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Recall - Inexpressibility Proofs I Elementary Equivalence and Isomorphism I

@ How can one prove that a property P is inexpressible in a logic L on a class
C of structures?

@ Elementary equivalence, formulated by Alfred Tarski, is an important
model-theoretic notion.

@ To prove that P is expressible, one needs to find a formula of L that @ Two models 2 and % over the same vocabulary are elementarily
defines P on C. equivalent if, for every first-order sentence ¢, B = ¢ iff A = ¢.

@ To prove that P is not expressible, one has to show no formula of L
that defines P on C. That is, if two models are elementarily equivalent, then they cannot be

distinguished by any first-order sentence.

@ The notion of elementary equivalence is important to establishing

@ Common techniques used for inexpressibility proofs in first-order logic: ) _—
inexpressibility results.

° Com!oactnes§ 'theorem o First, prove that two models are elementarily equivalent.
— fails over finite structures. @ Then, show that a property P that can distinguish the two models.
@ Ehrenfeucht-Fraissé games @ Thus, the property P is not definable.

— used as a central tool on classes of finite structures.
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Elementary Equivalence and Isomorphism I Elementary Equivalence and Isomorphism I

@ Two models 2 and 95 over the same vocabulary are isomorphic if there is a e 'tl)'yyo ;_nodels Ql.andhﬁ.ijver t;e same.vocat:utl_ary arecljsomotrprtnc if there is a
bijective mapping h : A — B preserving relations and constants. ljective mapping 1= A — £ preserving relations and constants.

@ In general, two isomorphic models must be elementarily equivalent, but two

@ In general, two isomorphic models must be elementarily equivalent, but two elementarily equivalent models are not necessarily isomorphic.

elementarily equivalent models are not necessarily isomorphic.

@ In the case of finite structures, elementary equivalence is however
uninteresting. Finite structures can be characterized up to isomorphism by
single FO sentence.

elementary equivalence < isomorphism
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Elementary Equivalence and Isomorphism I Methodology for Inexpressibility Proofs I

@ Theorem

For every finite structure 2, there is a first-order sentence ¢ such that
B |= ¢ iff an arbitrary structure 9B is isomorphic to 2.

Proof @ Thus, for finite structures, the notion of elementary equivalence is too
o Assume w..o.g. that 2 is a graph (V, E) where V = {a, ..., an}. strong to establishing inexpressibility results.

@ Define ¢ as
Ixi ... Ixa((A =X = X))

i#i @ One way to solve this is to weaken the relation of elementary equivalence by
ANVYVy = x)

v stratifying formulas in a logic.

AN B X))

(a,-,aj)eE

AN —E(X %))

(aj,a))¢E

@ We have 2 = ¢. If B |= ¢, then B is isomorphic to 2.
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Methodology for Inexpressibility Proofs I Methodology for Inexpressibility Proofs I

@ To prove that a property P is not expressible in a logic L over finite @ To prove that a property P is not expressible in a logic L over finite
structures, we can do the following: structures, we can do the following:
@ Partition the set of all formulas of L into countably many classes, i.e., @ Partition the set of all formulas of L into countably many classes, i.e.,
L[o], L[1]...., L[K]....; L[0], L[1]...., L[K]....;
@ Find two families of structures {2lx|k € N} and {B«|k € N} such that @ Find two families of structures {2(|k € N} and {B«|k € N} such that

@ 2 = ¢ iff By |= o for every sentence ¢ in L[K]; and @ 2« = o iff By = ¢ for every sentence ¢ in L[k]; and

@ 21, has property P, but B, does not. © 2, has property P, but B, does not.

@ But...
@ How to partition FO into such classes?

@ How to show that two families of structures agree on classes of FO?
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Methodology for Inexpressibility Proofs I Quantifier Rank I

@ To prove that a property P is not expressible in a logic L over finite @ The quantifier rank of a formula ¢, written as gr(y), is its depth of
structures, we can do the following: quantifier nesting, i.e.,

If ¢ is atomic, then gr(y) = 0.

ar(e1 A pz) = qr(es V ) = max(ar(es), gr(ez)).
ar(—¢) = ar(y)-

qr(3xe) = aqr(vxe) = qr(e) +1.

@ Partition the set of all formulas of L into countably many classes, i.e.,
L[o], L[1],..., L[K],---;

@ Find two families of structures {2(x|k € N} and {B«|k € N} such that

@ 2 | ¢ iff By [= o for every sentence i in L[K]; and @ Example: What is the quantifier rank of d? What is the total number of

@ 2 has property P, but 9B does not. quantifiers in dx?
@ dv(x,y) = E(x,
o But. ® ch(x.y) = E(x.y)
@ How to partition FO into such classes? @ dk = Jzdk_1(x,2) N dk—1(2,y)
— Quantifier rank
@ How to show that two families of structures agree on classes of FO? @ The set of all FO-formulas is partitioned into many classes, denoted as
< Partial isomorphism FOIK], each having all formulas of quantifier rank up to k.
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Equivalence Relation I Partial Isomorphism I

@ We write 21 =, B for two structures 2l and B iff the following equivalence
holds for all sentences ¢ € FO[K]:

AEpeBEe, @ Recall that all finite structures are relational (no function symbols).

i.e., 2 and B cannot be distinguished by FO sentences with gr(¢) < k.
@ Let 2|4 be the substructure of 2l to the subdomain A’ C A, i.e., for each

@ Let aand b be two tuples from 2 and B, respectively. We write relation A:

(2, 3) =« (B, b) iff the following equivalence holds for all formulas
¢ € FO[K], where R¥x .= {(a,...,an) € R%ay,...,an € A'}.

A ola] & B o[b]
@ A partial function ¢ : |A| — |B| is a partial isomorphism between 2( and B
@ Note that, if ¢ is an isomorphism between R¥ldwm(¢) to R®Ima(<).
o A =, B is a weakening of elementary equivalence by only considering
the class of FO sentences/formulas of quantifier rank up to k.
@ = has finitely many equivalence classes, each of which is
FO-definable.
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Partial Isomorphism I

@ Ehrenfeucht-Fraissé (EF) games:

@ Are they partial isomorphisms?
o Fraissé was the first to find a purely structural necessary and sufficient
condition for two structures to be elementarily equivalent (1954).

=TT bl
-7 @ Ehrenfeucht reformulated this condition in terms of games (1961).
al a2 -
b2 b3 @ One of the few model-theoretic techniques that apply to finite structures
as well as infinite ones
@ The infinite case: a number of more powerful tools available
/”/: ______ . b1 @ The finite case: a central tool for describing expressiveness of logics,
O—O- ______ p e.g., measure the expressive power of database query languages
al a2 N
b2 b3

@ Variations for capturing different logics/describing different equivalences
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EF Games - Rules I

@ Two structures 2 and 9B over the same vocabulary.

@ Two players: Spoiler, Duplicator.

@ Spoiler tries to show that 2( and B are different.
@ Duplicator tries to show that 2l and 9% are the same.

@ The players play a fixed number of rounds, each having three steps:

@ Spoiler picks a structure (A or B).
@ Spoiler makes a move by picking an element of that structure.

© Duplicator responds by picking an element in the other structure.

@ After n rounds, two sequences have been chosen:

@ (ai,...,an) from%;
@ (b1,...,bn) from B.
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EF Games - Examples I

@ Consider the following two structures:

Ql:({a1,...

yas}, {E})

o0 000

bl b2 b3 b4 b5

B = ({by,...,bs},{E})

@ Some plays:
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A 3-round play

A 3-round play

Player Choice Player Choice
Spoiler aj Spoiler bs
Duplicator | by Duplicator | a-
Spoiler by Spoiler ay
Duplicator | as Duplicator | b
Spoiler bs Spoiler by
Duplicator | as Duplicator | as
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EF Games - Examples I

@ Consider the following two structures:

O O

al a2

A= ({ai, a2}, 0)

bl

B = ({b1},0)

@ Some plays:
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A 2-round play

Player Choice
Spoiler a
Duplicator | by
Spoiler a
duplicator | by

EF Games - Winning Strategies I

A 3-round play

Player Choice
Spoiler a
Duplicator | b
Spoiler by
duplicator | ay
Spoiler a
duplicator | by

@ How can Spoiler or Duplicator win in a game?
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EF Games - Winning Strategies I EF Games - Examples I

@ Consider the EF game on 2 = ({a1, a2}, 0) and B = ({b1},0).
@ Winning position: Duplicator wins a run of the game if the mapping

between elements of the two structures defined by the game run is a partial i ~
isomorphism. Otherwise, Spoiler wins. Cj Q \.
@ A player has an n-round winning strategy if s/he can play in a way that al a2 \‘*-l"/ bl

guarantees a winning position after n rounds, no matter how the other player

plays.
@ Is it a partial isomorphism?
@ There is always either a winning strategy for Spoiler or for Duplicator. A 3-round play
) A 2-round play Player Choice
@ Notation: Player Choice Spoiler ai
@ A ~, B: if there is an n-round winning strategy for Duplicator. Spoiler a Duplicator | by
. . o . Duplicator | by Spoiler by
@ 2 £, B: if there is an n-round winning strategy for Spoiler. Spoiler a Duplicator | a
Duplicator | by Spoiler a
Easy to see that 20 ~, B implies 2 ~, B for every k < n. Duplicator | by

@ Who wins the plays?
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EF Games - Examples I EF Games - Examples I

@ Consider only 2 rounds of the EF game on 2l = ({ay, a:}, 0) and

@ Consider only 2 rounds of the EF game on 2 = ({ay, a»}, #) and

B = ({b1},0). B = ({b1},0).
Round 1 a1 a2
Round 1 a1 a2
b1 b1
b1 b1 Round2 ~ T N
Round2 AN ]
a1 a2 b1 a1 a2 b1
a1 a2 b1 a1 a2 b1
b1 b1 a1 a2 b1 b1 a1 a2
b1 b1 a1 az b1 b1 a1 a2

@ Duplicator has a winning position if (S < ai, D < by, S — ay, D < by).
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EF Games - Examples I EF Games - Examples I

@ Consider only 2 rounds of the EF game on 2 = ({ay, &}, 0) and @ Consider only 2 rounds of the EF game on 2 = ({as, a:},0) and
B = ({b1},0). B = ({b:},0).
Round 1 a1 a2 Round 1 ai a2
b1 b1 b1 b1
Round2 ANEEZ ~ Round2 N AN
aL a2 b1 aL a2 b1 a1 a2 b1 a1 a2 b1
b1 b1 ay az b1 b1 ai az b1 b1 a1 az b1 b1 al az

@ Spoiler has a winning position if (S < by, D — a1, S — b1, D < ap). @ Who has a 2-round winning strategy?
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EF Games - Examples I EF Games on Sets I

@ Consider only 2 rounds of the EF game on 2 = ({ay, a},0) and

B = ({b:1},0).

@ Let o = (), and 2l and B be two sets of size at least n, i.e., |A|,|B| > n.

Round 1 a1 a2
@ Isittrue that A ~, B?

b1 b1
Round2 AN N
a1l a2 b1 a1l a2 b1
b1 b1 a1 az b1 b1 a1 az

@ Who has a 2-round winning strategy? Spoiler!
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EF Games on Sets I EF Games - Examples I

@ Consider 3 rounds of the EF game on 2 = ({as,...,a},{E}) and

B = {{b1,...,bs},{E}).

@ Let o =0, and A and B be two sets of size at least n, i.e., |A|,|B| > n.

@ Isittrue that 2 ~, B? i P

@ Winning strategy for Duplicator: al a2 a3 ad’~ | bl b2 b3 _.-b4 b5

@ Suppose that the position is ((a, . . . &), (bs,..., b)) @ s it a partial isomorphism?

@ Spoiler picks an element a1 € A: A 3-round play

Player Choice

Spoiler a

Duplicator picks b1 = b; if a1 = ajforj<i Duplicator | by

e A = Spoiler bs

duplicator | as

Duplicator picks by € B— {b1,...,b;} otherwise Spoiler bs

duplicator | as

@ Who wins the play?

Logic summer school 29 Logic summer school

EF Games - Examples I EF Games - Examples I

@ Consider 3 rounds of the EF game on 2 = ({a1,...,as},{E}) and @ Consider 3 rounds of the EF game on 2 = ({ay, ..

B = ({bs,...,bs}, {E}). B = ({bi,...,bs},{E}).

@ Is it a partial isomorphism?
A 3-round play

Player Choice
Spoiler bs
Duplicator | a»
Spoiler a
duplicator | b»
Spoiler b
duplicator | as

.,as}, {E}) and

@ Who wins the play? @ Who has a 3-round winning strategy?
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EF Games - Examples I

@ Consider 3 rounds of the EF game on 2 = ({ai,...,as},{E}) and
B = ({by,...,bs},{E}).

@ Who has a 3-round winning strategy? Spoiler!
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EF Games - Examples I

@ If we change o = {E} to 0 = {<} where < is interpreted as a linear order,

33

and consider the following two structures:

Sa=({an,..., a4}, {<))

bl b2 b3 b4 b5

Lp = <{b17' . '7b5}7 {<}>
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EF Games - Examples I

@ Consider the EF game on 2 = ({ay, ..

{E}) again.

. as},{E})and B = ({b,...

,bs},

A= ({a,...,a}, {E}

o0 000

bl b2 b3 b4 b5

B = ({by,...,bs},{E})

@ We know that Spoiler has a 3-round winning strategy now, but

@ Who has a 1-round winning strategy?

@ Who has a 2-round winning strategy?
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EF Games - Examples I

@ Consider 3 rounds of the EF game on £, = {({a1,...,as}, {<}) and

2= ({br, ..

.,bs}, {<}>

@ Is it a partial isomorphism?

A 3-round play

Player Choice
Spoiler a
Duplicator | by
Spoiler b4
duplicator | as
Spoiler bs
duplicator | as

@ Who wins the play?
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EF Games - Examples I EF Games - Examples I

@ Consider the following two structures:
@ Consider the following two structures:

al a2 a3 a4 bl b2 b3 b4 b5

al a2 a3 a4 bl b2 b3 b4 b5

.—»

La=({a,...,as},{<}) Lo = {{b1,...,bs},{<}) a8 a7 a6 a5 b9 b8 b7 b6

La={a,...,as}, {<}) L= {b1,...,bo}, {<})

@ Who has a winning strategy for 3 rounds of the EF game on £, and £,7?
@ Who has a winning strategy for 3 rounds of the EF game on £, and £,?
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EF Games on Linear Orders I EF Games on Linear Orders I

@ Theorem: Let k > 0, and £, and £, be linear orders of length at least 2.

@ Leto = {<}, and £, and £, be two linear orders of length nand n + 1, Then £5 ~k L.
respectively, i.e., £ = ({1,...,n}, {<})and & = ({1,...,n+ 1}, {<}).

@ Examples:
@ Isittrue that £; ~ £p for any k < n?
o If |La| =5and |La| =6, then £, ~» £p but £, '753 £p.
@ If |Ls] =8 and |La] =9, then €4 ~3 £ but £5 L4 Lp.
@ [s there a winning strategy for Duplicator if the lengths of £, and £, are

much larger than the number of rounds? @ Duplicator needs to use the following strategy after r rounds of a EF game,

where1 <i<j<r:

e if d(ai, @) < 27", then d(a;, &) = d(b;, by);
e ifd(a;,g) > 2%=7 then d(bi, b) > ok=r
03/§aj<:>b,'§bj;

where d(x, y) denotes the distance between x and y.
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O O [
al a2 bl
Example 1 A= ({a1,a},0) B = ({by},0)
Oo—0O—0O-0 o0 0 00
al a2 a3 ad bl b2 b3 b4 b5
Example 2 | A = ({ay,...,a}.{E}) | |B = ({b1,...,bs},{E})
OO0 o000
al a2 a3 a4 bl b2 b3 b4 b5
Example 3 | 2 = ({ay,...,a},{<}) | | B = ({by,....bs},{<})
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EF Theorem I

@ Theorem (Fraissé 1954, Ehrenfeucht 1961)

Given two structures 21 and B. Then the following are equivalent for every
integer k:

@ A=, B,ie.,2and B cannot be distinguished by sentences in FO[K].

@ 2 ~« B, i.e., Duplicator has a winning strategy for the k-round EF
game.

@ This provides a combinatorial characterization of first-order logic:

@ 2l =, B is defined in terms of logic;
@ A ~i B is defined in terms of games.
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EF Games and FO I

@ How does EF games relate to FO?
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EF Theorem - Proof I

Proof: 2 ~x B = A =, B

42

@ We need to show that: if there is a FO sentence ¢ with gr(¢) < k that

can distinguish 21 and ‘B, i.e.
A E=pand B o,

then Spoiler has a winning strategy in the k-round EF games on 2{

and B.
@ Key ideas:

@ W.l.o.g., assume that all negations are only in front of atomic
formulas (i.e., negation normal form).

@ By induction on the quantifier rank, we show that: for ¢ with
gr(¢) < k and free variables {xi, ..., X»}, and two tuples

a=(ay,...,as)and b= (bi,...

if

, bn) from 2L and B respectively,

2 = p[a and B [~ ¢[b],

then Spoiler has a winner strategy in the k-round EF game that

starts from the moves (ay, ..

Logic summer school

.,an)and (b, ..., bn).

44



EF Theorem - Proof I EF Theorem - Proof I

Proof: 2 ~ B = A =, B
@ By induction on the quantifier rank gr(¢) = k of a formula ¢ with

A = [a] and B = ¢[b]. Proof: 2l =, B — 2 ~, B

@ Given a winning strategy for Spoiler, we construct a sentence ¢ € FO[k]
that can distinguish 2 and 9, s.t.

@ If o = 3x1, Spoiler chooses an element ay for x from A s.t. A pandB o,

2 |= ¢[aai] and B [~ [bb] for any by from B. where 2l is the structure from which Spoiler chooses an element in the first
round, and B is the other structure.

@ If gr(p) = 0, i.e.,p is a quantifier-free formula, then the map from ato
b is not a partial isomorphism.

@ If o = Vx1), then B = Ix—1 and Spoiler chooses an element b, for x

from B s.t.
2 |= 1p[aap] and B ¢[bby] for any a» from 2L
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EF Games and FO definability I FO Definable Properties I
@ Corollary: A property P is definable in FO iff there exists some k € N such @ Can you find a FO definable property in only one of the following directed
that for every two finite structure 2( and 3, graphs?

@ 2 A4k B, i.e., Spoiler has a winning strategy for k-round EF games,
and a1 b2 b1
@ 2 has the property P, but 8 does not. a2
@ If A «x B, then a winning strategy for Spoiler can be described by a a4 a3 b4 b3

sentence € FO[K], which is true in exactly one of 2 and 9B, and vice versa.
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FO Definable Properties I FO Definable Properties I

@ Consider the following property. Can you construct a winning strategy for
Spoiler? @ Can you find a winning strategy for Spoiler in the following undirected

?
IXVy~E(x, ) graph’

@ By EF Theorem, 21 +, B.
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FO Definable Properties I FO Definable Properties I

@ Given a winning strategy for Spoiler: {S — bi,D < a1,S<— as,D — ...}
The fo”owing property can be constructed. @ Find a FO definable pl’opel’ty in Only one of the fO”OWing undirected graphs,
or find a winning strategy for Spoiler.

IxVyx =y Vv E(x,y)

al a2 b1 b2

a3 a4 b3 b4 al a3 b1 b3 bs

@ By EF Theorem, 2 +4, B.
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FO Definable Properties I FO Definable Properties I

@ Consider the following property: @ Consider another property:

IxIyFz(x Ay ANy #zANz#xAN-E(x,y) N—E(y,z) AN —E(z, X)) IxJy3z(x #y ANy #zANz#xNEX,y)N-E(y,z) N —E(x, 2))
a2 a4 b2 b4 b6 a2 a4 b2 b4 b6
T\ N
al a3 b1 b3 b5 al a3 b1 b3 b5

@ By EF Theorem, 2 +43 B. @ By EF Theorem, 2 +43 B.
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EF Games and FO Inexpressibility I Evenness over Unordered Sets I

@ How is EF Theorem useful for proving inexpressibility results over finite

models?
@ Evenness is not expressible over unordered, finite sets in FO.

@ Corollary: A property P is not expressible in FO if for every k € N, there
exist two finite structures 2( and B s.t.

o A~y B, i.e., Duplicator has a winning strategy for k-round EF
games, and

@ 2 has the property P, but 8 does not.

@ But finding such structures 2(x and B is challenging...
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Evenness over Unordered Sets I Evenness over Linear Order I

@ Evenness is not expressible over unordered, finite sets in FO.

Proof:
@ Pick 2 to be a structure Containing Kk elementS, and B a structure @ Evenness is not eXpreSSible over |ineal‘|y Ol‘del‘ed, finite sets in FO.

containing k + 1 elements. Hints:
© We have 2 ~x B. Theorem: Let k > 0, and £, and £, be linear orders of length at least 2.
Then Sa ~ Sb.
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Evenness over Linear Order I Acyclicity

@ Evenness is not expressible over linearly ordered, finite sets in FO.

Proof:
@ Pick 2, to be a linear order of length 2%, and B to be a linear order of @ A graph is acyclic if it does not contain any cycles.
length 2% 4 1.
@ We have 20, ~x B.
@ Acyclicity of finite graphs is not expressible in FO.

P00 t—0¢t— - OE—0 00—

0000 - @—o—o—eo+—e
k
2°+1
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Acyclicity Acyclicity

@ Acyclicity of finite graphs is not expressible in FO. @ Acyclicity of finite graphs is not expressible in FO.

Proof:
@ Let mdepend only on k, and be sufficiently large. Proof (continue):
@ Assume that the game starts in a position where two special nodes e Let d(a;, a) denote the distance between a; and a;, i.e., the length of
(i.e., the start and end nodes of the success relation) have been the shortest path between them.
played. @ Duplicator maintains the following conditions after each round r:
o if d(a,-7 a,-) < 2k—r, then d(bj, b,) = d(a,-, a,-).
e ifd(a;,a) > 2k=7 then d(b;, b)) > ok=r,
0o —e—0— - o<—0<—o<—o<—o @ By choosing m “very large”, if r rounds have been played, there is a
2m node at a distance greater than 2=(+") from all the played nodes.
PO OO0 - PE—OoC——oC—eo—e
O—O¢— .- 9¢—Oo—e om
m m m
m ~—o ... ® :
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2-colorability I 2-colorability I

@ A graph is called 2-colorable if one can color each node in either red or
o green such that no two adjacent nodes have the same color.
@ A graph is called 2-colorable if one can color each node in either red or
green such that no two adjacent nodes have the same color. @ 2-colorability of finite graphs is not expressible in FO.

Hint: A cycle of length n is 2-colorable iff n is even.

[

@ 2-colorability of finite graphs is not expressible in FO.

Hint: A cycle of length nis 2-colorable iff n is even.

)
)

S A S
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Connectivity I Connectivity I

@ A graph is connected if there exists a path between any two nodes of the

raph.
@ A graph is connected if there exists a path between any two nodes of the grap

graph. @ Connectivity of finite graphs is not expressible in FO.

@ Connectivity of finite graphs is not expressible in FO.

//““”\

T : e m ey
’\x\ /] '\)
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Conclusions I

@ In general, finding families of structures {2«|k € N} and {8« |k € N} is hard.

@ In addition to this, it is also hard to prove that 20, ~x B.

@ The complexity of proofs using EF games can quickly increase as the
structures become complicated.

@ To avoid complicated combinatorial arguments, it is possible to use simple
sufficient conditions that guarantee a winning strategy for the duplicator, i.e.,
build a library of winning strategies.

@ For FO, most such conditions are based on the idea of locality.

@ EF games can be modified to provide methodologies for other logical
languages.
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