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Abstract: The abundance and composition of zooplankton down to 3000 m depth was studied in
the subtropical and tropical latitudes across the Atlantic, Pacific and Indian Oceans (35 ◦N–40 ◦S).
Samples were collected from December 2010 to June 2011 during the Malaspina Circumnavigation
Expedition. Usually, low abundances were observed with the highest values found in the North
Pacific Ocean, Benguela, and off Mauritania, and the lowest in the South Pacific Ocean. No significant
differences in abundance and zooplankton composition were found among oceans, with depth being
consistently the most important factor affecting their distribution. Each depth strata were inhabited by
distinct copepod assemblages, which significantly differed among the strata. The contribution
of copepods to the zooplankton community increased with the depth although, as expected,
their abundance strongly decreased. Among the copepods, 265 species were identified but 85%
were rare and contributed less than 1% in abundance. Clausocalanus furcatus and Nannocalanus minor
dominated the epipelagic strata. Pleuromamma abdominalis and Lucicutia clausi were of importance in
the mesopelagic layer, and Pareucalanus, Triconia, Conaea and Metridia brevicauda in the bathypelagic
layer. Our results provide a global-scale assessment of copepod biodiversity and distribution,
providing a contemporary benchmark to follow future ocean changes at low latitudes.

Keywords: copepods; vertical distribution; biodiversity; community composition; abundance;
deep ocean

1. Introduction

The deep-sea is the largest habitat on earth and also the least known [1]. About 88% of the
ocean surface is deeper than 1 km, the boundary between the mesopelagic (200–1000 m depth)
and bathypelagic (below 1000 m depth) layers and almost 80% is between 3–6 km depth [2]. Yet,
the exploration of the dark ocean (>200 m) lags well behind that of the epipelagic (0–200 m depth) layer.
Deep-sea zooplankton communities generally have low abundances and thus, large sampling systems
are needed to filter sufficient amounts of water. Due to the high cost of gear, ship-time, and large

Diversity 2019, 11, 203; doi:10.3390/d11110203 www.mdpi.com/journal/diversity

http://www.mdpi.com/journal/diversity
http://www.mdpi.com
https://orcid.org/0000-0002-0906-1243
https://orcid.org/0000-0003-2859-3939
http://dx.doi.org/10.3390/d11110203
http://www.mdpi.com/journal/diversity
https://www.mdpi.com/1424-2818/11/11/203?type=check_update&version=2


Diversity 2019, 11, 203 2 of 22

research vessels, sampling efforts of the deep–sea zooplankton are often too expensive. In addition,
the zooplankton community in the subtropical-tropical regions is poorly studied, particularly in
the southern hemisphere, which contains almost 80% of the ocean surface. These areas are widely
unexplored in comparison to coastal areas, and most studies so far are carried out in northern neritic
waters [3].

Overall, the deep-sea zooplankton community is characterized by strong latitudinal and
bathymetric gradients and its diversity mainly regulated by complex interactions among environment
and the species-specific performances. However, the major driving mechanisms generating the
structure of the pelagic deep sea still poorly understood [4,5]. In this vast environment, zooplankton
supports life and represents a key component in the functioning of the ocean food web. Therefore,
understanding the response of this community to hydrographical and meteorological forcing is crucial
in the present context of anthropogenic global change [3,6]. The current interest on whole ocean
ecosystem models makes it necessary to ascertain whether it is possible to identify different zooplankton
assemblages and if so, how they are distributed at the relevant spatial and depth scales. Although the
first goal of the expedition was to explore the open ocean areas, we sailed through different domains
and biogeographical provinces [7] of different biological productivities such as the warm ocean and
upwelling systems [8], promoting contrasting ocean scenarios. Moreover, environmental factors affect
the spatial and vertical distribution of the zooplankton including mainly temperature, oxygen minimum
zones [9], and food availability [8,10–12].

The sparse data on the distribution of the main zooplankton groups in particular copepods,
in subtropical and tropical result, from a series of expeditions mostly in the Atlantic Ocean [13–17] and
fewer data in the Indian [18–21] and in the Pacific oceans [22–24]. Nevertheless, these studies were
regional in scope and used different methodologies, which hinders comparisons of the results obtained.
According to them, the tropical and subtropical zooplankton community is mainly characterized
by high species diversity, complex trophic networks and small changes of biomass throughout the
year. Due to the absence of physical barriers allowing co-occurrence and wide latitudinal ranges
of many oceanic species the horizontal distribution in these low latitudes is almost unrestricted.
In contrast, a vertical structure could appear due to the physiological performances of the different
species [17,25,26].

However, available data show that zooplankton abundance in the deep-sea decreases with
depth [27], the rate of this decrease varies in different geographical areas [5,28–30], and changes in
diversity and community structure still are poorly resolved. The feeding mode of zooplankton also
varies with depth, with herbivorous and omnivorous species occurring in the epipelagic, and carnivores
and detritivores copepods increasing toward the bathypelagic zone [31]. In the latter zone, species tend
to be geographically widespread. However, community structure data tends to be relatively coarse
as it requires quantitative taxonomic assessments across multiple taxa, where taxonomic expertise is
increasingly harder to find and largely dependent on time consuming microscopical observations.

The remarkable paucity well into the 21st Century of data on deep-sea zooplankton in the
subtropical and tropical oceans is a major gap in our understanding of the ocean, provided the key role
of zooplankton in the functioning of the marine food webs and associated biogeochemical cycles [4].
Copepods, are the dominant zooplankton group throughout the water column [10,27], major prey of
the meso- and bathypelagic fauna [32,33] and a relevant component of the biological pump transporting
organic matter to the deep ocean throughout their diel or seasonal vertical migration [27,34,35].

Hence, there is a impending need to sample the subtropical-tropical ocean using consistent
methods down to the ocean interior to produce a global reference baseline of zooplankton community
structure [6,36,37]. Accordingly, the main goal of this work was to describe and study the structure of the
marine zooplankton community from the epipelagic to bathypelagic layers across the subtropical and
tropical ocean, with a particular focus on copepods collected during the Malaspina Circumnavigation
Expedition, which sailed the three main oceans (Atlantic, Indian and Pacific Oceans) between December
2010 and June 2011 to explore the ecology of the deep sea [38]. The cruise track was planned to
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sample open-ocean regions, including poorly studied domains of the subtropical and tropical ocean,
using consistent and standardized procedures. The data acquired provides a global contemporary
benchmark to resolve responses of zooplankton communities to future ocean changes.

2. Materials and Methods

The Malaspina Expedition was carried out between December 2010 and July 2011 across the
Atlantic, Indian and Pacific Oceans (35 ◦N–40 ◦S, Figure 1). Zooplankton sampling covered 15
biogeographical provinces [7] including regions of the Indian and southwest Pacific oceans (EAFR;
ISSG; SPSG; Table 1), the highly productive region of the North Pacific Tropical Gyre (NPTG), and the
North Pacific Equatorial countercurrent (NPEC), among others [8].
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Figure 1. Stations sampled for zooplankton community analyses along the Malaspina 2010
Circumnavigation Expedition and the outline of the Longhurst provinces visited along the cruise
track according to Table 1 [7]. The numbers indicate the first and last zooplankton stations samples at
each leg.

Table 1. Different legs, stations, and Longhurst provinces visited during the Malaspina 2010 expedition.

Leg Starting (City, Date) End (City, Date) Provinces Abbrev. (Stations)

1 Cadiz (14/12/2011) Rio de Janeiro
(13/01/2011)

North Atlantic Tropical Gyre NATR (5–10)
Western Tropical Atlantic WTRA(11–18)

South Atlantic Gyre SATL (19–26)

2
Rio de Janeiro

(17/01/2011)
Cape Town
(06/02/2011)

South Atlantic Gyre SATL (27–40)
Benguela Current Coastal BENG (41–44)

3
Cape Town
(11/02/2011)

Perth (11/02/2011) East Africa Coastal EAFR(45–47)
Indian South Tropical Gyre

West Australian Current
ISSG (48–63)

AUSW (64–65)

4 Perth (17/03/2011) Sydney
(30/03/2011) East Australian Current AUSE (77)

5 Aukland (16/03/2011) Honolulu
(8/05/2011)

South Pacific Subtropical Gyre SPSG (80–89)
Pacific Equatorial Divergence PEQD (90–97)
North Pacific Tropical Gyre NPTG (98–100)

6 Honolulu (10/05/2011) Cartagena de
Indias (10/06/2011)

North Pacific Tropical Gyre NPTG (101–115)
North Pacific Equatorial

Countercurrent NPEC (116–126)

7
Cartagena de Indias

(19/06/2011)
Cadiz (14/07/2011) North Atlantic Tropical Gyre NATR (131–139)

North Atlantic Subtropical Gyre NASE (142–147)

Samples were collected from the surface layer down to 3000 m depth with an opening-closing
0.5 m2 Hydrobios Multinet equipped with 5 nets of 300 µm mesh and a flowmeter to measure the
volume of water filtered. Stratified vertical tows were performed during day hours (10:00 to 14:00 am
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local time) in 5 strata (0–200, 200–500, 500–1000, 1000–2000 and 2000–3000 m depth). Seven legs were
conducted and 145 hydrographic stations sampled, starting in Cadiz (Spain, Figure 1) to Rio de Janeiro
and Cape Town, through the Indian Ocean to Perth and Sydney (Australia), Auckland to Hawaii
and Cartagena de Indias in the Pacific Ocean. The last leg started in Cartagena de Indias and ended
in Cadiz (Spain). The zooplankton stations visited were assigned to the different biogeographical
provinces ([7]; Figure 1).

To describe the environmental scenario and relate later with the zooplankton distribution,
temperature, salinity, oxygen, and fluorescence data (as a proxy for phytoplankton biomass) were
obtained through the water column using a Conductivity-Temperature-Depth (CTD) Seabird/911-plus
equipped with dual conductivity and temperature sensors calibrated at Seabird laboratory before the
cruise. A rosette of 24 Niskin bottles (12 l) was used for water samples for the different biological
analysis. At each hydrographic station the different variables were averaged for each stratum.

For the zooplankton collection, a total of 190 samples (collected at 38 stations along the cruise
track; Figure 1) were analyzed and 42,716 organisms counted within the epipelagic (Ep: 0–200 m),
mesopelagic (Me1: 200–500 m and Me2: 500–1000 m), and bathypelagic zones (Ba1: 1000–2000 m and
Ba2: 2000–3000 m). A Folsom plankton splitter was used to analyze at least two aliquots representing
the total organism abundance. All zooplankton groups were identified and standardized to number
of individuals per m3. Copepods were identified, whenever possible, to species level following the
literature for different regions of the world [18,19,39–45].

Cluster and non-metric multi-dimensional scaling (NMDS) analysis were used to examine patterns
in community structure. The analyses were based on the log-transformed abundance of zooplankton
(ind·m−3). Those taxa which appeared in less than 2 stations or whose abundance was less than
0.1% were excluded from the Cluster and the NMDS analysis to avoid rare, poorly resolved taxa to
dominate the analysis. The Bray-Curtis similarity index was applied coupled with group-average
linkage. The same methodology was applied on the copepod species composition data in order to
define copepod species assemblages. The similarity percentage (SIMPER) routine was then applied to
identify the copepod species with higher contributions to the significant groups of samples. Significant
differences in community structure between oceans and species were tested by ANOSIM. All procedures
were performed using Primer-6 software package for the above analyses [46].

Principal Component Analysis was conducted in order to reveal correlation patterns and to
avoid co-linearity with the environmental variables considered (temperature, salinity, fluorescence
and dissolved oxygen data, averaging over each stratum). Redundancy Analysis (RDA; [47,48]. The
most dominant copepods of each strata (>20% occurrence) were related to the environmental variables
selected. The potential variance conferred by oceans, longitude and latitude, were controlled including
these co-variables as condition factors. The significant effect of each environmental variable was
assessed using the permutation procedure implemented in the ANOVA function. The goodness of
RDA fitted was ensured after testing the linear dependencies among explicative variables by means of
variance inflation factors (VIF) obtaining values >3 [47].

In addition, generalized linear mixed models (GLMMs, fitted using R lme4 library; [49]) were
used to test for potential differences in species abundance, number of species, and diversity (H’;
Shannon index) among layers and oceans. In this sense, response variables were individually tested in
function of layer, ocean, and the interaction between them (Layer*Ocean). Considering the potential
variability within sampling stations, the three GLMMs incorporated the Station as a random factor.

3. Results

3.1. Environmental Data

Temperature in the epipelagic layer ranged from 17 ◦C in BENG, NATR and NPEC to 24.2 ◦C in
the South Atlantic (St 22; SATL), and almost 27 ◦C in the South Pacific (St. 88; SPSG, Figure 2).
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Figure 2. (a) Temperature (◦C) and in situ fluorescence (RFU: Relative Fluorescence Units), (b) salinity
(PSU: Practical Salinity Units), (c) dissolved oxygen concentration (mL·L−1) determined at each
hydrographic station and depth strata (data averaged within depth layers).

More uniform temperatures were observed in the Indian Ocean, ranging from 18 to 21 ◦C. In the
meso- and bathypelagic zones, temperature followed similar oscillations in the three oceans. Values in
the upper mesopelagic zone (200–500 m depth) ranged from 16.0 ◦C in the North Atlantic to 9 ◦C in
the North Pacific. In the lower mesopelagic zone (500–1000 m depth), these values were also similar
among oceans ranging from 10.7 ◦C to 4.7 ◦C. Finally, in the bathypelagic strata the temperature varied
from 3.4 ◦C to 6 ◦C in 1000–2000 m depth and was rather uniform at about 1.9 ◦C below 2000 m depth
(Figure 2a). Higher salinity values (37.4) were registered in the surface areas of SATL and in NATR
and NASE, while the lowest values (<35) were observed in the NPTG and NPEC (from St. 107 to 126;
Figure 2b). In the deepest layer (2000–3000 m depth), uniform values (around 35) were observed all
along the sampled oceans. Dissolved oxygen concentration (Figure 2c) varied from highest values in
Atlantic Ocean (WTRA and SATL, >5 mL/L) to almost zero in the oxygen minimum zone (OMZ) of the
North Pacific. These low oxygen concentrations were observed from the PEQD (St 96) through the
NPTG and NPEC (St. 115, 116 119 and 126). In the Atlantic Ocean, low oxygen concentrations were
also observed off the Mauritanian upwelling zone to the Equator (St 12 to 19; NATR and WTRA).

Quite low values of fluorescence (mean integrated values over the 0–100 m layer) were observed
in most of the sampled stations (Figure 2a), with rather high values corresponding to the North Pacific
area (NPTG and PNEC; from St 106 to 126), contrasting with the low values of other marine regions.
Nevertheless, slightly high peaks were recorded in areas of WTRA (St. 10), BENG (St. 41), and in
PEQD (St.92).
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3.2. Zooplankton Abundance and Main Groups

The abundance of zooplankton was generally low throughout the subtropical and tropical
oceans (Figure 3a), reflecting the prevailing oligotrophic nature of the waters sampled. However,
higher values off upwelling divergence areas such as WTRA, SATL, BENG, and NPTG-PNEC (Figure 3a)
were observed.
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High variability of zooplankton abundance was found in the studied area among strata (Figure 3a).
In the epipelagic layer, the zooplankton abundance was usually >200 ind·m−3. The highest abundance
was found in the SATL area (St. 29) at the epipelagic layer but also in WTRA and BENG, which also
exhibited high abundances in the mesopelagic layer (200 to 500 m depth, 100 ind·m−3). In the
bathypelagic zone, very low abundances were generally observed (<3 ind·m−3) with the highest
abundance in upwelling zones (<6 ind·m−3). Zooplankton abundance declined sharply with depth,
comprising, on average, 82% of the depth-integrated abundance in the epipelagic layer (Figure 3b).
Mesopelagic zooplankton contributed 4 to 12% of water column abundance, while the bathypelagic
layer comprised <1% of the abundance. Seventeen different zooplankton groups were identified of
which seven displayed abundances <1%. Overall, copepods were the dominant group in all samples
(80%), followed by chaetognaths (5%), ostracods (3%), and siphonophores (3%). Other groups such as
appendicularians (2%), euphausiids (1%), and amphipods (1%) were rarely observed (Figure 3 and
Figure 4).

The vertical distribution of zooplankton abundance was consistent across the three oceans sampled
and significant differences were found in the abundance and structure of main zooplankton groups
(ANOSIM R: 0.049; significance level of 10.3%). Nevertheless, we found significant differences among
the five sampled layers (ANOSIM R: 0.559; significance level of 0.1%). Simper analysis indicated
the contribution of main zooplankton groups at each layer, from the surface down to greater depths
where copepods exhibited always the highest dominance (Table 2). Copepod abundance was always
>78%, chaetognaths and siphonophores were found across the different layers of the water column,
while euphausiids were mainly found at mesopelagic layers, and ostracods in bathypelagic depths
down to 2000 m depth (Figure 4; Table 2).

Table 2. Contribution of main zooplankton groups at the different strata (Simper analysis). Av. Abund.
stands for Average Abundance (ind·m−3).

Groups Av. Abund. % Cum. %

Epipelagic (0–200 m)
Average similarity: 63%

Copepods 3.4 54.2 54

Chaetognaths 1.2 14.5 69

Siphonophors 0.9 11.3 80

Ostracods 0.7 7.2 87

Euphausiids 0.5 4.7 92

Upper mesopelagic (200–500 m)
Average similarity: 45%

Copepods 1.5 62.5 62

Ostracods 0.5 12.5 75

Chaetognaths 0.4 8.8 84

Siphonophors 0.2 7.9 92

Lower mesopelagic (500–1000 m)
Average similarity: 42%

Copepods 0.8 79.2 79

Chaetognaths 0.1 8.1 87

Siphonophors 0.1 6.2 93

Upper bathypelagic (1000–2000 m)
Average similarity: 41%

Copepods 0.3 87 87

Chaetognaths 0.03 5.6 93

Lower bathypelagic (2000–3000 m)
Average similarity: 50% Copepods 0.14 91.7 92
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Figure 4. Relative abundance of main zooplankton groups (%), and dominant copepods (Clausocalanus
furcatus, C. arcuicornis, Paracalanus indicus, Nannocalanus minor, Neocalanus tonsus, Euchaeta marina,
Mesocalanus tenuicornis, Subeucalanus crassus, Metridia brevicauda, Heterorardhus spinifrons, Rhincalanus
cornutus, Oithona plumifera, O. atlantica, Pleuromamma abdominalis, P. gracilis, P. piseki, Lucicutia clausi,
Triconia conifera and small calanoids* as possible contaminants) found at each depth layer (averaged
across all stations sampled).

Multidimensional analysis of main zooplankton groups and copepod species revealed the highest
similarity among epipelagic stations (40%) followed by the mesopelagic ones (30%). Below 500 m
depth, zooplankton abundance was more irregular among the stations and less similarity was observed
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going to the deep strata (Figure 5a). When all stations were averaged at each stratum, it was observed
clear ordination among the strata but in particular from 500 m depth to deeper waters (Figure 5b).
Interesting to mention that besides the highest abundances found in the Ep strata, high abundances of
zooplankton were also found at the Me1 stratum in WTRA, BENG, NPEC, and NPTG areas.
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layers (Epipelagic: Ep; Upper and lower Mesopelagic: Me1 and Me2; Upper and Lower Bathypelagic:
Ba1 and Ba2) regarding (a) the abundance of copepods (ind.m−3) at each sampled stations, and (b)
average abundance of copepods at each depth layer.

3.3. Copepod Composition, Dominant Species, and Diversity

Copepods dominated the zooplankton community across the subtropical and tropical oceans.
Particularly higher values were observed in areas fertilized by upwelling-divergence areas, such as
SATL (St. 29), NPEC (St. 115 St. 119 and St. 126), BENG (St. 41), and WTRA (St. 7 and St. 10). Rather low
values were found in all the other stations (Figure 6). We identified a total of 36 families, and 265 species
of copepods (Table 3), but almost 80% of copepod species were consistently rare (each less than 1%
of the community). The highest number of copepod species with a contribution higher than 1% was
found in the epipelagic layer (21% of the total species number, Figure 4), but considering the total
number of the species found, the highest copepod species number was found between 500 and 1000 m
(n = 158 species) where almost 92% of the total species were less than 1% in abundance. The abundance



Diversity 2019, 11, 203 10 of 22

of copepods, species number, and H’ clearly declined from the epipelagic to the bathypelagic layer
(p < 0.001; Figure 6). Such a decrease was similar across the three sampled oceans (p > 0.05, Figure 6).
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Nevertheless, the decrease was not linear because of the increased values in the mesopelagic
zones. The highest diversity was usually observed in the epipelagic layer but it was only slightly
above that observed in mesopelagic layers, with the strongest decrease observed below 2000 m depth.
It was interesting to see that meanwhile the highest diversity in the mesopelagic zone was found in the
Pacific Ocean at Me1, in the Atlantic Ocean was found deeper (in Me2). The Indian Ocean showed the
highest diversity in the bathypelagic layer (Figure 6).

Among the 78 genera of copepods found in our study, Clausocalanus, Oithona, Oncaea, Corycaeus,
Acartia, Euchaeta, and the Calanids dominated the Ep layer. Pleuromamma, Lucicutia, Heterorhabdus,
Augaptilids, Aetideus dominated in the Me1, while Metridia, Gaetanus, Euchirella, Lophothrix and Chiridius
in the Me2. In the bathypelagic layers, Amallothrix, Undeuchaeta, Chirundina, Scottocalanus, and Tortanus
dominated. Conaea and Oncaea were also important below 1000 m depth. Here, we mention that,
although not very abundant, in the bathypelagic layers of productive areas, we identified some small
calanoids (Paracalanus, Clausocalanus, Calocalanus, Acrocalanus) and non-calanoids such as Oithona.

Only 12 species of copepods were found having abundances >3% (Clausocalanus furcatus,
Nannocalanus minor, Euchaeta marina, Pareucalanus attenuatus, Mesocalanus tenuicornis,
Calocalanus pavo, Acartia danae, and Scolecithrix danae among calanoids, and Oithona plumifera,
Triconia conifera, Oncaea venusta, and O. mediterranea among the non-calanoids. Accordingly,
the small cosmopolitan copepods were prevalent in the three oceans. C. furcatus (8%) was the most
abundant species with a sharp presence in the upper layer of the Atlantic Ocean. N. minor was
more abundant in the Pacific Ocean (Table 4), and P. indicus (9%), P. attenuatus (6%), and E. marina
(5%) in the North Pacific Ocean. A. negligens was found dominant in the Indian Ocean. Among the
non-calanoids, O. plumifera was present similarly in all the three oceans.
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Table 3. List of families and species of copepods identified in this study. No-calanoids families and species are highlighted in grey. *Calanoides from the eastern
Atlantic recently re-described [50].

Acartiidae Arietellidae Candaciidae (Continuation) Euchaetidae (Continuation)

Acartia danae Giesbrecht, 1889 Arietellus aculeatus (T. Scott, 1894) Candacia ethiopica Dana, 1849 Euchaeta media Giesbrecht, 1888
Acartia enzoi (Crisafi, 1974 ) Arietellus giesbrechti Sars G.O., 1905 Candacia katchumi Grice, 1961 Euchaeta spinosa Giesbrecht, 1892

Acartia longiremis (Lilljeborg, 1853) Arietellus pavoninus Sars G.O., 1905 Candacia longimana Claus, 1863 Paraeuchaeta exigua (Wolfenden, 1911)

Acartia negligens Dana, 1849 Augaptilidae Candacia pachydactila Dana, 1849 Paraeuchaeta tonsa (Giesbrecht, 1895)

Aetideidae Augaptilus longicaudatus (Claus, 1863) Candacia tenuimana Giesbrecht, 1889 Fosshageniidae

Aetideus acutus (Farran, 1929) Centraugaptilus rattrayi (T. Scott, 1894) Candacia truncata (Dana, 1849) Temoropia spp. T. Scott, 1894
Aetideus australis (Vervoort, 1957) Euaugaptilus hecticus (Giesbrecht, 1889) Candacia simplex Giesbrecht, 1889 Temoropia mayumbaensis T. Scott, 1894

Aetideus armatus (Boeck, 1872) Euaugaptilus magnus (Wolfenden, 1904) Candacia varicans Giesbrecht, 1893 Heterorhabdidae
Aetideus giesbrechti Cleve, 1904 Euaugaptilus marginatus (Tanaka, 1964) Centropagidae Disseta magna Bradford, 1971

Aetideus pseudoarmatus (Bradford, 1971) Euaugaptilus palumboi Giesbrecht, 1889 Centropages sp. Kröyer, 1849 Disseta palumboi Giesbrecht, 1889
Bradyidius armatus (Giesbrecht, 1897) Haloptilus acutifrons (Giesbrecht, 1892) Centropages calaninus (Dana, 1849) Heterorhabdus clausi (Giesbrecht, 1889)

Chiridius gracilis (Farran, 1908) Haloptilus aculeatus (Brady, 1883) Centropages elongatus (Giesbrecht, 1896 ) Heterorhabdus papilliger (Claus, 1863 )
Chiridius poppei Giesbrecht, 1892 Haloptilus fons Farran, 1908 Centropages furcatus (Dana, 1849) Heterorhabdus spinifer Park, 1970

Chirundina streetsii Giesbrecht, 1895 Haloptilus longicornis Claus, 1863 Centropages longicornis Mori, 1932 Heterorhabdus spinifrons (Claus, 1863)

Euchirella amoena Giesbrecht, 1888 Haloptilus ornatus (Giesbrecht, 1893) Clausocalanidae Heterostylites longicornis (Giesbrecht, 1889)

Euchirella curticauda Giesbrecht, 1888 Haloptilus oxycephalus (Giesbrecht, 1889) Clausocalanus arcuicornis (Dana, 1849) Heterostylites major (F. Dahl, 1894)
Euchirella máxima Wolfenden, 1905 Haloptilus spiniceps (Giesbrecht, 1893) Clausocalanus farrani (Sewell, 1929) Paraheterorhabdus compactus (G.O. Sars, 1900)

Euchirella messiniensis (Claus, 1863) Pachyptilus eurygnathus G.O. Sars, 1920 Clausocalanus furcatus (Brady, 1883) Lucicutiidae

Euchirella pulchra (Lubbock, 1856) Pachyptilus sp. G.O. Sars, 1920 Clausocalanus ingens Frost & Fleminger, 1968 Lucicutia bicornuta Wolfenden, 1905

Euchirella rostrata (Claus, 1866) Bathypontiidae Clausocalanus jobei Frost & Fleminger, 1968 Lucicutia clausi (Giesbrecht, 1889)

Euchirella splendens (Vervoort, 1963) Temorites spp. G.O. Sars, 1900 Clausocalanus lividus Frost & Fleminger, 1968 Lucicutia curta Farran, 1905
Euchirella truncata Esterly, 1911 Temorites brevis G.O. Sars,1900 Clausocalanus mastigophorus (Claus, 1863) Lucicutia flavicornis (Claus, 1863)

Gaetanus spp. Giesbrecht, 1888 Calanidae Clausocalanus minor (Sewell, 1929) Lucicutia gaussae Grice, 1963

Gaetanus armiger Giesbrecht, 1888 Canthocalanus pauper (Giesbrecht, 1888) Clausocalanus parapergens Frost & Fleminger, 1968 Lucicutia gemina Farran, 1926
Gaetanus brevicaudatus G.O. Sars, 1907 Calanoides cf. carinatus (Krøyer, 1848)* Clausocalanus paululus Farran, 1926 Lucicutia grandis (Giesbrecht, 1895)

Gaetanus brevicornis Esterly, 1906 Calanoides macrocarinatus (Brodsky, 1967)* Clausocalanus pergens Farran, 1926 Lucicutia intermedia G.O. Sars, 1905
Gaetanus kruppii Giesbrecht, 1903 Cosmocalanus darwini (Lubbock, 1860) Ctenocalanus vanus Giesbrecht, 1888 Lucicutia longicornis (Giesbrecht, 1889)

Gaetanus latifrons G.O. Sars, 1905 Mesocalanus tenuicornis (Dana, 1849) Eucalanidae Lucicutia longiserrata (Giesbrecht, 1889)

Gaetanus miles Giesbrecht, 1888 Nannocalanus minor (Claus, 1863) Eucalanus hyalinus (Claus, 1866) Lucicutia magna Wolfenden, 1903
Gaetanus minor Farran, 1905 Neocalanus gracilis (Dana, 1849) Pareucalanus sewelli (Fleminger, 1973) Lucicutia maxima Steuer, 1904

Gaetanus pileatus Farran, 1903 Neocalanus robustior (Giesbrecht, 1888) Pareucalanus attenuatus (Dana, 1849) Lucicutia ovalis (Giesbrecht, 1889)
Gaetanus pungens Giesbrecht, 1895 Neocalanus tonsus (Brady, 1883) Subeucalanus crassus (Giesbrecht, 1888) Lucicutia wolfendini (Sewell, 1932)

Gaetanus brevispinus G.O. Sars, 1900 Undinula vulgaris (Dana, 1849) Subeucalanus monachus (Giesbrecht, 1888) Megacalanidae

Gaetanus tenuispinus G.O. Sars, 1900 Candaciidae Subeucalanus subtenuis (Giesbrecht, 1888) Bradycalanus sarsi (Farran, 1939)

Pseudochirella sp. G.O. Sars, 1920 Candacia bipinnata Giesbrecht, 1889 Subeucalanus longiceps (Matthews, 1925) Megacalanus princeps Wolfenden, 1904

Pseudochirella spinosa (Wolfenden, 1905) Candacia bispinosa Claus, 1863 Euchaetidae Metridinidae

Pseudochirella major (Sars, 1907) Candacia catula (Giesbrecht, 1889) Euchaeta acuta Giesbrecht, 1893 Metridia sp. Boeck, 1865
Undeuchaeta major Giesbrecht, 1888 Candacia cheirura Cleve, 1904 Euchaeta concinna Dana, 1849 Metridia brevicauda Giesbrecht, 1889

Undeuchaeta plumosa (Lubbock, 1856) Candacia elongata Boeck, 1872 Euchaeta marina (Prestandrea, 1833)
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Table 3. Cont.

Metridinidae Rhincalanidae Tortanidae Mormonillidae

Metridia curticauda Giesbrecht, 1889 Rhincalanus cornutus (Dana, 1849) Tortanus spp. (Giesbrecht, 1898) Mormonilla spp. Giesbrecht, 1891

Metridia longa (Lubbock, 1854) Rhincalanus gigas Brady, 1883 Phaennidae Oithonidae

Metridia lucens Boeck, 1864 Rhincalanus nasutus Giesbrecht, 1888 Onchocalanus spp.(G.O. Sars, 1905) Oithona atlantica Farran, 1908

Metridia princeps Giesbrecht, 1889 Scolecitrichidae Phaenna spinifera (Claus, 1863) Oithona brevicornis Giesbrecht, 1891

Metridia venusta Giesbrecht, 1889 Amallothrix farrani Rose, 1942 Xanthocalanus spp. Giesbrecht, 1893 Oithona nana Giesbrecht, 1892
Pleuromamma abdominalis (Lubbock, 1856) Amallothrix spp. G.O. Sars, 1925 Xanthocalanus agilis Giesbrecht, 1893 Oithona plumifera Baird, 1843

Pleuromamma borealis (F. Dahl, 1893) Landrumius gigas (A. Scott, 1909) Aegisthidae Oithona robusta Giesbrecht, 1891

Pleuromamma gracilis (Claus, 1863) Lophothrix frontalis Giesbrecht, 1895 Aegisthus spp. Giesbrecht, 1891 Oithona setigera (Dana, 1849)
Pleuromamma piseki Farran, 1929 Lophothrix humilifrons G.O. Sars, 1905 Aegisthus aculeatus Giesbrecht, 1891 Oithona tenuis Rosendorn, 1917

Pleuromamma quadrungulata (F. Dahl, 1893) Lophothrix latipes (T. Scott, 1894) Aegisthus mucronatus Giesbrecht, 1891 Oithona spp. Baird, 1843

Pleuromamma robusta (F. Dahl, 1893) Lophothrix quadrispinosa Wolfenden, 1911 Corycaeidae Oncaeidae

Pleuromamma xiphias (Giesbrecht, 1889) Pseudoamallothrix emarginata (Farran, 1905) Agetus flaccus (Giesbrecht, 1891) Oncaea spp. Philippi, 1843

Nullosetigeridae Pseudoamallothrix obtusifrons (G.O. Sars, 1905) Agetus limbatus (Brady, 1883) Oncaea media Giesbrecht, 1891

Nullosetigera aequalis (G.O. Sars, 1920) Scaphocalanus sp. G.O. Sars, 1900 Agetus typicus Krøyer, 1849 Oncaea mediterranea (Claus, 1863)
Nullosetigera bidentata (Brady, 1883) Scaphocalanus affinis (G.O. Sars, 1905) Corycaeus clausi F. Dahl, 1894 Oncaea mediterranea flava Giesbrecht, 1892
Nullosetigera helgae (Farran, 1908) Scaphocalanus brevicornis (G.O. Sars, 1900) Corycaeus crassiusculus Dana, 1849 Oncaea venusta Philippi, 1843
Nullosetigera impar (Farran, 1908) Scaphocalanus brevirostris Park, 1970 Corycaeus speciosus Dana, 1849 Triconia conifera (Giesbrecht, 1891)

Nullosetigera mutica (G.O. Sars, 1907) Scaphocalanus emine Uysal & Shmeleva, 2002 Ditrichocorycaeus amazonicus (F. Dahl, 1894 ) Triconia dentipes (Giesbrecht, 1891)

Paracalanidae Scaphocalanus insignis Brodsky, 1950 Farranula carinata (Giesbrecht, 1891) Conaea spp. Giesbrecht, 1891

Acrocalanus andersoni Bowman, 1958 Scaphocalanus magnus (T. Scott, 1894) Farranula gracilis (Dana, 1849) Pachos punctatum (Claus, 1863)
Acrocalanus gibber Giesbrecht, 1888 Scolecithricella abyssalis (Giesbrecht, 1888) Farranula rostrata (Claus, 1863) Pachos tuberosum (Giesbrecht, 1891)

Acrocalanus gracilis Giesbrecht, 1888 Scolecithricella profunda (Giesbrecht, 1892) Onychocorycaeus agilis ( Dana, 1849 ) Sapphirinidae

Acrocalanus longicornis Giesbrecht, 1888 Scolecithricella dentata (Giesbrecht, 1892) Onychocorycaeus giesbrechti (F. Dahl, 1894) Sapphirina spp. J. V. Thompson, 1830
Acrocalanus monachus Giesbrecht, 1888 Scolecithricella minor (Brady, 1883) Urocorycaeus furcifer (Claus, 1863) Copilia quadrata Dana, 1849

Calocalanus contractus Farran, 1926 Scolecithricella tenuiserrata (Giesbrecht, 1893) Urocorycaeus longistylis (Dana, 1849) Copilia hendorffi ( Dahl, 1892)

Calocalanus elegans Shmeleva, 1965 Scolecithricella vittata (Giesbrecht, 1893) Clytemnestridae Copilia mirabilis Dana, 1849

Calocalanus indicus Shmeleva, 1974 Scolecithrix bradyi Giesbrecht, 1888 Clytemnestra spp. Dana, 1847

Calocalanus pavo (Dana, 1849) Scolecithrix danae (Lubbock, 1856) Ectinosomatidae

Calocalanus pavoninus Farran, 1936 Scottocalanus securifrons (T. Scott, 1894) Microsetella norvegica (Boeck, 1864)

Calocalanus plumulosus (Claus, 1863) Spinocalanidae Microsetella rosea (Dana, 1848)

Calocalanus styliremis Giesbrecht, 1888 Spinocalanus spp.(Giesbrecht, 1888) Lubbockiidae

Calocalanus tenuis Farran, 1926 Spinocalanus longicornis G.O. Sars,1900 Lubbockia aculeata Giesbrecht, 1891)
Paracalanus indicus Wolfenden, 1905 Monacilla sp. G.O. Sars, 1905 Lubbockia squillimana Claus, 1863

Paracalanus nanus G.O. Sars, 1907) Monacilla typica G.O. Sars, 1905 Miraciidae

Paracalanus parvus (Claus, 1863) Temoridae Miracia efferata Dana, 1849

Mecynocera clausi I.C.Thompson, 1888 Temora discaudata Giesbrecht, 1889 Macrosetella gracilis (Dana, 1847)

Pontellidae Temora stylifera Dana, 1849

Calanopia elliptica (Dana, 1849)
Calanopia minor A. Scott, 1902

Labidocera acutifrons (Dana, 1849)
Pontellina plumata (Dana, 1849)
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Table 4. Contribution of main copepod taxa (%) to the strata in the three Oceans: Atlantic, Indian,
and Pacific. Calanoid juveniles (as Copepodites). Small calanoids* (Paracalanus, Clausocalanus, Calocalanus,
and Acartia) as possible contaminants. AvS stands for Average Similarity.

Atlantic Indian Pacific

Species % Species % Species %

Ep
ip

el
ag

ic

C. furcatus 11.3 A. negligens 7 N. minor 10
O. plumifera 8.4 L. flavicornis 6.1 Acrocalanus 6.2

N. minor 8.1 U. furcifer 5.4 A. danae 4.6
M. tenuicornis 5.9 C. pavo 5.2 E. marina 4.5

E. marina 5.4 M. tenuicornis 5.1 C. furcatus 4.5
A. danae 4.9 O. plumifera 4.9 F. gracilis 4.3
C. pavo 4.8 Pleuromamma juv. 4.9 O. plumifera 4.1

C. arcuicornis 4.2 M. tenuicornis 4.1
H. spinifrons 3.9 N. gracilis 3.3

P. indicus 3
AvS: 22% AvS: 14% AvS: 24%

U
pp

er
M

es
op

el
ag

ic

P. gracilis 16 Pleuromamma juv. 25 T. conifera 14
P. abdominalis 15.2 T. conifera 10.7 P. abdominalis 8.7

P. piseki 10.5 M. tenuicornis 11 L. clausi 6.8
O. mediter. flava 6.1 C. jobei 10.2 P. xiphias 6.8

U. furcifer 4.8 P. gracilis 7.7 P. piseki 6.1
T. conifera 2.7 P. robusta 6

AvS: 14% AvS: 17% AvS: 13%

Lo
w

er
M

es
op

el
ag

ic

M. brevicauda 22 P. abdominalis 58 Conaea 27
Conaea 10.4 T. conifera 28 M. brevicauda 13.5

P. xiphias 9.1 Heterostylites 13.5 P. abdominalis 7.1
N. helgae 8.2 T. conifera 5.2

R. cornutus 8.2 P. attenuatus 4.2
AvS: 12% AvS: 6% AvS: 8%

U
pp

er
B

at
hy

pe
la

gi
c Conaea 31 M. brevicauda 66.6 M. brevicauda 17

Copepodites 10 L. gaussae 33.4 T. conifera 14.6
M. brevicauda 7.7 Copepodites 10.7

T. conifera 7.1 Small calanoids* 12.9
AvS: 10% AvS: 4% AvS: 7%

Lo
w

er
B

at
hy

pe
la

gi
c Copepodites 63.2 Small calanoids* 60.6

T. conifera 12.8 Copepodites 12
Conaea 8.5 M. brevicauda 10

Conaea 8
AvS: 7% AvS: 4%

Pleuromamma abdominalis and Lucicutia clausi were the dominant copepods in Me1. Among the
non-calanoids, T. conifer, and O. plumifera also dominated from 200 to 500 m. In the Me2, P. attenuatus
was particularly abundant in the East-North Pacific, but Rhincalanus cornutus, Metridia brevicauda,
Conaea, and Subeucalanus crassus dominated in the three oceans. In the bathypelagic layers, M. brevicauda
was also abundant as well as Conaea and T. conifera. Copepodites of Neocalanus tonsus and Calanoides
cf. carinatus were also collected in the deep layers of the upwelling areas off BENG and WTRA,
respectively. The whole contribution (%) of the dominant copepods to each stratum is detailed in
Table 5. C. furcatus and P. indicus were also found below 1,000 m depth in the productive areas of the
Atlantic and Pacific Oceans.
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Table 5. Copepod contribution taxa to the different strata (%). AvS stands for Average Similarity, Copepodites for juvenile Calanoids, and BC for organisms in bad
conditions. Small calanoids * (Paracalanus, Clausocalanus, Calocalanus, Acartia) were possible contaminants.

Epipelagic
AvS: 23%

Upper Mesopelagic
AvS: 11%

Lower Mesopelagic
AvS: 9%

Upper Bathypelagic
AvS: 7%

Lower Bathypelagic
AvS: 5%

Species % Species % Species % Species % Species %

C. furcatus 8.9 P.abdominalis 12.9 M. brevicauda 18.3 Conaea 17.4 Calanoids BC 31.6
N. minor 8.6 P. gracilis 10 Conaea 16.7 M. brevicauda 10.4 Small calanoids* 31.5

O. plumifera 5.6 T. conifera 8.4 P. xiphias 9 Calanoids BC 7.1 T. conifera 6.1
E.marina 5.4 P. piseki 7.6 P. abdominalis 6.3 Small calanoids* 6.9 Copepodites 4.9

M. tenuicornis 4.8 O. mediter. flava 4.7 R. cornutus 5.4 T. conifera 6.4 Oithona spp. 4.7
C. pavo 3.9 Pleuromamma juv. 4.4 T. conifera 5.3 N. helgae 3.5 Oncaea spp. 4.6

A. danae 3.5 Copepodites 3.9 N. helgae 5.3 H. spinifrons 3.5 Conaea 4.1
A. negligens 3.3 M. brevicauda 3.7 Copepodites 3.5 O. plumifera 3.5 M. brevicauda 3.7

Acrocalanus spp. 3.3 L. gemina 3.4 O. plumifera 3.3 Aegisthus 3.4
F. gracilis 2.6 U. furcifer 3.2 H. spinifrons 2.8 P. abdominalis 2.4
S. danae 2.4 L. clausi 2.7 Heterostylites 2 M. princeps 2.4

Euchaeta juv. 2.1 P. xiphias 2.3 Pareucalanus 1.9
C. jobei 2.0 P. robusta 2.3 C. furcatus 1.8

N. gracilis 1.9 O. plumifera 1.9
N. robustior 1.7 H. spinifrons 1.9
O. atlantica 1.6

H. longicornis 1.6
L. gemina 1.5
O. agilis 1.5

O. setigera 1.5
O. venusta 1.5

Copepodites 1.3
Pareucalanus 1.2

C. farrani 1.1
M. clausi 1.1

Total 78.4 73.3 81.6 66.9 91.2
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Cluster analysis revealed several assemblages, grouping those species dominating the epipelagic
layer with 68% similarity level (Figure 7, C. furcatus and N. minor among others, Group a). The more
abundant species in mid-layers were grouped at 50% similarity level (Groups b and c). P. abdominalis and
L. clausi as well as Aetideus and Heterorhabdus predominated in the whole mesopelagic. M. brevicauda,
P. xiphias, P. robusta, N. tonsus and Gaetanus showed, however, other assemblage with high similarity
(62%, group d), dominant in the low mesopelagic layer. Among others, Undeuchaeta, Chirundina,
Scottocalanus, Rhincalanus, C. cf. carinatus, and E. hyalinus (Group e) showed preference for the
deepest layers.
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In summary, regarding the contribution (%) of the dominant copepods found at each layer,
12 species (41%) predominated in the epipelagic layer with C. furcatus, P. indicus, N. minor and E. marina
(25%), and O. plumifera and O. venusta among the non-calanoids. In Me1, 15 species dominated (48%)
with P. abdominalis and L. clausi (12%) as the most abundant. Ten species were found dominant in
Me2 (26%) with Pareucalanus and T. conifera (23%) as the best represented. Below 1000 m depth, 9 and
11 species dominated in the upper and lower stratum respectively, being M. brevicauda, T. conifera,
and Conaea the most abundant.

Temperature, salinity, fluorescence, and dissolved oxygen as main environmental variables shaped
the structure of the copepod community in the tropical and subtropical domains (RDA; Figure 8).



Diversity 2019, 11, 203 16 of 22Diversity 2019, 11, x FOR PEER REVIEW 3 of 28 

 

 

 

Figure 8. RDA of most dominant copepods and their environmental variables (Temperature-T, 
Fluorescence-Fl, Salinity-Sal, and Dissolved Oxygen-DO) in the whole study area. The first two 
canonical axes account with 85.97% of the variance explained. Dots indicate sampling stations at the 
different oceans, and they are ordered based on their environmental conditions. Nannocalanus minor 
(N.min), Euchaeta marina (E.mar), E. acuta (E acu), Euchaeta juveniles (Eucha j.), Calocalanus pavo (C. pav), 
Clausocalanus jobei (C.job), C. furcatus (C.fur), Mesocalanus tenuicornis (M.ten), Urocycaeus furcifer 
(U.furc), Lucicutia flavicornis (L.fla). L. clausi (L.cla), Farranula gracilis (F.gra), Oithona plumifera (O. 
plum), Oncaea venusta (O. ven), Triconia conifera (T.conif), Haloptilus ornatus (H. orn), H. longicornis (H. 
long), Acartia negligens (A.neg), Pleuromamma abdominalis (P.abd), P. gracilis (P.grac), P. xipias (P. xiph), 
P. piseki (P.pis), Pleuromamma juveniles (Pleuro j.), Heterorhabdus spinifer (H.spin), H. spinifrons (H. 
spinf), Rhincalanus cornutus (R.cor), Pareucalanus (Pareu), Conaea (Cona), and Metridia brevicauda (M. 
bre). 

Temperature, dissolved oxygen, and fluorescence played a key role on the copepod community 
assemblages (p < 0.01), while for salinity such effect was not significant (p > 0.05). On the first axis, 
temperature and salinity were the main explanatory variables suggesting the important effect of 
layers on the community distribution. The second axis was mainly driven by fluorescence and 
dissolved oxygen, reflecting the importance of the upwelling on the copepod distribution. The bulk 
of copepods were found in the central area of the RDA (Figure 8), while main species along the first 
axis were related to temperature. N. minor, E. marina, C. pavo, and C. furcatus dominated the epipelagic 
strata and in those areas with a higher temperature, salinity, and fluorescence. By opposite, M. 
brevicauda, Conaea, and P. xiphias dominated the deepest layer characterized by low temperature and 
salinity values. Along the second axis, several copepods such as M. tenuicornis, C. jobei, and L. clausi 
at mid layers were found related to areas of higher dissolved oxygen concentrations. Similarly, 
Pleuromamma species such as P. abdominalis, P. xiphias, P. gracilis, and P. piseki were found also 
dominant in mid layers with high dissolved oxygen values. By opposite, Pareucalanus were found 
dominant at mid layers related to areas of low dissolved oxygen values. 

4. Discussion 

Figure 8. RDA of most dominant copepods and their environmental variables (Temperature-T,
Fluorescence-Fl, Salinity-Sal, and Dissolved Oxygen-DO) in the whole study area. The first two
canonical axes account with 85.97% of the variance explained. Dots indicate sampling stations at
the different oceans, and they are ordered based on their environmental conditions. Nannocalanus
minor (N.min), Euchaeta marina (E.mar), E. acuta (E acu), Euchaeta juveniles (Eucha j.), Calocalanus
pavo (C. pav), Clausocalanus jobei (C.job), C. furcatus (C.fur), Mesocalanus tenuicornis (M.ten), Urocycaeus
furcifer (U.furc), Lucicutia flavicornis (L.fla). L. clausi (L.cla), Farranula gracilis (F.gra), Oithona plumifera
(O. plum), Oncaea venusta (O. ven), Triconia conifera (T.conif ), Haloptilus ornatus (H. orn), H. longicornis
(H. long), Acartia negligens (A.neg), Pleuromamma abdominalis (P.abd), P. gracilis (P.grac), P. xipias (P. xiph),
P. piseki (P.pis), Pleuromamma juveniles (Pleuro j.), Heterorhabdus spinifer (H.spin), H. spinifrons (H. spinf ),
Rhincalanus cornutus (R.cor), Pareucalanus (Pareu), Conaea (Cona), and Metridia brevicauda (M. bre).

Temperature, dissolved oxygen, and fluorescence played a key role on the copepod community
assemblages (p < 0.01), while for salinity such effect was not significant (p > 0.05). On the first axis,
temperature and salinity were the main explanatory variables suggesting the important effect of layers
on the community distribution. The second axis was mainly driven by fluorescence and dissolved
oxygen, reflecting the importance of the upwelling on the copepod distribution. The bulk of copepods
were found in the central area of the RDA (Figure 8), while main species along the first axis were
related to temperature. N. minor, E. marina, C. pavo, and C. furcatus dominated the epipelagic strata
and in those areas with a higher temperature, salinity, and fluorescence. By opposite, M. brevicauda,
Conaea, and P. xiphias dominated the deepest layer characterized by low temperature and salinity
values. Along the second axis, several copepods such as M. tenuicornis, C. jobei, and L. clausi at mid
layers were found related to areas of higher dissolved oxygen concentrations. Similarly, Pleuromamma
species such as P. abdominalis, P. xiphias, P. gracilis, and P. piseki were found also dominant in mid layers
with high dissolved oxygen values. By opposite, Pareucalanus were found dominant at mid layers
related to areas of low dissolved oxygen values.



Diversity 2019, 11, 203 17 of 22

4. Discussion

Our study provides a first coherent assessment of the zooplankton community in the three oceans
at low latitudes (35 ◦N–40 ◦S) using the same technology, methods, and sampling strategy. At the same
time our survey covered a broad depth range (0–3000 m depth) along 15 biogeographical provinces
around the tropical and subtropical ocean [38,51].

According to our results, zooplankton abundance declined with depth across the three oceans,
confirming the general view of zooplankton biomass vertical distribution [52], and consistent with
results previously reported in similar latitudes [15,16,24]. Although some latitudinal differences are
common (more biomass in high latitudes than in the tropical ones) the rate of biomass decrease
when increasing depth was similar in all domains and climatic zones where the influence of the
surface layer is known to extend over 4000 m depth [5,52,53]. For instance, in the North Pacific, 65%
of the zooplankton biomass in the 0–4000 m depth occurs at in the upper 500 m depth, and this
percentage is similar through all regions because the zooplankton food in the deep sea depends on
particles sinking from upper layers [8,50–53]. On the other hand, differences in abundances through
the different latitudes were not observed [1,53]. In the present work, one of the most remarkable
characteristic of the vertical abundance changes across stations was observed between depth layers, as
it was reported by several authors decades ago [5,54]. Moreover, it should be noted that usually the
zooplankton abundance was low but higher abundance values were found close to upwelling areas
(e.g., off Mauritania, off Brazil, Benguela, North Pacific), confirming the findings of studies performed
in different surveys [10,15,16,53]. We also observed the impact of the upwelling on the enrichment of
zooplankton abundance to affect the entire water column, even down to 3000 m. These observations
highlight the significant role of the upwelling areas in the world oceans [10,52].

Within zooplankton, copepods always dominated the zooplankton community across oceans
and depths (>70% of total zooplankton abundance), being more important in the open ocean
environments [7,15,16,41,52,55–57]. The high dominance of copepods confirms their key role in
the marine pelagic food web by transferring primary production and microzooplankton biomass to
higher trophic levels [58], performing the overall abundance zooplankton pattern. The decrease of
copepod abundance with increasing depth was similar in the three oceans, in accordance with the
review of the zooplankton vertical distribution by Vinogradov [52]. Copepod abundances found in our
study were usually low in comparison to other studies [16,59]. However, this comparison is subject to
caveats due to differences in nets, vertical or oblique hauls, and mesh sizes used. In fact, the mesh
size of our nets was relatively large (>300 µm) and may have underrepresented the tiny copepods,
possibly accounting for the observed low abundances.

The number of copepod species was always higher than 100 within the upper 2,000 m. However,
the majority of them were less abundant than 1% of the whole community. The high species diversity
found is a common feature of the tropical and subtropical domains [15,16,25]. Although peaking in
mid-waters, the decline of species richness with depth observed across the subtropical and tropical
oceans demonstrates the global nature of such patterns reported in earlier regional assessments [27,60].
The vertical change in species diversity peaking in the mesopelagic layers was also observed in other
areas and latitudes [53,61], suggesting this is a common pattern in the ocean worldwide. The different
species are reported to strongly influence their feeding habits, reflecting diverse feeding modes.
Large sinking particles such as marine snow or larvacean houses are present in the deep strata playing
an important role in the organic matter transport to the deep ocean [62]. Accordingly, food is originated
at the surface layers, more patent in the rich productive areas, but sinking and fueling the deep sea and
maintaining the copepod community in the deep ocean [53].

Another characteristic of our study was the overall zooplankton community dominated by small
sized copepod species. Smaller copepods were usually abundant at the upper strata while large
copepods were mainly found deeper [10,55,56,61,63]. In oligotrophic areas, copepods are usually small
sized [64,65] and their feeding modes and life strategies are adapted to the low productivity of the
subtropical and tropical ocean, minimizing their energy losses and thus being more efficient in energy



Diversity 2019, 11, 203 18 of 22

transfer to higher trophic levels [66]. In fact, Clausocalanus species were found dominant in epipelagic
waters along the tropical oceans [67]. These small copepods were almost restricted to the epipelagic
layer with a quite limited vertical distribution, as it was noted long ago [68]. However, it is important
to mention the presence of these copepods during our expedition in several upwelling divergent zones
even in deep layers. They could be contaminants from shallower depths as observed in several reports
in the literature [18,42,69–71]. However, it is interesting to note that in those upwelling areas the mixed
layer was deeper (>160 m depth) than in open areas where normal stratified waters were about 30 m
depth [51]. In any case, the presence of these small copepods in deep waters should deserve further
research in order to discern between contaminants or the presence of some other mechanism explaining
their deeper distribution.

We also observed the decline of copepod abundance accompanied by consistent changes in
community structure from the epipelagic to bathypelagic layers. Zooplankton communities were
structured by depth, with different species assemblages and the distribution of main groups clearly
separated from the surface to deep waters, where temperature could reach uniform values below
2000 m depth.

The epipelagic zone was dominated by cosmopolitan species of small size [41], such as C. furcatus,
N. minor, E. marina, C. pavo, A. danae and S. danae. However, P. abdominalis, P. piseki, P. gracilis, P. xiphias
and L. clausi were mainly found in the mesopelagic zone; these species are mentioned as daytime
inhabitants of the deep layers, and strong vertical migrants [14,41,57,72]. The non-calanoids T. conifera,
O. venusta, and O. plumifera were present in epi- and bathypelagic waters, and they were also present in
the mesopelagic zone, in accordance with their general distribution pattern [41], and their occurrence
in the tropical zone off Brazil [57]. M. brevicauda, Conaea, Monacilla, R. cornutus, N. tonsus and C. cf.
carinatus were found in the lower mesopelagic and bathypelagic zones, in accordance with their
presence in other areas of the Atlantic Ocean [12,14,26] and their cosmopolitan distribution. In relation
to the ontogenic vertical distribution, N. tonsus and C. cf. carinatus copepodites were observed in
several stations at deep strata. They were only found in the meso- and bathypelagic layers of upwelling
systems, as previously reported [11,12,14]. The cosmopolitan species occur widely throughout the
uniform environmental conditions of low latitudes, in particular in the oligotrophic regions, and most
native species seems to be important in the upwelling and productive areas [1]. The low temperature of
the deep ocean could indicate that there was not barrier to the distribution of the deep sea cosmopolitan
species as observed in our work.

The depth segregation of zooplankton assemblages was found to be consistent among oceans.
Depth, rather than oceans or biogeographical provinces, seem to be the primary factor structuring
the habitat and communities of zooplankton, as it has been already mentioned [10,73]. According to
RDA analysis, the richer areas with high phytoplankton (as fluorescence) but in particular temperature
and dissolved oxygen concentration were relevant variables and related to the copepod distribution.
As expected, depth was correlated with temperature and it could explain better the copepod distribution.
Accordingly, we observed N. minor and M. brevicauda segregated in relation to temperature, L. clausi
and Pareucalanus also segregated in relation to the concentration of dissolved oxygen, or Euchaeta
marina and Conaea in relation to the fluorescence. It was particularly interesting to observe that
Pareucalanus organisms showed their highest abundance in the Eastern North Pacific, closer to the
oxygen minimum zone. These copepods, together with Eucalanids, normally show a wide range of
ecological strategies but are also known to tolerate low oxygen conditions [74]. To properly understand
all this, further research has to be done but the relationship observed between copepod assemblages
and temperature as well as oxygen could suggests that ocean warming and expanding OMZs, may lead
to changes in some zooplankton assemblages. The data reported here provide a, hitherto unavailable,
guideline to assess changes in future.
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5. Conclusions

This study provides a useful global assessment of subtropical and tropical zooplankton
communities along the Atlantic, Indian and Pacific Oceans, focusing on copepods and their main
species dominating the communities. Whereas abundance declined with depth, species number and
diversity remained high throughout the water column, peaking in the mesopelagic layer. Overall,
vertical profiles of copepod abundance and diversity for the three oceans were similar, and differences
were mainly due to some species and their proportion rather than total abundances. Moreover,
the tropical-subtropical oceanic waters were characterized by cosmopolitan copepods and by the
dominance of small-sized species, which are well adapted to the oligotrophic conditions of the
tropical and subtropical oceans. As it was expected, several upwelling divergent areas showed higher
zooplankton abundances down to bathypelagic depths highlighting the relevance of these areas for
the whole tropical and subtropical ocean. Moreover, the relationship observed between dominant
copepod species and main environmental variables such as temperature and oxygen suggest that ocean
warming and the expansion of OMZs, could lead to changes in the zooplankton community. The data
reported here provide a, hitherto unavailable, guideline to assess changes in the future.
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