Chapter 4: Turbulence at Small Scales
Part 2: Consequence of Isotropy

Preliminaries
Statistically stationary: all statistics are invariant under a shift in time.

Statistically homogeneous: all statistics are invariant under a shift in position.

E = (U;) = constant/uniform and under a shift of reference frame Q = 0.

Homogeneous turbulence: u(x, t) is statistically homogeneous, i.e.,

0 U;
— fluctuating terms = 0 - — = Constant/uniform

Which can be approximated by wind-tunnel experiments.

Homogeneous Turbulence

In homogeneous turbulence, the time-averaged properties of the flow are uniform and
independent of position. For example, whereas 7,, 7,, and ©; may differ from each other,
each must be constant throughout the system. The same applies to U;__rms, v;‘mw and v .,
and to the time-averaged gradients of the fluctuating velocity components, for example,

(5) () ona (2)
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Although such a state of motion is not realised readily in experiments, homogeneous
turbulence has been given much attention because it greatly simplifies the theoretical treat-
ment of turbulent flow. The assumption of homogeneous turbulence can be justified to a
certain extent over small distances somewhat greater than the size of the smallest eddies:
at this scale, the mean flow properties are essentially independent of position. However, if
turbulence is assumed to be spatially homogeneous it cannot, strictly speaking, also be
assumed stationary. From energy balance considerations, a homogeneous turbulent flow
field must at the same time be a decaying turbulent flow field; that is, its properties will
be changing with time. Fortunately, the rate of decay of the mean flow properties is

relatively slow at the smaller scales of turbulence, so that this condition of nonstationarity
is not a serious problem in experimental studies that rely on averaging many replicate
measurements over time.



Isotropic Tensors

A tensor which has the special property that its components take the same value in all Cartesian coordinate systems
is called an isotropic tensor. We have already encountered two such tensors: namely, the second-order identity

tensor, 6,-,3- , and the third-order permutation tensor, €; ;. - Of course, all scalars are isotropic. Moreover, as is

easily demonstrated, there are no isotropic vectors (other than the null vector). It turns out that the most general
isotropic Cartesian tensors of second-, third-, and fourth-order are A d;; . €y , and

@8 0 + B ik 1 + 7y 0 Ojic , respectively, where A, j, e, 3, and 4 are scalars.

https://farside.ph.utexas.edu/teaching/336L/Fluid/node252.html

Isotropic turbulence: in additions to being homogeneous, also statistically
invariant under rotation and reflection of the coordinate system = statistically
isotropic.
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Figure 4.2 Rotational invariance in isotropic turbulence. The two-point correlations based on the
velocities in (a), (b), and (¢) all yield f(r).

R11(ré1) = Ry (1é3)
(v(0,0))(v(0,7)) = (u(0,0))(u(r,0))

(b)=(a) rotated 90° (a)

R11(réy) = Ry1(—1é7)

(—u(0,0))(—u(=r, 0)) = ((0,0))(u(, 0))

(c)=(a) rotated 180° (a)

Ri1(réy) = Ry (-réy) = f(r) = f(=r), g(r)=g(-1)


https://farside.ph.utexas.edu/teaching/336L/Fluid/node252.html

Also:

Figure 4.3 Antisymmetry of R ,(re,)
under reflection. The two-point
correlations based on the velocity v (0, 1)
components in (a) and (b) in isotropic A
turbulence are equal.

v (0, 1)

u (0, 0) -u (0, 0)
- -~
(a) (b)

(u(0,0))(w(0,r)) = (=u(0,0))(v(0,7))
(a) (b)

Since (b) represents (a) reflected by 180° with respect to the z axis and (a) and (b)
must be equal in isotropic turbulence, then

(@) =) =-(a)
Which can only be true if (a) and (b) are equal to zero.

Therefore,

Ri,(1ré3) = —Rq,(ré3) =0

Also, in isotropic turbulence



Rules used for the derivation of the equations in Chapters 4 and 5 in Turbulent
Fluid Flow (P. Bernard, 2019)

Tensors and vectors
R;j(r), Sij(r)

u; (%), u;(y)

r=y—X,ri =y] —X]'
Scalers
f), g(), h(r), k), q(r)

2=r2+r2 4% r=r, r2 =% k? = k%, k = |K|

r )

Rules

of(r) af(r) or dR;i(r) OR;j(r) ar;

= —_— J - ) —_—

arg or 0r; 0x; or; 0x;j

o _ s O _mo 9n_ onki _ g O _ o Oy _ g 0

arj Ty ary T or ar; - oarg - arj o axj - 6yj -

06i; 0

arj
9 - =5 = q dup\" (auz . dus\" (12.36)
—_—ylt = = s =1z, an —_ = — 4 . .
P uf =0, up=ip=1us, %, o 3% )

but relative directions must be respected:

aul 3 — .(?_l_tl ) = (%) ' - (all’l) ' = (%) ' — % ”, (12.37)
0x, dx3 0x; dx3 9x1 dxy

Note that the continuity equation requires derivative moments in the third set of equalities of
12.36) to be zero when n = 1.

Also,

uu; = 0fori # j



Consequence of Isotropy

Rij(r,t) = wi(x, u;(x + 1,t)

1=
I
<
|
1=

Sij(r,t) = wi(x, Ou; (x, Oug(x + 1, 1)

Two-point correlation tensors take on special forms for isotropic turbulence,
which facilitates simplified analysis of turbulent physics.

Rij # f(x) i.e., turbulence has no preferred direction
:Rij(oi t) = Uiu; = ﬁé\l] = Uiu; = 0 i :/:j
Recall that

W f(r) =Ry (réy) f(0) =1
v2g(r) = Ryp(réy) g(0) =1

U ? = u,? = uz? = u? = constant

And note that

fR33 = RZZ Proof in Appendix A.1

and

Rl]=0f0rl¢]



As already referenced, formal mathematical theory isotropic tensor provides the
general form that R;; (Pope, 2000) and S;;; (Robertson, 1940) must take.

Pope: To within scalar multiples, the only second-order tensors that can be
formed from the vector r are §;; and r;1;. Consequently, R;; can be written as

Rij = V2[R (riry + R, (1)

Robertson, H. (1940). The invariant theory of isotropic turbulence. Mathematical
Proceedings of the Cambridge Philosophical Society, 36(2), 209-223:

Siji = S1(Mrrmy + Sy (XN sy + Ss(r) (16 +116)  (2)
Where Ry, R,, 51, S5, S5 are scalar functions of r.

f(r)and g(r) can be expressed in terms of R; and R, using their definitions, as
follows.

fr) = u()ulx + r)’ 90r) = v(x)v(x + 1)

u?(x) v2(x)

With Eqg. (1), it is possible to show that the two functions assume the following
form

f(r)=R;r? +R,

Proof in Appendix A.2

g(r) =R,



_f0) = g()

TZ

R, =g(r)

Ry

Substituting these expressions in Eq. (1) gives

T
r

Rii(r) = ﬁ[(f—g) ! +g5ij] 3)

For S;, define scalar correlation functions k(7), h(r), q(r), which can be expressed
in terms of §¢,5,, 53

S111(réy) = u?msk(r) (4)
Sy21(réy) = u?msh(r) (5)
S212(ré1) = ulmsq(r)  (6)

Where ;s = /(u?).

Combining Eqg. (2) with Eq. (4), (5), (6), the system of equations is obtained

ud ok =873+ S,r +2rS;
Uimsh = Sor Proof in Appendix A.3

3 —
Urmsq = 537'

Solving this system for S;, S,, S3 and substituting the results into Eq. (2) yields

T

Tin o) 7 T
o+ Syh—+ g ((su7 + 8, 7)] 7)

Sijt(r) = s | (k = h — 29) =

Proof in Appendix A.4




Note R;;(0) = ﬁ(Sij provides scaling factor for R;;, whereas 5;;;(0) = 0 such that
need select scaling factor for Siﬂ([) for which u,.,,s = +/(u?) is used.

Note that k(r) = —k(—r), i.e., anti-symmetric

Figure 4.5 Antisymmetry of the two-point longitudinal triple velocity correlation. The correlations in
(a) k(r) and (b) —k(—r) are equal.

u(0,0)?u(r, 0) = (=u(0,0))?(=u(=r,0)) = —(u(0,0))*(u(-r, 0))

whereas f(r) = f(—r) is symmetric as is g(r) (see Page 3). Since k(r) is
antisymmetric, k(0) = 0 as are all its even derivativesatr = 0

Note that

Sijt(r,t) = wi(x, w(x, t)w (x +1,t)

Dropping the time dependence

Siji(r) = w()u () (x + 1)

Therefore

S111(r) = wy (x)us (x)uy (x + 1)



Andifr = {r, 0,0},

S111(réy) = ug (uy ()uy (x + 1)

Combining this result with Eq. (4), yields

u?msk(r) = u?(uy (x + 1)

then

ou, 10du,3

urmsd (0)_u12(x)_x—§ Ox =0

3
Thus, Z—]: (0) = 0 and k(r) Taylor series leading term ~73 % (0) for smallr.

R;j and S;j; can be simplified for incompressible flow using V- u = 0.

0R

%j — ui(ﬁ)a_y]: (X) =0 Proof in Appendix A.5

Evaluating R;; ; and using the relations a_ (r) = and — (r) 5;j shows that
r df
g = f +5 2 d (8) Proof in Appendix A.6




Combining Eqg. (8) and Eq. (3) yields

0 -1 (5]

- 50,1

Which shows that R;; only depends on the scalar function f(r).

Similarly, using the continuity equation on §; ;;

;Jl (E) =0 (9) Proof in Appendix A.7

And combining Eq. (9) and Eq. (7), after a long number of calculations, yields

_ 1d(kr?)
4r dr Proof in Appendix A.8
b - k
2

Such that Eq. (7) becomes

3 2% T T ar

dikxnrimn kon 1dkr?), 1 Ty
Sin(r) = Ums [(k — 7‘5) 8 ( it + & 7)

And §;;; depends only on the scalar function k(7).

10



Confirmation
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Figure 4.6 Confirmation of the isotropic identity Eq. (4.33) from a numerical simulation of isotropic
turbulence using a vortex filament scheme [6]. f(r), —; g(r) based on v velocity, ——; g(r) based on w
velocity, — - —; %, evaluation of Eq. (4.33). Used with permission. Copyright (2006) National Academy of

Sciences, USA.

2

B5.3.2: Similarity solution final period isotropic decay: f(r,t) = e_z'lgz
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Figure 5.1 Measured and predicted f(r/4;) in the final period [2]. With permission of the Royal Society.
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Appendix A
A.l

Definition of longitudinal and transverse coefficients

Fr) = u(x)ulx + r), 9(r) = v(x)v(x +r1)

u?(x) v2(x)

Definition of two-point correlation tensor according to isotropic tensor theory
Rij(r) = u2[Ry (M + R,()6;;]  (14)
Therefore
u?f(r) = Ry1(réy)

v2g(r) = Ryp(réy)

We can show that R,,(ré;) = R33(réy) using Eq. (1A) fori,j = 2 and i,j = 3
Ro2(ré) = W2[Ry (1)1 + Ry (1))
Rs3(r&)) = u2[Ry (r)rsrs + Ry(1)833]
But r = {r, 0,0}, therefore
Rz (ré)) = u2[Ry(r) - 0+ 0 + Ry(r)] = u?R, (1)
Rs3(réy) = u2[Ry(r) - 0+ 0 + Ry(r)] = u?R,(r)
Which proves that R,,(ré;) = R33(réy).

12



A.2 (Kundu et al. Ex. 12.18)
Combining the definitions of longitudinal and transverse coefficients with Eq. (1A)

u2f(r) = u2[Ry(Nriry + Ry(r)614]

v2g(r) = W2 [R,(Nror; + Ry (r) 5]
Wherery =randr, =0

w2f(r) = W2 [Ry(r)r? + Ry(r)]
v2g(r) = u2[R,(r)]
In isotropic turbulence uz =2 =w?
f() =Ry (r)r? + Ry (1)

g(r) = Ry(r)

13



A3
S = S1 ()i + Sy (S + Ss(r) (16, +1:6;)  (24)
For §;;; define scalar correlation functions k(r),h(r),q(r)
5111(ré&)) = uimsk(r)
S221(ré1) = udmsh(r)
S212(1é1) = udmsq(r)
Substitute into Eq. (2A)

S111 = Sirniry + Sy 644 + S3(r1 814 + 11614)
Sa21 = % + 511822 + S3(1261 + 12651)
S212 = S1/rzf1"5 + % + 53(11.622 + 12613)

Where r = {r, 0,0}, therefore
5111 = u?msk(r) = 51T3 + 527” + 2537‘
Sy21 = ufmsh(r) = S,r

Sy12 = u;?’msq(r) = 831

14



A.4
S = S1 ()i + Sy (S + Ss(r) (16, +1:6;)  (3A)

ud ok = S;r3 + S,r + 2rS,
udch = S,r
ugmsq = S3r

Solve for §;, S,, S3:

( 5, = ud,h

r
Urmsq
r
_ Upmsk — Spr — 2185

< S3 =

1
\ 3

r ugms h'
2 =

r

3
u
J 53 — rr:sq

ud k—ud h—2ud ul
ksl — ™ms T'T;l.; Tmsq — ;T;IS (k _ h _ Zq)

Substitute S;, S5, S3 in Eq. (3A)

3 3 3
u Upmsh u
Sijl = %(k —h-— ZQ)TiT}'Tl + %Tl&j + %Sq (7}'61'1 + ridjl)

T, T 7; 7
Siji(r) = wms [(k —h—-2q) l_r]3 F+ 6ijh?l +q (5iz ?] + 81 71)]

15



A.5 (Pope Ex. 3.35)

oR;; 0
7;’ =5 @z +1)
0 +
() == (x D
Define
X' = x5+
Therefore
ax;’ _Oxf Orp
a—r = 7 + a_T] =1
Substitute into Eq. (4A)
u(x )0u](x] )0x] —0
ax;’' 61”]
Veu (1

16



A.6 (Kundu et al. Ex. 12.19, Pope Ex. 6.4, Bernard Prob. 4.3)
OR;;

— niTj
arj ar [(f 97 +9%;|=0
— a i T d6;; 0dg
— 1,2 — o) — (2 LA A P 5.1 =
u [(f 9>arj(rz)+( 2) - tag +arjal,] 0
Using the identities
9 7
=7
And
o =5
—(7r;) =
aT‘J i ij
We obtain

( ) d (1)+ri6rj+rjari +(ri ) ( )6r (’)gar6 _0
f=9 ”’rfar,- 2 r2dr;  r?or f-9 or 0r; L

! y N
(f—g)l—znr, o, (r)+ 6”+ 61,l++( )(f 9N +g'6;7 =0

(F -2 430+ L]+ 2 - g)+2g =0
T UL
-9 |-25+45]+20 =0
LAT S
2f ~ 5+ f =0
r
f-g+5f =0

r 4
g=f+3f

17



A7

Siju(r t) = wi(x t)w(x, ) (x +1.t)

C')Sl-j, d
o a—nul(ﬁ)uj (Xw(x+1r) (54)
Define
X' =x;+m
Therefore
dx,” 0 d
Sl
01‘1 4] 01‘1
Substitute into Eq. (5A)
aSiﬂ _ aU,l(x],)%

o, = Wl () —5 =5 =0

vy

V-u 1

18
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