,inp = 1,

wout,2 = 4, and bias wout,0 = −2, which means iff N# reads the last input
bit 1 and the stack contains the last symbol 0. This provides the correct
result of recognition, accepting the input x ∈ L#. In addition, at the next
time instant t = 2p+ 2, the active output neuron resets itself and the second
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t y
(t)
inp y

(t)
1 y

(t)
2 y

(t)
init y

(t)
3 y

(t)
4 y

(t)
5 y

(t)
out

0 0 1 0 1 0 0 0 0

1 1 1
2

0 0 1 0 0 0

2 x2 0 1 0 0 0 1 0

3 x3 0 x2 0 0 0 1 0

Table 4: The rejecting computation by the 2ANN N# from Figure 4 on an word input
starting with 1.

analog neuron as y
(2p+2)
out = y

(2p+2)
2 = 0 via the negative weights wout,out = −2

and w2,out = −1, respectively, which stops the simulation of M#.
Furthermore, Table 4 shows the state evolution of relevant neurons in N#

for an input word x = 1x2x3 . . . xn ∈ {0, 1}n that starts with 1. At the time

instant t = 1, we have y
(1)
1 = 1

2
, and the initially active neuron init ∈ V ,

which itself resets to y
(1)
init = 0 by its negative bias winit,0 = −1, ensures

y
(1)
3 = 1 via the weight w3,init = 1 balancing the bias w30 = −1. At the time

instant t = 2, the neuron 5 ∈ V fires iff y
(1)
3 = 1 and y

(1)
inp = 1 because of

the weights w53 = w5,inp = 1 and bias w50 = −2, which detects that x starts
with 1. If this is the case, then its state is clamped by the positive self-loop
weight w55 = 2, that is, y

(t)
5 = 1 for every t ≥ 2, which prevents the output

neuron out ∈ V from being activated due to the negative weight wout,5 = −4.
In particular, the excitation

ξ
(2)
out = wout,0 + wout,inpx2 + wout,2y

(2)
2 + wout,5y

(2)
5

= −2 + 1 · x2 + 4 · 1− 4 · 1 < 0 , (104)

by (2), which implies y
(2)
out = 0 according to (5). Hence, the input 1x2x3 . . . xn /∈

L# is correctly rejected.
Finally, we check that the single input 01 ∈ L# is accepted by N# whose

computation is outlined in Table 5. As in the previous case described in
Table 4, we have y

(1)
3 = 1 which now produces y

(2)
4 = 1 via the weight w43 = 1

balancing its negative bias w40 = −1 since y
(1)
inp = 0 cancels the negative

weight w4,inp = −1. Hence, y
(3)
out = 1 because y

(2)
inp = 1, wout,4 = wout,inp = 1,

and wout,0 = −2. Thus, the input 01 ∈ L# is accepted by N#. Moreover,

y
(3)
out = 1 resets N# for time t ≥ 4 as in the case presented in Table 3. This

completes Example 2.
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t y
(t)
inp y

(t)
1 y

(t)
2 y

(t)
init y

(t)
3 y

(t)
4 y

(t)
5 y

(t)
out

0 0 1 0 1 0 0 0 0

1 0 1
2

0 0 1 0 0 0

2 1 1
4

0 0 0 1 0 0

3 0 0 1
2

0 0 0 0 1

Table 5: The accepting computation by the 2ANN N# from Figure 4 on the input 01.

5. Simulating a Turing Machine Using Three Analog Neurons

In this section, we prove that any TM can be simulated by a 3ANN having
rational weights with a linear-time overhead. This means that recursively
enumerable languages are accepted by 3ANNs with rational weights. In other
words, this model including only three analog neurons is Turing-complete,
being able to compute any algorithmically computable function. On the
other hand, αANNs with rational weights can in principle be simulated by
TMs for any α ≥ 0, which implies the collapse of the analog neuron hierarchy
at the third level: αANNs = 3ANNs = TMs for every α ≥ 3 (see Figure 1).

The main idea of simulating TMs by 3ANNs is the same as in Section 4,
which is based on the technique of implementing the PDA’s stack by two ana-
log neurons, one for the pop operation and the other one for push, where the
stack contents are encoded by analog states using a Cantor-like set (Siegel-
mann and Sontag, 1995). Since two stacks are known to be sufficient for
simulating TMs, the technical part of the proof reduces to synchronizing the
swap operation on the states of analog neurons, which employs the third
auxiliary analog neuron.

We recall a formal definition of a Turing machine (TM) which is a quin-
tuple M = (Q,Σ, δ, q0, F ) where Q 6= ∅ is a finite set of states and Σ 6= ∅
is a finite set of tape alphabet symbols including the blank symbol B ∈ Σ,
while Σ \ {B} 6= ∅ serves as an input alphabet. In addition, q0 ∈ Q is the
initial state and F ⊆ Q is the set of final or accepting states. Apart from
the finite control unit which stores the current state, M has a tape which is
arbitrarily extendable to the left and to the right. We assume without loss of
generality that the tape and input alphabets coincide in the binary alphabet
Σ = {0, 1} which is sufficient for encoding the blank symbol B uniquely (e.g.
each symbol is encoded by two bits) so that there is the infinite string 0ω to

37



the left and to the right of the tape.
At startup, M begins in the initial state q0 with an input word x =

x1 . . . xn ∈ {0, 1}n written on the tape so that x1 is under the tape head.
Furthermore,

δ : (Q \ F )× Σ −→ Q× Σ× {L,R} (105)

is a partial function called the transition function ofM that given its current
state qcur ∈ Q and a symbol x ∈ Σ under the head, produces

δ(qcur, x) = (qnew, b, d) (106)

(if defined for qcur and x) where qnew ∈ Q is its new state, b ∈ Σ is a symbol
to overwrite x on the tape, and a direction d ∈ {L,R} for the tape head
to move, which is either left shift for d = L or right shift for d = R. If
δ is not defined on the current state and the tape symbol under the head,
thenM halts. Finally, the input word x is accepted if there is a sequence of
transitions ofM defined by δ, which terminates in an accepting state from F .
We say that a language L ⊆ Σ∗ is accepted by a TM M, which is denoted
as L = L(M), if for any input x ∈ Σ∗, M accepts x iff x ∈ L. The class of
languages accepted by TMs establishes the class of recursively enumerable
languages.

The following theorem shows how to simulate a TM by a 3ANN with
rational weights and a linear-time overhead.

Theorem 3 Given a Turing machineM that accepts a language L = L(M)
in time T (n) ≥ n, there is a 3ANN N with rational weights, which accepts
the same language L = L(N ) in time O(T (n)).

Proof. Let L = L(M) be accepted by a TM M = (Q,Σ, δ, q0, F ) in time
T (n) ≥ n. We will construct a 3ANNN with the set of neurons V , simulating
the Turing machine M so that L = L(N ) = L(M). For this purpose, we
use two stacks s1 and s2. One stack holds the contents of the tape to the left
of the head ofM while the other stack stores the right part of the tape. We
assume that the first stack s1 implements only the push(b) operation adding
a given element b to the top of s1, whereas the second stack s2 allows only for
the top and pop operation which reads and removes the top element of s2,
respectively. In addition, the top element of s2 models a symbol currently
under the head of M. In order to compensate for these restriction, we
introduce the swap operation which exchanges the contents of s1 and s2,
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while the finite control unit remembers in its current state which part of the
tape contents ccur ∈ {L,R}, either to the left of the head for ccur = L or to
the right for ccur = R, is stored in the second stack s2.

We show how to implement one instruction δ(qcur, x) = (qnew, b, d) of M,
introduced in (106), by using the two stacks s1 and s2 and their operations
push(b), top, pop, and swap. The transition from its current state qcur to the
new state qnew is realized by the finite control unit, while the tape update
takes place in the stacks, for which we distinguish two cases, a so-called short
and long instruction.

The short instruction applies when d = ccur. In this case, the two opera-
tions

push(b); pop (107)

implement the corresponding update of the tape contents so that x under
the head ofM is overwritten by b, the head moves to a new symbol which is
next in the desired direction d and appears at the top of s2, while cnew = ccur
is preserved. For the long instruction when d 6= ccur, the following sequence
of five operations

push(top); pop; swap; push(b); pop (108)

is employed where the first two operations push(top); pop shift the current
symbol x = top under the head of M from the top of s2 to the top of s1.
Then the swap operation exchanges the contents of s1 and s2 so that x is
back at the top of s2. Now, cnew = d 6= ccur, which ensures the conversion to
the previous case, and hence, the last two operations of (108) coincide with
the short instruction (107).

The stacks s1 and s2 are implemented by the first two analog neurons
1, 2 ∈ V \V ′, respectively. The contents a = a1 . . . ap ∈ {0, 1}∗ of stack sk for
k ∈ {1, 2}, where a1 is the top element of sk, are represented by the analog
state yk of neuron k ∈ V , using the encoding γ : {0, 1}∗ −→ I,

yk = γ (a1 . . . ap) =

p∑
i=1

26 (ai + 1)− 1

(27)i+1 ∈
[
0 , 1

27

)
⊂ I . (109)

All the possible analog state values generated by the encoding (109) create a
Cantor-like set so that two strings with distinct top symbols are represented
by two sufficiently separated numbers (Siegelmann and Sontag, 1995). In
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particular, for a 6= ε, we have

a1 =


0 if γ (a1 . . . ap) ∈

[
26−1
214

, 1
28

)
1 if γ (a1 . . . ap) ∈

[
27−1
214

, 1
27

)
,

(110)

which can be used for reading the top element from the stack s2 (i.e. the
current tape symbol under the head of M) by a binary neuron employing
the Heaviside activation function (5):

top = 1 iff − 1 + 28y2 ≥ 0 . (111)

Furthermore, the push(b) and pop operation can be implemented by
the analog neuron 1, 2 ∈ V , respectively, employing the linear part of the
saturated-linear activation function (4), as

push(b) : ynew1 = ξcur1 =
26 (b+ 1)− 1

214
+

1

27
· ycur1

=
26 − 1

214
+

1

28
· b+

1

27
· ycur1 ∈

[
0 , 1

27

)
(112)

pop : ynew2 = ξcur2 =
1− 26(top + 1)

27
+ 27 · ycur2

=
1− 26

27
− 1

2
· top + 27 · ycur2 ∈

[
0 , 1

27

)
(113)

according to (109), where ynewk and ycurk (ξcurk ) for k ∈ {1, 2}, denotes the
analog state (excitation) of neuron k ∈ V , encoding the new and current
contents of stack sk, respectively.

According to Horne and Hush (1996), one can construct a binary-state
(size-optimal) neural network N c with integer weights that implements the
finite control of Turing machine M (i.e. a finite automaton). In this way,
N c is a subnetwork of the 3ANN N with binary neurons in V c ⊂ V ′ = V \
{1, 2, 3}, which evaluates the transition function δ ofM, introduced in (105)
and (106), within four time steps by using the method of threshold circuit
synthesis due to Lupanov (1973) (cf. Š́ıma, 2014). Moreover, one can ensure
thatN c operates in the fully parallel mode by using the technique of Orponen
(1997). Thus, N c holds internally a current state qcur of M and receives a
current symbol x ∈ {0, 1} under the tape head of M (which is stored at the
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top of stack s2) via the neuron hd ∈ V c implementing the top operation.
Then, N c computes δ (qcur, x) = (qnew, b, d) within four computational steps,
replaces the current state qcur with qnew, and outputs a symbol b ∈ {0, 1}
to overwrite x, via the neuron ow ∈ V c. In addition, N c holds a current
value of ccur ∈ {L,R} which together with the calculated direction of head
move d ∈ {L,R}, decides if a short or long instruction applies, depending on
whether or not ccur = d.

At the beginning of the simulation, N c holds the initial state of M and
the stacks s1, s2 contain the initial tape contents including an input word
x = x1 . . . xn ∈ {0, 1}n, which are encoded by the analog states at the time
instant t0 > 0,

y
(t0)
1 = γ (0ω) =

∞∑
i=1

26 − 1

(27)i+1 =
26 − 1

27(27 − 1)
=

63

16256
∈
[
0 , 1

27

)
(114)

y
(t0)
2 = γ (x0ω) =

n∑
i=1

26 (xi + 1)− 1

(27)i+1 +
26 − 1

2n+1(27 − 1)
∈
[
0 , 1

27

)
, (115)

according to (109). In accordance with (114) and (115), the first two analog
neurons can be initialized with the value γ(0ω) by the technique introduced
in (87). In addition, N reads the input word x whose end can be delimited
by the blank symbol, bit after bit according to the input protocol (6). Each
input bit is pushed to the stack by using (112) so that the initialization of

y
(t0)
2 , which meets (115), is achieved in linear time t0 = O(n). We omit the

technical details of this initialization process whose implementation will be
clear from the detailed description of the simulation below.

One computational step of M is simulated within one macrostep of N
which takes 7 computational steps for a short instruction, while a long one
consumes 18 steps of N . Hereafter, the computational time t of N is related
to the macrostep. At the beginning of the macrostep when t = 0, the states
of analog neurons 1, 2 ∈ V encode the stack contents by the rational number
zk ∈

[
0, 1

27

)
according to (109), that is, y

(0)
k = zk for k ∈ {1, 2}. Then, N c

reads the top element of s2 via the neuron hd ∈ V c at the time instant t = 1
of the macrostep, which is implemented by the integer weights

whd,0 = −1 , whd,2 = 28 , (116)

implying y
(1)
hd = top by (111). On the other hand, N c outputs a symbol

b ∈ {0, 1} to overwrite the current tape cell under the head via the neuron
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pop1 pop2 bias 1 2 3

0 −1 −1 0 0 0 1
4

ow 0 0 0 1
28

0 0

c1 −23 0 0 0 0 0

c2 0 −23 0 0 0 0

c3 0 0 -1 0 0 -5

c4 0 0 0 26−1
214

1−26
27

0

pop1 0 0 0 1
28

−1
2

0

pop2 0 0 0 0 −1
2

0

bias 0 0 0 −1
4

1
4

0

1 0 0 0 1
2

0 −1
4

2 23 23 0 0 2 4

3 0 0 0 1 -1 0

Table 6: The weight matrix with wji in the ith row and jth column for j ∈ V \ V c.

ow ∈ V c either at the time instant t = 6 for a short instruction (i.e. y
(6)
ow = b),

or at the time instant t = 17 for a long one (i.e. y
(17)
ow = b), whereas the state

of ow ∈ V c is 0 at other times, thus producing the binary sequence 05b 0 or
016b 0, respectively.

We further extend N c with four control neurons c1, c2, c3, c4 ∈ V c for syn-
chronizing the stack operations. Within each macrostep of N , the control
neurons c1, c2, c3, c4 produce the sequences of binary output values, either
1111111, 1111011, 1111111, 0000010 of length 7 for a short instruction, or
140113, 115012, 160111, 05101010 of length 18 for a long instruction, respec-
tively, which can easily be implemented by a finite automaton and incorpo-
rated within N c.

For realizing the stack operations, the binary neurons pop1, pop2, bias ∈
V ′\V c and the third auxiliary analog unit 3 ∈ V \V ′ are introduced in N . In
Table 6, the incoming rational weights to the relevant neurons in V \ V c are
defined in the form of weight matrix with the rational entry wji ∈ Q in the
ith row and jth column, where the analog neurons are separated from the
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Figure 5: A schema of 3ANNs simulating TMs.

binary ones by the double lines. For example, the weights of the connections
from the control neuron c1 ∈ V c and from the analog neurons 2 ∈ V \ V ′
to pop1 ∈ V ′ \ V c are wpop1,c1

= −23 and wpop1,2
= 23, respectively, whereas

the bias of pop1 is wpop1,0
= −1. In addition, a scheme of the architecture of

N is depicted in Figure 5 where the directed edges connecting neurons are
labeled with these weights, while the edges drawn without the originating
unit 0 ∈ V c correspond to the biases.

We will verify the implementation of the long instruction including the
short one, within one macrostep of N which is composed of 18 network state
updates. The state evolution of relevant neurons during the macrostep is
presented in Table 7 which also shows the short instruction when the block
bounded by the horizontal double lines corresponding to the time interval
from t = 6 to t = 16 within the long instruction, is skipped. Moreover,
alternatives for the short instruction are presented after the slash symbol, e.g.

43



t y
(t)
hd y

(t)
ow y

(t)
c1 y

(t)
c2 y

(t)
c3 y

(t)
c4 y

(t)
pop1 y

(t)
pop2 y

(t)
bias y

(t)
1 y

(t)
2 y

(t)
3

0 0 1 1 1 0 0 0 0 z1 z2 0

1 top 0 1 1 1 0 0 0 0 z1
2

2z2 0

2 0 1 1 1 0 0 0 0 z1
22

22z2 0

3 0 1 1 1 0 0 0 0 z1
23

23z2 0

4 0 1 1 1 0 0 0 0 z1
24

24z2 0

5 0 0/1 1/0 1 0 0 0 0 z1
25

25z2 0

6 0 1 1 1 1 top 0 0 z1
26

26z2 0

7 0 1 1 0 0 0 0 0 z′1 (123) z′2 (124) 0

8 0 1 1 1 0 0 0 1
z′1
2

2z′2
1
4
− z′1

4
+ 4z′2

9 0 1 1 1 0 0 0 0 4z′2
z′1
4

0

10 0 1 1 1 0 0 0 0 2z′2
z′1
2

0

11 0 1 1 1 0 0 0 0 z′2 z′1 0

12 0 1 1 1 0 0 0 0
z′2
2

2z′1 0

13 0 1 1 1 0 0 0 0
z′2
22

22z′1 0

14 0 1 1 1 0 0 0 0
z′2
23

23z′1 0

15 0 1 1 1 0 0 0 0
z′2
24

24z′1 0

16 0 1 0 1 0 0 0 0
z′2
25

25z′1 0

17/6 b 1 1 1 1 0 top 0
z′2
26

/
z1
26

26z′1
/

26z2 0

18/7≡ 0 0 1 1 1 0 0 0 0 z′′1 (133) z′′2 (134) 0

Table 7: The macrostep of 3ANN N simulating one long/short instruction of TM M.

t = 17/6 means the seventeenth/sixth computational step of the long/short
instruction within the macrostep.

Observe that for every t = 1, . . . , 18 and k ∈ {1, 2},

y(t)popk
= 0 if (k = 1 & t 6= 6) or (k = 2 & t 6= 17) (117)

since

ξ(t−1)popk
= wpopk,0

+ wpopk,ck
y(t−1)ck

+ wpopk,2
y
(t−1)
2

= −1− 23y(t−1)ck
+ 23y

(t−1)
2 , (118)

by Table 6, reducing to ξ
(t−1)
popk = −1 − 23 + 23y

(t−1)
2 < 0 for y

(t−1)
ck = 1 which

holds for (k = 1 & t 6= 6) or (k = 2 & t 6= 17). Similarly, we have

y
(t)
bias = 1 iff y(t−1)c3

= 0 iff t = 8 for every t = 1, . . . , 18 , (119)
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because ξ
(t−1)
bias = wbias,c3y

(t−1)
c3 = −y(t−1)c3 ≥ 0 iff y

(t−1)
c3 = 0 . Furthermore,

y
(t)
3 = 0 if t 6= 8 for every t = 1, . . . , 18 , (120)

since ξ
(t−1)
3 = w30 +w3,c3y

(t−1)
c3 +w31y

(t−1)
1 +w32y

(t−1)
2 = 1

4
−5y

(t−1)
c3 − 1

4
y
(t−1)
1 +

4y
(t−1)
2 which implies ξ

(t−1)
3 < 0 for y

(t−1)
c3 = 1 holding for t 6= 8.

For a given symbol under the head of M held in y
(1)
hd at the time instant

t = 1 according to (116), the binary-state subnetwork N c evaluates the tran-
sition function δ of M during four computational steps for t = 2, 3, 4, 5, de-
ciding whether a long or short instruction occurs, which is indicated through
the state y

(5)
c1 of control neuron c1 at the time instant t = 5, that is, y

(5)
c1 = 0

iff a long instruction applies. In the meantime, the state of analog unit
k ∈ {1, 2}, starting with y

(0)
k = zk ∈

[
0, 1

27

)
, is multiplied by its self-loop

weight wkk at each time instant t = 1, . . . , 6, producing

y
(t)
k = wtkkzk =


z1
2t
∈
[
0, 1

2t+7

)
if k = 1

2tz2 ∈
[
0, 1

27−t

)
if k = 2

for t = 0, . . . , 6 , (121)

since y
(t)
ow = y

(t)
c4 = y

(t)
pop1 = y

(t)
pop2 = y

(t)
bias = y

(t)
3 = 0 for every t = 0, . . . , 5 due

to (117), (119), and (120).

For a long instruction, we have y
(5)
c1 = 0 which implies

ξ(5)pop1
= −1− 23y(5)c1

+ 23y
(5)
2 = −1 + 28z2 (122)

according to (118) and (121). Hence, y
(6)
pop1 = top by (111), which gives

y
(7)
1 = w1,owy

(6)
ow + w1,c4y

(6)
c4

+ w1,pop1y
(6)
pop1

+ w1,biasy
(6)
bias + w11y

(6)
1 + w13y

(6)
3

=
26 − 1

214
+

1

28
· top +

z1
27

= z′1 ∈
[
0 , 1

27

)
(123)

by Table 6, since y
(6)
ow = y

(6)
bias = y

(6)
3 = 0, y

(6)
c4 = 1, and y

(6)
1 = z1

26
due to (119),

(120), and (121). It follows from (112) and (123) that z′1 encodes the contents
of the stack s1 after the first operation push(top) of long instruction (108)
has been applied to γ−1(z1). Similarly,

y
(7)
2 = w2,c4y

(6)
c4

+ w2,pop1y
(6)
pop1

+ w2,pop2y
(6)
pop2

+ w22y
(6)
2

=
1− 26

27
− 1

2
· top + 27z2 = z′2 ∈

[
0 , 1

27

)
(124)
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due to y
(6)
pop2 = 0 and y

(6)
2 = 26z2 by (117) and (121), respectively. According

to (113) and (124), we thus know that z′2 encodes the contents of the stack
s2 after the second operation pop of long instruction (108) has been applied
to γ−1(z2).

The swap operation starts at the time instant t = 8 when

y
(8)
1 = w11y

(7)
1 =

z′1
2
∈
[
0 , 1

28

)
(125)

y
(8)
2 = w22y

(7)
2 = 2z′2 ∈

[
0 , 1

26

)
(126)

y
(8)
3 = w30 + w31y

(7)
1 + w32y

(7)
2 =

1

4
− z′1

4
+ 4z′2 ∈

[
27−1
29

, 2
3+1
25

)
(127)

according to (123), (124), and Table 6, since y
(7)
ow = y

(7)
c3 = y

(7)
c4 = y

(7)
pop1 =

y
(7)
pop2 = y

(7)
bias = 0 due to (117) and (119). At the time instant t = 9, we have

y
(9)
1 = w1,biasy

(8)
bias + w11y

(8)
1 + w13y

(8)
3

= −1

4
+
z′1
4

+
1

4
− z′1

4
+ 4z′2 = 4z′2 ∈

[
0 , 1

25

)
(128)

y
(9)
2 = w2,biasy

(8)
bias + w22y

(8)
2 + w23y

(8)
3

=
1

4
+ 4z′2 −

1

4
+
z′1
4
− 4z′2 =

z′1
4
∈
[
0 , 1

29

)
(129)

by (125)–(127) and Table 6, since y
(8)
ow = y

(8)
c4 = y

(8)
pop1 = y

(8)
pop2 = 0 and y

(8)
bias = 1

due to (117) and (119). This means that the respective multiples of z′1 and z′2
are exchanged between the analog neurons 1 and 2, cf. (125), (126) and (128),
(129), respectively. Analogously to (121), the state of analog unit k ∈ {1, 2},
starting with y

(9)
k in (128) and (129), respectively, is further multiplied by its

self-loop weight wkk at each time instant t = 10, . . . , 17, producing

y
(t)
k = wtkkzk =


z′2

2t−11 ∈
[
0, 1

2t−4

)
if k = 1

2t−11z′1 ∈
[
0, 1

218−t

)
if k = 2

for t = 9, . . . , 17 , (130)

since y
(t)
ow = y

(t)
c4 = y

(t)
pop1 = y

(t)
pop2 = y

(t)
bias = y

(t)
3 = 0 for every t = 9, . . . , 16 due

to (117), (119), and (120). Thus, the swap operation is finished at the time

instant t = 11 when y
(11)
1 = z′2 and y

(11)
2 = z′1.

Similarly to (122), y
(16)
c2 = 0 ensures

ξ(16)pop2
= −1− 23y(16)c2

+ 23y
(16)
2 = −1 + 28z′1 (131)
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according to (118) and (130), which implies

y(17)pop2
= top (132)

by (111). At the time instant t = 18, (123) reads as

y
(18)
1 = w1,owy

(17)
ow + w1,c4y

(17)
c4

+ w11y
(17)
1

=
26 − 1

214
+

1

28
· b+

z′2
27

= z′′1 ∈
[
0 , 1

27

)
, (133)

since y
(17)
pop1 = y

(17)
bias = y

(17)
3 = 0, y

(17)
ow = b, y

(17)
c4 = 1, and y

(17)
1 =

z′2
26

due
to (117), (119), (120), and (130). It follows from (112) and (133) that z′′1
encodes the contents of the stack s1 after the fourth operation push(b) of
long instruction (108) has been applied to γ−1(z′2). Similarly to (124),

y
(18)
2 = w2,c4y

(17)
c4

+ w2,pop2y
(17)
pop2

+ w22y
(17)
2

=
1− 26

27
− 1

2
· top + 27z′1 = z′′2 ∈

[
0 , 1

27

)
(134)

by (130) and (132). According to (113) and (134), we thus know that z′′2
encodes the contents of the stack s2 after the fifth operation pop of (108)
has been applied to γ−1(z′1), which completes the macrostep of N for a long

instruction. For a short instruction when y
(5)
c1 = 1, y

(5)
c2 = 0, y

(5)
1 = z1

25
and

y
(5)
2 = 25z2, which coincides with a long instruction at the time instant t = 16,

the push(b) and pop operations of (107) are implemented analogously.
Finally, if M halts at the computational time T (n) because the next

transition (106) is not defined on the current state qcur and the current tape
symbol, then N c activates the neuron nxt ∈ V \ V c, while in the next step
the neuron out ∈ V \V c signals whether the input word x is accepted byM.

This means y
(τn+1−1)
nxt = 1, and x ∈ L(N ) iff y

(τn+1)
out = 1 iff qcur ∈ F iff

x ∈ L(M), according to the output protocol (7), in which now N does not
recognize the prefixes of the input word x just asM does not do it. It follows
that N simulates M in time τn+1 = O(T (n)) because each macrostep takes
only constant number of network’s updates, which completes the proof of
Theorem 3. �

6. Conclusion

In this paper, we have established the analog neuron hierarchy FAs ≡
0ANNs $ 1ANNs $ 2ANNs ⊆ 3ANNs ≡ TMs (see Figure 1) for the model
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αANNs of discrete-time binary-state recurrent NNs with the Heaviside ac-
tivation function, which are extended with α analog neurons employing the
saturated-liner activations and rational weights. We have compared this hi-
erarchy to that of Chomsky, which refines the analysis of the computational
power of NNs between the binary and analog states, corresponding to FAs
(Chomsky level 3) and TMs (Chomsky level 0), respectively. Namely, we
have proven that the DCFL L# = {0n1n |n ≥ 1} cannot be recognized by
any 1ANN with one analog neuron (Theorem 1), while any DCFL (at Chom-
sky level 2) including L# (Example 2) can be accepted by a 2ANN with two
analog units (Theorem 2). We have shown that the analog neuron hierarchy
collapses to the third level 3ANNs by simulating any TM with three analog
neurons and a linear-time overhead (Theorem 3).

We conjecture that Theorem 1 can be generalized so that any non-regular
CFL cannot be recognized by 1ANNs, which holds at least in the determin-
istic case (Š́ıma and Plátek, 2019). On the other hand, it is an open question
whether there is a non-context-sensitive language that can be accepted offline
by a 1ANN, which does not apply to an online input/output protocol since
we know online 1ANNs ⊂ CSLs. The most important challenge for further
research is the separation 2ANNs $ 3ANNs of the third level in the analog
neuron hierarchy.

It appears that the analog neuron hierarchy is only partially comparable
to that of Chomsky since 1ANNs and probably also 2ANNs do not coincide
with the Chomsky levels although 0ANNs and 3ANNs correspond to FAs
and TMs, respectively. In our previous paper (Š́ıma, 2019b), the class of
languages accepted by 1ANNs has been characterized syntactically by so-
called cut languages which represent a new type of basis languages defined
by NNs that do not have an equivalent in the Chomsky hierarchy. A similar
characterization still needs to be done for 2ANNs.

The presented results show what is the role of analogicity in the compu-
tational power of NNs. The binary states restrict NNs to a finite domain
while the analog values create a potentially infinite state space which can be
exploited for recognizing more complex languages in the Chomsky hierarchy.
This is not only an issue of increasing precision of rational-number parame-
ters in NNs but also of functional limitations of one or two analog units for
decoding an information from rational states as well as for synchronizing the
storage operations. An important open problem thus concerns the general-
ization of the hierarchy to other types of analog neurons used in practical
deep networks such as LSTM, GRU, or ReLU units (Korsky and Berwick,
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2019; Merrill et al., 2020). Clearly, the degree of analogicity represent an-
other computational resource that can simply be measured by the number of
analog units while a possible tradeoff with computational time can also be
explored.

Nevertheless, the ultimate goal is to prove a proper “natural” hierarchy
of NNs between integer and rational weights similarly as it is known between
rational and real weights (Balcázar et al., 1997) and possibly, map it to known
hierarchies of regular/context-free languages. This problem is related to a
more general issue of finding suitable complexity measures of realistic NNs
establishing the complexity hierarchies, which could be employed in practical
neurocomputing, e.g. the precision of weight parameters (Weiss et al., 2018),
energy complexity (Š́ıma, 2014), temporal coding etc.

Yet another important issue concerns grammatical inference. For a given
PDA or TM, the constructions of equivalent αANNs presented in the proofs
of Theorems 2 and 3, respectively, can be generated automatically by a com-
puter program although they do not provide learning algorithms that would
infer a language from training data. Nevertheless, the underlying theorems
establish the principal limits (lower and upper bounds) for a few analog units
to recognize more complex languages. For example, we now know that one
analog unit is not Turing-complete since it cannot accept even some simple
CFLs. In other words, any learning algorithm has to employ a sufficient
number of analog units to be able to infer more complex grammars.
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