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LECTURE 4
Noise

There are three kinds of lies: lies, damn lies, and statistics.
—Probably Benjamin Disraeli

There are liars, there are damn liars, and then there are statisticians.
—Possibly Mark Twain

God does not play dice with the universe.
—Albert Einstein, with probability near 1

Any system that measures the physical world and then selects from a finite set of pos-
sible outcomes must contend with noise; and communication systems are no exception. In
6.02, we decide whether a transmitted bit was a ’1’ or a ’0’ based on comparing a received
voltage sample at the “center” of bit period to a threshold voltage. Our bit decision can be
affected by random fluctuations in the voltage sample values (known as amplitude noise)
or by misindentification of the bit period center caused by random fluctuations in the rate
of received samples (known as phase noise). We will be investigating amplitude noise,
partly because it is far easier to analyze than phase noise, and partly because amplitude
noise dominates in our IR communication system. In this lecture and part of the next, we
will be using a model of noise in which each received voltage sample is offset by a small
random noise value with a given distribution (typically the Gaussian (or Normal) distri-
bution), and we will assume that these random offsets are uncorrelated (the random offset
at a given sample is independent of the random offset at any other sample). This model of
noise is sometimes referred to as additive white Gaussian noise or AWGN. In this lecture
we will be primarily concerned with using the AWGN model to estimate the likelyhood of
misindentifying bits, or the bit-error rate, and will use two important mathematical tools,
the probability density function (PDF) and its associated cumulative distribution func-
tion (CDF). We will also use the variance of the PDF as a way to define how “big” the noise
is.
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� 4.1 When is noise noise?

Imagine you are in a room with other people, where each person is playing music streamed
from a different web site, and each is using a set of speakers (no earbuds!). Then, since you
will be nearest your own speakers, you will hear your music loudest, but will also hear the
music of others in the background. If there are only a few people in the room, you could
probably pick out each of the other songs being played, and ignore them. Some people
are surprisingly good at that, others are not. If there are thousands of people in the room,
you will probably be able to hear your music, but those thousands of other songs will
probably combine together to sound to you like background noise. But there is nothing
random going on, you could presumably get the playlists of all the web streams and know
exactly what the background was, but it would hardly be worth your time. Describing
what you hear as background noise is good enough. Now, if those thousands of other
people switched at random times to randomly selected web sites, the background noise
truely would be random, though it is unlikely you would hear much of a difference.

In communication links, we have the same three cases. Sometimes there are only a
few sources of interference, and if their effects can be determined easily, the effects can be
eliminated. Inter-symbol interference is an example of this case. Sometimes there are so
many sources of interference that even if it were possible to determine the effect of each
source, acquiring the data to eliminate all the interfering sources becomes impractical. A
more tractable approach is to approximate the effect of the combination of interferering
sources as the result of noise of the appropriate amplitude. Finally, sometimes the sources
of interference really are random, with an unknown distribution, though the Gaussian or
Normal distribution described below is usually a good appoximation.

As you will see when we begin examining error detection and correction codes, there
are many alternatives for dealing with bit errors that inevitably occur in any communica-
tion system. We hope that by understanding noise, you will be better able to select the
right strategy from among these alternatives.

� 4.2 Origins of noise

In a communication link, noise is an undesirable perturbation of the signal being sent over
the communication channel (e.g. electrical signals on a wire, optical signals on a fiber, or
electromagnetic signals through the air). The physical mechanism that is the dominant
noise source in a channel varies enormously with the channel, but is rarely associated
with a fundamentally random process. For example, electric current in an integrated cir-
cuit is generated by electrons moving through wires and across transistors. The electrons
must navigate a sea of obstacles (atomic nuclei), and behave much like marbles traveling
through a Pachinko machine. They collide randomly with nuclei and have transit times
that vary randomly. The result is that electric currents have random noise, but the ampli-
tude of the noise is typically five to six orders of magnitude smaller than the nominal cur-
rent. Even in the interior of an integrated circuit, where digital information is transported
on micron-wide wires, the impact of electron transit time fluctuations is still negligible.

If the communication channel is a wire on an integrated circuit, the primary source
of noise is capacitive coupling between signals on neighboring wires. If the channel is a
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Figure 4-1: Bright ambient lighting is noise for the 6.02 IR communication link.

wire on a printed circuit board, signal coupling is still the primary source of noise, but
the coupling between wires is due to unintended electromagnetic radiation. In both these
wire examples, one might argue that the noise is not random, as the signals generating the
noise are under the designer’s control. However, signals on a wire in an integrated circuit
or on a printed circuit board will frequently be affected by signals on thousands of nearby
wires, so approximating the interference using a random noise model seems eminently
practical. In wireless communication networks, like cell phones or Wi-Fi, noise can be gen-
erated by concurrent users, or by signals reflecting off walls and arriving late(multi-path),
or by background signals generated from appliances like microwave ovens and cordless
telephones. Are these noise sources really random? Well, some of the concurrent users
might be pretty random.

Optical channels are one of the few cases where fluctuations in electron transit times is
a dominant source of noise. Though, the noise is not generated by any mechanism in the
optical fiber, but rather by circuits used to convert between optical to electronic signals at
the ends of the fiber.

For the IR communication channel in the Athena cluster, the dominant noise source is
the fluorescent lighting (see Figure 4-1). Though, as we will see in subsequent weeks, the
noise in the IR channel has a structure we can exploit.

Although there are a wide variety of mechanisms that can be the source of noise, the
bottom line is that it is physically impossible to construct a noise-free channel. But, by under-
standing noise, we can develop approaches that reduce the probably that noise will lead
to bit errors. Though, it will never be possible to entirely eliminate errors. In fact, there is a



4 LECTURE 4. NOISE

fundamental trade-off between how fast we send bits and how low we make the probability of error.
That is, you can reduce the probably of making a bit error to zero, but only if you use an
infinite interval of time to send a bit. And if you are using a finite interval of time to send
a bit, then the probability of a bit error must be greater than zero.

� 4.3 Additive Noise

Given the variety of mechanisms that could be responsible for noise, and how little de-
tailed information we are likely to have about those mechanisms, it might seem prudent
to pick a model for noise in a channel that is easy to analyze. So, consider dividing the
result of transmitting samples through a channel in to a two step process. First, the input
sample sequence, X, is processed by a noise-free channel to produce a noise-free sample
sequence, Yn f . Then, noise is added to Yn f to produce the actual received samples, Y.
Diagrammatically,

X → CHANNEL → Yn f → Add NOISE → Y. (4.1)

If we assume the noise-free channel is LTI and described by a unit sample response, H,
we can write a more detailed description,

yn f [n] =
m=n

∑
m=0

h[m]x[n−m] (4.2)

and

y[n] = yn f [n] + noise[n] =
m=n

∑
m=0

h[m]x[n−m] + noise[n], (4.3)

where yn f [n] is the output at the nth sample of the noise-free channel, and noise[n] is noise
voltage offset generated at the nth sample.

Formally, we will model noise[n] as the nth sample of a random process, and a simple
way of understanding what that means is to consider the following thought experiment.
Start with a coin with −1 on the head side and +1 on the tail side. Flip the coin 1000
times, sum the 1000 values, divide by a 1000, and record the result as noise[0]. Then forget
that result, and again flip the coin 1000 times, sum the 1000 values, divide by a 1000,
and record the result as noise[1]. And continue. What you will generate are values for
noise[0], noise[1], ..., noise[n], ... that are independent and identically distributed.

By identically distributed, we mean, for example, that

P(noise[ j] > 0.5) = P(noise[k] > 0.5) (4.4)

for any j and k, where we used P(expression) to denote the probability that expression is
true. By independent, we mean, for example, that knowing noise[ j] = 0.5 tells you nothing
about the values of noise[k], k 6= j.



SECTION 4.4. ANALYZING BIT ERRORS 5

� 4.4 Analyzing Bit Errors

Noise disrupts the quality of communication between sender and receiver because the re-
ceived noisy voltage samples can cause the receiver to incorrectly identify the transmitted
bit, thereby generating a bit error. If we transmit a long stream of bits and count the frac-
tion of received bits that are in error, we obtain a quantity called the bit error rate. This
quantity is equivalent to the probability that any given bit is in error.

Communication links exhibit a wide range of bit error rates. At one end, high-speed
(multiple gigabits per second) fiber-optic links implement various mechanisms that reduce
the bit error rates to be as low as 1 part in 1012, or P(bit error) = 10−12.1 Wireless communi-
cation links usually have errors anywhere between one part in 104, or P(bit error) = 10−4,
for a relatively noisy environments, down to to one part in 107, or P(bit error) = 10−7. Very
noisy links can still be useful even if they have bit error rates as high as one part in 102 or
103.

The eye diagram can be to used to gain some intuition about the relationship between
bit error rate and the amount of noise in the received samples. Recall that we have been
converting samples to bits by selecting a bit detection sample from each bit period, and
then comparing the bit detection sample to a threshold. The bit detection sample should
correspond to the sample in the eye diagram associated with widest open part of the eye. If
the bit detection sample has be selected correctly, then a channel with a wide open eye, will
generate fewer bit errors for a given amount of noise than a channel with a more narrowly
open eye. For reasons we will make clearer below, we refer to one-half the width of the
widest open part of a channel’s noise-free eye diagram as the channel’s noise margin. For
a given amount of noise, the larger the channel’s noise margin, the lower the bit error rate
of the channel.

� 4.4.1 Bit Error Probabilities

If we make the strong assumption the that bit period of the transmitter and receiver are
equal and do not drift apart, as is the case in the IR communication channel, then we can
greatly simplify the analysis of bit errors in the channel. The relation between the sequence
of received voltage samples, Y, and the sequence of received bits, B, can then be written as

bit[k] = 1 i f y[i + sk] > vth (4.5)

bit[k] = 0 otherwise (4.6)

where s is the number of samples in a bit period, vth is the threshold used to digitize the bit
detection sample, bit[k] is the kth received bit, and i is the index of the bit detection sample
for the zeroth received bit.

Note that the problem of selecting the bit detection sample and the threshold voltage in
the presence of noise is not trivial. The bit detection sample should correspond to the sam-
ple associated with the most open part of the eye in the noise-free eye diagram, but there
is no way to generate the noise-free eye diagram using only the noisy received samples. If,
for the moment, we assume that some strategy has identified the best bit detection sample

1This error rate looks exceptionally low, but a link that can send data at 10 gigabits per second with such an
error rate will encounter a bit error every 100 seconds of continuous activity, so it does need ways of masking
errors that occur.
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index, i, and the best threshold voltage, vth, for a given channel, then in the noise-free case,
the correct value for kth received bit should be ’1’ if yn f [i + sk] > vth and ’0’ otherwise. We
can also specify the noise margin in terms of the noise-free received samples as

noise margin ≡ min
k
‖yn f [i + sk]− vth‖ (4.7)

where the above equation just says the noise margin is equal to the smallest distance be-
tween the bit detection sample voltage and the threshold voltage. Again note that the noise
margin is defined based on channel behavior in the absence of noise.

Assuming no period drift also simplifies the expression for the probability of that an
error is made when receiving the kth transmitted bit,

P(bit[k] error) = P(yn f [i + sk] > vth & y[i + sk]≤ vth) + P(yn f [i + sk]≤ vth & y[i + sk] > vth).
(4.8)

or

P(bit[k] error) = P(xbit[k] =′ 1′ & y[i + sk] ≤ vth) + P(xbit[k] =′ 0′ & y[i + sk] > vth) (4.9)

where xbit[k] is the kth transmitted bit.
Note that we can not yet estimate the probability of a bit error (or equivalently the bit

error rate). We will need to invoke the additive noise model to go any further.

� 4.4.2 Additive Noise and No ISI

If we assume additive noise, as in (4.3), then (4.9) can be simplified to

P(bit[k] error) = P(xbit[k] =′ 1′ and noise[i + sk] ≤ −(yn f [i + sk]− vth)) (4.10)

+P(xbit[k] =′ 0′ and noise[i + sk] > (vth − yn f [i + sk])) (4.11)

The quantity in (4.11), −(yn f [i + sk]− vth), indicates how negative the noise must be to
cause a bit error when receiving a transmitted ’1’ bit, and the quantity (vth − yn f [i + sk])
indicates how positive the noise must be to cause an error when receiving a transmitted ’0’
bit.

If there is little or no intersymbol interference in the channel, then yn f [i + sk] will be
equal to maximum voltage at the receiver when a transmitted ’1’ is being received, and
will be equal to the minimum receiver voltage when a transmitted ’0’ is being received. To
make the best use of this observation to simplify (4.11), it will be helpful to separate the
probability that the transmitted bit is a ’1’ or a ’0’ (or equivalently in this ISI-free case, that
the noise-free received voltage is at its maximum or minimum), from the probability that a
received bit is in error given a particular value for the transmitted bit. The latter probability
statement is referred to as a conditional probability. Conditional probability statements
are of the form the probability that a is true given b is true, which we denote as P(a|b).

Using our definition of noise margin in (4.7), we can rewrite part of (4.11) using condi-
tional probabilities as

p01[k] ≡ P(bit[k] error|xbit[k] = 0) = P(noise[i + sk] > noise margin) (4.12)

p10[k] ≡ P(bit[k] error|xbit[k] = 1) = P(noise[i + sk] ≤ −noise margin) (4.13)
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where we have introduced the notation p01[k] to mean the probability that the kth bit is
received as a ’1’ given the kth transmitted bit was a ’0’, and p10[k] to mean the probability
that the kth bit is received as a ’0’ given the kth transmitted bit was a ’1’.

Finally, we can use the assumption that the noise samples are identically distributed to
eliminate the dependence on i and k in (4.13), yeilding

P(bit error) = p01 · p0 + p10 · p1 (4.14)

where p0 is the probability that the transmitted bit is a ’0’, p1 is the probability that the
transmitted bit is a ’1’, and we have used the standard identity P(a and b) = P(a|b)P(b).

At this point we have an estimate of the bit error rate (recall BER is equivalent to the
probability of a bit error), provided we can evaluate the noise probabilities. We turn to that
problem in the next section.

� 4.5 Noise Statistics

We are modeling noise in the received samples as the result of sampling a random process,
where the description of the values generated by sampling this random process are in
terms of probabilities. For example, if we transmit a sequence of zero volt samples and
observe the received samples, we can process these received samples to determine some
statistics of the noise process. If the observed samples are noise[0], noise[1], . . . , noise[N −
1], then the sample mean is given by

µ =
∑

N−1
n=0 noise[n]

N
. (4.15)

For our model of additive noise, the noise samples should have zero mean (µ = 0), so
the sample mean does not provide much information about the noise. A quantity that
is more indicative of the amount of noise in the received samples is given by the sample
variance, defined as

σ2 =
∑

N−1
n=0 (noise[n]− µ)2

N
. (4.16)

The sample standard deviation, σ, is in some sense, the amplitude of the noise. To en-
sure that noise does not corrupt the digitization of a bit detection sample, the distance be-
tween the noise-free value of the bit detection sample and the digitizing threshold should
be much larger than the amplitude of the noise. As explained above, one-half of the width
of the eye is defined as the noise margin, because any noise that is larger than the noise
margin will always lead to an incorrect digitization; if the standard deviation of the noise
process is not much smaller than the noise margin, a huge number of bits will be received
incorrectly.

� 4.5.1 Probability density functions

A convenient way to model noise is using a probability density function, or PDF. To un-
derstand what a PDF is, let us imagine that we generate 100 or 1000 independent noise
samples and plot each one on a histogram. We might see pictures that look like the ones
shown in Figure 4-2 (the top two pictures), where the horizontal axis is the value of the
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Figure 4-2: Histograms become smoother and more continuous when they are made from an increasing
number of samples. In the limit when the number of samples approaches infinity and the bin width
approaches zero, the resulting curve is a probability density function.

noise sample (binned) and the vertical axis is the frequency with which values showed up
in each noise bin. As we increase the number of noise samples, we might see pictures as in
the middle and bottom of Figure 4-2. The histogram is becoming increasingly smooth and
continuous. In the limit when the number of noise samples approaches infinity, and the
width of the bins approaches zero, the resulting histogram is called a probability density
function (PDF).

Formally, let X be the random variable of interest, and suppose x can take on any value
in the range (−∞,∞). The PDF of the random variable is denoted fX(x). What fX(x)
means is that the probability that the random variable X takes on a value between x and
x + dx, where dx is a vanishingly small increment about x, is given by the product fX(x) dx.
Example PDF’s are shown in Figure 4-3 and Figure 4-4.

The PDF is not a probability; but thearea under the fX(x) curve, for any interval of x
values, is a probability (see Figure 4-4). Note that therefore fX(x) may exceed one, but
fX(x) dx, the area under a tiny sliver, is a probability, and can never exceed one.

Any legitimate PDF must satisfy a normalization condition because the area under fX(x)
for x ∈ (−∞,∞) is the probability of all possible outcomes and must be exactly one. That
is,

R∞
−∞ fX(x) dx = 1.

One can use the definition of the PDF to calculate the probability that a random variable
x lies in the range [x1, x2]:

P(x1 ≤ x ≤ x2) =
Z x2

x1

fX(x) dx. (4.17)
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Figure 4-3: PDF of a uniform distribution.

Mean and variance. The mean (or average value) of a random variable X, denoted µX,
can be computed from its PDF as follows:

µX =
Z ∞

−∞
x fX(x) dx. (4.18)

This definition of the mean directly follows from the definition of the mean of a dis-
crete random process, defined in 4.15, and taking the limit when N →∞ in that equation.
Strictly speaking, some assumptions must be made regarding the existence of the mean,
but under these typical satisfied assumptions, the following fact holds. If noise[n] is gen-
erated by a discrete random process with underlying probability density fX(x), then the
sample mean approaches the mean as the number of samples approaches ∞,

N→∞
lim

N

∑
n=0

noise[n] = µX. (4.19)

Similarly, one defines the variance,

σ2
X =

Z ∞

−∞
(x− µX)2 fX(x) dx. (4.20)

and the standard deviation, (σX), is the square root of the variance.
To summarize: If the noise (or any random variable) is described by a PDF fX(x), then the

sample mean and the sample variance converge to the mean and variance of the PDF as the number
of samples goes to ∞.

� 4.5.2 Examples

Some simple examples may help illustrate the idea of a PDF better, especially for those
who haven’t see this notion before.

Uniform distribution. Suppose that a random variable X can take on any value between
0 and 2 with equal probability, and always lies in that range. What is the corresponding
PDF?

Because the probability of X being in the range (x, x + dx) is independent of x as long
as x is in [0,2], it must be the case that the PDF fX(x) is some constant, k, for x ∈ [0,2].
Moreover, it must be 0 for any x outside this range. We need to determine k. To do so,
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Figure 4-4: PDF of a Gaussian distribution, aka a “bell curve”.

observe that the PDF must be normalized, soZ ∞

−∞
fX(x) dx =

Z 2

0
k dx = 1, (4.21)

which implies that k = 0.5. Hence, fX(x) = 0.5 when 0 ≤ x ≤ 2 and 0 otherwise. Figure 4-3
shows this uniform PDF.

One can easily calculate the probability that an x chosen from this distribution lies in
the range (0.3,0.7). It is equal to

R 0.7
0.3 (0.5) dx = 0.2.

A uniform PDF also provides a simple example that shows how the PDF, fX(x), could
easily exceed 1. A uniform distribution whose values are always between 0 and δ, for some
δ < 1, has fX(x) = 1/δ, which is always larger than 1. To reiterate a point made before: the
PDF fX(x) is not a probability, it is a probability density, and as such, could take on any non-
negative value. The only constraint on it is that the total area under its curve (the integral
over the possible values it can take) is 1.

Gaussian distribution. The Gaussian, or “normal”, distribution is of particular interest
to us because it turns out to be an accurate model for noise in many communication (and
other) systems. The reason for the accuracy of this model will become clear later in this
lecture—it follows from the central limit theorem—but let us first understand it mathemati-
cally.

The PDF of a Gaussian distribution is

fX(x) =
e−(x−µ)2/2σ2

√
2πσ2

. (4.22)

This formula captures a bell shape (Figure 4-4), and because of that, is colloquially re-
ferred to as a “bell curve”. It is symmetric about the mean, µ and tapers off to 0 quite
rapidly because of the e−x2

dependence. A noteworthy property of the Gaussian distribu-
tion is that it is completely characterized by the mean and the variance, σ2. If you tell me
the mean and variance and tell me that the random process is Gaussian, then you have
told me everything about the distribution.
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Figure 4-5: Changing the mean of a Gaussian distribution merely shifts the center of mass of the distribu-
tion because it just shifts the location of the peak. Changing the variance widens the curve.

Changing the mean simply shifts the distribution to the left or right on the horizontal
axis, as shown in the pictures on the left of Figure 4-5. Increasing the variance is more
interesting from a physical standpoint; it widens (or fattens) the distribution and makes it
more likely for values further from the mean to be selected, compared to a Gaussian with
a smaller variance.

� 4.5.3 Calculating the bit error rate

Given the PDF of the noise random process, we can calculate the bit error rate by observing
that each received sample is in fact a noise-free value plus a value drawn from a probabil-
ity distribution with zero mean, µ = 0, and a given variance σ2 (or equivalently, a given
standard deviation, σ). The standard deviation is often referred to informally as the “am-
plitude” of the noise. So, if the noise-free received voltage is zero volts, the noisy received
voltage will be 0 + noise, where noise is drawn from a noise distribution determined by
the noise PDF, denoted fNOISE(noise). For brevity, let us write the noisy received voltage
as 0 + x, and replace fNOISE(noise) with fX(x). In this briefer notation, if the noise-free
received voltage is one volt, then noisy received voltage will be 1 + x, where x is again
drawn from the distribution determined by fX(x).

Suppose the digitizing threshold is 0.5, and suppose that in the noise-free case, the
received bit detection sample is zero volts when receiving a transmitted ’0’ bit, and one
volt when receiving a transmitted ’1’ bit. If the probability of transmitting a ’0’ bit is p0

and the probability of transmitting a ’1’ bit is p1, the probability of a bit error in the noisy
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case is given by

P(bit error) = p0 · P(x > 0.5) + p1 · P(1 + x < 0.5)

= p0 · P(x > 0.5) + p1 · P(x < −0.5)

= p0 ·
Z ∞

0.5
fX(x) dx + p1 ·

Z −0.5

−∞
fX(x) dx. (4.23)

Since we are considering ISI-free case at the moment, we are only concerned with two
cases: a transmitted ’0’ or a transmitted ’1’. Since there are only two cases, p0 = 1− p1,
but since the a priori probabilities of transmitting a ’0’ or a ’1’ are usually equal, typically
p0 = p1 = 1/2. If in addition to having values for p0 and p1, we know the noise PDF,
fX(x), then we we can evaluate the integrals in (4.23) and determine the bit error rate. In
fact, if the noise process is symmetric about the mean (as is the case for a Gaussian or a
uniform distribution), then the two integrals in (4.23) are identical, and only one integral
need be evaluated. So, if ’0”s and ’1”s are transmitted equally often, and the noise PDF is
symmetric about the mean, then the formula for the bit error rate simplifies to

P(bit error) =
Z ∞

0.5
fX(x) dx = 1−

Z 0.5

−∞
fX(x) dx. (4.24)

The integral of any PDF from−∞ to x,
R x
−∞ fX(x′) dx′, has a special name, it is called the

cumulative distribution function (CDF), because it represents the cumulative probability
that the random variable X takes on any value ≤ x. From the definition of the CDF, it
follows that the value of the CDF approaches one as x →∞.

To summarize: the probabilty of a bit error, also called the bit error rate, requires the
evaluation of a single CDF when the noise random process is symmetric about the mean.
The Gaussian noise distribution has this property, in addition to being completely charac-
terized in this case by the variance alone (as the mean is assumed to be zero as part of the
additive noise assumption). In the next lecture, we will discuss some salient features of
Gaussian noise, why it is a good model for noise over a communication channel, and how
to recover signals when both ISI and noise occur together.




