
  

  

Abstract— This paper presents a new control architecture for 
compliant motion control and safe physical interaction between 
humanoid robot and human. One of the key technologies in this 
framework is the Torque Transformer, which enables the 
implementation of joint torque control on the traditional joint 
position controlled robots. In this framework, the torque control 
is accomplished by converting desired joint torque command 
into instantaneous increments of joint velocity command. 
Through the transformer, the Operational Space Formulation 
was applied to account for the dynamics of the system on the 
current joint position controlled robots. This approach was 
experimentally implemented on the physical humanoid robot, 
HONDA ASIMO’s upper body control. The ZMP based stable 
balance controller of ASIMO was integrated to control the 
lower body of the robot. In this framework, dynamics control by 
the torque transformer and stable position based balance 
controller were connected and coordinated together on the 
current position controlled humanoid robot. The paper presents 
modeling process of the torque transformer, whole body 
controller and the results of the implementation which 
demonstrate the effectiveness of this approach.  

 

I.  INTRODUCTION 
OBOTS are multi-body systems whose dynamics is 
nonlinear and highly coupled. Robotic control is most 
frequently accomplished with a position control system. 

In this framework, desired motion is designed for every task 
so that the robot can accomplish its motion by following the 
designed trajectory. An individual joint position command is 
calculated by applying inverse kinematics to the 
end-effector’s position command in Cartesian space. Typical 
position controller with PD control is implemented for each 
motor level controller and the joint position command is 
achieved by high gain control. This approach has been well 
suited in factory automation because accuracy and fast 
responses are the most important function to achieve the 
required tasks.  
 Different from the factory robots, the humanoid robots 
[1][2][3][4] are supposed to work in our daily environment. 
Compliant motion control is one of the critical problems 
when the robot moves in our environment because the work 
space of the robot is very narrow, complicated and 
unpredictable. In the actual environment, unpredictable 
contact will happen between the robot and the environment or 
human. So far, the traditional position control system has 
been applied to most of the humanoid robots. However, the 
position controller cannot account for the dynamics of the 
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system. The dynamic coupling effects are treated as a 
disturbance and it limits the performance of high speed 
precise trajectory tracking and compliant motion control.   
 There are few human-sized humanoid robots developed for 
compliant and physical contact with human. Compliant 
motion control was achieved with sensors and was 
implemented on the wheel based robot. For example, 
Robovie-II [5] was designed for communication with human 
which is necessary to participate in our daily life. The main 
feature of the Robovie is natural communication and physical 
interaction with human. TWENDY-ONE of Waseda Univ. 
was developed to coexist with human in our daily 
environment. The robot is designed to support our activity 
through natural communication. The main feature of the 
TWENDY-ONE is high response and adoptive motion 
control in case of the physical contact with human. As for the 
biped humanoid robots, HRP-2 robot [3] can support human 
carrying the panel. Compliant position control was applied to 
the hands and locomotion for contacts with modeled 
environment. Whole body contact motion of a humanoid 
robot was proposed by using full-body distributed tactile 
sensor [6].  However, compliant motion control and accurate 
task control has not been achieved. To realize more advanced 
physical interaction with human, compliant and passive 
motion control is one of the key technologies for the 
humanoid robot. Moreover, the humanoid robots should 
accomplish its multiple tasks on the stable balance controller. 
 One approach for addressing this problem is to provide 
torque control. The input torque for the system can be 
designed to compensate for dynamic effect of the system. 
Decoupled task dynamics can be applied by the Operational 
Space Formulation which provides the robot with higher 
performance in position tracking as well as in compliant 
motion. Therefore, advanced performance, complex 
behaviors and compliant posture control can be implemented 
for robots if torque control is applied. 
 The proposed Torque Transformer provides a method to 
control the existing position controlled system by torque 
command and to compensate dynamic effect of the system in 
the motion controller. In this paper, the torque transformer is 
defined and modeled through the analysis of the internal 
motor control unit. It was implemented to HONDA ASIMO’s 
upper body control and validated through the experimental 
test. On the other hand, to realize the accurate balance control, 
the HONDA ASIMO’s current balance controller was 
integrated to this framework. Compliant upper body control 
and stable lower body control were coordinated together to 
realize compliant and physical interaction with human. All 
the functions were implemented on the existing position 
controlled system without hardware modification.  
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II.  TORQUE CONTROL 

A.  Proposed System 
 Torque to Position Transformer [7] was developed to 
convert desired joint torque command into instantaneous 
increments of joint position command. The merit of this 
framework was that (i) the open-loop torque control can be 
realized on the current position controlled robot without 
hardware modification and (ii) the controller can account for 
nonlinear dynamics of the system. In this framework, the 
Operational Space Formulation was applied to account for the 
dynamics of the robot. The concept of the transformer was 
analyzed and validated on the HONDA ASIMO robot 
[8][9][10]. In this framework, the transformer was defined as 
the inverse model of the internal motor control unit and works 
to transfer the joint torque command into the motor current 
command by cancelling the effects of the inner feedback 
loops.  

 The inverse model of internal motor controller can also be 
applied using the velocity command input to the motor 
control unit. In this paper, Torque to Velocity Transformer, 
which transforms the joint torque command into the joint 
velocity command, is proposed as Torque Transformer. Fig. 
1 shows the framework of the proposed control system. The 
left block shows the Motion Controller of the application 
software level in which, dynamics controller by the 
Operational Space Formulation is defined. In the right block, 
the joint position controller is defined as the hardware level 
controller. In the joint position controller, the ideal position 
control unit )(* sD  and the resulting physical joint )(* sG  are 
defined. The inverse model of the ideal position control unit, 

)(* sD , is applied as Torque Transformer, T2, which 
transforms a torque command into an instantaneous velocity 
command. In this framework, position command is ignored 
by commanding a joint position actual or by commanding 
position gain as zero. Through frequency analysis or 
identification of the individual motor controller, the 
transformer has to be identified previously. Once this inverse  
 

 

Fig.1 Framework of the proposed torque control system. The inverse model 
of the control unit is applied as the Torque Transformer, T2, which 
transforms a torque command into an instantaneous velocity command. 

 
model is generated, the torque command is directly sent to the 
motor current command cmdi  by cancelling the effects of the 
inner feedback loops. 
 

B.  Motor Controller 
 To model the Torque Transformer in Fig. 1, the internal 
motor control unit, )(* sD , must be identified  precisely by 
the block diagram of the system or frequency analysis of the 
system. In Fig. 2, a block diagram of a  joint position control 
unit, )(* sD , is shown. The inputs to the motor controller are 
a position command motcmdq /  and a velocity command 

motcmdq /&  which are designed by the motion controller in Fig. 1. 
Generally, to control the motor, PD controller is implemented 
for each position control unit. The position control unit has a 
position feedback loop and a velocity feedback loop in which 
feedback data is measured by the sensor. Actual position is 
measured by an encoder sensor or a potentiometer, etc., 
which is generally attached to the motor as a unit. Actual 
velocity is measured by a velocity sensor or calculated by 
actual position data. To improve quick response of the motor 
control, a velocity feedforward command is applied to the 
velocity feedback loop and velocity gain is adjusted for every 
motor. In the current feedback loop in Fig. 2, the current gain 
KC is composed of a current proportional gain ipK  and a 
current integral gain iiK and negative feedback loop is closed 
by subtracting the actual current, moti . The term AL 
represents armature losses and is defined as )/(1 mm RsL + . 
Here, mR is motor resistance and mL is motor inductance. The 
term KE is back electromotive force which is generated by 
the actuation of the motor. Motor torque is calculated by 
multiplying torque constant KT with actual current, moti . The 
term IF is composed of rotor inertia mJ  and rotor friction mB  
and is defined as )/(1 mm BsJ + . The motor is controlled by 
this framework and the physical joint PJ is actuated according 
to the commands with high gain feedback control. 
 
 

 

Fig. 2 Position control unit. Generally, the motor controller is composed of a 
position feedback loop, a velocity feedback loop and a current feedback loop 
to drive the position error to be zero. 
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C.  Modeling of the Control Unit 
 In Fig. 1, the joint position controller is defined by the ideal 
position control unit, )(* sD , the resulting physical joint, 

)(* sG  and the effective torque effτ . As for the dynamics of 
the joint, )(* sG  is given by 
 

effeffeff qqNqBqI τ=++ ),( &&&&         (1)    

     
Here, effI is the effective moment of inertia, effB is the 
effective linear friction coefficient and effτ  is the effective 
motor torque at the joint output. The term ),( θθ &N  is the 
nonlinear effect in the joint dynamics. These effective values 
are calculated by using the mechanical properties of the 
system and combine the properties of the motor, the link and 
gear ratio.  
 Here, we estimate the position feedback loop to be ignored 
by commanding joint position actual, jntactq / , into the joint 
position command or by commanding joint position gain as 
zero. In this case, relationship between the velocity command 

)(/ sq motcmd&  and resulting velocity motactq /&  in the joint position 
control unit can be represented by a closed loop transfer 
function. 
 

)(/)()( // sqsqsT motcmdmotact &&=      (2)     

    
The effective torque, effτ ,  at the joint is given by 
 

))()()(()( //
* sqsqsDs motactmotcmdeff && −=τ              

       ))(1)(()( /
* sTsqsD motcmd −⋅= &     (3) 

    
In cases where nonlinear effects at the joint are negligible, it 
is sufficient to represent )(* sD  and )(* sG  as linear transfer 
functions in terms of model accuracy. In this case, )(seffτ is 
calculated as )(sdesτ .   
 In cases where nonlinear effect has to be considered at the 
joint, )(sT  cannot be computed analytically because of the 
nonlinear nature of the joint. However, it can be 
experimentally identified from frequency analysis of the 
response in the feedback control system. The effective torque, 

)(seffτ , can be viewed as the torque associated with the linear 
portion of the dynamic system. 
 

sBsI
sG

effeff +
= 2

* 1)(       (4) 

Given the identified closed loop transfer function )(sT  and 
)(* sG , the effective controller can be computed as follows: 

 

)()()(
)()( **

*

sGsTsG
sTsD

⋅−
=      (5) 

The effective torque effτ  at the joint is determined as desired 
dynamic torque desτ  if the ideal position control unit )(* sD  
is identified. From Equation (3), we can determine the 
position input )(/ sq motcmd  corresponding to a desired dynamic  

torque )(sdesτ  as follows: 
    

    )(
)(
)()( /*/ sq

sD
ssq motact

des
motcmd && +=

τ  

         ( ))(1)(
)(

* sTsD
sdes

−
=

τ
      (6) 

    
In Equation (6),  1* )( −sD  is an inverse model of the internal 
motor controller and shows the relationship between the 
velocity command and the resulting velocity. Therefore, 
Equation (6) is defined as the Torque Transformer.  
 

D.  Derivation of the transformer 
 The purpose here is to derive )(* sD  in Equation (6). In 
this framework, nonlinear effect is defined as negligible and 
the system can be analytically defined by a block diagram and 
the dynamic parameters of the motor. In the proposed 
framework, motor position command is commanded by 
actual motor position jntactq /  or the motor position gain is 
commanded as zero to cancel the effect of the position 
feedback loop in Fig. 2. 
 

)()( // sqsq motactmotcmd =         

 0=pK           (7)  

According to the motor block diagram in Fig. 2, current 
command, cmdi , becomes :  
 

  ))()(( // sqsqKi motactmotcmdvcmd && −⋅=      (8) 

Here, vK  is a velocity gain. On the other hand, the motor 
generates the torque through its actuation. The motor torque 
is defined as follows. 
 
     cmdtmotteff iCLKiK ⋅⋅=⋅=τ     (9) 

Where CL is the transfer function of the current feedback 
loop and tK  is the motor torque constant. By Equation (8) 
and (9), )(seffτ  is defined as follows. 
 
  ))()(( // sqsqCLKK motactmotcmdtveff && −⋅⋅⋅=τ   (10) 

Therefore, the relation between the motor position and the 
motor torque is defined by Equation (10). By replacing effτ  
by motcmd /τ , motcmdq /&  is defined as follows: 
 
    )()( // sqsq motactmotcmd =  or 0=pK  

    
motact

tv

motcmd
motcmd q

CLKK
q /

/
/ && +

⋅⋅
=

τ      (11) 

 
Equation (11) is defined as the Torque Transformer of motor 
control level when nonlinear effect is defined as negligible. 
Generally, a gear is mounted on the joint to amplify the output 
torque and to reduce the output velocity of the motor. In 
Equation (12), the Torque Transformer is modified as joint  
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level equation by adding the definition of gear ratio, η .  
    

    )()( // sqsq jntactjntcmd =  or 0=pK  

    
jntact

tv

frictionjntcmd
jntcmd q

CLKK
q /2

/
/ && +

⋅⋅⋅

+
=

η
ττ    (12) 

If the joint friction, which is mainly caused by the gear 
system, affects the Torque Transformer, joint friction model, 

frictionτ  can be modeled by the traditional friction model [12]. 
Or the term 2η⋅⋅⋅ CLKK tv  in Equation (12) can be 
experimentally identified from frequency analysis of the 
feedback control system. Equation (12) can be also simplified 
by assuming the transfer function of the current feedback loop 
CL to be equal to 1 because response of the closed loop is 
much faster than the position feedback loop. 
 

E.  Analysis of the Torque Transformer 
The effect of proposed Torque Transformer and previous 

Torque to Position Transformer [7] is shown in Fig. 3. In 
general, some joint position control unit (Fig.1), which is 
defined as hardware level, has faster servo frequency than the 
motion controller of application software level. In this case, 
when the toque command is generated and sent to the position 
control unit through the Torque Transformer, the measured 
actual position and the velocity from the hardware changes 
more. The effect of the feedback loop can’t be canceled 
correctly by the transformer. It is more typical for Torque to 
Position Transformer because there are two feedback loops 
which need to be cancelled. If the proposed Torque 
Transformer is applied, position feedback loop can be ignored 
by commanding Kp as zero.  Therefore, the proposed 
Torque Transformer works better than the Torque to Position 
Transformer.  

If the Equation (11) is commanded into the joint position 
control unit (Fig. 3), the Equation (11) will transfer the torque 
command, motcmd /τ , to the current feedback loop cancelling 
the effect of the feedback loop and gains. According to 
Equation (9),  CLKtmotcmd ⋅/τ

 
is the current command to the 

CL which can be modeled according to the current control 
system.  
 

 
Fig. 3 Analysis of the Torque Transformer. The blue arrow shows previous 
Torque to Position Transformer and the red arrow shows proposed Torque 
Transformer. 

III.  UPPER BODY CONTROL 
 A motion module is reconstructed with the Operational 
Space Formulation [13] to calculate the dynamics of the robot. 
Generally, the joint space dynamics of a robot are described 
by 
      Γ=++ )(),()( qgqqbqqA &&&      (13) 

where q is the 1n× generalized vector in joint space, )(qA  is 
the nn ×  mass/inertia matrix, ),( qqb &  is the Coriolis and 
centrifugal torque and )(qg  is gravity torque. Corresponding 
to the instantaneous linear/angular velocity, ϑ , in task space, 
the following relationship is defined by the Jacobian, 

)(qJ .                                         . 
qqJ &⋅= )(ϑ         (14) 

Task dynamic behavior is obtained by projecting the joint 
space dynamics into the space associated with the task: 
 

    (15) 

here, )(qΛ , ),( qq &μ and )(qp  are the inertia matrix, the 
vector of Coriolis/centrifugal forces and the vector of gravity 
forces mapped into the operational space and are defined as 
follows;                                      . 

11 )()( −−=Λ TJJAq  

)(),( 1 qJbJAqq &&& −Λ= −μ  

gJAqp 1)( −Λ=         (16) 

The control force, F, in Equation (15) provides a decoupled 
control structure by 
 

)(ˆ),(ˆ)(ˆ * qpqqfqF t ++Λ= &μ    (17) 

where .̂  represents estimates of the model parameters. *f  is 
the command to the unit mass system. When the estimates are 
perfect, the following decoupled equations of motion for the 
end-effector are obtained. 
 

*f=ϑ&         (18) 

The Operational Space Formulation provides decomposition 
of joint forces into two control vectors; (i) the joint torque 
corresponding to forces acting at the task and (ii) joint torque 
that only affects the posture behavior in the null space.                    
  

Γ+=Γ+Γ=Γ )(qNFJ TT
posturetask    (19) 

Here, )(qN T  is the dynamically consistent null space 
projection matrix.                  
                  TTT JJIqN −=)(       (20) 

        1−Λ= JAJ T         (21) 

The term, )(qN T , guarantees that the null space control 
torque will not generate any force on the task control. The 
Operational Space Formulation is applied to the upper body 
control of ASIMO (Fig. 4). 

Fqpqqq =++Λ )(),()( && μϑ
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V.  EXPERIMENTAL VALIDATION 

A. Torque Transformer Test 

 In this test, gravity compensation torque was applied to the 
arms of ASIMO to see how Torque Transformer works 
correctly. Proposed torque transformer does not include a 
non-linear effect of a physical joint model between the motor 
and the output of the joint. If the joint friction in the physical 
joint is not negligible, its effect on the torque to position 
transformer is also not negligible. In case of the arm joints of 
ASIMO, the characteristics of the individual joint friction are 
different. The friction is mainly caused by Harmonic Drive 
gear, belt gear, mechanical hinge, etc. The effect of the 
friction also changes according to the mechanical condition. 
In this gravity torque test, the effect of the joint friction was 
ignored to see the pure effect of the torque transformer. 
Moreover, since the dynamics model of the upper body has 6 
DOF for the base, the gravity vector of the upper body was 
compensated according to the movement of the body. 
 In the test, all the joints were manually and passively 
moved by an operator to see how the individual joints hold the 
connected link compensating the effect of the gravity. In Fig. 
11, the blue line shows the torque command and the red line 
shows the resulting torque which was calculated by actual 
current data and torque constant Kt. In Fig. 11, the blue lines 
and the red lines are almost symmetry along the zero line even 
if the torso rotates. Through this test, the effect of the Torque 
Transformer was experimentally validated.  
 

B. Operational Space Control Test 

 In this test, the Operational Space Command was applied 
to the position control of both hands in the Cartesian Space 
[9][13]. In Equation (15), ϑ&  is defined as a simple PD 
control. 
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pxK  and vxK are the space PD gains which are selected for 
the unit-mass system 0=++ xKxKx pxvx &&& . The term desx is a 
desired goal position. For a simple positioning task, the 
applied force to the task point is 
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The joint torque corresponding to forces acting at the task is 
calculated by Equation (15).  
  The results of the experimental test are shown in Fig.12. In 
this test, sinusoid motion command was applied with the 
position gain pxK =1500 and the velocity gain, 

pxnvx KwK ζζ 22 ==  for the individual direction.  In Fig. 
12, the blue line is a desired position and the red line is an 
actual position in Cartesian space. When a position command 
was applied, the end-effecter followed the desired command 
with the position error under 0.005[m]. Through this test, it 
was verified that the accurate position control in Cartesian 
space can be achieved if position control is closed over the 
torque transformer.  

 
Fig. 11 Gravity torque compensation test of Torque Transformer. The 
transformer was applied to the both arms of HONDA ASIMO and gravity 
torque was sent to the transformer. 

Fig. 12 The Operational Space Control on the Torque Transformer. 
 

C. Whole Body Motion Control Test 

 Fig. 13 shows the experimental result of physical 
interaction between ASIMO and human. Compliant and 
passive upper body torque control by the Torque Transformer 
and stable lower body control by the ASIMO’s current 
balance controller were integrated together on the current 
position controlled system. The Operational Space 
Formulation was applied to the upper body motion control.  
 In Fig. 13(a), the upper body and the lower body 
coordination test is shown. According to the motion of the 
arms, the hip rotates along the X, Y and Z axis and moves up 
and down along the Z axis. Since the upper body and the 
lower body were coordinated, the lower body compensated 
the motion of the upper body and keeps the stable balance by 
the ASIMO’s current balance controller. The task position 
control was also applied. If the hand was commanded to keep 
the desired position in global coordinate, which is defined as a 
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middle point of both feet, the hand kept pointing the fixed 
position even if the torso moved. The robot also continued to 
keep pointing the commanded position even if the robot made 
several stamp walk. 
 In Fig. 13(b), continuous compliant interaction test with an 
operator is shown. In this test, only the gravity torque was 
commanded to the arms and the arms were passively operated 
by the operator. The operator could move the arms manually 
and the arms followed the operator’s desired operation. The 
hip moved according to the motion of the arms to reduce the 
constraints between the arms and the torso. Through this test, 
flexible whole body motion control was realized. This 
framework is very important for safe and physical interaction 
between robots and human. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 Whole body motion control test. Compliant and passive framework is 
achieved by the Torque Transformer. Stable balance control was achieved by 
the HONDA ASIMO’s based balance controller. Upper body dynamics and 
the lower body balance controller were connected and coordinated together 
to realize the stable whole body motion control. The position and the 
orientation of the hip were commanded from the constraint function. 
 

VI.  CONCLUSIONS 

i) New Torque Transformer was proposed. In this method, 
torque control is accomplished by converting desired joint 
torque into instantaneous increments of joint velocity 
command. Torque Transformer was defined and modeled 
precisely. Its availability was experimentally validated on 
ASIMO. 

ii) The Operational Space Formulation was applied to the 
motion controller of ASIMO. Decoupled task dynamics 
was implemented on the upper body control. The torque 
command for all the joints were sent to the Torque 
Transformer and ASIMO’s upper body was controlled.  

iii) Compliant and passive upper body control by the Torque 
Transformer and stable lower body control by the 

HONDA ASIMO’s balance controller were integrated 
together on the current position controlled robot.  

iv) Flexible whole body motion control was realized. This 
framework is very important for safe and physical 
interaction between robots and human. 

         . 
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