
PSoC3/5 Reference Book

Edward H. Currie and David Van Ess

March 29, 2010

ii

Copyright c©2010, Cypress Semiconductor Corporation.
All rights reserved. This work may not be translated or copied either in whole, or in part,
without the prior written permission of Cypress Semiconductor Corporation, 198 Champion
Court, San Jose, CA 95134. USA Tel: (408) 943 2600, Fax: (408) 943 4730, except for brief
excerpts in connection with reviews, or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar, or
dissimilar, methodology now known,or hereafter developed, is strictly forbidden.

The authors and Cypress Semiconductor Corporation have made every effort in the preparation
of this textbook to ensure the accuracy of the information. However, the information contained
herein is provided and intended for pedagogical purposes only, and without any warranty, either
express or implied. Neither the authors, nor Cypress Semiconductor Corporation will be held
liable for any damages caused, or alleged to be caused, either directly, or indirectly, by this text-
book and/or its contents.

Camera-ready copy was prepared using the authors’ LaTeX files.

Printed and bound by xxxxxxxxxxxxxxxx in xxxxxxxxxxx, xxxxxxxxxx USA.

Printed in the United States of America.
9 8 7 6 5 4 3 2 1
ISBN XXX-X-XXXXXXX-X-X Cypress Semiconductor Corporation, San Jose, California.

The information contained herein is subject to change without notice. Cypress Semiconductor Corporation (Cy-
press) assumes no responsibility for the use of any circuitry herein other than circuitry embodied in a Cypress
product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant
to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in
significant injury to the user. The inclusion of Cypress products in life-support systems application implies that
the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Cypress, Programmable System-on-Chip, PSoC, PSoC Creator, PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corporation, Inc., 2010. All other trademarks, or registered trademarks, are the sole
and exclusive property of their respective owners.

iii

The information contained herein is subject to change without notice. Cypress Semiconductor Corpo-
ration assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress
product. Nor does it convey or imply any license under patent or other rights. Cypress products are not
warranted nor intended to be used for medical, life support, life saving, critical control or safety appli-
cations, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not
authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in
doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) contained
herein is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to
worldwide patent protection (United States and foreign), United States copyright laws and international
treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license
to copy, use, modify, create derivative works of, and compile Cypress Source Code and derivative works
for the sole purpose of creating custom software and or firmware in support of licensee product to be
used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any
reproduction, modification, translation, compilation, or representation of this Source Code or any of the
material contained herein except as specified above is prohibited without the express written permis-
sion of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or
circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury
to the user. The inclusion of Cypress product in a life-support systems application implies that the
manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use
may be limited by and subject to the applicable Cypress software license agreement. PSoC Designer, and
PSoC Creator are trademarks and PSoC is a registered trademark of Cypress Semiconductor Corp. All
other trademarks or registered trademarks referenced herein are property of the respective corporations.
Flash Code Protection Cypress products meet the specifications contained in their particular Cypress
PSoC Data Sheets. Cypress believes that its family of PSoC products is one of the most secure families
of its kind on the market today, regardless of how they are used. There may be methods, unknown to
Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would
be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guar-
antee the security of their code. Code protection does not mean that we are guaranteeing the product as
”unbreakable.” Cypress is willing to work with the customer who is concerned about the integrity of their
code. Code protection is constantly evolving. We at Cypress are committed to continuously improving
the code protection features of our products.Cypress, the Cypress logo, PSoC, PowerPSoC, CapSense
and West Bridge are registered trademarks and PSoC Creator and TrueTouch are trademarks of Cypress
Semiconductor Corp. All other trademarks are property of their owners.

iv

Preface

This textbook is intended to provide a unique, in depth look at programmable system on a chip
technology from the perspective of the world’s most advanced system-on-a-chip technology, viz.,
Cypress Semiconductor’s PSoC. The book introduces a wide variety of topics and information
intended to facilitate your use of true visual embedded design techniques and mixed-signal tech-
nology. The authors have attempted to include sufficient background material and illustrative
examples to allow the first time PSoC user, as well as, advanced users to quickly “come up to
speed”. A detailed bibliography, and other sourcing of useful supplementary materials, is also
provided.

Readers are encouraged to visit Cypress’ website at www.cypress.com and explore the wealth
of material available there in the form of user forums, application notes, design examples,product
data sheets, the latest versions of development tools (which are provided to users at no cost),
data sheets on all Cypress products, detailed information regarding Cypress’ University Alliance
programs, tutorials, etc. Cypress has amassed a vast wealth of material related to the subject
matter of this text, most of which is accessible to readers online,and the authors have shown a
complete lack of restraint in harvesting important concepts, illustrations, examples and source
code from this source.

The presentation style employed in this textbook is based on the authors’ desire to provide
relevant and definitive insight into the material under discussion while circumnavigating a swamp
of details in which the reader might otherwise become mired. Thus mathematical derivations are
provided in what, in some cases, may be viewed as excruciating detail to best accomplish the task
at hand. But various forms of metaphorical “syntactic sugar”, or a reasonable facsimile thereof,
as well as, other forms of embroidery have been freely and liberally applied as required, to leave
the reader with both a strong intuitive grasp of the material and a solid foundation. However,
true mathematical rigor in the sense that purists and theoretical mathematicians prefer has been
largely avoided.

To the extent feasible, the authors have avoided colloquialisms such as “RAM memory” (which
is literally “random access memory memory”, employed accepted abbreviations, and mnemonics,
hopefully without sacrificing clarity and becoming bogged down in details which may well be
required for completeness but are often of little real world applicability, or value.

Errors found in this work are the sole and exclusive property of the authors, but much of
the material found here is either directly, or indirectly, the result of the efforts of many of the
employees of Cypress, and of course Cypress’ customers. The authors welcome your suggestions
and criticisms and ask that you forward your comments to xxx@cypress.com.

Contents

Preface . iv

1 Introduction to Embedded System 1
1.1 Evolution of Embedded Systems . 1
1.2 Evolution of Microprocessors . 3
1.3 Embedded System Applications . 15
1.4 Embedded System Controlling . 17

1.4.1 Types of Embedded System . 17
1.4.2 Open Loop, Closed Loop and Feedback . 18

1.5 Embedded System Performance Criteria . 22
1.5.1 Interrupts . 25
1.5.2 Latency . 26

1.6 Embedded Systems Subsystems . 29
1.7 Sensors and Sensing . 32

1.7.1 Types of Sensors . 34
1.7.1.1 Optical Sensors . 34
1.7.1.2 Capacitive Sensing . 34
1.7.1.3 Magnetic Sensors . 35
1.7.1.4 RF . 36
1.7.1.5 Ultraviolet . 36
1.7.1.6 Infrared . 37
1.7.1.7 Ionizing Sensors . 37
1.7.1.8 Other Types of sensors . 37
1.7.1.9 Thermistors . 39
1.7.1.10 Thermocouples . 42

1.7.2 Use of Bridges for Temperature Measurement 43
1.7.3 Sensors and Microcontroller Interfaces . 45

1.8 Embedded System Processing . 46
1.9 Microcontroller Sub-systems . 49
1.10 Software Development Environments . 54
1.11 Embedded Systems Communications . 58

1.11.1 The RS232 Protocol . 59
1.11.2 USB . 59
1.11.3 Inter-Integrated Circuit Bus (I2C) . 60
1.11.4 Serial Peripheral Interface (SPI) . 60
1.11.5 Controller Area Network (CAN) . 60
1.11.6 Local Interconnect Network (LIN) . 62

1.12 Programmable Logic . 63
1.13 Mixed-Signal Processing . 65
1.14 PSoC - Programmable System on Chip . 65

vi CONTENTS

A Mnemonics 71

B Definitions 73

Bibliography 84

Index 86

List of Figures

1.1 A typical embedded system architecture. 2
1.2 The VERDAN Computer. 3
1.3 External devices required microprocessor-based (micro)controller. 4
1.4 Comparison of Von Neumann and Harvard architectures. 5
1.5 Block diagram of the Intel 8048. 6
1.6 Architecture of a basic microcontroller, e.g.,the Intel 8048. 7
1.7 Accumulator operations . 7
1.8 PSW bit positions. 8
1.9 An ultraviolet (UV) erasable microcontroller. 8
1.10 Intel 8048 internal architecture. 9
1.11 Schematic view of an open loop system. 19
1.12 Embedded System motor controller. 20
1.13 Schematic view of a closed loop system with direct feedback. 20
1.14 Schematic view of a closed loop system with “sensed” output feedback. 20
1.15 A generalized SISO feedback system. 21
1.16 An embedded system that is subject to external perturbations 22
1.17 Block diagram of typical microcontroller/DMA configuration. 24
1.18 An example of a tri-state device. 25
1.19 Intel 8051 Architecture. 28
1.20 A simple example of analog signal processing. 31
1.21 Example of aliasing . 32
1.22 Examples of Tension, Compression, Flexure (Bending) and Torsion. 39
1.23 Example of shear force. 39
1.24 Strain Gauge applied to a duraluminum tensile test specimen. 40
1.25 Closeup of a Strain Gauge. 41
1.26 Seebeck potentials. 42
1.27 The Wheatstone Bridge. 44
1.28 Constant current measurement. 45
1.29 Resistive divider. 45
1.30 Classification of the types of memory used in/with microcontrollers. 51
1.31 An example of an SRAM Cell. 52
1.32 An example of a dynamic cell. 52
1.33 Driving modes for each pin are programmatically selectable. 54
1.34 Development Tool and Hardware Evolution. 56
1.35 A graphical representation of the simplest form of SPI communication. 58
1.36 SPI - Single master multiple slaves. 58
1.37 Hardware example of the SPI network. 59
1.38 The RS232 protocol (1 start bit, 8 data bit, 1 stop bit). 61
1.39 CAN frame format. 62

viii LIST OF FIGURES

1.40 LIN frame format. 63
1.41 Digital Logic family tree. 63
1.42 Unprogrammed PAL. 64
1.43 An example of a programmed PAL. 65
1.44 An example of a multiplexer based on a PLD . 65
1.45 PSoC1/PSoC2/PSoC3 architectures. 69

List of Tables

1.1 Some of the types of subsystems available in microcontrollers. 30
1.2 Algorithms used in embedded systems. 47

x LIST OF TABLES

Chapter 1

Introduction to Embedded
System

“Embedded Systems are application-domain specific, information processing systems that are tightly

coupled to their environment.” Dr. T. Stefano (2008)

1.1 Evolution of Embedded Systems

Embedded systems can be less formally defined as dedicated, computer-based systems designed to
monitor certain parameters, associated with some process or system, and to use that information
to control the process, or system, or some combination thereof. An embedded system, typically
engages in “data processing”1 for the purposes of data logging and/or control of an external
process, system, or systems, by providing various outputs to external devices, as required, based
on the available input data. Alternatively, embedded systems may be described as dedicated,
microcomputer-based systems2, operating in real time, running code optimized for execution
speed and size that are usually designed to perform specific tasks related to control of a process
or system, subject to certain predefined constraints and operating conditions.

The majority of embedded systems are gathering data from one or more sensors and other
data sources, subjecting the data to some form of conditioning and providing it directly, or via a
buffer/multiplexing stage in cases involving large amounts of data, to a Central Processing Unit
(CPU), The CPU “processes” the incoming data and typically outputs commands to an output
conditioning phase which in turn drives motors, linear and other actuators, display devices,
communications channels, etc., as shown in Figure 1.1.

It is difficult to say when the first all solid state embedded system appeared, particularly when
compared to modern embedded systems. However, a very early example occurred as a result of the
introduction of a series of inertial navigation systems, developed by Autonetics, a division of North
American Rockwell, in the early nineteen fifties. This work included, at least philosophically, a

1“Data processing” in the present context refers to the embedded system invoking the appropriate algorithms
to determine what action, if any, is to be taken based on sensor, or other input data.

2Early embedded systems were generally regarded as unalterable (fixed) in terms of their basic functionality.
However, in recent years it has become possible to “reconfigure” these systems in the field as a result of human
intervention, or in some cases, embedded systems can actually reconfigure themselves, programmatically, to con-
form and/or respond to changing operating conditions and environments. This latter property is sometimes to
referred to as “reconfigurability”. This important property allows an embedded system to more fully exploit all
of its hardware resources.

2 Introduction to Embedded System

Figure 1.1: A typical embedded system architecture.

predecessor of the modern day microcontroller which was called VERDAN (Versatile Digital
Analyzer), shown in Figure 1.2. This system, known by various names (VERDAN, MARDAN,
D-9), evolved from work in the latter part of the 1940s by Autonetics, into a fully transistorized,
flight control system consisting of some 1500 germanium transistors, 10,670 germanium diodes,
4,500 resistors and 670 capacitors. This was a particularly amazing accomplishment in light of
the then known problems with manufacturing germanium transistors and their associated, and
for some, infamous thermal “runaway”3 problems.

The resulting “macro-computer-based” system was able to navigate, and control, airframes
capable of operating at speeds well in excess of Mach 3, i.e., greater than 2000 mph. The computer
portion of the system consisted of three sections: 1) a General Purpose (GP) section based on
a 24-bit data formats and fifty-six 24-bit instructions, and integral multiply/divide4 hardware,
2) an I/O section capable of handling multiple shaft encoder and resolver I/O channels and
3) an 128 integrator, Digital Differential Analyzer (DDA). The equations of motion, a set of
partial differential equations, were solved in the DDA section, based on continual input from an
inertial platform. The GP Section interacted with the DDA to update various parameters in the
equations of motion. The DDA then solved the equations of motion in real time and the solutions
were subsequently passed to the GP section which communicated with the I/O section to output
control information and commands to the system’s actuators.

VERDAN’s architecture was to reappear in several incarnations, e.g., VERDAN II (aka MAR-
DAN) as part of The US Navy’s Ships Inertial Navigation System (SINS) and the D17 which
was employed in Minute Man Missiles. Each of these consisted of multiple plug-in cards sharing
a common bus. Autonetics may have also been the first to consider a floppy disk as a rotating
memory device, but ultimately decided on, what appears to have been, the first “rotating disk”
memory. It had fixed heads and rotated at speeds comparable to present day hard disks.

VERDAN was repackaged to facilitate field access to the circuitry and renamed MARDAN
(Marine Digital Analyzer). The bus structure remained the same and most of the printed circuit
boards used in VERDAN, of which there were approximately 75, were fully compatible with

3Some transistors exhibit a phenomenon known as “thermal runaway” which results from the fact that the
number of free electrons is a function of temperature. Thus as the temperature rises, the current increases
leading to additional Ohmic heating and therefore further temperature increases. This type of problem can
lead to the destruction of the transistor but also means that circuit behavior based on such devices can become
“unpredictable”.

4Later systems, e.g. Minuteman, were based on the same architecture but supported only hardware multiply.
Division was carried out by inverting the divisor and multiplying. Functions such as square root, if needed, were
handled programmatically. Multiplication and division results are each 48 bits.

1.2 Evolution of Microprocessors 3

Figure 1.2: The VERDAN Computer.

MARDAN’s bus architecture. MARDAN was to remain in service from 1959 until 2005 on the
Polaris, Trident, etc., submarines. VERDAN was repackaged for a third time as the naviga-
tional computer in the later versions of the Minute Man systems. In addition, some aspects of
VERDAN’s design were incorporated into the Apollo guidance system and the Apollo simulator.

1.2 Evolution of Microprocessors

The first microprocessor (Intel 4004) was introduced by Intel in 1971. It was followed by the Intel
8008 (1972) and the Intel 8080 (1974). All of these microprocessors required a number of external
chips to implement a “useful” computing system and required multiple operating voltages (-5,
+5 and +12vdc), cf. Figure 1.3.

In 1977, Intel introduced the 8085, which was a modified form of the 8080, but pt relied less on
external chips and required only +5 volts for operation. As the number of microprocessor-based,
embedded system applications grew it soon became apparent that utilizing a simple micropro-
cessor, such as the Intel 8080, with its requirement for multiple, associated support chips and the
limitations of available external peripheral devices made microprocessors inadequate for many
potential and actual embedded system applications.

In 1976, Intel introduced its first true microcontroller with on-board memory and peripherals,
known as the “Intel 8048”, an N-channel, silicon-gate, MOS device, which was a member of
Intel’s MCS-48 family of 8-bit microcontrollers. The 8048 had 27 I/O lines , one timer/counter,
hardware reset, support for external memory, an 8-bit CPU, interrupt support, hardware single
step support and a crystal controlled clock.

4 Introduction to Embedded System

Figure 1.3: External devices required microprocessor-based (micro)controller.

Embedded system microcontrollers, and microprocessors, have historically employed either a
Von Neumann, or Harvard, memory architectures, as shown in Figure 1.4. The Von Neumann
memory configuration has only one “zero” location for both data and memory and therefore
data and program code must reside in the same memory space. Since data and addresses each
have their own bus in the Harvard configuration, program and data are stored separately in
different regions of memory to allow instructions to be fetched while data is being processed
and stored/accessed. Instruction address zero is distinct from data address zero, in the Harvard
architecture, which makes it possible for address and data to have different bit sizes, e.g., 8 bit
data versus 32 bit instructions.

A third configuration, sometimes referred to as a “modified Harvard” architecture, allows
the CPU to access both data and instructions in separate memory spaces, but allows program
memory to be accessed by the CPU as if it were data to permit instructions and text to be treated
as data, so they can be moved and/or modified.

The 8048, shown schematically in Figure 1.5, had a “modified” Harvard architecture, 64-256
bytes of on-chip RAM, 96+ instructions with 90% being single-byte instructions (all instructions
required either one or two cpu cycles). The 8048 handled both binary and BCD arithmetic, had
an 8-bit counter/timer, twenty seven I/O lines, an on-chip oscillator which served as the clock.
two single-level interrupts, and support for both internal and external ROM/RAM.

I/O was memory-mapped in its own address space, i.e. separated from program and data
locations. Memory-mapped I/O (MMIO) and port I/O (also called port-mapped I/O or PMIO)
are two complementary methods for performing input/output between the CPU and peripheral
devices in an embedded application.5 An external crystal was required to allow the 8048 to oper-
ate at a clock speed of 3-4 MHz, which resulted in the 8048 functioning at rate of approximately
.33 -.5 MIPS6. The 27 I/O lines were bidirectional, with two groups of eight lines forming Ports
1 and 2.

5Another approach is to employ dedicated I/O processors or channels.
6MIPS is a figure of merit for a CPU and is a method of rating that is expressed in terms of the number of

Millions of Instructions (executed by the CPU) Per Second.

1.2 Evolution of Microprocessors 5

Figure 1.4: Comparison of Von Neumann and Harvard architectures.

Output data written to Ports 1 and 2 was “statically latched”, so that it remained unchanged,
until overwritten. However, input data to these ports was not latched and had to be held by some
external means until the data could be read by an 8048 input instruction. Maintaining statically
latched I/O data continues to be one of the requirements of many of the modern microcontrollers.

An internal 8 bit bus was used to interconnect the accumulator, accumulator latch, a tem-
porary 8 bit register, the flags register, the instruction register and decoder, the RAM address
register, Ports 1 and 2, the Program Status Word (PSW), resident EPROM/ROM, lower program
counter, as shown in Figure 1.10.

As shown in Figure 1.6, a microcontroller incorporates, within a single chip, all of the basic
functionality embodied within a microprocessor and the various external (peripheral) devices
required by a microprocessor to allow it to function as a “microcontroller”. However, there
were many applications in which even this type of microcontroller was used in conjunction with
external RAM, oscillator, UARTS/USARTS, A/Ds. D/As, PWMs, etc.

The 8048 included an arithmetic section consisting of an Arithmetic Logic Unit (ALU), accu-
mulator, carry flag and instruction decoder. The arithmetic logic unit held 8-bit values obtained
from either an accumulator latch or a temporary register, and produced a result defined by the
instruction decoder. The stack was implemented using pairs of registers in the data memory
area. The program counter was an independent counter, but the Program Counter stack used
pairs of registers, also in data memory. Eight registers R0-R7, an eight level stack, an optional
second register bank and the data store were all accessible by the ALU. The ALU could perform
the operations shown Figure 1.7, and if any ALU operation resulted in an overflow of the most
significant bit, the carry flag in the program status byte was set. The Program Status Word
(PSW) was maintained in an 8 bit register, consisting of flip-flops, with the bit positions defined
as shown in Figure 1.8.

Input/Output was performed using one of the 27 I/O lines provided. These lines were or-
ganized as three ports of 8 bits each and 3 test inputs that could be used to alter program

6 Introduction to Embedded System

Figure 1.5: Block diagram of the Intel 8048.

execution, when tested by the applicable conditional jump instructions. Data written to a port
was statically latched and remained so, until rewritten, but the input lines were non-latching and
therefore inputs were required to remain static, until read by an input instruction.

Since an 8-bit address bus is limited to addressing a maximum of 256 bytes of memory, some
other method must be employed to address additional RAM. Early microprocessors sometimes
employed multiplexing of address lines to allow a larger memory space to be employed, e.g., 64K
addressable by 16-bits, i.e., two bytes. In such applications, the lower byte of the address was
placed on the address bus and latched in an external register. The upper byte was then placed
on the address bus and latched in a second external register. The data byte held in the external
memory location, and addressed by the two bytes, was then placed on the bus for retrieval by
the microcontroller.

Another memory addressing technique employed by both microprocessors and microcon-
trollers is based on the concept of “paging” and utilizes a special register that holds a “page
number” which serves as a pointer to a particular page, or segment of memory, of predefined size
and location. Thus a CPU can for example, in principle at least, address an arbitrary number of
pages of 256 bytes, or larger, by reading/writing a byte from/to a memory location pointed to by
this special register. This type of memory structure is sometime referred to as “segmented” or
“paged”. With the advent of the Intel 8080, the address bus became 16-bits wide and therefore
the page size became 64K.

However, paged/segmented memory structures imposed additional overhead on the CPU and
increased the complexity of writing applications software. Microprocessors such as Motorola’s
68000 had a memory structure referred to as linear/sequential/contiguous7 that made it possible
to directly address all available memory, which could be as large as 16 Mbytes.

Program memory, for the 8048, was 8-bits wide, addressable by the program counter and
was available in 1024, 2048 and 4096 configurations. The memory was ROM-based and mask
programmable, during manufacturing of the device8. Data memory was organized as 64, 128

7Linear, sequential contiguous memory architectures use a memory space in which memory is addressable
physically and logically in the same manner.

8Versions of the 8048 were also available that had EPROM (Electrically Programmable, Read-Only Mem-

1.2 Evolution of Microprocessors 7

Figure 1.6: Architecture of a basic microcontroller, e.g.,the Intel 8048.

Figure 1.7: Accumulator operations

or 256 bytes and the stack size was restricted to 16 bytes. Even though, by current standards,
the available memory was quite small, bank-switching was used to page memory which made it
possible to address sufficient memory for many of the early applications for embedded systems.
System memory consisted of so-called “Read/Write memory” (R/WM) and “Read-Only” memory
(ROM). The latter was either static, which is fast but expensive, or dynamic which is slow(er),
but cheaper. Read-Only memory was either erasable, or permanent, with erasable memory being
EPROM (electrically programmable), EEPROM (electrically erasable),or ultimately Flash.

Permanent memory was masked ROM (created at the time of manufacture of the microcon-
troller) or programmable ROM, a one-time program capability that in some cases involved the
burning of links, or fuses. Intel introduced the 8749, shown in Figure 1.9, a member of the 8048
family, that had an integral quartz window to allow the internal memory to be EPROM to be

ory)which allowed the device to be programmed/erased in the field to facilitate prototype development. The
device could be erased by ultraviolet light applied to a quartz window on the 8047.

8 Introduction to Embedded System

Figure 1.8: PSW bit positions.

erased by ultraviolet (UV) light.

Figure 1.9: An ultraviolet (UV) erasable microcontroller.

Memory-mapped I/O, which is not to be confused with memory-mapped file I/O9, uses the
same address bus to address both memory and I/O devices. In such cases, the CPU instructions
used to access the memory are also used for accessing external devices. In order to accommodate
the I/O devices, areas of CPU’s addressable space must be reserved for I/O. The reservation
might be temporary in some systems to enable them to bank switch between I/O devices and
permanent and/or RAM. Each I/O device monitored the address bus and responded to any access
of device-assigned address space, by connecting the data bus to an appropriate device hardware
register.

Port-mapped I/O uses a special class of CPU instructions specifically for performing I/O.
This is generally the case for most Intel microprocessors, specifically the IN and OUT instructions
which can read and write a single byte to an I/O device. I/O devices have a separate address space
from general memory, either accomplished by an extra “I/O” pin on the CPU’s physical interface,
or an entire bus dedicated to I/O. Thus inputs/outputs were accomplished by writing/reading
to a predefined memory location. The 8048’s internal architecture is shown in Figure 1.10.

The 8051 microprocessor was introduced by Intel in 1980 as a “system on a chip” and has
subsequently become something of a worldwide standard in the fields of microcontrollers and

9Memory mapped file I/O refers to a technique of treating a portion of memory as if data is organized in a
file format.

1.2 Evolution of Microprocessors 9

Figure 1.10: Intel 8048 internal architecture.

10 Introduction to Embedded System

embedded systems. It was a refinement and extension of the basic design of the Intel 8048 and
in its simplest configuration had the following:

• A Harvard memory architecture

• An ALU

• Seven on-chip registers

• A serial port (UART)

• A power saving mode

• Two 16 bit counter/timers

• Internal memory consisting of GP bit-addressable storage, register banks and special func-
tion registers

• Support for 64K of external memory (code)10

• Support for 64K external memory (data)

• Four 8-bit, bidirectional I/O ports11

• Two 10 bit-addressable locations12

• 128 bytes of internal RAM

• 4k bytes of internal ROM

• Multiple addressing modes - indirect/direct to memory, register direct via the accumulator

• 12 clock cycles per machine cycle

• Very efficient execution since most instructions required only one or two machine cycles.

• .5-1 MIPS performance at a clock speed of 12 MHz.

• An on-chip clock oscillator

• Six source, five vector interrupt handling

• 64K program memory address space

• 64K data memory address space

• Extensive Boolean handling capability

Intel ceased production of the 8051 in 2007, but a significant number of chip manufactures
continue to offer 8051-like architectures, many of which have been very substantially enhanced
and extended compared to the original design, e.g., Atmel, Cypress Semiconductor, Infineon
Technologies, Maxim (Dallas Semiconductor), NXP, ST Microelectronics, Silicon Laboratories,
Texas Instruments and Winbond. Although the original 8051 was based on NMOS technology,
in recent years CMOS versions of the 8051, or similar architecture, have become widely available.

In addition to supporting memory-mapped I/O, the 8051’s registers were also memory-mapped
and the stack resided in RAM which was internal to the 8051. The 8051’s ability to access
individual bits made it possible to set, clear AND, OR, etc., individual bits utilizing a single
8051 instruction. Register banks were contained in the lowest 32 bytes of the 8051’s internal
memory. Eight registers were supported, viz, R0-R7, inclusive, and their default locations were
at addresses 0x00-0x07. Register banks could also be used to provide efficient context switching

10The 8051 utilizes a separate 64K for data and code, respectively.
11I/O ports in the 8051 are “memory-mapped”, i.e. to read/write from/to an I/O port the program being

executed must read/write to the corresponding memory location in the same manner that a program would
normally read/write to any memory location.

12128 of these are at addresses 0x20-0x2F with the remaining 73 being located in special function registers

1.2 Evolution of Microprocessors 11

and the active register bank was selected by bits in the Program Status Word (PSW). At the
top of the internal RAM there were 21 special registers located at addresses 0x80− 0xFF . Some
of these registers were bit- and byte-addressable, depending upon the instruction addressing the
register.

As designers became increasingly more comfortable with microcontrollers they began to take
on more and more complex embedded system applications. This resulted in the need for a
much wider variety of peripheral devices. PWMs, additional UARTs, A/D converters and D/A
converters were some of the first modules to be available “on-chip”. The demand continued to
grow for more memory, CPU functionality, faster clock speeds, better interrupt handling, support
for more levels of interrupt, etc., and with the introduction of OpAmps “on-chip’ and typically
interoperable ’, the demand for analog devices increased, as well. On-chip real estate has always
been an extremely valuable asset and while additional digital functionality was also desirable,
the need for more analog support was greater.

Thus a compromise was required and resulted in so-called “mixed-signal”13 techniques being
introduced into embedded system applications space. As a result, there are now a large number of
manufacturers of microcontrollers utilizing a variety of cores, many of which are 8051 derivatives,
and various combinations/permutations of analog and digital “peripherals” that are provided by
the manufacturer, on-chip.

Some of the representative types that are currently available are listed below with a brief descrip-
tion:

68HC11 (Motorola) - CISC, 8-bit, two 8-bit accumulators, two sixteen-bit index registers, a
condition code register, 16-bit stack pointer, 3-5 ports, 768 bytes internal memory, max of 64k
external RAM, 8051 8-bit ALU and registers, UART, 16-bit counter/timers, four byte (bidirec-
tional) I/O port, 4k on-chip ROM, 128-256 bytes of memory for data, 4 Kbytes of memory for
the program, 16-bit address bus, 8-bit data bus, timers, on-chip oscillators, bootloader code in
ROM, power saving modes, in-circuit debugging facilities, i2C/SPI//USB interfaces, reset timers
with brownout detection, self-programming Flash ROM (program memory), analog comparators,
PWM generators, support for LIN/CAN busses, A/D and D/A converters, non-volatile memory
(EEPROM) for data, etc.

at91SAM3 (ATMEL at91SAM series) - ARM Cortex-M3 revision 2.0, core, max clock rate
64 MHz, Memory Protection Unit (MPU), Thumb-2 instruction set, 64 to 256 Kbytes embedded
Flash, 128-bit wide access memory accelerator (single plane), 16 to 48 Kbytes embedded SRAM,
16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines, 8-bit static
memory controller (SMC): SRAM/PSRAM/NOR and NAND Flash support, embedded voltage
regulator for single supply operation, Power-on-Reset (POR), brown-out detector (BOD) and
watchdog, quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detec-
tion and optional low power 32.768 KHz for RTC or device clock, high precision 8/12 MHz factory
trimmed internal RC oscillator with 4 MHz default frequency for device startup, (in-application
trimming access for frequency adjustment),slow clock internal RC oscillator as permanent low-
power mode device clock, two PLLs up to 130 MHz for device clock and for USB, temperature
sensor, 22 peripheral DMA (PDC) channels, low power modes (sleep and backup modes, down to
3μA in backup mode), ultra low power RTC, USB 2.0 (12 Mbps, 2668 byte FIFO, up to 8 bidirec-
tional endpoints, on-chip transceiver), 2 USARTs with ISO7816 (IrDA, RS-485, SPI, Manchester
and modem Mode), two 2-wire UARTs, 2 two-wire I2C compatible interfaces SPI (1 Serial Syn-
chronous Controller (I2S), 1 high speed multimedia card interface (SDIO/SD Card/MMC)), 6

13Mixed-signal refers to an environment in which both analog and digital signals are present and in many cases
being processed individually by analog and digital modules that are interoperable.

12 Introduction to Embedded System

three-channel 16-bit timers/counters with capture/waveform/compare and PWM mode, quadra-
ture decoder logic and 2-bit Gray up/down counter for driving a stepper motor, 4-channel 16-bit
PWM with complementary output/fault input/12-bit dead time generator counter for motor
control, 32-bit real-time timer and RTC with calendar and alarm features, 15-channel 1Msps
ADC with differential input mode and programmable gain stage, one 2-channel 12-bit 1Msps
DAC, one analog comparator with flexible input selection/window mode and selectable input
hysteresis, 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU), 79 I/O lines with ex-
ternal interrupt capability (edge or level sensitivity)/debouncing/glitch filtering and on-die series
resistor termination, three 32-bit parallel input/output controllers, and peripheral DMA assisted
parallel capture mode.

ST92F124xx (STMicroelectronics ST92F Family) Single Voltage Flash 256 Kbytes (max),
8Kbytes RAM (max), 1K byte E3(Emulated EEPROM), In-Application Programming (IAP),
224 general purpose registers (register file) available as RAM, accumulators or index pointers,
Clock, reset and supply management, register-oriented 8/16 bit CORE with RUN, WFI, SLOW,
HALT and STOP modes, 0-24 MHz operation (Int. Clock), 4.5-5.5 V range, PLL Clock Generator
(3-5 MHz crystal), minimum instruction time: 83 ns (24 MHz int. clock), 80 I/O pins, 4 external
fast interrupts + 1 NMI, 16 pins programmable as wake-up or additional external interrupt with
multi-level interrupt handler, DMA controller for reduced processor overhead, 16-bit timer with
8-bit prescaler, and watchdog timer (activated by software or by hardware), 16-bit standard timer
that can be used to generate a time base that is independent of the PLL clock generator, two
16-bit independent Extended Function Timers (EFTs) with prescaler, two input captures and
two output compares, two 16-bit multifunction timers, with prescaler, two input captures and
two output compares, Serial Peripheral Interface (SPI) with selectable master/slave mode, one
multiprotocol Serial Communications Interface with asynchronous and synchronous capabilities,
one asynchronous Serial Communications Interface with 13-bit LIN Synch Break generation capa-
bility, J1850 Byte Level Protocol Decoder (JBLPD), two full IC multiple master/slave interfaces
supporting the access bus, two CAN 2.0B active interfaces, 10-bit A/D converter (low current
coupling).

ATmega8 (Atmel AVR 8-bit Family) - Low-power AVR 8-bit Microcontroller, RISC Archi-
tecture, 130 instructions (most are single-clock cycle execution), 32 x 8 general purpose registers,
fully static operation to 16 MIPS throughput at 16 MHz, on-chip 2-cycle multiplier, High 8K-32K
Bytes of In-System Self-programmable Flash program memory, 512 Bytes EEPROM, 1K Byte
SRAM, 10,000 Flash/100,000 EEPROM write/erase cycles(20 years data retention, optional boot
code section with independent lock bits, in-system programming by on-chip boot program, true
Read-While-Write operation, programming lock for software security, two 8-bit timer/counters
with separate prescaler and one compare mode, one 16-bit timer/counter with separate prescaler
and compare/capture mode, a real time counter with a separate oscillator, three PWM Channels,
6-8 channel ADC with 10-bit Accuracy, byte-oriented two-wire Serial Interface, programmable
Serial USART, master/Slave SPI Serial Interface, programmable watchdog timer with separate
on-chip oscillator, analog comparator, power-on Reset and programmable brown-out detection,
calibrated RC Oscillator, external and internal interrupt sources, five sleep modes (Idle, ADC
noise reduction, power-save, power-down, and standby), 23 programmable I/O lines, operat-
ing voltages: 2.7 − 5.5V , clock speeds: 0 − 16MHz, current drain (4Mhz, 3V, 25C) - active:
3.6mA/idle: 1.0mA/power-down: 0.5μA

80C51 (Atmel) - 8051 Core Architecture, 256 Bytes of RAM, 1K Bytes of XRAM, 32K Bytes
of Flash, Data Retention: 10 years at 85C, Erase/Write cycle: 100K, Boot code section with
independent lock bits, 2K Bytes Flash for Bootloader, in-system programming by Boot program,
CAN, UART and IAP Capability, 2K Bytes of EEPROM, Erase/Write cycle: 100K, 14-sources
4-level interrupts, three 16-bit timers/counters, full duplex UART, maximum crystal frequency

1.2 Evolution of Microprocessors 13

of 40 MHz (X2 mode)/20 MHz (CPU Core, 20 MHz), five ports: 32 + 2 digital I/O Lines, five-
channel 16-bit PCA with: PWM (8-bit)/high-speed output /timer and edge capture, double data
pointer, 21-bit watchdog timer (7 Programmable Bits),10-bit analog to digital converter (ADC)
with 8 multiplexed inputs, on-chip emulation logic (enhanced hook system),power saving modes:
idle and power-down. Full CAN controller (CAN Rev2.0A and 2.0B), 15 independent message
objects: each message object programmable on transmission or reception, individual tag and
mask filters up to 29-bit identifier/channel, 8-byte Cyclic Data Register (FIFO)/message object,
16-bit status and control register/message object, 16-bit time-stamping register/message object,
CAN specification 2.0 Part A or 2.0 Part B programmable for each message object, access to
message object control and data registers via SFR, programmable reception buffer length up to 15
message objects, priority management of reception of hits on several message objects at the same
time, priority management for transmission message object, overrun interrupt, support for time-
triggered communication autobaud and listening mode, programmable automatic reply mode,
1-Mbit/s maximum transfer rate at 8 MHz crystal frequency in X2 mode, readable error counters,
programmable link to timer for time Stamping and network synchronization, independent baud
rate prescaler, data/remote error and overload frame handling,

PIC (MicroChip PIC 18F Family) - 8 and 16 bit, Harvard architecture, one or more accumu-
lators, small instruction set, general purpose I/O pins, 8/16/32 bit timers, internal EEPROM,
USART/UART, CAN/USB/Ethernet support, internal clock oscillators, hardware stack, cap-
ture/compare/PWM modules, A/D converter, etc., multiple power managed modes (Run: CPU
on, peripherals on, Idle: CPU off, peripherals on, Sleep: CPU off, peripherals off, multiple power
consumption modes (PRI RUN: 150μA, 1MHz, 2V , PRI IDLE: 37μA, 1MHz, 2V SEC RUN:
14μA, 32kHz, 2V SEC IDLE: 5.8μA, 32kHz, 2V RC RUN: 110μA, 1 MHz, 2V RC IDLE: 52μA,
1 MHz, 2V sleep: 0.1μA, 1 MHz, 2V) timer1 oscillator: 1.1μA, 32kHz, 2V watchdog timer: 2.1μA
two-Speed Oscillator Start-up, four Crystal modes(LP, XT, HS: up to 25 MHz) HSPLL: 4-10 MHz
(16-40 MHz internal), two External RC modes, up to 4 MHz, two External Clock modes, up to
40 MHz, internal oscillator block (8 user-selectable frequencies: 31 KHz, 125 KHz, 250 KHz,
500 KHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz), 125 KHz to 8 MHz calibrated to R1%, two modes
select one or two I/O pins, OSCTUNE allows user to shift frequency, secondary oscillator using
Timer1 @ 32 KHz, fail-safe clock monitor (allows safe shutdown if peripheral clock stops), high
current sink/source 25 mA/25 mA, three external interrupts, enhanced Capture/Compare/PWM
(ECCP) module (One, two or four PWM outputs, selectable polarity, programmable dead time,
auto-Shutdown and Auto-Restart, capture is 16-bit, max resolution 6.25 ns (TCY/16), compare
is 16-bit, max resolution 100 ns (TCY)), compatible 10-bit, 13-channel Analog-to-Digital Con-
verter module (A/D) with programmable acquisition time, enhanced USART module: supports
RS-485, RS-232 and LIN 1.2 auto-wake-up on start bit, auto-Baud Detect, 100,000 erase/write
cycle Enhanced Flash program memory typical 1,000,000 erase/write cycle Data EEPROM mem-
ory typical Flash/Data EEPROM Retention: ¿ 40 years self-programmable under software control
priority levels for interrupts, 8 x 8 Single-Cycle Hardware Multiplier, extended Watchdog Timer
(WDT)(Programmable period from 41 ms to 131s with 2% stability), single-supply 5V In-Circuit
Serial Programming, (ICSP) via two pins, In-Circuit Debug (ICD) via two pins, wide operating
voltage range: 2.0V to 5.5V.

MSP430(Texas Instruments MSP 430F Family) RISC14 set computer instruction set, Von
Neumann architecture, 27 instructions, maximum of 25 MIPS, operating voltage: 1.8V to 3.6V,
internal voltage regulator, constant generator, program storage: 1KB - 55KB, SRAM: 128 -5120

14Computer are typically categorized as either Complex Instruction Set Computers (CISC), or as Reduced In-
struction Set Computers. The basic concept is that RISC instructions require fewer machine cycles per instruction
than CISC instructions. In RISC machines the instructions are typically of fixed length, each is responsible for a
simple operation, general purpose registers are used for data operations not memory, data is moved via load and
store instructions, etc.

14 Introduction to Embedded System

Bytes, I/O: 14-48 pins, multi-channel DMA, 8-16 channel ADC, watchdog, real time clock (RTC),
16 bit timers, brownout circuit, 12 bit DAC, Flash is bit/byte and word addressable, maximum of
twelve 8-bit bidirectional ports (Ports 1 and 2 have interrupt capability), individually configurable
pull-up/pull-down resistors, supporting static/2-mux/3-mux and 4-mux LCDs. integrated charge
pump for contrast control, single supply OpAmps, rail-to-rail operation, programmable settling
times, OpAmp configuration includes: unity gain mode/comparator mode/inverting PGA/non-
inverting PGA, differential and instrumentation modes, hardware multiplier supports 8/16 bit x
8/16 bit, signed and unsigned with optional “multiply and accumulate”, DMA accessible, maxi-
mum of seven 16-bit sigma delta A/D converters, each has up to 8 fully differential multiplexed
pinouts including a built-in temperature sensor, supply voltage supervisor, asynchronous 16-bit
timers with up to 7 capture/compare registers, PWM outputs, a USART, SPI, LIN, IrDA and
I2C support, programmable baud rates, USB 2.0 support at 12 Mbps, USB suspend/resume and
remote wakeup,

PSoC1 (Cypress CY8C29466) - programmable system on a chip, Harvard architecture, M8C
Processor Speeds up to 12 MHz, two 8x8 Multiply with 32-Bit accumulate, 4.75V to 5.25V op-
erating voltage, 14-Bit ADCs, 9-Bit DACs, programmable gain amplifiers, programmable filters,
programmable comparators, 8- to 32-Bit timers/counters, PWMs, CRC/PRS, four full-duplex or
eight half-duplex UARTs, multiple SPI masters/slaves (connectable to all GPIO pins), Internal
± 4and PLL, Optional External Oscillator, up to 24 MHz, Internal Low Speed, Low Power Os-
cillator for Watchdog and Sleep Functionality, 24 MHz Oscillator high accuracy 24 MHz clock,
optional 32.768 KHz crystal and PLL support, external oscillator support to 24 MHz, watch-
dog and sleep functionality, flexible on-chip memory, 32K Bytes Flash program storage, 100k
erase/write cycles 2K Bytes SRAM data storage, In-System Serial Programming (ISSP), par-
tial Flash updates, flexible protection modes, EEPROM emulation in Flash, programmable pin
configurations: 25 mA sink, 10 mA drive on all GPIO Pull Up, Pull Down, High Z, Strong,
or Open Drain Drive Modes on All GPIO, Up to 12 Analog Inputs on GPIO[1], Four 30 mA
Analog Outputs on GPIO Configurable Interrupt on all GPIO, I2C master/slave or multi-master
operation to 400 KHz, watchdog/sleep timers, user-configurable low voltage detection, integrated
supervisory circuit and precision voltage reference.

PSoC3 (Cypress CY8C34 Family) - single cycle 8051 CPU core, DC to 48 MHz operation,
multiply/divide instructions, Flash program memory to 64 KB, 100,000 write cycles, 20 years
retention, multiple security features, max of 8 KB Flash ECC or configuration storage, max of 8
KB SRAM, max of Up to 2 KB EEPROM (1M cycles, 20 years retention), 24 channel DMA with
multi-layer AHB bus access, programmable chained descriptors and priorities, high bandwidth
32-bit transfer support, operating voltage range from 0.5V to 5.5V, high efficiency boost regulator
(0.5V input to 1.8V-5.0V output), current drain 330μA at 1 MHz, 1.2mA at 6MHz, 5.6mA at
40MHz, 200nA hibernate mode with RAM retention and LVD, 1μA sleep mode with real time
clock and low voltage reset, 28 to 72 I/O channels (62 GPIO, 8 SIO, 2 USBIO[1]), any GPIO
to any digital or analog peripheral routability, LCD direct drive from any GPIO (max of 46x16
segments), 1.2V to 5.5V I/O interface voltages (max of 4 domains), maskable independent IRQ
on any pin or port, Schmitt trigger TTL inputs, all GPIO configurable (open drain high/low, pull
up/down, High-Z, or strong output), configurable GPIO pin state at power on reset (POR), 25
mA sink on SIO, 16 to 24 programmable PLD-based Universal Digital Blocks, full CAN 2.0b 16
RX, 8 TX buffers, USB 2.0 (12 Mbps) using an internal oscillator, max of four 16-bit configurable
timer, counter, and PWM blocks, 8, 16, 24, and 32-bit timers, counters, and PWMs, SPI, UART,
I2C, Cyclic Redundancy Check (CRC), Pseudo Random Sequence (PRS) generator, LIN Bus 2.0,
Quadrature decoder, configurable Delta-Sigma ADC with 12-bit resolution (programmable gain
stage: x0.25 to x16, 12-bit mode, 192 ksps, 70 dB SNR, 1 bit INL/DNL), two 8-bit 8 Msps IDACs
or 1 Msps VDACs, four comparators with 75 ns response time, two uncommitted OpAmps with

1.3 Embedded System Applications 15

25 mA drive capability, two configurable multifunction analog blocks. (configurable as PGA,
TIA, Mixer, and Sample/Hold), JTAG (4 wire), Serial Wire Debug (SWD) (2 wire), Single Wire
Viewer (SWV) interfaces, Bootloader programming supportable through I2C, SPI, UART, USB,
and other interfaces, precision, programmable clocking (1 to 48 MHz (±1% with PLL), 4 to 33
MHz crystal oscillator for crystal PPM accuracy, PLL clock generation to 48 MHz, 32.768 KHz
watch crystal oscillator, Low power internal oscillator at 1 KHz and 100 KHz.

PSoC5 (Cypress CY8C53 Family) - 32-bit ARM Cortex-M3 CPU core, DC to 80 MHz op-
eration, Flash program memory (max 256 KB, 100,000 write cycles, 20 year retention), multiple
security features, 64 KB SRAM (max), 2 KB EEPROM (1 million cycles, 20 years retention),
24 channel of DMA with multi-layered AHB bus access, programmable chained descriptors and
priorities, high bandwidth 32-bit transfer support, operating voltage ranges: 0.5V to 5.5V, high
efficiency boost regulator (0.5V input to 1.8V to 5.0V output, current drain of 2 mA at 6 MHz),
300 nA hibernate mode with RAM retention and LVD, 2μA sleep mode with real time clock and
low voltage reset, 28 to 72 I/O channels (62 GPIO, 8 SIO, 2 USBIO), any GPIO to any digital or
analog peripheral routability, LCD direct drive from any GPIO (max of 46x16 segments), 1.2V to
5.5V I/O interface voltages (max of 4 domains), maskable independent IRQ on any pin or port,
Schmitt trigger TTL inputs, all GPIO configurable (open drain high/low, pull up/down, High-Z,
or strong output), configurable GPIO pin state at power on reset (POR), 25 mA sink on SIO, 20
to 24 programmable PLD based Universal Digital Blocks, full CAN 2.0b 16 RX, 8 TX buffers,
full-USB 2.0 (12 Mbps using internal oscillator), max of four 16-bit configurable timer, counter,
and PWM blocks, 8, 16, 24, and 32-bit timers, counters, and PWMs SPI, UART, I2C, Cyclic
Redundancy Check (CRC), Pseudo Random Sequence (PRS) generator, LIN Bus 2.0, Quadra-
ture decoder, SAR ADC (12-bit at 1 Msps), four 8-bit 8 Msps IDACs or 1 Msps VDACs, four
comparators with 75 ns response time, four uncommitted OpAmps with 25 mA drive capability,
four configurable multifunction analog blocks (PGA, TIA. Mixer and Sample and hold), JTAG
(4 wire), Serial Wire Debug (SWD) (2 wire), Single Wire Viewer (SWV), and TRACEPORT
interfaces, Cortex-M3 Flash Patch and Breakpoint (FPB) block, Cortex-M3 Embedded Trace
Macrocell (ETM) for generating an instruction trace stream. Cortex-M3 Data Watchpoint and
Trace (DWT) for generating data trace information, Cortex-M3 Instrumentation Trace Macro-
cell (ITM) for printf-style debugging, DWT, ETM, and ITM blocks that can communicate with
off-chip debug and trace systems via the SWV or TRACEPORT, Bootloader programming sup-
portable through I2C, SPI, UART, USB, and other interfaces, Precision, programmable clocking
from 1 to 72 MHz with PLL, 4 to 33 MHz crystal oscillator for crystal PPM accuracy, PLL
clock generation up to 80 MHz, 32.768 KHz watch crystal oscillator support, low power internal
oscillator at 1 KHz and 100 KHz.

1.3 Embedded System Applications

Embedded systems can be found in an ever increasing number of applications including: televi-
sions, cable boxes, satellite boxes, cable modems, routers, printers, microwave ovens, surround
sound systems, computer monitors, digital cameras, zoom lenses, cars and trucks (some vehicles
have 100+ such systems), stereos, dishwashers, dryers, washing machines, cell phones, digital
multimeters, calculators, air conditioners, mp3 players, heaters, flight-control systems (fly-by-
wire), running shoes, tennis rackets, traffic lights, elevators, telecommunications systems, medi-
cal equipment, airplanes, automotive cruise controls, ignition systems, personal digital assistants,
pleasure boats, motorcycles, children’s toys, oscilloscopes, ships, industrial and process control
applications, railway systems, laboratory equipment, personal computers, data collection/logging
equipment, numerical processing applications,“smart” shoes, robotics, fire/security alarms, bio-
metric systems, proximity detectors, inertial guidance systems, GPS devices, UAVs, etc. The

16 Introduction to Embedded System

major markets for embedded systems include automotive, medical, avionic, communications,
industrial and consumer electronics.

For example, increasing numbers of automobile manufacturers produce products that utilize
embedded systems that control their vehicle’s major functions, such as powertrain management,
air conditioning, (heating/cooling systems), seat positioning mechanisms, fuel systems, braking
mechanisms, dashboard instrumentation, GPS systems, etc. Automakers must also continue
to respond to steadily growing requirements for advanced safety, environmental protection and
driver convenience, thus increasing the number of microelectronics components, in a vehicle, all
of which continue to require more and more “lines of code”.

In the last two decades, the total number of lines of code employed by automobile manufac-
turers has reportedly grown from approximately one million lines to close to one hundred million
lines of proprietary and third party code. Thus the ease with which new code can be developed
and reusability in future designs becomes of paramount importance. This is particularly true
as microcontrollers evolve with increasingly more complex architectures in an attempt to meet
market demands.

The need to continually:

• reduce the time to market for new designs,

• introduce less expensive microcontrollers with ever increasing capability and in some cases
more specialization,

• support ever increasing application complexity,

and,

• support lower and lower power consumption,

has, in turn, increased the demand for more and more generic and specialized microcontrollers
and substantially advanced the state of the available microcontroller technology and associated
peripherals.

Automotive Electronics - vehicle manufacturers continue to move aggressively in imple-
menting more and more embedded system technology into new vehicles to increase their compet-
itive strengths in meeting the new challenges of their competitors and public demand for more
efficient, reliable and feature-rich transportation.

Currently the number of microprocessors/microcontrollers in automobiles ranges from 10, to
more than 100, with current estimates suggesting that as much as 40% of the value of some
automobiles is invested in the electronics systems and networking. Some modern vehicles employ
three, or more, network protocols, e.g., LIN (10 kbits/sec), CAN (1 Mbits/sec) and FlexRay15

(10 Mbits/sec) to address the wide range of realtime responses needed in contemporary vehicles.

High speed networking, utilizing FlexRay and high-speed CAN, is required to handle fuel ig-
nition and exhaust systems, spark/valve timing, fuel injection systems, anti-lock braking systems,
cruise control, air bags, active suspension, steer-by-wire, brake-by-wire, and other “x-by-wire”
systems. Low speed networking, utilizing LIN and low-speed CAN are employed to handle less
demanding real time requirements, such as the instrument panel (dash board), air conditioning,
windshield wipers, power windows, mirror adjustments, seat controls, alarm systems, door locks,

15FlexRay is an open, scalable network protocol created by a consortium consisting of Philips Semiconductor,
BMW, DaimlerChrysler, Motorola, BMW, Ford Motor Company, General Motors Corporation and Robert Bosch
GMBH specifically for automotive applications. It supports both synchronous and asynchronous data transfers
and is capable of operating in either a single channel or double channel mode, if redundancy is required.

1.4 Embedded System Controlling 17

head lights, internal lighting systems, stop/tail/fog lights and high/low beams, seat temperature
controllers, etc.

Avionic Electronics - Private, commercial and military avionic systems make extensive use of
embedded systems for fly-by-wire systems, GPS-based and other navigational systems such as
inertial navigation systems. Heads-up displays, power plant monitoring and control, instrument
displays, communication systems, transponders, instrument panels, transponders, communica-
tions equipment, internal/external lighting systems, offensive and defensive weapon systems,
etc., are also increasingly controlled and/or monitored by embedded systems.

Consumer Electronics - Since the advent of the microprocessor, consumer electronics have
continuously taken more and more advantage of semiconductor technology and most particularly
of microcontrollers. Modern homes make extensive use of embedded systems in the form of
security systems, lighting control systems, stereo systems, telecommunications systems, cable
TV and Internet systems, personal computers, MP3 players, etc.

Communications Electronics - cell phones, telephone switches, GPS, routers, microwave and
satellite systems, etc., make extensive use of embedded systems.

Industrial Electronics - process control systems, numerically controlled milling and drilling
machines, robotics, automated inspection systems, etc., are heavily dependent on embedded
systems particularly for high volume, close tolerance manufacturing processes and systems.

Medical Electronics - blood pressure, young child/adult heart rate, fetal heart rate, pulse
oximetry, blood glucose, electrocardiogram, ventilation/respiration, electronic stethoscopes, vital
signs and anesthesia monitors are all embedded systems that are used in homes as well as, clin-
ics, doctors offices and hospitals. Imaging systems, e.g., acoustic (sonograms), X-Ray, CT(X-Ray
Computed Tomography), MRI(Magnetic Resonance Imaging), SPECT(Single photon emission
computed tomography), and PET(Positron Emission Tomography), powered patient beds, pa-
tient monitoring systems, operating room systems, robotic surgery systems are also important
embedded system application spaces.

Each of these relies on one, or more, embedded systems to gather input data from devices
called “sensors”, and/or other data sources. Based on the information gathered, they then engage
in numerical/logic processing of the input data, subject to certain predefined constraints and/or
operating modes (states), make decisions based on the input data and subsequently provide
outputs to various types of devices, such as other computer systems, display devices, actuators,
motors, speakers, data transport channels, etc.

1.4 Embedded System Controlling

1.4.1 Types of Embedded System

Embedded systems are capable of functioning in a number of different modes, e.g.,

1. Event-Driven Mode (EDM) - perhaps the most common type of embedded system
which is constrained to responding to previously defined events and providing pre-defined
responses. The system waits for an event to occur in the form of a key depression, a pa-
rameter meeting some threshold level and thus representing an event, or other “triggering”
events,

2. Continuous Time Mode (CTM) - such systems are continuously monitoring input chan-
nels and reacting to various input conditions,

18 Introduction to Embedded System

3. Discrete Time Mode (DTM)- these systems “wake-up” at predetermined intervals, sam-
ple input data, carry out the appropriate responses and then go back to ”sleep“,

or some permutation thereof. For example a system may be required to “wake-up, respond
to some set of input conditions on an event-driven basis and the go back to “sleep”. Some
systems employ “watch dog” functions that in the absence of the system responding within a
pre-determined period of time, automatically reset themselves as a way of avoiding the system
becoming “locked-up” because of some anomalous situation, or malfunction, and subsequently
failing to function as described previously.

While some embedded systems are primarily involved in control functions, and to a lesser
degree data processing, others are predominantly engaged in data processing/collection and some
control functions. In such cases, the former are usually described as state machines that move
from state-to-state as a result of certain events or input data conditions/values. In such cases,
the embedded system remains in a given state until conditions arise in terms of events, or input
data, that meets the criteria for a state transition. Resetting/setting such systems causes the
state machine to enter a predetermined“home” state.

Whether functioning as:

• a controller designed to maintain certain parameters, or operating conditions, of a system,
or process, within pre-defined ranges or contexts,

• part of a network of embedded systems engaged in making decisions, monitoring activity
and/or exchanging information regarding the various systems, or processes, to be monitored
or controlled and their respective states,

• an application-specific embedded system for image/video processing, graphics, multimedia
processing,

• an embedded system for demanding computational applications and interfacing applications,

• a data logging system for applications such as remote sensing systems,

or,

• a specialized/custom digital communications processing system, such as part of a data link,

each consists of a CPU, memory, registers, address/data busses and various peripheral devices
such as analog-to-digital converters, pulse-width modulators, digital-to-analog converters, various
types of signal conditioners such as filters, comparators, etc.

Some embedded systems employ real time operating systems, while others are merely subsys-
tems in a real time operating system environment. In the latter case, failure of one, or more, of
the embedded subsystems might allow some portion of the total system to continue to function.
In systems for which the embedded system has primary control, any failure could prove catas-
trophic, and therefore requires much more attention to failure modes and how best to address
them by employing, e.g., fail-safe modes. However, real time operating systems add complexity,
cost and processing overhead which, for some applications, is undesirable and can significantly
degrade the system’s performance.

1.4.2 Open Loop, Closed Loop and Feedback

Embedded systems may be implemented as open, or closed, loop systems. An “open loop” sys-
tem, sometimes referred to as a “feedforward” system, as shown in Figure 1.11 acquires input
information and produces appropriate outputs based on the acquired inputs, without any ability

1.4 Embedded System Controlling 19

Figure 1.11: Schematic view of an open loop system.

to determine whether or not, ultimately, the correct action, or actions have taken place16. Fur-
thermore, such as system assumes that the input data is always correct and that there are no
disturbances, or anomalies, to take into account. An open loop embedded system gathers infor-
mation, reacts to the input parameter values in a predefined way and produce the appropriate
output signals/commands, e.g., a thermostat senses temperature, (TempSensed), compares the
temperature to a preset value, (TempUpperLimit), and if:

TempUpperLimit < TempSensed, (1.1)

closes some switch contacts to turn on a fan. However, this simple system does not know whether
the fan is actually operating, or if it is operating at a speed sufficient to return the temperature
to an acceptable value, within a required period of time. Furthermore, if the (TempSense)
exceeds (TempUpperLimit) the system will continue to attempt to providing cooling, but make
no attempt to take further corrective action. This system is also representative of the open loop
system shown in Figure 1.11.

Should the fan fail to be activated at the proper speed, the controller, in this example, would
not initiate any further action, i.e., since there is no indication returned to the controller that
cooling is, or is not, actually taking place. This type of open loop system is referred to as a
“bang-bang” system since it does not provide proportional control of the device that it controls,
i.e., the fan is either operating at a constant speed (RPMs), or is inactive. It would of course be
possible to program the controller to monitor the input temperature as an explicit function of
time so that if it, for example, found that the temperature was not changing it could take other
actions, e.g., sounding of an alarm.

A similar example of an open loop system is shown in Figure 1.12, in which a motor is
controlled by a sensor and an embedded system consisting of a microcontroller and a pulse width
modulator (PWM)17 driving an amplifier with sufficient output voltage and current to drive
motor. In this case the speed of the motor is determined by the embedded system which controls
the duty-cycle18 of the pulse train produced by the PWM. Therefore the controller is able to
provide proportional control of the fan by controlling the average amount of power provided to
it.

Figure 1.12: Embedded System motor controller.
Motor

16In some situations, no action may constitute the correct action.
17A Pulse Width Modular (PWM) is a device capable of producing pulses of variable width and frequency, in

this case under the control of a microcontroller, that in the present example allows the speed of the motor to be
varied over a wide range (Cf Section XX of Chapter ZZ)

18Duty cycle is defined as the ratio of time on to time off over some predefined period of time.

20 Introduction to Embedded System

Some motors have integral tachometers and/or Hall effect sensors that can be used to produce
an analog signal that can be returned directly to the summing junction to produce an error signal
to be processed by the controller and to confirm that the motor is running at the appropriate
speed. In Figure 1.13 the system returns a signal, e.g., an analog voltage/current, or digital data,
that reflects the output state of the system, to the input for comparison.

Figure 1.13: Schematic view of a closed loop system with direct feedback.

In some cases, the embedded system is provided with input parameters that are presumed to
represent the state of the a system and the controller compares these values that characterize the
current state of the system with predefined state conditions and makes decisions regarding what
steps must be taken, if any, to bring the system into compliance with these conditions. Other
embedded systems utilize a sensor, or sensors, to determine if the parameter values are consistent
with the desired state of a system and additional sensors that represent the actual state of the
process or system. In both cases, the input and output sensor signals are provided to a “summing
junction”, or equivalent, to produce an error signal as shown in Figure 1.14.

Note that in the former case, one sensor is used to establish a comparison between “setpoint”,
i.e, “desired input parameter value” and another sensor is employed to determine the output
state, or “actual state”, so that the desired versus actual state can be determined to allow the
controller to establish what error, if any, exists and take such as action, or actions, as may be
required to minimize the resulting “error” signal at the summing junction. Thermostats and
cruise controls are example of such systems. This configurations allows the “equilibrium point”
to be set externally while in the latter case that point is established programmatically within the
controller, e.g., as in the case of inertial navigation systems, anti-lock braking systems, etc.

Figure 1.14: Schematic view of a closed loop system with “sensed” output feedback.

In designing embedded systems it is important for characteristics such as latency, phase shift
and stability to be taken into account. Figure 1.14 shows a representation of a system with simple
feedback represented symbolically. Note that the blocks representing the Controller and System
transfer functions can be combined as shown in Figure 1.15. This is equivalent to combining the
two transfer functions as follows:

G1 = HControllerHSystem (1.2)

1.4 Embedded System Controlling 21

where HController and HSystem represent the transfer functions for the Controller and System,
respectively.

Figure 1.15: A generalized SISO feedback system.

Thus the embedded system represented in Figure 1.14 can be represented by the following:

E = SI − G2F (1.3)

F = G1E (1.4)

G2F = G2G1E (1.5)

which leads to the result that:

f(t)
s(t)

=
G1

1 + G1G2
(1.6)

and assuming that this system is a LTI (linear, time-invariant) system, the corresponding Laplace
Transform can be expressed, symbolically as:

F (s)
S(s)

=
(s − z1)(s − z2)(s − z3) . . . (s − zm−1)(s − zm)
(s − p1)(s − p2)(s − p3) . . . (s − pn−1)(s − pn)

(1.7)

where s = σ + jω, the zm terms are the zeros of the transfer function and the pn terms are the
poles. The stability, of lack thereof, of this system can then be determined by an examination of
the location of the system’s poles, pn, in the complex plane, or by other techniques. An embedded
system is said to be “Bounded Input, Bounded Output” (BIBO) stable if any bounded input
results in a bounded output. An embedded system’s stability may be one of several different
types, e.g., unstable, uniformly stable, marginally stable, conditionally stable, etc.

Although it is also beyond the scope of this textbook, a further refinement of this type of a
mathematical model for an embedded system would be to include the impact of perturbations,
i.e., various types of disturbances, that the embedded system may be subject to such as electro-
magnetic interference, vibration, frictional effects, variation in loading of motors and actuators,
nonlinear effects, effects of stray magnetic and/or electric fields, etc. Note also that when us-
ing sensors in an embedded system, it is sometimes necessary to employ various types of signal
conditioning, e.g., various filtering techniques, to maintain signal integrity to assure appropriate
current/voltages limitations are imposed, etc.

Adaptive embedded systems19 are employed, when required, to allow them to modify their
characteristics to meet, often in real time, variable “environmental” conditions such as power

19An embedded system is considered “adaptive” if it is able to reconfigure its program and hardware resources
in real time to continue to meets its functional and performance specifications. In some cases degradation in these
specifications may be regarded acceptable as long as they remain within defined boundaries.

22 Introduction to Embedded System

Figure 1.16: An embedded system that is subject to external perturbations

supply fluctuations/degradation and externally variable process and system conditions. Many
embedded systems are able to reduce their clock frequencies, enter sleep modes, and operate at
lower power levels in response to changes in environmental conditions. Others are able to move
tasks between multiple cores to optimize performance and minimize hot spots.

Arguably any system that employs feedback could be considered “adaptive” since the em-
bedded systems is “adapting” its responses based on input data. However, adaptability in the
present context refers to adaptation within the controller itself in response, e.g., to changing
environmental conditions. Adaptive systems may employ fuzzy logic, neural networks, Radial
Basis Functions (RBFs), Kalman filtering, etc., which are often used for approximation, interpo-
lation and to overcome limitations imposed by wavelets, polynomial interpolation, least square
and other techniques when multidimensional parameters are involved, as for example, in the case
of signal conditioning.

1.5 Embedded System Performance Criteria

Two of the most important considerations for embedded systems are 1) that they perform each
tasks correctly and 2) that all of the reactions/responses by an embedded system occur in a
timely manner. It is also important that na embedded system be robust20. Timeliness, or lack
thereof, in the present context can be characterized as Soft,Firm or Hard.[14] A “Hard Real-Time
System” (HRTS) is one in which failure could produce a catastrophic result, e.g. failure of a fire
alarm system, or a pacemaker.

A “Firm Real-Time System” (FRTS) failure might be an automotive cruise control for which
the latest value of the current speed is not available in time for the cruise control algorithm
to determine what, if any, corrective action is required. In such cases, the algorithm may be
able to use the previously reported speed and still perform the necessary operations to maintain
relatively constant speed. A “Soft Real-Time System” error(SRTS) is exemplified by the failure
of an ATM which, while perhaps inconvenient, is hardly a firm, or hard failure. Failures of these
three types (HRTS, FRTS and SRTS) are usually analyzed in terms of “deadline misses” and
their respective impacts on the system. Because such systems are expected to react in real time
they are, by their nature, typically asynchronous.

Latency, in the case of an embedded system, refers to the delay (t1− t0) between the time (t0)
when a condition exists requiring a response and the time that the response occurs (t1). Such

20Robustness is defined as resistant to perturbations.

1.5 Embedded System Performance Criteria 23

delays can arise as the result of hardware delays in sensors, microcontrollers, peripheral output
devices and software delays produced by program-execution overhead, e.g. program execution
speed and interrupt servicing21.

Embedded systems are often asynchronous and receive input data from multiple sources. In
such cases, this data must wait until the embedded system is available to accept it. Some input
devices introduce a delay between the time an input parameter is sensed/updated and the time at
which the data has been “latched” for input to the microcontroller. Latching is often employed to
be sure that when data is available from an external device such as a sensor, the microcontroller
has sufficient time to complete, or suspend, its current tasks. Suspension of on-going tasks occurs
when an “interrupt” request, of sufficient priority, is received. For tasks of lower priority, than the
currently running task, or when large data sets are involved, various techniques can be employed
to “buffer” the inputs from sensors until they can be processed. Flip-flops, which are bistable
devices, are commonly used to latch input, or output data, particularly at the byte level, while
waiting for a device, such as a microcontroller, to enter a ready state and subsequently accept
the data. Various “shared memory” techniques such as Dynamic Memory Access transfers can
also be employed to provide the needed “buffering”.

Embedded systems employ various techniques to minimize latency:

• Direct Memory Access (DMA) - this technique, while not normally involving any pre-
processing of data, allows I/O to occur relatively transparently without requiring significant
CPU overhead. I/O devices can transfer data to/from the embedded system by directly
accessing the microcontroller’s memory space. A DMA controller, such as that shown in
Figure 1.17, is used to facilitate the transfer, once the CPU has defined where the data is
located, or, to be stored within local memory.

In some cases, a region of memory is predefined as assigned to the DMA controller and
therefore the CPU’s direct involvement in data transfers under DMA control is obviated. The
DMA controller can set a flag, or flags, indicating whether new data is available for processing
by the CPU, or has been transferred to one, or more, external devices. This technique
addresses both latency and bandwidth overhead by allowing the data to be transferred at a
rate most appropriate for the external device(s) and whenever it is available.

In other cases the CPU, under software control, initializes the DMA controller and provides
the data addresses for both source and destination and the amount of data to be transferred.
Microcontrollers allow the DMA controller, upon request, to take control of the bus and
transfer data in a so-called “burst mode”. In doing so, the CPU’s access to the address
bus is usually “tri-stated”22 to avoid bus conflicts (cf. Figure 1.18). When the transfer is
complete the DMA controller returns control of the bus to the CPU. In other cases, a “cycle-
stealing” mode is employed by the DMA controller in which case it relinquishes control of
the memory bus after each transfer. Note that most DMA controllers have address and
length registers that are of different sizes, so that if the address register is larger than the
length register it can address a large portion of memory. If the size of the address register
is 32 Kbits and the length register is 16 bits, then the DMA controller can transfer data
in blocks of 64 Kbytes anywhere within 4 Gbytes of RAM. As shown in Figure 1.17, data
may be transferred either to/from memory internal to the microcontroller, or, if necessary
to external memory depending on the amount of data to be transferred, latency concerns

21Interupts are discussed in section XX
22Tri-stating refers to placing a device input or output in one of three states, e.g., high (1), low (0) or high

impedance, the latter effectively removing it from a circuit, e.g., a bus. This technique prevents bus conflicts and
the possibility of two subsystems attempting to “drive the bus”, i.e., apply signals, at the same time.

24 Introduction to Embedded System

Figure 1.17: Block diagram of typical microcontroller/DMA configuration.

1.5 Embedded System Performance Criteria 25

and the application.

Figure 1.18: An example of a tri-state device.

• Looping - Since an I/O device can itself be in an active (“busy”) or waiting (‘idle”) state, an
embedded system can remain in a loop waiting for a flag to be set, before continuing with
program execution. This has the advantage that having the microcontroller remain in an
idle state waiting for data reduces at least some of the latency. But this technique has the
limitation that the CPU is unable to accept data from other sources, while in this mode.

• Polling - Alternatively, an embedded system can“poll” status flags for I/O devices to de-
termine if a device: 1) has data available for transfer to the microcontroller, 2) is available
for receipt of data, or 3) is busy. Polling may be periodic, or aperiodic, depending on the
application.

• FIFOs (First-In-First-Out buffers) and other forms of buffering can be used with external
devices to buffer I/O until the microcontroller’s resources are available. This technique, as
in the case of the use of DMA, can be employed for occasions when data is being gathered
faster than it can be handled by the microcontroller.

• Interrupts - interrupt schemes can be employed that interrupt the CPU only when I/O needs
to occur.

1.5.1 Interrupts

An interrupt is a request initiated by a device requesting that the CPU be “interrupted” to
service, i.e., process, some particular task. If the device initiating the interrupt has a task of
sufficiently high priority, i.e., a higher priority than that of the task being conducted by the CPU
at the time the interrupt request was received, and there are no other interrupt requests of higher
priority waiting to be processed, then:

• the interrupt request is accepted,

• interrupts of the same, or lower, priority are blocked,

• the current task is suspended (which requires that the state of the CPU23 be fully preserved
to allow the interrupted task to be completed at a later time),

23The accumulator, Program Status Word,(PSW), program counter and any related registers are typically
stored on the stack when a task is suspended to service an interrupt to allow the interrupted task to be fully
restored.

26 Introduction to Embedded System

and,

• the requested task is processed.

If other interrupt requests of higher priority than that of the original task exist, they will all be
processed before the CPU returns to continue processing of its original task. If the microcontroller
is engaged in a task and a series of increasingly higher priority interrupt requests occur, before
the preceding interrupt has been fully serviced, then the stack will contain state information
about each of the interrupted tasks that has been suspended by a higher priority task request
and the original task, except for the highest priority interrupt, which will then be serviced by an
interrupt service routine (ISR). It is important to fully preserve the state of each lower priority
task on the stack, e.g., by storing the contents of the accumulator, program counter, program
status word and any other registers involved.

The microcontroller can then restore the previous task(s) and continue program execution
until the next interrupt occurs. In this case, the overall latency of the embedded system is the
time between when the input data is ready (latched) and the time at which the microcontroller
is able to input the data, process it and produce the required results. In the case of an output
device, for example, a hard disk, UART, or device which has “busy” states, the microcontroller
must wait until the device is ready to accept data/commands, i.e., is in a “non-busy state”.

1.5.2 Latency

Thus the total maximum latency (Lmax) for a system can be defined as:

Lmax =Lsensors+Lmicrocontroller+Lperipherals+ Lactuators+ . . . (1.8)

where, Lmicrocontroller is a function of program execution times, time required to service inter-
rupts, wake-up time24, boot time25, etc., and each of the Latency parameters represented in
Equation (1.8) represent worst case conditions.

Interrupts introduce delays because of the time required to service a given interrupt and the
fact that they are handled in order of priority. In the worst case, a low order priority interrupt
will have to wait until all higher order interrupts have been serviced before it is serviced. In some
applications, as long as the embedded system responds within a predefined period of time, the
system is performing satisfactorily. In other cases, different response times are required depending
on the state of the processes being monitored/controlled.

Thus for interrupt-driven I/O, an additional latency factor is “priority” which determines
task precedence. While higher priority tasks, whether input or output, are addressed earlier
than lower priority tasks, in some applications, all tasks may be assigned the same priority,
so that no task takes precedence, over any other. Alternatively, as discussed previously, the
embedded system may poll input/output devices to determine whether or not such devices are
busy, have data available for input to the microcontroller, are available to transfer/receive data,
etc. However, polling can result in the significant waste of machine cycles when polling for
data that is not available and/or conditions that don’t exist very often. Interrupts also make it
possible to detect conditions internal to the microcontroller such as timer/counter overflow, data

24Some microcontrollers are programmed to go to “sleep” when nothing interesting is occurring in order to
conserve power. They can be awakened periodically, or by the by the occurrence of an interrupt. In such cases,
when the required tasks are completed the microcontroller can then be returned to a sleep state until needed
again. It may be necessary in some applications to take the latency associated with returning from a sleep state
to an active state into account.

25In some embedded systems, in the event that the embedded system becomes ”locked-up”, the embedded
system re-boots itself after a predetermined period of time.

1.5 Embedded System Performance Criteria 27

available in an internal UART, an internal UART being available for character transmission, that
a multiplication product is available, etc.

Therefore, a microcontroller responds to interrupts by first determining if more than one
interrupt has occurred. If so, the microcontroller then services the interrupts on the basis of
priority by halting execution of the current task, storing all the information required to restore
that task and then “servicing” the interrupt request26, e.g., by collecting the latched input data,
taking whatever action maybe required, such as storing the data, subjecting it to numerical
processing and/or taking appropriate action such as setting/transmitting output parameters for
actuators, data to transmission channels, data to display devices, etc. It should be noted that
most microcontrollers have a reserved interrupt referred to as an None-Maskable-Interrupt (NMI)
which has priority over all other interrupts. This interrupt is usually reserved for catastrophic
events such as hard disk, or other serious failures.

26The routine responsible for responding to the interrupt request is referred to as an Interrupt Service Routine
(ISR).

28 Introduction to Embedded System

Figure 1.19: Intel 8051 Architecture.

1.6 Embedded Systems Subsystems 29

1.6 Embedded Systems Subsystems

Microcontrollers need a wide range of subsystems if they are to be the basis for complex embedded
system applications, e.g., voltage A/D and current/voltage D/A converters, mixers, pulse width
modulators (PWMs), programmable gain amplifiers (PGAs), instrumentation amplifiers, etc., as
shown in Table 1.1. In many applications, embedded systems involve multiple analog/digital
data input channels. since data is often provided by a wide variety of sensors, communications
channels, etc. The embedded system employs a microcontroller/microprocessor27 for numerical
computation and logic functions that are to be performed on the input data, e.g., numerical
processing of input data and the decision-making based thereon. Output drivers for a variety of
devices, e.g., motors, linear/rotary actuators, LCD and other types of display devices, communi-
cations devices for I2C, CAN, SPI, RS23228, etc., are also required as part of the embedded system
and interconnect directly with the microcontroller and the actuators, displays, PCs, networks,
etc.

Typically, an embedded system involves a combination of analog and digital devices, under
the control of a microcontroller, that collectively serve as a feed back/control system to monitor,
and control, a wide variety of electromechanical, electro-optical systems, chemical process, etc.
Embedded systems can be as simple as a fan controller, used to control one, or more, fans, to
maintain pre-defined temperature(s) in a server, or consist of a complex network of embedded
systems collecting and sharing data, as well as, handling various output/control functions.

In addition, embedded systems may also be required to provide real time actions in terms
of responding within predefined time limits to certain critical input conditions, or lack thereof,
with appropriate output responses as in the case of anti-lock brakes, deployment of air bags,
response to failure of one or more devices, initiating critical shut down procedures, gathering
data at sufficiently high rates to allow for data processing and appropriate control functions, etc.

Modern day embedded systems must of necessity, and to the extent feasible, also be adaptable
to changing market requirements, avoid steep learning curves for the designer, etc. Furthermore,
issues such as low component costs, minimal printed circuit board real estate requirements, ease
of manufacture, minimal reliance on external components, in-circuit debugging/programming ca-
pability, support for standard communications protocols, and interoperability with other devices
and systems are also important.

The advent of microprocessor/microcontroller technology led early adopters to conclude that
embedded systems of the future would consist simply of one or more analog-to-digital and digital-
to-analog converters conjoined with a microprocessor/microcontroller, as shown in Figure 1.20.
The basic design philosophy was to immediately convert all input signals to their digital coun-
terpart, process the resulting digital form of the inputs and then, if required, convert the digital
results back to an analog signal, via digital-to-analog converters for connection to the external
world.

This view was strengthened by the fact that analog signals can be degraded by component
tolerances, undesirable nonlinearities, sensitivity to electrical noise (EMI), changes in environ-
mental conditions such as temperature and humidity, vibration, limited current/voltage dynamic

27The distinction between microcontroller and microprocessor has become somewhat ambiguous in modern
parlance and the two terms are sometimes used interchangeability with little regard for their differences.. In the
discussion that follows the term microcontroller shall refer, at a minimum, to a microprocessor, memory and some
form of I/O capability all within the confines of single chip, that functions as a “system on a chip”.

28Within the family of RS232 type drivers are RS422 and RS485 protocols which are specific hardware protocols
as opposed to data protocols and provide support for master/slave operation, as well as, significantly better noise
immunity and longer transmission paths.

30 Introduction to Embedded System

T
able

1.1:
Som

e
of

the
typ

es
of

subsystem
s

available
in

m
icrocontrollers.

A
m

plifiers
P

rog.
G

ain
Instr

T
ransconductance

C
om

parators
O

pA
m

p
A

/D
C

onverters
D

elta-Sigm
a

SA
R

Increm
ental

D
/A

C
onverters

M
ultiplying

C
urrent

D
A

C
V

oltage
D

A
C

-
-

D
ialer

D
T

M
F

-
-

-
-

C
ounters

8
B

it
16

B
it

24
B

it
32

B
it

-
T

im
ers

16
B

it
T
ach/T

im
er

8
B

it
16

B
it

24
B

it
32

B
it

R
andom

Sequence
P

R
S8

P
R

S16
P

R
S24

P
R

S32
-

P
W

M
s

P
W

M
8

P
W

M
16

P
W

M
24

P
W

M
32

-
A

nalog
M

uxs
A

M
U

X
4

A
M

U
X

8
R

efM
U

X
V

irtual
Sequencer

F
ilters

L
ow

P
ass

B
andpass

H
igh

P
ass

N
otch

A
daptable

D
igital

C
om

m
U

A
R
T

s
U

SA
R
T

C
R

C
G

enerators
-

-
D

igital
C

om
m

SP
I

SP
IM

SP
IS

C
A

N
L
IN

D
igital

C
om

m
ID

aT
X

/IrD
A

R
X

I2C
m

I2C
H

W
U

SB
F
S

-
D

igital
C

om
m

O
ne

W
ire

I2C
F
lexR

ay
I2S

-
M

A
C

-
-

-
-

-
L
C

D
C

haracter
Segm

ent
Static

Segm
ent

-
-

L
E

D
L
E

D
7

Segm
ent

-
-

-
-

Sleep
T

im
er

-
-

-
-

-
L V

D
T

-
-

-
-

-
L
ogic

A
N

D
O

R
X

O
R

N
A

N
D

N
O

R
L
ogic

N
O

T
X

N
O

R
L
ogic

H
igh

L
ogic

L
ow

L
U

T
L
ogic

D
igital

M
U

X
D

e-M
ultiplexer

D
F
lipflop

-
-

R
egisters

C
ontrol

Status
-

-
-

D
M

A
-

-
-

-
-

P
ins/P

orts
A

nalog
D

igital
B

i-D
irect.

D
igital

Input
D

igital
O

utput
-

L
ogic

A
N

D
O

R
X

O
R

N
A

N
D

N
O

R
L
ogic

N
O

T
X

N
O

R
L
ogic

H
igh

L
ogic

L
ow

L
ogic

D
igital

M
U

X
D

e-M
ultiplexer

-
-

-
R

egisters
C

ontrol
Status

Shift
-

-
M

ixer
-

-
-

-
-

1.6 Embedded Systems Subsystems 31

Figure 1.20: A simple example of analog signal processing.

range, storage of analog information in other than digital formats.

However, while it was soon realized that analog signal processing is an important part of
many embedded systems (as is the need for minimal power consumption, fast response times
and converting all data to a digital format) converting analog signals to a digital form before
processing gave rise to other problems, e.g., aliasing. digital filtering overhead, etc.

When dealing with digital methods for gathering and processing data, careful consideration
must be given to the amount of data gathered per unit time over a given period and the rate with
which such data is gathered. It is assumed, in the following discussion, that the signal under
consideration is a continuous time, “well-behaved” signal, and that the goal is to convert the
analog signal into its digital equivalent under conditions sufficient to allow the original analog
signal to be accurately reconstructed. Sampling at a rate below the highest frequency component
of a given signal can give rise to a phenomenon known as “aliasing” as shown in Figure 1.21. In
this case a fixed frequency sinusoidal signal is sampled at a rate of once per second while the
impled signal derived by sampling, is seen to have a period of approximately 10 seconds.

The Nyquist-Shannon Sampling Theorem, also referred to as the Nyquist or Shannon criteria,
requires that under these conditions the sample rate be equal to, or greater than, twice the highest
frequency component of the signal, or equivalently, that if the frequency component is B Hertz,
that the sample rate be:

fs = 2βB (1.9)

where fs is the sampling frequency, B represents the bandwidth (highest frequency component
of the signal) and β is a measure of the amount of oversampling, if any. Oversampling becomes
important when attempting to minimize anti-aliasing effects particularly where A/D conversion
are involved.

Sampling, in the present context, refers to the periodic, or aperiodic, collection of data re-
sulting in a discrete time series. The rate of sampling in terms of samples per sec is usually
determined by the application, the hardware used in the embedded system and Equation (1.9).
The amount of data gathered per sample is obviously determined by the number of bits (bytes)
gathered per sample and the rate is determined by how often a sample is taken.

For example, if each sample consists of two bytes, or equivalently 16 bits per sample, the
sampling rate is 200 samples second, and the length of time over which samples are gathered at
this rate is 24 hours, the size of the sampled data set, D, is given by:

D = (bits per sample)(# of samples per second)(total sampling time) (1.10)

and therefore:

D =
(16)(200)(24)(3600)

8
= 34.56Mbytes (1.11)

32 Introduction to Embedded System

Note that in this example, it is tacitly assumed that the highest frequency component in the
sampled signal is 100 Hz for a unit oversampling, i.e., for β = 1. Furthermore, “sampling” which
is often introduced when relying on digital signal processing techniques such as A/D and D/A
conversion can result in the loss of information (aliasing), adds additional CPU overhead and
introduces potential quantization issues and round-off errors.

Digital filters, while capable of providing an excellent filter response, are an example of ex-
cellent characteristics at the expense of data processing time, and therefore latency, which can
preclude their use in certain types of control systems. In such cases, analog filters may be em-
ployed that while perhaps offering much less sophisticated filtering capability are cheaper, fast
and characteristically have a large dynamic range. As in the case of any optimized embedded
system design, trade-offs are frequently required in order to provide the best overall solution in
terms of response time, power consumption, cost, manufacturability, component count, printed
circuit board (PCB) real estate, etc.

Figure 1.21: Example of aliasing

1.7 Sensors and Sensing

Sensors are devices that convert one or more physical parameters into digital or analog signals
for processing and control applications. Such sensors, often referred to as transducers29, typically
convert physical parameters such as temperature, pressure, linear/curvilinear motion of objects
(acceleration, velocity, displacement, etc.), salinity, hydrogen ion concentration (pH) wind speed,
ocean currents, vibration, presence of toxic materials, fire, proximity of objects, force (linear,
torque), fluid30 flow (velocity, acceleration, displacement, etc.), radiation measurement (low fre-
quency RF, high frequency RF, microwave, ultraviolet, visible light, infrared, etc.), heat flux,
stress/strain, chemical signals (e.g., smells),quasi-static electric and magnetic fields (i.e. no ra-
diative), altitude,metal, resistance, capacitance, inductance, electrical power, mechanical power,
mass flow, volume flow, etc., into an analog voltage or current, or the digital equivalent.

In addition to “point” measurements utilizing a single sensor, sensors may also be used in
groups in both inhomogeneous and homogeneous arrays to provide fields of data over a given
surface or volume. Regardless of the physical parameter(s) being sensed (i.e. measured or de-
tected, including the lack thereof) the converted parameter is provided as a proportional voltage,
current or digital value which can then be processed by a microcomputer or microcontroller and
used for feedback, or feed forward, information in a wide variety of applications.

Some of the more commonly encountered input sensors include microphones, tachometers,
thermistors/thermocouples, sonar or other forms of acoustic sensors, pressure sensors, infrared

29Transducers may convert one physical parameter into another, but for the purposes of these discussions, the
term ”transducer” refers explicitly to a device capable of converting the value(s) of an arbitrary physical parameter
into corresponding voltage, current or digital value.

30Both and liquids are to be regarded, for the purposes of these discussions, as fluids.

1.7 Sensors and Sensing 33

sensors (passive and active), ultrasonic sensors, RFID readers, strain gauges, linear/rotary posi-
tion sensors, mechanical switches of various configurations, distance (altimeters, ranging sensors,
etc.), velocity, acceleration, roll, yaw, pitch, GPSs, and proximity detectors. Common output
devices31include speakers, electric motors/positioners, wireless connections of various types and
protocols, liquid crystal (LCD) displays, and PC connections.

Hundreds of types of sensors have been designed to detect acceleration, displacement, force,
humidity, spatial position/orientation, temporal parameters, tactile contact or the lack thereof,
biometrics (retinal, fingerprint, DNA, facial, etc.), proximity, speed and a host of other param-
eters. These devices provide resistance, capacitance, inductance current, voltage, amplitude,
frequency, phase, quadrature modulation, and data in binary or other form, as output parame-
ters. All of these devices are susceptible to noise (EMI), aging, temperature, vibration and other
forms of degradation of their output signals. Thus it is important to carefully calibrate such
devices, often against the manufacturers specifications under a variety of anticipated operating
conditions. In some cases, the embedded system can utilize look-up tables (LUTs) and other
means to apply corrections to data provided by such devices. Filtering of analog signals can also
be used to maintain input data integrity.

In dealing with sensors, it is important to delineate between the “accuracy” of a sensor and
its precision. The latter refers to the degree to which a sensor is measuring the quantitative value
of a parameter and the latter to how close a series of measurements of a value of a parameter as
measured value by a given sensor are grouped quantitatively. Thus it is possible for a sensor to
make a series of measurements for a given value of a parameter and arrive at similar values and
yet not be a particularly of the “accurate” assessment of its actual quantitative value. Note that
precision is defined in terms of the number of significant figures to which the value is measured
while accuracy is related to how close the value reflects the true value of the parameter being
measured. Accuracy and in some cases precision are also affected by the conversion of analog
data to a digital format. Typical microcontrollers have data “widths” of 8-16 bits which can
affect both accuracy and precision, depending on the application.

Sensors also have inherent limitations with respect to input signal “dynamic range” and
bandwidth, can introduce noise, may suffer from nonlinearities, may be affected by offsets, such
to saturation effects and depending on their input and output impedances may require that
proper “impedance matching”32 for both input signals and interfacing to the microcontrollers
I/O channels.

In the case of analog signals, “dynamic range”, as applied to sensors, is a quantitative figure
of merit defined as the ratio of maximum input signal to minimum discernable (detectable) input
signal that can be applied to a sensor for which it can produce an output without distortion.
Dynamic range for digital signals is defined in terms of the bit error ratio (BER) which is the
ratio defined as:

BER = (number of altered bits)/(number of bits transmitted) (1.12)

where “altered bits” refers to transmitted bits altered by adverse phenomena such as interference,
noise, etc.

Care must be taken to insure that impedance “mismatches”33 don’t distort measurements

31Note these may also be viewed as transducers.
32Impedance matching considerations are an important when dealing with sensors it order to avoid adversely
33Impedance mismatch is often used to refer to differences between output impedance of one device and the

input impedance of a second device when power transfer is a consideration. In such cases the output and input
impedances should not be the same, i.e., “matched”, i.e., it is important that the microprocessor not draw
significant power from the sensor to avoid the possibility of distorting the value of the parameter being sensed.

34 Introduction to Embedded System

and/or adversely effect the values input/output by the microcontroller from sensors/output to
actuators, peripherals, motors, actuators, etc.

1.7.1 Types of Sensors

Currently, wireless sensors, ultra-low power, plug-and-play, MEMs-based34, PWM output and
sensor fusion are the most popular areas of sensor technology. Communications protocols used
in conjunction with sensors include CAN/CANOpen, Devicenet, Ethernet IP, TCP/IPWireless,
USB, and various proprietary networks. In terms of embedded system designer priorities, reliabil-
ity, accuracy, durability (ruggedness), noise immunity, sensitivity, sensing range, resolution, ease
of maintenance, ease of setup and environmental protection are the most import concerns and in
descending order. Currently, for modern embeddem systems the most popular types of sensors
are vision senors, wireless, rotary position, proximity, linear displacement and photoelectric.

1.7.1.1 Optical Sensors

Various types devices are available for measuring of optical parameters and the presence/absence
of radiation in the optical portion of the electromagnetic spectrum. These devices

• Photomultipliers - these devices have multiples stages of light amplification that results in
a current that is proportional to the intensity of illumination. These devices use low work
function35, e.g., alkali metal-based coatings, to convert photon impacts into electrons and
hence currents.

• Pin Diodes/Photodiodes - these devices are semiconductors, e.g., PN junctions which pro-
duce a current which is proportional to the intensity of the illumination.

1.7.1.2 Capacitive Sensing

In recent years, capacitive sensing has become increasingly more common in applications
such as automobiles, mobile phones, a wide range of consumer electronics including home
appliances, stereos, televisions, a wide variety of consumer products as well as a broad range
of military and industrial applications. Capacitive sensing offers a number of advantages
over its mechanical counterpart, e.g., no mechanical parts, completely sealed interface, etc.
Capacitive sensing is based on a very simple relationship between the area of a capacitor, the
distance between two conducting surfaces of a capacitor, d, the permittivity of free space,
ε0, the relative dielectric constant, εr and its capacitance, C, as follows:

C = ε0εr
A

d
(1.13)

Current estimates suggest that as many as 2.5 billion buttons and switches have been re-
placed by this technology. This “non-touch” sensing technology is sufficiently sensitive in
some applications to allow it to be employed in applications requiring nanometer resolution.
In addition to replacing the traditional “buttons”, capacitive sensing techniques are also
used to function as “sliders”, proximity detection, LED dimming, volume controls, motor
controls, etc. Capacitive sensing is capable of sensing the presence of conductive materials,
including fingers and providing proximity sensing for a wide variety of touch pads and touch
screens. Many capacitive sensing applications consist of a conducting surface often protected
by glass or plastic that senses

34Micro-electromechanical or MEMs sensors can be on the order of 5x5x1 mm in volume, and are available as
pressure, acceleration, gyroscopic, gas flow, temperature and other types of sensors.

35Work functions represent the minimal energy required to eject an electron from a solid and defined as W = hν
where ν is the minimum photon frequency required for photoelectric emission to occur fr a given solid surface.

1.7 Sensors and Sensing 35

A typical capacitive sensing arrangement involves two separate conducting surfaces often
created by traces on a printed circuit board which represent a capacitance of 10 to 30
picofarads. Assuming that the traces are protected by an insulating material perhaps 1
millimeter in thickness, an approaching finger represents a capacitance in the range of 1-2
picofarads.

1.7.1.3 Magnetic Sensors

There are various forms of magnetic sensors which operate, in some cases, by closing or opening
switch contacts (reed relays), utilizing the Hall effect to vary current flow, sensing current flow
etc. Magnetic sensors also take advantage of the Curie Point36.

They are used in in a wide variety of applications including:

• Brushless DC motors

• Pressure sensors

• Rotary encoders

• Tachometers

• Vibration sensors

• Valve position sensors

• Pulse counters

• Position sensors

• Flow meters

• Shaft position sensors

• Limit switches

• Proximity sensors

Magnetic sensors, unlike other types of sensors do not, for the most part measure a physical
parameter directly. Instead magnetic sensors react to perturbations in local magnetic fields in
terms of strength and direction to determine the state of electric currents, direction, rotation,
angular position, etc.

The units of magnetic field are Gauss, Teslas and gammas and they are related by:

105 gamma = 10−4 Tesla = 1 gauss (1.14)

Magnetic sensors can be classified in terms of the range of magnetic field strength which they
sense as follows:

• Low Fields - magnetic fields whose strength is less than 1 gauss.

• Earth’s Field - magnetic fields in the range from 1 microgauss to 10 gauss.

• Bias Magnetic Fields - magnetic fields of strength greater than 10 g.

and, since a magnetic field is a vector field, both magnitude and direction of the field, a magnetic
sensor can use use director, strength or direction and strength to measure a particular parameter
and therefore:

36The Curie point refers to the temperature at which the magnetic properties of a substance change from
ferromagnetic to paramagnetic. If the temperature is subsequently reduced to below the Curie Point, the substance
becomes ferromagnetic again.

36 Introduction to Embedded System

• a vector magnetic sensor utilizes both magnitude and direction,

• an omnidirectional magnetic sensor uses magnetic field in one direction,

• a bidirectional magnetic sensor measures magnetic field in both directions,

and,

• a scalar magnetic sensor utilizes magnetic field strength only.

Finally, magnetic sensors can be further classified as:

• Anisotropic magneto-resistive (AMR) sensors - these are used for measuring position in
terms of angular, linear position and displacement in fields comparable to that of the Earth.
They consist of thin film resistors that are created by depositing nickel-iron on silicon whose
resistance can be varied by several percent in the presence of a magnetic field.

• Bias magnetic field sensors - these sensors use Hall devices,

• Fluxgate sensors - these sensors are often used in navigation systems.

• Hall effect sensors - these sensors sense current in a small plate as a result of the Lorentz
force F = q(vxB) on electrons. This in turn produces a Hall voltage which is directly
proportional to the magnetic field.

• Magneto-inductive sensors - these sensors utilize a single winding coil which has a ferromag-
netic core in the feedback loop of an operational amplifier to form a relaxation oscillator.
Changes in the the ambient magnetic field alter the frequency of the oscillator by as much
as 100%. A shift in frequency can be detected by a microcontrollers “capture/compare”37

functionality.

• Search coil sensors - this sensor relies on the fact that a changing magnetic filed induces a
changing electric field in a coil. However, search coil sensors require that either the magnetic
field is varying or the coil is moving.

• Squid sensors - Based on the Josephson junction is the most sensitive and is capable of
sensing fields as low as 10−15 gauss and as high as 9x104 gauss (9 tesla) which is equivalent
to fifteen order of magnitude.

1.7.1.4 RF

RF sensors detect fluid viscosity, fluid contamination, fluid flow, linear and rotational speeds,
displacement and position in automotive and aeronautical applications. They normally operate
in ranges from DC to 1 Gigahertz, -170◦C to 1000◦C. This type of sensor can be used with both
ferrous and non-ferrous materials as well as, glass, plastic, liquids and composites. This type of
sensor measures the magnetic susceptability and electric permittivity within a predefined volume
of space.

1.7.1.5 Ultraviolet

This type of sensor often relies on the physical characteristics of Zinc Oxide which is transparent
when irradiated with visible light and opaque when irradiated with ultraviolet in the 220-400
nanometer range. Silicon photodiodes are also used for UV detection but silicon also absorbs UV
which makes it less desirable as a sensor.

37“Capture” refers to a microcontroller’s ability to time the duration of an event. Compare refers to its ability
to compare the values in two registers and subsequently trigger an external event.

1.7 Sensors and Sensing 37

1.7.1.6 Infrared

InfraRed (IR) proximity sensors in applications such as TV remote controls, wireless connections
between PCs and printers utilize light in the range from 600 - 1200 nanometers which is not
visible to humans.Various optical techniques are employed including:

• Modulated IR - which modulates and IR bean to control devices remotely. Modulating the
carrier provides better to signal to noise ratios (SNRs) which can be important in IR-noisy
environments

• Reflective IR - this technique relies on measuring IR reflected from an object. However, it
can be adversely affected by background thermal radiation, but is inexpensive to implement.

• Transmissive - detects objects located between an IR transmitter and receiver.

• Triangulation - offers the best performance for proximity detection using a focused beam
and a receiver array to measure the angle of reflection from an object.

1.7.1.7 Ionizing Sensors

Smoke detectors use a chamber which contains a radioactive source, e.g., Americium-41, to
provide alpha particles that ionize the oxygen and nitrogen present in the air in the chamber.
There is also a set of plates, one positively charged, and the other negatively charged. The
negatively charged plate attracts the ionized Oxygen/Nitrogen ions. Similarly, the electrons are
attached to the positive plate. The net result is a small, but continuous current flow. However,
in the presence of smoke, particulate matter in the smoke binds with the Oxygen/Nitrogen ions
thus making the charge of each neutral and reduces the current. This reduction in current is then
detected and triggers an alarm.

Photoelectric detectors are also used as detectors in smoke alarms by either monitoring the
amount of light reaching a detector which is reduced in the presence of smoke, or by measuring
the amount of light scattered from a beam in the presence of smoke.

1.7.1.8 Other Types of sensors

While there are obviously a great many types of sensors, the three most common forms of sensors
are strain gauges, thermistors and thermocouples. The techniques used for making measurements
using these three types of sensors are similar and shall be treated briefly.

Since the resistance of a length of wire is a function of length (L), cross-sectional area (A)
and a physical quantity that is determined by the type of wire being considered referred to as
resistivity (ρ) given by:

R = ρ
L

A
(1.15)

and therefore,

dR = ρ

[
AdL − LdA

A2

]

(1.16)

so that,

ΔR = ρ
ΔL

A
(1.17)

38 Introduction to Embedded System

if the change in area is negligible the change in resistance is a linear function of the change in
length (dL), assuming that ρ is not an explicit function of length (L) or area (A).

Strain gauges 38 are designed to measure a dimensionless parameter called “strain” which is
defined as the deformation of an object when a load is applied, expressed as:

Strain =
(ΔL)

L
(1.18)

where ΔL is the length of deformation and L is the original length. It should be noted that strain
can be either compressive or tensile (stretched). Strain gauges are designed to convert mechanical
deformation into some form of electronic change, e.g., in resistance, inductance or capacitance,
which is proportional to the strain.

Strain gauges measure deformation in only one direction, and therefore, if the deformation
is in two or three dimensions, multiple strain gauges are placed such that they are orthogonal.
In addition, most materials tend to be at least somewhat anisotropic39 so that the same stress
applied in orthogonal directions may result in different amounts of strain.

The three basic forms of strain:

• Bending strain, sometimes referred to as “moment strain”, is defined as the amount of strain
resulting from a given force.

• Poisson strain is a measure of the elongation and thinning of an object that occurs as the
result of stress applied to an object.

• Shear strain - Shear strain is a strain that is parallel to the face of a object that it is acting
upon, as shown in Figure 1.23.

Stress is defined as:

σ =
F

A
(1.19)

where F is orthogonal to the area, A, and can exist in five different states:

• Compression - caused by external forces applied to an object which cause adjacent particles
within a material to be push against each other resulting in “shortening’ of the material.

• Flexure, also referred to as bending.

• Tension - caused by external forces applied to an object which cause adjacent particles
within a material to be pulled away from each other resulting in ”stretching.

• Torsion - occurs when a material is “twisted’

• Shear - occurs when adjacent parts of a material “slide” away from each other as shown in
Figure 1.23. Shear may be either vertical or horizontal and in the presence of bending, both
occur. The shear angle is defined as:

θ = arctan(
Δx

L
) (1.20)

Many sensors use stress and strain to measure parameters such as angular displacement, linear
displacement, pressure, compression, flexure, torque, force, acceleration, etc. Figures 1.24 and
1.25 show an application of a strain gauge to a duraluminum tensile test specimen.

38Strain gauges were invented by Simmons and Ruge in 1938.
39If the properties of a material are independent of direction the material is said to isotropic, otherwise the

material is said to be anisotropic.

1.7 Sensors and Sensing 39

Figure 1.22: Examples of Tension, Compression, Flexure (Bending) and Torsion.

Figure 1.23: Example of shear force.

1.7.1.9 Thermistors

Various techniques are used to sense temperature, but the most common thermal sensors are
thermistors, which are sintered semiconductors materials whose resistance is highly dependent on
temperature. Simply stated, a thermistor is a semiconductor, with either a positive or negative
temperature coefficient, whose resistance is a function of the ambient temperature. Modern
thermistors are based on oxides of cobalt, copper, iron, manganese and nickel. Thermistors are
sensitive to static charge and their use is typically restricted to temperature ranging from 0◦-
100◦C. Carbon resistors are often used for extremely low temperature sensing, e.g., −250◦ ≤
−T ≤ −150◦ and have a very linear negative temperature coefficient in this range.

In the simplest case, a thermistor can be characterized by the following relationship:

k =
ΔR

ΔT
(1.21)

where k is referred to as the temperature coefficient and ΔR is the change in resistance for the
corresponding change in temperature, ΔT . Depending on the type of thermistor, k can be either
negative or positive.

However, most thermistors do not exhibit a linear relationship except over for small tempera-
ture ranges. The resistance of thermistors typically lies within a range from 1kΩ− 100kΩ. Thus
the resistance of leads attached to a thermistor need not be taken into consideration. Metal
oxides are used to produce thermistors with negative temperature coefficients (NTCs) and bar-
ium/strontium compounds are used when positive temperature coefficients (PTCs).

A more accurate representation of the change in resistance of a thermistor can be approximated

40 Introduction to Embedded System

Figure 1.24: Strain Gauge applied to a duraluminum tensile test specimen.40

by:

R(T1)
R(T2)

= A(T1−T2) (1.22)

where T1 and T2 are temperatures, in degrees Kelvin, and A is an empirically derived value,
less than 1. However an even better approximation to the relationship between resistance and
temperature for a thermistor is given by:

ln(R) ≈ a0 +
a1

T
+

a2

T 2
+

a3

T 3
∙ ∙ ∙ +

bn

Tn
(1.23)

This is often further approximated as:

R = exp

[

a0 +
a1

T
+

a3

T 3

]

(1.24)

The Steinhart-Hart[20] equation is an empirically-derived relationship with three constants that
relate the resistance to a corresponding temperature:

1
Tc + 273.15

= A + B ln(R) + C ln(R)3 (1.25)

The three unknowns can be easily determined by employing three data points, 1) the lowest
temperature, 2) the highest temperature and 3) a value midway between the 1) and 2).

It can also be expressed as a 3rd order, logarithmic, polynomial with three constants, i.e.,

1
TK

= A + B ln(R) + C ln(R)3 (1.26)

1.7 Sensors and Sensing 41

Figure 1.25: Closeup of a Strain Gauge.41

where A, B, and C are empirical constants, R is the thermistor’s resistance in Ohms. and TK is
the temperature in Kelvins. Generally speaking, the error in the Steinhart-Hart equation is less
than 0.02◦C.

A still more useful equation, that provides the temperature in Celsius, is given by:

TC =
1

A + B ln(R) + C ln(R)3
− 273.15 (1.27)

Many thermistors are available with parameters A, B, and C defined. If for a particular ther-
mistor these parameters are not available their respective values can be calculated by using three
points in the conversion table, provided by the manufacturer, and solving for these constants. The
minimum, maximum, and a middle value for the temperature range of interest are useful points
to employ in determining the parameters. The cost of thermistors is primarily determined by the
accuracy of the their resistance versus temperature characteristics and therefore the exponential
nature of thermistors becomes an advantage.

For a thermistor with a tolerance of n, the possible temperature error is:

(1 + n) R(Tk) = (1 + n) ATk =
[
A

ln(1+n)
ln(A)

]
ATk ≈

[
A

n
ln(A)

]
ATk = A[Tk+ n

ln(A)] (1.28)

which shows that a thermistor’s resistance tolerance can be represented as a temperature shift.
This shift can be removed by a single point calibration by subjecting the thermistor to 25˚C
and measuring its resistance, e.g., if its resistance represents a temperature of 26.2˚C, then the

42 Introduction to Embedded System

embedded system will need to impose an offset of 1.2˚offset in order to determine the actual
temperature. In some applications involving thermistors the user user has access to an offset
register via the GUI and can make the necessary calibration, prior to making a measurement.

A useful heuristic is the fact that a thermistor resistance uncertainty of n% is equivalent to
a temperature shift of approximately (n/3)˚C and can be used to determine if calibration is
necessary. The decision as to whether to use (1.21), (1.22), (1.24), or (1.27) depends on the
application and the required accuracy, cost cost constraints, available computation time and
other factors.

1.7.1.10 Thermocouples

Thomas Johan Seebeck42 discovered that when two dissimilar metals are in contact with each
other in the presence of a thermal gradient, a voltage is produced that is a function of the types
of metals and the temperature. The ”Seebeck effect”43 is also referred to as the “thermoelectric
effect” and it can be expressed mathematically as:

ΔV = αΔT (1.29)

where α is referred to as the Seebeck coefficient and T is measured in Kelvin. If two wires, e.g.,
copper and constantan44 , are joined together the temperature can be determined by measur-
ing the voltage between them as shown in Figure XX. Copper-Constantan thermocouples, also
referred to as type “T” thermocouples, produce approximately 40μV per ◦C (22μV per ◦F).
However, in order to measure the voltage, metallic connections must be made to them. If the
connections to the device measuring the voltage, e.g., a digital voltmeter, are made of copper,
then two additional junctions, viz., copper-to-copper and copper to constantan, are introduced
as shown. The copper-to-copper junction will not introduce an additional Seeback voltage since
it does not involve dissimilar metals.

Figure 1.26: Seebeck potentials.

However the constantan-to-copper junction will introduce a voltage, VJ2. Therefore the mea-
sured voltage is:

VJ1 − VJ2 = αT1 − αT2 = α(T1 − T2) (1.30)

Since T is in Kelvin:

T2 = t2 + 273. (1.31)
42Seebeck was a German-Estonian physicist.
43This effect is also sometimes referred to as the Peltier-Seebeck effect.
44Constantan is an alloy of copper (55%) and nickel (45%) with the property that its resistivity remains

relatively constant over a wide temperature range. In addition to its use in thermocouples, it is also widely used
in strain gauge applications.

1.7 Sensors and Sensing 43

where t2 is the temperature in degrees Centigrade, Equation (1.28) becomes:

VJ1 − VJ2 = α(t1 + 273 − t2 − 273) = α(t1 − t2) (1.32)

In practice, if J2 is placed in ice, so that t2 = 0◦ C, and Equation (1.30) reduces to:

VJ1 − VJ2 = αt1 (1.33)

It should be noted that the National Institute of Technology and Standards uses 0◦C, as the ref-
erence junction temperature, in this case J2, in NIST published tables for Type J thermocouples.

1.7.2 Use of Bridges for Temperature Measurement

Sensors such as strain gauges and thermistors are devices whose resistance is a function of strain
and temperature, respectively. In order to collect temperature and strain data it is necessary to
read the resistance of such devices. There are a number of techniques for making such measure-
ments, two of which are based on Ohms Law[21] and have been widely employed:

• A sensitive current measuring device such as a Wheatstone bridge is used to determine the
value of the resistance of a sensor whose resistance is a known function of temperature.

• A known current is passed through a sensor whose resistance is a known function of tem-
perature and the resulting voltage is measured.

• A reference voltage is applied to a reference resistor in series with a sensor whose resistance
is a known function of temperature and the resulting voltage is measured.

Once the value of sensor’s resistance has been determined, the data can be compared to available
conversion tables45 that take nonlinearities and any other transducer-related dependencies into
account.

A common technique for measuring temperature using thermocouples is to employ a Wheat-
stone bridge46 as shown in Figure 1.27. The value of Rx can be determined by using Ohm’s
Law47, as follows:

V1 = i1R1 (1.34)

V2 = i2R2 (1.35)

V3 = i3R3 (1.36)

Vx = ixRx (1.37)

If the voltage, Vw, is zero then:

i1 = i2 (1.38)

i3 = ix (1.39)

and therefore,

i1R1 = i3R3 (1.40)

i2R2 = ixRx (1.41)

45Most sensors are provided with conversion tables or charts prepared by the sensor manufacturer.
46The Wheatstone bridge was invented by Samuel H. Cristie in 1833 but later became known as the “Wheatstone

Bridge” as a result of the attention drawn to it by Sir Charles Wheatstone in 1843.
47Ohms Law, most commonly expressed as V=IR, states that the potential difference measured across a current

carrying resistor is directly proportional to the value of the current through the resistor times the value of the
resistance.

44 Introduction to Embedded System

Figure 1.27: The Wheatstone Bridge.

i1R1

i2R2
=

i3R3

ixRx
=

R1

R2
=

R3

Rx
(1.42)

Rx =
R2R3

R1
(1.43)

This technique while quite sensitive can be replaced by a much more cost defective and often
desirable use of micrcontrollers such as PSoC48 to gather data from one or more such sensors
by employing a technique that supplies a known current to the sensor and then measures the
resulting voltage across the sensor.

i =
(V1 − V2)

R2
(1.44)

V2 =
(V1 − V2)

R1
R2 (1.45)

R2 =

[
V2

V1 − V 2

]

R1 (1.46)

A simplified diagram of such an arrangement is shown in Figure 1.28. A constant current
source is used to used to provide a known value of current to the sensor and the resulting voltage
is measured utilizing an amplifier and analog to digital converter as shown in Figure. If necessary,
an amplifier can be employed that has sufficiently high input impedance to avoid any significant
perturbation of the voltage/current to be measured. Obviously the accuracy of this approach
depends critically upon the accuracy of the current source and any errors introduced in measuring
the resulting voltage, e.g., gain and offset errors.

A second technique is shown in Figure 1.29. In this case, sensors resistance can be determined
from the following relationship:

Vref − Vresponse

Rref
=

Vresponse

Rt
(1.47)

48PSoC is a Programmable System on Chip manufactured by Cypress semiconductor that is referred to fre-
quently in these discussions and treated in more detail in Chapter XX.

1.7 Sensors and Sensing 45

Figure 1.28: Constant current measurement.

and therefore,

Rt =

[
Vresponse

Vref − Vresponse

]

Rref (1.48)

While this technique should be capable of making highly accurate measurements over a wide
range, variances in the values for Rref , amplifier gain and the amplifier’s offset voltage can limit its
accuracy. Selecting a high quality resistor for Rref an OpAmp with minimal offset characteristics
and a very stable reference voltage will allow accurate measurements of Rt to be made over a
reasonable range for common resistive transducers.

Figure 1.29: Resistive divider.

1.7.3 Sensors and Microcontroller Interfaces

Embedded systems often employ inputs/outputs in the form of analog voltages, currents and/or
digital data in order to be able to obtain information from the widest variety of input devices such
as sensors, and to output signals to devices such as motors, actuators, display devices, digital
transmission channels, etc. This requires that microcontrollers be able to interface with both ana-
log and digital signals of a wide variety. This is often facilitated in part by microcontrollers that
have configurable I/O pins which allows some sensors to connect directly to the microconrollers
I/O pins.

Input sensors can provide data in the form of analog signals that can be interpreted in terms
of phase, amplitude, current, frequency, frequency shift, phase shift, other forms of modulation or

46 Introduction to Embedded System

some combination thereof. The input signal may be converted to a digital format by employing an
on-chip analog-to-digital converter for data processing, logging and/or retransmission to external
devices. However, it is also possible to employ on-chip peripherals such as analog filters and/or
various types of analog amplifiers used in conjunction with on-chip analog-to-digital converters
and in subsequently output an analog signal without converting the input signal to a digital
equivalent.

Handling these types of analog input signals requires the availability of a number of differ-
ent analog circuits, e.g., analog multiplexers/demultiplexers, analog-to-digital converters, analog
comparators, analog demodulators, amplitude/frequency detectors, analog mixers, analog filters,
etc.

Similarly, digital input signals require digital multiplexers/demultiplexers, the ability to han-
dle serial, parallel or both data formats, support for various protocols such as I2C, RS232 (UART,
USART), CAN, SPI, Firewire, USB, etc. as well as, hardware variants of RS232 such as RS422
and RS485. Parallel data can be handled by some microcontroller’s ability to simultaneously
input data from a group of pins, e.g., P0-P7, for 8-bit parallel input, data transfers. In some
applications multi-byte input data is transmitted to/from the microcontroller one byte at a time
using such a technique.

Thus a microcontroller is essentially a CPU that communicates/interacts in a variety of ways,
e.g., by responding to interrupts generated by the peripherals or to the state of the microcon-
trollers input pins, with a variety of on-chip analog/digital peripherals that in turn communicate
with input devices such as sensors that provide inputs in the form of analog voltages, currents,
frequencies, pulses, digital data etc. The microcontroller can apply the applicable numerical
algorithms, invoke the appropriate logic and process this data regardless of original form, apply
the appropriate logic sometimes based on the results of numerical processing of the input data
and then transmit commands to other on-chip peripheral devices to provide the necessary output
signals external devices.

1.8 Embedded System Processing

Embedded systems are capable of providing several different types of functionality, including but
not limited to:

• Data collection/processing/transmission - since many embedded systems carry out data pro-
cessing on data that either began as digital data, or was subsequently translated into the
digital equivalent of an analog signal or signals, microcontrollers must be capable of carrying
out a number of different low level computational tasks such as addition, subtraction, mul-
tiplication and division as well as bit manipulations, shift operations, bit testing. overflow
and underflow handling, array manipulations, together with various loop and nesting func-
tions. Computation of algorithms such as Fast Fourier Transforms, digital filtering, etc., are
facilitated by special functions such as those provide by a MAC.

In some cases, if extensive high speed computation of large amount of data must be subjected
to complex algorithms where the time to compute is a concern, digital signal processors
(DSPs) may be employed that are are optimized to perform high speed, often complex com-
putations. The computational tasks are passed to the DSP or other specialized co-processor
and the results of the computation are then made available to the microcontroller via shared
memory, or other means. DSPs are specialized microprocessors designed to compute algo-
rithms used in digital imaging, radar, seismic, sensor array, statistical, communications,
biomedical signal processing. Some examples of such algorithms are shown in Table 1.2.

1.8 Embedded System Processing 47

Table 1.2: Algorithms used in embedded systems.

Discrete Fourier Transforms (DFT)
Bilinear Transform
Real Time Convolution
Z-Transforms
Coordinate Rotations/Translations
Quadratic & Higher-Order Polynomials
Discrete Fourier Series
Discrete Wavelet Transform (DWT)
Least-Squares Computation (LMS)
Speech Processing Algorithms
Correlation Algorithms
Computer Vision Algorithms
Ray Tracing Algorithms
Array Processing Algorithms
Multimedia Algorithms
Character Recognition Algorithms
Speech Recognition Algorithms
Image Processing Algorithms
Video Processing Algorithms
Target Detection Algorithms
Compression Algorithms
Fingerprint Processing Algorithms
EEG/EKG Processing Algorithms
Digital Filters

FIR
IIR
All-Pass
Adaptive
Comb

48 Introduction to Embedded System

Field Programmable Gate Arrays (FPGAs) are also used as co-processors as a result of the
availability of extremely fast ADCs which among other things have made it possible to apply
a variety of digital algorithms to radio frequency (RF) applications. FPGAs are also capable
of supporting parallel processing by employing multiple CPUs49 (multicore), Multipliers-
ACcumulators(MACs) and other special function devices such as graphics processors, DMA
controllers, etc. on a single chip. MACs provide very high speed multiplications and have
the have the capability of adding the products to previous products.

These algorithms, and others are used to select specific input signals to synthesize, compress,
enhance, restore, recover and recognize signals, as well as, predict future values and/or
interpolate missing values of a signal, In such cases, the microcontroller can act as the prime
controller passing data to the DSP for processing and then carry out required operations
on the result of the DSP calculations. Specialized math processors such as the Intel 80387
floating point co-processor, have the ability to full control of the address and data busses,
are often highly optimized for performing certain specialized functions and therefore may
have somewhat restrictive use.

Microcontrollers with integral MACs are very useful for carrying out multiplications for
which the product is “accumulated” a common requirement for many digital signal process-
ing algorithms such as vector-dot-products (audio, video, images) Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR) filters, Fast Fourier Transforms (FFTs), discrete
cosine transforms (DCTs), convolution algorithms, etc.

For vector-dot-product calculations a typical calculation can be represented by:

x =
∑

ai ∗ bi (1.49)

and for convolution calculations,

y[n] = y[n] + x[i] ∗ h[n − i] (1.50)

similarly for matrix multiplication,

x1

x2

x3

x4

 =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

b1

b2

b3

b4

 (1.51)

where,

x1 = a11b1 + a12b2 + a13b3 + a14b4 (1.52)

x2 = a21b1 + a22b2 + a23b3 + a24b4 (1.53)

x1 = a31b1 + a32b2 + a33b3 + a34b4 (1.54)

x1 = a41b1 + a42b2 + a43b3 + a44b4 (1.55)

which requires 16 multiplications and 9 additions each time the vector ~x is calculated.

49Currently available technology is capable of supporting up to 16 CPUs per FPGA. But the goal is 1000+ per
FPGA.

1.9 Microcontroller Sub-systems 49

While reliance on co-processors for computation of algorithms, particularly for time critical
applications, i.e. applications for which execution times are an important consideration, has
proven successful, in recent years embedded systems have begun to be a synthesis of networking,
transmission, sensors, data and signal processing, As a result, microcontroller manufacturers have
begun to revise some of their standard microcontroller architectures to allow them to perform
one, or more, of the functions formally assigned to co-processors, or other external hardware.

Systems processes and control algorithms, of the type addressed by embedded systems, can
often be expressed in terms of one, or more, systems of linear, or in some cases partial differential
equations that involve resistance, capacitance, inductance, OpAmps, etc., such as:

b11
d2y(t)
dt2

+ b12
dy(t)
dt

+ b13y(t) = a11
d2x(t)

dt2
+ a12

dx(t)
dt

+ a13x(t) (1.56)

b21
d2y(t)
dt2

+ b22
dy(t)
dt

+ b23y(t) = a21
d2x(t)

dt2
+ a22

dx(t)
dt

+ a23x(t) (1.57)

b31
d2y(t)
dt2

+ b32
dy(t)
dt

+ b33y(t) = a31
d2x(t)

dt2
+ a32

dx(t)
dt

+ a33x(t) (1.58)

and equivalently in the form of a system of “difference equations” in the digital domain as:

b11y[n − 2] + b12y[n − 1] + b13y[n] = a11x[n − 2] + a12x[n − 1] + a13x[n] (1.59)

b21y[n − 2] + b22y[n − 1] + b23y[n] = a21x[n − 2] + a22x[n − 1] + a23x[n] (1.60)

b31y[n − 2] + b32y[n − 1] + b33y[n] = a31x[n − 2] + a32x[n − 1] + a33x[n] (1.61)

where bmn and amn are constants. Note that this system of difference equations involves decre-
menting of integer values, multiplication and addition only which are all functions easily per-
formed by a CPU that has MAC support.

1.9 Microcontroller Sub-systems

In the following discussion attention shall be restricted to mixed-signal, microcontroller archi-
tectures, i.e., microcontrollers consisting of a microprocessor and some number of analog and
digital subsystems, often referred to as “modules”. In some cases, the functionality of the analog
and digital subsystems will be found to be constrained to a limited range and configurability.
In others, such as that of PSoC, Cypress’ family of Programmable System(s) On Chip, an un-
usually high degree of variability, configurability and functionality is provided as shall be shown
throughout this textbook.

Compared to a typical personal computer, microprocessors are rather limited in terms of
memory resources, number of registers, clock speeds, program and data capacity, instruction
sets, multitasking capability (if any), etc. Microcontrollers typically have, at a minimum, on- chip
support for analog-to-digital, digital-to-analog and perhaps pulse width modulation depending on
the manufacturer. Microcontroller instructions are typically 8-16 bits wide and interrupt support
is relatively limited compared to personal computers.

Microcontrollers typically include the following subsystems:

• CPU - a Central Processing Unit, consisting of an Arithmetic Logic Unit (ALU) e.g. 8051-
or ARM-based, microprocessor architectures. The ALU performs mathematical operations

50 Introduction to Embedded System

such as addition, subtraction, multiplication and division and logic operations such as equal-
ity, less than, greater than, AND, OR, NOT, shift right, shift left, etc. The ALU has access
to very fast, local registers that are used to carry out these operations.

The central processing unit, or as it is more commonly known, the CPU, is the heart of the
embedded system and responsible for executing a series of predefined and stored instructions,
known collectively as “the program”. The CPU fetches instructions from memory, decodes
them, performs the instruction and stores the results. A program counter (PC) keeps track
of the location in memory from which the next instruction is to be fetched. In cases in
which the previous instruction has been executed, and the results stored before the next
instruction is available, the CPU must then wait for the new instruction to be loaded before
it can begin to decode and execute it. This can result from the program residing in relatively
slow memory compared to the CPU’s execution speed.

In some systems, instructions are preloaded from slow memory to a small amount of fast
memory, called “cache”, to be fetched from cache as required. The moving of instructions to
cache occurs as a “background” task, i.e., does not require CPU involvement and occurs at a
rate sufficient to insure that instructions are available “as needed”. Alternatively, so-called
pipelining is sometimes used which is a technique that fetches instructions before the CPU
has finished executing a previous instruction.

Once an instruction has been “fetched” it must be decoded to determine what actions are
to be taken by the CPU. Instructions, typically contain specific CPU instructions, specific
operands (or their locations) and locations to which the results are to be written. OpCodes
might be ADD (addition), SUB (subtraction), MOV (move), etc., and the operands might
be characters, numerics or their respective locations, e.g., in local registers within the CPU,
or in memory.

• Memory - utilized by the CPU for program and data storage that may in fact consist
of several types of memory such as SRAM50, RAM51 and EEPROM52. Some microproces-
sors/microcontrollers support both on-chip and off-chip memory. But support for off-chip
memory is usually rather limited in terms of performance, and/or memory size. Microcon-
trollers utilizing paged memory53 require the designer to keep track programmatically of
what is stored on each page, accessing the various pages, etc.

Memory can be classified in terms of its read, write, programmability and erasability character-
istics, as shown in Figure 1.30 viz:

• ROM - read only memory

• PROM - programmable read only memory

• EPROM - Erasable PROM (UV)

• EEPROM - electrically erasable PROM

• FLASH - Mostly read-only, non-volatile

• RAM - read-write, volatile

50SRAM - Static Random Access Memory (requires no refresh).
51Random Access Memory - memory whose storage locations can be arbitrarily accessed.
52EEPROM Electrically Erasable Programmable Read-Only Memory that is non-volatile used in computers

and other electronic devices to store small amounts of data that must be saved when power is removed, e.g.,
calibration tables or device configuration

53A system of memory management that causes non-contiguous parts of memory called pages, to treated as
contiguous thus creating a “virtual memory” system.

1.9 Microcontroller Sub-systems 51

Figure 1.30: Classification of the types of memory used in/with microcontrollers.

Memory for microcontrollers and microprocessors falls into the two broad categories: read/write
(R/W) and read-only memory (ROM) and as either volatile or non-volatile depending upon
whether or not program and/or data is to be retained in memory, in the absence of supply
voltages. Read/Write memory can be further categorized as either static (SRAM) or dynamic
memory (DRAM).

Static ram (SRAM) consists of large number of so-called “cells” each of which consists of two
inverters as shown in Figure 1.31. This combination of inverters creates a bi-stable device thus
making it a viable memory device. A dynamic RAM cell consists of a transistor and capacitor
combination for the storage of a bit as shown in Figure 1.32. Static memory is, generally speaking,
much faster than dynamic memory but it is also more expensive since it takes as many as four
to six transistors (MOSFETs), per bit of storage to implement, but unlike dynamic memory it
does not need to refreshed. However, DRAM does provide higher density storage than SRAM.

On-chip Flash memory, which is non-volatile, is typically used for program storage and on-
chip SRAM is employed to provide fast program execution, for cache RAM54 and volatile data
storage. Depending on the application, DRAM and Flash, SRAM and Flash, or mixtures of
SRAM, DRAM and Flash may be used for off-chip storage. Dynamic memory utilizes as little
as one transistor per bit but also requires a capacitor for the storage of each bit. Because of
capacitive leakage, it is necessary to refresh dynamic memory periodically, e.g., thousands of
times per second, in order to maintain memory integrity.

• Analog Subsystem - Microcontrollers employ various combinations of analog functions
such as those provided by OpAmps, comparators, current/voltage analog-to-digital (A/D)
and digital to analog (D/A) converters, mixers, analog multiplexers, programmable gain
amplifiers, instrumentation amplifiers, transimpedance amplifiers, filters, etc.

• Digital Subsystem - Similarly, digital functions such those provided by as counters, timers,

54Cache memory is defined as memory that can be accessed much faster than main memory.

52 Introduction to Embedded System

Figure 1.31: An example of an SRAM Cell.

Figure 1.32: An example of a dynamic cell.

1.9 Microcontroller Sub-systems 53

CRC, PRS, PWM, quadrature decoder, shift register, logic (AND, NAND, NOR, NOT, OR,
Bufoe, D flipflop, logic high, logic low, multiplexer, de-multiplexer, virtual multiplexer, look-
up table), precision illumination signal modulators (PRISMs), display (LCD) control and
status registers are also to be found in some microcontrollers.

• Internal Bus Structures - Obviously, connections between the microprocessor and the
various subsystems in a microcontroller are a combination of fixed and variable interconnec-
tions and serves as communications pathways between the subsystems, memory, CPU and
external world devices and pathways. Microcontrollers that support programmatic changes
in internal connections make it possible in some cases to actually reconfigure the internal
”wiring” in real time so that optimal utilization of the microcontrollers internal resources
can be achieved and the embedded system can adapt to changing conditions and functional
requirements.

• GPIO System - A microcontroller’s interface (General Purpose I/O system) communicates
with external devices and peripherals via its pins. In some cases the pins are grouped in sets
of 8 and referred to as a “port”, e.g., for byte I/O transfers. Whether treated as a group of
pins, or individually, all GPIO pins are usually configurable either as output,or input, pins.
The impedance characteristics, sourcing and sinking capability of the pins are in some cases
configurable depending on the device and the application. Some GPIO interfaces are also
voltage tolerant so that a microcontroller operating at voltages below the voltages applied
to one or more pins can operate normally, i.e., without being damaged or malfunctioning.

Microcontrollers that allow groups of pins to be treated as 8-bit parallel ports so that each
of the eight pins assigned to a given port serves as a General Purpose I/O interconnect also
allow each pin to have its own input buffer, output driver one-bit register and associated
configuration logic. In addition each pin is programmable with respect to the driving mode
required, independent of whether or not it is part of a multi-bit port configuration.

Various types of MOSFET-based pin configuration are available are shown in Figure 1.33.
Configuration a) is the open drain mode in which both MOSFETs are in an OFF mode
causing the output to be in a high impedance state, b) is referred to as the strong, slow
drive mode and functions as an inverter, c) is the high impedance mode, d) is the open drain
mode and is compatible with I2C interconnections, e) is the pull down mode (resistive) and
provides strong drive capability, f) functions as an inverter with strong drive capability and
g) is the strong pull up mode. It should be noted that the use of resistors with the MOSFET
configurations can affect the rise and fall times of the various configurations.

Output devices such as motors, actuators and other devices often require more power than
can be provided by a microcomputer output channel. Also motors may react inductively
to excitation by a microcontroller, so some form of transient protection may be required,
or additional power stages may be required to interface such devices to the microcontroller.
Mechanical switches are frequently used for this purpose, as are optically-coupled Darling-
ton pairs in conjunction with protective diodes capable of handling inductive voltages. A
typical microcontroller is capable of sourcing 10-25 ma to external devices at nominally five
volt levels. Whether power amplifiers, power solid state devices such as Silicon Controlled
Rectifiers (SCRs), Thyristors, high power MOSFETS, solid state relays, optically-coupled
Darlington Pairs or other isolated solid state devices are used to drive motors, actuators,
LCDs and other devices requiring significant power, care must be taken to protect the mi-
crocontroller and its peripherals, including input devices, from harmful potentials, currents,
temperatures, etc.

• Additional System functionality - some microcontrollers have an internal boost con-
verter that makes it possible to create voltage levels higher than the available input voltages

54 Introduction to Embedded System

Figure 1.33: Driving modes for each pin are programmatically selectable.

to provide the “desired system voltage level”, advanced microcontrollers can also provide
additional clock functionality, the ability to monitor the Die temperature programmatically
primarily in cases where it is necessary to write to internal EEPROM, an internal DMA con-
troller55, EEPROM (typically support is provided for erasing an EEPROM sector, writing to
EEPROM, blocking reads while writing, and checking the state of a write), a sophisticated
interrupt handler, Real Time Clocks (RTC), sleep timers, voltage references, etc.

1.10 Software Development Environments

In the early days of computers, programs were written in what was termed “machine” code. and
each instruction was defined in terms of a unique combination of zeros and ones56. The next step
was to assigning mnemonics, called “OpCodes” which resulted in the development of “assembly”
language.57 The mnemonics assigned to each machine code usually identified some aspect of the

55Dynamic memory transfer refers to the ability to transfer data to/from memory without requiring significant
CPU overhead.

56Unique that is for a particular architecture. There is in principle, aside from any copyright issues, no
prohibition on different architectures using the same combination of zeros and ones to represent the same or
different instructions

57It should be noted that assembly language does not in and of itself offer any new functionality but merely
substitutes mnemonics which are related to the instruction’s specific function and was far more efficient to work

1.10 Software Development Environments 55

instruction’s function. For example, NOP for No OPperation58 or MVI for MoVe an Immediate
value, e.g., MVI A, 0 represented the instruction code “00111110 00000000” and the action of
moving the “immediate” value“0” to the accumulator.

With the advent of the C language59, developers rapidly adopted it for its portability i.e.,
its ability to produce applications that could run on a large number of different hardware ar-
chitectures, and the fact that it provides a somewhat higher level of abstraction than assembly
language. Fortunately, C applications does not differ significantly with respect to code size or
execution speed for most applications when compared with assembly code. Early development
was carried out in Unix-based environments and at the command level using a wide array of text
editors, preprocessors60, compilers61, assemblers, linkers, debuggers, profilers and a various, pre-
existing libraries of source and object code. Once graphical user interfaces became ubiquitous,
they were soon followed by Integrated Development Environments (IDEs). These environments
provided a graphical user interface, or GUI-based, system that supported virtually all of the
tools required for development. These IDEs could be hosted in a variety of operating system
environments including Microsoft Windows in its various incarnations and the many “flavors” of
UNIX, MAC OS, Linux, etc.

Modern IDEs typically consist of preprocessors, compilers, assemblers, linkers, in some cases
profilers, debugging tools of various levels of sophistication and collections of predefined func-
tionality in the form of user-defined modules and/or so-called “standard libraries”. The available
debuggers usually provide, at a minimum, single-stepping of each line of executable source code
and the setting of breakpoints, watch points, views of user-defined memory locations, views of
registers, etc.

Profilers, while less common in such IDEs, are used to determine how much execution time
is spent in a particular location, or locations, in a software program. Such knowledge of “hot
spots”makes it possible to ”tune”, i.e. optimize, the hardware/software performance of an em-
bedded system for efficient program execution. Debugging and profiling are generally best most
effective in “single-tasking” environments. Microcontrollers running operating systems can some-
times prove difficult to debug in complex applications.

Typically a designer creates the required source code in an editor-environment (Notepad, VI,
Ultra-Edit, EMacs, etc.), or IDE with an integral editor, and then invokes an assembler or C
compiler to create an object or assembly language source file. This can result in the generation
of warnings, and/or error messages62, that may arise due to program inconsistencies, syntax
errors, etc. If the compiler produces assembly language output, as opposed to an object file, an
assembler is then invoked.

Then the “relocation” process, sometimes referred to as “Link-Editing”, takes place. This

with from a software development standpoint and much easier to debug.
58One might well ask why the need for an instruction that did nothing. While it is true that the instruction

did not result in any action, it did consume machine cycles which provides a way of introducing delays into a
program.

59C, a general-purpose computer programming language, was developed in 1972 by Dennis Ritchie at the Bell
Telephone Laboratories and soon found widespread use for developing portable application software. C is one of
the most popular programming languages is use, especially for embedded system applications development..

60Preprocessors process the applicable include files, conditional compilation, and macros prior to the invocation
of a compiler.

61Some C and C++ compilers produce assembly language which is then processed by an assembler to produce
object code which is then processed by a linker which in turn produces an executable program for the target
system.

62“Warnings” are indications issued by the compiler, or assembler, of potential problems with the program
which may or may not, at the option of the designer, be ignored as opposed to “errors” which are serious defects
in a program and should be corrected before attempting to use the application.

56 Introduction to Embedded System

Figure 1.34: Development Tool and Hardware Evolution.

1.10 Software Development Environments 57

requires that the linker replace the symbolic references, or names, used in each library routine
with the appropriate relocatable addresses. In the course of linking all of the applicable object
files, the linker must also resolve all unresolved symbols and report unresolvable symbols and
other errors and/or potential errors. Linkers also provide symbolic information to assist in the
debugging of programs. The resulting file can then be “linked” with other object files to produce
the resulting relocatable file. The linker produces a script which is contains information for the
locator, e.g., the stack size and location and other information that is used to create an absolute
file. The linker-locator phase represents the final stage of the compilation process and among
other things determines where various aspects of the executable code will reside in the target’s
physical memory space. It should be noted that libraries are usually designed to be relocatable,
i.e. there is no specific memory address dependance. When the linker-locator has determined
where each portion of the code is to be physically located an executable file, referred to as
“firmware”, is produced which can then be downloaded to the target hardware.

It should be noted that a program may be running in what is, in effect, a “virtual” memory
space which appears to the program to be a linear memory space but is actually non-contiguous
portions of memory that are mapped into an apparently linear memory space. Debuggers typically
provide support for break points, watch points and trace buffers so that a program can be
interrupted and the last “n” instructions examined, as well as, the ability to monitor/trap registers
and memory locations during execution. Some IDEs provide simulators, although they are often
nothing more than programs that allow the developer to test the program’s logic. In a later
chapters, a modern IDE will be examined in detail and used to illustrate various aspects of
embedded system design.

Linkers perform other tasks as well before producing the executable file referred to as “firmware”.
Once created the firmware is downloaded into the “target” microcontroller. Some microcontrollers
support real time debugging via physical handshaking with external hardware and transferring
information to external platforms for analysis. In other cases in-circuit emulators (ICEs) or logic
analyzers are employed as debugging aids.

There are four basic types of problems encountered with embedded systems:

1. Coding Problems - problems results from coding and logic errors. These are the most
common problems encountered by developers of embedded system.

2. Runtime problems - encountered only at runtime and therefore can be quite difficult to
resolve. These problems require careful and often detailed analysis to resolve. Good use can
sometimes be made of “isolate and eliminate” techniques. Other cases may require the use
of diagnostic hardware such as logic analyzers that allow the system to operate at full speed
while providing the ability to closely track the system’s activities.

3. Hard System Crashes - in such cases the system fails to perform at all. This class of
problem can be extremely difficult to resolve because all information leading up to the crash
may have been lost. Many newer microcontroller-based systems have some form of hardware
debugging that may be of help in debugging this class of problem. Hardware diagnostics
that include so-called “deep memory” can sometimes be very effective in diagnosing hard
failures by recording the system’s history, prior to a crash

4. Lock Up - the embedded system gets stuck in some routine or mode and is unable to
continue normal program execution. This can be a coding or other problem that only
appears when the program is waiting, for some hardware condition to be met that will allow
normal program execution to continue, or as the result of timing errors, etc.

Unfortunately, manufacturers have been slow, in many cases, to keep pace with hardware tech-
nology when it comes to evolving their respective development environments. Whenever possible

58 Introduction to Embedded System

designers should be relieved of the necessity of dealing with many of the low level implementation
details of the hardware involved and be able to engage in the development of designs at a much
higher level of abstraction. Examination of Figure 1.41 shows that from the time of the advent of
the first microprocessor in 1972, until 2001 there was virtually no significant advances in software
tool development for embedded system designers other than some modest advances in compiler
technology, and minor improvements in debugging functionality, text editors and linkers. Tools
such as Source Code Control Systems (SCCSs) have advanced but they tend to be of primary use
to large groups of developers working on the same source code. In recent years, IDE’s such as
PSoC Designer and PSoC Creator have made significant advances in IDE technology and make
it possible for applications developers and designers to create the increasingly more complex
embedded system applications that incorporate significantly more sophisticated, mixed-signal,
embedded systems.

1.11 Embedded Systems Communications

An important component of embedded systems are the channels that support input and output,
particularly as they relate to links between various aspects of a system, or a group or groups of
systems, that employ standard communications protocols, such as CAN63, I2C64, RS23265, SPI66

and an ever increasing array of communications schemes and protocols.

Figure 1.35: A graphical representation of the simplest form of SPI communication.

Communications protocols exist for information exchange within a chip, between chips and
for both long and short distances for information transfer to and from an embedded system.
They may be state-based, event-based, serial or parallel communication-based, and either point-
to-point (data links) or shared media networks (data highways). Master-slave configurations
may involve a single master and multiple slaves or multiple masters and multiple slaves, where
as point-to-point is a peer configuration and therefore there are neither masters or slaves.

1.11.1 The RS232 Protocol

Early microcontrollers provided limited communications capability and tended to rely on the
RS232 protocol operating at baud rates (bits per sec) varying from 60 to 115K baud. This serial
data transmission protocol is fundamentally a three wire system, in which one wire is a dedicated
transmission line (Tx) a second is a dedicated receive line (Rx) and the third is maintained as

63Controller Area Network (CAN or CAN-bus) is a message-based, standard protocol that allow microcontrollers
and devices to communicate. It has been used in automotive, industrial automation and medical applications.

64The Inter IC bus (I2C, I2C or IIC) is a two wire, bidiectional bus that was developed by Philips originally
as a 100 kbit/sec bus. Currently, the protocol supports a maximum data rate of 3.4 Mbits/sec.

65RS-232 (Recommended Standard 232) is a standard hardware protocol for serial transmission of binary data
signals most commonly used in conjunction with personal computer serial ports and external devices.

66SPI (Serial Peripheral Interface) is a full duplex, four wire serial bus serving as a synchronous serial data
link. Communication occurs in a master/slave mode with the master devices initiating the data frame.

1.11 Embedded Systems Communications 59

Figure 1.36: SPI - Single master multiple slaves.

Figure 1.37: Hardware example of the SPI network.

a common ground for both TX and RX. Handshaking, a form of signaling between two systems
linked by an RS232 connection is sometimes employed, utilizing additional “control” lines, e.g.,
Clear to Send, Data Terminal Ready, etc., when implementing RS232 communications in order
to avoid collisions and lost data by making sure that when one system is transmitting the other
is listening, and vice versa.

Data is commonly transmitted from one location to another in the form of ”packets” which
may be as little as a single byte. The format of these packets is based on a number of well known,
standard protocols. Each packet may include a Cyclic Redundancy Check byte (CRC) or parity
bit which are used to detect the receipt of a packet that was corrupted during transmission. This
allows the receiver to ask that the packet be re-sent by the transmitter and provides a simple
method for assuring some level of transmitted data integrity. Even if the receiver is not able to
request a re-transmission of one or more packets, the receiving system is at least aware of the fact
that it has received compromised data. While RS323 systems are still in use, they are rapidly
being replaced by other protocols such as the Universal Serial Bus (USB).

60 Introduction to Embedded System

1.11.2 USB

USB was originally designed to operate at speeds up to 12 Mbps but currently 480 Mbps second
implementations are available and in widespread use. It is most commonly used to connect
personal computers and a wide variety of peripherals. However, USB does have some significant
limitations, e.g., it is limited to a cable length of approximately 5 meters as a result of timing
limitations imposed by the USB specification. These limitations can be overcome in some respects,
but related protocols such as RS422, and RS485 offer cable length support up to 4800 feet, and
Master/Slave support. although at much lower baud rates than USB.

It is a four wire system consisting of Data Plus (D+), Data (-) (which form a differential
pair), Vbus a five volt power line and ground. Data is transmitted in packets separated by idle
states. Current drain is limited to 500 milliamps. Pullup resistors on D+ and D- enable a host
such as PC to determine whether it is connected to a low or full speed. USB 1.0 (low speed
mode) USB 1.1 (full speed mode) and USB 2.0 (high speed mode) operate at 1.5 Mbits/sec, 12
Mbits/sec and 480 Mbits/sec, respectively. Low speed, full speed and high speed data voltages
are 3.5 volts peak-to- peak, 3.5 volts peak-to-peak and 400 millivolts peak-to-peak, respectively.

Communications takes place asynchronously with error detection/correction, and device de-
tection/configuration occurring automatically USB supports several data flow types: Bulk (aperi-
odic, burst mode, large packets), Control (aperiodic, burst mode, host initiated response/request),
Interrupt (bounded latency, low periodicity) and Isochronous (periodic, continuous data trans-
fer, e.g., audio and video).USB data transfers employ packets and each block of data transferred
which begins with the host transferring a token that identifies the type of transfer that will occur.
Data is transferred in the direction identified in the token followed by a handshake packet is sent
to determine whether or not the data was transferred successfully.

1.11.3 Inter-Integrated Circuit Bus (I2C)

The Inter-Integrated Circuit (bus) or I2C is effectively a small area network (SAN) protocol. It
was created to facilitate communications between integrated circuits on a printed circuit board
and is limited in terms of line distance to ≈ 4 meters. Both I2C and SPI rely on a clock
signal (max 100KHz) on one wire (SCL), data (SDA) on a second wire and a third wire for
common ground. I2C is a bidirectional system, with the direction of data determined by the
I2C protocol and no limit on the length of a data transferred. Slave addresses are 7-10 bits and
each byte transferred is acknowledged. I2C speeds fall in the range from 100Kbits/second to 3.4
Mbits/second. Distinct start and stop conditions are imposed and slaves each have a 7-10 bit
address. The master generates the clock, sets the start/stop conditions, transmits a slave address
and determines the direction of data transfer.

1.11.4 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI), originally developed by Motorola, is a protocol that was
created primarily for communications with peripheral devices. Data is transferred synchronously
but the data is transferred along with the clock signal and therefore the clock rate is variable.
SPI is a master-slave protocol and the master controls the clock signal. There can be multiple
slaves but no data transmission unless a clock signal is present. SPI can be operated as either a
”single wire” system or in full duplex mode (transmission in both directions simultaneously.

1.11 Embedded Systems Communications 61

Figure 1.38: The RS232 protocol (1 start bit, 8 data bit, 1 stop bit).

1.11.5 Controller Area Network (CAN)67

The CAN bus was developed in the 1980s as a low cost, multi-master, serial bus specifically in-
tended to be capable of operating in electrically noisy environments. CAN supports Master-Slave,
Peer-to-Peer and Multi-Master operating modes. It was first used in an automotive environment
by Mercedes-Benz in 1992. It has since become “the standard” in the automotive industry and is
supported by a variety of controllers for controlling/monitoring air bags, door locks, the vehicle’s
power train, anti-locking brakes, windshield wipers, rain detection sensors, engine timing, the
dash panel illuminators/indicators, seat heating, seat belt systems, seat position systems, navi-
gation aids, automotive voice/data communications, cruise control, mirror adjustment, radio/CD
player systems, etc.

The physical data path is provided by ribbon cable (RC), shielded twisted pair (STP) or un-
shielded twisted pair (UTP). Transmission is non-synchronous, so that any node on the bus is
able to transmit provided that the bus is not then in use. However, it is also possible for multiple
nodes to initiate transmissions contemporaneously, in which case bitwise arbitration is invoked
to determine which message has the highest priority.

Four types of messages are supported:

1. Data Frame68 - this is the frame used to transmit data.

2. Error Frame - this frame alerts the other nodes on the network that the data integrity of

67Refer to ISO 11898 for a detailed specification.
68Frame refers to the format used to package a message for transmission.

62 Introduction to Embedded System

the data frame has been compromised and instructs the master to re-send the data frame.

3. Overload Frame - this message occurs when a device is unable to receive data.

4. Remote Frame - is a frame request for data to be transmitted.

Every node on the bus is able to listen to the bus traffic and therefore should a node detect
an error in a transmission it is able to request that the transmitter, either a master or another
node, resend the message. The transmission of a frame begins with the transmission of a Start
Of Frame (SOF) bit which is then followed arbitration field, either 11 or 29 bits, which defines
the type message and the node from which the message originated. Next the data is transmitted
beginning with 4 bits to define the length of the data, then follows the data. Next the cyclic
redundancy field is sent. The transmitter computes the CRC, places it in the data frame prior
to transmission and then upon receipt by the receiver, the receiver calculates its own CRC and
compares it to that of the transmitter. If they are the same value then the receiver assumes that
the data integrity has been preserved, otherwise the receiver sends back a message indicating
that the data frame needs to be re-sent.

1.11.6 Local Interconnect Network (LIN)

The LIN bus69 is another bus employed by the automotive industry that functions in single-
master/multiple-slave modes. It is typically used in conjunction with the CAN protocol in order
to reduce costs. The LIN protocol is much cheaper to implement but has lower performance
capability so that it often serves as a subnet to CAN.

LIN, a “single-wire”70 serial communications protocol is based, in part, on the UART71 and
is designed to handle low demand, automotive applications such as power windows, lights, door
controls, and other low demand applications. The maximum data rate for a LIN network is
20 kbits/second. The LIN message format is shown in Figure 1.40. The LIN architecture is
self-synchronizing so that nodes do not require crystals or resonators. The master determines
message priority and order, controls error handling and provides the systems clock reference.
Slaves are limited to a maximum of sixteen and listen for messages with their respective IDs.
Although there can be only one master, a slave can function as a master. It should be noted that
both CAN and LIN can be interconnected with higher-level networks, if required. The message
frames contain a synch byte followed by an ID byte that includes information about the sender,
the intended receiver(s), the purpose of the message and the field length of the data.

The frame begin with a break consisting of 13 dominant bits72 The next filed is the synch
which is defined as x55. This field slaves to adjust their baud rates so that they are synchronized
with that of the bus. After the synch field has been transmitted, 1 of 64 possible ID fields is
transmitted. O through 59 are data frames, 60-61 contain diagnostic data, 62 is reserved for
user-defined purposes, and 63 is reserved for future use. The byte representing this field contains
two parity bits and the remaining lower six bits are reserved for the ID. Slave response is a field
containing from one to eight bytes of data followed by an 8-bit checksum field. Two methods are
employed in creating the checksum: 1) the bytes in the data field are summed or by summing
the data bytes and the ID. The latter is referred to as the “enhanced checksum;”.

69Refer to ISO9141 for full details.
70The phrase “single-wire” is somewhat misleading, but refers to a system in which data transmission takes

place using a single wire referenced to ground.
71Universal Asynchronous Receive/Transit (UART) protocol - A start bit is followed by 7-8 data bits which in

turn are followed by stop bit(s).
72Dominant bits are defined as zeros. Recessive bits are ones.

1.12 Programmable Logic 63

Figure 1.39: CAN frame format.

Figure 1.40: LIN frame format.

1.12 Programmable Logic

Because of the inherent cost in designing ICs and the sophistication of the equipment and tech-
niques for manufacturing them, the most economic way of producing them is in large quantities.
However, many IC designs are needed in relatively small quantities and ideally, an IC should
be manufacturable in small quantities if required but producible in large quantities if needed.
This has given rise to a family of programmable logic devices, as shown in Figure 1.41, which
can be economically manufactured in large numbers, but can also be programmed to provide
large numbers of various relatively low-volume configurations. Programmable devices are avail-
able that are field-programmable, some of which are erasable and reprogrammable to allow field
updates and develop prototypes which if successful can then b manufactured in high volume as
conventional integrated circuits. The The permanent form of programmable logic are either mask
programmed, or employ either fuses or anti-fuses73. The primary manufacturers of such devices
have been Actel, Altera, Atmel, Cypress, Lattice, Lucent technologies, QuickLogic and Xilinx.

The first programmable logic device appeared in 1984 and consisted os 320 gates, packaged as
a 20-pin device capable of operating at speeds up to 10 MHz. The first filed programmable gate
array (FPGA) appeared in 19895 and consisted of 100K gates represented more than 10 million
transistors and was capable of speeds as high as 100 MHz.

There are three basic types of Programmable Logic Devices (PLDs):

1. Programmable Read-Only Memory (PROMs)

2. Programmbale Array Logic devices (PALs)

3. Programmable Logic Arrays (PLAs)

The earliest, user-programmable, solid state device that could be used to implement logic
circuits in the field was the Programmable Read-Only Memory (PROM) . The address lines were
used as the input and the data lines as the output. However, a PROM used for this type of appli-
cation is inherently more complex from a hardware perspective than is really necessary. PROMs
were subsequently followed by the Field-Programmable Logic Array (FPLA), also referred to as
a PLA.

73Fuses are links, i.e., connections that can be opened and anti-fuses are potential connections that can be
“linked’, i.e. connected.

64 Introduction to Embedded System

Figure 1.41: Digital Logic family tree.

A PLA consists of two planes, or levels, one with AND gates and a second with OR gates. The
links in both the AND and OR arrays are programmable which has made PLAs very versatile.
However, PALs only allow the AND plane to be programmed, i.e., the OR plane connections are
fixed. This makes PLAs less versatile than PALs but has the advantage that the ORs switch
faster than than their programmable link counterparts. In the case of PROMs, the AND array
is fixed and the OR array are programmable

A PLD employed systems of so-called “MacroCells” consisting of simple combinations of
gates and a flipflop. Each MacroCell can be configured to provide various Boolean equations in
hardware and it has input and output connections that are used by the Boolean equation. The
resulting equation combines the state of an arbitrary number of inputs to produce and output
that, if necessary, can be stored in the integral flipflop until the appropriate clock signal occurs.
PLAs and PALs are characterized by the number of AND gates, number of OR gates and the
number of inputs.

1.12 Programmable Logic 65

Figure 1.42: Unprogrammed PAL.

Figure 1.43: An example of a programmed PAL.

Figure 1.44: An example of a multiplexer based on a PLD

66 Introduction to Embedded System

1.13 Mixed-Signal Processing

The earliest embedded systems were for the most part dealing with analog signals in the form of
voltages and relied on analog-to-digital and digital-to analog converters to interface to the real
world. In recent years

1.14 PSoC - Programmable System on Chip

Cypress Semiconductor’s family of PSoC1/3/5 devices employ a highly configurable system-
on-chip architecture for embedded control design, providing a flash-based equivalent of a field-
programmable ASIC without imposing lead-time or NRE74 penalties. PSoC devices integrate
configurable analog and digital circuits, controlled by an on-chip microcontroller, providing both
enhanced design revision capability and component count savings. A single PSoC device can
provide as many as 100 peripheral functions , while requiring minimal board space and power
consumption, improving system quality and reducing system cost.

All PSoC devices are also dynamically reconfigurable, so that their internal resources can be
to “morphed” on-the-fly, utilizing fewer components to perform a given task. This text focuses
on two particular PSoC-based architectures which provide excellent performance and unmatched
time-to-market, integration, and flexibility across 8-, 16-, and 32-bit applications. These pro-
grammable, analog and digital, embedded design platforms are powered by an innovative de-
velopment environment called the PSoC Creator Integrated Development Environment (PSoC
Creator IDE), which has a unique, schematic-based, design-capture functionality and fully tested,
libraries of pre-packaged analog and digital peripherals that are easily customizable by the use
of user-intuitive wizards and APIs. PSoC Creator enables designers to develop new designs tin
a highly intuitive manner that strongly reflects the manner in which designers think about their
designs and dramatically shortens time-to-market.

The programmable analog and digital peripherals in PSoC3/5, high performance 8-bit and
32-bit MCU sub-systems and capabilities such as motor control, intelligent power supply/battery
management and support for human interfaces with CapSense touch sensing, LCD segment dis-
plays, graphics controls, audio/voice processing, communication protocols, and much more, make
it possible for designers to address a wide variety of mixed-signal, embedded applications, includ-
ing all phases of the industrial, medical, automotive, communications and consumer markets.

The PSoC3/5 architectures include high-precision, programmable analog resources that can
be configured as ADCs, DACs, TIAs, Mixers, PGAs, OpAmps, etc. and enhanced programmable
logic-based digital resources that can be configured as 8-, 16-, 24- and 32-bit timers, counters,
and PWMs and advanced digital peripherals such as Cyclic Redundancy Check (CRC), Pseudo
Random Sequence (PRS) generators, and quadrature decoders. These resources allow designers
to customize PSoC3/5’s general purpose PLD-based logic. These architectures also support a
wide range of communications interfaces, including Full-Speed USB, I2C, SPI, UART, CAN, LIN,
and I2S.

The new PSoC3/5 architectures are powered by high performance, industry-standard proces-
sors. The PSoC3 architecture is based on a new, high-performance 8-bit 8051 processor provides
up to 33 MIPS. The PSoC5 architecture includes a powerful 32-bit ARM Cortex-M3 processor
and is capable of carrying out 100 MIPS. Both architectures meet the demands of extremely low
power applications based on their availability to operate over a voltage range from 0.5 to 5 volts
and hibernate current as low as 200nA. They provide a seamless, programmable design platform

74Non-Recurring Engineering.

1.14 PSoC - Programmable System on Chip 67

from 8- to 32-bit architectures with pin and API compatibility between PSoC3 and PSoC5, along
with programmable routing, allowing any signal, whether analog or digital, to be routed to any
general-purpose I/O to ease circuit board layout. This capability includes the ability to route
LCD Segment Display and CapSense signals to any GPIO pin.

PSoC3/5 architectures serve as scalable platforms with the computing power of high-performance
MCUs, the precision of stand-alone analog devices and the flexibility of PLDs, all within the
scope of PSoC3/5’s powerful, easy-to-use design environment. Thus designers of 8-, 16- and
32-bit applications able to fully exploit the inherent flexibility and integration of PSoC3/5’s true
system-level programmability and extend the concept of programmability beyond instructions
for the processor to configuring peripherals and customization of digital functions.

PSoC3/5’s internal architecture, cf. Figure 1.45,. consists of 14 configurable digital modules
(PWM, UART, A/D, etc.), and 10 analog modules (A/D, filter, etc.) and a CPU core (either
8051 or ARM Cortex-M3) with interrupt controller, internal oscillator, digital clocks, Flash,
SRAM, I2C and USB controllers, switch mode pump, decimator, MAC. All of these resources are
supported by an extensive programmable, interconnect and routing facility that provides virtu-
ally unlimited configurations and interconnections of digital and analog modules and resources.
External interfacing is provided by 8 ports (0-7).

Key Features of the PSoC3/5 Architectures

• A programmable precision analog sub-system that provides up to 20-bit resolution for the
integral Delta-Sigma ADC, sample rates up to 1 msps for the 12-bit SAR ADC, a reference
voltage accurate to +/- 0.1 voltage range, up to four 8-bit, 8 Msps DACs;, 1-50x PGA,
general purpose Op-amps with 25mA drive capability, up to four comparators with 30 ns
response time, DSP-like digital filter implementation for instrumentation and medical signal
processing, a large library of pre-characterized analog peripherals in PSoC Creator Software
and CapSense functionality for all devices.

• A programmable, high-performance, digital array of Universal Digital Blocks (UDBs) each
consisting of a combination of uncommitted logic (PLD), structured logic (datapath), and
flexible routing to other UDBs, I/O or peripherals, a large library of pre-characterized
digital peripherals in PSoC Creator Softwar, e.g., 8-, 16-, 24- and 32-bit timers, counters
and PWMs.

• A customizable digital system is made possible by the full featured general purpose PLD-
based logic provided on-chip.

• PSoC3/5 support high-speed connectivity support for full Speed USB, I2C, SPI, UART,
CAN, LIN and I2S.

• A high-performance CPU sub-systems based on either PSoC3’s 8-bit 8051 core with 33
MIPS performance (PSoC3) or PSoC5’s 32-bit ARM Cortex-M3 core with 100 MIPS per-
formance, 24-channel, multi-layer, Direct Memory Access (DMA) with simultaneous access
to SRAM and CP,U on-chip debug and trace functionality with JTAG and Serial Wire De-
bug (SWD)and the availability of a wide variety of industry-standard compilers and real
time operating systems.

• PSoC3/5’s low power operation modes provide an an operating range from 0.5-5.0 volts with
no degradation in analog performance. PSoC3/5’s active power consumption is 1.2mA at 6
MHz for PSoC3 and 2mA at 6 MHz for PSoC5. Sleep-mode power consumption for PSoC3
is 1μA for PSoC3 and 2μA for PSoC5. Hibernate-mode power consumption for PSoC3 is
200nA and 300nA for PSoC5.

68 Introduction to Embedded System

• PSoC3/5 provide programmable, feature-rich I/O & clocking by providing interconnection of
any pin to any analog or digital peripheral, LCD segment display on any pin with up to 16-
commons/736 segments, CapSense on any pin for replacing mechanical buttons and sliders.
PSoC3/5 also support .2-5.5V I/O interface voltages, up to 4 domains for easy interface with
systems running at different voltage domains, and a 1-66 MHz, internal, +/− 1% oscillator
with PLL over the full temperature and voltage range.

Summary: This chapter has provided a brief summary of the history of embedded systems,
microprocessors and microcontrollers Also presented were basic concepts of programmable logic
devices, overviews of the Intel 8048 and 8051 microcontrollers, brief descriptions of some of the
more popular and currently available microcontrollers that are in widespread use and introduc-
tions to a number of subjects related to microcontrollers and embedded systems, e.g., types
of feedback systems employed in embedded systems, microcontroller subsystems, microproces-
sor/microcontroller memory types, embedded system performance criteria, interrupts, introduc-
tory sampling topics, sensors and sensor types, strain gauge/thermocouple/thermistor sensing
and measurement techniques, software development for embedded systems, embedded systems
communications, brief overviews of PSoC3, PSoc5 and the PSoC3/5 development environment,
PSoC Creator, etc.

In the chapters that follow, more detailed discussions and illustrative software and hardware
examples are provided that are related to the topics in this chapter, as well as others, with
particular emphasis on the PSoC3/5 family of programmable systems on a chip.

1.14 PSoC - Programmable System on Chip 69

Figure 1.45: PSoC1/PSoC2/PSoC3 architectures.

70 Introduction to Embedded System

Appendix A

Mnemonics

ADC - Analog to Digital Converter (also A/D)
ALU - Arithmetic Logic Unit
AMD - Analog Modulator
ARM - Advanced RISC machine Core
CAN - Controller Area Network
CDAC - Current Digital To Analog Converter
CapSense - Capscative3 Sensing
CLK - Clock
CLR - Clear
CMOS - Complementary Metal-Oxide Semiconductor
CPU - Central Processing Unit
DAC - Digital to Analog Converter (also D/A)
DDA - Diffrential digital analyzer
DEC - Decimator
DFB - Digital Filter Block
DOC - Debug On Chip
DUT - Device Under Test
DSM - Delta-Sigma Modulator
EPROM - Electrically Programmable Read-Only Memory
EEPROM - Electrically Erasable/Programmable Read-Only Memory
FIFO - First In First Out GP - General Purpose
GPIO - General purpose input/output
I2C - Inter-IntegratedCircuit
ILO - Internal Local Oscillator
IMO - Internal Main Oscillator
IPGA - Inverting Programmable Gain Amplifier
IAV - Interrupt Address Vector
INT - Interrupt
LCD - Liquid Crystal Display
LED - Light Emitting Diode
LUT - Look Up Table
MIPS - Millions of INstructins Per Second MMIO - Memory Mapped Input Output
MUX - Multiplexer
NMI - Non Maskable Interrupt
NOP - No Operation
PGA - Programmable Gain Amplifier

72 Mnemonics

PLL - Phase-Locked Loop
PMIO - Port Mapped Input Output
PRT - Port (GPIO/SIO)
PWM - Pulse Width Modulator
RISC - Reduced Instruction Set Computer SPISTK - SPI Stack
SIO - Serial Input Output
SWD - Serial Wire Debugging
TMR - Timer
TST - Test
UART - Universal Asynchronous Receiver Transmitter
VDAC - Voltage Digital to Analog Converter
VLT - Low votlage reference
WDT - Watch Dog Timer

Appendix B

Definitions

Accumulator - In a CPU, a register in which intermediate results are stored. Without an
accumulator it would be necessary to write the result of each calculation (addition, subtraction,
shift, and so on.) to main memory and read them back. Access to main memory is slower than
access to the accumulator, which usually has direct paths to and from the arithmetic and logic
unit (ALU).
Active High - A logic signal having its asserted state as the logic 1 state. A logic signal having
the logic 1 state as the higher voltage of the two states.
Active Low -

1. A logic signal having its asserted state as the logic 0 state.
2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

Address - The label or number identifying the memory location (RAM, ROM, or register) where
a unit of information is stored.
Algorithm - A procedure for solving a mathematical problem in a finite number of steps that
frequently involve repetition of an operation.
Ambient Temperature - The temperature of the air in a designated area, particularly the area
surrounding the PSoC device.
Analog - (See analog signals).
Analog Blocks - The basic programmable OpAmp circuits, i.e., SC (switched capacitor) and
analog blocks CT (continuous time) blocks. These blocks can be interconnected to provide ADCs,
DACs, multi-pole filters, gain stages, etc.
Analog Output - An output that is capable of driving any voltage between the supply rails,
instead of analog output just a logic 1 or logic 0.
Analog Signal - A signal represented in a continuous form with respect to continuous times, as
analog signals contrasted with a digital signal represented in a discrete (discontinuous) form in a
sequence of time.
Analog-to-Digital Converter (ADC) - A device that changes an analog signal to a digital
signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number.
The digital-to-analog (DAC) converter performs the inverse operation.
AND - See Boolean Algebra.
Application Program Interface (API) - A series of software routines that comprise an in-
terface between a computer application and lower-level services and functions (for example, user
modules and programming interface libraries). APIs serve as building blocks for programmers
that create software applications.
Array - Also referred to as a vector or list, is one of the simplest data structures in computer
programming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as

74 Definitions

opposed to an associative array. Most high level programming languages have arrays as a built-in
data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.
Assembly - A symbolic representation of the machine language of a specific processor. Assembly
language is converted to machine code by an assembler. Usually, each line of f assembly code
produces one machine instruction, though the use of macros is common. Assembly languages are
considered low level languages; where as C is considered a high level language.
Asynchronous - a signal whose data is acknowledged or acted upon immediately, irrespective
of any clock signal.
Attenuation - The decrease in intensity of a signal as a result of absorption of energy and of
scattering out of the path to the detector, but not including the reduction due to geometric
spreading. Attenuation is usually expressed in dB.
Bandgap Reference - A stable voltage reference design that matches the positive temperature
coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature
coefficient (ideally) reference.
Bandwidth -

1. The frequency range of a message or information processing system measured in Hertz.
2. The width of the spectral region over which an amplifier (or absorber) has substantial

gain (or loss); it is sometimes represented more specifically as, for example, full width at half
maximum.
Bias -

1. A systematic deviation of a value from a reference value.
2. The amount by which the average of a set of values departs from a reference value.
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish

a reference level to operate the device.
Bias Current - The constant low level DC current that is used to produce a stable operation
in bias current amplifiers. This current can sometimes be changed to alter the bandwidth of an
amplifier.
Binary - The name for the base 2 numbering system. The most common numbering system is
the base 10 numbering system. The base of a numbering system indicates the number of values
that may exist for a particular positioning within a number for that system. For example, in base
2, binary, each position may have one of two values (0 or 1). In the base 10, decimal, numbering
system, each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).
Bit - A single digit of a binary number. Therefore, a bit may only have a value of “0” or bit “1”.
A group of 8 bits is called a byte. Because the PSoC’s M8CP is an 8-bit microcontroller, PSoC’s
native data chunk size is a byte.
Bit Rate (BR) - The number of bits occurring per unit of time in a bit stream, usually expressed
in bit rate (BR) bits per second (bps).
Block -

1. A functional unit that performs a single function, e.g., an oscillator.
2. A functional unit that may be configured to perform one of several functions, such as a

digital or analog PSoC block.
Boolean Algebra - In mathematics and computer science, Boolean algebras or Boolean lattices,
are algebraic structures which ”capture the essence” of the logical operations AND, OR and NOT,
as well as, the set theoretic operations, i.e., union, intersection, and complement. Boolean algebra
also defines a set of theorems that describe how Boolean equations can be manipulated. For
example, these theorems are used to simplify Boolean equations, which will reduce the number
of logic elements needed to implement the equation. The operators of Boolean algebra may

75

be represented in various ways. Often they are simply written as AND, OR, and NOT. In
describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR (exclusive NOT OR), and
XOR (exclusive OR) may also be used. Mathematicians often use + (for example, A + B) for
OR and for AND (for example, A ∗ B) (since in some ways those operations are analogous to
addition and multiplication in other algebraic structures) and represent NOT by a line drawn
above the expression being negated (for example, A, A,!A).
Break-Before-Make - The elements involved go through a disconnected state entering (break)
before the new connected state (make).
Buffer -

1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for I/O operations, into which
data is read, or from which data is writ- ten.

2. A portion of memory set aside to store data, often before it is sent to an external device
or as it is received from an external device.

3. An amplifier used to lower the output impedance of a system.
Bus -

1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically
represented using vector notation; for example, address[7:0]. 3. One or more conductors that
serve as a common connection for a group of related devices.
Byte - A digital storage unit consisting of 8 bits.
C - A high level programming language.
Capacitance - A measure of the ability of two adjacent conductors, separated by an insulator,
to hold a charge when a voltage differential is applied between them. Capacitance is measured
in units of Farads.
Capture - To extract information automatically through the use of software or hardware, as
opposed to hand-entering of data into a computer file.
Chaining - Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit func-
tions. Chaining allows certain signals such as Compare, Carry, Enable, Capture,and Gate to be
produced from one block to another.
Checksum - The checksum of a set of data is generated by adding the value of each data word
to a sum. The actual checksum can simply be the result sum or a value that must be added to
the sum to generate a pre-determined value.
Clear - To force a bit/register to a value of logic “0′′.
Clock - The device that generates a periodic signal with a fixed frequency and duty cycle. A
clock is sometimes used to synchronize different logic blocks.
Clock Generator - A circuit that is used to generate a clock signal.
CMOS - The logic gates constructed using CMOS transistors connected in a CMOS comple-
mentary manner. CMOS is an acronym for complementary metal-oxide semiconductor.
Comparator - An electronic circuit that produces an output voltage or current whenever two
input levels simultaneously satisfy predetermined amplitude requirements.
Compiler - A program that translates a high level language, such as C, into machine language.
Configuration - In a computer system, an arrangement of functional units according to their
configuration nature, number, and chief characteristics. Configuration pertains to hardware, soft-
ware, firmware, and documentation. The configuration will affect system performance.
Configuration Space - the PSoC register space accessed when the XIO bit, in the CPU F
configuration space register, is set to “1”.
CPLD - Complex PLD consisting of multiple SPLDs. FPGA - Field-Programmable Gate Array a
field programmable device capable of very complex logic functionality. Whereas CPLDs feature

76 Definitions

logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic
resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do CPLDs.
Crowbar - A type of over-voltage protection that rapidly places a low resistance shunt (typically
an SCR) from the signal to one of the power supply rails, when the output voltage exceeds a
predetermined value.
Crystal Oscillator - An oscillator in which the frequency is controlled by a piezoelectric crys-
tal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit
components.
Cyclic Redundancy Check (CRC) - A calculation used to detect errors in data commu-
nications, typically performed cyclic redundancy using a linear feedback shift register. Similar
calculations may be used for a variety check (CRC) of other purposes such as data compression.
Data Bus - A bi-directional set of signals used by a computer to convey information from a
data bus memory location to the central processing unit and vice versa. More generally, a set of
signals used to convey data between digital functions.
Data Stream - A sequence of digitally encoded signals used to represent information in trans-
mission.
Data Transmission - The sending of data from one place to another by means of signals over
a channel.
Debugger - A hardware and software system that allows the user to analyze the operation of
the system under development. A debugger usually allows the developer to step through the
firmware one step at a time, set break points, and analyze memory.
Dead Band - A period of time when neither of two or more signals are in their active state or
in dead band transition.
Decimal - A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 decimal
(called digits) together with the decimal point and the sign symbols + (plus) and − (minus) to
represent numbers.
Default Value - Pertaining to the pre-defined initial, original, or specific setting, condition,
value, or default value action a system will assume, use, or take in the absence of instructions
from the user.
Device - The device referred to in this manual is the PSoC chip, unless otherwise specified.
Die - An unpackaged integrated circuit (IC), normally cut from a wafer.
Digital - A signal or function, the amplitude of which is characterized by one of two discrete
digital values: “0” or “1”.
Digital Blocks - The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial
transmitter, CRC generator, pseudo-random number generator, or SPI.
Digital Logic - A methodology for dealing with expressions containing two-state variables that
describe the behavior of a circuit or system.
Digital-to-Analog (DAC) - A device that changes a digital signal to an analog signal of
corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.
Direct Access - The capability to obtain data from a storage device, or to enter data into a
storage device, in a sequence independent of their relative positions by means of addresses that
indicate the physical location of the data.
Duty Cycle - The relationship of a clock period high time to its low time, expressed as a percent.
Emulator- Duplicates (provides an emulation of) the functions of one system with a different
system, so that the second system appears to behave like the first system.
External Reset (XRES) - An active high signal that is driven into the PSoC device. It causes
all operation of the CPU and blocks to stop and return to a pre-defined state.
Falling Edge - A transition from a logic 1 to a logic 0. Also known as a negative edge.
Feedback - The return of a portion of the output, or processed portion of the output, of a
(usually active) device to the input.

77

Filter- A device or process by which certain frequency components of a signal are attenuated.
Firmware The software that is embedded in a hardware device and executed by the CPU.
Flag - The software may be executed by the end user, but it may not be modified. Any of various
types of indicators used for identification of a condition or event (for example, a character that
signals the termination of a transmission).
Flash - An electrically programmable and erasable, volatile technology that provides users
with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile
means that the data is retained when power is off.
Flash Bank - A group of Flash ROM blocks where Flash block numbers always begin with “0”
in an individual Flash bank. A Flash bank also has its own block level protection information.
Flash Block - The smallest amount of Flash ROM space that may be programmed at one time
and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
Flip-Flop A device having two stable states and two input terminals (or types of input signals)
each of which corresponds with one of the two states. The circuit remains in either state until it
is made to change to the other state by application of the corresponding signal.
Frequency - The number of cycles or events per unit of time, for a periodic function.
Gain - The ratio of output current, voltage, or power to input current, voltage, or power,
respectively. Gain is usually expressed in dB.
Gate - 1. A device having one output channel and one or more input channels, such that
the output channel state is completely determined by the input channel states, except during
switching transients.

2. One of many types of combinational logic elements having at least two inputs (for example,
AND, OR, NAND, and NOR (Boolean Algebra)).
Ground -

1. The electrical neutral line having the same potential as the surrounding earth.
2. The negative side of DC power supply.
3. The reference point for an electrical system.
4. The conducting paths between an electric circuit or equipment and the earth, or some

conducting body serving in place of the earth.
Hardware - A comprehensive term for all of the physical parts of a computer or embedded
system, as distinguished from the data it contains or operates on, and the software that provides
instructions for the hardware to accomplish tasks.
Hardware Reset - A reset that is caused by a circuit, such as a POR, watchdog reset, or external
reset. A hardware reset restores the state of the device as it was when it was first powered up.
Therefore, all registers are set to the POR value as indicated in register tables throughout this
document.
Harvard Architecture: separate memory areas are used for program instructions and data.
Two or more internal data buses are employed to provide contemporaneous access data and
instructions. The CPU fetches program instructions are fetched by the CPU on the program
memory bus.
HCPLD - high-capacity PLD, e.g., FPGAs and CPLDs. Field-Programmable Device (FPD) a
type of programmable integrated circuit used for implementing digital hardware, where the chip
can be configured by the end user. Programming of such a device often involves placing the
chip into a special programming unit, but some chips can also be configured in-system. Another
name for FPDs is programmable logic devices (PLDs); although PLDs encompass the same types
of chips as FPDs, we prefer the term FPD because historically the word PLD has referred to
relatively simple types of devices.
Hexadecimal - A base 16 numeral system (often abbreviated and called hex), usually written
using the symbols 0-9 and A-F. It is a useful system in computers because there is an easy

78 Definitions

mapping from four bits to a single hex digit. Thus, one can represent every byte as two consecutive
hexadecimal digits. Compare the binary, hex, and decimal representations:

bin hex dec a
0000 0x0 0
0001 0x1 1
0010 0x2 2
...

1001 0x9 9
1010 0xA 10
1011 0xB 11
...

1111 0xF 15

So the decimal numeral 79 whose binary representation is 01001111b can be written as 4Fh in
hexadecimal (0x4F).
High Time - The amount of time the signal has a value of “1” in one period, for a periodic
digital high time signal.
I2C - A two-wire serial computer bus by Phillips Semiconductors. I2C is an Inter-Integrated
Circuit. It is used to connect low-speed peripherals in an embedded system. The original system
was created in the early 1980s as a battery control interface, but it was later used as a sim-
ple internal bus system for building control electronics. I2C uses only two bi-directional pins,
clock and data, both running at +5V and pulled high with resistors. The bus operates at 100
kbits/second in standard mode and 400 kbits/second in fast mode. I2C is a trademark of the
Philips Semiconductors.
ICE - The in-circuit emulator that allows users to test the project in a hardware environment,
while viewing the debugging device activity in a software environment (PSoC Designer).
Idle State - A condition that exists whenever user messages are not being transmitted, but the
idle state service is immediately available for use.
Impedance -

1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices
in a circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance
is determined by the particular combination of resistance, inductive reactance, and capacitive
reactance in a given circuit.
Input - A point that accepts data, in a device, process, or channel.
Input/Output - A device that introduces data into, or extracts data from, a system.
Instruction - An expression that specifies one operation and identifies its operands, if any, in a
instruction programming language such as C or assembly.
Integrated Circuit (IC) - A device in which components such as resistors, capacitors, diodes,
and transistors are formed on the surface of a single piece of semiconductor.
Interface - The means by which two systems or devices are connected and interact with each
interface other.
Interrupt - A suspension of a process, such as the execution of a computer program, caused
interrupt by an event external to that process, and performed in such a way that the process can
be resumed.
Interrupt Service Routine - A block of code that normal code execution is diverted to when the
M8CP receives a hardware interrupt. Many interrupt sources may each exist with its own priority
tine (ISR) and individual ISR code block. Each ISR code block ends with the RETI instruction,
returning the device to the point in the program where it left normal program execution.
Jitter -

79

1. A misplacement of the timing of a transition from its ideal position. A typical jitter form
of corruption that occurs on serial data streams. 2. The abrupt and unwanted variations of one
or more signal characteristics, such as the interval between successive pulses, the amplitude of
successive cycles, or the frequency or phase of successive cycles.
Keeper - A circuit that holds a signal to the last driven value, even when the signal becomes
un-driven.
Latency - The time or delay that it takes for a signal to pass through a given circuit or network.
Least Significant Bit (LSb) - The binary digit, or bit, in a binary number that represents
the least significant least significant bit value (typically the right-hand bit). The bit versus byte
distinction is made by using (LSb) a lower case for bit in LSb.
Least Significant Bit (LSB) - The byte in a multi-byte word that represents the least significant
values (typically least significant byte the right-hand byte). The byte versus bit distinction is
made by using an upper (LSB) case for byte in LSB.
Lttle-endian - the lower-order byte is stored at the lower address and the higher-order byte is
stored at the upper address. (cf. Big-endian)
Linear Feedback Shift Register (LFSR) - A shift register whose data input is generated as
an XOR of two or more elements in the register chain.
Load - The electrical demand of a process expressed as power (watts), current (amps), or resis-
tance (Ohms).
Logic Function - A mathematical function that performs a digital operation on digital data
and logic function returns a digital value.
Logic Block a relatively small circuit block that is replicated in an array in an FPD. When a
circuit is implemented in an FPD, it is first decomposed into smaller sub-circuits that can each
be mapped into a logic block. The term logic block is mostly used in the context of FPGAs, but
it could also refer to a block of circuitry in a CPLD.
Logic Capacity - amount of digital logic that can be mapped into a single FPD. This is usually
measured in units of equivalent number of gates in a traditional gate array. In other words, the
capacity of an FPD is measured by the size of gate array that it is comparable to. In simpler
terms, logic capacity can be thought of as number of 2-input NAND gates.
Look-Up Table (LUT) - A logic block that implements several logic functions. The logic
function is selected look-up table (LUT) by means of select lines and is applied to the inputs of
the block. For example: A 2 input LUT with 4 select lines can be used to perform any one of 16
logic functions on the two inputs resulting in a single logic output. The LUT is a combinational
device; therefore, the input/output relationship is continuous, that is, not sampled.
Low Time - The amount of time the signal has a given value in one period, for a periodic digital
signal.
Low Voltage Detect (LVD) - A circuit that senses Vdd and provides an interrupt to the
system when Vdd falls below a selected threshold.
M8CP - An 8-bit, Harvard Architecture microprocessor. The microprocessor coordinates all
activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
Macro - A programming language macro is an abstraction, whereby a certain textual pattern is
replaced according to a defined set of rules. The interpreter or compiler automatically replaces the
macro instance with the macro contents when an instance of the macro is encountered. Therefore,
if a macro is used 5 times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.
Mask -

1. To obscure, hide, or otherwise prevent information from being derived from a mask signal.
It is usually the result of interaction with another signal, such as noise, static, jamming, or other
forms of interference.

80 Definitions

2. A pattern of bits that can be used to retain or suppress segments of another pattern of
bits, in computing and data processing systems.
Master Device - A device that controls the timing for data exchanges between two devices. Or
when devices are cascaded in width, the master device is the one that controls the timing for
data exchanges between the cascaded devices and an external inter- face. The controlled device
is called the slave device.
Microcontroller - An integrated circuit chip that is designed primarily for control systems and
products. In addition to a CPU, a microcontroller typically includes memory, timing circuits,
and IO circuitry. The reason for this is to permit the realization of a controller with a minimal
quantity of chips, thus achieving maximal possible miniaturization. This in turn, will reduce
the volume and the cost of the controller. The microcontroller is normally not used for general-
purpose computation as is a microprocessor.
Mixed Signal - The reference to a circuit containing both analog and digital techniques and
components.
Mnemonic - A tool intended to assist the memory. Mnemonics rely on not only repetition to
remember facts, but also on creating associations between easy-to-remember constructs and lists
of data. A two to four character string representing a microprocessor instruction.
Mode - A distinct method of operation for software or hardware. For example, the Digital
modulation PSoC block may be in either counter mode or timer mode. A range of techniques
for encoding information on a carrier signal, typically a sine wave signal. A device that performs
modulation is known as a modulator.
Modulator - A device that imposes a signal on a carrier.
MOS - An acronym for metal-oxide semiconductor.
Most Significant bit (MSb) - The binary digit, or bit, in a binary number that represents the
most significant value (typically the left-hand bit). The bit versus byte distinction is made by
using a lower case for bit in MSb.
Most Significant Byte (MSB) - The byte in a multi-byte word that represents the most sig-
nificant values (typically most significant byte the left-hand byte). The byte versus bit distinction
is made by using an upper case for byte in MSB.
Multiplexer (Mux) -

1. A logic function that uses a binary value, or address, to select between a number of inputs
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at
different times, controlled by an external signal. Multiplexing is used to save on wiring and IO
ports.
NAND - See Boolean Algebra.
Negative Edge - A transition from a logic 1 to a logic 0. Also known as a falling edge.
Net - The routing between devices.
Net - A signal that is routed throughout the microcontroller and is accessible by many blocks
or systems.
Nibble - A group of four bits, which is one-half of a byte.
Noise -

1. A disturbance that affects a signal and that may distort the information carried by the
signal.

2. The random variations of one or more characteristics of any entity such as volt- age,
current, or data.
NOR - See Boolean Algebra.
NOT - See Boolean Algebra.
OR - See Boolean Algebra.
Oscillator - A circuit that may be crystal controlled and is used to generate a clock frequency.

81

Output - The electrical signal or signals which are produced by an analog or digital block.
Parallel - The means of communication in which digital data is sent multiple bits at a time,
with each simultaneous bit being sent over a separate line.
Parameter - Characteristics for a given block that have either been characterized or may be
defined by the designer.
Parameter Block - A location in memory where parameters for the SSC instruction are placed
prior to execution.
Parity - A technique for testing transmitting data. Typically, a binary digit is added to the data
to make the sum of all the digits of the binary data either always even (even parity) or always
odd (odd parity).
Path -

1. The logical sequence of instructions executed by a computer.
2. The flow of an electrical signal through a circuit.

Pending Interrupts - An interrupt that has been triggered but has not been serviced, either
because the processor is busy servicing another interrupt or global interrupts are disabled.
Phase - The relationship between two signals, usually the same frequency, that determines the
delay between them. This delay between signals is either measured by time or angle (degrees).
Phase-Locked Loop (PLL) - An electronic circuit that controls an oscillator so that it main-
tains a constant phase angle relative to a reference signal.
Pin - A terminal on a hardware component. Also called lead.
Pinouts - The pin number assignment: the relation between the logical inputs and outputs of
the PSoC device and their physical counterparts in the printed circuit board (PCB) package.
Pinouts will involve pin numbers as a link between schematic and PCB design (both being
computer generated files) and may also involve pin names.
Port - A group of input/output pins, usually eight.
Positive Edge - A transition from a logic 0 to a logic 1. Also known as a rising edge.
Posted Interrupts - An interrupt that has been detected by the hardware but may or may not
be enabled by its mask bit. Posted interrupts that are not masked become pending interrupts.
Power On Reset (POR) - A circuit that forces the PSoC device to reset when the voltage is
below a pre-set level. This is one type of hardware reset.
Program Counter - The instruction pointer (also called the program counter) is a register
in a computer processor that indicates where in memory the CPU is executing instructions.
Depending on the details of the particular machine, it holds either the address of the instruction
being executed, or the address of the next instruction to be executed.
Protocol - A set of rules. Particularly the rules that govern networked communications.
Programmable Array Logic (PAL) - a small FPD that has a programmable AND-plane
followed by a fixed OR-plane.
Programmable Logic Array (PLA) - a small FPD consisting of an AND-plane and an OR-
plane, which are programmable.
Programmable Switch a user-programmable switch that can connect a logic element to an
interconnect wire, or one interconnect wire to another.
PSoC - Cypress MicroSystems’ Programmable System-on-Chip (PSoC) mixed signal array.
PSoC and Programmable System-on-Chip are trademarks of Cypress MicroSystems, Inc.
PSoC Blocks - See analog blocks and digital blocks.
PSoC Designer - The software for Cypress MicroSystems Programmable System-on-Chip tech-
nology.
Pulse - A rapid change in some characteristic of a signal (for example, phase or frequency), from
a baseline value to a higher or lower value, followed by a rapid return to the baseline value.
Pulse Width Modulator (PWM) - An output in the form of duty cycle which varies as a
function of the applied measurand.

82 Definitions

RAM - An acronym for Random Access Memory. A data-storage device from which data can
be read out and new data can be written in.
Register - A storage device with a specific capacity, such as a bit or byte.
Reset - A means of bringing a system back to a know state. See hardware reset and software
reset.
Resistance - The resistance to the flow of electric current measured in Ohms for a conductor.
Revision ID - A unique identifier of the PSoC device.
Ripple Divider - An asynchronous ripple counter constructed of flip-flops. The clock signal is
fed to the first stage of the counter. An n-bit binary counter consisting of n flip-flops that can
count in binary from 0to2n − 1.
Rising Edge - See positive edge.
ROM - An acronym for read only memory. A data-storage device from which data can be read,
but new data cannot be written in.
Routine - A block of code, called by another block of code, that may have some general or
frequent use.
Routing - Physically connecting objects in a design according to design rules set in the reference
library.
RPM - revolutions per minute.
Runt Pulses - In digital circuits, narrow pulses that, due to non-zero rise and fall times of
the signal, do not reach a valid high or low level. For example, a runt pulse may occur when
switching between asynchronous clocks or as the result of a race condition in which a signal takes
two separate paths through a circuit. These race conditions may have different delays and are
then recombined to form a glitch or when the output of a flip-flop becomes metastable.
Sampling - The process of converting an analog signal into a series of digital values or reversed.
Schematic - A diagram, drawing, or sketch that details the elements of a system, such as the
elements of an electrical circuit or the elements of a logic diagram for a computer.
Seed Value - An initial value loaded into a linear feedback shift register or random number
generator.
Serial -

1. Pertaining to a process in which all events occur one after the other.
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in

a single device or channel.
Set - To force a bit/register to a value of logic 1.
Settling Time - The time it takes for an output signal or value to stabilize after the input has
changed from one value to another.
Shift - The movement of each bit in a word one position to either the left or right. For example,
if the hex value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is
shifted one place to the right, it becomes 0x12.
Shift Register - A memory storage device that sequentially shifts a word either left or right to
out- put a stream of serial data.
Sign Bit - The most significant binary digit, or bit, of a signed binary number. If set to a logic
1, this bit represents a negative quantity.
Signal- A detectable transmitted energy that can be used to carry information. As applied to
electronics, any transmitted electrical impulse.
Silicon ID - A unique identifier of the PSoC silicon.
Skew - The difference in arrival time of bits transmitted at the same time, in parallel transmission.
Slave Device - A device that allows another device to control the timing for data exchanges
between two devices. Or when devices are cascaded in width, the slave device is the one that
allows another device to control the timing of data exchanges between the cascaded devices and
an external interface. The controlling device is called the master device.

83

Software - A set of computer programs, procedures, and associated documentation concerned
with the operation of a data processing system (for example, compilers, library routines, manuals,
and circuit diagrams). Software is often written first as source code, and then converted to a
binary format that is specific to the device on which the code will be executed.
Software Reset - A partial reset executed by software to bring part of the system back to a
known state. A software reset will restore the M8CP to a know state but not PSoC blocks, sys-
tems, peripherals, or registers. For a software reset, the CPU registers (CPUA, CPUF , CPUP C,
CPUSP , and CPUX) are set to 0x00. Therefore, code execution will begin at Flash address
0x0000.
SPLD - Simple PLD, typically a PAL or PLA
Logic Density logic per unit area in an FPD.
SRAM - An acronym for static random access memory. A memory device allowing users to
store and retrieve data at a high rate of speed. The term static is used because, once a value
has been loaded into an SRAM cell, it will remain unchanged until it is explicitly altered or until
power is removed from the device.
SROM - An acronym for supervisory read only memory. The SROM holds code that is used to
boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM
may be accessed in normal user code, operating from Flash.
Stack - A stack is a data structure that works on the principle of Last In First Out (LIFO). This
means that the last item put on the stack is the first item that can be taken off.
Stack Pointer - A stack may be represented in a computer as inside blocks of memory cells,
with the bottom at a fixed location and a variable stack pointer to the current top cell.
State Machine - The actual implementation (in hardware or software) of a function that can
be considered to consist of a set of states through which it sequences.
Sticky - A bit in a register that maintains its value past the time of the event that caused its
transition, has passed.
Stop Bit - A signal following a character or block that prepares the receiving device to receive
the next character or block.
Switching - The controlling or routing of signals in circuits to execute logical or arithmetic
operations, or to transmit data between specific points in a network.
Switch Phasing - The clock that controls a given switch, PHI1 or PHI2, in respect to the switch
capacitor (SC) blocks. The PSoC SC blocks have two groups of switches. One group of these
switches is normally closed during PHI1 and open during PHI2. The other group is open during
PHI1 and closed during PHI2. These switches can be controlled in the normal operation, or in
reverse mode if the PHI1 and PHI2 clocks are reversed.
Synchronous -

1. A signal whose data is not acknowledged or acted upon until the next active edge of a
clock signal.

2. A system whose operation is synchronized by a clock signal.
Tap- The connection between two blocks of a device created by connecting several blocks/components
in a series, such as a shift register or resistive voltage divider.
Terminal Count - The state at which a counter is counted down to zero.
Threshold - The minimum value of a signal that can be detected by the system or sensor under
threshold consideration.
Transistor - A transistor is a solid-state semiconductor device used for amplification and switch-
ing, and has three terminals: a small current or voltage applied to one terminal controls the
current through the other two. It is the key component in all modern electronics. In digital
circuits, transistors are used as very fast electrical switches, and arrangements of transistors can
function as logic gates, RAM-type memory, and other devices. In analog circuits, transistors are
essentially used as amplifiers.

84 Definitions

Tri-state - A function whose output can adopt three states: 0, 1, and Z (high-impedance). The
function does not drive any value in the Z state and, in many respects, may be considered to be
disconnected from the rest of the circuit, allowing another output to drive the same net.
UART - A Universal Asynchronous Receiver-Transmitter translates between parallel bits of data
and serial bits.
User - The person using the PSoC device and reading this manual.
User Modules - Pre-built, pre-tested hardware/firmware peripheral functions that take care of
managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also
provide high level API (Application Programming Interface) for the peripheral function.
User Space - The bank 0 space of the register map. The registers in this bank are more likely
to be modified during normal program execution and not just during initialization. Registers in
bank 1 are most likely to be modified only during the initialization phase of the program.
Vdd - A name for a power net meaning ”voltage drain”. The most positive power supply. Usually
5 or 3.3 volts.
Volatile - Not guaranteed to stay the same value or level when not in scope.
Vss - A name for a power net meaning ”voltage source”. The most negative power supply signal.
von Neumann Architecture: data and program instructions are stored in the same memory
space. There is a single internal data bus that fetches Instructions and data are fetched over the
same path.
Watchdog Timer - A timer that must be serviced periodically. If it is not serviced, the CPU
will reset after a specified period of time.
Waveform - The representation of a signal as a plot of amplitude versus time.
XOR - See Boolean Algebra.

Bibliography

[1] Ball, Roy and Pratt, Roger. Engineering Applications of Microcomputers Instrumentation
and Control. Prentice Hall (1984).

[2] Birkner, John M., Chua, Hua-Thye,“Programmable array logic circuit,” U. S. Patent 4124899
(Filed May 23, 1977. Issued November 7 (1978).

[3] Birkner, John M. PAL Programmable Array Logic Handbook. Santa Clara: Monolithic
Memories, (1978)

[4] Birkner, John; Coli, Vincent, PAL Programmable Array Logic Handbook (2 ed.), Monolithic
Memories, Inc, (1981).

[5] Borrie, John A.Modern Control Systems - A Manual of Design Methods. Prentice Hall
(1986).

[6] Cavlan, Napoleone. “Field Programmable logic array circuit” U. S. Patent 4,422,072 (Filed
July 30, 1981. Issued Dec. 20, 1983).

[7] Chassaing, Rulph and Reay, Donald. Digital Signal Processing.Wiley Interscience (2008).

[8] Cline, R. “A Single-Chip Sequential Logic Element,” IEEE International Solid Sate Circuits
Conference, Digest of Technical Papers, 15-17, pp. 204-205, Feb (1978).

[9] Coppens, A.B. Simple equations for the speed of sound in Neptunian waters (1981) J. Acoust.
Soc. Am. 69(3), pp 862-863.

[10] Doboli, Alex N., Currie, Edward H. “Introduction to Mix-Signal, Embedded Design”.
Springer (2010).

[11] KLingman, Edwin E. Microprocessor Systens Design.Prentice Hall (1977).

[12] Labrosse, Jean J. Embedded Systems Buidling Blocks, Seconfd Edition. CMP Books (2002)

[13] Lenk, John D. Logic Designer’s Manual, Reston Publishing (1977).

[14] Lui, Donglin; Hu, Xiabo Sharon; Lemmon D. Michael; and Ling, Qiang. “Firm Real-Time
System Scheduling Based on a Novel QoS Constraint”. IEEE Transactions of Computers,
Vol. 55, No. 3, March (2006).

[15] Meador, Don. Aalog Signal Processing with Laplace trnsforms and Active Filter Design.
Delmar (2002)

[16] Nekoogar, Farzad and Moriarty, Gene. Digital Control Using Digital Signal Processing. Pren-
tice Hall (1999)

[17] Parr, E.A. The Logic Designer’s Guidebook.McGraw Hill (1984),

[18] Pellerin, David and Holley, Michael. “Practical Design Using Programmable Logic”. Prentice
Hall, (1991).

[19] Smith, Carl H., Caruso, Michael J., and Schneider, Robert W. A New Perspective on Mag-
netic Sensing. www.sensorsmag.com (1998)

86 BIBLIOGRAPHY

[20] Steinhart, I.S. and Hart, S.R. “Deep Sea Research” vol. 15 p. 497 (1968).

[21] Van Ess, David. “Ohmmeter”. Application Note: AN2028. Cypress Semiconductor, pp.1-3,
(2002)

Index

ΔL, 38
68HC11 (Motorola), 11
8 bit register, 5
8048’s internal architecture, 8
8051 derivatives, 11

A/D converters, 11
Accumulator, 73
accumulator, 5
accumulator latch, 5
Active High, 73
Active Low, 73
ADC, 73
ADD, 50
Address, 73
addressable space, 8
Algorithm, 73
algorithms, 48
ALU, 5, 49
ALU , 10
Ambient Temperature, 73
Analog, 73
Analog Blocks, 73
Analog Output, 73
Analog Signal, 73
Analog Subsystem, 51
Analog-to-Digital Converter, 73
AND, 73
API, 73
Application Program Interface, 73
arithmetic logic unit, 5
Array, 73
Assembly, 74
Asynchronous, 74
ATmega8, 12
Atmel, 10
Atmel 80C51, 12
ATMEL at91SAM3 , 11
Atmel AVR, 12
Attenuation, 74
Automotive Electronics, 16
Avionic Electronics, 17

Bandgap Reference, 74
Bandwidth, 74
bank switch, 8
Bending strain, 38
Bias, 74
Bias Current, 74
BIBO, 21
Binary, 74
Bit, 74
bit manipulations, 46
Bit Rate, 74
bit testing, 46
bit-addressable, 11
bit-addressable storage, 10
Block, 74
Boolean Algebra, 74
Boolean handling, 10
BR, 74
Break-Before-Make, 75
Buffer, 75
Bus, 75
Byte, 75
byte-addressable, 11

C Language, 75
C language, 54
cache, 50
CAN, 46, 58
CAN bus, 60
Capacitance, 75
Capture, 75
Carbon resistors, 39
carry flag, 5
Central Processing Unit, 49
Chaining, 75
Checksum, 75
Clear, 75
Clock, 75
clock cycles, 10
Clock Generator, 75
clock oscillator, 10
CMOS, 10, 75

88 INDEX

co-processors, 48
Coding Problems, 57
Communications Electronics, 17
Comparator, 75
Compiler, 75
complex algorithms, 47
compressive, 38
Configuration, 75
Configuration Space, 75
constantan, 42
constantan-to-copper, 42
Consumer Electronics, 17
Continuous Time Mode, 17
convolution calculations, 48
copper-to-copper , 42
cores, 11
CPU, 6, 49
CRC, 51, 76
Crowbar, 76
Crystal Oscillator, 76
CTM, 17
Cyclic Redundancy Check, 59, 76
Cypress CY8C29466, 14
Cypress CY8C34, 14
Cypress CY8C53, 15
Cypress Semiconductor, 10

D/A converters, 11
Darlington Pairs, 53
Data Frame, 61
Data memory, 6
de-multiplexer, 51
Debugging, 55
difference equations, 49
digital filtering, 46
Digital Subsystem, 51
Discrete Time Mode, 18
DMA, 47
DRAM, 51
DSPs, 47
DTM, 18
dynamic memory, 50

EEPROM, 7, 53
EEPROM , 50
eight level stack, 5
electrically erasable, 7
electrically programmable, 7
Embedded systems, 15
EPROM, 5, 7, 50
Error Frame, 61

etched, 50
external memory, 10
external RAM, 5
external register, 6

Fast Fourier Transforms, 46
feedforward, 18
Field Programmable Gate Arrays, 47
Firewire, 46
firm real-time system, 22
FLASH, 50
Flash, 7, 51
flip-flops, 5
FPGAs, 47
FRTS, 22

General Purpose I/O system, 53
GPIO, 53

hard real-time system, 22
Hard System Crashes, 57
Harvard memory, 4
Harvard memory architecture , 10
hot spots, 55
HRTS, 22

I/O pin, 8
IDE, 55
in-circuit emulators, 57
Industrial Electronics, 17
Infineon Technologies, 10
Input/Output, 5
instruction decoder, 5
Integrated Development Environments, 55
Intel 4004, 3
Intel 8008 , 3
Intel 8048, 3
Intel 8051, 8
Intel 8080, 3, 6
Intel 8085, 3
Intel 8749, 7
Intel microprocessors, 8
Inter-Integrated Circuit, 60
Internal memory, 10
interrupt handler, 53

known current, 43

latency, 20
LIN bus, 62
Link-Editing, 55
linker-locator, 55

INDEX 89

Linkers, 55
Lock Up, 57
logic analyzers, 57
lower program counter, 5

MAC, 46
machine code, 54
machine cycle, 10
masked ROM, 7
matrix multiplication, 48
Medical Electronics, 17
memory address space, 10
memory-mapped file I/O, 8
Memory-mapped I/O, 4, 8
memory-mapped I/O, 10
memory-mapped I/O (8051), 11
microcontroller, 5
MIPS, 4
MMIO, 4
mnemonics, 54
modified Harvard, 4
modified Harvard architecture, 4
modules, 49
MOSFETs, 51
MOV, 50
Multiple addressing modes, 10
multiplexer, 51
multiplexing of address lines, 6

negative temperature coefficients, 39
Net, 80
NMI, 27
NMOS, 10
non-latching, 6
None-Maskable-Interrupt, 27
NTC, 39

on-chip, 11
on-chip registers , 10
OpAmps, 11, 48
open loop system, 19
operands, 50
oscillator, 5
overflow, 46
Overload Frame, 61

page number, 6
paged, 6
paging, 6
parity bit, 59
partial differential equations, 48

PC, 49
Permanent memory , 7
phase shift, 20
PIC MicroChip, 13
pipelining, 50
PMIO, 4
Poisson strain, 38
Port-mapped I/O, 8
port-mapped I/O, 4
positive temperature coefficients, 39
power saving mode, 10
precision illumination signal modulators, 51
PRISM, 51
Profilers, 55
program counter, 49
Program Counter stack, 5
Program Status Word, 5, 11
Program Status Word (8051), 11
programmable ROM, 7
PROM, 50
PRS, 51
PSW, 5, 11
PSW (8051), 11
PTC, 39
PWM, 5, 11, 51

quadrature decoder, 51

R/WM, 7
RAM, 5, 50
Read-Only, 7
Read-Only memory, 7
Read/Write memory, 7
Real Time Clocks, 53
recognize signals,, 48
reference resistor, 43
reference voltage, 43
Register banks, 10
register direct, 10
registers (8051), 10
relocatable, 57
relocation, 55
Remote Frame, 61
resistance tolerance, 42
resistive transducers, 45
ROM, 5, 7, 50
RS232 protocol, 59
RTC, 53
Runtime problems, 57

SCL, 60

90 INDEX

SDA, 60
Seeback voltage, 42
Seebeck effect, 42
segmented, 6
segmented memory, 6
Sensors, 32
sensors, 17
Serial Peripheral Interface, 60
serial port, 10
Shear strain, 38
shift operations, 46
shift register, 51
single-stepping, 55
single-wire, 62
sleep timers, 53
soft real time system, 22
special register , 6
special registers, 11
SPI, 46, 60
SRTS, 22
stability, 20
stack, 5
standard libraries, 55
Start Of Frame, 61
Static memory, 50
statically latched, 5, 6
Steinhart-Hart, 40
Steinhart-Hart equation, 40
STMicroelectronics ST92F, 12
Strain gauges, 38
strain gauges, 43
SUB, 50

temperature coefficient, 39
temporary register, 5
tensile, 38
Texas Instruments , 10
The Program Status Word, 5
thermal sensors, 39
thermistors, 39, 43
thermoelectric effect, 42
Thomas Johan Seebeck, 42
TI MSP 430F, 13
transducers, 32
Type J thermocouples, 43

UART, 10, 11
UARTS, 5
ultraviolet light, 8
Universal Serial Bus, 59
USARTS, 5

USB, 59
useful heuristic, 42
UV, 8

vector interrupt handling, 10
vector-dot-product, 48
virtual memory, 57
virtual multiplexer, 51
voltage references, 53
Von Neumann, 4

Wheatstone bridge, 43
Winbond, 10

Chapter 2

Microcontroller Subsystems

In this chapter, discussion focuses on the various subsystems common to microcontrollers, viz.,
the CPU, interrupt controller, DMA functionality, busses, memories, clocking, general purpose
I/O (GPIO), power management and hardware debugging support. PSoC3 and PSoC5 are used
throughout this chapter to illustrate the key concepts involved in each of these topics.1

2.1 PSoC3 and PSoC5 - Basic Functionality

Before beginning a discussion of microcontroller subsystems it is important to discuss the func-
tionality common to PSoC3 and PSoC5, e.g., they have:

• the same pin-out configuration, and are therefore pin and peripheral compatible,

• support for a variety of communications protocols, e.g., USB, I2C, CAN, UART, etc.,

• a common development environment, viz., PSoC Creator,

• high precision/performance analog functionality with up to 20-bit ADC and DAC support,
in addition to comparators, OpAmps, PGAs, mixers, TIAs, configurable logic arrays, etc.,

• an easily configurable logic array,

• SRAM, Flash and EEPROM memory,

• analog systems that includes both switched-capacitance (SW) and continuous-time (CT)
blocks, 20 bit sigma-delta converter(s), 8-bit DACs configurable for 12-bit operation, PGAs,
etc.,

• digital systems that are based on Universal Digital Blocks (UDB) and specific function
peripherals such as CAN and USB,

• programming and debugging support via JTAG, Serial Wire Debug (SWD) and Single Wire
Viewer (SWV),

• a nested, vectored interrupt controller,

• a high performance DMA controller,

and,

1It should be noted that the basic architectures of both PSoC3 and PSoC5 are quite similar but because of the
dramatic differences in the microprocessor cores employed in each case, implementation details of some aspects of
these programmable systems on (a) chip are quite different. However, such differences are the not primary focus
of this chapter and shall be treated, if at all, in detail elsewhere in this textbook.

68 Microcontroller Subsystems

• flexible routing to all pins.

However, there are some significant differences between PSoC3 and PSoC5, e.g.,

• PSoC3’s CPU subsystem (core) is based on a single-cycle2, 8-bit, 8051-based, Harvard ar-
chitecture processor capable of operating at clock speeds up to 67 MHz, which permits it to
outperform standard 8051 incarnations by as much as a factor of ten, or equivalently one
order of magnitude.

• PSoC5’s CPU subsystem (core) is based on a 32-bit, Harvard architecture, three-stage,
pipelined, ARM Cortex-M3 processor capable of operating at clocks speeds up to 80 MHz.
Its instruction set is the same as Thumb-2 and supports both 16- and 32-bit instructions.
PSoC5 has a Flash cache that reduces the number of Flash accesses required and thereby
lowers power consumption.

2.2 PSoC3 Overview

The fundamental approach to the PSoC architecture, and philosophy, has remained basically
unchanged as it has evolved from being based on the proprietary M8C microprocessor to support
for both 8051 and ARM cores. The latter processors, while based on quite different architectures,
both control a standard set of analog/digital blocks and the system’s I/O ports as shown in Figures
2.1 and 2.2, respectively.

PSoC3 integrates a single-cycle-per-instruction 8051 core, a programmable digital system, pro-
grammable analog components and configurable digital system resources together with a highly
configurable I/O system. Internal communications is primarily based on the Arm Advanced
High-Performance Bus (AHB) in conjunction with a multi-spoke bus controller called the Pe-
ripheral Hub (PHUB)3. This allows many of the functional blocks within PSoC3 to communicate
with little or no CPU involvement. In addition, there is an Analog Global Bus (AGB) that
can be used to connect to/from the I/O system. Secondary bus structures allow the CPU to
communicate directly with the I/O ports. The EEPROM, Flash and SPC blocks are connected
bus to enable SPC programming control. CPU subsystem connections to the cache and interrupt
controller allow the CPU to communicate directly with both thereby minimizing the latency and
any requirements for communicating with the peripheral controller.

The 8051 “core”4 is capable of being clocked from DC to 67 megahertz, provides both hardware
multiply and divide, 24 channels of Direct Memory Access (DMA), up to 8K each of Flash and
SRAM and up to 2K of 1 million cycle, 20 year retention, EEPROM.

2.2.1 The 8051 CPU (PSoC3)

As discussed in Chapter 1, the 8051 microcontroller is something of a classic in the field of micro-
processors and microcontrollers dating from 1980 when it was introduced by Intel Corporation.

In its simplest configuration it consisted of:

• An ALU

• Seven on-chip registers

2Single cycle refers to instructions being executed in a single machine cycle.
3The PHUB bus is based on the AMBA AHB protocol and consists of a central hub and radial spokes that

are connected to one or more peripheral blocks.
4This core is fully compatible with the MCS-51 instruction set, i.e., it is “upward-compatible”.

2.2 PSoC3 Overview 69

Figure 2.1: Top Level Architecture for PSoC3

70 Microcontroller Subsystems

Figure 2.2: Top Level Architecture for PSoC5.

2.2 PSoC3 Overview 71

• A serial interface

• Two 16 bit timers

• Internal memory consisting of GP/bit-addressable storage and register banks and special
function registers

• Support for 64K of external memory (code)5

• Support for 64K external memory (data)

• Four 8-bit I/O ports6

• 210 bit-addressable locations7

In addition to supporting memory-mapped I/O, the registers are also memory-mapped and the
stack resides in RAM that is internal to the 8051. The ability to access individual bits makes
it possible to set, clear AND, OR, etc., utilizing a single 8051 instruction. Register banks are
contained in the lowest 32 bytes of the 8051’s internal memory. Eight registers are supported,
viz, R0-R7, inclusive, and their default locations are at addresses 0x00-0x07. Register banks
can be used to provide efficient context switching and the active register bank is selected by
bits in the Program Status Word (PSW). At the top of the internal RAM there are 21 special
registers located at addresses 0x80−0xFF . Some of these registers are bit- and byte-addressable,
depending on the instruction addressing the register.

The 8051 implementation in PSoC3 has the following features:

• The architecture is RISC-based and pipelined.

• It is 100% binary-compatible with the industry standard 8051 instruction set, i.e., it is
upward compatible in terms of executables.

• Most instructions operate in one or two machine cycles.

• It supports a 24-bit external data space that enables access to on-chip memory and registers,
and to off-chip memory.

• A new interrupt interface has been provided that enables direct interrupt vectoring.

• 256 bytes of internal data RAM are available.

• The Dual Data Pointer (DPTR) has been extended from 16-bits in the “standard 8051”
architecture to 24-bits to facilitate data block copying.

• Special Function Registers (SFRs) provide fast access to PSoC3 I/O ports and control of
the CPU clock frequency.

2.2.1.1 8051 Wrapper

In order to most efficiently, and effectively, incorporate the 8051 core into PSoC3, a“wrapper” is
provided as shown in Figure 2.3. This so-called wrapper is in fact simply logic that surrounds the
core and provides an interface between the core and the rest of the PSoC3 system. The 8051 is
one of two bus masters, the other being the DMA controller. Two bus slaves are available in the
form of the PHUB, discussed in Section 2.2.6, and the on-chip SRAM, and are accessible via the
8051’s external memory space. This configuration provides access to all of PSoC3’s registers , as
well as, externa memory. The wrapper also provides an SFR-I/O interface and gives direct access
to the I/O port registers via the SFRs. A CPU clock divider is also included in the wrapper.

5The 8051 utilizes a separate 64K for data and code, respectively.
6I/O ports in the 8051 are “memory-mapped”, i.e. to readgions for SFRwrite from/to an I/O port the program

being executed must read/write to the corresponding memory location in the \same manner that a program would
normally read/write to any memory location.

7128 of these are at addresses 0x20-0x2F with the remaining 73 being located in special function registers

72 Microcontroller Subsystems

Each port has two interfaces, one of the interfaces is to the PHUB to allow boot configuration
and access to all of the I/O port registers, and the second interface is to the SFRs in the 8051
which gives faster access to a limited set of I/O port registers. The clock divider makes it possible
to operate the CPU at frequencies that are divisors of the bus clock speed, cf Section 2.2.10.

Figure 2.3: PSoC3’s 8051 wrapper.

2.2.1.2 8051 Instruction Set

The 8051 instruction set consists of 44 basic instructions as shown in Table 2.7.8 These basic
instructions result in 256 possible instructions, of which 255 (24 3-bytes, instructions, 92 2-byte
instructions and 139 1-byte instructions) are documented. The full set of opcodes is shown in
Table 2.1.

2.2.1.3 Internal and External Data Space Maps

A diagram of the 8051’s internal data space is shown in Figure 2.4. This space is divided into
five regions as shown. While the Internal Data Memory addresses are in fact only one byte wide,
implying that the address space is limited to 256 bytes, direct addresses higher than 7FH access
one memory space and indirect addresses higher than 7FH access a different memory space. Thus
the upper 128 bytes can be used as SFR space for ports, status bits, etc., if direct addressing is
employed. Sixteen of the addresses in the SFR memory space are both bit and byte addressable

The lower 128 bytes consists of the lowest 32 bytes grouped as 4 banks of 8 registers referred
to as R0-R7. Bank selection is determined by two bits in the PSW. The next 16 bytes, i.e., above
the register banks, is a bit-addressable memory space with bit addresses ranging from 00H-7FH,

8The mnemonics used here for the 8051(8052) are copyrighted by Intel Corporation, 1980.

2.2 PSoC3 Overview 73

Table 2.1: The complete set of 8051 opcodes.

inclusive. The 8051’s instruction set includes a number of instructions for manipulating single
bits in this area, using direct addressing.

Table 2.2 is a tabulation of the external memory addressable by PSoC3.

2.2.1.4 Instruction Types

The 8051 has five types of instructions:

1. Arithmetic - addition, subtraction, division, incrementing and decrementing.

2. Boolean - clearing a bit, complementing a bit, setting a bit, toggle a bit, move a bit to
carry, etc.

3. Data Transfer - internal data, external data and lookup table data.

4. Logical - Boolean operations such as AND, OR, XOR and rotating/swapping of nibbles.

and,

5. Program branching - Conditional and unconditional jumps (branches) to modify program
execution flow

2.2.1.5 Data Transfer Instructions

The 8051 is capable of three types of data transfer:

1. External Data Transfer - MOVX instructions are used to transfer data between the
accumulator and an external memory address.

2. Internal Data Transfers - Direct, indirect, register and immediate addressing instructions
allow data to be transferred between any two internal RAM locations of SFRs.

3. Lookup Table Transfers - MOVC instructions are used to transfer data between the
accumulator and program memory addresses.

2.2.1.6 Data Pointer

The Data Pointer (DPTR) is located in a 16-bit register at 0x83 (high byte) and 0x82 (low byte),
respectively which is used to access up to 64K, inclusive, of external memory.

74 Microcontroller Subsystems

Table 2.2: XDATA Address Map.

2.2 PSoC3 Overview 75

Figure 2.4: 8051 Internal Data Space Map

2.2.1.7 Dual Data Pointer SFRs

In order to facilitate the copying of blocks of data, four Special Function Registers (SFRs) are
employed to hold two 16-bit pointers, DPTR0 and DPTR1 and INC DPTR can be used to switch
between them. The active DPTR register is selected by the SEL bit (0x86) in the SFRs space,
e.g., if the SEL bit is equal to zero, then DPTR0 (SFRs 0x83:0x82) is selected, otherwise DPTR1
is selected.

The data pointer select register is used in conjunction with the following instructions:

• INC DPTR

• JMP @A+DPTR

• MOVX @DPTR,A

• MOVX A,@DPTR

• MOVC A,A+DPTR

• MOV DPTR,#data16

2.2.1.8 Boolean Operations

Boolean instructions allow single bit operations to be performed on the individual bits of regis-
ters, memory locations and the CY Flag (the AC, OV and P flags cannot be altered by these
instructions). The operations that can be conducted on individual bits are clear, complement,
move, set, AND, OR, and tests for conditional jumps.

JC/JNC - jump to a relative address if the CY Flag is set or cleared
JB/JNB - jump to a relative address if the CY FLAG is set or cleared.
JBC - Jump to a relative address if a bit is set or cleared.
Short jump.

76 Microcontroller Subsystems

Table 2.3: Special Function Registers

2.2.1.9 Program Status Word (PSW)

The Program Status Word is located at 0xD0 and contains information about the 8051’s flags as
shown in Figure 3.5. The Carry Flag (CF) can also be used as a 1-bit ”Boolean accumulator”,
i.e., a 1-bit register for Boolean instructions. Flag 0 is a general purpose flag and RS0/RS1 are
used to determine the active register. The Overflow Flag is set after a subtraction or addition if
an arithmetic overflow has occurred. The parity bit is used in each machine cycle to maintain
even parity of the accumulator byte and B is a bit-addressable register (accumulator) located at
0xF0 for multiply and divide operations.9

2.2.1.10 Stack Pointer

The Stack Pointer (SP) is an 8-bit register located at 0x81 that contains the default value of 0x07,
when the system is reset. This causes the first ”Push” to the stack to be stored in location 0x80
and therefore Register Bank 1, and potentially Register Banks 2 and 3 may not be accessible.
However initializing the SP pointer will allow all of the Register Banks to be used.

2.2.1.11 Addressing Modes

The 8051 architecture supports seven addressing modes:

1. Direct - the operand is specified by a “direct” 8-bit address, but only internal RAM and
special function registers can be addressed by this mode.

9Following an 8-bit by 8-bit multiplication, the resulting 16-bit (two byte) value is stored in A (Low byte) and
B (High Byte), respectively.

2.2 PSoC3 Overview 77

Figure 2.5: Program Status Word (PSW) [0xD0]

2. Indirect - a register, either R0 or R1, containing the 8-bit address of the operand is
specified by the instruction. In this mode, the Data Pointer (DPTR) is used to specify
16-bit addresses.

3. Immediate Constants - Except for the Data Pointer, all 8051 instructions involving imme-
diate addressing utilize 8-bit data values. In the case of the Data Pointer, a 16-bit constant
must be used.

4. Bit Addressing - In this mode, the operand ia specified as one of 256 bits

5. Indexed Addressing - Indexed addressing uses the Data Pointer as a base register with
an offset stored in the accumulator to point to an address in program memory that is to be
read.This addressing mode is intended for reading data from look-up tables. In such cases,
a 16-bit “base” register such as the DPTR or PC, is used to point to the base of a table
and the accumulator holds a value that points to a particular entry in the table. Thus the
actual address in program memory is the sum of the values held in the accumulator and
16-bit base register. 10

6. Register addressing - eight registers (R0-R7) are used for register addressing. Instructions
using these registers utilize the three least significant bits of the instruction opcode to specify
a particular register. Since an address byte is not required use of ti mode, where possible,
results in improved code efficiency. The bank select bits stored in the PSW determine which
bank holds the register.

7. Register Specific - some instructions are used only in conjunction with specific registers
such as the accumulator or DPTR and therefore an address byte is obviated, e.g., any

10Another form of indexed addressing is employed by “case jump” instructions, i.e., a jump instruction’s
destination address is determined by the sum of the base pointer and the value in the accumulator.

78 Microcontroller Subsystems

instruction referencing the Accumulator (A) are both accumulator and therefore register
specific.

The following are illustrative examples of some of the most common addressing modes:

• SBB A,2FH (Direct addressing)

• SBB AA,@R0 (Indirect Addressing)

• SBB A,R4 (Register Addressing)

• SBB A,#31 (Immediate Addressing)

Absolute - ACALL and AJMP require the use of absolute addresses and store the 11 least
significant bits of the address and the remaining 5 bits are derived form the five most significant
bits of the Program Counter.

Relative - relative addressing is used with some of the jump instructions. The relative address
serves as an 8-bit (-128-127) offset that is added to the program counter to provide the address
of the next instruction to be executed. Use of relative addressing can result in the program code
that is relocatable, i.e., does not have any memory location dependence.
Long - LCALL and LJMP require long addressing and consist of a 3-byte instruction that
includes the 16-bit destination address as bytes 2 and 3. These opcode allow the full 64K code
space to be used.

2.2.2 The 8051 Instruction Set

The following are brief descriptions of the 8051 instruction set. Additional information is available
in Appendix F and references [17] and [29] .
ACALL LABEL - unconditionally calls a subroutine located at an address LABEL. When this
instruction is invoked the program counter, and stack pointer, are both advanced two bytes so
that the next instruction address to be executed, upon return from the subroutine, is stored on
the stack.
ADD A, <src-byte> - performs an 8-bit addition of two operands, one of which is stored in
the accumulator. The result of the addition is stored in the accumulator and the CY flag is
set/reset as required by the results of the addition. <src-byte> can be Rn(a register), Direct (a
direct byte), @Ri(indirect RAM), or #data(immediate data)
ADDC A, <src-byte> - invokes an 8-bit addition of two operands based on the previous value
of the CY flag. e.g. when carrying out 16-bit addition operations. <src-byte> can be Rn(a
register), Direct (a direct byte), @Ri(indirect RAM), or #data(immediate data).
AJMP addr11- Absolute jump using an 11-bit address. This is a two-byte instruction that uses
the upper 3-bits of the address, combined with a 5-bit opcode, to form the first byte and the
lower 8-bits of the address from the second byte. The 11-bit address replaces the 11-bits of the
PC to produce the 16-bit address of the target. Therefore, the resulting locations are within the
2K byte memory page containing the AJMP instruction.
ANL <dest-byte>,<src-byte> - performs a bitwise logical AND between the dest and src
byte and stores the result in dest.
ANL, bit - Performs a logical AND operation between the Carry bit and and a bit, placing the
result in the Carry bit.
ANL, /bit - Performs a logical AND operation between the Carry bit and the inversion of a bit.
placing the result in the Carry bit.

2.2 PSoC3 Overview 79

Table 2.4: Arithmetic Instructions

CJNE <dest-byte>,<src-byte>, rel - Compares the magnitude of the first two operands and
branches if they are not equal to the address given by adding rel (signed relative displacement)
to he PC, after it has been incremented to the start of the next instruction. The carry flag is
set if the unsigned, integer value of <dest-byte> is less than the unsigned integer value of
<src-byte>; otherwise the carry is cleared. The first two operands allow four addressing mode
combinations: the accumulator may be compared with any directly addressed byte or immediate
data, and any indirect RAM location or working register can be compared with an immediate
constant.
CLR A - Clear the accumulator, i.e., reset all A bits to zero. Flags are not affected.
CLR bit - Clear the indicated bit, i.e., reset to zero. Flags are not affected. CLR can operate
on the carry flag, or any directly addressable bit.
CPL A - Complement the accumulator.
CPL bit - Complement a bit. No other flags are affected.

80 Microcontroller Subsystems

DA A - Decimal adjust the accumulator. This instruction “adjusts” the eight-bit value in the
accumulator resulting from the prior addition of two variables, each of which is in packed BCD
format, resulting in the production of two four-bit values. Any ADD, or DDC, instruction may
have been used for the addition.
DEC <src-byte> - Decrement the operand by one. <src> can be a direct address, an indirect
address, the accumulator, or a register. (00H ⇒ 0FFH).
DIV AB - Divide the unsigned contents of the accumulator (A) by the unsigned contents of the
B, placing the resulting integer value of the quotient in A and the integer remainder in B. If B
originally contained 00H then both of the returned values will be undefined and the overflow flag
will be set. The carry flag is cleared in all cases.
DJNZ <byte>,<rel-addr> - Decrement the byte value and jump if not zero to the relative
address given by adding rel (signed relative displacement) to the PC, after it has been incremented
to the first byte of the next instruction. No flags are affected and 00H ⇒ 0FFH .
INC <src-byte> - Increment the operand by one. The operand can be a direct address, indirect
address, register, accumulator or the data pointer (DPTR)11. No flags are affected.<src-byte>
can be Rn(a register), Direct (a direct byte), @Ri(indirect RAM), or #data(immediate data).
JB bit,rel - jump if the bit is set to one, otherwise proceed to the next instruction. The branch
destination is computed by adding the signed relative displacement to the PC after incrementing
the PC to the first bye of the next instruction. The tested bit is not modified and no flags are
affected.
JBC bit,rel- Jump if the bit is set to one and clear the bit. The destination is computed by
adding the signed relative displacement to the PC after incrementing the PC to the first bye of
the next instruction.
JC rel - If carry is set, then branch to the destination computed by adding the signed relative
displacement to the PC, after incrementing the PC to the first bye of the next instruction. No
flags are affected.
JMP @A+DPTR - Jump indirect. Add the eight-bit unsigned contents of the accumulator to
the sixteen-bit data pointer, and load the resulting sum to the program counter. The resulting
sum is the address for the instruction. Sixteen-bit addition is performed (modulo 216). A carry
from the low-order eight bits propagates through the higher-order bits. Neither the Accumulator
nor the Data Pointer is altered. No flags are affected.
JNB bit - If the bit is not set, then branch to destination computed by adding the signed relative
displacement to the PC after incrementing the PC to the first bye of the next instruction. No
flags are affected.
JNC rel - If the carry flag is a zero, branch to the address indicated, otherwise proceed with
the next instruction.The branch destination is computed by adding the relative-displacement to
the PC, after incrementing the PC twice to point to the next instruction.The carry flag is not
modified.
JNZ - If the accumulator contains a value other than zero, branch to the indicated address,
otherwise proceed with the next instruction. The branch destination is computed by adding the
signed relative displacement after incrementing the PC twice. The accumulator is not modified
and no flags are affected.
JZ - If the value in the accumulator is zero, branch to the address indicated, otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified. No flags are affected.
LCALL addr16 - calls a subroutine located at the indicated address. The instruction adds

11Incrementing the DPTR by 1 causes this 16-bit pointer to be increased by 1, An overflow of the lower byte
(DPL), i.e., 0xFF ⇒ 0x00, causes the upper byte (DPH) to be incremented. DPTR is the only PSoC3, 16 bit
register that can be incremented in this manner.

2.2 PSoC3 Overview 81

Table 2.5: Jump Instructions.

three to the program counter to generate the address of the next instruction and then pushes
the result onto the stack (low-byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively,with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory address space.
No flags are affected.
LJMP addr16 - Long Jump using a 16-bit address. This is a three byte unconditional jump to
any location in the 64K program space. address,by loading the high-order and low-order bytes of
the PC (respectively)with the second and third instruction bytes. The destination may therefore
be anywhere in the full 64K program memory address space. No flags are affected.
MOV <dest-byte><src-byte> - The byte variable indicated by the src-byte is copied into
the location specified by the first dest-byte. The source byte is not affected. No other register
or flag is affected. There are fifteen combinations of source and destination addressing modes for
this instruction.
MOVC A,@A+<base-reg> -loads the accumulator with a code byte, or constant, from pro-
gram memory. The address of the byte fetched is the sum of the original unsigned eight-bit
accumulator contents and the contents of a sixteen-bit base register, which may be either the
Data Pointer or the PC. In the latter case, the PC is incremented to the address of the following
instruction before being added to the accumulator, otherwise the base register is not altered.
Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate
through higher-order bits. No flags are affected.
MOVX A,@Ri - These instructions, tabulated in Table 2.6, transfer data between the accumu-

82 Microcontroller Subsystems

lator and a byte of external data memory, and is denoted by appending an X to MOV. There are
two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect
address to the external data RAM. In the first type, the contents of R0 or R1, in the current
register bank, provide an eight-bit address multiplexed with data on P012. Eight bits are suf-
ficient for external 1/0 expansion decoding or for a relatively small RAM array. For somewhat
larger arrays, any output port pins can be used to output higher-order address bits. These pins
would be controlled by an output instruction preceding the MOVX. In the second type of MOVX
instruction,the Data Pointer generates a sixteen-bit address. P2 outputs the high-order eight
address bits (the contents of DPH) while P0 multiplexes the low order eight bits (DPL) with
data. The P2 Special Function Register retains its previous contents while the P2 output buffers
are emitting the contents of DPH. This form is faster and more efficient when accessing very large
data arrays (up to 64K bytes), since no additional instructions are needed to set up the output
ports. It is possible in some situations to mix the two MOVX types. A large R4M array with its
high order address lines driven by P2 can be addressed via the Data Pointer,or with code.
MUL AB - This instruction multiplies the unsigned eight-bit integers in the accumulator and
in register B. The low-order byte of the sixteen-bit product is left in the accumulator,and the
high-order byte in B. If the product is greater than 255 (OPPH)the overflow flag is set; otherwise
it is cleared. The carry liag is always cleared.
NOP - Execution continues at the following instruction.Other than the PC, no registers or flags
are affected.
ORL<dest-byte><src-byte> - performs the bitwise logical-OR operation between the in-
dicated variables, storing the results in the destination byte. No flags are affected. The two
operands allow six addressing mode combinations. When the destination is the accumulator, the
source can use register, direct, register-indirect,or immediate addressing; when the destination is
a direct address, the source can be the accumulator, or immediate data. When this instruction
is used to modify an output port, the value used as the original port data will be read from the
output data latch, not the input pins.
POP direct - causes the contents of the internal RAM location addressed by the Stack Pointer
to be read (“POPped”), and the Stack Pointer is decremented by one. The value read is then
transferred to the directly addressed byte indicated. No flags are affected.
PUSH direct - increments the Stack Pointer by one.The contents of the indicated variable is
then copied (“PUSHed”) into the internal RAM location addressed by the Stack Pointer. The
flags are not affected.
RET - return from a subroutine by “POP”ing the return address from the stack and continue
execution from that location. RET pops the high-and low-order bytes of the PC successively
from the stack decrementing the Stack Pointer by two. Program execution continues at the
resulting address, generally the instruction immediately following an ACALL or LCALL.No flags
are affected.
RETI - return from an interrupt service routine by “POP”ing the return address from the stack,
restoring the interrupt logic to accept interrupts at the same level of interrupt as the one just
processed and continue execution from the address retrieved from the stack. (Note that the PSW
is not automatically restored). RETI pops the high-and low-order bytes of the PC successively
from the stack, and restores the interrupt logic to accept additional interrupts at the same priority
level as the one just processed. The Stack Pointer is left decremented by two. No other registers
are affected. Special Note: PSW is not automatically restored to its pre-interrupt status. Program
execution continues at the resulting address,which is generally the instruction immediately after
the point at which the interrupt request was detected. If a lower- or same-level interrupt had
been pending when the RETI instruction is executed, that instruction will be executed before
the pending interrupt is processed.

12P0,P1, P2 and P3 are the SFR latches on ports 0,1,2 and 3 respectively.

2.2 PSoC3 Overview 83

Table 2.6: Data Transfer Instructions.

84 Microcontroller Subsystems

Table 2.7: Logical Instructions.

2.2 PSoC3 Overview 85

RL A - rotates the contents of the accumulator A, one bit position to the left. The eight bits in
the accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position.No flags
are affected.
RLC A - rotates the contents of the accumulator one bit position to the left through the Carry
flag. The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the
bit 0 position.No flags are affected.
RR A - rotate the contents of the accumulator one bit position to the right. The eight bits in
the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No
flags are affected.
RRC A - rotate the contents of the accumulator one bit position to the right through the Carry
flag. The eight bits in the accumulator and the carry flag are rotated together, one bit to the
right. Bit 0 moves into the carry flag; the original value of the Carry flag moves into the bit 7
position. No other flags are affected.
SETB - sets the indicated bit to one. SETB can operate on the Carry flag or any directly
addressable bit. No other flags are affected.

Table 2.8: Boolean Instructions.

SJMP rel - causes a Short Jump using an 8-bit signed offset relative to the first byte of the next
instruction. This instruction causes the program to make an unconditional control branche to
the address indicated.The branch destination is computed by by adding the signed displacement
to the PC, after incrementing the PC twice. Therefore, the range of destinations allowed is from
128 bytes preceding this instruction to the 127 bytes following it.
SUBB A,<src-byte> - Subtract with borrow results in a subtraction of an operand and the
previous value of the CY flag. (A <= A - <operand>- CY). This instruction subtracts the
indicated variable and the Carry flag from the accumulator, leaving the result in the accumulator.
SUBB sets the Carry (borrow) flag if a borrow is needed for bit 7, and clears C, otherwise. (If

86 Microcontroller Subsystems

C was set before executing a SUBB instruction, this indicates that a borrow was needed for the
previous step in a multiple precision subtraction, so the carry is subtracted from the accumulator
along with the source operand.) A C is set if a borrow is needed for bit 3, and cleared otherwise.
OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit 6. When
subtracting signed integers OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from
a negative number. The source operand allows four addressing modes: register,direct, register-
indirect or immediate. <src-byte>can be Rn(a register), Direct (a direct byte), @Ri(indirect
RAM), or #data(immediate data).
SWAP A- interchanges (SWAPs) the low- and high-order nibbles (four-bit fields) of the accu-
mulator (bits 3-0 and bits 7-4). The operation is equivalent to a four-bit rotate instruction. No
flags are affected.
XCH A,<byte> - loads the accumulator with value of the byte variable and laods the accumula-
tor contents to the byte variable.The src/dest operand can use register, direct, or register-indirect
addressing.
XCHD A,@Ri - exchanges the low-order nibble of the accumulator (bits 3-0), generally repre-
senting a hexadecimal or BCD digit,with that of the internal RAM location indirectly addressed
by the specified register. The high-order nibbles (bits 7-4) of each register are not affected.
XRL <dest-byte><src-byte> - This instruction performs a bitwise, logical, Exclusive-OR
operation between <dest-byte>and <src-byte>, storing the results in <dest>. No flags are
affected. The two operands allow six addressing mode combinations. When the destination is
the accumulator, the source can use register, direct, register-indirect,or immediate addressing;
when the <dest>is a direct address, <src> can be the accumulator or immediate data. (Note
When this instruction is used to modify an output port, the value used as the original port data
will be read from the output data latch, not the input pins.)
XCHD - exchanges low-order undirect digit RAM with the accumulator.
Undefined - OpCode 0xA5 is an undocumented function.

2.2.3 ARM Cortext M3 (PSoC5)

The ARM CORTEX M3 utilizes a three stage, pipelined, Harvard-based bus architecture to pro-
vide a single cycle, hardware-based multiply/divide capability. It also supports the Thumb-213

instruction set [26]. Thumb instructions include arithmetic operations, logical operators, con-
ditional/unconditional branches and store/load data operations. I/O and exception handling
typically require the use of 32-bit ARM instructions.[14] It should be noted, however, that there
are inherent limitations of the Thumb instruction set. While the use of Thumb instructions,
guarantee efficient code execution and power consumption when employing Thumb operators is
not guaranteed.[25] The ARM CORTEX M3 provides hardware support that greatly facilitates
debugging by providing trace, profiling, breakpoints, watch points and code patching. The Ad-
vanced RISC Machines (ARMs), have a 32-bit architecture with sixteen registers, one of which
is the program counter (PC). Most the instructions have a 4-bit condition code to facilitate
branching.

2.2.3.1 Thumb Instructions

Some modern microprocessor architecture can be described as a Complex Instruction Set Com-
puter (CISCs) and are capable of carrying out arbitrarily complex instructions. Another class

13The Thumb instruction set is a subset of the 32-bit instruction set that has been compressed from 32 bits to
16 bits resulting in a reduction in code density of approximately 30%. Because of this reduction it is possible to
maintain more instructions in the on-chip memory which further reduces power consumption since of-chip fetches
tend to consume more power than on-chip fetches.

2.2 PSoC3 Overview 87

of microprocessors are referred to as RISC machines, or Reduced Instruction Set Computer(s).
RISC instructions are usually executed in a single clock instruction and can result in substan-
tially improved execution times. Such improvement is not without cost however, since more RISC
instructions may be required than CISC instructions to execute a given program, which in turn
means increased memory requirements.

Advanced RISC Machines (ARMs) utilize a set of instructions referred to as Thumb Instruc-
tions which consists of 16-bit instructions that are ”extensions” of the 32-bit ARM instructions.
Thumb instructions are fetched as 16-bit instructions14 and then expanded utilizing dedicated
hardware within the microprocessor to 32-bits. Thus Thumb instructions and their 32-bit coun-
terparts are functionally equivalent.15ARM instructions are aligned on a four-byte boundary and
Thumb instructions are aligned on a two-byte boundary. Any Thumb instruction that that in-
volves data processing operates on 32-bit values. Instruction fetches and data access instructions
create 32-bit addresses. In the Thumb state, eight general purpose, integer registers (R0-R7) are
employed.

Thumb instructions fall into the following categories:

• Arithmetic

• Branch

• Extend

• Load

• Logical

• Move

• Process.or State Change

• Push and Pop

• Reverse

• Shift and Rotate

• Store

Thumb instructions are a 16-bit subset of ARM 32-bit instructions which can be conditionally
executed, while Thumb instructions are always executed. The Thumb-2 instruction set consists
of a mixture of 16- and 32-bit instructions.

2.2.4 Interrupts and Interrupt Handling

As discussed in Chapter 1, interrupts and interrupt handling are extremely important aspects
of many embedded system applications. Proper treatment of interrupts allows the most efficient
response of such systems and ensures that requests are handled in the appropriate order with
minimal latency. An interrupt controller provides a hardware resources that allow the system to
suspend tasks prior to their completion.

The interrupt controller employed in PSoC3 has a number of enhanced features not available in
the original 8051, e.g.,

• eight levels of “nestable” interrupts,

• multiple I/O vectors,

14Thus conserving memory space.
15It should be noted when handling exceptions, the processor must be in the ”ARM state”, i.e., exceptions

cannot be handled in the Thumb state and therefore cannot be handled by Thumb instructions.

88 Microcontroller Subsystems

• programmatic interrupts,

• programmatic clearing of interrupts,

• 32 interrupt vectors and levels of interrupt priority,

• dynamic assignment of one of eight priorities,

As shown in Figure 2.6, PSOC3’s integral interrupt controller supports up to 32 interrupt
signals, inclusive, which when active are processed by the interrupt controller. Each of these
inputs can be enable/disabled programmatically and a dedicated interrupt vector table16, stores
the addresses of the respective interrupt service routines (ISRs). Under program control the
priority assigned to an input signal can be changed as well as the vector address.

Figure 2.6: PSoC3 Interrupt Controller.

When an interrupts occur, the interrupt controller processes them and assigns them a priority
based on the preassigned interrupt priority for each interrupt signal.[28] When an interrupt occurs
all information required to reinstate the interrupted task must be stored on the stack as discussed
in Chapter 1. If the program has been written in C, then the C compiler will automatically
introduce the necessary code to store the required information on the stack, However, if the
program has been written in assembly language the necessary push and pop instructions must be
manually included in the assembly source file so that prior to entry into the ISR and following
a return and prior to attempting to resume the interrupted task the required information is
pushed/popped to/from the stack.

Two hardware stacks are maintained by the interrupt controller, one for storage of the inter-
rupt priorities and the other for the related vector addresses.When an interrupt acknowledgement

16Such tables are sometimes referred to as a “jump” tables.

2.2 PSoC3 Overview 89

Table 2.9: Interrupt Vector Table (PSoC3)

90 Microcontroller Subsystems

entry (IRA) is received from the CPU, the interrupt controller pushes the current interrupt vector
address and priority level to their respective stacks. When an acknowledgement for an interrupt
exit (IRC) is received, the interrupt controller pops the previous state information from the stack.

Interrupts can be nested so that a higher priority interrupt can “interrupt” a lower priority
interrupt. Interrupts that occur while PSoC3’s microcontroller is shutdown, e.g., while asleep,
should be of the type referred to as “sticky” interrupts17, i.e., interrupts asserted while PSoC3 is
inactive must be held until PSoC3 “wakes up”.

If an interrupt requests occurs which is of higher priority than that assigned to the currently
executing task, the current task is suspended, and the higher priority task is invoked. Once
completed the lower priority task resumes. Priorities are assigned numbers in the range of 0-31,
with zero being the highest priority and 31 the lowest. If two tasks have been assigned the same
priority and their respective interrupt requests occur simultaneously, then the task with the lower
vector number has priority.

Figure 2.7: Interrupt processing in the IDMUX

2.2.4.1 Interrupt Lines

As discussed previously, the interrupt controller has 32 interrupt input lines, numbered as shown
in Figure 2.8, and possible input sources asserted on these lines are defined as:

1. Fixed Function - these are asserted by peripherals such as I2C, Sleep, CAN, Port Interrupt
Controller Unit (PICU) and the Low Voltage Detector (LVD).

2. DMA Controller Interrupts - these signal the completion of a DMA transfer.

3. UDB - interrupts initiated by various Universal Device Blocks implemented as timers,
counters, etc.

17This is to avoid the possibility of an interrupt being asserted and then cleared while the microprocessor is
“sleeping” thereby resulting in a missed interrupt request.

2.2 PSoC3 Overview 91

Figure 2.8: Interrupt controller block diagram.

However, each interrupt line is assigned one of these three types of interrupt sources as shown
in Figure 2.9, and the designation for each line is determined by the IDMUX control register,
IDMUX.IRQ CTL,

Figure 2.9: Interrupt Signal Sources.

Interrupt lines pass through a multiplexer on their way to the interrupt controller, as shown
in Figure 2.7, which selects one of the following: a Fixed Function interrupt request (IRQ), a
Universal Digital Block (UDB) IRQ with level, on a UDB IRQ with Edge or a DMA IRQ. The
IDMUX,IRQ CTL register determines the mux path with respect to IRQ selection.

The interrupt controller supports two types of interrupt assertions on the lines:

1. Level Shift - an interrupt request is initiated by a shift of the level of the interrupt line.

2. Pulse - a pulse on a pulse-designated interrupt line creates an IRQ when the low-to-high
edge transition occurs, which cause the pending bit for that interrupt line to be set. In the
event that a second pulse occurs while the first is still pending, it has no effect.When the
CPU acknowledges receipt of the IRQ by transmitting an IRA, the pending bit for that line
is reset. If another pulse now occurs, the pending bit is set again, even if the first ISR is
still active.

wka
Note
0 to 31 i.e. 32 interrupts

92 Microcontroller Subsystems

2.2.4.2 Enabling/Disabling Interrupts

The interrupt controller’s Enable register (SETEN) and Clear ENABLE registers allow interrupt
lines to be enabled and disabled, respectively. Writing a 1 to the SETEN register enables an
interrupt, while a zero has not effect. Reading a one from the the SETEN register implies
interrupt is enable and a zero implies the interrupt is disabled. Similarly, writing a 1 to CLREN
register disables an interrupt and writing a zero has not effect. Reading a one from the the CLREN
register implies that an interrupt is enabled and reading a zero implies that it is disabled.

2.2.4.3 Pending Interrupts

The “Pending” bit is set when the interrupt controller receives an interrupt signal. This can
also be set/cleared programmatically by using the “Set Pending” register (SETPEND) and the
“Clear Pending” register (CLRPEND), respectively. Each of the bits in these registers represents
the status of one interrupt line. Interrupt requests can be made by either asserting a level shift
or a pulse on an interrupt line. In either case, following an IRQ, the pending bit is cleared
immediately once an interrupt acknowledgement has been received from the CPU. Should a new
pulse be received on the same line after receipt of the CPU’s acknowledgement, the pending bit
is set. However, when a line level shift occurs, the interrupt controller checks the status of the
line after it receives an acknowledgment that the CPU has exited the interrupt service routine
(ISR).

2.2.4.4 Interrupt Priority

The proper handling of priorities is obviously very important and there are two possibilities to
be considered in such cases:

1. An interrupt occurs while an interrupt service routine (ISR) for the previous
interrupt is being executed. If the interrupt is of higher priority, then the ISR is
suspended, the information required to reinstate that ISR is placed on the stack and the
ISR associated with the higher priory interrupt is invoked. If the priority of the interrupt
is lower than that of the prior interrupt, then the ISR continues execution until completed,
at which point, if no new interrupt requests have been received, the ISR for the most recent
requested is invoked. If the most recent interrupt is of the same priority as that of the
currently executing ISR then the ISR continues execution and, upon completion, the new
interrupt ISR is invoked.

2. Two interrupts occur contemporaneously. If they are of the same priority, then the
interrupt with the lower index number18 is serviced first. Otherwise the interrupt with the
higher priority is serviced first.

When an interrupt signal occurs, i.e., an IRQ, the pending bit for that line is set, in the
pending register , indicating that an IRQ has occurred, and is waiting. The priority for this IRQ
is read and a determination is made as to when this request should be serviced. The request, and
the associated vector address, are then sent to the CPU. At this point the CPU acknowledges
the request and returns an Interrupt Entry Acknowledgement signal (IRA). When the ISR is
completed the CPU sends and Interrupt Exit Acknowledgment (IRC),

2.2.4.5 Interrupt Vector Addresses

PSoC3 allows the ISR starting addresses to be explicitly specified, i.e., the addresses are pro-
grammable. Thus calling an ISR does not involve a branch instruction and therefore the ability

18The interrupt controller’s 32 input lines are numbered from 0-31 and referred as “index numbers”.

wka
Note
no effect (not not effect)

2.2 PSoC3 Overview 93

Table 2.10: Bit Status During Read and Write

Table 2.11: Pending Bit Status Table

94 Microcontroller Subsystems

to make direct calls to an ISR reduces latency. The programmable ISR addresses are stored in
the 16 bit Vector Address registers, VECT[0. . . 31]19. When writing to these registers, the LSB
must be written first and followed by the MSB. When an IRQ occurs, the respective address is
passed to the CPU for execution of the appropriate ISR.

2.2.4.6 Sleep Mode Behavior

It should be noted that in Sleep Mode, all of the status and configuration registers associated
with interrupts retain their values. However, the Pending and Interrupt Controller stack registers
are set with the “power-on” value at wakeup.

2.2.4.7 Port Interrupt Control Unit

PSoC3 has a Port Interrupt Control Unit (PICU) which interfaces to the GPIO pins and provides
a way to process externally generated interrupts that:

• support 8 pins,

• handle rising/falling/both-edge interrupts,

• interfaces to the PHUB over AHB for reading/writing to its registers,

• does not support Level sensitive interrupts,

• allows pin interrupts to be individually disabled,

• transmits single interrupt request (PIRQ) to the interrupt controller,

and,

• has pin status bits to allow easy determination of the source of the interrupt, at the pin
level.

Figure 2.10: PICU Block Diagram

19There are 32 of these registers , i.e., one for each of the input lines.

2.2 PSoC3 Overview 95

Thus each pin of a port can be independently configured by the interrupt ”type” register con-
trolling each pin, to detect rising edge/falling edge/both edges interrupts. Based on the mode
configured for each pin, when an interrupt occurs, the corresponding status register bit, i.e., the
pin’s status bit, will be set to “1” and an interrupt request sent to the interrupt controller. Each
of the PICU’s has a “wakeup in” input and “wakeup out” out signal. As shown in Figure 2.10,
all of the PICUs are “daisy-changed” together so that a final wakeup signal goes to the power
manager.

2.2.4.8 Interrupt Nesting

PSoC3 supports up to eight levels of “nested” interrupts. Nesting occurs whenever a lower
level interrupt service routine is suspended as a result of the receipt of a higher level interrupt.
Interrupt nesting involves both the CPU stack and the interrupt controller stack(s) which store
the interrupt number and priority. Two upward growing stacks with a depth of eight levels
are maintained by the interrupt controller, viz., STK which stores the interrupt priority and
STK INT NUM which stores the interrupt number.

The CPU stack is used to store the contents of various registers, e.g., the ACC, B, GPR, PC,
PSW and SFR. While the CPU automatically handles pushing and popping of the PC register
to/from the stack, the ISR must store any other required register contents.

2.2.4.9 Interrupts Masking and Exception Handling

Exceptions are predefined interrupts designed to handle various, typically serious, fault conditions
that can occur such as bus fault, memory management fault, program error, etc. PSoC5 provides
support for 15 different types of exceptions and Non-Maskable Interrupts (NMIs). NMIs are not
programmable in the general sense, but rather pre-defined ISRs designed to handle serious system
faults.

Masking is a technique for blocking an interrupt, or group of interrupts, and includes:

• BASEPRI - Specifying a specific priority level in the BASEPRI register are masked, i.e.,
blocked.

• FAULTMASK - setting a bit in the FALUTMASK register blocks all interrupts except for
NMI.

• PRIMASK - setting a bit in the PRIMASK register blocks all interrupts except Hard Fault
(3)and NMI (2).

Exception handling and NMIs are not explicitly supported in PSOC3.

2.2.4.10 Interrupt “Best Practices’

It’s important to exercise care when dealing with interrupts to avoid among other things intro-
ducing unnecessary latencies that degrade the embedded system’s responsiveness. The following
represent some suggested guidelines that are often overlooked in developing program code that
involves interrupts[28]:

1. If a function call occurs in more than one location, e.g., main code and interrupt code, then
it should be declared as reentrant.

2. Calling functions from with an ISR should be avoided in order to minimize pop/push
operations.

wka
Note
should be "daisy-chained"

wka
Note
"within"

96 Microcontroller Subsystems

3. The status register should be read from within an ISR if the interrupt signal is a level shift.

4. ISR’s should involve as little code as possible. (Setting a flag bit in the ISR and then
checking its status from main code can significantly reduce latency)

5. In order for the 8051 (PSoC3) to service interrupts, the global interrupts enable bit (EA)
in the Interrupt-Enable (bit 7 of IE) special function register (SFR 0xA8) must be set.

6. Before enabling an interrupt, the pending bit should be set to avoid unexpected ISR calls.
The interrupt should also be disabled before dynamically changing the vector address and
priority in software. After the configuration has been completed, the interrupt should then
be enabled.

2.2.5 Memory

Up to 8K of Static RAM (SRAM) is employed in PSoC3 for temporary (volatile) data storage
that can be accessed by both the DMA controller and by the 8051. Simultaneous access is also
supported provided that there is no attempt to access the same 4K block. Flash is also used as
nonvolatile memory for firmware, user configuration data, bulk data storage and optional Error
Collecting Codes (ECC) data. Flash memory can be up to 64 Kbytes for storage of user program
space.An additional 8K of Flash memory space is available for ECCs, but if ECCs are not used
then this space is available to store device configuration and bulk user data. However, user code
cannot be run from within the ECC memory space.

Current ECC technology is, in general, quite effective at correcting single bit errors which are
the most common form of error . The ECCs used in PSoC3 are capable of detecting 2-bit errors
in every 8 bytes of firmware memory. If an error is detected an interrupt can be generated to
allow appropriate action to be taken. Flash output is 9 bytes wide with one byte reserved for
ECC data.

2.2.5.1 Memory Security

Maintaining security of proprietary code is often a major concern and embedded controller such
as PSoC3 and PSoC5 have mechanisms for preventing access to, and visibility of, such code
and to prevent reverse-engineering, or duplication, of the intellectual property. Flash memory is
organized as blocks of 256 bytes of program code, or data, and 32 bytes of ECC, or configuration
data. Therefore up to 256 blocks are provided for 64 Kbyte of Flash.There are four levels of
protection that can be assigned to each row of Flash as shown in Table ??. Changing these
levels of protection can only be accomplished by first imposing a complete Flash erase. The Full
Protection mode allows internal reads to occur, but precludes external reads/writes and internal
writes, which among other things prevents loading of code to download the internal code. In
addition a fifth option is available called “Device Security” that permanently disables all test,
programming and debug ports as a further security measure. While there may be no completely
effective method for protecting code, the methods described here do represent the current state-of-
the-art.

2.2.5.2 EEPROM

Byte addressable nonvolatile memory, consisting of 128 rows of 16 bytes each, is provided in the
form of EEPROM that can be erased and written to at the row level and up to 2 KB of user data
can be stored in EEPROM. At the byte level, random access reads can be carried out directly
and writes are accomplished by sending write commands to an EEPROM program interface. It
is not not necessary to suspend CPU activity while EEPROM writes are occurring. However, the

wka
Note
should be "Error Correction Code"

wka
Note
ECC is generally written as singular

wka
Note
"ECC"

wka
Note
is

2.2 PSoC3 Overview 97

CPU cannot execute EEPROM code directly and there is no ECC hardware to secure EEPROM
code integrity. In applications requiring ECC protection for EEPROM code, it is necessary to
do so at the firmware level.

2.2.5.3 Interfacing External Memory

Many embedded system applications employing microcontrollers rely on external memory to meet
a variety of data storage requirements. This usually involves the use of some form of External
Memory Interface (EMIF). This interface makes it possible for the CPU to read from, and write
to, external memories. PSoC3’s EMIF functions in conjunction with I/O ports, UDBs and other
hardware to provide the necessary external memory control and address signals. Eight or sixteen
bit memory can be accessed in a memory space addressable by as much as 24 bits, i.e., 16
megabytes of memory.

The EMIF is compatible with four types of external memory:

1. Asynchronous SRAM

2. Synchronous SRAM

3. cellular RAM/PSRAM

and,

4. NOR Flash

The EMIF provides external memory control signals for synchronous memory, but not for the
other forms of memory. Both 8- and 16-bit external memory can be accessed via either the
XDATA memory space (PSoC3), or the ARM Cortex-M3 external RAM space (PSoC5). EMIF
addresses can be one byte, two bytes or three bytes utilizing one, two or three of the ports
shown in Figure 2.11. These ports are selected by configuring the 3-bit portEmifCfg field in the
PRT* CTL register which allows the least significant and middle byte or most significant byte
of a three byte address to be assigned to a given port. However, the data transferred via the
EMIF is restricted to either two either a single port or two ports. A particular data port can be
selected as the path for either the most or least significant byte of the data. The fourth port is
used to provide control utilizing 3-6 pins on the fourth I/O port. While unused pins on this port
are available for other use, depending on the application, any unused address pins are not to be
used for any other purpose. When the system is in Sleep Mode all of the EMIF registers retain
their respective configurations.

EMIF clocking is derived from the bus clock which also servs as the clock for the PHUB and
the CPU. This signal can be provided, as EM CLOCK, to eternal memory at frequencies either
equal to, one half or one quarter of the bus clock, i.e., the bus clock divided by a factor of 1, 2 or
4. However, the maximum allowable I/O rate for PSoC3 and PSoC5 GPIO pins is 33 MHz. In
addition, the maximum bus clock frequencies are 67 MHz and 80 MHz for PSoC3 and PSoC5,
respectively Therefore in most cases, EM-CLOCK will only be available for external memory at
frequencies lower than the bus clock frequency.

2.2.6 Direct Memory Access (DMA)

As discussed in Chapter 1, minimizing latency is often a primary concern in the design of an em-
bedded system because of the need for it to respond within certain time constraints to anticipated
events and/or conditions. Furthermore, when dealing with data from, for example, a number of

wka
Note
problem with this sentence, should be one byte (8051 and M3) or two bytes (M3)

wka
Note
no capitalization

98 Microcontroller Subsystems

Figure 2.11: EMIF Block Diagram.emi

2.2 PSoC3 Overview 99

sensors, the rate of data collection may be much faster than the CPU’s ability to process it, under
some circumstances. Therefore, the ability to move data to/from an embedded system without
incurring significant CPU overhead can an important concern when trying to minimize latency.

PSoC3 and PSoC5 have integral Direct Memory Access controllers that are capable of:

• memory-to-memory transfers

• memory-to-peripheral transfers

• peripheral-to-memory transfers

• peripheral-to-peripheral transfers

• supporting up to 24 independent DMA channels,

• handling data transfers that can be initiated, stalled or terminated,

• allowing multiple DMA channels, or transaction descriptors, to be chained, or nested, to
perform complex tasks,

• assigning one, or more Transcription Descriptors20 to each DMA channel for complex op-
erations,

• allowing large data transfers to be split into multiple packets, varying in size from 1 to 127
bytes, which can be transferred in “bursts”,

• supporting the triggering of DMA transfers by externally routed, digital signals via GPIO,
by another DMA channel, or by the CPU,

• assigning one if eight priority levels (0 to 7) to each DMA channel.

• supporting up to 128 Transcription Descriptors, inclusive,

and,

• generating an interrupt (nrq) when a data transaction (DMA transfer) has been completed.

One technique for handling such requirements is to employ a combination of a DMA controller
and a high performance bus over which peripheral access occurs and bulk data transfers, referred
to as DMA transfers, take place and an associated controller. The PHUB is a combination of
high speed bus, arbiter, router, and DMA controller together with radiating “spokes” each of
which connects to a peripheral, as shown in Figure 2.12. The bus ports support 16, 24 and 32 bit
addressing modes. Since both the CPU and DMA controller (DMAC) can initiate block transfers,
the arbiter determines how such transfers are to be handled21. Spoke numbers, the number of
peripherals supported by each, the spoke address widths and spoke data width are tabulated in
Table 2.12.

Both the CPU and DMAC can act as masters and can initiate transactions on the bus. In the
event that multiple requests occur, the arbiter in the central hub determines which DMA channel
has the highest priority. If a higher priority transaction request occurs while a lower priority

20Transaction descriptors contain information regarding the transfer of data, e.g., source address, destination
address, and number of bytes to be transferred and enable Termout signals after the transfer has been completed.

21The DMA controller cannot directly access SRAM memory locations from . However, it can access memory
in the range from 0x20008000 to 0x000FFFF. Therefore it is necessary to add 64k to the starting address to allow
the DMA controller to access locations 0x1FFF8000 to 0xFFFFFFF.

wka
Note
missing word

100 Microcontroller Subsystems

Figure 2.12: Block diagram of PHUB.

2.2 PSoC3 Overview 101

transfer is occurring, the lower priority transfer can be interrupted.The primary configurations
of the PHUB are the number of DMA channels and spokes. The PHUB’s architecture allows the
CPU and DMAC to simultaneously access peripherals located on different spokes.

The PHUB employs two local memories referred to as CFGMEM and TDMEM, respectively.
CFGMEM serves as the channel configuration memory which stores information for each record
defined as CH[n] CONF0/1 with one 8 byte set of each per channel with the result that CFGMEM
is sized as 8 bytes x the number of DMA channels. CFGMEM is configured as an x64 memory
to allow all 8 bytes of a CHn CONFIG0/1 set to accessed on a single cycle to maximize DMA
processing efficiency. TDMEM stores the transcription descriptor chains for a given channel and
contains the DMAC instructions required for a DMA transfer via the channel. spokesSuch chains
are considered as TDs, 8 bytes wide with a maximum of 128 TDs in TDMEM. The allocation
of of TD chains is based on a given sequence that the DMA channel requires and in a maximal
configuration. TDMEM can be a maximum of 8 bytes x 128 TDs, or 1 KB. If multiple bursts
are required, the DMAC must keep track of where it was when it completed the last burst,
while interleaving other channels’ bus access. The intermediate TD states can stored either on
top of CH(n) ORIG TD0/0 of the TD chain, or in CH[N] SEP TD0/1 to allow the chain to be
preserved.

Table 2.12: Spoke Parameters

The DMA controller has five semi-independent functions that operate, in parallel, in a pipelined
manner:

1. ARB - arbitrates between the various DMA requests regarding the DMA channels,

2. DST - handles data bursting via the Destination Spoke (DST)

3. Fetch - causes the transaction desciption (TD) and configuration (CONFIG) for a channel
to be fetched when a channel wins arbitration,

4. SRC - causes data bursting on the Source (SRC) spoke for the channel,

5. WRBAK - the updated TD and CONFIG information is written back to their respective
locations when the burst for a channel has ben completed.

102 Microcontroller Subsystems

2.2.7 Spoke Arbitration

The CPU and DMAC can access all of the spokes except for SPK0, which is the SYSMEM spoke,
provided that they do not attempt to access the same spoke, contemporaneously. When the
CPU and DMA are using different spokes there is no conflict. However, should the CPU and
either the DMAC or the DST engines attempt to access the same spoke, the DMAC is required
to allow the CPU to access the spoke first. The results of arbitration are a function of 1) the
spoke’s priority, 2) which attempted access first, 3) did both attempt access at the same time,
and 3) whether the spoke in question is a CPU or DMA priority spoke which is determined by
SPKxx CPU PRI(CFG 15:1). If the DMA engine is waiting for the CPU to finish its use of a
spoke, it can still be subject to interruption by a higher priority DMA channel initiating the
following sequence of events:

• The interrupted DMA channel completes any data in transit as may be required when it
gains access to the spoke(s).

• The state of the channel is then saved by the DMA WRBACK function and the AUTO RE REQ
bit for than channel is set. The setting of this bit results in the channel being returned to
the DMA request pool subject to the normal arbitration rules.

• When that channel again has access to the DMAC, it simply resumes the “burst” where it
left off.

While single requests are given immediate access, multiple requests must be subjected to arbi-
tration subject to the following guidelines:

• PRIO is the highest priority and therefore not subject to arbitration.

2.2.8 Priority Levels and Latency Considerations

As mentioned previously DMA channels of higher priority can interrupt lower priority DMA
transfers, i.e., those with a lower priority number, subject to the constraint that the lower priority
transfer is allowed to complete its then current transaction. In cases for which multiple DMA
access requests have occurred, a “fairness” algorithm is employed to minimize latency. This
algorithm requires that the priority levels 2-7, inclusive, have at least some minimum percentage
of the bus’s bandwidth. If two requests are tied, then a simple round-robin method is employed
to allow each to share half of the allocated bandwidth. However, this technique can be disabled
for any of the DMA channels to allow that channel to always have priority. Table 2.14 shows the
minimum bus bandwidth allocated for each priority level, once the CPU and DMA transactions
of priority 0 and 1 have been completed. If the fairness algorithm has been disabled, then
DMA access is based solely on their respective priority levels and without minimum bandwidth
constraints.

2.2.9 Supported DMA Transaction Modes

The ability to chain transactions and the flexibility available in configuring each DMA channel;
makes it possible to support simple, relatively complex and highly complex transaction modes,
e.g.:

• Auto Repeat DMA - The same memory contents are repeatedly transferred.

• Circular DMA - Multiple buffers and TDs are employed with the last TD chained back
to the first TD.

2.2 PSoC3 Overview 103

Table 2.13: Peripheral Interfaces to PHUB

104 Microcontroller Subsystems

Table 2.14: Priority Level vs. Bus Bandwidth

• Indexed DMA - This technique allows an external master to access locations on the
system bus as if they were in shared memory.

• Nested DMA - Since the TD configuration space is memory mapped, one TD can modify
another, e.g., a TD loads another TD’s configuration and then calls that TD, when the
second TD’s transaction is complete, it then calls the first, which updates the second TD’s
configuration, with this cycle repeating as often as required.

• Packet Queuing DMA - packets are employed with specific protocols employing separate
configuration, data and status phases for the transmission and receipt of data.

• Ping-Pong DMA - Double buffering is used to allow one buffer to be filled while the
contents of the other are being transferred.

• Scatter Gather DMA - a transaction involving multiple, noncontiguous sources and/or
locations for a given DMA transaction.

2.2.10 PSoC3’s Clocking System

PSoC3’s clocking generator provides the main/master times bases and allows the designer to
make tradeoffs between accuracy, power and frequency. A broad range of clock frequencies are
available due to the ability to accommodate multiple clock inputs and employ PSoC3’s highly
configurable internal clock distribution system. Table 2.15 provides a summary of the clock
naming conventions.

PSoC3’s internal clock generator can use internal/external clock sources22, as shown in Figure
2.13, in the kHz and MHz range and input from Digital System Interconnects (DSI)23 and an
internal Phased-Locked Loop (PLL) can also be used for frequency synthesis.

In addition to support for multiple clock sources, there are eight individually sourced, 16-bit,
clock dividers for the digital system peripherals, four individually sourced 16-bit dividers for the
analog system peripherals and a dedicated 16-bit divider for the the bus clock.

22External clocks sources such as crystal oscillators are often used.
23DSI can provide clock signals created in UDBs, of-chip clocks routed through I/O pins and clock signals from

the systems clock distribution resources.

2.2 PSoC3 Overview 105

Table 2.15: Clock Naming Conventions.

106 Microcontroller Subsystems

Figure 2.13: PSoC3 Clocking System

The primary clock sources consist of the following:

1. A fixed 36 MHz clock that routes to SPC,

2. A 4-33 MHz crystal oscillator,

3. A 3-67 MHz Internal main oscillator (IMO),

4. 12-67 MHz Doubler output source form from the IMO, MHz external crystal oscillator
(MHzECO) or Digital System Interconnect (DSI),

5. 1 kHz, 33 kHz and 100 kHz Internal Low speed Oscillator (ILO),

and,

6. Digital System Interconnect from an I/O pin or other logic. 12-67 MHZ fractional Phase-
Locked-Loop (PLL) driven by the IMO, MHzECO or DSI

If required, the internal PLL24 can be used to synthesize frequencies in the range from 12-100
MHz. The PLL’s input can be from IMO, a MHz crystal oscillator or from a DSI signal. As
shown in Figure 2.14, the Master Clock Mux selects the IMO, DSI, PLL or MHz crystal oscillator
as the primary clock source. Note that it is also possible to independently control the phase of
the primary clock source for both digital and analog clocks, respectively. This arrangement also
make it possible to change the clock source for the primary clock in multiple systems.

24An integral PLL prescaler(Q) and PLL divider (P) can be used to create clocks that are P/Q times the PLL’s
input frequency.

2.2 PSoC3 Overview 107

Figure 2.14: Clock distribution network for PSoC 3 and PSoC 5.

108 Microcontroller Subsystems

2.2.10.1 The Internal Master Oscillator (IMO)

The IMO produces a stable clock frequency without the use of any external components and con-
tains a doubler circuit that provides an output that is twice the frequency of the IMO frequency,
i.e., 6 to 24 MHz. However, the IMO output can be either the IMO’s frequency or double that
frequency, but not both.

Alternatively, other clock sources can be routed through the IMO, as shown in Figure 2.15,
e.g., a DSI or MHz crystal oscillator output and hence through the IMO doubler25. As shown,
IMO2X SRC(PSoC3) selects either DSI or XTAL\CLK as a source for the clock signal. Thus DSI,
XTAL or OSC (3,6,12,24,48 or 92 MHz) can then be selected by the clock mux (as determined
by the (CLKDIST.CR) IMO OUT register) following which the resulting clock signal (clk imo)
may be IMOCLK, IMOCLKX2 or 36MHz26.

Figure 2.15: PSoC3’s Clock Distribution System

The IMO block employs a precision input voltage and current to charge a capacitor from
ground to a reference voltage. An integral comparator senses when a predetermined threshold
voltage is reached and causes the charging cycle to repeat, between two capacitors, resulting in
a pulse on each edge of the input clock and producing a clock frequency which is two times the
input clock. (The AHB interface and registers for the IMO are implemented in the FAST Clock
interface, i.e., logic for PLL, IMO and external oscillator).

2.2.10.2 Trimming the IMO

The IMO has provisions for ”trimming” the clock frequency in terms of both gain and offset.
The offset trim step size is determined by the gain setting. Factory trim settings are provided
for the proper 24 MHz setting, since this frequency is used for USB operation. For non-USB

25To reduce power consumption the doubler can be disabled.
26This clock signal (36MHz) is routed to SPC and available to clock distribution only in test mode, that is it

is not available in user mode. Its accuracy is approximately 10%.

2.2 PSoC3 Overview 109

operation the gain should be fixed to reduce power requirements. It is recommended that the
gain setting employed be the same as the setting for 24 MHz. If it is necessary to change ranges,
the offset trim should be loaded first at the lower frequency range, i.e., when moving to a higher
frequency range, apply the new offset value and then change the range. Conversely when moving
to a lower frequency range, change the range and then apply the new offset. Note that range and
trim values take effect immediately.27

The ability to trim the frequency allows automatic “Clock-Frequency Locking” for USB operation
to be employed so that small frequency variations of incoming USB signals can be corrected by
comparing the incoming USB timing (frame markers) to the IMO clock rate28. Alternatively, a
crystal controlled clock operating at 24 MHz “doubled” to 48 MHz could be used for Full Speed
USB operation, or other crystal controlled frequencies could be employed in conjunction with the
PLL to synthesize 48 MHz.

2.2.10.3 Fast-Start IMO

The IMO can also be operated in the Fast-Start IMO (FIMO) mode which is activated when
“waking up” and provides a clock output within 1 microsecond after exiting the power down
mode. In this mode the clock frequency is 48 MHz with an accuracy of about 10% of the primary
IMO mode. The FIMO mode is selecting by setting the FASCLK IMO CR[3] bit in the IMO.CR
register which cause the IMO clock to be replaced at the next wake-up. The FIMO mode is
deselected by clearing the fimo bit resulting in the IMO clock replacing the FIMO in the next
wake-up

2.2.10.4 Internal Low Speed Oscillator

The Internal Low Speed Oscillator (ILO) generates two independent clock frequencies, one at
1 KHz and the other at 100 KHz, respectively, neither of which require external components,
as shown in Figure 2.16. In addition to operating independently of each other, they are not
synchronized to each other and can be enabled/disabled independently or simultaneously. The
1 KHz clock is typically deployed as a ”heart beat” timer and for the watchdog timer. The 100
KHz clock serves as a low power system clock and can be used to time sleep mode entry/exit
intervals. Finally, a third clock frequency which is derived by applying “divide-by-three” to the
100 KHz clock. The power required, in terms of current, is in the 100nA to 1μA range, with an
accuracy of .20% and 300μs start-up time.

2.2.10.5 Phase-Locked Loop

The PLL is capable of producing synthesized frequencies in the range of 12-67 MHz. The PLL
uses a 4-bit input divider Q (FASTCLK PLL Q) to divide the reference clock, selected by the
Mux as the IMO, an external crystal oscillator, or the DSI (an external clock signal) and an
8-bit feedback divider P (FASTCLOCK PLL P) to divide the output as shown in Figure 2.17.
The outputs of the two dividers are compared by the phase frequency detector (PFD). The PFD
compares the phase and frequency difference between the two signals to determine whether the
signal fed back from the output is leading or lagging the reference signal Fref defined by Equation
2.1. The PFD drives the output frequency, via “Up” or “Down” signals, either higher, or lower,
as required and then it is “locked” producing an output frequency that is P/Q times the input
reference clock. This PLL is capable of locking frequency within 10μ seconds, and once lock

27The clock may exhibit one cycle of slight variation.
28This will require, however, that the IMO frequency be 24 MHz and that the doubler be used to provided 48

MHz

110 Microcontroller Subsystems

has been achieved a bit (FASTCLK PLL SR[0]) is set and at that point the output frequency is
available for distribution to the clock trees.

Thus:

Fref =
Fin

Q
(2.1)

clk pll = FV CO = Fref (P) =

[
Fin

Q

]

P (2.2)

Figure 2.16: Internal design of the PLL.

In low power operation, during sleep and hibernate modes, the PLL must be disabled to allow
“clean entry” into these modes of operation. Following wakeup and lock, the PLL can be enabled
so that it can serve as the system clock. PSoC3/5 will not enter sleep or hibernate mode as long
as the PLL remains enabled.

2.2.10.6 External 4-33 MHz Oscillator

Precision clock signals in the range from 4-33 MHz can be employed by adding an external
fundamental mode, parallel resonance crystal and two capacitors as shown in Figure 2.18. The
pins used for this purpose can also be used with standard I/O functions, e.g., GPIO, LCD and
analog global, thus they must be tri-stated when used with an external crystal. The resulting
signal is routed to the clock distribution network and may be routed to the IMO doubler, if the
crystal frequency is in valid range for the doubler, i.e., less than, or equal to, 24 MHz. While this
configuration is compatible with a wide range of crystals, crystal starup times are a function of
crystal resonant frequency and quality. Oscillator settings can be matched to a given crystal by
setting the xcfg bits of the FASTCLK XMHZ CFG0[4:0] register. The oscillator is enabled by
FASTCLK XMHZ CSR[0].

Should the crystal oscillator fail, e.g., due to the adverse effects of moisture, or for some other
reason, it is is possible to detect this condition by checking the clock error status bit,
FASTCLK XMHZ CSR[7]. If the FASTCLK XMHZ CSR[6] bit is set and the crystal oscillator
fails, then the crystal oscillator output is driven low and the IMO is enabled, assuming that
it is not already running, and the output of the IMO is routed through the crystal oscillator
output mux. Thus the system can continue to operate in the event of a crystal fault. When
the system is in SLEEP/HIBERNATE mode, it is not necessary to allow the crystal oscillator
to continue running and therefore consume power. The 32 kHz oscillator can be kept active if

2.2 PSoC3 Overview 111

Figure 2.17: 4-33 MHz crystal oscillator.

precise timing is required, e.g., for the Real Time Clock (RTC). However, it is not possible to
enter the SLEEP/HIBERNATE mode when the MHz crystal oscillator is running. One approach
is to switch clock trees to the IMO source, and then disable the MHz crystal oscillator and the
PLL, if it is active. It is then possible to enter a sleep mode. When the system wakes up from a
sleep mode, the MHz crystal oscillator, and if necessary the PLL, can be enabled and employed,
once stability has been achieved.

2.2.10.7 External 32 MHz Crystal Oscillator

The 32 MHz oscillator, kHzECO, utilizes a low cost, external crystal (32.768 kHz) and external
capacitors to produces a precision timing signal, and serve as the basis for a real time clock
operating at very low power, i.e., current levels less than 1μA. The resulting timing signal,
clk eco Khz, is routed to the clock distribution network within PSoC3 and serves as a clock
source for the clock distribution logic and the Real Time Clock (RTC) timer. Enabling/disabling
of the kHzECO is accomplished by setting/clearing SLOWCLK X32 CR[0]. This oscillator can
operate at one of two power levels, depending on the state of the LPM bit, SLOWCLK X32 CR[1],
and the sleep mode status of the system.

The default mode is “Active” for the kHzECO and a hardware interlock forces the oscillator
into its high power mode. which consumes 1-2 μA and minimizes noise sensitivity. Assuming
that the LPM bit is set for low power mode, the oscillator only operates at low poer when the
system when the system is in SLEEP/HIBERNATE mode. However, if LP ALLOW (SLOW-
CLK X32 CFG[7] is set, the oscillator enters low power mode immediately when the LPM bit is
set.

It should be noted that this oscillator is not stable when activated, and therefore some time
is required for it to achieve stability. The DIG STAT status bit, SLOWCLK X2 CR[4], indi-
cates that oscillation is stable by comparing it to the 33 kHz ILO signal. The ANA STAT bit,
SLOWCLK X32 CR[5], use an internal analog monitor to measure the oscillator’s amplitude.29

2.2.10.8 Implementing A Real Time Clock

Many embedded systems require the availability of a real time clock to time events, record time,
data logging, etc. The kHzECO oscillator can be used to provide real time clock functionality
by dividing the kHzECO signal by 32,768 to produce one pulse per second which in turn can be

29To avoid excessively long startup times before stability is achieved it is a good practice to start the oscillator
in high power mode.

wka
Note
32 KHz; please check all occurrences

112 Microcontroller Subsystems

used to generate interrupts at one second intervals, update counters, etc., unless the system is in
HIBERNATE mode.

2.2.10.9 Clock Distribution

The clock sources discussed previously produce signals that can be made available to other PSoC
resources through the clock distribution logic within PSoC3 by routing them through analog
and digital clock dividers. Some peripherals require specific clocks for their operation, e.g., the
Watchdog Timer (WDT) requires the ILO. Clock distribution is facilitated by the use of clock
trees. PSoC3 has four such trees for clock distribution, viz.,

1. Analog Clock tree

2. Digital Clock tree

3. System Clock tree

and,

4. USB clock tree

Eight dividers for the digital clock tree and four analog dividers for the analog clock tree are
provided as part of the clock distribution system, as shown previously in Figure 2.14. Clock
sources in each case are selected by an eight input mux for connection to the dividers and the
outputs of the dividers are synchronized with their respective domain clocks. Distribution of sync
clocks is facilitated by the Master Clock Mux and there are options that provided delay for the
digital synch clock. All of the digital dividers are synchronized to the same digital clock, but the
analog dividers can each be synchronized to their respective analog clock with different, or the
same, delays.

Figure 2.18: Master Clock mux.

The Master Clock Mux (MCM), shown in Figure 2.20, selects a clock from the available
inputs, viz., PLL, IMO, ECO MHz or DSI. The output of this mux becomes the source that is
supplied to the phase mod circuit to produce skewed clocks selected by the digital and analog
phase mux blocks. The MCM provides two re-sync clocks for the system: clk sync dig, for the
digital clocks, and clk sync a for the analog system clocks. The Master clock, which is always
the fastest clock in the system, is also the basis for switching the clock source for multiple clock
trees simultaneously. Clock trees select the clk sync dig or clk sync a clock as their input for

2.2 PSoC3 Overview 113

systems that must maintain known relationships. An 8 bit divider is provided to make it possible
to generate lower frequencies clocks, CLKDIST MSTR0[7:0].

2.2.10.10 USB Clock Support

The advent of the now ubiquitous Universal Serial Bus (USB) has resulted in increasing support
for it at the microcontroller level. PSoC3 provides the USB logic a synchronous bus interface
while allowing that logic to operate asynchronously to process USB data.

The USB clock mux, shown in Figure 2.19, can be used to select the USB clock source as:

• imo1x

– The 48 MHz DSI clock is subject to the accuracy of the clock.

– Since the oscillator cannot operate at 48 MHz and therefore imo1x must be multiplied
by the PLL to get 48 MHz.

• imo2x

– 24 MHz crystal with doubler.

– 24 MHz IMO and doubler with USB lock.

– 24 MHz DSI with doubler.

• clk pll

– Crystal and PLL to generate 48 MHz.

– IMO and PLL to generate 48 MHz.

– DSI input and PLL to generate 48 MHz.

• DSI input

– 48 MHz.

Figure 2.19: The USB clock mux.

114 Microcontroller Subsystems

If the internal main oscillator is selected, the oscillator locking function must be used to allow
it to develop the required USB accuracy for USB traffic.This automatic clock frequency locking
facility allows small frequency adjustments based on the incoming frame marker timing with
respect to the IMO frequency. This type of clock frequency locking allows the clock frequency
to stay within ±0.25% with respect to accuracy for the USB full speed mode.The locking mode
is enabled by setting the FASTCLK IMO CR[6]. It is also possible to use a 24 MHz crystal
controlled clock which is subsequently doubled to 48 MHz for full speed USB operation. Another
option is to use other frequencies, e.g., 4 MHz, with the PLL to synthesize 48 MHz. In addition
to the clk imo option, the DSI signal, dsi glb div[0], can also be employed.

2.2.11 Clock Dividers

Clock dividers are an integral and important aspect of the clock distribution system. In ad-
dition, they also provide some control over the duty cycles. It is possible to to generate a
single cycle clock pulse. A 50% duty cycle mode produces a clock with approximately a 50%
duty cycle. A divider reloads its divide count after it reaches a terminal count of zero. The
divider count is set in the CLKDIST DCFG[0..7] CFG0/1 register for digital dividers and the
CLKDIST ACFG[0..3] CFG[0..3] CFG0/1 register for analog dividers. The counter is driven by
a clock source selected by an 8-bit mux controlled by CLKDIST DCFG[0..7] CFG2[2:0] for digital
dividers and CLKDIST ACFG[0..7] CFG2[2:0] for analog dividers, in either a single-cycle pulse
mode, or a nominally 50% duty cycle mode.

Regardless of the mode selected, a divide by zero causes the divider to be bypassed, resulting
in a divide by one, and the input clock is applied to the output after a resynch, assuming that
the sync option has been previously selected. If the loaded value is M, then the total period for
the output clock is given by:

N = M + 1 (2.3)

The CLKDIST DCFG[x] CFG2[4] or CLKDIST ACFG[x] CFG2[4] bit in the configuration
register for each clock output is set high to enable the 50% duty cycle mode. However, it may
not be possible to provide a 50% in all cases, because of dependencies on phase and frequency
differences between the sync clock and the output clock.

2.2.11.1 Clock Phase

Another important clock parameter is phase. In addition to two duty cycle choices the out-
puts can be phase-shifted to go high after the terminal count, or at the half-period cycle. The
default mode is known as “Standard Phase” and refers to the rising edge of the output, after
the terminal count. Alternatively, “Early Phase’ refers to the output being effectively shifted to
an earlier point in time to an approximate count that is one half of the divide value. Setting
the CLKDIST DCFG CFG2[5] or CLKDIST ACFG CFG2[5] bit in the configuration register for
each clock will enable the Early Phase mode and the rising edge will occur near the half count
point. While analog clock dividers are architecturally similar to digital dividers, they have an
additional resync circuit to synchronize the analog and digital clocks. Synchronizing the digital
and analog clocks facilitates communications between the digital and analog domains.

2.2.11.2 Early Phase

The clock outputs can also be phase-shifted by requiring them to “go high” after the terminal
count or at the half-period cycle. The phrase “Standard Phrase” refers to the the rising edge of the
output to occur after the terminal count. The Early Phase option allows the output to be viewed

wka
Note
Extra "to: in sentence'; also not clear what sentence means; single cycles implies some sort of one-shot behaviour

2.2 PSoC3 Overview 115

as having been shifted to a point earlier in time for an approximate count that is one-half of the
divide value. The Early Phase Mode can be invoked by setting the CLKDIST DCFG CFG2[5]
bit, so that the rising edge occurs near the half-count point. While analog dividers are similar
to digital dividers, they have an additional resynch circuit to synchronize the analog clock to
the digital domain clock, thereby synchronizing the output of the analog dividers, called clk ad,
with the digital domain.

2.2.11.3 Clock Synchronization

Each of the clock trees can be set for one of the following options, with respect to output clocks:

• Bypassed clock source - If the divider value is set to zero and the synch bit is reset,
The clock tree’s selected source is routed to the output without division and results in an
asynchronous clock.

• Phase-Delayed clk sync, e.g., as clk sync dig - The tree operates at the same frequency
as clk sync but with the appropriate phase. In this case, the input clock source is ignored.

• Resynchronized clock - Activating the sync bit causes a clock at clk sync/2 maximum
frequency to be resynchronized by the phase-delayed clk sync.

• Unsynchronized divided clock - This clock is asynchronous and occurs when the synch
bit s reset, and the divider has a non-zero value.

2.2.12 GPIO

Modern microcontrollers make extensive use of buses which are analog or digital transmission
paths, typically consisting of multiple conducting paths grouped together to facilitate digital
and analog signal transmission, e.g., memory access depends critically upon the availability of
high speed data and address buses to allow program code an data to move quickly and efficiently
between , e.g, the CPU and RAM. Similarly buses are also needed for internal peripherals to allow
communication to take place peripheral-to-peripheral, peripheral-to-CPU, CPU-to-peripheral,
CPU-to-I/O, etc. Bus design varies, but they are typically a minimum of 8 parallel paths in width.
Care must be taken in laying out such paths to assure that the electrical path length is the same
for each path in a given bus, particularly as the speed of allowable bus traffic is increased. Since
a large number of devices may have access to the same bus, tri-stating techniques, as described in
Chapter 1, are often used to make sure that bus performance isn’t degraded, to avoid collisions
and to simplify bus use.

PSoC3 and PSoC5 make extensive use of buses and particularly of the analog interconnect,
digital interconnect and system bus. The system bus allows traffic to be moved between the
CPU, Memory and debug facilities and the digital/analog systems. The system bus is also used
by the system wide resources. Routing of data along bus paths is also a common requirement and
analog/digital multiplexers, and switches, are used to determine how bus traffic is to be routed.

Switches are functionally quite similar to multiplexer, since they are both based on analog
switches, except for the fact that in the case of a multiplexers, while there may be “n” inputs
there is only one connected to the output at any give time. However in the case of a switch,
it is possible to have zero to “n” inputs connected to output at any given time. This is an
important distinction and it should also be noted that in the case of a multiplexer fewer bits are
required to connect an input to an output than is the case for a switch when both have the same
number of inputs30. PSoC3 and PSoC5 have several analog routing resources, e.g., local analog

30For example, selecting one of 8 inputs requires only three bits for a multiplexer and eight bits for a switch

wka
Note
s

116 Microcontroller Subsystems

buses (abus), global analog buses (AGs), analog mux buses (AMUXBUS) and an LCD bias bus
(LCDBUS). The analog globals and AMUXBUS connect to the GPIO’s and provide a method
of interconnecting GPIOs and the analog resource blocks (ARBs) such as DACs, comparators,
switched capacitors, CapSense, Delta Sigma ADC and OpAmps. A voltage reference bus (Vref)
that provides precision reference voltages for the ARBs that are created by the precision reference
block which is capable of generating precisions voltages and currents that are not a function of
temperature.

Each GPIO pin can be connected to analog global path by use of a switch and it is possible
to connect two pins on each port to the same global path. The analog global bus provides
interconnection options via muxes and switches to the inputs/outputs of the following ARBs
for I/O: CapSense (a virtual block), comparator, DAC, Delta Sigma ADC and Output buffer.
Each GPIO pin has two analog switches, one to connect the pin to analog global and the other
to connect to the AMXBUS. The control signals required to open, or close, these switches are
invoked either by using the PRT[x] AMUX and PRT[x] AG registers which is the default option,
or dynamically by using the DSI control that is connected to the input of the port pin logic block.
However, before using the latter option, it is necessary to set a bit in the Port Bidirection Enable
register, i.e., PRT[x] BIE.

There are nine input/output ports consisting of seven General Purpose I/O (GPIO) ports, one
SIO and one mixed-function port. This allows digital input sensing, output drive, pin interrupts,
connectivity for analog input/output, LCD and access to internal peripherals to be supported
directly via defined ports, or the UDB Individual I/O channels are arranged in groups of eight
bits, or pins, and defined as the respective “ports”.

wka
Note
Page 2 says AGB; AG may be better

2.2 PSoC3 Overview 117

Figure 2.20: GPIO Block Diagram

118 Microcontroller Subsystems

2.3 Power Management

Power management in any embedded system is an important consideration in terms of main-
taining the proper power levels, minimizing power consumption, proper distribution of power,
minimizing noise and its effects in the supply lines, etc. PSoC3 and PSoC 5 maintain separate
external analog and digital supply pins for the internal core logic. Two internal 1.8 voltage reg-
ulators are used to provide Vccd for digital and Vcca for the analog circuitry. A sleep regulator
is also maintained for operation in the sleep domain, an I2C regulator for powering I2C logic
and a hibernate regulator for supplying“keep-alive” power to assure state retention when the
system is in a hibernate mode. External connection the internal power distribution systems are
made via pins labelled Vdda , Vddd and Vddiox for the analog, digital and and I/O power systems,
respectively. Capacitors are required, as shown in Figure 2.22, preferably placed as physically
close to their respective pins as possible. The capacitors are provided to minimize external power
supply transients and to minimize adverse load effects. The digital and analog regulators are
referred to as “active domain” regulators since they enter low power modes of operation in sleep
mode. The sleep and hibernate regulators provide the necessary power when the system enters
its lowest power consumption modes.

Figure 2.21: Power Domain Block Diagram

2.3.1 Internal Regulators

When operating in regions for which external power supplies provide voltages that range from
1.95-5.55 volts, the internal regulars draw power from these external supplies via the Vddd and

wka
Note
allowing address detection and wake-up while asleep

2.3 Power Management 119

Vcca pins. If the external power supply is delivering voltage in the 1.71-1.95 range, the internal
regulators remain powered, by default, after power-up. However, register PWR-SYS.CR0 should
be used to disable these regulators, after power-up, in order to minimize power consumption.

2.3.1.1 Sleep Regulator

When the system is in sleep mode, a sleep regulator provides a regulated voltage,Vsleep, for
the 32kHz ECO, Central Timewheel (CTW), Fast Timewheel (FTW), ILO, , RTC Timer and
watchdog time (WDT). The Hibernate regulator supplies keep-alive power, VpwrKA, to those
domains responsible for state retention during hibernation.

2.3.1.2 Boost Converter

PSoC3 and PSoC5 are capable of operating from voltage supplies over the range from 1.7 to
5.5 volts. However, external supplies may not be able to maintain a constant voltage to the
system under some circumstances, e.g., systems using external supplies in the form of batteries
can experience a wide variance in supply voltage as the battery system discharges, or as in the
case of solar cells, the ambient illumination varies. Therefore PSoC3/5 have an integral boost
converter that is capable of accepting input voltages over a wide range, e.g., as low as 0.5 volts
and producing a constant output voltage at the required power levels. The internal converter
requires an input voltage, an external inductor and external capacitors, , unless the external
voltage is greater than 3.6 volts, in which case an external Schotty diode31 is also required. In
addition to being able to provide voltage for internal use, an external pin, VBoost, is provided for
driving voltages for external devices, e.g., an LCD.

PSoC3/5’s boost converter can be disabled, or enabled, by setting, or resetting, the
BOOST CR1[3] and the output voltage can be changed by writing to the BOOST CR0 [4:0]
register. At startup the boost converter is enabled and by default the output voltage setting is
1.8V. If the boost converter is not to be used, then Vbat should be “tied to ground” and the IND
pin should be left floating.

The following C language, code fragment illustrates how to start the boost converter, set its
operating frequency at 100 kHz, and then stop it.32:

#include <device.h>
void main()

{
Boostconv 1 Start();
BoostConv 1 SelFrequency(BoostConv 1 SWITCH FREQ 100KHZ);
BoostConv 1 Stop();

}

As shown in 2.24, when the boost converter’s MOSFET is conducting, the voltage across the
inductor is:

Vinput = VL = L
di

dt
(2.4)

31Schotty diodes are named for Walter H. Schotty a German physicist (1886-1976) whose work led to the
development of the hot carrier diode, also known as the Schotty diode. It has the important property that when
conducting, the voltage drop across the diode is significantly lower than most diodes, viz., 0.15-0.45 volts versus
0.7-1.7 volts.

32Note thst the Boost Converter is by default “Active” when the system powers up

wka
Note
1.89 (1.8 +/- 5%)

120 Microcontroller Subsystems

Figure 2.22: The Boost Converter.

Figure 2.23: Boost Converter current flow characteristics.

wka
Note
No clear how Vinput and Voutput relate to volages in Fig 2.22; need to show correspondence

2.3 Power Management 121

and therefore,

diL
dt

=
Vinput

L
= constant (2.5)

The duty cycle is given by:

Duty Cycle =
T0

T
= D (2.6)

and therefore,

T0 = DT (2.7)

Equation 2.5 implies that33,

diL
dt

=
ΔiL
Δt

=
ΔiL
DT2

(2.8)

and thus:

[ΔiL]on =
VinputDT

L
(2.9)

When the MOSFET is not conducting (MOSFET-Off state),

VL = Vinput − Voutput = L
diL
dt

(2.10)

and therefore,

diL
dt

=
Vinput − Voutput

L
=

ΔiL
Δt

=
ΔiL

(1 − D)T
(2.11)

so that,

[ΔiL]
off

=
(1 − DT)(Vinput − Voutput)

L
(2.12)

But,

[Δi]off + [Δi]on = 0 (2.13)

and thefore,

VinputDT

L
+

(1 − D)T (Vinput − Voutput)
L

= 0 (2.14)

so that,

Voutput =
Vinput

(1 − D)
(2.15)

Therefore when the MOSFET is conducting, energy is being stored in the inductor’s mag-
netic field and the capacitor is supplying power to the load. Conversely, when the MOSFET is
not-conducting, the energy supplied to the inductor, plus the additional input energy, is being
supplied to the load and capacitor. It should be noted that in deriving Equation 2.15, that the
inductors resistance, the diode’s resistance and forward conducting voltage were assumed to be
negligible and that the MOSFET functioned purely as a switch with insignificant resistance when
conducting.

33Some will undoubtedly find the use of Δt and dt in the same expression disturbing, as well they should.
However, this transgression does not adversely affect the calculation, or its conclusion.

wka
Note
What is T2 ?

122 Microcontroller Subsystems

2.3.1.3 Boost Converter Operating Modes

The boost converter can operate in one of three modes that are determined by the BOOST CR0[6:5]
register:

1. Active - In this mode the Boost regulator produces a regulated output voltage from a
battery. The switching frequency of the Boost Converter is selected by the BOOST CR[1:0]
register. The available switching frequencies are 100kHz, 400kHz and 2MHz but are not
synchronous with any other clock, i.e. these frequencies are “free running”.

2. Standby- In the standby mode, only the band gap and comparators are active and other
systems are disabled to reduce the power consumed by the Boost Converter.The Boost
Converter’s output voltage monitored continuously and supervisory data is available in
BOOST SR[4:0]. The supervisory data is referenced to the selected voltage.

3. Sleep - In this mode except for the band gap, the comparators and other circuits are turned
oof. In this mode the output of the boot converter is a very high impedance, and the active
circuits are powered by the energy stored in the 22μ capacitor. Over a prolonged period,
the voltage across the capacitor will decay. This can be handled in some cases by awakening
the system and recharging the capacitor.

Figure 2.24: Boost Converter register functions.

2.3.1.4 Monitoring Booster Converter Output

The status register BOOST SR contains information regarding the input and output voltages
of the boost converter referenced to the nominal voltage setting. The BOOST SR[4:0] register
provides the following status information:

1. Bit4: ov - above over-voltage threshold (nominal + 50 mv)

2. Bit3: vhi - above the high regulation threshold (nominal +25 mv)

3. Bit 2: vnom - above nominal threshold (nominal)

4. Bit 1: vlo - below low regulation threshold (nominal to 25 mv)

5. Bit 0: uv - below under-voltage limit (nominal to 50 mv)

2.4 PSoC3 Debugging 123

2.3.1.5 Monitoring Voltages

Two circuits, shown in Figure 2.26, are provided for monitoring voltages to detect any deviation
from the selected thresholds for external analog and digital supplies:

1. Low Voltage Interrupt (LVI) - this circuit generates an interrupt when it detects a
voltage below the set value. The low voltage monitors defaults to the off mode. However,
the trip level for the LVI is set in the RESET CRO register over a range from 1.7-5.45V,
in steps of 250mv.

2. High Voltage Interrupt (HVI) - this circuit generates an interrupt when it detects a
voltage above the set value.

Figure 2.25: Voltage Monitoring Block Diagram

2.4 PSoC3 Debugging

The architectures for PSoC3 and PSoC5 include a Test Controller (TC) that provides access
to pins for boundary scanning and to memory/registers via either PSoC3’s Debug On-Chip
module, or PSoC5’s Debug Access Port (DAP) which supports functional testing, programming
and programm debugging. Connection to the PSoC3 debugging is facilitated by the availability
of Debug-On Chip (DOC) and the Single Wire Viewer (SWV). The DOC serves as the interface
between the CPU and the Test Controller (TC) and is used to debug, trace code execution and
for trouble shooting device configuration.34

34DOC is used for PSoC3 and Cypress’ Semiconductor’s CY8C38 family of devices. Debugging for PSoC5 is
accomplished by using ARM’s Coresight components for debug and traces. SWV targets resident code to provide
diagnostic info through a single pin.

124 Microcontroller Subsystems

The test controller serves as a physical interface between a debugging host, and PSoC3 and
PSoC5 debug modules and connects to the host via either JTAG or SWD. JTAG support for
PSoC3 and PSoC5 exceed the IEEE 149 standard in terms of the access provided to instructions
and registers. In the case of PSoC3, the test controller translates JTAG instructions/registers or
SWD accesses to register accesses in the DOC module as indicated schematically in Figure 2.27

Figure 2.26: Test Controller for PSoC3 (8051) block diagram.

The DOC has a number of important features:

• It can take control of PSoC3’s CPU (8051) and access any address accessible by the CPU
via the PHUB interface. This capability includes the CPU’s internal memory, SFRs and
PC.

• The DOC can HALT the CPU and single step through instructions.

• Breakpoint capabilities of the DOC include setting as many as 8 program address break-
points, setting one memory access breakpoint and setting a Watchdog trigger breakpoint.

• Trace capability includes: tracing the PC, ACC and a single byte from the CPU’s internal
memory or SFRs; 2048 instruction trace buffer for the PC; 1024 instruction trace buffer for
PC, ACC and a single SFR/memory byte; operating in a triggered, continuous or windowed
mode; CPU halt or overwrite of the oldest trace when the trace buffer is full and when not
tracing the trace buffer is available for other use.

The SWV provides:

• either Manchester or UART for output,

• a simple, efficient packing and serializing protocol,

and,

• Thirty two stimulus port registers

PSoC3 supports three debugging/testing protocols for communicating with PSoC3:

1. JTAG35

2. Parallel test mode (PTM) and,

3. Serial Wire Debug (SWD) - this protocol allows a designer to debug using only two pins of
the PSoC3 device.36

2.4 PSoC3 Debugging 125

Figure 2.27: Test controller configuration for PSoC5.

DOC functionality is controlled by accessing registers within DOC. However, these registers
are only accessible trough the TC interface and not through PHUB. A debugging session utilizing
DOC, requires that the CPU enable debugging. Debugging commands are sent to the TC by
JTAG or SWD and from there to DOC as shown in Figure 2.29. Addresses transmitted in this
manner are used to access TC registers, DOC registers or alternatively, these addresses are sent
on to the DOC memory interface. Within the DOC are a number of memory interfaces and an
incoming address is decoded and forwarded to the correct memory interface address output.The
DOC waits until the memory access has been completed the DOC transmits a signal to the TC
that either the write is complete, or that data from a read command is available.

The DOC is able to take over control of the CPU memory interfaces and carry out reads
and writes to memory as if the actions were CPU based. Flash, CPU internal memory, CPU
SFRs and the CPU’s external memory and registers and the PC can all be accessed by the DOC.
Reading an writing to these resources is based on the addresses shown in Table 2.17. In the case
of reading or writing to the PC it is necessary to first halt the CPU.

Table 2.16: PSoC Memory and Registers

2.4.1 Breakpoints

Breakpoints are a useful tool in analyzing and diagnosing program execution issues, particularly
in light of the fact that it is possible to allow the program to operate at normal execution speed
before being halted at a breakpoint. PSoC3 has support for eight, program address breakpoints,
a memory access breakpoint and a watchdog trigger breakpoint. Program address breakpoints

35PSoC3 complies with IEEE 1149.1 (JTAG Specification)
36These two pins, once designated for SWD debugging, must be reserved for debug use only and may not be

used for any other purposes.

126 Microcontroller Subsystems

employ eight registers, DOC PA BKPT0 - DOC PA BKPT7. Setting an address breakpoint
requires that the address for the breakpoint must be stored in bits[15:0]

2.4.2 The JTAG Interface

One of the most popular interfaces for testing integrated circuits (ICs)such as PSoC3 and PSoC5
was developed by the Joint Test and Action Group (JTAG) as a method for controlling and read-
ing an IC’s pin values. . The JTAG interface includes the following signals: Test Data In (TDI),
Test Data Out (TDO), Test Mode Select (TMS) and a clock signal(TCK). This configuration
makes it possible to test multiple ICs on a given board in a daisy-chain manner.)

Figure 2.28: DOC,CPU and TC Block Diagram

Summary: In this Chapter, discussion has focused on subsystems using PSoC3 and PSoC5
as illustrative examples of some of fundamental aspects of current microcontroller architectures.
Included were detailed discussion of the 8051 instruction set, the wrapper concept as employed
in PSoC3 to integrate an 8051 core into the PSoC environment, basic concepts of interrupts and
interrupt handling, DMA transfer concepts including using various DMA functions in conjunc-
tion with a peripheral hub for transferring data and to/from peripherals, clock sources and clock
distribution, internal and external memory use, power management, sleep/hibernate considera-
tions, implementation of a RTC, hardware testing and debugging, etc. In the following chapters,
discussion will focus on a microcontrollers digital and analog peripherals, the development envi-
ronment and modules such as delta-sigma converters, PWMs, OpAmps, etc. and finally conclude
with a detailed implementation of a digital voltmeter,

Chapter 3

System and Software Development

3.1 Realizing the Embedded System

The development of embedded systems based on hardware platforms such as PSoC3 and PSoC5
requires a design process that begins with a concept and ends with the completed application.
While there is not any one “best way” to carry out such a process there are a number of widely
adopted models for this type of activity, e.g.,

• Waterfall - a series of sequential steps, as shown in Figure 3.1, viz., development of a

Figure 3.1: Waterfall Design Model

specification, creation of a preliminary design (behavorial), development into a detailed
design (structural) and full implementation (physical).1

• Top-down - the design progresses from an abstract description to a specific design.

• Bottom-up - begins at the lowest level with individual modules or components and evolves
as an aggregate to form a larger system.

• Spiral2 - can be described as a combination of both top-down and bottom-up methodologies.
Design begins with a minimal configuration which is then iterated through incorporating an
additional feature or features, then tested, evaluated, followed by the addition of more fea-
tures and the iteration continued, tested and evaluated until the completed design emerges,
as shown diagrammatically in Figure 3.2.[11]

1The transition to the next step requires prior completion of the preceding step.
2This model is particularly useful when requirements are changing during the design process.

126 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.2: The Spiral model.

• V-Cycle3 - allows testing to occur early in the life of the project and affords an opportunity
to discover faults in the design earlier in the design process. The lefthand side of the V
represents the definition and decomposition process and the righthand side represents the
verification and integration processes, as shown in Figure 3.3.

Figure 3.3: The V-Model.

3Also referred to as the validation and verification model.

3.2. DESIGN STAGES 127

Each of these models is described generically as a Life-Cycle Model4 and each offers certain ad-
vantages and disadvantages. Regardless of which a designer may choose, there are an underlying
set of principles and steps that serve as the foundation for each and are discussed in the rest of
this chapter, in some detail. The models discussed originated largely as software development
models, but because the line drawn between hardware and software can often, in some respects
at least, be regarded as arbitrary, they are quite applicable to the design process for embedded
systems.

3.2 Design Stages

In setting out to design an embedded system, the first step is to define the physical system that
is to be controlled and determine from the associated requirements, a set of specifications5, for
the system. It is then possible to draw a functional block diagram of the system and from that
point to derive a schematic. The schematic can then be used to create a signal flow diagram, an
associated block diagram, or a state-space representation of the system. This results in either
an open- or closed-loop system that can be implemented, and tested, to determine whether or
not it conforms to the requirements and specifications. It is common for embedded systems that
are intended to control a system, or process, to employ negative feedback loops to assure that
the control system remains stable and/or to allow the system to be “self-correcting”. Open-loop
systems can result in drift away, or in some cases rapid departure from, the desired operating
(set) points6 and conditions for the controlled system, or process. Also, as discussed in a previous
chapter, system disturbances must be taken into account, as well, even for well designed embedded
systems.

Parameters to be considered, when designing embedded systems, include:

• variables that are to be controlled,

• variables that are to be manipulated,

• variables that are associated with disturbances,

• controller output variables,

• error signals variables,

• internal set points employed by the controller,

• external set points associated with the controlled system or process,

and,

• process or system variables that are to be controlled.

Note that in addition to these variables, their respective rates of change may also be important
variables, e.g., derivatives of first and higher order. One of the figures of merit of an embedded
system is robustness, which is defined in terms of sensitivity7, and the system’s ability to maintain
set points, in spite of external disturbances.

4There is a fourth design methodology referred to as the “big bang” model, development proceeds for some
period of time in relative isolation and is then released in the feverent hope that, with any luck at all, it will
provide acceptable.

5In the present context. the term requirements refers a description of properties required in order to meet
a set of needs whereas the term specification refers to a description of a system capable of implementing those
properties.[54]

6Set points are the desired, or target, values for a controlled system, or process, that a controller is to maintain,
well within acceptable limits, e.g., a process temperature, flow rate, angular velocity, etc.

7Sensitivity, in the present context, is a measure of an embedded systems ability to perform as required in the
presence of external disturbances and it is defined as the ratio of the relative change in steady-state output to the
relative change of a system parameter.

128 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

There are various approaches/techniques for modeling systems, e.g.,

• Deterministic versus stochastic

• Linear versus non-linear

• Continuous-time versus discrete-time

• Time-invariant versus time-variant

Systems that employ feedback, and therefore have outputs that depend on previous variable
values, are often modeled as a set of differential equations for which the independent variable is
time. Such system can then be mapped into the frequency domain and represented analytically in
the form of transfer functions making it relatively easy to study the systems stability. Non-linear
systems can be considerably more challenging than linear systems in that, as noted by Poincaré
, “... it may happen that small differences in the initial conditions produce very great ones in
the final phenomena. A small error in the former will produce an enormous error in the latter.
Prediction becomes impossible...”.[57]

3.3 Signal flow and the schematic view of the system

A signal flow graph is simply a graphical representation of nodes that are interconnected by
several directed branches and represent variables such as inputs, outputs, etc. A directed branch
illustrates the dependence of one variable on another, the gain associated with each branch and
the signal flow direction. The default value for gain is unity, and the allowed direction of signal
flow is defined by the direction of the arrow on each branch.

A path is defined as any branch, or continuous sequence of branches, that can be traversed
in moving from one given node to a second given node. Two loops are said to be non-touching,
if they do not share a common node. Branches that share one or more common nodes are said
to be touching. Any path that begins and ends on the same node is referred to as a loop. A
forward path is defined as a path from a source to a sink. The gain of a path is defined as the
multiplicative product8 of the gains of each of the branches that are part of the path. Figure 3.4
illustrates examples of some commonly encountered block diagrams, and the associated signal
graphs.

Thus a signal graph, in the simplest terms, is just a graphical representation of a set of linear
relationships and, as such, is only applicable to linear systems9 [57]. It is also referred to as a
directed graph because the direction of signal flow is indicated by the arrows in each branch. The
nodes in the signal graph represent the variables of a set of linear equations representing the
system, as shown for example in Figure 3.5. Note that a11 and a22 are non-touching, self-loops
and the loop formed by a12 and a21 is also a self-loop.

The pair of linear equations shown in this figure can be rewritten as

(1 − a11)x1 − a12x2 = b1 (3.1)

−a21x1 + (1 − a22)x2 = b2 (3.2)

8If the gain of each branch is expressed in terms of dB, then the overall gain, as expressed in terms of dB, is
the summation of the dB gain of each branch.

9However, if the parameters in a non-linear system can be considered sufficiently small, the system can be
approximated by a set of linear equations. If a non-linear system is constrained to operate in a linear region only,
it may be possible to employ the techniques described in this chapter that would otherwise be reserved only for
truly linear systems. The reader is cautioned, nonetheless, that ignoring non-linear aspects of any system can lead
to unintended consequences, e.g., chaotic behavior, as shown by Poincaré in 1908.

3.3. SIGNAL FLOW AND THE SCHEMATIC VIEW OF THE SYSTEM 129

Figure 3.4: Block diagrams and their respective SFGs.

Figure 3.5: A simple signal path example and the associated linear equations.

130 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

and solving for x1 and x2 yields

x1 =
(1 − a22)

Δb1
+

a12

Δb2
(3.3)

x2 =
(1 − a11)

Δb2
+

a21

Δb1
(3.4)

where

Δ
def
=

∣
∣
∣
∣
(1 − a11) −a12

−a21 a22

∣
∣
∣
∣ = determinant (3.5)

= 1 − a11 − a22 + a22a11 − a12a21 (3.6)

Using so-called “block rules”, it is sometimes possible to substantially simplify a block diagram
of a system before attempting to create the signal path graph. Several of these rules are shown
in Figures 3.6, 3.7 and 3.8. Thus, as illustrated by this simple example, it is possible to begin
with a graphical representation of signal flow for a particular system and develop therefrom an
analytic representation of the system, in a straightforward manner.

Figure 3.6: Reduction of two blocks to one.

3.3.1 Mason’s Rule10

An important parameter of a system, such as those discussed in the previous section, is its overall
gain [27] which can be expressed, for linear systems, by

H =
yout

yin
=

N∑

k=1

GkΔk

Δ
(3.7)

where yin and yout represent the input and output node parameters, respectively, and H is the
transfer function that represents the total gain of the system, Gk is the forward gain of the kth

forward path and Δk is the loop gain of the kth loop. Δ, the determinant is formally defined, in
the present context, as

Δ = 1 −
∑

Li +
∑

LiLj −
∑

LiLjLk + ∙ ∙ ∙ + (−1)n
∑

∙ ∙ ∙ + ∙ ∙ ∙ (3.8)

10Mason’s rule is also referred to as “Mason’s gain formula”.

3.3. SIGNAL FLOW AND THE SCHEMATIC VIEW OF THE SYSTEM 131

Figure 3.7: Expansion of single blocks involving summing junctions.

Figure 3.8: Expansion of single blocks to two equivalent blocks.

132 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Equation (3.9) can be expressed in words as

Δ = 1 − (sum all the different loop gains)

+ (sum of the products of all pairs of loop gains for non-touching loops)

− (sum of products of all of the triples of loop gains, for non-touching loops)

+ ∙ ∙ ∙ (3.9)

The gain of the circuit shown in Figure 3.9 can be determined by applying Mason’s rule as follows:

M1 = A2 (3.10)

Δ1 = 1 (3.11)

and therefore,

Δ = 1 − L1 = 1 − A2A1 (3.12)

so that

H =

∑
MjΔj

Δ
=

A2

1 − A1A2
(3.13)

Figure 3.9: A simple application of Mason’s rule.

3.3.2 Finite State Machines

Systems that consist solely of combinational logic, do not have any explicit time dependence and
therefore the outputs are not time, or prior history, dependent. Simply stated, the outputs of
such systems do not depend on any previous values of input, or output11. However, the outputs,
at any point in time, of a finite state machine, are dependent on the states that the system
passed through in order to reach the current state, the current input values and therefore the
time required to produce the current outputs.12

11This assumes of course that the outputs of such systems are not subject to delays within the system and
therefore are an immediate consequence of the inputs to the system.

12Chapter 6 treats FSMs in some detail.

3.3. SIGNAL FLOW AND THE SCHEMATIC VIEW OF THE SYSTEM 133

Finite state machines (FSMs) are commonly used to implement decision making algorithms
which are a key element of most embedded systems. They are particularly attractive for systems
that are highly event-driven and are often employed as an alternative to a system based on a real
time operating system. State machines are used in applications where distinguishable, discrete
states exist. Finite state machines are based on the idea, that for a given system that has a finite
number of states, there are two types of FSMs (Mealy and Moore) and they are distinguished
by their output generation, viz., a Mealy machine has outputs that depend on the state and
the input, and a Moore machine has outputs that depend on the state only. FSMs can also be
represented by graphical representations in the form of state charts and hierarchically nested
states, as illustrated by the example shown in Figure 3.10.13 The subject of finite state machines

Figure 3.10: An example of a six state, nested state chart.

is treated in some detail in Section 5.12.

3.3.3 Coupling and Cohesion

There are a number of important characteristics of an embedded system, e.g., fault tolerance/
prevention, identification of exceptions, exception handling and module independence in terms
of coupling and cohesion. The term coupling refers to the relative interdependence of modules
and can be broadly characterized in terms of either tight- or loose-coupling. Examples of loose-
and tight-coupling are shown Figures 3.11 and 3.12, respectively.

The terms tight- and loose-coupling express the degree to which all the elements of a mod-
ule are directed towards a single task/procedure and all elements directed towards that
task/procedure are contained within a single component.

A design consisting of a two, or more, loosely-coupled modules, can provide some immediate
benefits because the complexity of a system is often directly proportional to the degree of cou-
pling between modules14, i.e., the tighter the coupling the greater the interdependence between
modules, and therefore the greater the complexity of the interaction between them. Thus, the
interactions between modules should, as a general rule, be kept to the minimum level required

13State nesting allows new states to be defined in terms of previously defined states and to be defined in terms
of differences from previous states, thus fostering reusability. This technique based on the concept of inheritance.

14An analogous situation can arise in applications which employ software modules that rely on global variables.
Whenever ever possible passing data by value or reference is preferred.

134 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.11: Weak coupling between modules A, B C and D.

to allow them to interactive effectively. By using loosely-coupled modules in a design, debug-
ging can often be significantly reduced and design modifications/trouble-shooting, in the field,
can be greatly facilitated.15 There are, of course, systems in which some modules, by necessity,
require extremely tight coupling in order to function effectively, e.g., in cases in which error-free
communication is required and/or high-speed data transfer rates are involved.

Figure 3.12: Tight coupling between modules A, B C and D.

Cohesion is a measure of the degree to which a set of tasks/procedures within a module are
related. There are a variety of cohesion types, e.g.,

• Coincidental cohesion - Procedures/tasks just happen to be grouped within a module, but
the interdependence between such procedures/tasks is weak.

• Temporal cohesion - Independent tasks are grouped within a module because they have
some time dependencies, e.g., they must be completed within some pre-defined time period,
and/or are sequentially ordered with respect to time.

• Sequential cohesion - A given task depends on procedures that must be ordered sequentially.

• Functional cohesion - The module’s sole function is to carry out a specific task and the
procedures within that module are restricted to those necessary to perform the task.

• Communication cohesion - All of the operations within a module are working on a common
set of input data and/or produce the same output data.

• Logical cohesion - A set of tasks/procedures that are related logically, and not functionally.
Typically, several logically-related tasks reside within a give module and are selected by an
external user.

15Field trouble shooting is often based on the time honored practice of "isolating and destroying" techniques.
Weakly coupled modules typically make isolating problems much easier.

3.3. SIGNAL FLOW AND THE SCHEMATIC VIEW OF THE SYSTEM 135

• Procedural cohesion - Related tasks/procedures are contained within a module to ensure a
particular order of execution. In such modules, it is control, and not data, that is passed
from one procedure/task to another.

3.3.4 Signal Chains

The phrase signal chain16 refers to a signal’s path through a series of signal-processing compo-
nents, of the type used in embedded systems, that acquire data signals and process them in a serial
fashion. A programmable signal chain (PSC) is based on programmable analog devices deployed
in conjunction with digital logic and a high performance CPU in the form of a microcontroller,
microprocessor or DSP17. Such configurations are quite capable of providing embedded systems
that are highly adaptive, versatile and effective for addressing a wide variety of mixed-signal
applications. This is particularly important when designing systems that can benefit from such
a system’s ability to reconfigure itself, in real time, to meet variable operating environments and
conditions.18

Figure 3.13: A commonly encountered signal chain.

One of the most commonly encountered signal chains is shown in Figure 3.13. The input
to such a system is often from various types of sensors and the output may be to actuators,
data channels, wireless transmission, or other devices. Input amplifiers, in the form of generic
OpAmps, instrumentation amplifiers, lock-in amplifiers, radio frequency (RF) amplifiers, etc.,
are typically used to accept inputs from low level, high impedance sources and convert them
into low impedance19, high level signals. The OpAmps employed are often five-terminal devices,
i.e., positive input, negative input, ground and two supply voltages, e.g., +/- 6 volts. However,
there are a variety of special application amplifiers available that are designed for specific types
of signal handling capable of

• demodulating low level signals,

• preparing analog signals for processing by A/D and D/A converters,

16The phrase signal processing chain is sometimes used instead of signal chain, but in either case refers to
a series of signal-conditioning components involved in analog signal acquisition, processing and control, that are
typically encountered in mixed-signal, embedded systems

17Digital signal processors are highly specialized microprocessors whose architecture is specifically designed to
perform highly optimized signal processing functions.

18This ability is referred to as dynamic reconfigurability .
19Low impedance makes it possible to supply sufficient power to successive stages to avoid adversely effecting

the signal,

136 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• supplying low output impedance and high speed output and providing automatic gain control
(AGC) or variable gain control (VGC),

• demodulating low level signals and compressing signals with high dynamic range20,

• extracting a low level, differential signal from a larger common mode signal, while filtering
out transient and/or other unwanted signals,

and,

• accurately reproducing input signals, by minimizing distortion of the input waveform.

Some sensors produce output signals that are in the form of modulated carriers, that is,
the signal is transmitted as either a variable amplitude, or a variable frequency signal, or some
permutation thereof, e.g., a signal embedded in a carrier is shown in Figure 3.14. This technique

Figure 3.14: An example of amplitude modulation.

is often used to minimize the effects of amplifier noise, offset and grounding problems. One
technique, employed in such cases, is to use a so-called coupling transformer to provide DC
isolation between the sensor and the input amplifier, as shown in Figure 3.15. In such cases,

Figure 3.15: Transformer-coupled input sensor.

a center tap on the secondary, or output of the transformer, provides a common ground as a
reference for the output from the secondary winding of the transformer. Note that this technique
converts a single-ended input into a differential output.

Demodulation of this signal can be accomplished by use of a variety of techniques, e.g., for
extremely low level signals, lock-in amplifiers capable of detecting a signal as low as 100 dB21

below the ambient noise level can be employed. Signals may be measured as either single-ended or
differential inputs. In the former case, the input signal is measured with respect to signal ground 22

20Dynamic range is defined as the ratio of possible high to low signal values, either current or voltage, supported
by a given device.

21dB is a logarithmic unit of measurement which is based on the ratio of a physical quantity with respect to a
reference level. In the case of power, it is defined as 10 log10 (P1

P0
) and for voltage as 20 log10(V1

V0
). Thus 100 dB

below ambient is equivalent to -100 dB or 0.0000000001 (1010) of the associated reference value.
22Note that signal ground may, or may not, be the that of the power supply or a common ground. The ground

used can be a source of unwanted signals, i.e., noise, and careful attention must be paid in such cases to employing
adequate grounding techniques.

3.4. SCHEMATIC VIEW OF THE SYSTEM 137

and is sometimes coupled capacitively to the amplifier’s input. Differential signals require that
both the positive and negative inputs of an amplifier be used23, and the measurement of both
inputs is with respect to a common ground.

While at the block level, signal chains can be relatively simple, even the simplest of signal
chains involving perhaps the measurement of an external resistance that is related to some phys-
ical parameter of interest such as temperature, pressure, flow rate, etc. can present substantive
issues that must be taken into consideration. For example, non-linearities in resistance versus
the value of the physical parameter being measured, temperature versus resistance variations in
the sensor and the connections to the sensor24, accuracy and precision requirements, ambient
interference environment and associated adverse affects on the sensor and connections to the
embedded system, variations in resistance of the interconnections between the sensor, and the
embedded system, gain variations of the input stage, sensor excitation requirements, crosstalk
interactions, and required filtering must also be taken into account.

3.4 Schematic view of the system

Figure 3.16: A block diagram of a temperature measuring signal chain.

As an illustrative example, a simple signal chain, related to making a temperature measure-
ment, as shown in Figure 3.16, can be represented in the form of a block diagram. A schematic
representation of this block diagram is shown in Figure 3.17. It should be noted that in practical
applications, the ground connections for the sensor resistor, and ADC, are all made in close prox-
imity when implemented in a physical system. This type of differential measurement connection
reduces noise problems by virtue of the fact that common mode measurements tend to cancel
out signals that are picked up by the differential input lines. An even simpler signal chain for
this type of measurement is shown in Figure 3.18 in which the digital-to-analog converter has
been replaced by a digital-to-current converter, thus eliminating the requirement for the reference
resistor.

Temperature measurements using resistive-devices, such as thermistors25, whose resistance is
a function of the ambient temperature, tend to exhibit non-linear characteristics. As discussed,
in Chapter 1, the resistance of a thermistor, as a function of temperature, can be approximated

23An OpAmp with both positive and negative inputs can serve as either a single-ended or differential amplifier.
Single-ended applications are accomplished by simply grounding one of the amplifiers inputs and applying the
input signal to the other input.

24Including such considerations as temperature gradients along the wires connected to the sensor and embedded
system input.

25Thermistor is an acronym for thermal resistor which refers to a resistor who resistance is a known function of
temperature. While usually a non-linear relationship exists between temperature and resistance for such devices,
they can sometimes be treated as being quasi-linear, over the range of interest.

138 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.17: A schematic diagram of the signal chain shown in Figure 3.16.

Figure 3.18: A further simplification resulting from employing a current DAC.

3.4. SCHEMATIC VIEW OF THE SYSTEM 139

by the equation
1
T

= A + B ln(R) + C[ln(R)]3 (3.14)

where T is the thermistor’s ambient temperature, R is the measured resistance and A, B and C
are constants characterizing the particular thermistor involved. Rather than solving this equation
explicitly for each temperature measurement, it is simpler, and more efficient, to employ a lookup
table that has the discrete values for resistance and temperature for that particular type of
thermistor. If necessary, linear interpolation26 using the coordinates of the known points on the
curve can be employed, for additional quantitative detail.

Resistance temperature detectors27 (RTDs) are a particularly useful type of temperature
sensor that have the property that at 0◦C the resistance is nominally 100Ω, and the rate of change
of resistance with respect to temperature (dR/dT) is 3.85Ω per degree Centigrade28. RTDs have
very low resistance and therefore the effect of any additional low-wire-resistance paths must be
taken into consideration. Typically, the voltage across an RTD is measured by using either 3- or
4-wire methods. The 3-wire method is shown in Figure 3.19. The voltage measured by the ADC

Figure 3.19: Schematic view of the 3-wire circuit in PSoC Creator.

is a combination of the drop across the RTD and the wire connecting the DAC to the resistor,
and the voltage across the resistor. The current through the wire and resistor are known and
the resistance of the wire connection can be measured so that the voltage drop across the wire is
known.

26Linear interpolation is based on the idea that if two points are known on a given curve, e.g. a graph of
temperature versus resistance (T vs. R), then the slope of a line drawn between the two points can be easily
determined and the value of the temperature for a given resistance between those two points can be approximated
by evaluating the following expression: T = T0 + [(T1 − T0)/(R1 − R0)] where (R0, T0) and (R1, T1) are known
values and are chosen sufficiently close to provide the required accuracy. Linear interpolation is believed to have
been used by Babylonians as early as 2000-1700 BC. [45]

27C.H. Meyers [47] first proposed the RTD in the form of a helically wound platinum coil on a crossed mica
web inside of a glass tube. However, its thermal response time was too slow for many applications and it was
subsequently supplanted by a design by Evans and Burns [20] that instead used an unsupported platinum coil
which allowed it to move freely as a result of thermal expansion and contraction.

28Platinum RTDs are extremely accurate and stable compared to thermistors and other commonly encountered
temperature sensors.

140 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.20: Schematic view of the 4-wire circuit in PSoC Creator.

3.5 Correlated Double Sampling (CDS)

Signal chains often involve small amplitude, and relatively low frequency, signals. The accuracy,
as well as precision, of measurements of such signals can be limited by various non-deal charac-
teristics such as offset and noise. Offset potentials29, offset potential drift30 and low frequency
noise31, all of which are functions of temperature, arise frequently in systems such as those
shown in Figure 3.19 and 3.20. Obviously these are highly undesirable effects to have present
when making sensitive measurements. Some OpAmps employ chopper stabilizing to minimize
drift by periodically grounding the input(s) of the amplifier.32

A technique known as correlated double sampling (CDS) can be used to minimize these
effects.[60] CDS functions as a high-pass filter which allows the (1/f) noise to be reduced and is a
signal processing method that reduces unwanted effects that often occur when employing sensitive
sensors. This technique is most effective in addressing slow-changing, in terms of frequency and
amplitude, signals of the type encountered when using Hall-effect,33 capacitive or thermocouple
sensors.34

29Ideal OpAmps have zero output, when the input voltage differential is zero, as opposed to nonideal OpAmps
that exhibit some output voltage under4 such conditions. This can be "offset" in some cases by applying a small
potential to one of the inputs sufficient to assure that the output is zero volts, under such input conditions.
PSoC3/5 offset voltage is spec’ed at a maximum of 2 mv.

30Typical offset voltage drift (TCVos) for a PSoC3/5 OpAmp is ≈ 6μv/◦C (12μv/◦C maximum). PSoC3/5’s
delta-sigma analog-to- digital converter (ADC_DelSig) includes a feature known as Vref_Vssa. When an external
reference is being supplied, the Vref_Vssa connection can be routed thorough the analog routing fabric to an
external pin on the device. A connection to this pin of an external reference eliminates any offset in the reference
as a result of internal IR drops in the Vssa pin and bonding wire.

31The noise considered in this example if classified as “1/f noise” which is found in any semiconductor device.
32Early operational amplifiers used in applications such as integrators employed mechanical switches that were

electrically driven. Current devices employ semiconductor switches for this purpose.
33The output of a Hall-effect sensor is a function of the ambient magnetic field. A thin piece of conductive

material is used which has two connections that are placed perpendicular to the direction of current flow through
the device. An external magnetic field will cause a potential to arise between the two connections that is directly
proportional to the ambient magnetic field.

34The basic techniques described in this section are applicable to PSoC1, PSoC3 and PSoC5. [64][73]

3.5. CORRELATED DOUBLE SAMPLING (CDS) 141

Figure 3.21: CDS OpAmp block diagram.

As shown in Figure 3.21,

vout1(T1) = vsignal(T1) + voffset(T1) + vnoise(T1) (3.15)

and,

vout2(T2) = vsignal(T2) + voffset(T2) + vnoise(T2). (3.16)

assuming that

1. vref and vsignal are constant for values of t such that t1 < t < t2.

2. voffset has a constant value, i.e., it is not an explicit function of time.

and,

3. system noise is solely a function time.

Therefore subtracting (3.15) from (3.16) yields

vCDS = (vout(T1) − vout(T2)) (3.17)

= (vsignal − vref) + (vnoise(T1) − vnoise(T2)) + (voffset(T1) − voffset(T2))

= (vnoise(T1) − vnoise(T2)) (3.18)

This method is based on making two measurements, one from a sensor with an unknown input
and one with an known input. Because the amplifier is assumed to be capable of producing only
one output at a time, delaying the output of one signal with respect to the other, allows Eq (3.17)
to be evaluated.35 Then by subtracting the result of the known input from the unknown input,
it is possible to compensate for the offset. This technique is based on first measuring the offset
potential across the sensor with both inputs shorted and then measuring

vt = vtc + vn + vov, (3.19)

where vt is the zero referenced voltage, vtc is the actual thermocouple voltage, vn ia the noise
voltage and vov is the offset voltage.

Thus, for the previous zero-referenced sample

vzref = vn + vov (3.20)

35Some applications use a sample and hold circuit followed by a subtractor, instead of employing a delay. PSoC
Creator’s Sample and Hold component is discussed in detail in Section 6.5.

142 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

and,

vzref_prev = (vn + vov)Z−1 (3.21)

in the continuous-time domain. It can be transformed into the discrete-time domain by employing
Tustin’s method36, i.e.,

vsignal = (vtc + vn + voffset) − (vn + voffset)Z
−1 (3.22)

vsignal = vtc + (vn + voffset)(1 − Z−1) (3.23)

where Z is the bilinear transform, i.e.,

Z =
(1 + sT

2)

(1 − sT)
(3.24)

and,

T =
1

fsample
(3.25)

and therefore using Eqs. (3.24) and (3.25),

1
Z

=
1 − sT

2

1 + sT
2

=

[

1 − s
2fs

]

[

1 + s
2fs

] (3.26)

so that

1 −
1
Z

= 1 −

[

1 − s
2fsample

]

[

1 + s
2fsample

] =

[

1 + s
2fsample

]

−

[

1 − s
2fsample

]

[

1 + s
2fsample

] =
2s

(s + 2fsample)
(3.27)

and therefore [64]

vsignal = vtc + vn

[
2s

(s + 2fsample)

]

= vtc + vn

[
2

1 + (2fsample

s)

]

(3.28)

assuming that the offset is not a function of time. Equation (3.28) is clearly a high pass response,
as shown in Figure 3.22. However, because this configuration does not reduce higher frequency
noise, additional filtering may be required, e.g., an infinite impulse response (IIR) filter37 can be
used in such cases to reduce unwanted high frequency components.

A similar technique can be employed in using PSoC3/5’s delta-sigma ADC in a CDS config-
uration as shown in Figure 3.23. In this case, the input signals, Vsignal and Vref are alternately

36This method is, in actuality, a conformal mapping which in the present case represents a mapping of a
linear, time invariant function in the time domain, to a linear shift-invariant transfer function in the discrete-time
domain. Conformal mappings preserve certain key aspects of the functions being mapped, e.g., in the present
case preservation of characteristics in the frequency domain. The Tustin method is often used to provide good
matching in the frequency domain between the discrete and continuous time domains, and in cases where a system’s
dynamics near the Nyquist frequency are of interest.

37These filters can be implemented as y[n] =
∑M

k=0 x[n− k] +
∑N

k=1 y[n− k] where the bk are the feedforward
coefficients and the ak are the feedback coefficients.

3.5. CORRELATED DOUBLE SAMPLING (CDS) 143

Figure 3.22: CDS frequency response.

passed to a buffer stage38, which can introduce unwanted offset and noise39, before being supplied
to the ADC. The resulting digital forms of these two signals are then subtracted in firmware.
Note that this delta-sigma ADC can be configured in either a single, or differential, input mode 40,
as shown in Figures 3.24(a) and 3.24(b). Single and differential input modes can also be imple-

Figure 3.23: CDS implementation for PSoC3/5 ADC_DELSIG.

mented using an analog multiplexer as shown in Figure 3.25.

The following is an example of the PSoC Creator source code for this application:

/∗Get the f i r s t sample Vout1 ∗/
AMux_1_Select (0) ;

38The sampling time between the two signals acts as the delay employed in the previous OpAmp example.
39Offset and noise may also be introduced by other devices in the signal path. In order to minimize such

effects it is important that the reference signal and input signal both follow the same signal path to the extent
feasible/possible.

40While in principle connecting an input to signal ground is equivalent to a zero input, in reality signal ground
can introduce noise, so that in practical applications the differential mode is often preferable.

144 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

ADC_DelSig_1_StartConvert () ;
ADC_DelSig_1_IsEndConversion (ADC_DelSig_1_WAIT_FOR_RESULT) ;
iVout1 = ADC_DelSig_1_GetResult32 () ;
ADC_DelSig_1_StopConvert () ;

/∗Get the second sample Vout2 ∗/
AMux_1_Select (1) ;
ADC_DelSig_1_StartConvert () ;
ADC_DelSig_1_IsEndConversion (ADC_DelSig_1_WAIT_FOR_RESULT) ;
iVout2 = ADC_DelSig_1_GetResult32 () ;
ADC_DelSig_1_StopConvert () ;

/∗perform CDS∗/
iVcds = iVout1 − iVout2 ;

(a) Single (b) Differential

Figure 3.24: Single, versus differential, input mode for ADC_DelSig.

Figure 3.25: Single/Differential input using an analog multiplexer.

In the system shown in Figure 3.20, it is clear that its accuracy is solely a function of the
IDAC’s accuracy. Undesirable variations, i.e., deviations, in the output of the IDAC and ADC
gain errors, can result from temperature dependencies. IDAC and ADC errors of the type found
in this particular type of application can be reduced by introducing an additional, more accurate,
resistance41 as shown in Figure 3.26.

When making such measurements it is important to:

• Select the most appropriate sensor for the application.

• Employ a technique such as CDS to avoid offset errors42

41Commercial resistors are available whose variances are less then 0.1% , as a function of temperature.
42A filter can be used to remove noise when employing a thermocouple.

3.6. USING COMPONENTS WITH CONFIGURABLE PROPERTIES 145

• Use current excitation to avoid inaccurate reference resistance.43

• Use a Delta-Sigma ADC with high accuracy and resolution to assure the highest possible
overall accuracy.44

Figure 3.26: 4-wire RTD with gain error compensation.

3.6 Using components with configurable properties

The ADC and current DAC of the previous section are some of the basic components supported
by PSoC Creator, and as such, they are highly configurable, as are most of the PSoC Creator
components. The current source, IDAC, may be controlled by hardware, software or some com-
bination of the two and can function as either a source, or a sink.

Similarly, the delta sigma, analog-to-digital converter, ADC_DelSig, is also highly config-
urable. PSoC Creator provides tabulated dialog boxes, an example of which is shown in Fig-
ures 3.28(a) and 3.28(b), to allow user-defined configuration for a given application. The con-
version modes (0 - single sample, 1 - multiple samples, 2 - continuous samples or 3 - mul-
tiple samples (Turbo)), resolution (8-20 bits inclusive), conversion rate (2,000-48,000 samples
per second), clock frequency45for each of the components in its integrated Component Cat-
alog that allow the designer to specify key requirements for a design, e.g., parameters such
as power (low, medium or high), conversion mode (fast filter, continuous, fast FIR), resolu-
tion (8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), conversion rate , clock frequency, input buffer gain
(1, 2, 4, 8 and disabled), reference (various forms of internal Vref [1.024volts] and external ref-
erence connections), clock frequency, external/internal clock source , etc., give the designer the
ability to adapt the PSoC3/5 embedded system to fit the relevant specifications and requirements
of each application.

43If voltage excitation is employed, 4-wire measurement techniques should be used.
44PSoC3/5 are excellent platforms for such measurements in that functions such as a very high resolution Delta

Sigma ADC, current source, voltage source, multi-pole filter and high resolution/speed digital processing are all
tightly integrated within a single chip.

45The clock frequency is a function of the resolution and changes programmatically as a function of the con-
version rate selected.

146 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.27: The Configure IDAC8 dialog box in PSoC Creator.

(a) (b)

Figure 3.28: PSoC Creator Configure ADC_Del_Sig_n dialog boxes.

3.6. USING COMPONENTS WITH CONFIGURABLE PROPERTIES 147

Table 3.1: Resolution vs. Conversion Rate and Clock Frequency.

148 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

3.7 Types of Resets

PSoC3/5 support power-on resets (POR)46, hibernate resets (HRES), watchdog resets (WRES)47,
software resets (SRES) and external resets (XRES_N)48 via the reset module as shown in Fig-
ure 3.29. When a reset occurs, regardless of the type, all registers are restored49 to their default
states except for so-called persistent registers.50 Figure 3.30 demonstrates various reset responses
as a function of time with respect to the change in Vdd/Vcc as well as the time dependencies for
reset during normal power-up (POR). In some designs, a low startup time is essential. In these
designs, there are a number of steps that can be taken to reduce PSoC3’s startup time. Gains
depend heavily upon the configuration of the target device, but switching from CPU to DMA
population may save on the order of 1-20 ms. Running the partially trimmed IMO at 48 MHz
instead of 12 MHz will speed up most portions of startup by a factor of 4, but a fully trimmed
IMO at a higher frequency will also improve startup time. Because most startup occurs under
partially trimmed IMO, the benefits will not be as significant as changing the partially trimmed
IMO frequency. As with increasing the partially trimmed IMO frequency, this change will in-
crease current consumption. Much of startup is CPU or DMA limited, and these two resources
will operate at the speed of the IMO. The downside to increasing the speed of the partially
trimmed IMO is that device current consumption will increase. While the power supply ramp
is not normally considered part of microcontroller startup, it does block the beginning of the
startup procedure and performance can be improved in some cases by increasing the speed of the
VDD ramps, to further minimize startup time. startup.

Figure 3.29: Reset module logic diagram

46When PSoC3/5 is powered up, it is held in reset until all of the VDDx and VCCx supplies reach the
appropriate levels for correct operation.

47Watchdog reset is used to recover from errors that would otherwise keep the system from functioning properly
and that may be recoverable if the system is “reset”, that is “re-booted”. The Watchdog Timer (WDT) circuit
automatically reboots the system if the WDT is not continuously reset within a user-defined period of time. The

48If a reset pin is not required then this pin can be reprogrammed to be a GPIO.
49DMA is much faster than CPU intervention at populating device registers.
50Both the RESET_SR0 and RESET_SR1 registers contain “persistent status bits” which can only be reset

under particular circumstances, e.g., in the case of a POR. Specific bits in these registers are set for each type of
reset and remain set until the tsrst_en bit is cleared and either a POR or a user/application induced reset occurs.
However, these bits are only accessible if the tstrst_en bit (bit 4) in the test controller’s TC_TST_CR2 register
is set.

3.8. PSOC3 STARTUP PROCEDURE 149

Figure 3.30: Resets resulting from various reset sources

3.8 PSoC3 Startup Procedure

Application software designed to realize an embedded system relies on operating in a known hard-
ware environment and under the constraints imposed by a specific set of initialization parameters
and conditions, when power is applied to the microcontroller. Thus, the microcontroller must be
provided with code designed to cause it to enter a known state with the appropriate initialization.
This is accomplished by a combination of two firmware components known, respectively, as the
bootloader and a bootloadable project

Following powerup, or alternatively, a reset caused by the the XRES pin, watchdog timer, low
voltage detection circuit, power-on-reset or other source, the PSoC3/5 hardware is configured by
initiating the appropriate hardware startup procedures.51 Power-on-reset (POR) occurs during
the ramp-up of the supply voltage and is not released until all associated power supplies have
reached their appropriate operating values. Once the POR has been released, the device enters
the boot phase in which a hardware state-machine controls the basic configuration and trim of
the target device, using direct memory access (DMA).

Startup begins after the reset of a reset source, or following the end of a power supply ramp.52

There are two primary startup segments: hardware and firmware as shown in Figure 3.31.

\Once the hardware startup phase has been completed the system begins the firmware startup.
The firmware loads the configuration registers, subject to the requirements set by the application
and PSoC Creator, e.g., configuring the analog and digital peripherals, clocks , routing, etc. In
addition, the debugging, bootloader and DMA resources are also configured.53 Upon completion
of the firmware startup, the CPU begins executing the user-authored code beginning at memory
address location zero.

Register RESET_SR0 (0x46FA)54 contains information about the status of the software reset,
watchdog reset, analog HVI detector, analog LVI detector and digital LVI detector and and

51The device’s I/O pins are placed in the high-Z drive mode while the reset is asserted and until pin behavior
has been loaded.

52Because the power supply ramp blocks the beginning of startup, Vdd is referred to as Svdd in Cypress
Semiconductor Corporation datasheets, should be taken into consideration as part of the design process.

53Not all of the PSoC Creator components will be fully configured following the firmware startup phase. In
some cases, additional code will be required to fully activate them.

54Reset and voltage status register 0 (RESET_SR0)

150 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.31: Overview of PSoC3 startup procedure.[31]

RESET_SR1 (0x46F8)55 contains information about the status of the analog PRES, digital
PRES56, analog LPCOMP57 and digital LPCOMP.

RESET_CR2 (0x46F6) controls the software initiated reset (SRES). Setting bit 0 of this
register (swr) to 1 will cause a system reset that can be initiated by software, firmware, or DMA
which will result in the setting of RESET_SR[5]. It will remain set until reset by the user, or
until a POR/HRES58 reset occurs.

KeilStart.A5159 contains 8051 assembly code that is executed at the beginning of the firmware
startup to configure some of the basic components in PSoC3, e.g., debugging, bootloaders, DMA
endpoints and, if required, the clearing of SRAM. KeilStart. A51 code begins at memory address 0
in Flash which contains an unconditional jump to STARTUP. KeilStart also calls CyFitter_cfg()
which can be used by the designer to handle certain clock startup errors, e.g., bad MHz crystal,
loss of PLL lock, etc., and to configure some analog device default settings. The “clear IDATA”
step, shown in Figure 3.32, writes zeros to program memory allocated for IDATA.60 The “DMAC
configuration” step configures the DMA resources subject to the specification of PSoC Creator
for the particular application.

The function CyFitter_cfg() is invoked by CyFittercfg.c and results in the population of a
significant number of registers, as illustrated in Figure 3.33, the largest group of which are those
associated with analog and digital resources. This step may be carried out under either CPU
control, or via DMA61. A somewhat smaller group of registers are configured as a result of the
ClockSetup() API call which results in configuration of of PSoC3’s clock tree and clock resources.
The specific configuration of the project’s clocks is determined by PSoC Creator.62

After the target device has been reset, it is clocked by the fast output of the internal main
oscillator (IMO) which is based on a fast reference. Once the normal reference becomes stable,
the normal IMO becomes valid. The IMO begins to source the normal reference during the reset

55Reset and voltage detection status register 1 (RESET_SR1)
56Precision POR (PRES) refers to a reset that occurs based on a precision trip point. An imprecise POR

(IPOR) refers to a reset that occurs during power up that keeps the target device in reset until Vdda, Vcca, Vddd
and Vccd are at the values specified in the deices data sheet.

57LPCOMP refers to PSoC3/5’s low power compare circuit.
58POR/HIB refers to power on reset and/or hibernate reset.
59KeilStart.A51 is proprietary, 8051- based source code owned by Cypress Semiconductor for incorporation in

PSoC3 applications developed with Keil development tools.
60This memory allocation is usually for variables.
61The function cfg_write_bytescode() loads this group of registers by utilizing the CPU. The function

cfg_dma_dma_init() loads the same group of registers via DMA.
62The clocks tab in PSoC Creator can be accessed by double-clicking the .cydwr file for a project.

3.8. PSOC3 STARTUP PROCEDURE 151

Figure 3.32: KeilStart.A51 execution steps.[31]

phase. The IMO is then running nominally at either 12 or 48 MHz, as configured by the device’s
non-volatile latches (NVLs)63. TIO_init is the delay, as specified in the target device’s data sheet,
that determines the delay after which the pins, and other resources, begin to behave as required
by the application.

Figure 3.33: CyFitter_cfg.c execution steps.[31]

The population of registers is determined by the Mode selection options in the .cydwr tab,
in PSoC Creator, as shown in Figure 3.34. The compressed mode option causes the CPU to
populate the configuration registers and store data in Flash, optimizing Flash usage, rather than
startup time.The DMA mode populates the registers under DMA control blocking the CPU
execution until the DMA configuration of the registers has been completed. As expected, DMA
population is significantly faster than CPU population. “Clear SRAM” determines whether or not
SRAM is to be cleared after a reset64 for an IMO speed of 12 MHz. “Enable Fast IMO” selects
the IMO speed as either 2 or 48 MHz, partially trimmed, i.e., slow boot or fast boot mode,
respectively. It should be noted that startup code is regenerated each time a change is made to a
PSoC Creator schematic, or design, resources. Thus, if the designer has made any changes to the
KeilStart.A51, and/or CyFitter_cfg.c, files can be lost. In order to avoid any such loss, these
files must only be edited when there is no need to perform a “generate” operation to ensure that
the configuration in the automatically generated source files matches the application’s design
resources and schematic. The design wide resources (DWR) and schematic changes are followed
by a “clean and build”65 and then editing of the source files. The project can then be subjected
to a “build” and the resulting firmware will reflect the respective edits. However, any subsequent
“clean and build” actions will result in modifications to the generated source code.

63A Nonvolatile Latch (NVL or NV latch) is an array of programmable, nonvolatile memory elements whose
outputs are stable at low voltage. It is used to configure the device at Power-on-Reset. Each bit in the array
consists of a volatile latch paired with a nonvolatile cell. On POR release nonvolatile cell outputs are loaded to
volatile latches and the volatile latch drives the output of the NVL.

64Clearing SRAM requires approximately 4500 CPU clock cycles, at 12 MHz, to clear 8kB of SRAM. However,
if SRAM is not cleared but variables are initialized properly, not clearing SRAM will have no adverse effect on
firmware operation.

65PSoC Creator’s Clean and Build Project command causes the intermediate and output files of any previous
build to be deleted prior to initiating a new build.

152 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.34: Device register mode selection.

3.8.1 PSoC3/5 bootloaders

Once the source code for an embedded system application has been compiled, linked with the
appropriate libraries, and debugged66, it is ready to be downloaded to the target device, e.g.,
a PSoC3 or PSoC5. This is accomplished, in part, by employing a bootloader .67 A PSoC3/5
bootloader reads data from a communications port and writes it to internal Flash. In addition to
downloading an application to a target during the design and manufacturing phase, the ability
to download firmware upgrades and bug fixes, in the field, to a target in a noninvasive manner
are often very important when employing embedded system applications.

Communication ports in common use in such cases include USB, I2C, UART, JTAG and
SWD. However, USB, I2C and UART are often preferred for loading software into a system in
the field, rather than SWD and JTAG.68 In addition, many systems utilize a USB, I2C or UART
communication channels, used by the embedded system, to meet other application requirements.

A bootloader project is application software loaded by the bootloader into the target’s Flash
memory.69 The functions that can be implemented when creating a bootloader are restricted to:

• CyBtldrCommRead - read function

• CyBtldrCommWrite - write function

• CyBtldrCommStart - initiate communication

• CyBtldrCommStop - halt communication

• CyBtldrCommReset - reset the communication channel

66Debugging can also be carried out after the executable has been downloaded to the target.
67PSoC Creator provides a programmer which employs a default bootloader in the target device. However, in

some cases use of this bootloader in the field is undesirable, in which case the designer must provide an appropriate
bootloader for field programming/updating.

68USB, I2C and UART ports in an embedded system can be used for multiple purposes since they are generic
communications protocols whereas SWD and JTAG are somewhat application specific..

69There can be only one bootloadable project in use in a PSoC3/5 at a time.

3.8. PSOC3 STARTUP PROCEDURE 153

The application code, and associated data, are transferred to the target’s Flash memory. The
file type created by PSoC Creator for bootloadable files is *.cyacd and consists of a five byte
header, followed by the data records where the header record format consists of a

• [Four byte SiliconID][one byte SiliconRev]

followed by data records in the format given by

• [One-byte ArrayID][Two-byte RowNumber][Two-byte DataLength][N-byte Data][One-byte
Checksum]

where the checksum’s value is computed by summing all of the bytes, other than the checksum,
and then taking the 2’s complement of the resulting sum. The SiliconID is a value that identifies
the target’s package type and the SiliconRev is a value identifying the associated revision number.

The bootloader is responsible for accepting/executing commands, and passing responses to
those commands back to a communications component. The bootloader collects/arranges the
received data and manages the actual writing of Flash through a simple command/status register
interface. The bootloader component is not presented in PSoC Creator as a typical component,
i.e., it is not available in the Component Catalog. The communications component manages the
communications protocol used to receive commands from an external system, and passes those
commands to the bootloader. It also passes command responses from the bootloader back to the
off-chip system.70

In order to create a bootloader component, and the associated code, it is necessary to create
both a bootloader and a Bootloadable project in PSoC Creator. When a bootloader project is
created, a bootloader Component is automatically created by PSoC Creator. The design typically
requires dragging a communications component onto the schematic, routing I/O to pins, setting
up clocks, etc.

While a standard project resides in Flash starting at address zero, a bootloader project
occupies memory at an address above zero and the associated bootloader begins at memory
address zero, as shown in Figure 3.35.

Figure 3.35: Comparison of memory maps for a standard project and a bootloader project.

The bootloader project code transfers a bootloadable project, or new code, to the Flash via
the bootloader project’s communications component. After the transfer has been completed, the
processor is always reset, causing execution of the code to begin at memory address zero. The
bootloader project is also responsible, at reset time, for testing for certain conditions and possibly
auto-initiating a transfer, if the bootloadable project is non-existent, or is corrupt. At startup,

70The I2C is the only supported communication method for the bootloader and the hardware I2C must be
selected and not the UDB-based I2C.

154 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

the bootloader code loads its respective configuration bytes. It must also initialize the stack and
other resources/peripherals involved in the transfer. When the transfer is complete, control is
passed to the bootloadable project via a software reset. The bootloadable project then loads
configuration bytes for its own configuration; and re-initializes the stack, other resources and the
peripherals for its functions. The bootloadable project can call the CyBtldr_Load() function in
the bootloader project to initiate a transfer71.

Whether a bootloader or bootloadable project is built, an output file is produced that contains
both the bootloader and the bootloadable project. It is used to facilitate downloading both
projects via either JTAG, or SWD, to Flash memory in the target device. The configuration
bytes for a bootloader project are always stored in main Flash, but not in ECC Flash. However,
the configuration bytes for a bootloader project may be stored in either main Flash, or in ECC
Flash. The format of the Bootloadable project output file is such that when the device has
ECC bytes that are disabled, transfer operations are executed in less time. This is done by
interleaving records in the Bootloadable main Flash address space with records in the ECC Flash
address space. The bootloader takes advantage of this interleaved structure by programming the
associated Flash row once the row contains bytes for both main Flash and ECC Flash. Each
project has its own checksum, which is included in the output files at project build time.

Avoiding unintended overwriting of the bootloader can be accomplished by setting the Flash
protection settings for the bootloader section of Flash. When the bootloader is built in PSoC
Creator, the Output window displays the amount of Flash memory required for the bootloader,
e.g.,

Flash used: 6859 of 65536 bytes (10. 5%).

in which case the bootloader occupies 27 rows (ceiling 6859/256) of Flash, i.e., Flash locations
0x000 to 0x1B00. It is protected by highlighting this part of Flash in the Flash Security tab and
setting Flash protection as W-Full protection.

Figure 3.36: Flash security tab.

The bootloader project always occupies the bottom N, 256-byte blocks of Flash, where N is large
enough to provide sufficient memory for the

71This results in another software reset.

3.8. PSOC3 STARTUP PROCEDURE 155

• vector table for the project, starting at address 0 (PSoC5 only),

• bootloader project configuration bytes,

• bootloader project code/data,

and,

• checksum for the bootloader portion of Flash.

The relevant option is removed from the project’s .cydwr file. The bootloader portion of Flash
is protected and can only be overwritten by downloading via JTAG/SWD.

The highest 64-byte block of Flash is used as a common area for both projects. Various parameters
are saved in this block, which may include the:

• entry in Flash of the Bootloadable project (4 byte address)

• amount of Flash occupied by the Bootloadable project (Number of Flash rows)

• checksum for the Bootloadable portion of Flash (a single byte)

and

• size of the Bootloadable portion of Flash (4 bytes)

The bootloadable project occupies Flash starting at the first 256-byte boundary after the
bootloader, and includes the vector table for the project (PSoC5 only), and the bootloadable
project code and data. Storage of the bootloadable project’s configuration bytes, in either main
Flash or in ECC Flash, is determined by settings in the project’s .cydwr file. The highest 64-byte
block of Flash is used as a common area for both projects. Various parameters are saved in this
block, e.g., the entry point in Flash of the bootloadable project (a 4 byte address) the amount
of Flash occupied by the bootloadable project (the number of Flash rows) the checksum for the
bootloadable portion of Flash (a single byte) and/or the size of the bootloadable portion of Flash
(4 bytes).

The only exception vector supported by PSoC3 is the 3-byte instruction at address 0, which
is executed at processor reset.72 Therefore, at reset the 8051 bootloader code simply starts
executing from Flash address 0. In the PSoC5, a table73 of exception vectors exists at address 0
and the bootloader code starts immediately after the table. The table contains the initial stack
pointer (SP) value for the bootloader project, the address of the start of the bootloader project
code and vectors for the exceptions/interrupts to be used by the bootloader. The bootloadable
project also has its own vector table, which contains that project’s starting stackpointer (SP)
value and first instruction address. When the transfer is complete, as part of passing control to
the bootloadable project, the value in the Vector Table Offset Register is changed to the address
of the bootloadable project’s table.

• Wait for Command - At reset, if the bootloader detects that the checksum in bootload-
able project Flash is valid, then it may optionally wait for a command to start a transfer
operation before jumping to the Bootloadable project code. If the selection is “yes”, then
the Wait for Command Time parameter is editable. If the selection is “no”, then that pa-
rameter is grayed out. In that case an external system typically is not able to initiate a
transfer, however the Bootloadable project code can still launch a transfer operation by
calling Bootloader_Start().74

72The interrupt vectors are not in Flash. They are supplied by the Interrupt Controller (IC).
73This table is pointed to by the Vector Table Offset Register, at address 0xE000ED08, whose value is set to 0

at reset.
74The default value is “yes”.

156 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.37: Bootloader flow chart.

3.9. DEVELOPMENT TOOLS 157

• Wait for Command Time - At reset, if the bootloader detects that the checksum in
bootloadable project Flash is valid, then it may optionally wait for a command to start a
transfer operation before jumping to the Bootloadable project code. This parameter is the
wait timeout period. Allowable settings are 1 -255 (inclusive), in units of 10 msec.75

• I/O Component - This is the communications component that the bootloader uses to
receive commands and send responses. One, and only one, communications component must
be selected. Only two-way communications components are used, e.g. a UART must have
both RX and TX enabled, and an infrared (IrDA) component could not be used. A design
rule check (DRC) exists for the case where no two-way communications component has
been placed onto the bootloader project schematic. This property is a list of the available
I/O communications protocols on the schematic that have bootloader support. There is
typically only one communications Component on a bootloader project schematic, but there
may be more in the case where the bootloader must also perform a custom function during
the transfer.76

The bootloader has a public API that can only be used to launch a transfer operation from
a bootloadable project. When called, a software reset occurs followed by the bootloader tak-
ing control of the CPU. Bootloadable code containing interrupts is not executed in this case.
When the transfer begins, resources and peripherals are reconfigured as required and all other
resources/peripherals are disabled. When the transfer has been completed, the CPU is auto-
matically reset. void CyBtldr_Load(void) starts a transfer and reconfigures the device per the
bootloader project. Although the CPU is reset upon completion of the transfer there is no return
value. Figure 3.37 shows the flowchart for the bootloader.

3.9 Development Tools

The advent of powerful tools such as the integrated development environment (IDE) has allowed
designers to create relatively sophisticated designs utilizing little more than a desktop, or portable
computer and a so-called “evaluation board”, e.g., of the type shown in Figure 3.38, that is
based on the target device.77 Early IDE’s consisted of a rather simple text editor, an assembler
and linker supported, in some respects, by relatively primitive debugging capability. In time,
these system evolved to include various compilers, primitive simulators whose capabilities were
generally limited to rather restrictive abilities to check a design’s logic, but little else and improved
debugging capability.

Debugging, a process which can be the most time consuming aspect of developing a new
design, was initially limited to post examination of a region of memory after executing a program
that had been downloaded to the target, single-stepping through a program one statement at a
time and a rather limited capability to set breakpoints. Later IDE debuggers allowed regions
of a program, arbitrary memory locations, registers, etc., to be monitored during, and post,
execution to determine whether or not unanticipated, consequential conditions had occurred, as
one way to isolate/trap errant code. Some IDEs allowed program variables and expressions to

75This parameter is editable only if the Wait for Command parameter is set to yes, otherwise it is grayed out.
76If only one communications component is on the schematic then it is the only one available in the DWR drop

down.
77Evaluation, or eval, boards are provided by microprocessor/microcontroller manufacturers, often at a nominal

cost, to allow designers to become familiar with a device, or family of devices, and in some cases to actually
incorporate the eval board into a prototype for testing and proof of concept purposes. Such boards generally
include several types of I/O connections, LEDs, various types of switches, display devices such as LED/LCD
displays and additional hardware to support whatever is required for on-board programming of the target device.

158 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.38: The Cypress PSoC1/3/5 evaluation board.

3.10. THE PSOC CREATOR IDE 159

be “watched”78 and evaluated during program execution.This form of debugging sometimes led
to merely “moving the problem to a different place” since such techniques could substantially
alter the operating conditions of the executing program, e.g., by introducing too much debugging
overhead and adversely affecting the systems responsiveness and execution speed.

Current IDE’s for microcontrollers, and microprocessors, tend to primarily support assembly
and C language development. However, there are a few notable IDE exceptions that support
languages such as BASIC79, FORTH80, Pascal, etc.81 Typically, for applications utilizing C
language, the associated compiler produces assembly source code as its output. The resulting
assembly source code is then processed by the IDE’s assembler and subsequently passed to an
integral linker.82 However, debugging, within the context of an IDE, may be restricted to single-
stepping and setting of a limited number of breakpoints.

3.10 The PSoC Creator IDE

PSoC Creator’s user-interface is shown in Figure 3.39. It is a combination of a highly intuitive
and innovative graphical design editor and a set of sophisticated tools that are well integrated to
provide rapid testing of new design ideas, quick response to hardware changes, error-free software
interaction with the target’s on-chip peripherals, and full access to all aspects of the design.
It offers a unique combination of hardware configuration and software development in a single,
unified tool. This design frees embedded designers from the innovation-killing division between
hardware design and software development characteristic of other IDE systems.

PSoC Creator includes an

• integrated schematic capture for device configuration,

• extensive component catalog,

• integrated source editor,

• built-in debugger,

• C/C++/EC++/Ada compiler support,

• support for component creation (affording design reuse),

• a PSoC 3 compiler - Keil PK51 (no code size limit),

• a PSoC 5 compiler - Sourcery G R©Lite Edition from CodeSourcery,

• sophisticated and reliable bootloading,

• parameter dialogs for comparators, OpAmps, IDACs, VDACs, etc.,

• a static timing checker,

• PSoC 3 instruction cache support,

78A watch window can be used to evaluate and display variables, registers and/or expressions that involve
simple variables, array variables, struct variables, registers and assignments. This window is updated immediately
following each halt event and displays the name, value, address, type and radix of the parameter being watched.
Memory locations can also be watched.

79Beginners All-Purpose Symbolic Instruction Code (BASIC) is an interpreter originally developed by Thomas
Kurtz and George Kemeny, in 1964, at Dartmouth College and placed in the public domain. Subsequently,
various incarnations were developed, as interpreters or compilers, some of which were compilers that are still used
to develop applications for microcontrollers, e.g., BASCOM by MCS for Atmel and 8051 architectures.

80VFX FORTH for Windows.
81IDEs exist for Ada, C/C++, C#, Eiffel, Fortran, Java and JavaScript, Pascal and Object Pascal, Perl, PHP,

Python, Ruby, Smalltalk, etc., but not all are either designed or suitable for embedded system development.
82A linker, sometimes referred to as a linkage editor, is used to link-edit various object files into a single file

that can be used to produce the resulting executable.

160 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

F
igure

3.39:
T
he
P
SoC

C
reator

fram
ew
ork.

3.10. THE PSOC CREATOR IDE 161

• a Generate Application command/button,

and,

• automated, support case reporting.

When PSoC Creator is opened, it displays the Start Page and provides the user with access to
recent projects, new project initiation and information on available updates. Links to tutorials,
help files, forums, application notes and the reference-design, build projects available online
from Cypress’ website (www.cypress.com) are also displayed. If a hardware development kit is
attached to the designer’s PC it is detected by a scan initiated by PSoC Creator to determine
the development kit present, and customizes PSoC Creator’s View for that hardware kit.

3.10.1 Workspace Explorer

PSoC Creator employs a number of dockable windows and allows such windows to be hidden,
at the designer’s option, via a toggable, pushpin icon option located in the upper right side of
the window. When the window is hidden, a small tab remains that upon the occurrence of a
mouse-over causes the respective window to reappear. The Workspace Explorer window, shown
in part in Figure 3.40, has three tabs: Source, Components and Results. The Source tab displays
the source and header files for a project in terms of a tree-like structure. Source files displayed in
this mode consist of the files generated by PSoC Creator and those introduced by the designer.
The Components tab displays the components belonging to each project. The Results tab is a
dynamic listing of files resulting from the most recent build, e.g., programming file, debugging file
(if different form the programming file) and in some cases a device file, code generation report,
list files and/or map files.

3.10.2 PSoC Creator’s Component Library

The Component Library includes a wide variety of analog, CapSense. communication, digital,
display, filter, port/pin and system components. The designer simply drags each component from
the component library to PSoC Creator’s work canvas, as shown in Figure 3.41 and connects
the various components as required. Double clicking on a component on the canvas causes a
dialog box to appear with the available user-selectable options for the device and access to the
component’s datasheet. When the components have been selected and interconnected as required
for a particular design, a build can be initiated. Warnings, Errors and Note are then displayed
in the Notice List window.

3.10.3 PSoC Creator’s Notice List and Build Output Windows

The Notice List window, shown in Figure 3.42 combines notices (errors, warnings, and notes)
from many sources into one centralized list. If a file and/or error location is shown, double-
clicking the entry will display the error, or warning. There are also buttons to Go To Error or
View Details. This window is usually located at the bottom of the PSoC Creator framework and
often in the same window group as the Output window.83

The Notice List contains the following columns:

• Icon - Displays the icons for the error, warning, or note. A specific row may also contain a
tree control containing individual parts of the overall message.

• Description - Displays a brief description of the notice.

83It is possible for a build to fail for no apparent reason and should there be no indication of the cause of failure
in the Notice List, the designer should check the Build Output window to determine the cause.

162 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.40: Workspace Explorer.

Figure 3.41: Adding a component to a design.

3.10. THE PSOC CREATOR IDE 163

Figure 3.42: PSoC Creator’s Notice List window.

• File - Displays the file name where the notice originated.

• Error Location - Displays the specific line number or other location of the message, when
applicable.

The number or errors, warnings, and notes also displays on the PSoC Creator Status Bar

• Errors indicate there is at least one problem that must be addressed before a successful
build can occur. Typical errors include: compiler build errors, dynamic connectivity errors
in schematics, and Design Rule Checker (DRC) errors. Errors from the build process remain
in the list until the next build.

• Warnings report unusual conditions that might indicate a problem, although they may not
preclude a successful build.

• Notes are informational messages regarding the latest build attempt.

The File and Error Location columns indicate the file in which an error/warning occurred and its
location within that file. The three buttons above the Notice List labeled Errors, Warnings and
Notes can be used to hide/display items in the notice list for each of the three categories.84 Double
clicking on an error/warning in the Notice List opens the associated window and highlights the
error. Selecting an error, or a warning, by double clicking on it in the Notice List will cause
the associated file/screen to open. The View Details button will open a window with additional
information about the selected warning/error. As design wide resource and schematic errors are
fixed, the Dynamic Rules Checker runs and removes the error/warning from the Notice List.
Other types of errors will not be removed from the Notice List, until the next build occurs.
Clicking the Output tab causes the window to display the various build, debugger, status, log
and other messages, as shown in Figure 3.43.

3.10.4 Design-Wide Resources

PSoC Creator provides a design-wide resource (DWR) system that allows the designer to manage
all of the resources included in a particular design from one location, as shown in Figure 3.45.
Supported resources include clocks, DMA, interrupts, pins, system and directive. Each design
has its own default DWR file, with its file type specified as .cydwr, and its filename is the same as
the project’s name. If the .cydwr file is deled for any reason the default values will be used. The

84These buttons are labeled with the number of errors, warnings and notes, respectively.

164 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.43: PSoC Creator’s Output window

pin editor, shown in Figure 3.45, allows the pins to be assigned and/or locked85 prior to the build
process’ place and route operations. Double clicking the .cydwr file in Workspace Explorer’s
Source tab causes the DWR window to open and display the pin editor by default.

Figure 3.44: Pin assignment.

A signal table is presented in the pin editor that shows the name of each signal, any alias
assigned to an individual logic pin or logical port, user-forced pin assignments86 and an indication
of whether or not a particular pin is locked. Pin assignment is illustrated in Figure ref.

85Locked pins are constrained to previously specified pin locations. All others are assigned during the build
process.

86These assignments will not be changed by a build. This column can also be used to make a pin assignment by
selecting the desired physical pin from an integral drop-down list. A "-" indicates no assignment has been made
for a given signal as does the white background color.

3.10. THE PSOC CREATOR IDE 165

Figure 3.45: The pin assignment table in the DWR window.

3.10.5 PSoC Debugger

PSoC Creator’s built-in debugger supports the following commands:

• Execute Code/Continue is used to start/continue, start a build if the project is out-of-date,
update the status bar’s message to indicate that the debugger is starting, program the
selected target with the latest version of the projects code and start the debugging session.

• Halt Execution halts the target.

• Stop Debugging ends the debugging session.

• Step Into is used to execute a single line of the source code. If the line is a function call, the
break in execution will occur at the first instruction in the function, otherwise a break will
occur at the next instruction.

• Step Over is used to execute the next line of source code. If the next line is a function call,
execution of the function will not occur.

• Step Out completes execution of the current function and halts at line of source occurring
immediately after the function call.

• Rebuild and Run halts the debugging session, recompiles the project, programs the target
device and reinitiates the debugger.

• Restart resets the program counter (PC) to zero and causes the processor to enter a run
state.

• Enable/Disable All Breakpoints toggles all of the breakpoints in the workspace.

3.10.6 Creating Components

Although PS0C Creator has an extensive catalog of components, e.g., OpAmps, ADCs, DACs,
comparators, a mixer, UARTS, etc., it is possible to add new components. Components can be
implemented using several methods, via a schematic, C code or by using Verilog. A schematic
macro is a mini-schematic that consists of existing components such as clocks, pins, etc. Com-
ponents created in this manner can consist of multiple macros and macros can have instances,

166 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

including the component for which the macro is being defined. PSoC Creator’s Component Up-
date Tool is used to update instances of components on schematics. When a macro is placed
on a schematic the “macroness” of the placed elements disappears. The individual parts of the
macro become independent schematic elements. Since there are no "instances" of macros on a
schematic, the Component Update Tool has nothing to update. However, a schematic macro itself
is defined as a schematic. That schematic may contain instances of other components that can
be updated via the Component Update Tool.

3.11 Creating a PSoC3 Design

The following example presents the basic steps required in building PSoC3/5 designs using PSoC
creator.87 Following installation and opening of PSoC Creator, navigate to the New Project
window, shown in Figure 3.46, This design will involve only three components: a Delta Sigma

Figure 3.46: PSoC Creator New Project Window.

ADC88, LCD display and analog pin, as shown in Figure 3.47. These components are dragged

Figure 3.47: PSoC Creator’s Analog Pin, LCD and ADC_DelSig components.

87A more detailed example is presented in Chapter 7.
88This ADC has 8-20 bits of resolution that can be defined in PSoC Creator menus and/or under software

control.

3.11. CREATING A PSOC3 DESIGN 167

from the Component Catalog to the Workspace Canvas. The wire tool89 can then be used to
connect the analog pin to positive input terminal of ADC_DelSig. The Configure ‘ADCDelsig’
dialog box, shown in Figure 3.48 is used in this example to select the Resolution as 20-bits, the

Figure 3.48: ADC_DelSig settings for the simple voltmeter example.

Conversion Rate as 100 samples per second (SPS)90, the input mode as single and the input
range as Vssa to 1.024V(0.0 to Vref).

The designer can either select the target manually, or use the Start Auto Select button, shown in
Figure 3.51 to programmatically select the appropriate target device, assuming that the target
is connected to PSoC Creator. However, in either case, the designer must manually select the
associated Device Revisions type for the target as Production, ES2, ES3 91.

Selecting an analog input pin, and connecting it to the ADC_DelSig’s input, completes the
physical connections for this design. Double clicking on the associated .cydwr tab causes the
pin layout for the target device to be displayed as shown in Figure 3.49. A Build command 92

is then invoked and main.c clicked on opens the tab main.c tab as shown in Figure 3.50. and
the screen shown in Figure 3.50. Once the source code has been entered as shown below, and
following successful compilation and linking, the resulting executable code can be downloaded to

89This tool can be activated by using the keyboard’s W key
90This selection automatically causes the sampling range to be restricted to a range of 8-187 samples per second

(SPS).
91The default type is Production.
92Or alternatively, a Clean and Build Project command.

168 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.49: Pin connections for the target device.

Figure 3.50: PSoC Creator’s main.c tab.

3.11. CREATING A PSOC3 DESIGN 169

the target by invoking the Program option in the Debug menu.

The source code for this example is shown below and consists of requiring that the result be
expressed as 32-bits and be displayed as a floating point value on the LCD screen. The ADC
and LCD must be started which requires power to be applied and that they both be initialized.
The cursor position is set at (0, 0) and the following message “PSoC Voltmeter” will be displayed
on the LCD. A start conversion command will be sent and the system will then enter an infinite
loop gathering input readings converting and scaling each input value creating a formatted string
and then displaying the result on the 2nd line of the LCD, at which point the process repeats,
ad infinitum...

/∗ ==
∗ PSoC3_Voltmeter
∗
∗ Simple p r o j e c t to read a vo l tage between
∗ 0 and 1 vo l t s and d i sp l ay i t on an LCD.
∗
∗ ==

∗/
#inc lude <dev i ce . h>
#inc lude <s td i o . h> /∗ p r i n t f i s needed f o r p r i n t i n g output ∗/

void main ()
{

in t32 adcResult ; /∗ Result to be 32−b i t ∗/
f l o a t adcVolts ; /∗ Result w i l l be d i sp layed as a f l o a t i n g po int va lue ∗/
char tmpStr [2 5] ; /∗ 25 charac t e r temporary s t r i n g ∗/

ADC_Start () ; /∗ I n i t i a l i z e and s t a r t the ADC ∗/
LCD_Start () ; /∗ I n i t i a l i z e and s t a r t the LCD ∗/
LCD_Position (0 , 0) ; /∗ Display message beg inning at l o c a t i o n (0 , 0) ∗/
LCD_PrintString ("PSoC VoltMeter ") ;
ADC_StartConvert () ; /∗ Star t ADC conve r s i on s ∗/

f o r (; ;) /∗ Loop f o r e v e r ∗/
{

i f (ADC_IsEndConversion (ADC_RETURN_STATUS) != 0) /∗Data av a i l a b l e ?
∗/

{
adcResult = ADC_GetResult32 () ; /∗ Get Reading (32− b i t) ∗/
adcVolts = ADC_CountsTo_Volts (adcResult) ; /∗ Convert to v o l t s & s c a l e ∗/
s p r i n t f (tmpStr ,"%+1.3 f v o l t s " , adcVolts) ; /∗ Create formatted s t r i n g ∗/

LCD_Position (1 , 0) ; /∗ 2nd l i n e o f the LCD ∗/
LCD_PrintString (tmpStr) ; /∗ Display the r e s u l t ∗/
}

}
}

Note that sprintf is used, in this example, to store the resulting string in a buffer named tmp-
Str, as opposed to printf which would result in the string being written to the output stream.
LCD_PrintString subsequently outputs tmpStr to the LCD. Many of the components provided
by PSoC Creator must be initialized by a start-device instruction. Following entry of the source
code for the application into PSoC Creator’s editor93 the Device Selector is used to select the
target device as shown in Figure 3.51. Pin assignment for the target device is under the control
of the designer. The LCD and input pins for this particular design are set as shown in Figure
3.52.

93Alternatively, the source can be created by other editors.

170 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.51: This table is used to select the target device/revision type(s).

Figure 3.52: Pin assignment for the target device.

3.12. THE SOFTWARE TOOL CHAIN 171

3.11.1 Design Rule Checker

PSoC Creator’s Design Rule Checker (DRC) evaluates the design based on a collection of pre-
determined rules in the project database. The DRC points to potential errors ,or “rule” violations,
in the project that might pose problems and displays the related messages in the Notice List
window. Some connectivity and dynamic errors update as soon as changes are made to the
design, while other errors update following load and save operations.

3.12 The Software Tool Chain

PSoC Creator’s integrated development environment (IDE) includes an editor, compiler, assem-
bler, linker, debugger and programmer. The editor is used to enter and/or modify a text file
referred to as a source file.94

After navigating to Tools>Options>Text Editor, various options can be set to include line
numbers, set the tab size, enable soft tabs/column guides, highlight the current line and set
highlight colors for saved/unsaved changes. The editor’s Find and Replace command options can
be set to display informational messages and to automatically populate Find What with text from
the editor. In addition to supporting C language development, assembly language programming
is also supported, either as a separate assembly source file,95 or as assembly language instructions
within a C source file.96

The page background can be set by navigating to Tools>Options>Design Entry>General
and selecting an appropriate Canvas Background Color. Terminal options include Always Enable
Terminal Name Dialog, Always Show Terminals, Schematic Analog Terminal Color, Schematic
Digital Color, Symbol Analog Terminal Color, Symbol Digital Terminal Color, Terminal Con-
nector Indicator Color, Terminal Contact Color, Terminal Font and Terminal Font Color. The
colors of the major, and minor, grid lines can also be set as can the Show Grid and Show Grid as
Lines options. Analog and digital Wire Colors, Wire Bus Size, Wire Dot Size, Wire Font, Wire
Font Color and Wire Size can be chosen by the user. It is also possible to add user-defined sheet
templates, Show Hidden Components and Enable Param Edit Views.

Project management options include setting the Project location, Always Show the Error List
window if a build has errors, Always display the workspace in the Workspace Explorer, Display
the Output window when a build starts, Reload open documents when a workspace is opened and
Reload the last workspace on startup.

The Programmer/Debugger options97 include: Ask before deleting all breakpoints, Require
source files to exactly match the original version and Evaluate xx98 children upon expand in
variable view, The Default Radix can be set as Hexadecimal Display, Octal Display, Decimal
Display or Binary Display. options include On Run/Reset run to Reset Vector, Main or First
Breakpoint andWhen inserting software breakpoints, warn: Never, On First or On Each, Disable
Clear-On-Read, Automatically reset device after programming, Automatically show disassembly,

94PSoC Creator-compatible source code can also be created by external, third party text editors.
95To create a separate assembly file, right click on the project name in the Workspace Explorer and select Add

New Item. Select 8051 Keil Assembly File and provide a name for the file.This will create an assembly source
file, with the extension .a51, in the Source Files in the project.

96Inline assembly code is placed between the two directives, #pragma asm and #pragma endasm in the C
source file. Right click on the C source file in Workplace Explorer and select Build Settings. Select the General
option under Compiler and set the Inline Assembly option to True. The compiler will process the assembly
language portion of the source file during compilation.

97Navigate to Tools>Options.
98“xx” is a integer value provided by the user.

172 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

after programming if no source is available and Allow debugging even if build failed.

Specific debugger options include Show Settings for: Breakpoint Windows, Call Stack Window,
Debug Intellipoint, Disassembly Window, Locals Window, Memory Window, Registers Window
or Watch Window. A wide variety of fonts is provided for debugging and the font size is variable
from 6-24 points. Item foreground and Item background are also user-selectable for Display items:
Plain text, Changed Text, Changing Text and Address Text.

MiniProg399 options include Applied Voltage: 5.0 V, 3.3 V, 2.5 V, 1.8 V or Supply Vtarg;
Transfer Mode JTAG, SWD, SWD/SWV or Idle; Active Port 10 Pin or 5 Pin; Acquire Mode:
Reset, Power Cycle or Voltage Sense. Debug Clock Speed is selectable as 200 Hz, 400 Hz, 800
Hz, 1.5 MHz, 1.6 MHz, 3.0 MHz, 3.2 MHz or 4 MHz. Acquire Retries is also user selectable. The
Environment options include: Detect when files are changed outside this environment, Auto-load
changes, if saved, At Startup Show Start Page, external Application Extensions File Extensions
and Require Components Update Dialog Check for up-to-date components when a project is loaded .

Figure 3.53: Start Page in PSoC Creator.

3.13 Opening or Creating a Project

A project in PSoC Creator contains all of the information about a given design. When PSoC
Creator is invoked, it displays a Start Page, as shown in Figure 3.53, that allows the user to either
open a previous project or begin a new one. It scans the system for installed development kits
and even if none are installed, it will still, if possible, try to configure a device and generate code.
However, debugging a project does require the presence of hardware. The basic steps involved in
creating any application in the PSoC Creator development environment consists of the following:

• Creation or opening of an existing project - a project consists of a group of files, e.g.,

1. TopDesign.cysch - a schematic layout of the project

2. main.c - a file con

99The PSoC MiniProg3 is an all-in-one programmer for PSoC 1, PSoC 3 and PSoC 5 architectures, that also
functions as a debug tool for PSoC 3 and PSoC 5 architectures, and a USB-I2C Bridge for debugging I2C serial
connections and communicating to PSoC devices. It supports the following protocols: SWD, JTAG , ISSP and
USB-I2C.

3.14. ASSEMBLY LANGUAGE AND PSOC3 173

• Selection of components to be used in the project - components are selected from the Cypress
Component Catalog and dragged to the schematic (.cysch) window.

• Configuration of each of these components - clicking on each of the components will cause
the respective dialog box to appear that contains various user options for the component.100

• Completion of the schematic - once the required components have been placed in the
schematic window the designer can then proceed to incorporate the various interconnec-
tions between components that are required.

• Assignment of all resources modification of main.c to allow access to all components used
in the design.

• Addition of firmware to main.c

• Building the project

• Downloading of the compiled project

• Debugging the project

by clicking File>New>Project.

3.14 Assembly Language and PSoC3

PSoC Creator supports both C and assembly language application development. An assembler
translates symbolic instruction code into object code. Assembly language operation codes are
incorporated in the source in the form of easily remembered mnemonics, e.g., MOV, ADD, SUB,
etc.

Assembler source files consist of:

• Directives that define the program’s structure and symbols.

• Assembler controls that set the assembly modes and direct flow.

• Machine instructions are the codes that are actually executed by the microprocessor.

A Linker/Locator links (joins) relocatable object modules created by the assembler or com-
piler, resolves public and external symbols, and produces absolute object modules, as shown in
Figure 3.54. It is also capable of producing a listing file containing a cross reference of exter-
nal/public symbol names, program symbols and other information.

Figure 3.54: The linking process.

PSoC Creator’s integral assembler, AX51, is a multi-pass, macro assembler that translates
x51 assembly code source files into object files that can then be combined or linked using PSoC
Creator’s integral linker/locator, LX51, to produce an executable in the form of an absolute
object module in an Intel hex file format. The object module generated by the LX51 Linker
is an absolute object module that includes all of the information required for initializing global
variables, zero-initializing global variables, program code and constants, as well as symbolic

100The configuration and performance characteristics for a given component are defined by values placed in
PSoC resource registers associated with the component.

174 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

information, line number information, and other debugging details and the relocatable sections
assigned and located at fixed addresses.

3.15 Writing Assembly code in PSoC Creator

There are two options available for using assembly code in PSoC Creator projects, viz., create
a separate assembly source file, or place inline assembly in a C source file. To create separate
assembly code source file: Right click on Project name in the Project Explorer and then select
Add new item, select 8051 Keil Assembly File and provide a name for the file. This will create an
assembly source file with a .a51 file extension in the Source Files folder in the project. Assembly
code can then be added to this file using standard 8051 instruction codes.101

Inline assembly code can be used by placing the assembly code inside the directive #pragma
asm and #pragma endasm102, e.g.,

extern void t e s t () ;
void main (void) {

t e s t () ;
#pragma asm

JMP \$; end l e s s loop
pragma endasm
}

In the Project explorer, right click on the source file that has the inline assembly and select Build
Settings. Select the Compiler option and set the value for Inline Assembly parameter to True.
The inline assembly code will then be processed during compilation.]

Assembly language source files consist of lines of instructions of the following general form:

l a b e l : mnemonic operand , operand

$ITLE(Example Assembly Program)
CSEG AT 00000h
JMP $
END

where $TITLE is a directive103 and CSEG and END are control statements. The assembler
supports symbols which consist of up to 31 characters, inclusive. Supported characters include
A-Z, a-z, 0-9, underscore and ?.

Symbols can be defined in the following ways:

NUMBER_ONE EQU 1
TRUE_FLAG SET 1
FALSE_FLAG SET 0

Labels can be used in an assembly language program to define a place, i.e., address, in a program
or data space. Labels must begin in the first text field in a line and be terminated by a colon

101See PSoC Creator: Help > Documentation > Keil > Ax51 Assembler User Guide whihc provides instructions,
template, etc., for additional information on assembly language programming.
102Pragmas are used in the source code to provide special instructions for the compiler.
103There are two types of directives: primary and general. Primary directives occur in the first few lines of the

source file and affect the entire source file. General directives can occur anywhere within the source file and may
be changed during assembly.

3.15. WRITING ASSEMBLY CODE IN PSOC CREATOR 175

(:). No more than one label may occur per line. and once defined they must not be redefined.
Labels can be used the same way a program offset is used within an instruction. Labels can refer
to program code, to variable space in internal or external data memory, or can refer to constant
data stored in the program or code space. Labels can also be used to transfer program execution
to another location.

Labels are defined as follows:

ALABEL: DJNZ R0 , ALABEL

Figure 3.55: The Preprocessor, Compiler, Assembler, Linker and Loader chain.

PSoC3/5’s assembler supports the following directives:

• CASE - Enable case-sensitive symbol names. (Primary)

• COND - Include conditional source lines skipped by the preprocessor. (General)

• DATE - Specify the appropriate date in the listing file. (Primary)

• DEBUG - Include debugging information in the listing file. (Primary)

• DEFINE - Defines C preprocessor symbols (command line). (Primary)

• EJECT - Insert a form feed into the listing file. (General)

• ELSE - Assemble the current block, if the condition of a previous IF is false. (General)

• ELSEIF - Assemble the current block, if the condition is true and a previous IF is false.
(General)

• ENDIF - Ends an IF block. (General)

• ERRORPRINT - Specify the file name for error messages. (Primary)

• GEN - Include all macro expansions in the listing file. (General)

• IF - Assemble block, if the condition is true. (General)

• INCDIR - Set additional include file paths. (Primary)

• INCLUDE - Include the contents of another file. (General)

• LIST - Include the the assembly source text in the listing file. (General)

• MACRO - Enable preprocessor expansion of standard macros. (Primary)

• MOD51 - Enable code generation and define SFRs for classic 8051 devices. (Primary)

• NOAMAKE - Exclude build information from the object file. (Primary)

• NOCASE - Disable case-sensitive symbol names. (All symbols are converted to uppercase.)
(Primary)

• NOCOND - Exclude conditional source lines skipped by the preprocessor from the listing
file. (Primary)

176 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• NODEBUG - Exclude debugging information from the listing file. (Primary)

• NOERRORPRINT - Disable error messages output to the screen. (Primary)

• NOGEN - Exclude macro expansions from the listing file. (General)

• NOLINES - Exclude line number information from the generated object module. (Primary)

• NOLIST - Exclude assembly source text from the listing file. (General)

• NOMACRO - Disable preprocessor expansion of standard macros. (Primary)

• NOMOD51 - Suppress SFRs definitions for an 8051 device. (Primary)

• NOOBJECT - Disable object file generation. (Primary)

• NOPRINT - Disable listing file generation. (Primary)

• NOREGISTERBANK - Disables memory space reservation for register banks. (Primary)

• NOSYMBOLS - Exclude the symbol tables from the listing file. (Primary)

• NOSYMLIST - Exclude subsequently defined symbols from the symbol table.

• NOXREF - Exclude the cross-reference table from the listing file. (Primary)

• OBJECT - Specifies the name for an object file. (Primary)

• PAGELENGTH - Specifies the number of lines on a page in the listing file. (Primary)

• PAGEWIDTH - Specifies the number of characters on line in the listing file. (Primary)

• PRINT - Specifies the name for the print file. (Primary)

• REGISTERBANK - reserves memory space for register banks. (Primary)

• REGUSE - Specifies registers modified for a specific function. (General)

• RESET - Set symbols to false that can be tested by IF or ELSEIF.

• RESTORE - Restore settings for the LIST and GEN directives. (General)

• SAVE - Save settings for the LIST and GEN directives. (General)

• SET - Sets symbols, that may be tested by IF or ELSEIF, to true or a specified value.
(General)

• SYMBOLS - Include the symbol table in the listing file. (Primary)

• SYMLIST - Include subsequently defined symbols in the symbol table.

• TITLE - Specifies the page header title in the listing file. (Primary)

• XREF - Include the cross-reference table in the listing file. (Primary)

3.16 Big Endian vs. Little Endian104

Little endian and big endian refer to the ordering of bytes for a particular data format, e.g., big
endian refers to situations in which the most significant byte (MSB) occurs first and the least
significant byte occurs last. Conversely, little endian implies that the least significant byte occurs
first and the most significant byte occurs last.105

The PSoC3 Keil Compiler uses the big endian format for both 16-bit and 32-bit variables.
However, the PSoC3 device uses little endian format for multi-byte registers (16-bit and 32-bit
register). When the source and destination data are organized in different “endian-ness”, the DMA

104Jonathan Swift allegedly originated the concept of of ended-ness in Gulliver’s Travels. It arose as a result of
the royal edict regarding which end of an egg should be cracked open.
105Some architectures allow the endianess to be changed programmatically, e.g, ARM.

3.17. REENTRANT CODE 177

transaction descriptor can be programmed to have the bytes endian-swapped while in transit.
The SWAP_EN bit of the PHUB.TDMEM[0..127].ORIG_TD0 register specifies whether an
endian swap should occur. If SWAP_EN is 1 then an endian swap will occur and the size of the
swap is determined by the SWAP_SIZE bit of PHUB.TDMEM[0..127].ORIG_TD0 register. If
SWAP_SIZE = 0 then the swap size is 2 bytes, meaning that every 2 bytes are endian-swapped
during the DMA transfer. The code snippet of the TD configuration API to enable byte swapping
for 2 bytes of data is given below.

CyDmaTdSetConfiguration(myTd, 2, myTd, TD_TERMOUT0_EN | TD_SWAP_EN);

If SWAP_SIZE = 1 then the swap size is 4 bytes, meaning that every 4 bytes are endian-
swapped during the DMA transfer. The code snippet of the TD configuration API to enable byte
swapping for 4bytes data is given below.106

(myTd, 4, myTd, TD_TERMOUT0_EN | TD_SWAP_EN | TD_SWAP_SIZE4);

3.17 Reentrant Code

Reentrant code is defined as code that can be shared by multiple processes contemporaneously. In
the handling of interrupts, it is fairly common to interrupt a function and allow another process
to access the function, e.g., as in the case of a function being called from both the main code and
from an interrupt service routine. Declaring a function reentrant preserves the local variables
used in the function, when the function is invoked multiple times. In embedded systems, RAM
and stack space is often limited and performance is a major concern which mitigates against
calling the same function multiple times concurrently.

Functions, including Component APIs, written using the C51 compiler are typically NOT
reentrant. The reason for this limitation is that function arguments and local variables are stored
in fixed memory locations due to limited size of the 8051 stack. Recursive calls to the function
use the same memory locations, so that arguments and locals could get corrupted.

Reentrant functions can be called recursively, and simultaneously, by two or more processes
and are often required in real-time applications, or in situations where interrupt code, and non-
interrupt code, must share a function. In spite of the fact that functions are not reentrant by
default in PSoC Creator, functions can be declared reentrant by creating a reentrancy file (*.cyre)
that specifies which functions are to be treated as reentrant.[28] Specifically, each line of this file
must be a single function name.

To create a *.cyre file for a project the following steps are required:

1. Right click on a project in the Workplace Explorer and select Add >New Item

2. Select the Keil Reentrancy File to open the file in the editor, as shown in Figure 3.56.

3. This opens a blank page in the code editor with the filetype .cyre. Enter the name of each
function to be treated as reentrant, e.g., ADC_Start, PWM_Start, etc., as a single function
name per line.

While the cyre file cannot be used for reentrant functions that are user-defined, it can be used
for PSoC Creator generated APIs. In the case of user-defined functions that are to be treated as

106Unlike the PSoC3 KEIL compiler, the PSoC5 compiler uses little endian . Hence the DMA byte-swapping
must be disabled when the code is ported to a PSoC5 device.

178 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.56: New item dialog in PSoC Creator

reentrant, it is necessary to specify the CYREENTRANT #define from cytypes.h as part of the
function prototype. This will evaluate to the reentrant keyword, e.g.,

void Foo(void) CYREENTRANT;

If a custom component requires reentrancy, the function is declared reentrant by using the
ReentrantKeil build expression.107, e.g.,

void INSTANCE_NAME{Foo(void)} = ReentrantKeil(INSTANCE_NAMR_Foo);

The Keil compiler can be used to determine which functions should be reentrant, if the optimiza-
tion level is set to 2, or higher and assuming that the functions had not been declared as reentrant
in the source file(s). A build will result in the Keil compiler issuing a warning for any such func-
tions that can be called simultaneously. A function should only be marked as re-entrant when
the compiler allocates RAM space for the function, in addition to it being called concurrently.
An example of a typical warning output by the Keil linker is

Warning : L15 MULTIPLE CALL TO FUNCTION
NAME: _MYFUNC/MAIN CALLER1: ?C_51STARTUP
CALLER2: ISR_1_INTERRUPT/ISR_1

which results from the function MyFunc being called from both main() and the interrupt service
routine isr1.108

107By default, the function will be a standard function, unless it is listed in the reentrancy file.
108If the function in question is an API function that is to be added to the *.re file, then the function name

used in the file should not begin with an underscore and should be expressed as the original case sensitive name
for the function.

3.18. BUILDING AN EXECUTABLE: LINKING, LIBRARIES AND MACROS 179

The Keil compiler establishes a special stack for storage of the reentrant functions arguments
and local variables. The associated stack pointer is used to handle multiple calls to the function in
a way that assures that each of the calls is handled correctly.109 The reentrant stack is created in
xdata, pdata, or idata space110, depending on the function’s memory model type111, i.e., small112,
compact113, or large114. Unlike the 8051’s hardware stack, the reentrant stack grows downward
and therefore it should be initialized at a high address in memory that insures that variables
located in lower, fixed-memory locations are not overwritten, as the stack grows. The reentrant
stack that corresponds to the memory model being used must be enabled for initialization and the
top-of-the-stack address specified in the KeilStart.A51 file. In this file, the large model, reentrant
stack is enabled, In turn. PSoC Creator initializes the large model, reentrant stack pointer to
point to the top of SRAM, by default.115

IBSTACK EQU 0
XBPSTACK EQU 1
XBPSTACKTOP EQU CYDEV_SRAM_SIZE
PBPSTACK EQU 0

Depending on the application, similar changes can be made to the reentrant stack pointer for
other memory models. It should be borne in mind that using reentrant code techniques in
PSoC3 applications may offer some definite advantages, e.g., a significant reduction in function
overhead. However, these same techniques do introduce the additional overhead required to
support reentrancy, can result in overwriting other variables in lower memory, and should not be
used in firmware, if it requires a significant use of SRAM.

3.18 Building an executable: Linking, Libraries and Macros

Once the source code has been completed, the project can be compiled by either invoking Build
All Projects in the Build menu, or by pressing the F6 function key, on the keyboard. As the build
progresses, any associated errors and/or warnings will be displayed in the Notice List window.
If the build was successful the message Build Succeeded will be displayed.116

If the compilation and linking are successful the message Build Succeeded: followed by the
date and time. The linking phase, among other things, binds symbolic addresses to absolute
addresses and shared libraries117 to specific addresses. All the code in PSoC Creator’s Generated
Source tree is compiled into a single library as part of the build process and the compiled library
is linked with the user code.118

109The stack pointer associated with reentrant functions should not be confused with the 8051’s hardware stack
pointer (SP) SFR whose value is stored in the SFR register in the 8051 CPU.
110idata, pdata and xdata refer to memory located on the chip (RAM), memory addressed with an 8-bit address

on an external memory page and external memory (RAM) addressed with a 16-bit address, respectively.
111The default memory model is large for stack space (xdata).
112The PSoC3 small memory model places function variables and local data segments in internal memory.

Although this model imposes a small memory space, it does provide very efficient access to data objects.
113The PSoC3 compact model results in all function/procedure variables and local data segments residing in an

external memory page (256 bytes) that is addressable via @R0/R1.
114The large memory model (8051) causes all variables, local data segments to reside in external memory
115The use of the large memory model (8051) requires more instruction cycles to access the “large" external

(xdata) memory space.
116If the Notice List window is not visible, the number of errors, warnings and notes are displayed on the status

bar.
117Binding may be either static or dynamic. In the former case the binding takes place at link time and the

latter occurs at runtime. Shared libraries improve runtime and conserves memory.
118The GCC Implementation for PSoC5 uses all of the standard GCC libraries, i.e., libcs3, libc, libcs3unhosted,

libgcc, which are linked in by default.

180 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.57: PSoC Creator Clocks tab.

PsoC Creator provides a comprehensive library of components that can be incorporated into
an embedded design. The designer can create additional libraries by using the PSoC Library
template. The process begins with the selection of a Symbol that represents the new component.
After right clicking on the library project119, Add Component Item is selected and a dialog
box will appear which allows the designer to select the Symbol Wizard. Selecting Add New
Terminals allows the input and output pins to be defined. It is also possible to specify where
in the Component Catalog the new component is to be displayed. The functionality of the new
component can then be implemented in the form of a schematic, schematic macro120 or Verilog
file.

In addition to the functionality provided for pins as part of the Pins component, a library of
pin macros is provided in PSoC Creator’s cypins.h file. These macros make use of the port pin
configuration register that is available for every pin on the device. Macros for read and write
access to the registers of the device are also provided. These macros are used with the defined
values made available in the generated cydevice.h, cydevicetrm.h and cyfitter.h files.

3.19 Running/Fixing a Program (Debugger Environment)

Debugging is an important aspect of any embedded system development project. PSoC Creator’s
debugging capability includes real time, full speed, in-circuit emulation using an in-circuit em-
ulator (ICE). This capability allows the designer to monitor an application at the source code
level, on a line-by-line-of-source-code basis for both C and assembly language applications. In
addition to support for breakpoints, watch variables and dynamic event points121, PSoC Creator
also supports the ability to view CPU registers, Flash, RAM and registers and has an 128 kB

119This can be located by selecting the Component tab of Workplace Explorer.
120A schematic macro is a mini-schematic allows a new component, that can be multiple macros with multiple

elements, e.g., existing components, pins, clocks, etc., to be implemented that includes multiple macros. Macros
can have instances (including the component for which the macro is being defined), terminals, and wires. Schematic
macros are typically created to simplify usage of the components.
121Dynamic event points are a type of complex breakpoint that allows multiple events to be monitored, sequenced

and logically unified.

3.19. RUNNING/FIXING A PROGRAM (DEBUGGER ENVIRONMENT) 181

trace buffer122. Traces can be turned on, or off, during program execution, via the use of dy-
namic event points. Trace display options include saving the trace buffer as a file and viewing,
saving and/or printing the trace display in the form of an HTML file. This allows the designer
to produce a report that can be external to PSoC Creator.

A status bar at the bottom of the PSoC Creator screen displays ICE-related status infor-
mation. Single-stepping allows the program execution to be executed on a line-by-line basis at
the source code level. The contents of the program counter, accumulator, stack pointer or time
stamps corresponding to each “step” are stored and displayed in the trace buffer. User-selectable
locations in the program source code, called “breakpoints”, allow the program to run until it
encounters a “breakpoint”, at which point program execution halts.123 PSoC Creator’s menu,
and/or icon options, allow the program to be restarted at that point. Once a breakpoint is
encountered, program execution halts and the CPU updates registers and variable values.

Because the C compiler emits assembly code, PSoC Creator also supports assembly-level C
debugging. In this mode, single-step instruction, step-over-a-procedure, step- out-of-a-procedure
and step-into-assembly and C-level breakpoint capability are also supported.

In order to provide addition performance benefits, three modes of code optimization124 are
supported by PSoC Creator, viz.,

1. Code compression

2. Elimination of unused User Module (area) APIs

3. Multiply/Accumulate at the hardware level

The types of errors most commonly encountered in developing embedded systems fall into the
following categories:

• Corruption of memory by errant code

• Improper use of pointers,

• Hardware design errors,

• Inadequate interrupt handling

and

• So-called “off-by-one” errors

While PSoC Creator provides excellent facilities for identifying, isolating and locating errors,
good coding practices should be employed to minimize debugging time.

122A trace buffer of this types maintains a record of the most recent instructions that were executed in a time
sequenced 128k buffer. This allows the designer to follow the precise order of execution of instructions while the
system was operating in real time and at full speed.
123It should be noted that while the program is halted at user-specific locations in the program code, the code

at that location is not executed until execution resumes.
124Optimization, in the present context, refers primarily ro reduction in code size and execution speed. Many

compilers such as the Keil compilers offer various levels of optimization.

182 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

3.20 Programming the Target Device

PSoC3/5 can be programmed by using the Cypress MiniProg3. This device supports ISSP125,
SWD126 and JTAG127 programming protocols, as well as I2C128, SWV129, ISSP130, SWD131 and
JTAG interfaces therefore it serves as a protocol converter between a PC and the target device,
when connected as shown in Figure 3.58. It should be noted that it is designed to communicate

Figure 3.58: MiniProg3 handles protocol translation between a PC and the target device.

with target devices that use only I/O voltages in the range from 1.5 to 5.5 volts.

MiniProg3 has five LEDs that indicate status, and are labeled as follows:

• Busy (Red) - indicates that an operation, such as programming or debugging, is in progress.

• Status (Green) - indicates that the MiniProg3 has been "enumerated" on the USB bus and
will flash when it receives USB traffic.

• Target Power (Red) - indicates that the MiniProg3 is supplying power to to the target’s
connectors.

• Aux (Yellow) - Reserved.

• Unlabeled (Yellow) - indicates configuration of the MiniProg3. It flashes during initial
configuration of the MiniProg3 and illuminates continuously when a configuration error has
occurred. Following a configuration error, the MiniProg3 must be disconnected from the
USB port and reconnected.

125In-System Serial Programming (ISSP) is a Cypress legacy interface used to program the PSoC1 family of
microcontrollers.
126SWD uses fewer pins of the device than JTAG. MiniProg3 supports programming and debugging PSoC 3/5

devices, using SWD.
127JTAG is supported by many high end microcontrollers, including the PSoC 3/5 families. This interface allows

multiple JTAG devices to be daisy-chained.
128A common serial interface standard is the Inter-IC Communication (I2C) standard by Philips. It is mainly

used for communication between microcontrollers and other ICs on the same board, but can also be used for
intersystem communications. MiniProg3 implements an I2C multimaster host controller that allows the exchange
of data with I2C-enabled devices, on the target board. This feature may be used to tune CapSense designs.
129The Single Wire Viewer (SWV) interface, is used for program and data monitoring, where the firmware may

output data in a method similar to “printf” debugging on PCs, using a single pin. MiniProg3 supports monitoring
of PSoC 3/ PSoC 5 firmware, using SWV, through the 10-pin connector and in conjunction with SWD only.
130In-System Serial Programming (ISSP) is a Cypress legacy interface used to program the PSoC1 family of

microcontrollers. MiniProg3 supports programming PSoC1 devices through the 5-pin connector only.
131Serial Wire Debug (SWD) provides the same programming and debug functions as JTAG, except for boundary

scanning and daisy chaining.

3.21. INTEL HEX FORMAT 183

3.21 Intel Hex Format

The Intel Hexadecimal 8-bit object format is a representation of an absolute binary object file in
an ASCII format. Firmware that is produced by PSoC Creator, for the PSoC3/5 microcontrollers,
is downloaded in the Intel Hex format, i.e., the downloaded file consists of six parts as shown in
Figure 3.59 and defined as:

Figure 3.59: The Intel hex file format.

1. Start Code - a single character, viz., an ASCII colon (:)132

2. Byte Count - two hex digits representing a single byte that specifies the number of bytes in
the data field.

3. Address - four hex digits, represented by two bytes, that specify the starting address of the
memory location for the data.

4. Record Type - two hex digits with values between 00 and 05, inclusive, that define the data
field.
PSoC Creator generates the following record types:

• 00 indicating a data record containing data and a 16-bit address
• 01 indicating an end of a file record referred to as a file termination record . This record
contains no data and can only occur once for each file.

• 04 indicates an extended linear address record for full 32-bit addressing. The address
field is defined as 0000 and the byte count as 2 bytes. The two data bytes represent the
upper 16 bytes of a 32-bit address, when combined with the lower 16-bit address of the
00 record.

5. Data - a sequence of N data bytes and represented by 2N hex digits.

6. Checksum - two hex digits representing a single byte which is the least significant byte of
the two’s complement of the sum of the values of all of the fields, except for the first and
last fields, i.e. except for the start code and the checksum.

Examples of the various record types used by PSoC Creator are:

• :0200000490006A - an extended linear address record, as indicated by the value in the record
type field (04). The associated address field is 0000 representing two data bytes. The upper
16-bit portion of the 32-bit address is given by 9000, therefore the base address is 0x90000000
and 6A is the value of the checksum.

• :0420000000000005F7 - this represents a data record, as indicated by the value 900 in the
record data type field, and the byte count is 04, i.e. there are four data bytes in this record
(00000005). The lower 16-bit value of the 32-bit address, as specified in the address field of
this record, is 2000 and F7 is the checksum for this record.

• :00000001FF - this is the last record and is therefore an end-of-file record, as defined by the
value 01 in the record type field.

132The American Standard Code for Information Interchange (ASCII) is a numerical representation of alphabetic
and special characters originally developed as a seven bit telegraph code. It consists of numeric definitions for
128 characters, 94 of which are “printable’ and 33 are non-printable such as control characters (line feed, carriage
return, etc.) and the “space”. The numeric value for colon in the ASCII code is 58 (03AH).

184 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

3.21.1 Organization of Hex File Data

The hex file generated by PSoC Creator contains different types of data133, e.g., the main Flash
data, ECC data, Flash protection data, customer nonvolatile latch data, write-once latch data
and metadata.134 All of this information, including metadata, is stored at specific addresses, as
shown for example in Figure 3.60 for PSoC5. This allows the designer to identify which data is
meant for what purpose.

Figure 3.60: Hex file memory locations for PSoC5.

• 0x0000 0000 Ű Flash Row Data: The main Flash data starts at address 0x0000 0000 of the
133The data records are in big-endian format (MSB byte in lower address), e,.g., the checksum data is address

0x90300000 of the hex file, and the metadata at address 0x9050 0000 of hex. The data records in the rest of the
multi-byte regions in a hex file are all in little-endian format (LSB byte in lower address).
134Metadata is information contained in the hex file that is not used for programming. It is used to maintain

the data integrity of the hex file and store silicon revision and JTAG ID information of the device.

3.21. INTEL HEX FORMAT 185

hex file. Each record in the hex file contains 64 bytes of actual data arranged into rows of
256 bytes. This is because each Flash row of the device is of length 256 bytes. The last
address of this section depends on the Flash memory size of the device for which the hex
file is intended.135

• 0x8000 0000 - Configuration Data (ECC): PSoC 5 devices have an error correcting code
(ECC) feature, which is used to correct, and detect, bit errors in main Flash data. There is
one ECC byte for every eight bytes of Flash data. Thus, there are 32-bytes of ECC data for
each row of flash. There is an option to use the ECC memory to store configuration data if
the error correcting feature is not required. The ECC enable bit, in the device configuration
NV latch (bit 3 of byte 3), can be used to determine, whether or not, ECC is enabled. The
NV latch data byte is located at address 0x90000003. PSoC Creator generates this section
of the hex file only if the ECC option is disabled. If this section is present in the hex file,
the data needs to be appended with the main Flash data during the Flash programming
step. For every 256 bytes in Program Flash, 32 bytes from this section are appended. The
last address of this section depends on the device Flash memory capacity. A device with
256 KB of Flash memory has 32 KB of ECC memory. In which case, the last address is
0x80007FFF.

• x9000 0000 - Device Configuration NV Latch Data : There is a 4-byte device configuration,
nonvolatile latch that is used to configure the device, even before the reset is released. These
four bytes are stored in addresses starting from 0x90000000. One important bit in this NV
latch data is the ECC enable bit (bit 3 of byte 3 located at address 0x90000003). This bit
determines the number of bytes to be written during a Flash row, write process.

• 0x9010 0000 - Secured Device Mode Configuration Data : This section contains four bytes
of the write-once nonvolatile latch data that is to be used for enabling device security.136

PSoC Creator generates all four bytes as zero, if the device security feature has not been
enabled, to ensure that there is no accidental programming of the latch with the correct key.
Failure analysis support may be lost on units after this step is performed with the correct
key.

• 0x9030 0000 Ű Checksum Data : This 2-byte checksum data is the checksum computed
from the entire Flash memory of the device (main code and configuration data, if ECC is
disabled). This 2-byte checksum is compared with the checksum value read from the device
to check if correct data has been programmed. Though the CHECKSUM command, sent
to the device, returns a 4-byte value, only the lower two bytes of the returned value are
compared with the checksum data in the hex file. The 2-byte checksum in the data record
is in Big-endian format (MSB byte is first byte).

• 0x9040 0000 Ű Flash protection data : This section contains data to be programmed to
configure the protection settings of Flash memory. Data in this section should be arranged
in a single row, to match the internal Flash memory architecture. Because there are two
bits of protection data for each main Flash row, a 256 KB Flash (which has 1024 rows, 256
rows in each of four 64K Flash arrays) has 256 bytes of protection data.

• 0x9050 0000 Ű Meta Data : The data in this section of the hex file is not programmed into
the target device. It is used to check the data integrity of the hex file, store the silicon
revision value for which the hex file is intended, and so on. The different data in this section
is tabulated as shown in Table 3.2.

135Reference should be made to the respective device datasheet, or the Device Selector menu in PSoC Creator
to determine the specific FLASH memory size for different part numbers.
136Programming the write-once NV latch with the correct 32-bit key locks the device. This step should only be

performed, if all prior steps passed without errors.

186 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Table 3.2: PSoC 5 hex file metadata organization.

• Hex file version : This 2-byte data (big-endian format) is used to differentiate between
different hex file versions, e.g., if new metadata information or EEPROM data is added to
the hex file generated by PSoC Creator, there is a need to distinguish between the different
versions of hex files. By reading these two bytes it is possible to ascertain which version of
the hex file is going to be programmed.

• JTAG ID : This field has the 4-byte JTAG ID (big-endian format), which is unique for each
part number. The JTAG ID read from the device should be compared with the JTAG ID
present in this field to make sure the correct device for which the hex file is intended is
programmed.

• Silicon Revision : This 1-byte value is for the different revisions of the silicon that may exist
for a given part number. The byte stored in the hex file should match the value in the chip’s
MFGCFG.MLOGIC.REV_ID register.

• Debug Enable : This byte stores a Boolean value indicating, whether or not, debugging is
enabled for the program code. (0/1 implies that debugging disabled/enabled.)

• Internal Use : This 4-byte data is used internally by PSoC Programmer software. It is
not related to actual device programming and need not be used by third-party hardware
programmers..

3.22 Porting PSoC3 Applications to PSoC5

As discussed previously, PSoC3 and PSoC5 are both powerful microcontrollers, the former being
based on an 8-bit, 8051 class of microprocessor architecture (33 MIPS) and the latter on a 32-bit,
ARM Cortext-M3 (100 DMIPS)137. Some of the more important differences between the two
architectures are shown in Table 3.3.

There may be cases in which it would be of interest to port a PSoC3 application [22] to
a PSoC5 environment, perhaps to gain additional performance benefits, take advantage of the
32-bit architecture, deploy components unique to PSoC5, etc.138 Although the memory maps
for the two devices are quite different, in part, as a result of the differences in their respective
CPU architectures, the initial phase of such a port can be accomplished by simply using PSoC

137MIPS refers to the millions of CPU instructions executed per second and is not as quantitative a measure of
the speed of a processor as DMIPS, which refers to the millions of Dhrystones executed per second. The Dhrystone
benchmark is a small integer-based program that is an established benchmark for processors of all types. While
both are of some use in comparing processors, they re not the final arbiter of a processor’s potential performance
in a specific application.
1388051 assembly cannot, as a practical matter, be ported directly to the Cortex-M3 space.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 187

Table 3.3: Comparison of key differences between PSoC3 and PSoC5.

Creator and navigating to Project > Device Selector, selecting the targeted PSoC5 device from
the table shown in Figure 3.61 and then rebuilding the project.139

However, if the port is to be optimized in the new target environment, a number of factors
need to be taken in consideration, e.g., PSoC3’s memory map consists of three different code
spaces as shown in Figure 3.62.

1. The 8051 internal data space, which is part of the 8051 core, contains 256 bytes of RAM and
128 bytes of special function registers (SFRs). This space is accessed by the fast registers
and bit instructions and the location of the 8051 hardware stack (> 256 bytes).

2. The external data space, while internal to the PSoC3, is external to the 8051 core. All
SRAM, Flash140, registers and EMIF141 addresses are mapped into this space. The assembly
instruction MOVX is used to access the external data space which is 16 Mb in size and
requires a 24-bit access address.

3. The code space is 64K bytes of Flash memory and it is here that the 8051 instructions reside.

The PSoC5 memory space is based on a 32-bit, linear memory map, as shown in Figure 3.63.
PSoC5’s SRAM is located in the memory space defined by [0x1FFF8000, 0x20007FFF] and is
centered on the boundary between the code and SRAM memory spaces. The rest of the code
space is occupied by Flash beginning at memory address 0. PSoC5 registers are located in the
peripheral space(s) and the EMIF addresses are located in the external RAM space. The Keil
compiler uses the big endian format for 16- and 32-bit variables for PSoC3 and little endian for
PSoC5 multi-byte variables.142

3.22.1 CPU Access

PSoC Creator supports the following macros to allow register access with byte swapping. These
macros are for accessing registers mapped in the first 64K bytes of the 8051 external data space:

CY_GET_REG8(addr)
CY_SET_REG8(addr , va lue)

139PSoC Creator supports three compilers and this this procedure is based on the assumption that a compatible
target compiler is used.
140Flash is mapped into this space primarily for DMA data access.
141External memory interface (EMIF).
142Unlike the PSoC3 Keil 8051 compiler, all PSoC5 compilers use little-endian format.

188 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Figure 3.61: Selection of a new PSoC5 target device.

Figure 3.62: The PSoC3 (8051) memory map.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 189

Figure 3.63: The PSoC5 (Cortex-M3) memory map.

CY_GET_REG16(addr)
CY_SET_REG16(addr , va lue)
CY_GET_REG24(addr)
CY_SET_REG24(addr , va lue)
CY_GET_REG32(addr)
CY_SET_REG32(addr , va lue)

The following macros can be used to access registers mapped above the first 64K bytes of
8051 external data space

CY_GET_XTND_REG8(addr)
CY_SET_XTND_REG8(addr , va lue)
CY_GET_XTND_REG16(addr)
CY_SET_XTND_REG16(addr , va lue)
CY_GET_XTND_REG24(addr)
CY_SET_XTND_REG24(addr , va lue)
CY_GET_XTND_REG32(addr)
CY_SET_XTND_REG32(addr , va lue)

and they handle endian format translation correctly and can be ported directly to PSoC5 com-
pilers.

3.22.2 Keil C 8051 Compiler Keywords (Extensions)

Keil has added a number of important extensions to the set of keywords provided by standard
C, e.g.,

190 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• _at_ - variables can be located at absolute memory locations143 using

<< memory_type >> type variable_name_at_constant;

wherememory_type is the variable’s memory type, type is the variable type, variable_name
is the name of the variable and constant is the variable’s address.

• alien - used to invoke PL/M-51 routines from C functions by first declaring them external
with the alien function type specifier, e.g.,

extern alien char plm_func (int, char);
char c_func (void) {
int i;
char c;
for (i = 0; i < 100; i++) {
c = plm_func (i, c); /* call PL/M func */
}
return (c);
}

To create C functions that may be invoked from PL/M-51 routines, the alien function type
specifier must be used in the C function declaration. For example:

alien char c_func (char a, int b) {
return (a * b);

}

Parameters, and return values of PL/M-51 functions, may be bit, char, unsigned char, int,
and unsigned int. Other types, including long, float, and all types of pointers, can be
declared in C functions with the alien type specifier. However, these types must be used
with care because PL/M-51 does not directly support 32-bit binary integers, or floating-point
numbers.
Public variables declared in a PL/M-51 module are available to C programs by declaring
them external, like any C variable.

• bdata - bit-addressable objects can be addressed as bits or words. Only data objects that
occupy the bit-addressable area of the 8051 internal memory fall into this category.

• bit - defines a single bit variable144, e.g.,

bit name << = value >>

where name is the name of the bit variable and value is the value to be assigned to the bit.
Bit variables are stored in a segment in the 8051 internal memory space. In most cases, bit
variables can be defined, and accessed, in the same manner as any other variable type:

bit doneFlag = 0;

To port bit variables to PSoC 5 the bit type can be redefined as

#define bit uint8

The following is an example of the use of the bit type:

143The absolute address following the _at_ keyword must conform to the physical boundaries of the memory
space for the variable. The Cx51 Compiler checks for and reports invalid address specifications.

144All bit variables are stored in a bit segment located in the internal memory area of the 8051, which is 16
bytes long. Therefore a maximum of 128 bit variables may be declared within any one scope.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 191

static bit done_flag = 0; /* bit variable */

bit testfunc (/* bit function */
bit flag1, /* bit arguments */
bit flag2)

{
.
.
.

return (0); /* bit return value */
}

• code - Program (CODE) memory is read-only. Program memory may reside within the 8051
MCU, be external, or both. Although 8051 architecture supports up to 64K Bytes of program
memory, program space can be expanded using code banking. Program code, including all
functions and library routines, is stored in program memory. Constant variables may also
be stored in program memory. The 8051 executes programs stored in program memory only.
Program memory may be accessed from C programs using the code memory type specifier.

• compact - A function’s arguments and local variables are stored in the default memory space
specified by the memory model. It is possible to specify which memory model to use for a
single function by including the small, compact, or large function attribute in the function
declaration.

For example:

#pragma small /* Default to small model */

extern int calc (char i, int b) large reentrant;
extern int func (int i, float f) large;
extern void *tcp (char xdata *xp, int ndx) compact;

int mtest (int i, int y) /* Small model */
{

return (i * y + y * i + func(-1, 4.75));
}

int large_func (int i, int k) large /* Large model */
{

return (mtest (i, k) + 2);
}

The advantage of functions using the SMALL memory model is that the local data and
function argument parameters are stored in the internal 8051 RAM. Therefore, data access
is very efficient. Because internal memory is limited, the small model may not satisfy the
requirements of a very large program, in which case, other memory models must be used. In
such cases, a function can be declared that uses a different memory model, as shown above.

By specifying the function model attribute in the function declaration, it is possible to
specify which of the three possible reentrant stacks, and the associated frame pointers, is to
be used.145

• data - this memory specifier always refers to the first 128 bytes of internal data memory.146

145Note that stack access in the SMALL model is more efficient than in the LARGE model.
146Variables stored at that location are accessed using direct addressing.

192 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• far - this keyword allows variables and constants to be accessed in external memory using
24-bit addresses. For variables, far memory is limited to 16 megabytes. Objects are limited
to 64K, and cannot cross a 64K boundary. Constants (ROM variables) are limited to 16
megabytes.

• idata - this memory specifier refers to all 256 bytes of internal data memory, but it requires
indirect addressing which is slower than direct addressing.

• interrupt - interrupts can be used for counting, timing. detecting external events and send-
ing/receiving data via a serial interface.147

• large - selects the large memory model in which all variables and local data segments pro-
cedures/functions are maintained in external memory.

• pdata - this memory type is used only for declaring variables and is indirectly accessed by
8-bit addresses of one page of 256-byte page of external data 8051 RAM.

• _priority_ - this keyword specifies a task’s priority, e.g.,

void func (void) _task_ num _priority_ pri

where num is a task ID number and pri is the tasks priority.

• reentrant - allows functions to be declared reentrant and therefore called recursively, e.g.,

int calc (char i, int b) reentrant {
int x;
x = table [i];
return (x * b);

}

Small, compact and large model reentrant functions simulate the reentrant stack in idata ,
pdata memory and xdata memory, respectively. Bit-type function arguments may not be
used and local bit scalars are also not available. The reentrant capability does not support
bit-addressable variables. Reentrant functions must not be called from alien functions and
cannot use the alien attribute specifier to enable PL/M-51 argument passing conventions.
A reentrant function may simultaneously have other attributes, such as using an interrupt,
and may include an explicit memory model attribute (small, compact, large).

Return addresses are stored in the 8051 hardware stack. Any other required PUSH and POP
operations also affect the 8051 hardware stack. Although reentrant functions using different
memory models may be intermixed, each reentrant function must be properly prototyped
and include its memory model attribute in the prototype. This is necessary for calling
routines to place the function arguments in the proper reentrant stack.148 For example, if
small and large reentrant functions are declared in a module, both small and large reentrant
stacks are created along with two associated stack pointers (one for small and one for large).

• sbit - defines a bit within a special function register (SFR). It is used in one of the following
ways:

sbit name = sfr-name ^ bit-position;
sbit name = sfr-address ^ bit-position;
sbit name = sbit-address;

where name is the name of the SFR bit, sfr-name is the name of a previously-defined SFR,
bit-position is the position of the bit within the SFR, sfr-address is the address of an SFR
and sbit-address is the address of the SFR bit, e.g.,

147Thirty two interrupts are located in the jump table from address 0003h - 00FBh, inclusive.
148Each of the three possible reentrant models contains its own reentrant stack area and stack pointer.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 193

/∗ de f i n e the s b i t ∗/
s b i t PIN1_6 = SFRPRT1DR^6;
/∗ ac c e s s the s b i t ∗/
PIN1_6 = 1 ;

The sbit keyword is used in PSoC3 for faster access to bits in certain registers, but they
cannot be used in PSoC5. Instead the C bit manipulation operators and macros should be
used, e.g.,

CY_SET_REG8(CYDEV_IO_PRT_PRT1_DR,
CY_GET_REG8(CYDEV_IO_PRT_PRT1_DR) |
0x40 ;

It is often necessary to access individual bits within an SFR and the sbit type provides
access to bit-addressable SFRs and other bit-addressable objects, e.g.,

sbit EA = 0xAF;

This declaration defines EA as the SFR bit at address 0xAF, which is the enable all bit in
the interrupt enable register.

Storage of objects accessed using sbit is assumed to be little-endian (LSB first). This is
the storage format of the sfr16 type, but it is opposite to the storage of int and long data
types. Care must be taken when using sbit to access bits within standard data types. Any
symbolic name can be used in an sbit declaration. The expression to the right of the equal
sign specifies an absolute bit address for the symbolic name. There are three variants for
specifying the address:

sbit name = sfr-name ^ bit-position;

The previously declared SFR (sfr-name) is the base address for the sbit and it must be
evenly divisible by 8. The bit-position, which must be a number from 0 − 7, follows the
carat symbol (^) and specifies the bit position to access, e.g.,

sfr PSW = 0xD0;
sfr IE = 0xA8;
sbit OV = PSW^2;
sbit CY = PSW^7;
sbit EA = IE^7;

sbit name = sfr-address ^ bit-position;

A character constant (sfr-address) specifies the base address for the sbit and must be evenly
divisible by 8. The bit-position (which must be a number from 0-7) follows the carat symbol
(^) and specifies the bit position to access, e.g.,

sbit OV = 0xD0^2;
sbit CY = 0xD0^7;
sbit EA = 0xA8^7;

sbit name = sbit-address;

A character constant (sbit-address) specifies the address of the sbit. It must be a value from
0x80-0xFF, e.g.,

sbit OV = 0xD2;
sbit CY = 0xD7;
sbit EA = 0xAF;

194 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Only SFRs whose address is evenly divisible by 8 are bit-addressable and the lower nibble
of the SFR’s address must be 0 or 8. For example, SFRs at 0xA8 and 0xD0 are bit-
addressable, whereas SFRs at 0xC7 and 0xEB are not. To calculate an SFR bit address,
add the bit position to the SFR byte address, e.g., to access bit 6 in the SFR at 0xC8, the
SFR bit address would be 0xCE (0xC8 + 6). Special function bits represent an independent
declaration class that may not be interchangeable with other bit declarations, or bit fields.
The sbit data type declaration may be used to access individual bits of variables declared
with the bdata memory type specifier. sbit variables must be declared outside of the function
body.

• sfr - defines a special function register (SFR). It is used as follows:

sfr name = address;

where name is the name of the SFR and address is the address of the SFR. SFRs are declared
in the same fashion as other C variables, except that the type specified is sfr rather than
char or int, e.g.,

sfr P0 = 0x80; /* Port-0, address 80h */
sfr P1 = 0x90; /* Port-1, address 90h */
sfr P2 = 0xA0; /* Port-2, address 0A0h */
sfr P3 = 0xB0; /* Port-3, address 0B0h */

P0, P1, P2, and P3 are the SFR name declarations.149 The address specification after
the equal sign must be a numeric constant. sfr variables must be declared outside of the
function body.

• sfr16 - defines a 16-bit special function register (SFR) and is implemented as follows:

sfr16 name = address;

where name is the name of the 16-bit SFR and address is the address of the 16-bit SFR.
The Cx51 Compiler provides the sfr16 data type to access two 8-bit SFRs as a single 16-bit
SFR.

Access to 16-bit SFRs using sfr16 is possible only when the low byte immediately precedes
the high byte (little endian) and when the low byte is written last. The low byte is used as
the address in the sfr16 declaration, e.g.,

sfr16 T2 = 0xCC; /* Timer 2: T2L 0CCh, T2H 0CDh */
sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */

In this example, T2 and RCAP2 are declared as 16-bit special function registers. The sfr16
declarations follow the same rules as outlined for sfr declarations. Any symbolic name can
be used in an sfr16 declaration. The address specification after the equal sign must be a
numeric constant. Expressions with operators are not allowed. The address must be the low
byte of the SFR low-byte, high-byte pair. When writing to an srf16, the code generated by
the Keil Cx51 Compiler writes to the high byte first and then the low byte. In many cases,
this is not the desired order, and therefore, if the order in which the bytes are written is
important, the sfr keyword must be used to define and access the SFRs one byte at a time
to assure the order in which the SFRs are accessed. sfr16 variables may not be declared
inside a function, but instead, must be declared outside of the function body.

149Names for sfr variables are defined just like other C variable declarations and any symbolic name may be
used in an sfr declaration.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 195

• small - A function’s arguments and local variables are stored in the default memory space
specified by the memory model. However, it is possible to specify which memory model to
use for a single function by including the small, compact, or large function attribute in the
function declaration, e.g.,

#pragma small /* Default to small model */

extern int calc (char i, int b) large reentrant;
extern int func (int i, float f) large;
extern void *tcp (char xdata *xp, int ndx) compact;
int mtest (int i, int y) /* Small model */
{
return (i * y + y * i + func(-1, 4.75));
}
int large_func (int i, int k) large /* Large model */
{
return (mtest (i, k) + 2);
}

The advantage of functions using the SMALL memory model is that the local data and
function argument parameters are stored in the internal 8051 RAM. Therefore, data access
is very efficient. Occasionally, because the internal memory is limited, the small model
cannot satisfy the requirements of a very large program and other memory models must be
used. In that case, a function must be declared that uses a different memory model. By
specifying the function model attribute in the function declaration, it becomes possible to
select which of the three possible reentrant stacks and frame pointers to use.150

• _task_ - this keyword specifies a function as a real time task when using a real-time mul-
titasking operating system.151

• using - The first 32 bytes of DATA memory (0x00-0x1F) are grouped into 4 banks of 8
registers each. Programs access these registers as R0-R7. The register bank is selected
by two bits of the program status word, PSW. Register banks are useful when processing
interrupts, or when using a real-time operating system because the MCU can switch to a
different register bank for a task, or interrupt, rather than saving all 8 registers on the stack.
The MCU can then switch back to the original register bank before returning. The using
function attribute specifies the register bank a function uses, e.g.,

void rb_function (void) using 3
{
.
.
.
}

The argument for the using attribute is an integer constant from 0-3. The using attribute
is not allowed in function prototypes and expressions with operators are not allowed. The
using attribute affects the object code of the function as follows:

– The currently selected register bank is saved on the stack at function entry.

150Stack access in the SMALL model is more efficient than in the LARGE model.
151Keil’s RTX51 Full and RTX51 Tiny kernels support both real-time control and multitasking to provide several

operations to be executed simultaneously and carry out operations that must occur within a pre-defined period of
time.

196 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

– The specified register bank is set.

– The former register bank is restored before the function is exited.

The following example shows how to specify the using function attribute and what the
generated assembly code for the function entry and exit looks like.

stmt level source
1
2 extern bit alarm;
3 int alarm_count;
4 extern void alfunc (bit b0);
5
6 void falarm (void) using 3 {
7 1 alarm_count++;
8 1 alfunc (alarm = 1);
9 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION falarm (BEGIN)
0000 C0D0 PUSH PSW
0002 75D018 MOV PSW,#018H

; SOURCE LINE # 6
; SOURCE LINE # 7

0005 0500 R INC alarm_count+01H
0007 E500 R MOV A,alarm_count+01H
0009 7002 JNZ ?C0002
000B 0500 R INC alarm_count
000D ?C0002:

; SOURCE LINE # 8
000D D3 SETB C
000E 9200 E MOV alarm,C
0010 9200 E MOV ?alfunc?BIT,C
0012 120000 E LCALL alfunc

; SOURCE LINE # 9
0015 D0D0 POP PSW
0017 22 RET

; FUNCTION falarm (END)

In the previous example, the code starting at offset 0000h saves the initial PSW on the
stack and sets the new register bank. The code starting at offset 0015h restores the original
register bank by popping the original PSW from the stack.

The using attribute may not be used in functions that return a value in registers. Extreme
care should be exercised to ensure that register bank switches are performed only in carefully
controlled areas. Failure to do so may yield incorrect function results. Even when the same
register bank is used, functions declared with the using attribute cannot return a bit value.
The using attribute is most useful in implementing interrupt functions. Usually a different
register bank is specified for each interrupt priority level. Therefore, one register bank can
be employed for all non-interrupt code, a second register bank for the high-level interrupt,
and a third register bank for the low-level interrupt.

3.22. PORTING PSOC3 APPLICATIONS TO PSOC5 197

• xdata - External data memory is read/write. Since external data memory is indirectly
accessed through a data pointer register (which must be loaded with an address), it is slower
than access to internal data memory. XRAM space is accessed with the same instructions as
the traditional external data space enabled via dedicated chip configuration SFR registers
and overlaps the external memory space.

While there may be up to 64K Bytes of external data memory, this address space does
not have to be used as memory. A hardware design can map peripheral devices into the
memory space so that the program accesses, what appears to be, external data memory to
program and control the peripheral.152 The C51 Compiler offers two memory types that
access external data: xdata and pdata. The xdata memory specifier refers to any location
in the 64K Byte address space of external data memory. The large memory model locates
variables in this memory space. The pdata memory type specifier refers to exactly one (1)
page (256 bytes) of external data memory. The compact memory model locates variables in
this memory space.

3.22.3 DMA Access

DMA transaction descriptors can be programmed to have bytes swapped while transferring
data.153 The swap size can be set to 2 bytes for 16-bit transfers, or 4 bytes for 32-bit trans-
fers. The following examples handle 2- and 4-byte swaps:

CyDmaTdSetConfiguration (myTd, 2 , myTd, TD_TERMOUT0_EN | TD_SWAP_EN) ;

and,

CyDmaTdSetConfiguration (myTd, 4 , myTd, TD_TERMOUT0_EN | TD_SWAP_EN |
TD_SWAP_SIZE4) ;

respectively.

3.22.3.1 DMA Source and Destination Addresses

PSoC3 and PSoC5 have the same type of DMA controller (DMAC) which stores 32-bit addresses
for both source, and destination, in two 16-bit registers. The upper half of the addresses for each
DMA channel are specified by the following:

DMA_DmaInitalize (. . . , uppersrcAddr , upperDestAddr)

and similarly, the lower half of the addresses are specified for each transaction descriptor (TD)
within a DMA channel as:

CyDmaTdSetAddress (. . . , lowerSrcAddr , lowerDestAddr)

The contents of a pointer variable cannot be used to provide source or destination address values,
because the Keil 8051 compiler uses a 3-byte pointer, i.e., two bytes representing a 16-bit absolute
address and a third byte for the memory space being used.

Source in Flash can be accessed by:

upperSrcAddr = (CYDEV_FLS_BASE) >> 16
SRAM fo r source or d e s t i n a t i o n :
upperSrcAddr = 0 ;
upperDestAddr = 0 ;

152This is referred to as memory mapped I/O, in some cases.
153DMA byte swapping must be disabled when the code is ported to PSoC5.

198 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

and for a peripheral register, for source or destination:

upperSrcAddr = 0 ;
upperDestAddr = 0 ;

The upper half of the PSOC5 address for SRAM or peripheral register for source or destination:

upperSrcAddr = HI16 (srcArray) ;
upperDestAddr = HI16 (destArray) ;

and the lower half of the address by using the LO16 macro defined in “the cytypes.h” file:

lowerSrcAddr = LO16(srcArray) ;
lowerDestAddr = LO16(destArray) ;

Addresses can also be found by using conditional compilation:

#f (de f i n ed (__C51__))
upperSrcAddr = 0 ;
#e l s e /∗ PSoC 5 ∗/
upperSrcAddr = HI16 (srcArray) ;
#end i f

3.22.4 Time Delays

The CyDelay function, defined in CyLib.c, is used to generate absolute time delays. It selects
the number of loop iterations based on processor type and CPU speed. The supported system
function calls include:

• void CyDelay(uint32 milliseconds) produces a delay specified by uint32 milliseconds.154 If
the clock configuration is changed at run-time, then the function CyDelayFreq is used to
indicate the new Bus Clock frequency. CyDelay is used by several components, so changing
the clock frequency without updating the frequency setting for the delay can cause those
components to fail. CyDelay has been implemented with the instruction cache assumed
enabled. When the PSoC5 instruction cache is disabled, CyDelay will be two times larger.155

• void CyDelayUs(uint16 microseconds) produces a delay specified by uint16 microseconds.

• void CyDelayFreq(uint32 freq) sets the Bus Clock frequency used to calculate the number
of cycles required for implementing the delay specified by CyDelay. The frequency used is
based on the value determined by PSoC Creator at build time, by default.156

• void CyDelayCycles(uint32 cycles) results in a delay for the specified number of cycles using
a software delay loop.

It should be borne in mind that software delays can be affected by interrupts so care must be
exercised in their use. If more accurate delays are required a timer or PWM can be used. A
simple assembly language delay can be implemented by loading a value into the accumulator
and decrementing it until the value becomes zero. If multiple delays are needed, the value to be
decremented for a given delay can be loaded from a LUT.

154The delay is based on the clock configuration entered in PSoC Creator By default.
155CyDelay functions implement simple software-based delay loops that are designed to compensate for the bus

clock frequency and other factors, e.g., function entry and exit when the delay time is relatively mall.
1560: Use the default value, non-0: Set frequency value.

3.23. REENTRANT CODE 199

3.23 Reentrant Code

The Keil compiler assumes that functions are not reentrant by default, and therefore, fixed
memory locations in RAM are used to store the function’s local variables. If the function must
be called from different threads (like main and interrupt handler), or recursively, then it must be
specifically defined as a reentrant function:

/∗ r e en t ran t func t i on d e c l a r a t i o n ∗/
void de lay (u int32) r e en t ran t ;
/∗ r e en t ran t func t i on d e f i n i t i o n ∗/
void de lay (u int32 x) r e en t ran t
{

. . .
}

PSoC 5 compilers define functions as reentrant and do not support the keyword reentrant. To
port functions with this keyword to PSoC 5 reentrant can be ignored by redefining it as

#de f i n e r e en t ran t /∗∗/

The PSoC 3 Keil compiler provides the various keywords to place variables in different 8051
memory spaces, as shown in Figure 3.64. Keywords such as code, idata , bdata and xdata, that

Figure 3.64: Keil keywords and related memory spaces.

locate variables in different 8051 memory spaces, can also be ignoring when porting from PSoC3
to PSoC5 by redefining them in a similar manner.

3.24 Code Optimization

Execution speed and code size are often two paramount concerns when designing an embedded
system. Historically, designers have often tried to resort to departing from C, and higher level
languages when seeking additional optimization and resort to assembly language, particularly
in cases which involve microcontrollers with 8051 class microprocessors. Advances in compiler
technology have made it possible to write highly efficient C code in terms of memory requirements
and speed. The Keil compiler has a number of Keil-specific keywords that have been added
to support optimization, so that assembly language code may be obviated. However, these
keywords are not necessarily supported by compilers for other processors such as the Cortex-M3
in PSoC5.157 The Keil Compiler supports several levels of optimization with Level 2 being the
default level in PSoC Creator. Level 3 optimizes the compiled code with respect to code size by
deleting redundant MOV operations, which in some cases have a significant impact on both code
size and speed.

157PSoC Creator supports a number of equivalent macros to facilitate porting code from PSoC3 to PSoC5

200 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

The 8051 core is a 256-byte address space that contains 256 bytes of SRAM plus a large set
special function registers (SFRs), as shown in Figure 3.65, and the 8051 is most efficient when it
utilizes this memory. As shown in the figure, the lower 128 bytes is SRAM, and accessible both
directly and indirectly. The upper 128 bytes contains another 128 bytes of SRAM that can only
be accessed indirectly. The same upper address space also contains a set of SFRs that can only
be accessed directly. Table 3.4 details bytes in the lower address space that can be accessed in
other modes. The memory map for the first 256 bytes in the 8051’s memory space is shown in
Figure 3.66.

Figure 3.65: 8051 internal space layout.

Table 3.4: 8051 keyword memory space.

3.24.1 Techniques for Optimizing 8051 Code158

Whenever feasible, it is advisable [1] to use bit variables for any variables that will have only
binary values, i.e., 0 and not 0, and define then as being of type bit, i.e.

b i t myvar ;

158In this section frequent reference will be made to assembly code. However, the reader is asked to recall that
any such code discussed herein is presumed, unless stated otherwise, to have been the output of PSoC’s C compiler
and, as such, is not hand-coded, assembly language, source code.

3.24. CODE OPTIMIZATION 201

Figure 3.66: 8051 internal memory allocation

The use of bit variable allows the compiler to draw upon the complete set of 8051 bit-level
assembler instructions to create very fast and compact code, .e.g,

myvar = ∼myVar ;
i f (! myVar)
{

. . .
}

that causes the compiler to produce the following two lines of assembly code:

B200 CPL myVar
200006 JB myVar , ? C0002

which requires 5 bytes of Flash and 8 cpu cycles.

Whenever possible, calling functions from interrupt handlers written in C should be avoided.
The Keil C compiler pushes any register contents that it assumes may be changed by the ISR,
which can result in a substantial amount of additional code as illustrated by the following example:

CY_ISR(myISR)
{
UART_1_ReadRxStatus () :
}

that is a simple ISR, that when compiled can result in the following assembly language code:

C0F0 PUSH B
C083 PUSH DPH
C082 PUSH DPL
C085 PUSH DPH1
C084 PUSH DPL1
C086 PUSH DPS

758600 MOV DPS,#00H
C000 PUSH ?C?XPAGE1SFR

750000 MOV ?C?XPAGE1SFR,#?C?XPAGE1RST
C0D0 PUSH PSW

75D000 MOV PSW,#00H
C000 PUSH AR0
C001 PUSH AR1
C002 PUSH AR2

202 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

C003 PUSH AR3
C004 PUSH AR4
C005 PUSH AR5
C006 PUSH AR6
C007 PUSH AR7

120000 LCALL UART_1_ReadRxStatus
D007 POP AR7
D006 POP AR6
D005 POP AR5
D004 POP AR4
D003 POP AR3
D002 POP AR2
D001 POP AR1
D000 POP AR0
D0D0 POP PSW
D000 POP ?C?XPAGE1SFR
D086 POP DPS
D084 POP DPL1
D085 POP DPH1
D082 POP DPL
D083 POP DPH
D0F0 POP B
D0E0 POP ACC
32 RETI

A better approach would be to use a flag in the ISR in the form of a global variable. The flag is
simply a single bit that is read by background code accessing the register that contains the flag
bit. The following is an example using a flag in the form of a global variable of type bit which is
subsequently read by background code:

CYBIT f l a g ;
CY_ISR(myISR)
{

f l a g =1;
}

void main ()
{

i f (f l a g)
{
f l a g = 0 ;
UART_1+_ReadRxStatus () ;

. . .

The ISR portion of this code results in the following assembly code:

D200 SETB f l a g
32 RETI

which is less than 10% of the assembly code produced by the previous example. However, it
should be noted that using a flag in this manner, assumes that the status register containing the
flag will be checked often enough to result in the desired operation.

3.24. CODE OPTIMIZATION 203

Placing variables in the 8051’s internal memory can produce substantial benefits. The location
of variables in memory should be based on relative frequency of access, e.g., the most frequently
accessed should be of type data, the next most frequently accessed as type idata, and so on, for
pdata and xdata. As noted previously, because stack space is limited, the Keil compiler stores
local variables in fixed memory locations and shares these locations among local variables in
functions that don’t call each other. Therefore, when possible, variables within functions should
be local variables which allows the Keil compiler to store such variables in registers R0-R7. Loop
decrementing is more efficient because it is easier to test for zero than for a non-zero value, as
shown by the following examples:

void main ()
{

data u int8 i ;
/∗ loop 10 t imes ∗/
f o r (i = 10 ; i != 0 ; i−−)
{

. . .
}

is compiled as

75000A MOV i ,#0AH ; i = 10
?C0002 :

E500 MOV A, i ; i != 0
6006 JZ ?C0003

. . .
1500 DEC i ; i− −
80EF SJMP ?C0002

?C0003 :

as opposed to

void main ()
{

data u int8 i ;
/∗ loop 10 t imes ∗/
f o r (i = 0 ; i < 10 ; i++)
{

. . .
}

that compiles as

E4 CLR A ; i = 0
F500 MOV i ,A

?C0002 :
E500 MOV A, i ; i < 10
C3 CLR C
940A SUBB A, #0AH
5006 JNC ?C0003

. . .
0500 INC i ; i++
80EF SJMP ?C0002

?C0003 :

204 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

Bit variables can be used to dramatically improve efficiency, and bit-level assembler instructions
can also be employed to implement bit-wise C operations. Some examples of setting bit variables
are given by the following:

u int8 x ;
x |= 0x10 ; /∗ s e t b i t 4 ∗/
x &= ∼0x10 ; /∗ c l e a r b i t 4 ∗/
x ^= 0x10 ; /∗ t o gg l e b i t 4 ∗/
i f (x & 0x10) /∗ t e s t b i t 4 ∗/
{

. . .
}

8051 bit-level assembly instruction can be used to implement C bitwise operations by using the
keyword sbit and the ∧ operator.159

One method is given by:

/∗myVar i s l o ca t ed in idata at 202F ∗/
bdata u int8 myVar ;

/∗ t h i s i s b i t 4 o f myVar ∗/
s b i t mybit4 = myVar^4;

/∗ s e t b i t 4∗/
mybit4 = 1 ;

/∗ c l e a r b i t 4 ∗/
mybit4 = 0 ;

/∗ t o gg l e b i t 4
mybit4 = ∼mybit4 ;

/∗ t e s t b i t 4 ∗/
i f (mybit4)

{
. . .

}

which can also be used for variables that are larger than 8-bits, e.g., uint16, uint32, etc. It should
be noted that sbit and bdata definitions global and not local within a function. PSoC Creator
provides support for sbit and sfr keywords as follows:

s f r PSW = 0xD0 ;
s b i t P = PSW^0;
s b i t F1 = PSW^1;
s b i t OV = PSW^2;
s b i t RS0 = PSW^3;
s b i t RS1 = PSW^4;
s b i t F0 = PSW^5;
s b i t AC = PSW^6;
s b i t CY = PSW^7;

Alternatively, a bit-addressable SFR can be used given that SFR PSW contains the program
status word at D0 and is therefore directly accessible. The sbit keyword can be used to access
each of the PSW’s bits using the same technique discussed in this section, e.g.,

F0 = ∼F0 ;

159In this discussion the ∧ operator is not the standard C language exclusive or (XOR).

3.24. CODE OPTIMIZATION 205

(PSW’s F0 and F1 bits are available for general purpose use.) The accumulator (ACC) and
the B register can be used as temporary SFRs. However, the individual bits of each must be
specifically defined, e.g.,

/∗ b i t 4 o f ACC SFR ∗/
s b i t A4 = ACC^4;
/∗ b i t 3 o f B SFR ∗/
s b i t B3 = B^3;

in which case, faster bit testing can be achieved by using

/∗ assume return value i s 8 b i t s ∗/
ACC = UART_1_ReadRxStatus () ;
i f (A4) /∗ t e s t b i t 4 ∗/
{

. . .
}

The auxiliary B resister can be used for storage to facilitate instructions, such as MUL and DIV,
or to switch two 8-bit variables

u int8 x , y ;
B = x ;
x = y ;
y = B;

Pointers are commonly used in embedded systems and their size is a function of the address
space being employed, e.g., a 64K address space will require two byte pointers, while larger spaces
such as those addressed by PSoC5 require 4-byte pointers to span the address space. However,
PSoC3’s 8051 employs several memory spaces ranging from 256-64K bytes and therefore the Keil
C compiler utilizes memory-specific and generic pointers.160 The use of memory-specific pointers
is more efficient than generic pointers and therefore the latter should be used only when the
memory type is unknown.161 A 8051 generic pointer can used to access data regardless of the
memory in which it is stored. It uses 3 bytes - the first is the memory type, the second is the high-
order byte of the address, and the third is the low-order byte of the address. A memory-specific
pointer uses only one or two bytes depending on the specified memory type.

The C keyword const, which be added to an array declaration or variable, is used to require
that the variable not be changed but does not control where the variable is stored, e.g.,

const char t e s t v a r = 37 ;
void main ()
{
char t e s t va r 2 = t e s t v a r ;

is compiled as

900000 MOV DPTR,# t e s t v a r
E0 MOVX A,@DPTR ; MOVX ac c e s s e s xdata space
900000 MOV DPTR,# te s t va r2
F0 MOVX @DPTR,A

160A generic pointer can be used to access data regardless of the memory in which it is stored. It uses 3 bytes -
the first is the memory type, the second is the high-order byte of the address, and the third is the low-order byte
of the address. A memory-specific pointer uses only one or two bytes depending on the specified memory type.
161The majority of Keil library functions take generic pointers as arguments and memory-specific pointers are

automatically cast to generic pointers.

206 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

and shows that the const variable testvar is stored in Flash, and copied to an SRAM location
initialized in the startup code. If there is insufficient SRAM to store all of the const variables,
the keyword code (or CYCODE) must be used in the declaration, i.e.,

code const char t e s t v a r = 37 ;
void main ()
{
char t e s t va r 2 = t e s t v a r ;

and then the corresponding assembly code is given by

900000 MOV DPTR,# t e s t v a r
E4 CLR A
93 MOVC A,@A+DPTR ; MOVC ac c e s s e s code space
900000 MOV DPTR,# te s t va r2
F0 MOVX @DPTR,A

so that the const variable testvar is stored in Flash.

Arrays and strings can be kept in FLASH as illustrated by the following example:

const f l o a t code array [5 1 2] = { . . . } ;
code const char h e l l o [] = "He l lo World " ;

The arguments for C functions are typically passed on the CPU’s hardware stack. However, the
Keil compiler uses either registers R0-R7, or fixed memory locations for passing such arguments
and does not pass arguments via the stack. The use of registers is employed because it is faster
and uses fewer code bytes. The latter can be important because of the limitation of the 8051
hardware stack to 256 bytes. However, this method has some limitations, as shown in Table 3.5.
If other types of arguments are involved, they can be passed in fixed memory locations. To the

Table 3.5: Argument passing via registers.

extent possible no more than three function arguments should be employed. However, there is
no guarantee that the compiler will pass three arguments in registers.

Arguments of type bit are always passed in a fixed memory location in the 8051’s bit space
(internal memory) and cannot be passed in a register. Bit variables should be declared at the end
of a function’s argument list, to keep the other arguments consistent with Table 3.5. Function
return values are handled as described in Table 3.6. Return values of type bit are always passed
via registers. If a function argument is the return value of another function that argument should
be the first in the argument list whenever possible.

3.25. REAL TIME OPERATING SYSTEMS 207

Table 3.6: Function return values via registers.

3.25 Real Time Operating Systems

In a typical embedded system, there are often multiple tasks162 involved with a requirement to
share and exchange data between such tasks. Scheduling of tasks163, and sharing of resources
in these cases, can sometimes be greatly facilitated by introducing a real time operating sys-
tem164 so that tasks are processed subject to specific, predefined time constraints. This type
of operating system is referred to as a real time operating system, or RTOS165. The majority
of popular microcontrollers lack the memory space, execution speed, and/or other resources, to
adequately support an RTOS. However, the ARM architecture of PSoC5, its clock speed (max
of 67 mega Hertz), RAM space (4 gigabytes) and other resources are sufficient to support a real
time operating system (RTOS), such as FreeRTOS.166

The role of the real time operating system is to provide an environment capable of managing
the available resources, and provide a variety of services for tasks, e.g.,

• management of system resources and CPU,

• assuring that tasks are handled in a predefined manner and within the imposed time con-
straints,

• handling data movement and communications between tasks,

• efficiently managing RAM allocation and use,

• determining which resources can be shared and which are allocated exclusively,

• responding to events,

• assigning priorities to tasks,

• coordinating internal and external events,

• synchronizing tasks,

and,

• handling compute and I/O bound tasks.

162Some tasks may have to handled in parallel, others in serial fashion and these activities are referred to
collectively as multi-tasking.
163Tasks are also referred to as as processes and in the present context, the two terms are considered equivalent.
164A real time operating system is a type of operating system that provides one, or more, responses within

predefined time periods.
165Real time operating systems are also referred to as real time executives and kernels.
166OpenRTOSTM is a commercially licensed and supported version of FreeRTOS that includes fully featured

professional grade USB, file system and TCP/IP components. OpenRTOS is a commercial version of FreeRTOS
and provided under license.

208 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

3.25.1 Tasks, Processes, Multi-threading and Concurrency

Tasks can be in various states, e.g., running, ready (pended or suspended), blocked (delayed,
dormant or waiting). If the embedded system is to employ multitasking, in an optimized fashion,
compute-bound and I/O-bound tasks must be assigned priorities such that the executive has a
basis for assigning the ordering of execution of tasks. This approach allows lower priority tasks
to be preempted by higher order tasks, by the scheduler. In the case of round-robin scheduling
of tasks, tasks of the same priority are executed in a predefined order. Preemptive scheduling
assigns the order of task execution based on the concept that the highest priority process, in a
group of waiting tasks, is executed first, i.e., it preempts other tasks.

Each task is assigned the necessary resources, e.g., RAM space, a task stack, program counter,
I/O ports, file descriptions, registers, etc. These resources may, or may not, be shared with other
tasks. The state of a process, at any given time, is determined by the then current program
counter value, data values in the task’s allocated memory space(s) and/or registers. CPU time
is allocated to each task by the operating system, and if tasks are to effectively/efficiently run
simultaneously, the CPU must switch from one task to another167, often whether a given task
is completed or not, and then return at a later time to the incomplete tasks until each process
has been completed.168 If the CPU switches tasks fast enough, the tasks are said to be running
concurrently, or alternatively, as concurrent processes. In some operating systems the CPU
switches task execution at fixed intervals, a practice referred to as time slicing . Tasks waiting
their turn to be executed are said to be in a waiting state. A task can be terminated either upon
completion, or as a result of being killed169. Typically, a terminated process, whether completed
or killed, is removed from memory and the associated resources are deallocated.

A thread is a set of instructions that has access to stack space and registers, and the as-
sociated resources, needed to carry out a task (process). Tasks can be ready, blocked, running
or terminated. Multiple threads are used when tasks need to occur contemporaneously and are
referred to as parallel processes. A scheduler is used to control which task is to be run, and when
it is to run. A dispatcher starts each task, initiates intertask communications, or any interpro-
cess communication required to exchange information between tasks. Multiple threads may be
running in a single- or multi-processor environment.170

In the single-processor case, the processor is switched from one thread to another in a mode
known as multi-threading based on time-division multiplexing . If multiple processors are involved,
each may be running a single thread. Multi-threading refers to the existence of multiple threads
within a given process that, although executing independently, share the resources allocated to
the process.

In a multi-thread environment semaphores171 are sometimes employed to avoid collisions
when data is being modified It should be noted however, that threads are not synonymous with
processes, or tasks, e.g.,

• Context switching from one thread to another, within a given process, is generally substan-

167This is typically referred to as context switching.
168It is assumed in this discussion that the CPU is operating at a sufficiently fast clock rate to able to switch

among tasks while assuring that the overall system response meets the system’s performance criteria. Some tasks
may never be completed, while others have various lifetimes.
169The killing of a task typically involves sending a signal (message) to a process to terminate.
170"Although threads seem to be a small step from sequential computation, in fact, they represent a huge

step. They discard the most essential and appealing properties of sequential computation: understandability,
predictability, and determinism. Threads, as a model of computation, are wildly nondeterministic, and the job of
the programmer becomes one of pruning that nondeterminism." [36]
171The simplest from of semaphore is a Boolean variable or integer that signals whether or not access to a critical

section of code, or a critical variable, is available.

3.25. REAL TIME OPERATING SYSTEMS 209

tially faster than process context switching.

• Threads share address space, while processes have independent address spaces.

• Processes rely solely on inter-process communications to exchange data and information.

• Processes are typically independent tasks that may or may share data and./or resources.

While concurrent processing offers a number of attractive benefits that are not available from
sequential code execution, it is not a panacea. As noted by Sutter and Larus [], developing
concurrent systems is not an easy task, even though, as observed by Lee [36], as suggested by the
world is “highly concurrent” and humans are rather adept at analyzing concurrent systems.

3.25.2 Task Scheduling and Dispatching

The RTOS contains both a scheduler and dispatcher within the RTOS’ kernel. The operating
system is responsible for management of memory, I/O, tasks, file system the file system, network-
ing and interpretation of commands. Task control blocks (TCBs), either static or dynamic172,
are used to encapsulate the important information associated with a given task, e.g.,

• associated CPU registers

• contents of the program counter

• state of a process and an associated ID

• list of open files

• a pointer to a function

A typical RTOS employs a set classes that support kernel services invocable by the applications
tasks and include support for

• Intertask communications - passing of information between tasks is accomplished by classes
such as event flags, mailboxes173, messages, queues174, pipes, timers, mutexes175 and sema-
phores.176

• Tasks manage program execution. While each task is independent of other tasks, tasks
can interoperate via data structures, I/O and other constructs. Inter-task communications
employs semaphores, messages queues, pipes, shared memory signals, mail slots and sockets.

• Kernel service routines process kernel service requests initiated by an application to provide
operating system functions needed by the application.

• Interrupts are an important aspect of a RTOS particularly with respect to prioritization of
tasks. However, prioritization is not sufficient to assure that tasks are handled in timely
fashion.

Scheduling can be either clock- or priority-driven. Scheduling variables such as arrival time,
computation, deadline, finish time, lateness, period and start time are used to guarantee respon-
siveness and minimize latency.

• Arrival time is defined as the point in time when a task is ready to run.

172Static TCB allocation implies that TCBs are created and remain whereas dynamic TCBs are typically deleted
once a task has been completed, or terminated.
173Messages and mailboxes are employed to transmit data between a sender and a receiver.
174Queues are used to pass data between a producer and a consumer.
175Mutexes are binary flags that assure that mutually shared code is also mutually exclusive. Thus multiple

tasks can use a resource but only one at a time.
176Semaphores are constructs used to synchronize tasks and events. The concept of semaphores was introduced

by Edsger Dijkstra a Dutch computer scientist who in addition, contributed to the deprecation of the GOTO
statement, created reverse polish notation (RPN) and a multitasking operating system known as “THE”.

210 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• Computation time is defined as the processor time required to complete execution of a task,
in the absence of interruption.

• Deadline is defined as the latest time at which a task is completed.

• Lateness is defined as the length of time after the deadline has been passed required to
complete a task.

• Period is defined as the minimum time that elapses between release of the CPU.177

• Start time is defined as the time at which the task begins execution.

Each task has a deadline, execution time and period associated with it, as shown in Figure 3.67.
In most cases, the deadline and the period are quantitatively equal. However, a task can start at

Figure 3.67: Task timing parameters.

any time within the period.

3.25.3 PSoC Compatible Real Time Operating Systems

There are a number of RTOS sources available as commercial or freeware implementations that
support either PSoC3 or PSoC5. A brief description of some of these is provided in this section.
In some cases the source code for the RTOS is also available, as noted.

Micriμm178 offers a commercial version of μC/OS III for PSoC5. It has the following fea-
tures/benefits:

• Relatively small footprint.179

• Is written in ANSI C.

• Supports a variety of user-selectable features.

• Employs round-robin scheduling.

• Protects critical regions by disabling interrupts while minimizing overhead and providing
deterministic interrupt response.

• Supports an arbitrary, although user-selectable, number of priorities.180

• Is designed specifically for embedded system applications.

• Blocks NULL pointers Ensures that arguments are within allowable ranges.

• Supports user-allocation of kernel objects at run-time.

• Execution times are not a function of the number of executing tasks.

• Places no constraints on maximum task size.181

• Allows multiple tasks to run, at the same priority level, in a user-specified, time-slice mode.

177In some RTOS environments, the tasks with the shortest periods are given the highest priority.
178http://micrium.com. The source code is available.
179The footprint size is determined in part by the user-selectable features chosen.
180Typical embedded systems use from 32-256 levels, inclusive, of priority.
181Minimum task sizes are imposed.

3.25. REAL TIME OPERATING SYSTEMS 211

• Places no limitations on the number of tasks, semaphores, mutexes, event flags, message
queues, timer or memory partitions.

• Supports monitoring of stack growth of tasks

FreeRTOS182 (PSoC5) is available as freeware,183 and has the following features/functionality:

• Minimal ROM, RAM and processing overhead.

• Small footprint.184

• Is relatively simple.185

• Very scalable,

• Offers a smaller/easier, real time processing alternative for applications for which eCOS,
embedded Linux (or Real Time Linux) and uCLinux are too large, not appropriate, or not
available.

RTX51 Tiny186 (PSoC5) is Keil’s real-time operating system that provides an RTOS environ-
ment for programs based on standard C constructs and compiled with the Keil C51 C Compiler.
Keil additions to the C language allow task functions to be declared without the need for complex
stack and variable frame configuration.

RTX51 (PSoC3) provides the following features:

• Code banking Explicit task switching

• Task ready flag

• Support of CPU idle mode

• User code support in timer mode

• Interval adjustment support

• Scalability

The footprint can be minimized by disabling round-robin switching187, stack checking and avoid-
ing unnecessary use of system functions.

The supported functions include:

• isr_send_signal causes a signal to be sent to the task’s task_id. If the task is already
waiting for a signal, it is prepared for execution without starting it. Otherwise, the signal
is stored in the task’s signal flag.

• isr_set_ready places the task specified by task_id into the ready state. This function can
only called only from interrupt functions. The isr_send_signal function returns a value of
0 if successful and -1 if the specified task does not exist.

• os_clear_signal clears the signal flag of the task specified by the task_id.

• os_create_task causes a task to be marked as ready and executed at the next available
opportunity.

• os_delete_task stops the task identified by the task_id and removes it from the task list.

• os_reset_interval is used to correct timer problems.

182http://www.freertos.org. The source code is available.
183Documentation is available for a nominal sum.
184Typical kernel binary image size ranges from 4-9 Kbytes.
185The kernel core is contained in three C language files.
186http://www.keil.com
187Reducing round-robin task switching also reduces the data space requirements.

212 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

• os_running_task_id determines the task_id for the task that is currently running.

• os_wait halts the current task and waits for an event such as a time interval, a time-out, or
a signal from another task or interrupt.

• os_switch_task allows a task to halt execution and allow another task to run. If calling
task is the only task ready for execution it resumes running immediately.

When using PSoC5 with a real time operating system, it should be noted that the Cortex M3
core uses numerically low priority numbers to represent HIGH priority interrupts. When assigning
an interrupt a low priority it must not be assigned a priority of 0 (or other low numeric value) be-
cause it can result in the interrupt actually having the highest priority in the system and could re-
sult in a system crash if this priority is above configMAX_SYSCALL_INTERRUPT_PRIORITY.
The lowest priority on a Cortex M3 core is 255.188

If a PSoC5 application provides its own implementation of an interrupt service routine, which
accesses the Kernel API, the priority must be equal to, or numerically greater than, the
configMAX_SYSCALL_INTERRUPT_PRIORITY so in effect it has a lower priority. To install
a customize interrupt service routine, call the Peripheral_StartEx(vCustomISR) function (where
’Peripheral’ is the name of the peripheral to which the ISR relates) passing the interrupt service
routine function which has its prototype declared as C__ISR_PROTO(vCustomISR) and the
function declared with CY_ISR(vCustomISR).

In the function vInitialiseTimerForIntQTests() in IntQueueTimer.c, the ISR is installed using
a call to isr_ High_ Frequency_ 2001Hz_ StartEx(). Each port # defines ‘portBASE_TYPE ’
to equal the most efficient data type for that processor. This port defines portBASE_ TYPE to
be of type long.

3.26 Additional Reference Materials

There a number of valuable resources available, via www.cypress.com, that include training doc-
uments/videos, device datasheets, a technical reference manual (TRM), component data sheets,
system reference guides, component author guide (CAG), application notes, example projects
knowledge base forums and various forums, to assist the designer with the development of
PSoC3/PSoC5 embedded systems.

The PSoC3/PSoC5 device datasheets provide a summary of the features, device-level specifi-
cations, pin-outs and fixed functional peripheral electrical specifications. The technical reference
manual describes the functionality of all of the peripherals in detail and includes the associated
register descriptions. The component datasheets contain the information required to select and
use a component and its functional description, API documentation, assembly language and C
example source code, and the relevant electrical characteristics of the component.

The system reference guide (SRG) describes the PSoC Creator cy_boot component. This
component is automatically included in every project by PSoC Creator189 and includes an API
that can be accessed by firmware for tasks associated with

• Clocking - PSoC3/5 have flexible clocking capabilities that are controlled in PSoC Creator
by selections within the Design-Wide Resources (DWR) settings, connectivity of clocking
signals on the design schematic, and API calls that can modify the clocking at runtime.

188Different Cortex M3 vendors implement a different number of priority bits and supply library functions that
expect priorities to be specified in different ways.
189Only a single instance can be included in a project, does not include symbolic representation and is not

included in the component catalog.

3.26. ADDITIONAL REFERENCE MATERIALS 213

• DMA - The DMAC files provide the API functions for the DMA controller, DMA channels
and Transfer Descriptors. This API is the library version not the auto generated code that
is generated when the user places a DMA component on the schematic. The auto generated
code would use the APIs in this module.

• Flash Linker scripts190

• Power management191

• Startup code - the cy_boot functionality includes a reset vector, setting up the processor to
begin execution, setup of interrupts/stacks, configuration of the target device, preservation
of the reset status and calling the main() C entry point.192

and,

• Various library functions:

1. unit8 CyEnterCriticalSection(void) - disables interrupts and returns a value indicating
whether interrupts were previously enabled (the actual value depends on whether the
device is PSoC 3 or PSoC 5).

2. unit8 CyExitCriticalSection(void) - re-enables interrupts if they were enabled before
CyEnterCriticalSection was called. The argument should be the value returned from
CyEnterCriticalSection.

3. void CYASSERT(uint32 expr) - macro evaluation of an expression and if it is false, i.e.,
evaluates to 0, then the processor is halted. This macro is evaluated unless NDEBUG
is defined, if not, then the code for this macro is not generated. NDEBUG is defined
by default for a Release build setting and not defined for a Debug build setting.

4. void CySoftwareReset(void) - forces a software reset of the device during which the
startup code will detect that the reset was the result of a software reset and the SRAM
memory area, indicated by corresponding arguments will not be cleared. If any of this
area has initialization assignments that initialization will still occur.

5. void CyDelay(uint32 milliseconds) - invokes a delay193 by the specified number of mil-
liseconds. By default the number of cycles to delay is based on the clock configuration.
If the clock configuration is changed at run-time, then the function CyDelayFreq is used
to indicate the new Bus Clock frequency. CyDelay is used by several components, so
changing the clock frequency without updating the frequency setting for the delay can
cause those components to fail.

6. void CyDelayUs(uint16 microseconds) - the number of cycles to delay is, by default,
based on the clock configuration. If the clock configuration is changed at run-time, then
the function CyDelayFreq is used to indicate the new Bus Clock frequency. CyDelayUs
is used by several components, therefore changing the clock frequency without updating
the frequency setting for the delay can cause those components to fail.

7. void CyDelayFreq(uint32 freq) - sets the Bus Clock frequency used to calculate the
number of cycles needed to implement a delay with CyDelay.The frequency used is
based, by default, on the value determined by PSoC Creator at build time.

8. void CyDelayCycles(uint32 cycles) - the delay, determined by the specified number of
cycles, is created by a software delay loop.

190cf. System Reference Guide, cyboot Component Document
191ibid.
192Initialization of static/global variables and the clearing of all remaining static/global variables is also handled

by cy_boot.
193The CyDelay functions implement simple software-based delay loops that are designed to compensate for bus

clock frequency and other factors. Additional factors may also influence the actual time spent in the loop, e.g.,
function entry and exit, and other overhead factors, may also affect the total amount of time spent executing the
function. This may be especially apparent when the nominal delay time is small.

214 CHAPTER 3. SYSTEM AND SOFTWARE DEVELOPMENT

3.27 Exercises

1. Using Mason’s rule, find the gain for signal flow graph shown below.

2. Explain the distinctions between and benefits of multithreading, multitasking and sequen-
tial tasking. Describe a physical system that employs all three. Why are threads said to be
nondeterministic?

3. Draw a block diagram of embedded system that controls a traffic signal, pedestrian signals
and activation buttons at a four-way intersection. Draw the signal graph(s) for such a system
and discuss how the design would have to be modified to allow emergency vehicles the right of
way.

4. Write two callable PSoC3 routines, one in C and one in assembly, that will produce a delay
that can be altered programmatically to provide variable length delays. Comment on the relative
speed and overhead requirements of each.

5. Sketch an example of frequency modulation of the sensor signal shown in Figure 3.14.

6. Sketch Figure 3.10 in the form of a signal graph.

7. Create a state diagram for a clock that displays minutes hours and seconds.

8. Give an example of how to use the RTX51 function calls to facilitate a C program designed to
control a traffic light. Assume that the traffic control system is capable of handling emergency
traffic such as fire trucks, ambulances, police vehicles, etc., on a priority basis based on the type
of emergency vehicle.

9. Describe the design for a temperature measuring system that utilizes a temperature dependent
resistance, such as a thermistor, whose resistance is a function solely of temperature that can be
stored in a look-up table. Provide a requirements description, specification, signal flow graph,
and block diagram for the design. How can such a system be implemented if the function itself
has other dependencies as well, e.g., ambient pressure?

10. Assuming that the design developed in response to Exercise 9 were created for a PSoC3 and
in C. What changes, if any, would be necessary in order to base the design on a PSoC5, i.e., what
changes would be required to port it to a PSoC5?

c©Copyright 2012 Cypress Semiconductor

Chapter 4

Communication Peripherals

Embedded systems are often required to communicate with other systems and present data on
visual display devices such as LED discrete character displays and LCD screens. Whether com-
municating with display devices, or other local/remote systems, a wide variety of communications
protocols are in common use, e.g., I2C, UART, SPI, USB, RS232, RS485, etc. Many of these
protocols have certain features in common and other features which are unique to a particular
protocol. Both PSoC3 and PSoC5 are capable of supporting a wide variety of such protocols.1

4.1 Communications Protocols

One might well ask why there is a need for so many different communication protocols,2 particu-
larly as they relate to microprocessors and microcomputers. The simple answer is that a typical
embedded system communicates with a number of different devices each of which can have its
own preferred communications interface. Data transmission from one device, and/or one location
to another, typically relies upon a preferred speed of transmission, support for buffering of data 3,
retention of data integrity and, if possible, error correction.

As a result many of the extant protocols have either evolved over time into various incarna-
tions, or been replaced by newer protocols, in an attempt to address complexity concerns, speed,
data transfer rates, cost, noise immunity, operating levels, interoperability challenges, networking
considerations, transfer distance/times, data security/integrity and a myriad of other issues. In
some applications multiple protocols are employed in the same application. In other situations,
older protocols are still employed to address interfacing requirements imposed by legacy hardware
ad software systems. Some protocols address peer-to-peer transmission, others are applicable to
master-slave configurations and still others, various networking configurations.

Error detection schemes are often based on transmission of additional data4 with each data
block that makes it possible to determine whether or not data integrity has been maintained.
When a data block, or frame, of data is received, the redundant data is used to determined

1In some applications, the support for a particular protocol is part of the PSoC3/5 architecture, in other cases
external hardware may be required to interface PSoC3/5 with external communications channels.

2A communications protocol is a formal statement of of the governing rules and formats for digital commu-
nications between two or more devices. In addition to setting forth the data formats and syntax involved, the
protocol typically define the parameters used for authenticating a received message and in some cases define the
error detection, and correction, algorithms to be used.,

3Buffering of data is used as a method of holding data until the communication channel is available for
transmission.

4Referred to as redundancy data.

c©Copyright 2012 Cypress Semiconductor

220 CHAPTER 4. COMMUNICATION PERIPHERALS

the data has been changed during transmission. In some applications, when an error is detected,
algorithms are applied to the data correct such errors. Often a trade off has to be made regarding
simply retransmitting data from one location to another and the time required to apply an error
correction algorithm.

4.2 I2C

The Inter-integrated Circuit Bus5 (I2C) was originally developed by Phillips Semiconductor
to support multi-master intercommunications between devices, such as integrated circuits on a
printed circuit board. This makes the I2C component ideal when networking multiple devices
whether all on a single board, or as part of a small system. Such systems can employ a single
master and multiple slaves, multiple masters, or an arbitrary combination of masters and slaves.
Such implementations can employ either fixed hardware I2C blocks, or universal digital blocks
(UDBs).

I2C utilizes a two-wire, serial, bidirectional bus connected in a master-slave configuration, as
shown in Figure 4.1.6 Although originally limited to a maximum transfer rate of 100 Kbits/sec,

Figure 4.1: The I2C master slave configuration.

it is currently capable of operating at speeds up to and including 3.4 Mbits/sec. Any device on
the bus that initiates a data transfer7, generates the clock for that transfer and is defined as
the then current master. The corresponding device receiving the data is the slave. Each of the
slaves connected to the bus is assigned a unique address8 that is used by the master to specify
which slave is being addressed, to receive a given data transmission. The maximum number of
slaves that can be attached to SDA/SCL is determined by the bus capacitance, e.g., 400 pF. Bit
transfers are level-triggered, with one bit per clock pulse as the data rate and data changes can
only take place during low clocks.

The serial data (SDL) and serial clock (SCL) signal lines are used in combination to transmit
data. If both SCL and SDL are high, no data is transmitted. A high-to-low transition of the

5The abbreviations I2C and I2C are both in common usage, when referring to the inter-integrated circuit
bus.

6A slave is defined as any device connected to the bus that is capable of receiving data, e.g., an LCD driver,
memory, keyboard driver, microcontroller, etc. In some cases, a device is capable of both receiving and transmitting
data and therefore may alternately function as both a master and a slave. Thus data transfer on the bus can be
in either direction. A device capable of serving as a master can also request data from another device, in which
case, that master generates the clock and terminates the transfer.

7Including transmitting the address of the device (slave) that is to receive the data.
8Addressing for each device can be based on either 7- or 10-bit addressing.

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 221

SDA line, while the SCL line is high, indicates a START condition, which is often designated by
S. A low-to-high transition of the SDA line, while the SCL line is high, defines a STOP condition
designated by P. Only the current master is capable of generating a START condition and, once
initiated, the bus enters a busy state until a corresponding STOP condition has occurred. If the
device addressed by the master is busy, the master may generate a series of START s to maintain
the bus in a busy state, until the addressed slave becomes available.

Figure 4.2: I2C master and multiple slave configuration.

A single bit of each 8-bit data byte is transferred for each clock pulse and there is no inherent
limit to the number of bytes that can be transmitted in a given transmission.9 At the end of
the transmission of each byte, an acknowledgement from the receiver is required.10 The master
generates an acknowledge clock pulse and releases the SDA line which then goes high for the
duration of the acknowledge clock pulse. The receiving device pulls the SDA line low during the
acknowledge clock pulse. If the slave does not acknowledge, the SDA line remains high and the
master can then either generate a STOP, to terminate the transmission, or a repeated START
condition to start a new transfer, as shown in Figure 4.4. A slave can temporarily suspend further
data transmission by placing the SCL line in a low state which results in the master entering a
wait state. This capability allows the slave to perform other functions, e.g., servicing an interrupt.
When the slave subsequently releases the SCL line, the next byte can then be transmitted. In an
actual implementation, the two lines, SDL and SCL, are connected to pullup resistors as shown
in Figure 4.2.

In order for a master to transmit data, the bus must be free. If multiple masters are used
in an I2C configuration, a method must be provided to avoid two, or more, masters attempting
to transmit data at the same time. This is accomplished by the use of an arbitration technique.
Each master generates its own clock signals during data transfers on the bus. These signals can
be stretched by either another master, as a result of arbitration, or by the slow response slave that

9Bytes are transferred with the Most Significant bit (MSb) being transferred first.
10This restriction is relaxed, if one or more of the devices involved is a CBUS receiver. In such cases, a third

bus line is required.

c©Copyright 2012 Cypress Semiconductor

222 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.3: Start and Stop conditions.

Figure 4.4: Slave ACK/NACK of single byte received.

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 223

holds down the clock line. If two, or more, masters attempt to use the bus contemporaneously,
the first to introduce a one, while the other introduces a zero, will lose the arbitration and control
passes to the latter master. This arbitration may continue in force for multiple bit transfers.

When multiple masters are used, it is possible for two, or more, of them to generate a START
condition within the minimum hold time of the START condition. Therefore, for each byte to
be transmitted, the bus must first be checked to determine whether or not it is in a busy state.
An error is returned to the master who loses arbitration.

A PSoC3/5 master can be operated in either manual or automatic mode. In automatic mode,
a buffer is employed that holds the entire transfer. If a write operation is to occur, the buffer is
pre-filled with the data to be transmitted. If data is to be read from a slave, a buffer of at least
the size of a packet has to allocated. In the automatic mode, the following function11 writes an
array of bytes to a slave

uint8 I2C_MasterWriteBuf(uint8 SlaveAddr, unit8 * wrData, uint8 cnt, uint8 mode)

where SlaveAddr is a right-justified, 7-bit slave address; wrData is a pointer to the array of data;
cnt is the number of bytes to be transferred and mode determines how the transfer starts and
stops.

Similarly, a read operation is initiated by

uint8 I2C_MasterReadBuf(uint8 SlaveAddr, unit8 * wrData, uint8 cnt, uint8 mode)

Both of these functions return status information, as shown in Table 4.1.

Table 4.1: Master status info returned by unit8 I2C_MasterStatus(void).

4.2.1 Application Programming Interface

PSoC Creator provides a set of I2C application programming interface routines (APIs) to allow
dynamic configuration of the I2C component during runtime. By default, PSoC Creator assigns

11The use of the term function, in the present context and throughout this text, is a generic reference to
methods, function members or member functions.

c©Copyright 2012 Cypress Semiconductor

224 CHAPTER 4. COMMUNICATION PERIPHERALS

the instance name I2C_1 to the first instance of an I2C component in a given design. This
instance can be renamed to any unique value that follows the syntactic rules for identifiers. The
instance name becomes the prefix of every global function name, variable, and constant symbol.
For readability, the instance name used in the following is I2C. All API functions assume that
the data direction is from the perspective of the I2C master. A write event occurs when data is
written from the master to the slave, and a read event occurs when the master reads data from
the slave.

PSoC Creator supports a number of function calls that are generic for I2C slave or master
operation including:

• uint8 I2C_MasterClearStatus(void) clears all status flags and returns the master status and
returns the current status of the master.

• uint8 I2C]_MasterWriteBuf(uint8 slaveAddress, uint8 * wrData, uint8 cnt, uint8 mode)
automatically writes an entire buffer of data to a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR in byte-by-
byte mode and it enables the I2C interrupt.

• uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * rdData, uint8 cnt, uint8 mode) au-
tomatically reads an entire buffer of data from a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR in a byte-by-
byte mode and it enables the I2C interrupt.

• uint8 I2C_MasterSendStart(uint8 slaveAddress, uint8 R_nW) generates a start condition
and sends the slave address with a read/write bit. It also disables the I2C interrupt.

• uint8 I2C_MasterSendRestart(uint8 slaveAddress, uint8 R_nW) generates a restart condi-
tion and sends the slave address with a read/write bit.

• uint8 I2C_MasterSendStop(void) generates an I2C stop condition on the bus. If the start,
or restart, conditions failed before this function was called, this function does nothing.

• uint8 I2C_MasterWriteByte(uint8 theByte) sends one byte to a slave. A valid start, or
restart, condition must be generated before calling this function. This function does nothing,
if start, or restart, conditions failed before this function was called.

• uint8 I2C_MasterReadByte(uint8 acknNak) reads one byte from a slave and ACKs, or
NAKs, the transfer. A valid start, or restart, condition must be generated before calling
this function. This function does nothing and returns a zero value, if a start or restart
condition has failed before this function was called.

• uint8 I2C_MasterGetReadBufSize(void) returns the number of bytes that has been trans-
ferred by the I2C_MasterReadBuf() function. If the transfer is not yet complete, it returns
the byte count transferred so far.

• uint8 I2C_MasterGetWriteBufSize(void) returns the number of bytes that have been trans-
ferred by the I2C_MasterWriteBuf()function. If the transfer is not yet complete, it returns
the byte count transferred so far.

• void I2C_MasterClearReadBufSize(void) resets the read buffer pointer back to the first byte
in the buffer.

• void I2C_MasterClearWriteBufSize(void) resets the write buffer pointer back to the first
byte in the buffer.

4.2.2 PSoC3/5 I2C Slave-Specific Functions

The supported slave functions are as follows:

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 225

• uint8 I2C_SlaveClearReadStatus(void) clears the read status flags and returns their values.
No other status flags are affected.

• uint8 I2C_SlaveClearWriteStatus(void) clears the write status flags and returns their values.
No other status flags are affected.

• void I2C_SlaveSetAddress(uint8 address) sets the I2C slave address.

• void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize) sets the buffer pointer and size of
the read buffer and resets the transfer count returned by the I2C_SlaveGetReadBufSize()
function.

• void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize) sets the buffer pointer and size
of the write buffer. This function also resets the transfer count returned by the
I2C_SlaveGetWriteBufSize() function.

• uint8 I2C_SlaveGetReadBufSize(void) returns the number of bytes read by the I2C master
after an I2C_SlaveInitReadBuf(), or I2C_SlaveClearReadBuf() function was executed.

• uint8 I2C_SlaveGetWriteBufSize(void) returns the number of bytes written by the I2C mas-
ter since an I2C_SlaveInitWriteBuf() or I2C_SlaveClearWriteBuf() function was executed.
The maximum return value is the size of the write buffer.

• void I2C_SlaveClearReadBuf(void) resets the read pointer to the first byte in the read buffer.
The next byte read by the master will be the first byte in the read buffer.

• uint8 I2C_SlaveGetWriteBufSize(void) returns the number of bytes written by the I2C mas-
ter since an I2C_SlaveInitWriteBuf() or I2C_SlaveClearWriteBuf() function was executed.
The maximum return value is the size of the write buffer.

• void I2C_SlaveClearReadBuf(void) resets the read pointer to the first byte in the read buffer.
The next byte read by the master will be the first byte in the read buffer.

4.2.3 PSoC3/5 I2C Master/Multi-Master Slave

PSoC Creator includes a number of I2C components that support master, multi-master and slave
configurations with clocks rates up to 1 megabit per second, inclusive. A typical configuration
is shown in Figure 4.1 with two pullup resistors whose value depends on the applicable supply
voltage, clock speed and bus capacitance.

This component has four12 I/O connections:

• Clock - is used to clock the transmission of data on the I2C bus and is derived from the bus
as shown in Table 4.2.

Table 4.2: Bus frequencies required for a 16X oversampling clock.

12The clock and reset pins are only visible in PSoC Creator when the Implementation parameter is set to UDB.

c©Copyright 2012 Cypress Semiconductor

226 CHAPTER 4. COMMUNICATION PERIPHERALS

• Reset - maintains the I2C block in a hardware reset state, thereby halting I2C communica-
tions. A software reset can be invoked by using the I2C_Stop() and I2C_Start() APIs.13

• sda - the serial data i/o channel used to transmit/receive I2C bus data.

• scl - the master-generated I2C clock. The slave cannot generate a the clock signal, but it
can hold the clock low, suspending all bus activity until the slave is ready to send data, or
ACK/NAK14 the latest data, or address.15

Address decoding can be based on either hardware, which is the default case, or on software.If
only a single slave is involved in the design, hardware decoding is preferable. If hardware address
decoding is enabled , the I2C component will automatically NAK addresses other than its own,
unless CPU intervention occurs. Each slave recognizes its unique address which is between 00x00
and 0x7F, with a default address of 0x04. A 10-bit address can be used by employing software
address decoding, but requires that the second byte of the address be decoded, as well.

Signal connections for the SDA and SCL lines can be one of three possible types:

• I2C0 - SCL = SIO pin P12[0], SDA = SIO pin P12[1].

• I2C1 - SCL = SIO pin P12[4], SDA = SIO pin P12[5].

• Any (Default) - Any GPIO or SIO pins via schematic routing.

PSoC Creator supports four modes of operation:

• slave-only operation,

• master-only operation,

• multi-master which supports more than one master,

and,

• multi-master-slave which supports simultaneous multi-master and slave operation.

A slave employs two memory buffers, viz., one for data received from the master and one for the
master to read data transmissions from the slave. The I2C slave read and write buffers are set
by the initialization commands,

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)

However, these commands do not allocate memory, but instead copy the array pointer and size
to the internal component variables. The arrays used for the buffers must be set programmat-
ically because they are not automatically generated by the component. Using these functions
sets a pointer and byte count for the read and write buffers. The bufSize for these functions
may be less than, or equal to, the actual array size, but it should never be larger than the avail-
able memory pointed to by the rdBuf or wrBuf pointers. When the I2C_SlaveInitReadBuf(),
or the I2C_SlaveInitWriteBuf() functions are called, the internal index is set to the first value
in the array pointed to by rdBuf and wrBuf, respectively. As bytes are read/written by the
I2C master, the index is incremented until the offset is one less than the byteCount. The num-
ber of bytes transferred may be determined by calling either I2C_SlaveGetReadBufSize() or
I2C_SlaveGetWriteBufSize() for the read/write buffers, respectively. However, reading/writing,
more bytes than are in the buffers causes an overflow error which results in the slave status byte
being set.16

To reset the index back to the beginning of the array, i.e., zero, use the following commands:
13The reset input may be left floating that is by default equivalent to asserting a logic zero signal to the reset

pin.
14ACK (acknowledged), NAK (not acknowledged) or NACK (not acknowledged) are handshaking signals.
15The pin that is connected to scl should be configured as Open-Drain-Drives-Low.
16This byte can be read via the I2C_SlaveStatus() API.

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 227

Figure 4.5: Slave buffer structure.

void I2C_SlaveClearReadBuf(void)
void I2C_SlaveClearWriteBuf(void)

The next byte read/write to/by the I2C SPI is the first byte in the array.17 Multiple reads, or
writes, by the I2C master continue to increment the array index until a clear buffer command
occurs, or the array index exceeds the array size. Figure 4.6 shows an example where an I2C
master has executed two write transactions. The first write was four bytes and the second write
was six bytes. The sixth byte in the second transaction was NAK ed by the slave to signal that
the end of the buffer had occurred. If the master tries to write a seventh byte for the second
transaction, or starts to write more bytes with a third transaction, each subsequent byte will be
NAK ed and discarded until the buffer is reset. Using the I2C_SlaveClearWriteBuf() function,
after the first transaction, resets the index to zero and causes the second transaction to overwrite
the data from the first transaction.18

4.2.4 Master and Multimaster Functions

PSoC3/5 Master and Multi-Master19 operations are basically the same, with two exceptions.
When operating in Multi-Master mode, the bus should always be checked to see if it is busy.
Another master may already be communicating with a slave. In this case, the program must wait
until the current operation is complete, before issuing a start transaction. The is accomplished
by checking the appropriate return value, to determine whether or not an error condition has
been set, thereby indicating that another master has control of the bus. The second difference is
that, in Multi-Master mode, two masters can start at the exact same time.

17Before these clear buffer commands are used, the data in the arrays should be read or updated.
18The data in the buffer should be processed by the slave before resetting the buffer index.
19In a fixed-function implementation, which does not support undefined bus conditions, for PSoC 3 ES2 and

PSoC 5, and Master or Multi-Master mode, if the STOP condition is set by the software immediately after the
START condition, the module will generate the STOP condition. This occurs after the address field sends 0xFF,
if a data write, and the clock line remains low. To avoid this condition, the STOP condition should not be set
immediately after START. At least one byte should be transferred followed by setting STOP condition and after
a NAK or ACK.

c©Copyright 2012 Cypress Semiconductor

228 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.6: I2C write transaction.

If this happens, one of the two masters must yield control of the the bus and this is accom-
plished by arbitration. arbitration. A check for this condition must be made after each byte
is transferred. The I2C component automatically checks for this condition and responds with
an error, if arbitration is lost. Two options are available when operating the I2C master, viz.,
manual and automatic. In the automatic mode, a buffer is created to hold the entire transfer.
In the case of a write operation, the buffer is pre-filled with the data to be sent. If data is to
be read from the slave, a buffer of at least the size of the packet to be transmitted needs to be
allocated. The following function will write an array of bytes to a slave in automatic mode

uint8 I2C_MasterWriteBuf(uint8 slaveAddress, uint8 * xferData, uint8 cnt, uint8
mode)

The slaveAddress variable is a right-justified, 7-bit slave address ranging from 0 to 127, inclusive.
The component’s API automatically appends the write flag to the LSb of the address byte. The
array of data to transfer is pointed to by the second parameter, xferData and the cnt parameter
is the number of bytes to transfer. The last parameter, mode, determines how the transfer starts
and stops. A transaction may begin with a restart instead of a start, or halt before the stop
sequence. These options allow back-to-back transfers where the last transfer does not send a
stop, and the next transfer issues a restart, instead of a start.

A read operation is almost identical to the write operation and the same parameters with the
same constants are used.

uint8 I2C_MasterReadBuf(uint8 slaveAddress, uint8 * xferData, uint8 cnt, uint8
mode);

Both of these functions return status. See the Table 4.1 for the I2C_MasterStatus() function
return values. Because the read and write transfers complete in the background, during the I2C

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 229

interrupt code, the I2C_MasterStatus() function can be used to determine when the transfer has
been completed.

The following code snippet shows a typical write to a slave.

I2C_MasterClearStatus(); /* Clear any previous status */
I2C_MasterWriteBuf(4, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);
for(;;)
{

if(0u != (I2C_MasterStatus() & I2C_MSTAT_WR_CMPLT))
{
/* Transfer complete. Check Master status to make sure that

transfer completed without errors. */
break;
}

}

The I2C master can also be operated manually. In this mode, each part of the write transaction
is performed with individual commands.

status = I2C_MasterSendStart(4, I2C_WRITE_XFER_MODE);
if(status == I2C_MSTR_NO_ERROR) /* Check if transfer completed without errors */
{

/* Send array of 5 bytes */
for(i=0; i<5; i++)
{

status = I2C_MasterWriteByte(userArray[i]);
if(status != I2C_MSTR_NO_ERROR)

{
break;

}
}

}
I2C_MasterSendStop(); /* Send Stop */

A manual read transaction is similar to the write transaction, except that the last byte should
be NAK ed.

The example below represents a typical manual read transaction.

status = I2C_MasterSendStart(4, I2C_READ_XFER_MODE);
if(status == I2C_MSTR_NO_ERROR) /* Check if transfer completed without errors */
{

/* Read array of 5 bytes */
for(i=0; i<5; i++)
{

if(i < 4)
{

userArray[i] = I2C_MasterReadByte(I2C_ACK_DATA);
}
else
{

userArray[i] = I2C_MasterReadByte(I2C_NAK_DATA);

c©Copyright 2012 Cypress Semiconductor

230 CHAPTER 4. COMMUNICATION PERIPHERALS

}
}

}
I2C_MasterSendStop(); /* Send Stop */

4.2.5 Multi-Master-Slave Mode

In this mode of operation both the Multi-Master and Slave are operational. Although the com-
ponent can be addressed as a slave, firmware must initiate any master-mode transfers. Enabling
Hardware Address Match introduces some limitations with respect to arbitrage and address bytes.
In the event that the master loses arbitration during an address byte, the hardware reverts to
Slave-mode and the byte received generates a slave address interrupt, provided that the slave
is addressed. Otherwise, the lost arbitrage status will no longer be available to interrupt-based
functions.20 However, the manual-based function, I2C_MasterSendStart(),21 does return correct
status information, as shown in Table 4.3, for this particular case.

Table 4.3: I2C_MasterSendStart() return values.

4.2.6 Multi-Master-Slave Mode Operation

Both Multi-Master and Slave are operational in this mode. The component may be addressed
as a slave, but firmware may also initiate master mode transfers. In this mode, when a master
loses arbitration, during an address byte, the hardware reverts to Slave mode and the received
byte generates a slave address interrupt.

4.2.7 Arbitrage on address byte limitations (Hardware Address Match
enabled)

When a master loses arbitration during an address byte, the slave address interrupt is only
generated if slave is addressed. In other cases, the lost arbitrage status is no longer available to
interrupt-based functions. The software address detect eliminates this possibility, but excludes
theWakeup on Hardware Address Match feature. The manual function, I2C_MasterSendStart(),
provides correct status information in the case described above.

20Using software address detection prevents this status from being lost but excludes the Wakeup on Hardware
Address Match feature.

21This function generates a START condition and sends the slave address with a read/write bit.

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 231

4.2.8 Start of Multi-Master-Slave Transfer

When using Multi-Master-Slave, the Slave can be addressed at any time. The Multi-Master must
have time to prepare to generate a start condition when the bus is free. During this time, the
Slave can be addressed and, in this case, the Multi-Master transaction is lost and Slave operation
proceeds. Care must be exercised not to break the Slave operation; the I2C interrupt must be
disabled before generating a start condition to prevent the transaction from passing the address
stage. This action allows a Multi-Master transaction to be aborted and to start a Slave operation
correctly.

The following cases are possible when disabling the I2C interrupt:

• The bus is busy (Slave operation is in progress or other traffic is on the bus) before the start
generation. The Multi-Master does not try to generate a start condition. Slave operation
proceeds when the I2C interrupt is enabled. The I2C_MasterWriteBuf(), I2C_MasterReadBuf(),
or I2C_MasterSendStart() call returns the status I2C_MSTR_BUS_BUSY. The bus is
free before start generation. The Multi-Master generates a start condition on the bus
and proceeds with operation when I2C interrupt is enabled. The I2C_MasterWriteBuf(),
I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the status
I2C_MSTR_NO_ERROR.

• The bus is free before start generation. The Multi-Master tries to generate a start but
another Multi-Master addresses the Slave before this and the bus becomes busy. The start
condition generation is queued. The Slave operation stops at the address stage because of
a disabled I2C interrupt. When I2C interrupt is enabled, the Multi-Master transaction is
aborted from queue and Slave operation proceeds. The I2C_MasterWriteBuf() or

– I2C_MasterReadBuf() call does not notice this and returns I2C_MSTR_NO_ERROR.
The I2C_MasterStatus() returns I2C_MSTAT_WR_CMPLT or
I2C_MSTAT_RD_CMPLT with I2C_MSTAT_ERR_XFER (all other error condi-
tion bits are cleared) after the Multi-Master transaction is aborted. The
I2C_MasterSendStart() call returns the error status. I2C_MSTR_ABORT_XFER.

4.2.9 Interrupt Function Operation

It is possible to assign a priority to a master or slave transaction utilizing interrupts as shown by
the following coding example:

• I2C_MasterWriteBuf();

• I2C_MasterReadBuf();

I2C_MasterClearStatus(); /* Clear any previous status */
I2C_DisableInt(); /* Disable interrupt */
status = I2C_MasterWriteBuf(4, (uint8 *) wrData, 10, I2C_MODE_COMPLETE_XFER);
/* Try to generate, start. The disabled I2C interrupt halts the transaction in the
address stage, if a Slave is addressed or the Master generates a start condition */
I2C_EnableInt(); /* Enable interrupt and proceed with the Master or Slave
transaction */
for(;;)
{
if(0u != (I2C_MasterStatus() & I2_MSTAT_WR_CMPLT))
{
/* Transfer complete.

c©Copyright 2012 Cypress Semiconductor

232 CHAPTER 4. COMMUNICATION PERIPHERALS

Check Master status to make sure that transfer
completed without errors. */
break;
}
}
if (0u != (I2C_MasterStatus() & I2C_MSTAT_ERR_XFER))
{

/* Error occurred while transfer, clean up Master status and
retry the transfer */

}

4.2.10 Manual Function Operation

Manual Multi-Master operation assumes that I2C interrupt is disabled, but it is advisable to take
the following precaution:

I2C_DisableInt(); /* Disable interrupt */
status = I2C_MasterSendStart(4, I2C_WRITE_XFER_MODE);; /* Try to generate start
condition */
if (status == I2C_MSTR_NO_ERROR) /* Check if start generation completed without
errors */
{
/* Proceed the write operation */
/* Send array of 5 bytes */
for(i=0; i<5; i++)
{
status = I2C_MasterWriteByte(userArray[i]);
if(status != I2C_MSTR_NO_ERROR)
{
break;
}
}
I2C_MasterSendStop(); /* Send Stop */
}
I2C_EnableInt(); /* Enable interrupt, if it was enabled before */

4.2.11 Wakeup and Clock Stretching

The I2C block responds to transactions on the I2C bus, during sleep mode. If the incoming
address matches with the slave address, the I2C wakes the system. Once the address matches, a
wakeup interrupt is asserted to wake up the system and SCL is pulled low. An ACK is sent out
after the system wakes up, and the CPU determines the next action in the transaction.

The I2C slave stretches the clock while exiting sleep mode, as shown by Figure 4.7. All
clocks in the system must be restored before continuing the I2C transactions. The I2C interrupt
is disabled before going to sleep and only enabled after the I2C_Wakeup() function is called.
During the time between wakeup and end of calling I2C_Wakeup(), SCL line is pulled low.

...
I2C_Sleep(); /* Go to Sleep and disable I2C interrupt */
CyPmSaveClocks(); /* Save clocks settings */
CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_I2C);

c©Copyright 2012 Cypress Semiconductor

4.2. I2C 233

Figure 4.7: Wakeup and clock stretching.

CyPmRestoreClocks(); /* Restore clocks */
I2C_Wakeup(); /* Wakeup, enable I2C interrupt and ACK the address, till
end of this call the SCL is pulled low */

...

4.2.12 Slave Operation

The slave interface consists of two memory buffers, one for data written to the slave by a master
and a second for data read by a master from the slave.22 The I2C slave read and write buffers are
set by the initialization commands discussed below. These commands do not allocate memory,
but instead copy the array pointer and array size to the internal component variables. The arrays
used for the buffers must be instantiated because they are not automatically generated by the
component. The same buffer can be used for both read and write buffers, but care must be
exercised to manage the data properly.

The following functions set a pointer and byte count for the read and write buffers.

void I2C_SlaveInitReadBuf(uint8 * rdBuf, uint8 bufSize)
void I2C_SlaveInitWriteBuf(uint8 * wrBuf, uint8 bufSize)

The bufSize for these functions may be less than, or equal to, the actual array size, but it should
never be larger than the available memory pointed to by the rdBuf, or wrBuf, pointers. When
the I2C_SlaveInitReadBuf() or I2C_SlaveInitWriteBuf() functions are called, the internal in-
dex is set to the first value in the array pointed to by rdBuf and wrBuf, respectively. As the
I2C master reads, or writes the bytes, the index is incremented until the offset is one less than
the byteCount. At any time, the number of bytes transferred can be queried by calling either
I2C_SlaveGetReadBufSize() or I2C_SlaveGetWriteBufSize() for the read and write buffers, re-
spectively. Reading or writing more bytes than are in the buffers causes an overflow error. The
error is set in the slave status byte and can be read with the I2C_SlaveStatus() API. To reset
the index back to the beginning of the array, use the following commands.

void I2C_SlaveClearReadBuf(void)
void I2C_SlaveClearWriteBuf(void)

This resets the index back to zero. The next byte the I2C master reads or writes to is the
first byte in the array. Before using these clear buffer commands, the data in the arrays should
be read or updated.

Multiple reads or writes, by the I2C master, continue to increment the array index until
the clear buffer commands are used or the array index tries to grow beyond the array size.

22Reads and writes are from the perspective of the I2C master.

c©Copyright 2012 Cypress Semiconductor

234 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 2 shows an example where an I2C master has executed two write transactions. The
first write was four bytes and the second write was six bytes. The sixth byte in the second
transaction was NAKed by the slave to signal that the end of the buffer had occurred. If the
master tried to write a seventh byte for the second transaction or started to write more bytes with
a third transaction, each byte would be NAKed and discarded until the buffer is reset. Using the
I2C_SlaveClearWriteBuf() function after the first transaction resets the index back to zero and
causes the second transaction to overwrite the data from the first transaction. Make sure data is
not lost by overflowing the buffer. The data in the buffer should be processed by the slave before
resetting the buffer index. Both the read and write buffers have four status bits to signal that

Figure 4.8: Slave buffer structure.

a transfer is complete, a transfer is in progress, and buffer overflow. Starting a transfer sets the
busy flag and when the transfer has been completed, the transfer complete flag is set and the
busy flag is cleared. If a second transfer is started, both the busy and transfer complete flags can
be set at the same time. The values for the slave status constants are shown in Figure 4.4.

4.2.13 Start of Multi-Master-Slave Transfer

When using multi-master-slave, the slave can be addressed at any time. The multi-master must
take time to prepare to generate a Start condition when the bus is free. During this time, the
slave could be addressed and, if so, the multi-master transaction is lost and the slave operation
proceeds. Care must be exercised to avoid breaking the slave operation and the I2C interrupt
must be disabled before generating a Start condition to prevent the transaction from passing the
address stage. This actions allows a multi-master transaction to be aborted and a slave operation
to be started correctly.

The following cases are possible when disabling the I2C interrupt:

c©Copyright 2012 Cypress Semiconductor

4.3. UNIVERSAL ASYNCHRONOUS RX/TX (UART) 235

Table 4.4: I2C slave status constants.

• The bus is busy, e.g., slave operation is in progress or other traffic is on the bus, before Start
generation. The multi-master does not try to generate a Start condition. Slave operation
proceeds when the I2C interrupt is enabled. The I2C_MasterWriteBuf(), I2C_MasterReadBuf(),
or I2C_MasterSendStart() call returns the status I2C_MSTR_BUS_BUSY.

• The bus is free, before Start generation. The multi-master generates a Start condition on the
bus and proceeds with operation when the I2C interrupt is enabled. The I2C_MasterWriteBuf(),
I2C_MasterReadBuf(), or I2C_MasterSendStart() call returns the status
I2C_MSTR_NO_ERROR.

• The bus is free before Start generation. The multi-master tries to generate a Start, but
another multi-master addresses the slave before this, and the bus becomes busy. The Start
condition generation is queued. The slave operation stops at the address stage because of a
disabled I2C interrupt. When the I2C interrupt is enabled, the multi-master transaction is
aborted from the queue, and the slave operation proceeds. The I2C_MasterWriteBuf() or
I2C_MasterReadBuf() call does not notice this and returns I2C_MSTR_NO_ERROR.

The I2C_MasterStatus() returns I2C_MSTAT_WR_CMPLT or I2C_MSTAT_RD_CMPLT
with I2C_MSTAT_ERR_XFER (all other error condition bits are cleared) after the multi-
master transaction is aborted. The I2C_MasterSendStart() call returns the error status
I2C_MSTR_ABORT_XFER.

4.3 Universal Asynchronous Rx/Tx (UART)

PSoC Creator’s UART component provides asynchronous communications is often employed to
implement the RS232, or RS48523 protocols24. The UART component can be configured for Full

23The RS485, also referred to as TIA-485 or EIA-485, protocol is similar to RS232 but differs in that it is a
more noise-immune protocol than RS232 and it allows as many as 32 devices to share a common, 3-wire bus and
communicate over distances as long as 4000 feet (1200 meters). The transmission path is differential (balanced)
and consists of a twisted pair and a third wire which serves as ground (there is also a four-wire configuration) that
provides very high noise immunity.

24The UART can also be employed in a TTL-compatible mode.

c©Copyright 2012 Cypress Semiconductor

236 CHAPTER 4. COMMUNICATION PERIPHERALS

Duplex25, Half Duplex26, RX-only, or TX-only versions27. However, all four transmission modes
have the same basic functionality differing only in the amount of resources used. Two configurable
buffers, each of independent size, serve as circular receive and transit buffers that are assigned in
SRAM and hardware FIFOs to ensure data integrity.

This arrangement allows allows the CPU to spend more time on critical, real time tasks than
servicing the UART. In most cases, the UART is configured by choosing the baud rate28, parity29,
number of data bits, and number of start bits. The most common configuration for RS232 is eight
data bits, no parity, and one stop bit and designated as 8N1and is the default configuration. A
second common use for UARTs is in multidrop30 RS485 networks.

The UART component supports a 9-bit addressing mode with hardware address detect, as well
as, a TX output enable signal to enable the TX transceiver during transmissions. There are
a number of physical-layer and protocol-layer variations of UARTs in common use including
RS42331, DMX512, MIDI, LIN32 bus, legacy terminal protocols, and IrDA33.

To support the more commonly used variations, the number of data bits, stop bits, parity,
hardware flow control, and parity generation and detection is configurable from within PSoC
Creator and under software control. As a hardware-compiled option, a clock and serial data
stream can be used that transmits the UART data bits only on the clock’s rising edge. An
independent clock and data output can also be employed for both TX and RX. These outputs
allow automatic calculation of the data CRC by connecting a CRC component to the UART.

The PSoC Creator UART component, shown in Figure 4.9, has the following features:

• 8x and 16x oversampling,

• 9-bit address mode with hardware address detection,

• Baud rates from 110 to 921,600 bits per second (bps) or arbitrary up to 4 Mbps

• Break signal detection and generation,

• Detection of framing, parity and overrun errors,

• Full duplex, half duplex, TX only, RX only, optimized hardware,

• Rx and Tx buffers = 4 to 65,535 bytes,

and,

• Two out of three voting, per bit.

25A full duplex system allows simultaneous transmissions in both directions over the communications path.
26A half duplex system allows transmissions in both directions over the communications path but not simulta-

neously.
27The UART can also be configured for more advanced protocols such as DMX512, LIN and IrDA or custom

protocols.
28Baud rate refers to the rate at which bits are transmitted per second.
29Parity in the present context refers to the use of an optional bit associated with each transmitted byte which

has the value 1 if the number of 1s in the byte is even and 0, otherwise. This provides a mechanism to determine,
whether or not, the integrity of a byte has been compromised upon being received.

30Multidrop implies multiple slaves.
31RS423, also referred to as EIA-423 and TIA-423, is an unbalanced (single-ended) interface, that is RS232-

like, and employs a single, unidirectional, driver, that is capable of supporting up to 10 slaves. It is normally
implemented in integrated circuit technology and can also be employed for the interchange of serial binary signals
between DTE & DCE.

32The LIN bus is an inexpensive single wire bus capable of operating at baud rates up to 19.2 kbits/second,
employed in a master-slave configuration having a single master and on or more slaves.

33The Infrared Data Association (IrDA) has established a standard protocol for modulation/demodulation
methods and other physical parameters associated with infrared transceivers.

c©Copyright 2012 Cypress Semiconductor

4.3. UNIVERSAL ASYNCHRONOUS RX/TX (UART) 237

Figure 4.9: PSoC Creator UART configurations.

The UART’s clock input determines the serial communication baud rate (bit-rate) which is
one-eighth, or one-sixteenth, of the input clock frequency, depending on the value selected for
the Oversampling Rate parameter. This input is visible, in PSoC Creator, if the Clock Selection
parameter is set to External Clock. If the internal clock is selected, the desired baud rate must
be selected during configuration34. Resetting the UART, via the reset input35, places the state
machines, RX and TX, in the idle state, in which case, any data that was currently being
transmitted, or received, is discarded.

The rx input carries the input serial data from another device on the serial bus.36 The
tx_output connection is visible only if the Mode parameter is set to TX Only, Half Duplex, or
Full UART (RX + TX).37 The tx_en output38 is used primarily for RS485 communication to
show that the component is transmitting on the bus. This output goes high, before a transmit
starts, low when transmit is complete and shows a busy bus to the rest of the devices on the
bus. The tx_interrupt output is the logical OR of the group of possible interrupt sources and
goes high when any of the enabled interrupt sources are true.39 The cts_n input40, (_n), an
active-low input, shows that another device is ready to receive data.

The rx_interrupt output41 is the logical OR of the group of possible interrupt sources and
goes high while any of the enabled interrupt sources are true. The tx_data output is used to shift
out the TX data to a CRC component, or other logic.42 The tx_clk output43 provides the clock
edge used to shift out the TX data to a CRC component, or other logic. The rx_data output44 is
used to shift out the RX data to a CRC component, or other logic. The rx_clk output45 provides

34In such cased, PSoC Creator determines the necessary clock frequency for the required baud rate.
35This input is a synchronous reset that requires at least one rising edge of the clock, but can be left floating

and the component will assign it a constant logic 0.
36This input is visible and must be connected if the Mode parameter is set to RX Only, Half Duplex, or Full

UART (RX + TX).
37An external pull-up resistor should be used to protect the receiver from unexpected low impulses during

active System Reset.
38This output is visible when the Hardware TX Enable parameter is selected.
39This output is visible if the Mode parameter is set to TX Only or Full UART (RX + TX)
40This input is visible if the Flow Control parameter is set to Hardware.
41This output is visible if the Mode parameter is set to RX Only, Half Duplex, or Full UART (RX + TX).
42This output is visible when the Enable CRC outputs parameter is selected.
43Ibid.
44Ibid.
45Ibid.

c©Copyright 2012 Cypress Semiconductor

238 CHAPTER 4. COMMUNICATION PERIPHERALS

the clock edge used to shift out the RX data to a CRC component, or other logic.46

4.3.1 UART Application Programming Interface

The API routines for the UART allow the component to be configured programmatically. The
following describes the interface to each function.

• void UART_Start(void) is the preferred method to begin component operation. UART_Start()
sets the initVar variable, calls the UART_Init() function, and then calls the UART_Enable()
function.

• void UART_Stop(void) disables the UART operation.

• uint8 UART_ReadControlRegister(void) returns the current value of the control register.

• void UART_WriteControlRegister(uint8 control) writes an 8-bit value into the control reg-
ister.

• void UART_EnableRxInt(void) enables the internal receiver interrupt.

• void UART_DisableRxInt(void) disables the internal receiver interrupt.

• void UART_SetRxInterruptMode(uint8 intSrc) configures the RX interrupt sources en-
abled.

• uint8 UART_ReadRxData(void) returns the next byte received without checking the status.
The status must be checked separately.

• uint8 UART_ReadRxStatus(void) returns the current state of the receiver status register
and the software buffer overflow status.

• uint8 UART_GetChar(void) returns the last received byte of data and is designed for ASCII
characters. It returns a uint8 where 1 to 255 are values for valid characters and 0 indicates
an error occurred, or that there is no data present.

• uint16 UART_GetByte(void) reads the UART RX buffer immediately and returns the re-
ceived character and a error condition.

• uint8/uint16 UART_GetRxBufferSize(void) returns the number of received bytes remaining
in the RX buffer.

• void UART_ClearRxBuffer(void) clears the receiver memory buffer and hardware RX FIFO
of all received data.

• void UART_SetRxAddressMode(uint8 addressMode) sets the software-controlled Addressing
mode used by the RX portion of the UART.

• void UART_SetRxAddress1(uint8 address) sets the first of two hardware-detectable receiver
addresses.

• void UART_SetRxAddress2(uint8 address) sets the second of two hardware-detectable re-
ceiver addresses.

• void UART_EnableTxInt(void) enables the internal transmitter interrupt.

• void UART_DisableTxInt(void) disables the internal transmitter interrupt.

• void UART_SetTxInterruptMode(uint8 intSrc) configures the TX interrupt sources to be
enabled (but does not enable the interrupt).

• void UART_WriteTxData(uint8 txDataByte) places a byte of data into the transmit buffer
to be sent when the bus is available without checking the TX status register. Status must
be checked separately.

46Ibid.

c©Copyright 2012 Cypress Semiconductor

4.3. UNIVERSAL ASYNCHRONOUS RX/TX (UART) 239

• uint8 UART_ReadTxStatus(void) reads the status register for the TX portion of the UART.

• void UART_PutChar(uint8 txDataByte) places a byte of data into the transmit buffer to
be sent when the bus is available. This is a blocking API that waits until the TX buffer has
room to hold the data.

• void UART_PutString(char* string) sends a NULL terminated string to the TX buffer for
transmission.

• void UART_PutArray(uint8* string, uint8/uint16 byteCount) places N bytes of data from
a memory array into the TX buffer for transmission.

• void UART_PutCRLF(uint8 txDataByte) writes a byte of data followed by a carriage return
(0x0D) and line feed (0x0A) to the transmit buffer.

• uint8/uint16 UART_GetTxBufferSize(void) determines the number of bytes used in the TX
buffer. An empty buffer returns 0.

• void UART_ClearTxBuffer(void) clears all data from the TX buffer and hardware TX FIFO.

• void UART_SendBreak(uint8 retMode) transmits a break signal on the bus.

• void UART_SetTxAddressMode(uint8 addressMode) configures the transmitter to signal the
next bytes is address, or data.

• void UART_LoadRxConfig(void)loads the receiver configuration in half duplex mode. After
calling this function, the UART is ready to receive data.

• void UART_LoadTxConfig(void) loads the transmitter configuration in half duplex mode.
After calling this function, the UART is ready to transmit data.

• void UART_Sleep(void) is the preferred API to prepare the component for sleep. The
UART_Sleep() API saves the current component state. Then it calls the UART_Stop()
function and calls UART_SaveConfig() to save the hardware configuration. Call the UART_Sleep()
function before calling the CyPmSleep() or the CyPmHibernate()function.

• void UART_Wakeup(void) is the preferred API to restore the component to the state when
UART_Sleep()was called. The UART_Wakeup() function calls the UART_RestoreConfig()
function to restore the configuration. If the component was enabled before the UART_Sleep()
function was called, the UART_Wakeup() function will also re-enable the component.

• void UART_Init(void)initializes, or restores, the component according to the customizer
Configure dialog settings. It is not necessary to call UART_Init() because the UART_Start()
API calls this function and is the preferred method to begin component operation.

• void UART_Enable(void) activates the hardware and begins component operation. It is
not necessary to call UART_Enable() because the UART_Start() API calls this function,
which is the preferred method to begin component operation.

• void UART_SaveConfig(void) saves the component configuration and nonretention regis-
ters. It also saves the current component parameter values, as defined in the Configure
dialog or as modified by appropriate APIs. This function is called by the UART_Sleep()
function.

• void UART_RestoreConfig(void) restores the user configuration of nonretention registers.

4.3.2 Interrupts

The Interrupt On parameters allow the interrupt sources to be configured. These values are ORed
with any of the other Interrupt On parameter to give a final group of events that can trigger an
interrupt. The software can reconfigure these modes at any time, and these parameters define an
initial configuration.

c©Copyright 2012 Cypress Semiconductor

240 CHAPTER 4. COMMUNICATION PERIPHERALS

• RX - On Byte Received

(UART_RX_STS_FIFO_NOTEMPTY)

• TX - On TX Complete

(UART_TX_STS_COMPLETE)

• RX - On Parity Error

(UART_RX_STS_PAR_ERROR)

• TX - On FIFO Empty

(UART_TX_STS_FIFO_EMPTY)

• RX - On Stop Error

(UART_RX_STS_STOP_ERROR)

• TX - On FIFO Full

(UART_TX_STS_FIFO_FULL)

• RX - On Break

(UART_RX_STS_BREAK)

• TX - On FIFO Not Full

(UART_TX_STS_FIFO_NOT_FULL)

• RX - On Overrun Error

(UART_RX_STS_OVERRUN)

• RX - On Address Match

(UART_RX_STS_ADDR_MATCH)

• RX - On Address Detect

(UART_RX_STS_MRKSPC)

An ISR can be handled by an external interrupt component connected to the tx_interrupt or
rx_interrupt output. The interrupt output pin is visible depending on the selected Mode param-
eter. It outputs the same signal to the internal interrupt based on the selected status interrupts.

#include <device.h>

#define START_CHAR_VALUE 0x20
#define END_CHAR_VALUE 0x7E

uint8 trigger = 0;

void main()
{

uint8 ch; /* Data sent on the serial port */
uint8 count = 0; /* Initializing the count value */
uint8 pos = 0;

CyGlobalIntEnable;

isr_1_Start(); /* Initializing the ISR */
UART_1_Start(); /* Enabling the UART */

for(ch = START_CHAR_VALUE; ch <= END_CHAR_VALUE; ch++)

c©Copyright 2012 Cypress Semiconductor

4.3. UNIVERSAL ASYNCHRONOUS RX/TX (UART) 241

{
UART_1_WriteTxData(ch); /* Sending the data */
CyDelay(200);

}

for(;;) {}
}

void main()
{

char8 ch; /* Data received from the Serial port */

CyGlobalIntEnable; /* Enable all interrupts by the processor. */

UART_1_Start();

while(1)
{

/* Check the UART status */
ch = UART_1_GetChar();

/* If byte received */
if(ch > 0)
{

// Place character
//handling code here

}
}

4.3.3 UART Config Tab

The Mode dialog box determines the mode of operation of the UART, e.g., as a bidirectional
Full UART (TX + RX)47, Half Duplex UART, requiring half of the resources, RX Only (RS232
Receiver) or TX Only (Transmitter). The Bits Per Second parameter determines the baud-rate,
or bit-width, configuration of the hardware for clock generation.48 The Data bits parameter
determines the number of data bits transmitted between the start and stop of a single UART
transaction.49

4.3.4 Parity

Parity refers to the appending of an extra bit to each byte for the purpose of detecting an error
that occurs during serial byte transmission. The parity bit is set to one, if the number of 1
bits50 is either even or odd, depending on the parity mode selected. Parity can be set as Even,
Odd, None or Mark/Space. None implies that the ninth bit is not to be employed, i.e. parity
is not used, Even/Odd implies that the number of 1s, exclusive of the parity bit, in the byte is

47This is the default mode.
48The default setting for bits per second is 57,600. If the internal clock is used, by setting the Clock Selection

parameter, PSoC Creator generates the necessary clock for 57,600 bps.
49Options are 5,6,7,8, or 9 data bits. The default setting of 8 bits, results in a transmission of a single byte per

transmission. The 9 bit setting utilizes a ninth bit as a parity bit as an indication of either even or odd parity of
the eight bits.

50Exclusive of the parity bit setting.

c©Copyright 2012 Cypress Semiconductor

242 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.10: PSoC Creator’s UART configuration tab.

even/odd. Upon receipt of each byte, the parity bit can be checked to determine if a change has
occurred.51

4.3.5 Simplex, Half and Full Duplex

Serial transmission52 can occur in various modes including simplex, half duplex and full duplex as
illustrated in Figure 4.11. A duplex communications system allows communications between two
points, in either direction, contemporaneously. Half-duplex systems also allow communications
between two points, in both directions, but only in only direction at a time. Simplex systems
allow communication between any two points in one direction only.

4.3.6 RS232, RS422 and RS485 Protocols

The serial communication protocols that has been most prevalent for applications employing
UARTs have historically been RS232, RS42253 and RS48554. The RS232 protocol is a point to
point bidirectional communications link as opposed to RS485, a single channel bus. The RS232
signal path employs a single wire and symmetric voltages about a common ground The RS485

51Single bit errors are the most common type or errors that occur during byte transmission.
52Serial communication refers to the transfer of information, in a sequential fashion, from location to another.
53RS422 is a communication protocol based on differential data transmission which was originally intended to

support higher data rates than RS232 and over longer distances. However, this protocol is not a true multidrop
protocol in that it will only support one driver and a maximum of ten receivers. There is a four wire implementation
of RS422 that supports multiple drivers but typically in a half duplex mode.

54RS485 is a true multidrop system in that it will support multiple drivers and receivers .

c©Copyright 2012 Cypress Semiconductor

4.3. UNIVERSAL ASYNCHRONOUS RX/TX (UART) 243

Figure 4.11: Simplex, Half and Full Duplex.

c©Copyright 2012 Cypress Semiconductor

244 CHAPTER 4. COMMUNICATION PERIPHERALS

protocol is an EIA55 standard interface that employs a balanced transmission path56 and is able
to communicate with multiple nodes. It is particularly useful when the communications is to
occur over relatively long distances and can be employed at distances of up to 1200 meters and
at rates up to 100 kbit/sec.

Table 4.5: Comparison of RS232 and RS485 protocols.

The RS232 and RS485 protocols are similar but their are some significant differences as shown
in Table 4.5.

4.4 Serial Peripheral Interface (SPI)

The serial peripheral interface bus, or SPI, was developed by Motorola for intercommunications
with relatively slow peripheral devices on an intermittent basis, e.g., transfer of data to to a mi-
crocontroller from an analog to digital converter. Although comparable to I2C in many respects,
SPI is capable of higher data rates and its ability to operate in a full duplex mode.

PSoC3/5’s Serial Peripheral Interface (SPI) component features include:

• 3- to 16-bit data width

• Four SPI operating modes

• Bit rates up to 9 Mbps57

4.4.1 SPI Device Configurations

PSoC Creator supports a number of configurations of SPI masters and slaves as shown in Figure
4.12.

55Electronic Industries Alliance.
56The balance path affords noise immunity making it possible for the receiver to reject common mode signals

and shifts in the ground pathway.
57This value is valid only for MOSI+MISO (Full Duplex) interfacing mode and is restricted up to 1 Mbps in

the bidirectional mode because of internal bidirectional pin constraints.

c©Copyright 2012 Cypress Semiconductor

4.4. SERIAL PERIPHERAL INTERFACE (SPI) 245

4.4.2 SPI Master

The SPI Master component provides an industry-standard, 4-wire, master SPI interface. It can
also provide a 3-wire (bidirectional) SPI interface. Both interfaces support all four SPI operating
modes, allowing communication with any SPI slave device. In addition to the standard 8-bit word
length, the SPI Master supports a configurable 3- to 16-bit word length for communicating with
nonstandard SPI word lengths. SPI signals include the standard Serial Clock (SCLK), Master In
Slave Out (MISO), Master Out Slave In (MOSI), bidirectional Serial Data (SDAT), and Slave
Select (SS). The SPI Master component can be used when the PSoC device must interface with
one, or more, SPI slave devices. In addition to SPI slave labeled devices, the SPI Master can
be used with many devices implementing a shift-register-type serial interface. The SPI Slave
component should be used in instances in which the PSoC device must communicate with an SPI
master device. The Shift Register component can be used in situations for which its low-level
flexibility provides hardware capabilities not available in the SPI Master component.

4.4.3 SPI I/O

PSoC Creator’s SPI Master component can be configured using the following:

• void SPIM_Start(void) calls both SPIM_Init() and SPIM_Enable().58

• void SPIM_Stop(void) disables SPI Master operation by disabling the internal clock and
internal interrupts, if the SPI Master is configured that way.

• void SPIM_Start(void) calls both SPIM_Init()and SPIM_Enable() and should be called
the first time the component is started.

• void SPIM_Stop(void) disables SPI Master operation by disabling the internal clock and
internal interrupts.

• void SPIM_EnableTxInt(void) enables the internal Tx interrupt irq.

• void SPIM_EnableRxInt(void) enables the internal Rx interrupt irq.

• void SPIM_DisableTxInt(void) disables the internal Tx interrupt irq.

• void SPIM_DisableRxInt(void) disables the internal Rx interrupt irq.

• void SPIM_SetTxInterruptMode(uint8 intSrc) configures which status bits trigger an inter-
rupt event.

• void SPIM_SetRxInterruptMode(uint8 intSrc) configures which status bits trigger an inter-
rupt event.

• uint8 SPIM_ReadTxStatus(void) returns the current state of the Tx status register.

• uint8 SPIM_ReadRxStatus(void) returns the current state of the Rx status register.

• void SPIM_WriteTxData(uint8/uint16 txData) places a byte/word in the transmit buffer
to be sent at the next available SPI bus time. Data may be placed in the memory buffer and
will not be transmitted until all other previous data has been transmitted. This function
is blocked until there is space in the output memory buffer. It also clears the Tx status
register of the component.

• uint8/uint16 SPIM_ReadRxData(void)59 returns the next byte/word of received data avail-
able in the receive buffer. It returns invalid data if the FIFO is empty.

Call SPIM_GetRxBufferSize(), and if it returns a nonzero value then it is safe to call the
SPIM_ReadRxData() function.

58This should be called the first time the component is started.
59This function returns invalid data if the FIFO is empty.

c©Copyright 2012 Cypress Semiconductor

246 CHAPTER 4. COMMUNICATION PERIPHERALS

• uint8 SPIM_GetRxBufferSize(void) returns the number of bytes/words of received data
currently held in the Rx buffer.

– If the Rx software buffer is disabled, this function returns 0 = FIFO empty or 1 = FIFO
not empty.

– If the Rx software buffer is enabled, this function returns the size of data in the Rx
software buffer. FIFO data not included in this count .

• uint8 SPIM_GetTxBufferSize(void) returns the number of bytes/words of data ready to
transmit currently held in the Tx buffer.

– If Tx software buffer is disabled, this function returns 0 = FIFO empty, 1 = FIFO not
full, or 4 = FIFO full.

– If the Tx software buffer is enabled, this function returns the size of data in the Tx
software buffer.60

• void SPIM_ClearRxBuffer(void) clears the Rx buffer memory array and Rx hardware FIFO
of all received data. It clears the Rx RAM buffer by setting both the read and write pointers
to zero. Setting the pointers to zero indicates that there is no data to read. Thus, writing
resumes at address 0, overwriting any data that may have remained in the RAM.

• void SPIM_ClearTxBuffer(void) clears the Tx buffer memory array of data waiting to trans-
mit. It clears the Tx RAM buffer by setting both the read and write pointers to zero. Setting
the pointers to zero indicates that there is no data to transmit. Thus, writing resumes at
address 0, overwriting any data that may have remained in the RAM.

• void SPIM_TxEnable(void) sets the bidirectional pin to transmit, if the SPI Master is
configured to use a single bidirectional pin.

• void SPIM_TxDisable(void) sets the bidirectional pin to receive, if the SPI master is con-
figured to use a single bidirectional pin.

• void SPIM_PutArray(uint8/uint16 * buffer, uint8/uint16 byteCount) places an array of
data into the transmit buffer.

• void SPIM_ClearFIFO(void) clears any received data from the Tx and Rx FIFOs.

• void SPIM_Sleep(void) prepares the SPI Master for low-power modes by calling the
SPIM_SaveConfig()and SPIM_Stop() functions.

• void SPIM_Wakeup(void) prepares the SPI Master to wake up from a low-power mode and
calls the SPIM_RestoreConfig() and SPIM_Enable() functions. Also clears all data from
the Rx buffer, Tx buffer, and hardware FIFOs.

• void SPIM_Init(void) initializes, or restores, the component according to the customizer
Configure dialog settings. It is not necessary to call SPIM_Init() because the SPIM_Start()
routine calls this function and is the preferred method to begin component operation.

• void SPIM_Enable(void) enables the SPI Master for operation. Starts the internal clock,
if the SPI Master is configured that way. If it is configured for an external clock, it must
be started separately before calling this function. The SPIM_Enable() function should be
called before SPI Master interrupts are enabled. This is because this function configures
the interrupt sources and clears any pending interrupts from device configuration, and then
enables the internal interrupts if there are any. A SPIM_Init() function must have been
previously called.

• void SPIM_SaveConfig(void) saves the SPI Master hardware configuration before entering
a low-power mode.

• void SPIM_RestoreConfig(void) restores the SPI Master hardware configuration saved by
the SPIM_SaveConfig() function after waking from a lower-power mode.

60The FIFO data not included in this count.

c©Copyright 2012 Cypress Semiconductor

4.4. SERIAL PERIPHERAL INTERFACE (SPI) 247

4.4.4 Tx Status Register

The Tx status register is a read-only register that contains the various transmit status bits
defined for a given instance of the SPI Master component. Assuming that an instance
of the SPI Master is named SPIM, the value of this register can be obtained by using
the SPIM_ReadTxStatus() function. The interrupt output signal is generated by ORing
the masked bit fields within the Tx status register. The mask can be set by using the
SPIM_SetTxInterruptMode() function. Upon receiving an interrupt, the interrupt source
can be retrieved by reading the Tx status register with theSPIM_ReadTxStatus()function.
Sticky bits in the Tx status register are cleared on reading, so the interrupt source is held
until the SPIM_ReadTxStatus() function is called.

All operations on the Tx status register must use the following defines for the bit fields,
because these bit fields may be moved within the Tx status register at build time. Sticky
bits used to generate an interrupt or DMA transaction must be cleared with either a CPU
or DMA read to avoid continuously generating the interrupt or DMA. There are several
bit fields defined for the Tx status registers. Any combination of these bit fields may be
included as an interrupt source. The bit fields indicated with an asterisk (*) in the following
list are configured as sticky bits in the Tx status register. All other bits are configured as
real-time indicators of status. Sticky bits latch a momentary state so that they may be read
at a later time and cleared on read.

The following # defines are available in the generated header file (for example, SPIM.h):

– SPIM_STS_SPI_DONE * Set high as the data-latching edge of SCLK (edge is mode
dependent) is output. This happens after the last bit of the configured number of bits
in a single SPI word is output onto the MOSI line and the transmit FIFO is empty.
Cleared when the SPI Master is transmitting data or the transmit FIFO has pending
data. Tells you when the SPI Master is complete with a multi-word transaction.

– SPIM_STS_TX_FIFO_EMPTY reads high while the transmit FIFO contains no
data pending transmission. Reads low if data is waiting for transmission.

– SPIM_STS_TX_FIFO_NOT_FULL reads high while the transmit FIFO is not full
and has room to write more data. Reads low if the FIFO is full of data pending transmit
and there is no room for more writes at this time. Tells you when it is safe to pend
more data into the transmit FIFO.

– SPIM_STS_BYTE_COMPLETE * set high as the last bit of the configured number
of bits in a single SPI word is output onto the MOSI line. Cleared* as the data latching
edge of SCLK (edge is mode dependent) is output.

– SPIM_STS_SPI_IDLE * is set high as long as the component state machine is in the
SPI IDLE state (component is waiting for Tx data and is not transmitting any data).

4.4.5 RX Status Register

The Rx status register is a read-only register that contains the various receive status bits defined
for the SPI Master. The value of this register can be obtained by using the SPIM_ReadRxStatus()
function. The interrupt output signal is generated by ORing the masked bit fields within the Rx
status register. The mask can be set by using the SPIM_SetRxInterruptMode() function. Upon
receiving an interrupt, the interrupt source can be retrieved by reading the Rx status register
with the SPIM_ReadRxStatus() function. Sticky bits in the Rx status register are cleared on
reading, so the interrupt source is held until the SPIM_ReadRxStatus() function is called. All
operations on the Rx status register must use the following defines for the bit fields, because

c©Copyright 2012 Cypress Semiconductor

248 CHAPTER 4. COMMUNICATION PERIPHERALS

these bit fields may be moved within the Rx status register at build time. Sticky bits used to
generate an interrupt or DMA transaction must be cleared with either a CPU or DMA read to
avoid continuously generating the interrupt or DMA. There are several bit fields defined for the
Rx status register. Any combination of these bit fields can be included as an interrupt source.
The bit fields indicated with an asterisk (*) in the following list are configured as sticky bits in
the Rx status register. All other bits are configured as real-time indicators of status. Sticky bits
latch a momentary state so that they may be read at a later time and cleared when read. The
following #defines are available in the generated header file (for example, SPIM.h):

• SPIM_STS_SPI_DONE * set high as the data-latching edge of SCLK (edge is mode de-
pendent) is output. This happens after the last bit of the configured number of bits in a
single SPI word is output onto the MOSI line and the transmit FIFO is empty. Cleared
when the SPI Master is transmitting data or the transmit FIFO has pending data. Tells
you when the SPI Master is complete with a multi-word transaction.

• SPIM_STS_TX_FIFO_EMPTY reads high while the transmit FIFO contains no data
pending transmission. Reads low if data is waiting for transmission.

• SPIM_STS_TX_FIFO_NOT_FULL reads high while the transmit FIFO is not full and
has room to write more data. Reads low if the FIFO is full of data pending transmit and
there is no room for more writes at this time. Indicates when it is safe to send more data
to the transmit FIFO.

• SPIM_STS_BYTE_COMPLETE * set high as the last bit of the configured number of
bits in a single SPI word is output onto the MOSI line. Cleared* as the data latching edge
of SCLK (edge is mode dependent) is output.

• SPIM_STS_SPI_IDLE * this bit is set high as long as the component state machine is in
the SPI IDLE state (component is waiting for Tx data and is not transmitting any data).

4.4.6 Tx Data Register

The Tx data register contains the transmit data value to send and is implemented as a FIFO in
the SPI Master. There is an optional higher-level software state machine that controls data from
the transmit memory buffer. It handles large amounts of data to be sent that exceed the FIFO’s
capacity. All APIs that involve transmitting data must go through this register to place the data
onto the bus. If there is data in this register and the control state machine indicates that data
can be sent, then the data is transmitted on the bus. As soon as this register (FIFO) is empty,
no more data will be transmitted on the bus until it is added to the FIFO. DMA can be set up
to fill this FIFO when empty, using the TXDATA_REG address defined in the header file.

4.4.7 Rx Data Register

The Rx data register contains the received data and is implemented as a FIFO in the SPI Master.
There is an optional higher-level software state machine that controls data movement from this
receive FIFO into the memory buffer. Typically, the Rx interrupt indicates that data has been
received. At that time, that data has several routes to the firmware. DMA can be set up from this
register to the memory array, or the firmware can simply call the SPIM_ReadRxData() function.
DMA must use the RXDATA_REG address defined in the header file.

4.4.8 Conditional Compilation Information

The SPI Master requires only one conditional compile definition to handle the 8- or 16-bit dat-
apath configuration necessary to implement the configured NumberOfDataBits. The API must

c©Copyright 2012 Cypress Semiconductor

4.5. SERIAL PERIPHERAL INTERFACE SLAVE 249

conditionally compile for the data width defined. APIs should never use these parameters directly
but should use the following define:

• SPIM_DATAWIDTH defines how many data bits will make up a single-byte transfer. Valid
range is 3 to 16 bits.

4.5 Serial Peripheral Interface Slave

PSoC Creator’s SPI Slave provides an industry-standard, 4-wire slave SPI interface capable of
providing a 3-wire, bidirectional, SPI interface. Both interfaces support all four SPI operating
modes, allowing communication with any SPI master device. In addition to the standard 8-bit
word length, the SPI Slave supports a configurable 3- to 16-bit word length for communicating
with nonstandard SPI word lengths. SPI signals include the standard Serial Clock (SCLK),
Master In Slave Out (MISO), Master Out Slave In (MOSI), bidirectional Serial Data (SDAT),
and Slave Select (SS). The SPI Slave component can be used any time a PSoC device is required
to interface with an SPI Master device. In addition to use with SPI Master devices, the SPI Slave
can be used with devices implementing a shift register interface. The SPI Master component can
be employed in applications requiring that a PSoC device to communicate with an SPI Slave
device.

By default, the PSoC Creator Component Catalog contains Schematic Macro implementations
for the SPI Slave component. These macros contain already connected and adjusted input and
output pins and clock source. Schematic Macros are available for 3-wire (Bidirectional), 4-wire
(Full Duplex) and Full Duplex Multislave SPI interfacing as shown in Figures 4.12 e), f) and g),
respectively.

4.5.1 Slave I/O Connections

The slave I/O connections supported by PSoC Creator are as follows:61

• mosi - Input* The Master Output Slave Input (MOSI) signal from a master device is applied
to the mosi input. This input is visible when the Data Lines parameter is set to MOSI +
MISO. If visible, this input must be connected.

• sdat - Inout* The Serial Data (SDAT) signal is applied to the sdat inout input which is used
when the Data Lines parameter is set to Bidirectional. For both PSoC 3 and PSoC 5 silicon,
an asynchronous clock crossing warning will be reported between the component clock and
the SCLK signal when timing analysis is performed. The following is an example of such a
message: Path(s) exist between clocks IntClock and SCLK(0)_PAD, but the clocks are not
synchronous to each other. This message applies to a path from the register that controls
the direction and the sampling of data by SCLK. SCLK should not be running when the
direction is being changed. As long as this rule is followed, there is no problem and warning
message can be ignored.

• sclk Input - The Serial Clock (SCLK) signal is applied to the sclk input which provides the
slave synchronization clock input to the device. This input is always visible and must be
connected.62

61An asterisk (*) in the list of I/Os indicates that the I/O may be hidden for the component symbol under the
conditions listed in the description of that I/O.

62Some SPI Master devices, e.g., the TotalPhase Aardvark I2C/SPI host adapter, drive the sclk output in a
specific way. For the SPI Slave component to function properly with such devices in modes 1 and 3, when CPOL
= 1), the sclk pin should be set to resistive pull-up drive mode. Otherwise, corrupted data is output.

c©Copyright 2012 Cypress Semiconductor

250 CHAPTER 4. COMMUNICATION PERIPHERALS

• ss Input - The Slave Select (SS) signal to the device is applied to the ss input. This input is
always visible and must be connected. The following diagrams show the timing correlation
between SCLK and SS signals Generally, 0.5 of the SCLK period is enough delay between
the SS negative edge and the first SCLK edge for the SPI Slave to work correctly in all
supported bit-rate ranges.

• reset Input - resets the SPI Slave and deletes any data that was currently being transmitted,
or received. However, it does not clear data from the FIFO that has already been received
or is ready to be transmitted. PSoC3/5 ES2 silicon does not support this reset functionality,
so this input is ignored when used with those devices. Use of the reset input results in an
asynchronous clock crossing warning being reported between the clock that generates the
Reset input and the SCLK signal when timing analysis is performed. The following is an
example of such a message: Path(s) exist between clocks BUS_CLK and SCLK(0)_PAD,
but the clocks are not synchronous to each other.This message applies to a path from the
Reset signal to the operation of the SPI component clocked by SCLK. SCLK should not
be running when the Reset signal is changed. As long as this rule is followed, there is no
problem and you can ignore this message. The reset input may be left floating with no
external connection. If nothing is connected to the reset line the component will assign it a
constant logic 0.

• clock - Input* defines the sampling rate of the status register. All data clocking happens on
the sclk input, so the clock input does not handle the bit-rate of the SPI Slave. The clock
input is visible when the Clock Selection parameter is set to External. If visible, this input
must be connected.

• miso - Output* transmits the Master In Slave Out (MISO) signal to the master device on
the bus. This output is visible when the Data Lines parameter is set to MOSI + MISO.

• interrupt - Output is the logical OR of the group of possible interrupt sources. This signal
goes high while any of the enabled interrupt sources are true.

The PSoC Creator Component Catalog contains Schematic Macro implementations for the
SPI Slave component that have connected and adjusted input pins, output pins and a clock
source. As shown in Figure 4.12 d) e), f) and g), Schematic Macros are available for 4-wire (Full
Duplex), 3-wire (Bidirectional), and Full Duplex Multislave SPI interfacing.63

63If schematic macros are not used the Pins component should be configured to deselect the Input Sychronized
parameter for each of the assigned input pins, i.e., MOSI, SCLK and SS. This parameter is located beneath the
Pins>Input tab of the applicable Pins Config dialog.

c©Copyright 2012 Cypress Semiconductor

4.5. SERIAL PERIPHERAL INTERFACE SLAVE 251

F
ig
ur
e
4.
12
:
SP
I
m
as
te
r
an
d
sl
av
e
Sc
he
m
at
ic
M
ac
ro
s
su
pp
or
te
d
by
P
So
C
C
re
at
or
.

c©Copyright 2012 Cypress Semiconductor

252 CHAPTER 4. COMMUNICATION PERIPHERALS

4.6 Universal Serial Bus (USB) Basics

The Universal Serial Bus (USB) is an industry standard64, serial communications protocol origi-
nally designed for communications between computers and peripheral devices such as mice, key-
boards modems, external hard drives, etc., as an alternative to larger, and slower, connections
that employ serial and parallel ports.[50] In addition to providing faster transfer rates, the intent
was to eliminate the various connector configurations used by the different protocols and stan-
dardize on a single, physical configuration, connection device. Originally, version 1.0 supported
two configurations referred to as low-speed (LS) and full-speed (FS) at 1.5 and 12 Mbits/second.
The LS configuration, while significantly slower than it FS counterpart, is much less susceptible
to electromagnetic interference. Version 2.0 introduced a higher speed (HS) configuration as part
of the specification that supported transmission rates of 480 Mbits/second.

A typical USB application includes a personal computer which serves as a host an several
peripheral devices employed as part of a tiered, star topology which can include hubs that provide
multiple connection points. The host utilizes at least one host controller and a root hub. Each
host controller can support up to 127 connections, inclusive, when used with external USB hubs.
The internal root hub is connected to the host controller(s) and provides the first interface layer
to the USB. Most PCs are provided with multiple USB ports that are part of the root hub in the
PC.

The host controller consists of a hardware chipset and software driver layer that

• detects the attachment/removal of USB devices

• manages data flow between the host an such devices

• supplies power to the USB connected devices

and,

• monitors the USB bus activity.

Each USB device is assigned an address by the host, a connection pathway referred to as a
pipe that connects the host and an addressable buffer known as an endpoint. The endpoint serves
as an addressable buffer that holds data to be transmitted to the host, or that has been received
from the host. A USB device can have multiple endpoints each of which has an associated pipe,
as illustrated in Figure 4.13.

Figure 4.13: USB pipe model.

The USB specification defines four types of of data transfer categories:
64Compaq, DEC, IBM, Intel, Motorola NEC and Nortel collaborated on the development of the specification

for the universal serial bus

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 253

• control transfers are used for sending commands to a device, to make inquiries and configure
a device via the control pipe. Bulk transfers for large data transmissions that exploit all of
the available USB bandwidth using a data pipe.65

• interrupt transfers are used for sending small amounts of bursty data and to provide a
guaranteed minimum latency.

• isochronous transfers are used for data that must be transferred at a guaranteed data rate
which is based on a fixed bus bandwidth, fixed latency and no error correction.66

Every device has a control pipe through which transfers to send, and receive, messages are
transmitted. Optionally, a device may have data pipes for transferring data through interrupt,
bulk, or isochronous transfers, but he control pipe is the only bidirectional pipe in the USB
system. All the data pipes are unidirectional. Each endpoint is accessed with a device address,
assigned by the host, and an endpoint number, assigned by the device. When information is sent
to the device the device address and endpoint number are identified with a token packet. The
host initiates this token packet before a data transaction. When a USB device is first connected
to a host, the USB enumeration process is initiated.

Two files, on the host side, are affiliated with enumeration and the loading of a driver:

• .INF is text file that contains all the information necessary to install a device, e.g., driver
names and locations, windows registry, and driver version information.

• .SYS is the driver needed to communicate effectively with the USB device.

Enumeration is the process of exchanging information between the device and the host that
includes learning about the device. Additionally, enumeration includes assigning an address to
the device, reading descriptors67, and assigning and loading a device driver a process that can
occur in seconds. Once this process is complete, the device is ready to transfer data to the host.

The flow chart of the general enumeration process as shown is Figure 4.14, are:

1. the device is connected to host,

2. the host resets the device and requests a device descriptor,

3. the device responds to the request and the host sets a new address,

4. the host requests a device descriptor using the new address,

5. the host locates and reads the INF file,

6. the INF file specifies the device driver,

7. the driver is loaded on the host,

and

8. the device is configured and ready to use.

After a device has been enumerated, the host directs all traffic flow, to the devices, on the bus
and therefore no device can transfer data without a request from the host controller.

65Bulk transfers cannot be relied on top take place with a specific speed or latency.
66Error correction can introduce variable delays caused by having to delay transmission while compromised

packets are resent.
67Descriptors are data structures that provide information about the device.

c©Copyright 2012 Cypress Semiconductor

254 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.14: Sequence of enumeration events.

4.6.1 USB Architecture

Only one host can exist in the system and communication with devices is from the host’s per-
spective. A host is anupstream component , while a device is a downstream component. Data
moved from the host to the peripheral is an OUT transfer. Data moved to the host from the
peripheral is an IN transfer. The host, specifically the host controller, controls all traffic and
issues commands to devices.

There are three common types of USB host controllers:

• Universal Host Controller Interface (UHCI) (UHCI): Produced by Intel for USB 1.0 and
USB 1.1. Using UHCI requires a license from Intel. This controller supports both low-speed
and full-speed.

• Open Host Controller Interface (OHCI): Produced for USB 1.0 and 1.1 by Compaq, Mi-
crosoft, and National Semiconductor. Supports low-speed and full-speed and tends to be
more efficient then UHCI by performing more functionality in hardware.

• Extended Host Controller Interface (EHCI): Created for USB 2.0 after USB-IF requested
that a single host controller specification be created. EHCI is used for high-speed trans-
actions and delegates low-speed and full-speed transactions to an OHCI or UHCI sister
controller.

One or more devices are attached to a host. Each device has a unique address and responds
only to host commands that are addressed to it. Every is expected to have some form of func-
tionality and not simply be passive. Devices contain one upstream port which serves as the
physical USB connection point on the device. A hub is a specialized device that allows the host
to communicate with multiple peripheral devices on the bus. Unlike USB peripheral devices,
such as a mouse that has actual functionality, a hub device is transparent and is intended to
act as a pass-through. A hub also acts as a channel between the host and the device. Hubs
have additional attachment points to allow the connection of multiple devices to a single host. A
hub repeats traffic to and from downstream devices through one upstream port and up to seven
downstream ports. The hub, however, does not have any host capabilities.

As discussed previously, up to 127 devices can be connected to the host controller with the

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 255

use of hubs. This limitation is based on the USB protocol, which limits the device address to 7
bits. Additionally, a maximum of 5 hubs can be chained together, a limitation imposed by timing
considerations. The USB interface can be viewed as being divided into different layers. The Bus
Interface Layer provides the physical connection, electrical signaling, and packet connectivity.
This is the layer that is handled by the hardware in a device. This is accomplished by a physical
interface external to the device. The Device Layer is used by the USB system software for
performing USB operations such as sending and receiving information. This is accomplished
with a Serial Interface Engine, which is also internal to the device. Finally, the Function Layer
is the software portion of a USB device that handles the information it receives and gathers data
to transfer to the host.

4.6.2 USB Signal Paths

All signals involve a return path, often referred to as the ground return.68 Although ground is
typically assumed to be at a potential of zero volts, it is really a reference that may deviate from
zero volts as a result of electromagnetic interference, the impedance of the return path, i.e., the
ground path, and other phenomenon. In the case of long signal paths, there can be a significant
difference between the ground at the transmitter (source) and the receiver (sink).

A USB cable consists of multiple conductors that are protected by an insulating jacket. Within
this jacket is an outer shield consisting of copper braid. Inside this copper shield are multiple
wires: a copper drain wire, a VBUS wire. (red) and a ground wire (black). An inner shield
made of aluminum contains a twisted pair of data wires as seen in Figure 7. There is a D+
wire (green) and a D- wire (white). In full-speed and high-speed devices, the maximum cable
length is 5-meters. To increase the distance between the host and a device, a series of hubs and
5-meter cables must be used. While USB extension cables are available, using them to exceed
5 meters is not in compliance with the USB protocol. Low-speed devices have slightly different
specifications, e.g., their cable length is limited to 3 meters and low-speed cables are not required
to be a twisted pair, an example of which is shown in Figure 4.15.

The VBUS wire provides a constant 4.40 - 5.25 V supply to all attached devices. While
USB supplies up to 5.25 V to devices, the data lines (D+ and D-) function at 3.3 V. The USB
interface uses a differential transmission that is non-return-to-zero inverted (NRZI) encoded with
bit stuffing across a twisted pair of conductors.

Figure 4.15: An example of a twisted pair cable.

NRZI encoding is a method for mapping a binary transmission signal in which a logic 1 is
represented by no change in voltage level and a logic 0 is represented by a change in voltage level
as Figure 4.16 shows. The data that will be transmitted over USB is shown at the top of the
figure. The encoded NRZI data is shown in the lower portion of the figure. The bit stuffing occurs
by inserting a logic 0 into the data stream, following seven consecutive logic 1s. The purpose of
the bit stuffing is for synchronization of the USB hardware by using a phase-locked loop (PLL).
If there are too many logic 1s in the data, then there may not be enough transitions in the
NRZI encoded stream to support synchronization. The USB receiver hardware automatically
detects this extra bit and disregards it. However, this extra bit stuffing contributes additional
USB overhead. Figure 4.16 shows an example of NRZI data with bit stuffing. Although there

68In some cases the return path is simply a ground plane.

c©Copyright 2012 Cypress Semiconductor

256 CHAPTER 4. COMMUNICATION PERIPHERALS

are eight 1s in the Data to Send stream, in the encoded data a logic 0 is inserted after the sixth
logic 1. The seventh and eighth logic 1 then follow after the 0 logic bit.

The hardware in USB devices handles all the encoding and bit stuffing upon receiving any
data and prior to transmitting any data. The use of differential D+ and D- signals rejects
common-mode noise. If noise becomes coupled into the cable, it will normally be present on all
wires in the cable. With the use of a differential amplifier in the USB hardware internal to the
host and device, the common-mode noise can be rejected, as illustrated in Figures 4.17 and 4.18.
It should be noted that in the Data to Send stream, shown in Figure 4.16, there are eight 1s.

Figure 4.16: A bit stuffing example.

In the encoded data, after the sixth logic 1, a logic 0 is inserted. The seventh and eighth logic
1 then follow after this logic 0. The hardware in USB devices handles all of the encoding and
bit stuffing upon receiving any data, and prior to transmitting any data. The reason for using
the differential D+ and D- signal is for rejecting common-mode noise. If noise becomes coupled
into the cable, it will normally be present on all wires in the cable. With the use of a differential
amplifier in the USB hardware internal to the host and device, the common-mode noise can be
rejected.

The hardware in USB devices handle all of the encoding and bit stuffing upon receiving any
data and prior to transmitting any data. The reason for using the differential D+ and D- signal
is for rejecting common-mode noise. If noise becomes coupled into the cable, it will normally be
present on all wires in the cable. With the use of a differential amplifier in the USB hardware
internal to the host and device, the common-mode noise can be rejected as shown in Figure 4.18.

USB communication occurs through many different signaling states on the D+ and D- lines.
Some of these states transmit the data while others are used as specific signaling conditions.
These states are described below with a quick reference list located in Table 4.6 .

Differential 0 and Differential 1: These two states are used in the general data commu-
nication across a USB communication path. Differential 1 is when the D+ line is high and the
D- line is low. Differential 0 occurs when the D+ line is low, and the D- line is high.

J-State and K-State: In addition to the differential signals, the USB specification defines
two additional differential states: J-States and K-States. Their definitions depend on the device
speed. On a full-speed and high-speed device, a J-State is a Differential 1 and a K-State is a
Differential 0. The opposite is true for a low-speed device.

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 257

Figure 4.17: An ideal differential amplifier configuration

Figure 4.18: An example of USB common mode rejection.

c©Copyright 2012 Cypress Semiconductor

258 CHAPTER 4. COMMUNICATION PERIPHERALS

Single Ended Zero (SE0) is a condition that occurs when both D+ and D- are driven low,
indicating a reset, disconnect, or End of Packet.

Single Ended One (SE1): Condition that occurs when D+ and D- are both driven high.
This condition does not ever occur intentionally and should never occur in a USB design.

Idle is a condition that occurs before and after a packet is sent. An Idle condition is signified
by one of the data lines being low and the other line being high. The definition of high vs. low
depends on device speed for a full-speed device, an idle condition consists of D+ being high and
D- being low. The opposite is true for a low-speed device.

Resume is used to wake a device from a suspend state, by issuing a K-State.

Start of Packet (SOP) occurs before the start of any low-speed or full-speed packet when
the D+ and D- lines transition from an idle state to a K-State.

End of Packet (EOP) occurs at the end of any low-speed or full-speed packet. An EOP
occurs when an SE0 state occurs for 2 bit times, followed by a J-State for 1 bit time.

Reset occurs when an SE0 state lasts for 10 ms. The device can recognize the reset and
begin to enter a reset after a SE0 has occurred for at least 2.5 ms, .

Keep Alive is a signal used in low-speed devices that lack a Start-of-Frame packet that is
required to prevent suspend and use an EOP every millisecond to keep the device from entering
suspend.

Table 4.6: USB Communications States

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 259

4.6.3 USB Endpoints

In the USB specification, a device endpoint is a uniquely addressable portion of a USB device that
is the source, or sink, of information in a communication flow between the host and device. The
USB enumeration section describes a step in which the device responds to the default address.
This occurs before other descriptor information such as the endpoint descriptors are read by
the host, later in the enumeration process. During the enumeration sequence, a special set of
endpoints are used for communication with the device. These special endpoints, collectively
known as the Control Endpoint or Endpoint 0, are defined as Endpoint 0 IN and Endpoint 0
OUT. Even though Endpoint 0 IN and Endpoint 0 OUT are two endpoints, they look and act
like one endpoint to the developer. Every USB device must support Endpoint 0. For this reason,
Endpoint 0 does not require a separate descriptor.

In addition to Endpoint 0, the number of endpoints supported in any particular device is
based on its design requirements. A fairly simple design, such as a mouse, may need only a single
IN endpoint. More complex designs may need several data endpoints. The USB specification
sets a limit on the number of endpoints to 16 for each direction (16 IN/16 OUT = 32 Total)
for high and full-speed devices, which does not include the control endpoints 0 IN and 0 OUT.
Low-speed devices are limited to two endpoints. USB Class devices may set a greater limit on the
number of endpoints, e.g., a low-speed HID design may have no more than two data endpoints,
typically one IN endpoint and one OUT endpoint. Data endpoints are bidirectional by nature,
but it is not until they are configured that they become unidirectional. Endpoint 1, for example,
can be either an IN or OUT endpoint. It is in the device descriptors that Endpoint 1 becomes a
IN endpoint.

Endpoints use cyclic redundancy checks (CRCs) to detect errors in transactions.69 The han-
dling of these calculations is taken care of by the USB hardware so that the proper response can
be issued. The recipient of a transaction checks the transmitted CRC value against the CRC
calculated by the receiver based on the received data. If the two match, then the receiver issues
an ACK. If the data and the CRC do not match, then no handshake is sent. This absence of a
handshake tells the transmitter to try again.

The USB specification further defines four types of endpoints and sets the maximum packet
size, based on both the type and the supported device speed. The endpoint descriptor should be
used to identify the type of endpoint requirements.

The four types of endpoints and characteristics are:

• Control Endpoints support control transfers, which all devices must support. Control trans-
fers send, and receive, device information across the bus. The primary advantages of control
transfers are guaranteed accuracy, proper detection of Errors and assurance that the data
is resent. Control transfers have a 10% reserved bandwidth on the bus in low and full-speed
devices (20% at high-speed) and give the USB system level control.

• Interrupt Endpoints support interrupt transfers which are used on devices that require a
highly reliable method to communicate a small amount of data.70 However, the name
of this transfer can be misleading because it is not truly an interrupt based system, but
instead employs a polling method. However, is does guarantee that the host check for data
at a predictable interval. Interrupt transfers give guaranteed accuracy because errors are
properly detected and transactions are retried at the next transaction. Interrupt transfers

69The CRC is a calculated value used for error checking. The CRC calculation is based on an equation defined
in the USB specification.

70This is commonly used in Human Interface Device (HID) designs.

c©Copyright 2012 Cypress Semiconductor

260 CHAPTER 4. COMMUNICATION PERIPHERALS

have a guaranteed bandwidth of 90% on low- and full-speed devices and 80% on high-
speed devices. This bandwidth is shared with isochronous endpoints. The maximum packet
size when employing interrupt endpoints is a function of device speed. High-speed capable
devices support a maximum packet size of 1024 byes. Devices ca[able of operating at full
speed support a maximum packet size of 64 bytes. Low-speed devices support a maximum
packet size of 8 bytes.

• Bulk Endpoints support bulk transfers, which are commonly used on devices that move
relatively large amounts of data at highly variable times where the transfers can use any
available bandwidth space.71 Delivery time for a bulk transfer is variable because there is no
predefined bandwidth for the transfer, but instead, varies depending on how much bandwidth
on the bus is available, which makes the actual delivery time unpredictable. Bulk transfers
give guaranteed accuracy because errors are properly detected, and transactions are resent.
Bulk transfers are useful in moving large amounts of data that are not time sensitive. A bulk
endpoint maximum packet size is a function of device speed.72 Devices that support full
speed transfer have a maximum packet size of 64-bytes. Low-speed devices do not support
bulk transfer types.

• Isochronous Endpoints support isochronous transfers, which are continuous, real-time trans-
fers that have a pre-negotiated bandwidth. Isochronous transfers must support streams of
error tolerant data because they do not have an error recovery mechanism, or handshaking.
Errors are detected through the CRC field, but not corrected. With isochronous endpoints,
a tradeoff must be made between guaranteed delivery and guaranteed accuracy. Streaming
music, or video, are examples of an application that uses isochronous endpoints because the
occasional missed data is ignored by human ears and eyes. Isochronous transfers have a
guaranteed bandwidth of 90% on low and full-speed devices (80% on high-speed devices)
that is shared with interrupt endpoints.

High-speed capable devices support a maximum packet size of 1024 bytes, full-speed devices
1023 bytes.73 There are special considerations with isochronous transfers, e.g., 3x buffering is
preferable to ensure data is ready to go by having one actively transmitting buffer, another buffer
loaded and ready to transfer, and a third buffer being actively loaded.

4.6.4 USB Transfer Structure

During the enumeration process, the host requests the device descriptor. The transfer process
consists of making the request for the device descriptor, receiving the device descriptor infor-
mation, and the host acknowledging the successful reception of the data. However, the transfer
consists of multiple stages called transactions. Each transfer consists of one or more transactions
and in the case of the device descriptor request, there are three transactions. The first is the
Setup transaction, the second is theData transaction, where the descriptor information is sent to
the host. The third transaction is the handshake transaction where the host acknowledges receiv-
ing the packet. Each transaction is made up of multiple packets and contains a token packet at
minimum. Inclusion of a data packet and handshake packet can vary depending on the transfer
type.

Each transfer contains one or more transactions, each of which always contains a token packet.
A data packet, and handshake packet, may be included depending on the transaction type. Inter-
rupt, bulk, and control transfers always include a token, data, and handshake packet with each

71They are the most common transfer type for USB devices.
72High-speed capable devices support a maximum BULK packet size of 512 bytes. Low-speed devices do not

support bulk transfer.
73Low-speed devices do not support isochronous transfer types.

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 261

Table 4.7: Endpoint Transfer Type Features

transaction. Control transfers have three stages: Setup, Data, and Status, and each one of these
stages contains a token, data, and handshake packet. Therefore, while an Interrupt and Bulk
transfer have a minimum of three packets, a control transfer has nine, or more, with a data stage
and six or more without a data stage.

4.6.5 Transfer Composition

A USB packet has the structure as shown in Figure 4.19. A total of five fields can be populated,
four of which are optional, and one is required.

Figure 4.19: USB Packet contents.

Packet ID (PID) (8 bits: 4 type bits and 4 check bits)
Optional Device Address (7 bits: Max of 127 devices)
Optional Endpoint Address (4 bits: Max of 16 endpoints)
Optional Payload Data (0 to 1023 bytes)
Optional CRC (5 or 16 bits)

The Packet ID is the only required field in a packet. The Device Address, Endpoint Address,
Payload Data, and CRC are filled depending on which packet type is sent. Packet IDs (PID)

c©Copyright 2012 Cypress Semiconductor

262 CHAPTER 4. COMMUNICATION PERIPHERALS

are the heart of a USB packet. There are different PIDs depending on which packet is sent (see
Table 1).

4.6.6 Packet Types

There are four different packet types, as shown in Figure 24. that can potentially represent.

• Token packets

– Initiate a transaction.

– Identify the device involved in transaction.

– Are always sourced by the host.

• Data packets

– Delivers payload data.

– Are sourced by host or device.

• Handshake packets

– Acknowledge error-free data receipt.

– Are sourced by receiver of data.

• Special packets

– Facilitates speed differentials.

– Are sourced by host-to-hub devices.

Although everything in the packet, with the exception of the PID is optional, token, data, and
handshake packets have different combinations of the packet information.

Token packets always come from the host, and are used to direct traffic on the bus. The function
of the token packet depends on the activity performed, e.g., IN tokens are used to request that
devices send data to the host and OUT tokens are used to precede data from the host. SETUP
tokens are used to precede commands from the host and SOF tokens are used to mark time
frames. With an IN, OUT, and SETUP token packet, there is a 7-bit device address, 4-bit
endpoint ID, and 5-bit CRC.

The SOF gives a way for devices to identify the beginning of a frame and synchronize with
the host. They are also used to prevent a device from entering suspend mode, which it must
do if 3 milliseconds pass without an SOF. SOF packets are only found on full and high speed
devices and are sent every millisecond. The SOF packet contains an 8-bit SOF PID, 11-bit frame
count value (which rolls over when it reaches maximum value), and a 5-bit CRC. The CRC is
the only error check used. A handshake packet does not occur for a SOF packet. High-speed
communication goes a step further with microframes. With a high-speed device, a SOF is sent
out every 125μs and frame count is only incremented every 1 ms.

Data packets follow IN, OUT, and SETUP token packets. The size of the payload data ranges
from 0 to 1024 bytes, depending on the transfer type. The packet ID toggles between DATA0 and
DATA1 for each successful data packet transfer, and the packet closes with a 16-bit CRC. The
data toggle is updated at the host, and the device for each successful data packet transfer. One
advantage to the data toggle is that it acts as additional error detection method. If a different
packet ID is received than what is expected, the device will be able to know there was an error in
the transfer and it can be handled appropriately. If an ACK is sent, but not received, the sender
updates the data toggle from 1 to 0, but the receiver does not, and the data toggle remains at 1.

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 263

Handshake packets conclude each transaction. Each handshake includes an 8-bit packet ID and
is sent by the receiver of the transaction. Each USB speed has several options for a handshake
response.

The handshakes supported depend on the USB Speed:

• ACK is an acknowledgement of successful completion. (LS/FS/HS)

• NAK is a negative acknowledgement. (LS/FS/HS)

• STALL is an error indication sent by a device. (LS/FS/HS)

• NYET indicates the device is not ready to receive another data packet. (HS Only)

4.6.7 Transaction Types

Data from the host, and the device, are transferred from point A to point B, via transactions..
IN/Read/Upstream Transactions are terms that refer to a transaction that is sent from the device
to the host. These transactions are initiated when the host by sends an IN token packet . The
targeted device responds by sending one or more data packets, and the host responds with a
handshake packet .

IN /Read/Upstream Special Packets are defined by the USB specification:

• PRE is issued to hubs by the host to indicate that the next packet is low speed.

• SPLIT precedes a token packet to indicate a split transaction. (HS Only)

• ERR is returned by a hub to report an error in a split transaction. (HS Only)

• PING checks the status for a Bulk OUT or Control Write after receiving a NYET handshake.
(HS Only)

4.6.8 USB Descriptors

As described earlier, when a device is connected to a USB host, the device gives information to the
host about its capabilities and power requirements. The device typically gives this information
via a descriptor table that is part of its firmware. A descriptor table is a structured sequence of
values that describe the device, and whose values are defined by the developer.

All descriptor tables contain a standard set of information that describes the device attributes
and power requirements. If a design conforms to the requirement of a particular USB device class,
additional descriptor information that the class must have is included in the device descriptor
structure. When reading or creating descriptors, it is important to assure that the data fields are
transmitted with the least significant bit first. Many parameters are 2 bytes long with the low
byte occurring first and followed by the high byte.

Device descriptors provide the host with USB specification to which the device conforms, the
number of device configurations, and protocols supported by the device, Vendor Identification74,
Product Identification (also known as a PID, different from a packet ID), and a serial number,
if the device has one. The Device Descriptor contains the crucial information about the USB
device.

Table 4.8 shows the structure for a device descriptor given that:

bLength is the total length, in bytes, of the device descriptor,

74(also known as a VID, which is something that each company gets uniquely from the USB Implementers
Forum)

c©Copyright 2012 Cypress Semiconductor

264 CHAPTER 4. COMMUNICATION PERIPHERALS

Table 4.8: Device Descriptor Table.

bcdUSB reports the USB revision that the device supports, which should be latest supported
revision. This is a binary-coded decimal value that uses a format of 0xAABC, where A is the
major version number, B is the minor version number, and C is the sub-minor version number.
For example, a USB 2.0 device would have a value of 0x0200 and USB 1.1 would have a value of
0x0110. This is normally used by the host in determining which driver to load,

bDeviceClass,bDeviceSubClass, andbDeviceProtocol are used by the operating system to identify
a driver for a USB device during the enumeration process. Filling in this field in the device de-
scriptor prevents different interfaces from functioning independently, such as a composite device.
Most USB devices define their class(es) in the interface descriptor, and leave these fields as 00h,

bMaxPacketSize reports the maximum number of packets supported by Endpoint zero. Depending
on the device, the possible sizes are 8 bytes, 16 bytes, 32 bytes, and 64 bytes,

iManufacturer, iProduct, and iSerialNumber are indexes to string descriptors. String descriptors
give details about the manufacturer, product, and serial number. If string descriptors exist, these
variables should point to their index location. If no string exists, then the respective field should
be assigned a value of zero,

and,

c©Copyright 2012 Cypress Semiconductor

4.6. UNIVERSAL SERIAL BUS (USB) BASICS 265

bNumConfigurations defines the total number of configurations the device can support. Mul-
tiple configurations allow the device to be configured differently depending on certain conditions,
such as being bus-powered, or self-powered.

Figure 4.20: USB Descriptor Tree.

4.6.9 Configuration Descriptor

This descriptor gives information about a specific device configuration, e.g., the number of inter-
faces, whether the device is bus-powered or self-powered, if the device can start a remote wake-up,
and how much power the device needs. Table 4.9 shows the structure for a configuration descrip-
tor.

Table 4.9: Configuration Descriptor Type.

c©Copyright 2012 Cypress Semiconductor

266 CHAPTER 4. COMMUNICATION PERIPHERALS

wTotalLength is the length of the entire hierarchy of this configuration. This value reports
the total number of bytes of the configuration, interface, and endpoint descriptors for one con-
figuration.

bNumInterfaces defines the total number of possible interfaces in this particular configuration.
This field has a minimum value of 1.

bConfigurationValue defines a value to use as an argument to the SET_CONFIGURATION
request to select this configuration.

bmAttributes defines parameters for the USB device. If the device is bus-powered, bit 6 is
set to 0, if the device is self-powered, then bit 6 is set to 1. If the USB device supports remote
wakeup, bit 5 is set to 1. If remote wakeup is not supported, bit 5 is set to 0.

bMaxPower defines the maximum power consumption drawn from the bus when the device
is fully operational, expressed in 2 mA units. If a self-powered device becomes detached from its
external power source, it may not draw more than the value indicated in this field.

4.6.10 Device Descriptor

Device descriptors give the host information, such as the USB specification to which the device
conforms, the number of device configurations, and protocols supported by the device, Vendor
Identification75, Product Identification76, and a serial number, if the device has one. The Device
Descriptor contains of the most crucial information about the USB device. Table 4.9 shows the
structure for a device descriptor.

4.7 Full Speed USB (USBFS)

PSoC Creator’s USBFS component provides a USB, full-speed, Chapter 9 compliant device,
framework.77 It provides a low-level driver for the control endpoint that decodes and dispatches
requests from the USB host. Additionally, this component provides a USBFS customizer to make
it easy to construct the appropriate descriptor. The option of constructing a HID-based device
or a generic USB Device is also provided. In PSoC Creator, HID can be selected by setting the
Configuration/Interface descriptors. The USBFS component can be used to provide an interface
that is USB 2.0 compliant.

USB transmissions are based on one of several types of transfer, viz., bulk, control, inter-
rupt and isochronous, depending on the application. While the formal USB specification defines
specific commands that may be required for a USB device to receive and respond to USB trans-
mission, it is also possible for the designer to introduce custom commands78. Reliable data
transmission schemes often rely on data integrity algorithms to detect, and perhaps correct, er-
rors and/or generate an error signal. Handshaking schemes provide feedback to the transmitter
to indicate whether or not data integrity has been preserved, and thereby allow retransmission
of data to be employed in the event of errors in transmission. The start-of-frame (sof) output
for the component allows endpoints to identify the start of the frame and synchronize internal
endpoint clocks to the host.

75Also known as a VID, which is something that each company gets uniquely from the USB Implementers
Forum)

76Referred to as as a PID, and it is different from a packet ID.
77SuiteUSB, a set of USB development tools, is available free of charge when used with Cypress silicon.

http://www.cypress.com.
78Such custom commands, e.g., introduced to provide control of a specific type of device, are often referred to

as vendor commands.

c©Copyright 2012 Cypress Semiconductor

4.7. FULL SPEED USB (USBFS) 267

4.7.1 Endpoint Memory Management

The USBFS block contains 512 bytes of target memory for the data endpoints to use. However,
the architecture supports a cut-through mode of operation, referred to as DMA w/Automatic
Memory Management, that reduces the memory requirement, based on system performance.
Some applications can benefit from using Direct Memory Access (DMA) to move data into and
out of the endpoint memory buffers.

• Manual (default) Select this option to use LoadInEP/ReadOutEP to load and unload the
endpoint buffers.

– Static Allocation - The memory for the endpoints is allocated immediately after a
SET_CONFIGURATION request. This takes longest when multiple Alternate set-
tings use the same endpoint (EP) number.

– Dynamic Allocation - The memory for the endpoints is allocated dynamically after each
SET_CONFIGURATION and SET_INTERFACE request. This option is useful when
multiple alternate settings are used with mutually exclusive EP settings.

– DMA w/Manual Memory Management79 - Select this option for manual DMA transac-
tions. TheLoadInEP/ReadOutEP functions fully support this mode and initialize the
DMA automatically.80

– DMA w/Automatic Memory Management - Select this option for automatic DMA trans-
actions. This is the only configuration that supports combined data endpoint use of
more than 512 bytes. LoadInEP/ReadOutEP functions should be used for initial DMA
configuration.

Figure 4.21: PSoC3/5’s Midi component

4.7.2 Enabling VBUS Monitoring

USB signals are transmitted via a USB cable consisting of a twisted pair that has a characteristic
impedance of 90 ohms, a shield that functions as a ground return and power connections D+ and
D−. The protocol assumes that there are no more than 127 devices81 connected at any one time,

79PSoC3 does not support DMA transactions directly between USB endpoints and other peripherals. All DMA
transactions involving USB endpoints, both in and out, must terminate, or originate, with main system memory.
Applications requiring DMA transactions directly between USB endpoints, and other peripherals, must use two
DMA transactions to move data to main system memory as an intermediate step between the USB endpoint and
the other peripheral.

80This option is supported for PSoC 3 Production silicon only.
81This limitation is a result, in part, of the fact that the address field is 7 bits and that address zero is reserved.

c©Copyright 2012 Cypress Semiconductor

268 CHAPTER 4. COMMUNICATION PERIPHERALS

in a tiered-star topology. The maximum allowable cable length between hubs is 5 meters, and
no more than six hubs are supported, for a maximum of thirty meters. The USB specification
requires that no device supplies current on VBUS at its upstream facing port at any time. To
meet this requirement, the device must monitor for the presence, or absence, of VBUS and remove
power from the D+/D- pull-up resistor, if VBUS is absent. For bus-powered designs, power will
obviously be removed when the USB cable is removed from a host but, for self-powered designs,
it is imperative for proper operation, and USB certification, that the device comply with this
requirement.

4.7.2.1 USBFS MIDI

The USBFS MIDI component, shown in Figure 4.21, provides support for communicating with
external MIDI equipment and for the USB device class definition for MIDI devices. This com-
ponent can be used to add MIDI I/O capability to a standalone device, or to implement MIDI
capability for a host computer, or mobile device, through a computer’s, or mobile device’s, USB
port. In such cases, it appears to the host computer, or mobile device, as a class-compliant USB
MIDI device, and it uses the native MIDI drivers in the host.

The supported features include:

• USB MIDI Class Compliant MIDI input and output.

• Hardware interfacing to external MIDI equipment using UART.

• Adjustable transmit and receive buffers managed using interrupts.

• MIDI running status for both receive and transmit functions.

• Up to 16 input, and output, ports using only two USB endpoints by using virtual cables.

The PSoC Creator Component catalog contains a Schematic Macro implementation of a
MIDI82 interface. The macro consists of instances of the UART component with the hard-
ware MIDI interface configuration (31.25 kbps, 8 data bits) and a USBFS component with the
descriptors configured to support MIDI devices. This allows the user to employ a MIDI-enabled,
USBFS component with minimal configuration changes. A USBMIDI Schematic Macro labeled
USBMIDI is available in PSoC Creator that has been previously configured to function as an
external mode MIDI device with 1 input and 1 output.

4.7.3 USB Function Calls

PSoC Creator provides an extensive list of USB function calls and, by default, assigns the instance
name USBFS_1 to the first instance of a component in a given design. However, such instance
names can be renamed to any unique value that follows the syntactic rules for identifiers. In
any event, the instance name becomes the prefix of every global function name, variable, and
constant symbol.

For readability, the instance name used in the following is USBFS.

• void USBFS_Start(uint8 device, uint8 mode) performs all required initialization for the
USBFS Component.

82The musical instrument digital interface (MIDI), defined by the MIDI Manufacturing Association in 1982, is
an industry standard protocol for intercommunication between a wide variety of music related devices. It serves
as a software, hardware, communication and instrument categorization standard and is often employed to allow
one instrument to control an arbitrary number of other musical instruments, or music-related equipment.

c©Copyright 2012 Cypress Semiconductor

4.7. FULL SPEED USB (USBFS) 269

• void USBFS_Init(void) initializes, or restores, the component according to the customizer
Configure dialog settings.83

• void USBFS_InitComponent(uint8 device, uint8 mode) initializes the component’s global
variables and initiates communication with the host by pulling up the D+ line.

• void USBFS_Stop(void) performs all necessary shutdown tasks required for the USBFS
component.

• uint8 USBFS_GetConfiguration(void) gets the current configuration of the USB device.

• uint8 USBFS_IsConfigurationChanged(void) returns the clear-on-read configuration state.
It is useful when the PC sends double SET_CONFIGURATION requests with the same
configuration number.

• uint8 USBFS_GetInterfacuint8 USBFS_GetEPState(uint8 epNumber) returns the state of
the requested endpoint.

• uint8 USBFS_GetInterfaceSetting(uint8 interfaceNumber) gets the current alternate setting
for the specified interface.

• uint8 USBFS_GetEPState(uint8 epNumber) returns the state of the requested endpoint.

• uint8 USBFS_GetEPAckState(uint8 epNumber) determines whether or not an ACK trans-
action occurred on this endpoint by reading the ACK bit in the control register of the
endpoint.84

• uint16 USBFS_GetEPCount(uint8 epNumber) returns the transfer count for the requested
endpoint. The value from the count registers includes two counts for the two-byte checksum
of the packet. This function subtracts the two counts.

• void USBFS_InitEP_DMA(uint8 epNumber, uint8 *pData)85 allocates and initializes a
DMA channel to be used by the USBFS_LoadInEP() or USBFS_ReadOutEP() APIs for
data transfer. It is available when the Endpoint Memory Management parameter is set to
DMA.

• void USBFS_LoadInEP(uint8 epNumber, uint8 *pData, uint16 length) in manual mode:
loads and enables the specified USB data endpoint for an IN data transfer.
Manual DMA:

– Configures DMA for a transfer data from data RAM to endpoint RAM.
– Generates request for a transfer.

Automatic DMA:

– Configures DMA. This is required only once, therefore it is done only when parameter
Data is not NULL. When pData pointer is NULL, the function skips this task.

– Sets Data ready status: This generates the first DMA transfer and prepares data in
endpoint RAM memory.

• uint16 USBFS_ReadOutEP(uint8 epNumber, uint8 *pData, uint16 length) in manual mode
moves the specified number of bytes from endpoint RAM to data RAM. The number of bytes
actually transferred from endpoint RAM, to data RAM, is the lesser of the actual number
of bytes sent by the host, or the number of bytes requested by the wCount parameter.

Manual DMA:

– Configures DMA for a transfer data from endpoint RAM to data RAM.

83It is not necessary to call USBFS_Init() because the USBFS_Start() routine calls this function and is the
preferred method to begin component operation.

84This function does not clear the ACK bit.
85This function is automatically called from the USBFS_LoadInEP() and USBFS_ReadOutEP() APIs.

c©Copyright 2012 Cypress Semiconductor

270 CHAPTER 4. COMMUNICATION PERIPHERALS

– Generates request for a transfer.
– After USB_ReadOutEP()API and before expected data usage it is required to wait on
DMA transfer complete. For example by checking EPstate:
while (USBFS_GetEPState(OUT_EP) == USB_OUT_BUFFER_FULL);

Automatic DMA:

– Configures DMA.86

• void USBFS_EnableOutEP(uint8 epNumber) enables the specified endpoint for OUT trans-
fers.

• void USBFS_DisableOutEP(uint8 epNumber) disables the specified USBFS OUT endpoint.87

• void USBFS_SetPowerStatus(uint8 powerStatus) sets the current power status. The device
replies to USB GET_STATUS requests based on this value. This allows the device to
properly report its status for USB Chapter 9 compliance. Devices can change their power
source from self-powered to bus-powered, at any time, and report their current power source
as part of the device status. This function can be called any time the device changes from
self-powered to bus-powered, or vice versa, and set the status appropriately.

• void USBFS_Force(uint8 state) forces a USB J, K, or SE0 state on the D+/D- lines. This
function provides the necessary mechanism for a USB device application to perform a USB
Remote Wakeup.88

• void USBFS_SerialNumString(uint8 *snString) is available only when the User Call Back
option in the Serial Number String descriptor properties is selected. Application firmware
can provide the source of the USB device serial number string descriptor during runtime.
The default string is used if the application firmware does not use this function or sets the
wrong string descriptor.

• void USBFS_TerminateEP(uint8 epNumber)89 terminates the specified USBFS endpoint.

• uint8 USBFS_UpdateHIDTimer(uint8 interface) updates the HID Report idle timer and
returns the status and reloads the timer, if it expires.

• uint8 USBFS_GetProtocol(uint8 interface) returns the HID protocol value for the selected
interface.

4.8 Controller Area Network (CAN)

The Controller Area Network (CAN) controller implements the CAN2.0A and CAN2.0B specifi-
cations as defined in the Bosch specification and conforms to the ISO-11898-1 standard. The CAN
protocol was originally designed for automotive applications with a focus on a high level of fault
detection thereby ensuring high communication reliability at a low cost. Because of its success in
automotive applications, CAN is used as a standard communication protocol for motion-oriented,
machine-control networks (CANOpen) and factory automation applications (DeviceNet). The
CAN controller features make it possible to efficiently implement higher-level protocols, without
adversely affecting the performance of the microcontroller CPU.

CAN is an arbitration-free system in that the highest priority message is always transmitted
first. The transmit buffer arbitration scheme employed can be either round-robin , the default
mode, or fixed priority . In the round-robin mode, buffers are served in the following order:

86This is required only once.
87Do not call this function for IN endpoints.
88For more information, refer to the USB 2.0 Specification for details on Suspend and Resume.
89This function should be used before endpoint reconfiguration.

c©Copyright 2012 Cypress Semiconductor

4.8. CONTROLLER AREA NETWORK (CAN) 271

0 − 1 − 2 ∙ ∙ ∙ 7 − 0 − 1.90 In the fixed priority mode, buffer zero is assigned the highest priority
which allows it to be the error message buffer thereby assuring that error messages are transmitted
first.

4.8.1 PSoC Creator’s CAN Component

This component has three standard I/O connections, and a fourth, optional, interrupt connec-
tion91, as shown in Figure 4.22.

Figure 4.22: PSoC Creator’s CAN component.

• rx is the CAN bus receive (input) signal and is connected to the CAN Rx bus which is
external to the transceiver.

• tx is the CAN bus transmit signal and is connected to the CAN Tx bus of the external
transceiver.

• tx_en is the external transceiver enable signal.

The default CAN configuration in the Component Catalog is a schematic macro using a CAN
component with default settings, and is connected to an Input and an Output Pins component.
The Pins components are also configured with default settings, except that Input Synchronized
is set to false in the Input Pin component.

4.8.2 Interrupt Service Routines

There are several CAN component interrupt sources, all of which have entry points (functions)
that allow user code to be placed in them.92

• Acknowledge Error - The CAN controller detected a CAN message acknowledge error.

• Arbitration Lost Detection - The arbitration was lost while sending a message.

• Bit Error - The CAN controller detected a bit error.

• Bit Stuff Error - The CAN controller detected a bit stuffing93 error.

• Bus Off - The CAN controller has reached the bus-off state

• CRC Error - The CAN controller detected a CAN CRC error.

• Form Error - The CAN controller detected a CAN message format error.

• Message Lost - A new message arrived, but there was nowhere to put it.

• Transmit Message - The queued message was sent.

• Receive Message - A message was received.94

90This mode assures that all buffers have the same probability of sending a message.
91This output is displayed in PSoC Creator only when the Add Transceiver Enable Signal option has been

selected in the Config dialog.
92These functions are conditionally compiled, depending on the customizer.
93Bit stuffing refers to the introduction of of "non-information" bits into frames, buffers, etc., for the purpose

of filling them.
94The Receive Message interrupt has a special handler that calls appropriate functions for Full and Basic

mailboxes.

c©Copyright 2012 Cypress Semiconductor

272 CHAPTER 4. COMMUNICATION PERIPHERALS

4.8.3 Hardware Control of Logic on Interrupt Events

The hardware interrupt input can be used to perform simple tasks such as estimating the CAN
bus load. By enabling the Message Transmitted and Message Received interrupts in the CAN
component customizer, and connecting the interrupt line to a counter, the number of messages
that are on the bus during a specific time interval can be evaluated. Actions can be taken directly
in hardware if the message rate is above a certain value.

4.8.4 Interrupt Output Interaction with DMA

PSoC Creator’s CAN component does not support DMA operation internally, but the DMA
component can be connected to the external interrupt line, if it is enabled and provided that
the designer assumes responsibility for the DMA configuration and operation. However, it is
necessary to manage some housekeeping tasks, e.g., acknowledging the message and clearing the
interrupt flags, in code to handle CAN interrupts properly. With a hardware DMA trigger,
registers and data transfers can be handled when a Message Received interrupt occurs, without
any firmware executing in the CPU. 95 The Message Transmitted interrupt can be used to trigger
a DMA transfer to reload the message buffer with new data, without CPU intervention.

4.8.5 Custom External Interrupt Service Routine

Custom external ISRs can be used in addition to, or as a replacement for, the internal ISR. When
both external and internal ISRs nare used, the Interrupt priority can be set to determine which
ISR should execute first, i.e., internal or external, thus forcing actions before, or after, those
coded in the internal ISR. When the external ISR is used, as replacement for the internal ISR,
the designer is responsible for proper handling of CAN registers and events.

The external interrupt line is visible only if it is enabled in the customizer. If an external
Interrupt component is connected, the external Interrupt component is not started as part of the
CAN_Start() API, and must be started outside that routine. If an external Interrupt component
is connected and the internal ISR is not disabled or bypassed, two Interrupt components are
connected to the same line. In this case, there will be two separate Interrupt components that
will handle the same interrupt events which in most cases is undesirable.

If the internal ISR is disabled, or bypassed using a customizer option, the internal Interrupt
component will be removed during the build process. If individual interrupt function call is
disabled in the internal interrupt routine, for an enabled interrupt event by using a customizer
option, the CAN block interrupt triggers, when the relevant event occurs, but no internal function
call is executed in the internal CAN_ISR routine. If a specific event needs to be handled, e.g.,
message received, through a different path, other than the standard user function call, through
DMA. If the internal ISR is to be customized, using customizer options, the CAN_ISRfunction
will not contain any function call other than the optional PSoC 3 ES1/ES2 ISR patch.

There are several important references that should be consulted when designing systems that
involving controller area networks, viz.,

• ISO-11898: Road vehicles – Controller area network (CAN):

– Part 1: Data link layer and physical signaling

– Part 2: High-speed medium access unit Controller Area Network (CAN)

– Part 3: Low-speed, fault-tolerant, medium-dependent interface

– Part 4: Time-triggered communication

95This is also useful when handling RTR messages.

c©Copyright 2012 Cypress Semiconductor

4.8. CONTROLLER AREA NETWORK (CAN) 273

– Part 5: High-speed medium access unit with low-power mode

• CAN Specification Version 2 BOSCH

• Inicore CANmodule-III-AHB Datasheet

4.8.6 Interrupt Output Interaction with the Interrupt Subsystem

The CAN component Interrupt Output settings allow:

• Enabling or disabling of an external interrupt line (customizer option)

• Disabling or bypassing the internal ISR (customizer option)

• Full customization of the internal ISR (customizer option)

• Enabling, or disabling, of specific interrupts handling function calls in the internal ISR,
when the relevant event interrupts are enabled using the customizer option. Individual
interrupts, e.g., message transmitted, message received, receive buffer full, bus off state,etc.,
can be enabled, or disabled, in the CAN component customizer. Once enabled, the relevant
function call is executed in the internal CAN_ISR. This allows disabling, i.e., removing, of
such function calls.

The external interrupt line is visible only if it is enabled in the customizer.

• uint8 CAN_Start(void) sets the initVar variable, calls the CAN_Init() function, and then
calls the CAN_Enable() function. This function sets the CAN component into run mode
and starts the counter, if polling mailboxes available.

• uint8 CAN_Stop(void) sets the CAN component into Stop mode and stops the counter, if
polling mailboxes available.

• uint8 CAN_GlobalIntEnable(void) enables global interrupts from the CAN component.

• uint8 CAN_GlobalIntDisable(void) disables global interrupts from the CAN component.

• uint8 CAN_SetPreScaler(uint16 bitrate) sets the prescaler for generation of the time quanta
from the BUS_CLK. Values between 0x0, and 0x7FFF, are valid.

• uint8 CAN_SetArbiter(uint8 arbiter) sets the arbitration type for transmit buffers. Types
of arbiters are Round Robin and Fixed priority. Values 0 and 1 are valid.

• uint8 CAN_SetTsegSample(uint8 cfgTseg1, uint8 cfgTseg2, uint8 sjw, uint8 sm) this func-
tion configures: Time segment 1, Time segment 2 , Synchronization Jump Width, and Sam-
pling Mode.

• uint8 CAN_SetRestartType(uint8 reset) sets the reset type. Types of reset are Automatic
and Manual. Manual reset is the recommended setting. Values 0 and 1 are valid.

• uint8 CAN_SetEdgeMode(uint8 edge) sets Edge Mode. Modes are ’R’ to ’D’ (Recessive to
Dominant) and Both edges are used. Values 0 and 1 are valid.

• uint8 CAN_RXRegisterInit(uint32 *regAddr, uint32 config) writes CAN receive registers
only.

• uint8 CAN_SetOpMode(uint8 opMode) sets Operation Mode . Operation modes are Active
or Listen Only. Values 0 and 1 are valid.

• uint8 CAN_GetTXErrorflag(void) returns the flag that indicates whether or not the number
of transmit errors exceeds 0x60.

• uint8 CAN_GetRXErrorflag(void) returns the flag that indicates whether or not the number
of receive errors has exceeded 0x60.

c©Copyright 2012 Cypress Semiconductor

274 CHAPTER 4. COMMUNICATION PERIPHERALS

• uint8 CAN_GetTXErrorCount(void) returns the number of transmit errors.

• uint8 CAN_GetRXErrorCount(void) returns the number of receive errors.

• uint8 CAN_GetRXErrorCount(void) returns the number of receive errors.

• uint8 CAN_GetErrorState(void) returns the error status of the CAN component.

• uint8 CAN_SetIrqMask(uint16 mask) enables, or disables, particular interrupt sources. In-
terrupt Mask directly writes to the CAN Interrupt Enable register.

• void CAN_ArbLostIsr(void) is the entry point to the Arbitration Lost Interrupt. It clears
the Arbitration Lost interrupt flag. It is only generated, if the Arbitration Lost Interrupt
parameter is enabled.

• void CAN_OvrLdErrrorIsr(void) is the entry point to the Overload Error Interrupt. It
clears the Overload Error interrupt flag. It is only generated, if the Overload Error Interrupt
parameter is enabled.

• void CAN_BitErrorIsr(void) is the entry point to the Bit Error Interrupt. It clears Bit
Error Interrupt flag. It is only generated, if the Bit Error Interrupt parameter is enabled.

• void CAN_BitStuffErrorIsr(void) is the entry point to the Bit Stuff Error Interrupt. It
clears the Bit Stuff Error Interrupt flag. It is only generated, if the Bit Stuff Error Interrupt
parameter is enabled.

• void CAN_AckErrorIsr(void) is the entry point to the Acknowledge Error Interrupt. It
clears the Acknowledge Error interrupt flag and is only generated, if the Acknowledge Error
Interrupt parameter is enabled.

• void CAN_MsgErrorIsr(void) is the entry point to the Form Error Interrupt. It clears the
Form Error interrupt flag. It is only generated, if the Form Error Interrupt parameter is
enabled.

• void CAN_CrcErrorIsr(void) is the entry point to the CRC Error Interrupt. It clears the
CRC Error interrupt flag. It is only generated, if the CRC Error Interrupt parameter is
enabled.

• void CAN_BusOffIsr(void) is the entry point to the Bus Off Interrupt. It puts the CAN
component in Stop mode. It is only generated, if the Bus Off Interrupt parameter is enabled.
Enabling this interrupt is recommended.

• void CAN_MsgLostIsr(void) is the entry point to the Message Lost Interrupt. It clears the
Message Lost Interrupt flag. It is only generated, if the Message Lost Interrupt parameter
is enabled.

• void CAN_MsgTXIsr(void) is the entry point to the Transmit Message Interrupt. It clears
the Transmit Message Interrupt flag. It is only generated, if the Transmit Message Interrupt
parameter is enabled.

• void CAN_MsgRXIsr(void) is the entry point to the Receive Message Interrupt. It clears
the Receive Message Interrupt flag and calls the appropriate handlers for Basic and Full
interrupt-based mailboxes. It is only generated, if the Receive Message Interrupt parameter
is enabled. Enabling this interrupt is recommended.

• uint8 CAN_RxBufConfig(CAN_RX_CFG *rxConfig) function configures all receive reg-
isters for a particular mailbox. The mailbox number contains CAN_RX_CFG structure.

• uint8 CAN_TxBufConfig(CAN_TX_CFG *txConfig) configures all transmit registers for
a particular mailbox. The mailbox number contains CAN_TX_CFG structure.

• uint8 CAN_SendMsg(CANTXMsg *message) sends a message from one of the Basic mail-
boxes. The function loops through the transmit message buffer designed as Basic CAN
mailboxes. It looks for the first free available mailbox and sends from it. There can only be
three retries.

c©Copyright 2012 Cypress Semiconductor

4.9. S/PDIF TRANSMITTER (SPDIF_TX) 275

• uint8 CAN_SendMsg0-7(void) are the entry point to Transmit Message 0-7. This function
checks if mailbox 0-7 already has untransmitted messages waiting for arbitration. If so, it
initiates transmission of the message. It is only generated for Transmit mailboxes designed
as Full.

• void CAN_TxCancel(uint8 bufferld) cancels transmission of a message that has been queued
for transmission. Values between 0 and 15 are valid.

• void CAN_ReceiveMsg0-15(void) are the entry point to the Receive Message 0-15 Interrupt.
They clear Receive Message 0 - 15 interrupt flags. They are only generated for Receive
mailboxes designed as Full interrupt based.

• void CAN_ReceiveMsg(uint8 rxMailbox) is the entry point to the Receive Message Interrupt
for Basic mailboxes. It clears the Receive particular Message interrupt flag. It is only
generated, if one of the Receive mailboxes is designed as Basic.

• void CAN_Sleep(void) is the preferred routine to prepare the component for sleep. The
CAN_Sleep() routine saves the current component state. Then it calls the CAN_Stop()
function and calls CAN_SaveConfig() to save the hardware configuration. The

CAN_Sleep() function must be called before calling the CyPmSleep() or the CyPmHiber-
nate() function.

• void CAN_Wakeup(void) is the preferred routine to restore the component to the state when
CAN_Sleep() was called. The CAN_Wakeup() function calls the CAN_RestoreConfig()
function to restore the configuration. If the component was enabled before the CAN_Sleep()
function was called, the CAN_Wakeup() function will also re-enable the component.

• uint8 CAN_Init(void) initializes, or restores, the component according to the customizer
Configure dialog settings. It is not necessary to call CAN_Init() because the CAN_Start()
routine calls this function and is the preferred method to begin component operation.

• uint8 CAN_Enable(void) activates the hardware and begins component operation. It is
not necessary to call CAN_Enable() because the CAN_Start() routine calls this function,
which is the preferred method to begin component operation.

• void CAN_SaveConfig(void) saves the component configuration and nonretention registers.
This function also saves the current component parameter values, as defined in the Configure
dialog or as modified by appropriate APIs. This function is called by the CAN_Sleep()
function.

• void CAN_RestoreConfig(void) restores the component configuration and nonretention reg-
isters. This function also restores the component parameter values to what they were prior
to calling the CAN_Sleep() function.

4.9 S/PDIF Transmitter (SPDIF_Tx)

PSoC3/5’s SPDIF_Tx component96 provides a simple way to add digital audio output to any
design97. It formats incoming audio- and meta-data to create a S/PDIF bit stream appropriate
for optical, or coaxial, digital audio. This component, shown in Figure 4.23, supports inter-
leaved and separated audio. The SPDIF_Tx component receives audio data from DMA, as
well as, channel status information. Although the channel status DMA will be managed by the
component, alteratively, this data can be handled separately to better control a given system.

96This component can be used in conjunction with an I2S component and external ADC to convert from analog
audio to digital audio.

97S/PDIF refers to the Sony Philips digital interface data link layer protocol and an associated physical layer
specification. This protocol is often used to transfer compressed digital audio and has no defined data data rate.

c©Copyright 2012 Cypress Semiconductor

276 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.23: PSoC3/5’s S/PDIF transmitter component.

SPDIF_Tx provides a fast solution whenever an S/PDIF transmitter is essential, including, e.g.,
digital audio players, computer audio interfaces and audio mastering equipment.

The supported features of the SPDIF_Tx include:

• conforming to IEC-60958, AES/EBU, AES3 standards for Linear PCM Audio Transmission,

• configurable audio sample lengths (8/16/24),

• or channel status bits generator for consumer applications,

• DMA support,

• sample rate support for clock/128 (up to 192 kHz),

and,

• independent left and right channel FIFOs, or interleaved stereo FIFOs.

4.9.1 SPDIF_Tx component I/O Connections98

The following are the available I/O connections for PSoC3/5’s SPDIF_Tx component:

clock - The clock rate must be two times the desired data rate for the spdif output, e.g., production
of 48-kHz audio, would require a clock frequency given by:

(2)(48kHz)(64) = 6.144MHz (4.1)

spdif - Serial data output.

sck - Serial clock output.

interrupt - Interrupt output.

tx_DMA0 - DMA request output for audio FIFO 0 (Channel 0 or Interleaved).

tx_DMA1 - DMA request for audio FIFO 1 (Channel 1) output. Displays, if Separated under
the Audio Mode parameter is selected.

cst_DMA0* - Request for channel status FIFO 0 (Channel 0) output. Displays, if the checkbox
under the Managed DMA parameter is deselected.

cst_DMA1* - Request for channel status FIFO 1 (Channel 1) output. Displays, if the checkbox
under the Managed DMA parameter is deselected.

98An asterisk (*) in the list of indicates that the I/O may be hidden on the symbol under the conditions listed
in the description of that I/O.

c©Copyright 2012 Cypress Semiconductor

4.9. S/PDIF TRANSMITTER (SPDIF_TX) 277

4.9.2 SPDIF_Tx API

The SPDIF_Tx API supports the following functions:

void SPDIF_Start(void) starts the S/PDIF interface, and the channel status DMA, if the
component is configured to handle the channel status DMA. It also enables the Active mode
power template bits, or clock gating as appropriate, starts the generation of the S/PDIF output
with channel status, but the audio data is set to all 0s. It also allows the S/PDIF receiver to
lock on to the component’s clock.

void SPDIF_Stop(void) disables the S/PDIF interface and the active mode power template bits
or clock gating, as appropriate. The S/PDIF output is set to 0. The audio data and channel
data FIFOs are cleared. The SPDIF_Stop() function calls SPDIF_DisableTx() and stops the
managed channel status DMA.

void SPDIF_Sleep(void) is the preferred routine to prepare the component for sleep.99 The
SPDIF_Sleep() routine saves the current component state and then calls SPDIF_Stop() and
SPDIF_SaveConfig() saves the hardware configuration, disables the active mode power template
bits, or clock gating, as appropriate, sets the spdif output to 0. SPDIF_Sleep() should be called
CyPmSleep() or CyPmHibernate() are called.

void SPDIF_Wakeup(void) restores the SPDIF configuration and nonretention register values.
The component is stopped, regardless of its state before sleep. The SPDIF_Start() function
must be called explicitly to start the component again.100

void SPDIF_EnableTx(void) enables the audio data output in the S/PDIF bit stream. Trans-
mission will begin at the next X, or Z, frame.

void SPDIF_DisableTx(void) disables the audio output in the S/PDIF bit stream. Transmission
of data will stop at the next rising edge of clock and a constant 0 value will be transmitted.

void SPDIF_WriteTxByte(uint8 wrData, uint8 channelSelect) writes a single byte into the audio
data FIFO. The component status should be checked before this call to confirm that the audio
data FIFO is not full. uint8 wrData contains the audio data to transmit. uint8 channelSelect
contains the constant for Channel to write. See channel status macros below. In the interleaved
mode this parameter is ignored.

void SPDIF_WriteCstByte(uint8 wrData, uint8 channelSelect) writes a single byte into the spec-
ified channel status FIFO. The component status should be checked before this call to confirm
that the channel status FIFO is not full. uint8 wrData contains the status data to transmit and
uint8 channelSelect the constant for the Channel to be written to.

void SPDIF_SetInterruptMode(uint8 interruptSource) sets the interrupt source for the S/PDIF
interrupt. Multiple sources may be ORed.

The SPDIF component formats incoming audio data and metadata to create the S/PDIF bit
stream. This component receives audio data from DMA, as well as, channel status information.
Most of the time, the channel status DMA is managed by the component. However, there is an
option that allows the data to be specified separately, to better control a system.

99SPDIF_Sleep() should be called before calling CyPmSleep() or CyPmHibernate().
100Calling SPDIF_Wakeup() without first calling SPDIF_Sleep()or SPDIF_SaveConfig() may produce unex-

pected behavior.

c©Copyright 2012 Cypress Semiconductor

278 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.24: SPDIF - Interrupt mode values.

Figure 4.25: SPDIF - Status mask values.

Figure 4.26: SPDIF - Frequency values.

c©Copyright 2012 Cypress Semiconductor

4.9. S/PDIF TRANSMITTER (SPDIF_TX) 279

4.9.3 S/PDIF Data Stream Format

The audio and channel status data are independent byte streams, packed with the least significant
byte and bit first. The number of bytes used for each sample is the minimum number of bytes
to hold a sample. Any unused bits will be padded with zeros, starting at the left-most bit. The
audio data stream can be a single byte stream, or it can be two byte streams. In the case of a
single byte stream, the left and right channels are interleaved with a sample for the left channel
first followed by the right channel. In the two stream case, the left and right channel byte streams
use separate FIFOs. The status byte stream is always two byte streams.

4.9.4 S/PDIF and DMA Transfers

The S/PDIF interface is a continuous interface that requires an uninterrupted stream of data. For
most applications, this requires the use of DMA transfers to prevent the underflow of the audio
data or channel status FIFOs. Typically, the Channel Status DMA occurs entirely using two
channel status arrays and can be modified using macros. However, data can be provided by an
external DMA or CPU to allow flexibility. The S/PDIF can drive up to four DMA components,
depending on the component configuration. DMA configuration, using PSoC Creator’s DMA
Wizard, should be based on Table 4.10.

Table 4.10: SPDIF DMA configuration parameters.

4.9.5 S/PDIF Channel Encoding

S/PDIF is a single-wire serial interface. The bit clock is embedded within the S/PDIF data
stream. The digital signal is coded using Biphase Mark Code (BMC), which is a kind of phase
modulation. The frequency of the clock is twice the bit-rate. Every bit of the original data is
represented as two logical states, which, together, form a cell. The logical level at the start of
a bit is always inverted to the level at the end of the previous bit. To transmit a one in this
format, there is a transition in the middle of the data bit boundary. If there is no transition in
the middle, the data is considered a zero.

4.9.6 S/PDIF Protocol Hierarchy

The S/PDIF signal format is shown in Figure 4.27. Audio data is transmitted in sequential
blocks each of which contains 192 frames, each of which consists of two subframes that are the
basic units into which digital audio data is organized.

c©Copyright 2012 Cypress Semiconductor

280 CHAPTER 4. COMMUNICATION PERIPHERALS

A subframe, shown in Figure 4.28, contains a preamble pattern, an audio sample that may be
up to 24 bits wide, a validity bit that indicates whether the sample is valid, a bit containing user
data, a bit containing the channel status, and an even parity bit for this subframe. There are
three types of preambles: X, Y and Z. Preamble Z indicates the start of a block and the start
of subframe channel 0. Preamble X indicates the start of a channel 0 subframe when not at the
start of a block. Preamble Y always indicates the start of a channel 1 subframe.

Figure 4.27: S/PDIF block format.

Figure 4.28: S/PDIF subframe format.

4.9.7 S/PDIF Error Handling

There are two error conditions for the S/PDIF component that can occur, if the audio is emp-
tied and a subsequent read occurs (transmit underflow) or the channel status FIFO is emptied
and subsequent read occurs (status underflow). If transmit underflow occurs, the component
forces the constant transmission of zeros for audio data and continue correct generation of all
framing and status data. Before transmission begins again, transmission must be disabled, the
FIFOs should be cleared, data for transmit must be buffered, and then transmission re-enabled.
This underflow condition can be monitored by the CPU using the component status bit AU-
DIO_FIFO_UNDERFLOW.101 While the component is started, if the status underflow occurs,
the component will send all 0s for channel status with the correct generation of X, Y, Z framing
and correct parity. The audio data is continuous, not impacted.

To correct channel status data transmission, the component must be stopped and restarted
again. This underflow condition can be monitored by the CPU using the status bit
CHST_FIFO_UNDERFLOW. An interrupt can also be configured for this error condition. If
the component doesn’t manage DMA, the status data must be buffered before restarting the
component. Enabling Audio data transmission has dedicated enabling. When the component is
started, but not enabled, the S/PDIF output with channel status is generated, but the audio
data is set to all zeros. This allows the S/PDIF receiver to lock on the component clock and the
transition into the enabled state occurs at the X or Z frame.
101An interrupt can also be configured for this error condition.

c©Copyright 2012 Cypress Semiconductor

4.9. S/PDIF TRANSMITTER (SPDIF_TX) 281

The SPDIF_Tx component is implemented as a set of configured UDBs as shown in Figure
4.29. The incoming audio data is received through the system bus interface and can be provided

Figure 4.29: A block diagram of the implementation of SPDIF_Tx.

via the CPU, or DMA. The data is byte wide, with the least significant byte first, and is stored
in an audio buffer, i.e., one or two FIFOs, depending on the component configuration). The
Channel Status stream has its own dedicated interface. As with the audio data, there are two
Channel Status FIFOs and the channel status is byte wide data, with the least significant byte
occurring first. One byte is consumed from these FIFOs every eight samples. Both audio and
status data are converted from parallel to serial form. The User Data are not defined in the
S/PDIF standard and may be ignored by some receivers, so they are sent as constant zeros. The
validity bit, when low, indicates the audio sample is fit for conversion to analog. This bit is sent
as constant zeros. The preamble patterns are generated in the Preamble Generator block and are
transmitted in serial form. This is all of the data required to form the SPDIF subframe structure,
except for the parity bit which is calculated in the Frame Assembler block during assembling all
the inputs in the subframe structure. The output of the Frame Assembler block goes to BMC
Encoder where the data is encoded in a spdif format. The Control Unit block gets the control
data from the System Bus interface and returns the status of component operation to the bus.
It controls all other blocks during data transmission.

4.9.8 S/PDIF Channel Encoding

S/PDIF is a single-wire serial interface and the bit clock is embedded within the S/PDIF data
stream. The digital signal is coded using Biphase Mark Code (BMC), which is a kind of phase
modulation. The frequency of the clock is twice the bit-rate. Every bit of the original data is
represented as two logical states which together form a cell. The logical level at the start of a
bit is always inverted to the level at the end of the previous bit. To transmit a ‘1’ in this format,
there is a transition in the middle of the data bit boundary. If there is no transition in the middle,
the data is considered a ‘0’.

c©Copyright 2012 Cypress Semiconductor

282 CHAPTER 4. COMMUNICATION PERIPHERALS

Figure 4.30: S/PDIF channel encoding timing.

4.9.9 SPDIF Registers

The transmit control and status registers, shown in Figures 4.31 and 4.32, for SPDIF are defined
as follows:

• Enable/disable SPDIF_Tx component. When not enabled the component is in reset state.

• txenable: Enable/disable audio data output in the S/PDIF bit stream.

Figure 4.31: SPDIF control register.

Figure 4.32: SPDIF status register.

• chst1_fifo_not_full: If set channel status FIFO 1 is not full.

• chst1_fifo_not_full: If set channel status FIFO 0 is not full.

• chst_fifo_underflow: If set channel status FIFOs underflow event has occurred.

• audio1_fifo_not_full: If set audio data FIFO 1 is not full.

• audio0_fifo_not_full: If set audio data FIFO 0 is not full.

• audio_fifo_underflow: If set audio data FIFOs underflow event has occurred.

The register value may be read by the SPDIF_Tx_ReadStatus(). Bit 3 and bit 0 of the status
register are configured in Sticky mode, which is a clear-on-read. In this mode, the input status
is sampled each cycle of the status register clock. When the input goes high, the register bit is
set and stays set regardless of the subsequent state of the input. The register bit is cleared on a
subsequent read by the CPU.

c©Copyright 2012 Cypress Semiconductor

4.10. VECTOR CAN (VCAN) 283

4.10 Vector CAN (VCAN)

The Vector CANbedded environment102 consists of a number of adaptive source code components
that cover the basic communication and diagnostic requirements in automotive applications, e.g.,
ECUs103. The Vector CANbedded software suite is customer specific and its operation varies
according to the application and OEM104.

This PSoC Creator VCAN component, shown in Figure 4.33, was designed for the Vector
CANbedded suite to generically support the CANbedded structure, independent of the applica-
tion. The PSoC3 Vector CAN component was developed to allow easy integration of the Vector
certified CAN driver.105

Figure 4.33: PSoC3’s Vector CAN component.

PSoC Creator’s VCAN component features include:

• CAN2.0 A/B protocol implementation,

• ISO 11898-1 compliant,

• Programmable bit rate up to 1 Mbps @ 8 MHz (BUS_CLK),

• Two or three wire interface to external transceiver (Tx, Rx, and Tx Enable),

and,

• Driver provided and supported by Vector.

The Vector driver uses the CAN interrupt, allowing access. The Vector_CAN_Init() function
sets up the CAN interrupt with the interrupt service routine CanIsr_0() generated by the Vector
CAN configuration tool.

4.10.1 Vector CAN I/O Connections

This section describes the various input and output connections for the Vector CAN component.
An asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.
rx - CAN bus receive signal (connected to CAN RX bus of external transceiver).
tx - CAN bus transmit signal, (connected to CAN TX bus of external transceiver).
tx_en - External transceiver enable signal.106

102Vector Informatik GMBH provides a suite of software components for the automotive industry that serve as
defacto standards in the automotive industry worldwide.
103Engine control units. (ECUs)
104Original equipment manufacturer (OEM).
105This component is used in conjunction with a CAN driver for PSoC 3 that is provided by Vector.
106This output displays when the Add Transceiver Enable Signal option is selected in the Configure dialog.

c©Copyright 2012 Cypress Semiconductor

284 CHAPTER 4. COMMUNICATION PERIPHERALS

The Vector CAN component is connected to the BUS_CLK clock signal. A minimum value
of 8 MHz is required to support all standard CAN baud rates up to 1 Mbps.107

The Vector CAN Driver APIs use function pointers. The Keil compiler for PSoC 3 does
function call analysis to determine how it can overlay function variables and arguments. When
function pointers are present the compiler cannot adequately analyze the calling structure, so the
NOOVERLAY option is selected to avoid problems that occur because of the use of function point-
ers. Further information on the handling of function pointers with the Keil compiler is available
in the application note: Function Pointers in C51 (www.keil.com/appnotes/docs/apnt_129.asp).

In main the initialization process requires:

• i ncluding the v_inc.h file for the driver in main.c,

• enabling global interrupts, if required,

• calling the Vector_CAN_Start() function,

• calling the CanInitPowerOn() function (generated by the Vector GENy tool),

and,

• writing the necessary functionality using an API from Vector CAN and generated by the
Vector GENy tool.

4.10.2 Vector CAN API

PSoC Creator’s Vector CAN component can be configured under software control as summarized
in Figure 4.11. By default, PSoC Creator assigns the instance name Vector_CAN_1 to the first

Table 4.11: Vector CAN functions supported by PSoC Creator.

107The value of the BUS_CLK selected in the PSoC3 project design-wide resources must be the same as the
value selected in the Vector CAN driver configuration for bus timing.

c©Copyright 2012 Cypress Semiconductor

4.10. VECTOR CAN (VCAN) 285

instance of a component in a given design.108 The instance name used becomes the prefix of
every global function name, variable, and constant symbol. PSoC Creator provides the following
application programming interface for the Vector CAN Component:

uint8 Vector_CAN_Start(void) is the preferred method to begin component operation.

uint8 Vector_CAN_Start() sets the initVar variable, calls the Vector_CAN_Init() function,
and then calls the Vector_CAN_Enable() function.109

uint8 Vector_CAN_Stop(void)disables the Vector CAN component. Return a value indicating
whether the register is written and verified.

uint8 Vector_CAN_GlobalIntEnable(void) enables global interrupts from the CAN Core.110

uint8 Vector_CAN_GlobalIntDisable(void) disables global interrupts from the CAN Core. Re-
turn Value: Indication whether register is written and verified.

void Vector_CAN_Sleep(void) is the preferred routine to prepare the component for sleep.
Vector_CAN_Sleep() saves the current component state, then calls Vector_CAN_SaveConfig()
and calls Vector_CAN_Stop() to save the hardware configuration.111

void Vector_CAN_Wakeup(void) is the preferred routine for restoring the component to the
state when Vector_CAN_Sleep() was called. Vector_CAN_Wakeup() calls
Vector_CAN_RestoreConfig() to restore the configuration. If the component was enabled before
Vector_CAN_Sleep() was called, Vector_CAN_Wakeup() will also re-enable the component.
Calling Vector_CAN_Wakeup() without first calling Vector_CAN_Sleep() , or
Vector_CAN_SaveConfig() may produce unexpected behavior.

void Vector_CAN_Init (void) initializes, or restores, the component according to the customizer
Configure dialog settings. It is not necessary to call Vector_CAN_Init() because
Vector_CAN_Start() calls this function and is the preferred method to begin component oper-
ation. It sets up the CAN interrupt with the interrupt service routine CanIsr_0() generated by
the Vector CAN configuration tool.

uint8 Vector_CAN_Enable(void) activates the hardware and begins component operation. It is
not necessary to call Vector_CAN_Enable() because the Vector_CAN_Start() it, which is the
preferred method to begin component operation. The return value indicates whether he register
is written and verified.

void Vector_CAN_SaveConfig(void) saves the component configuration and nonretention reg-
isters, saves the current component parameter values, as defined in the Configure dialog or as
modified by appropriate APIs. 112

void Vector_CAN_RestoreConfig(void) restores the component configuration and nonretention
registers, restores the component parameters to calling Vector_CAN_Sleep().113 The global
variable, Vector_CAN_initvar, is defined in Table 4.12.

108The instance can be renamed to any unique value that follows PSoC Creator’s syntactic rules for identifiers.
109Returns whether the register has been written and verified.
110The return value indicates whether or not the register has been written to and verified.
111Vector_CAN_Sleep() should be called before CyPmSleep() or CyPmHibernate().
112This function is called by the Vector_CAN_Sleep() function.
113Calling this function without first calling the Vector_CAN_Sleep() or Vector_CAN_SaveConfig() may

produce unexpected behavior.

c©Copyright 2012 Cypress Semiconductor

286 CHAPTER 4. COMMUNICATION PERIPHERALS

Table 4.12: The global variable,Vector_CAN_initVar.

4.11 Inter-IC Sound Bus (I2S)

The Integrated Inter-IC Sound Bus (I2S) is a serial bus interface standard used for connecting
digital audio devices together and based on a specification114 developed by Philips Semiconduc-
tor. PSoC Creator’s I2S component provides a serial bus interface for stereo audio data, is used
primarily by audio ADC and DAC components and operates in master mode only. This com-
ponent is bidirectional and therefore capable of functioning as a transmitter (Tx) and a receiver
(Rx). The number of bytes used for each sample, whether for the right or left channel, is the
minimum number of bytes to hold a sample.

Figure 4.34: The Inter-IC Sound Bus (I2S).

I2C features include:

• 8-32 data bits per sample.

• 16, 32, 48, 64-bit word select period:6.144 MHz.

• Data rates up to 96 kHz.

• DMA support.

• Independent right and left channel FIFOs or interleaved stereo FIFOs.

• Independent enable of Tx and Rx.

• Tx and Rx FIFO interrupts.

4.11.1 Functional Description of the I2S Component

Left/Right and Rx/Tx Configuration - The configuration for the Left and Right channels, viz.,
the Rx and Tx direction, number of bits, and word-select period, are identical. If the application
114I2S bus specification; February 1986, revised June 5, 1996.

c©Copyright 2012 Cypress Semiconductor

4.11. INTER-IC SOUND BUS (I2S) 287

must have different configurations for Rx and Tx, then two unidirectional component instances
should be used.

Data Stream Format

The data for Tx and Rx is independent byte streams that are packed with the most significant
byte first and the most significant bit in bit 7 location of the first word. The number of bytes
used for each sample, for the right or left channel, is the minimum number of bytes to hold a
sample. Any unused bits will be ignored on Tx, and will be 0 on Rx. The data stream for one
direction can be a single byte stream, or it can be two byte streams. In the case of a single byte
stream, the left and right channels are interleaved with a sample for the left channel first followed
by the right channel. In the two-stream case, the left and right channel byte streams use separate
FIFOs.

DMA

The I2S has a continuous interface , i.e., it requires an uninterrupted stream of data. For most
applications, this requires the use of DMA transfers to prevent the underflow of the Tx direction,
or the overflow of the Rx direction. The I2S can drive up to two DMA components for each
direction. PSoC Creator’s DMA Wizard can be used to configure DMA operation as defined in
Table 4.13.

Table 4.13: DMA and the I2S Component

4.11.2 Tx and Rx Enabling

The Rx and Tx directions have separate enables. When not enabled, the Tx direction transmits
all 0 values, and the Rx direction ignores all received data. The transition into, and out of,
the enabled state occurs at a word select boundary such that a left/right sample pair is always
transmitted, or received.

c©Copyright 2012 Cypress Semiconductor

288 CHAPTER 4. COMMUNICATION PERIPHERALS

4.11.3 I2S Input/Output Connections

The I/O connections for the I2S component are:

• sdi - Serial data input.115

• clock - The clock rate must be two times the desired clock rate for the output serial clock
(SCK). e.g., to produce 48-kHz audio with a 64-bit word select period, the clock frequency
would be: 2 x 48 kHz x 64 = 6.144 MHz.

• sdo - Serial data output. Displays if the Tx option is selected for the Direction parameter.

• sck - Output serial clock.

• ws - Word select output indicates the channel being transmitted.

• rx_interrupt - Rx direction interrupt.116

• tx_interrupt - Tx direction interrupt.117

• rx_DMA0 - Rx direction DMA request for FIFO 0 (Left or Interleaved).118

• rx_DMA1 - Rx direction DMA request for FIFO 1 (Right).119 Displays if Rx DMA under
the DMA Request parameter and Separated L/R under the Data Interleaving parameter for
Rx are selected.

• tx_DMA0 - Tx direction DMA request for FIFO 0 (Left or Interleaved).120

• tx_DMA1 - Tx direction DMA request for FIFO 1 (Right).121

Figure 4.35: I2S data transition timing diagram

115If this signal is connected to an input pin, the Input Synchronized selection for this pin should be disabled.
This signal should already be synchronized to SCK, so delaying the signal with the input pin synchronizer could
cause the signal to be shifted into the next clock cycle.
116Displays if an Rx option for the Direction parameter has been selected.
117Displays if a Tx option for the Direction parameter is selection.
118Displays if Rx DMA under the DMA Request parameter is selected.
119Displays if Rx DMA under the DMA Request parameter and Separated L/R under the Data Interleaving

parameter for Rx are selected.
120Displays if Tx DMA under the DMA Request parameter is selected.
121Displays if Tx DMA under the DMA Request parameter and Separated L/R under the Data Interleaving

parameter for Tx are selected.

c©Copyright 2012 Cypress Semiconductor

4.11. INTER-IC SOUND BUS (I2S) 289

4.11.4 I2S Macros

By default, the PSoC Creator Component catalog contains three Schematic Macro implemen-
tations for the I2S component. These macros contain the I2S component already connected
to digital pin components. The Input Synchronized option is unchecked on the SDI pin and the
generation of APIs for all of the pins is turned off. The Schematic Macros use the I2S component,
configured for Rx only, Tx only, and both Rx and Tx directions, as shown in Figures 4.36 and
4.37.

Figure 4.36: I2S Tx and Rx.

Figure 4.37: I2S Rx only and I2S Tx only.

4.11.5 I2S APIs

• void I2S_Start(void) starts the I2S interface, enables the Active mode power template bits,
or clock gating, as appropriate. Starts the generation of the sck and ws outputs. The Tx
and Rx directions remain disabled.

• void I2S_Stop(void) disables the I2S interface and the Active mode power template bits
or clock gating as appropriate. sets the sck and ws outputs to 0. disables the Tx and Rx
directions and clears their FIFOs.

• void I2S_EnableTx(void) enables the Tx direction of the I2S interface.122

• void I2S_DisableTx(void) disables the Tx direction of the I2S interface.123

• void I2S_EnableRx(void) enables the Rx direction of the I2S interface.124

122Transmission begins at the next word select falling edge.
123Transmission of data stops and a constant 0 value is transmitted at the next word select falling edge.
124Data reception begins at the next word select falling edge.

c©Copyright 2012 Cypress Semiconductor

290 CHAPTER 4. COMMUNICATION PERIPHERALS

• void I2S_DisableRx(void) disables the Rx direction of the I2S interface.125

• void I2S_SetRxInterruptMode(uint8 interruptSource) sets the interrupt source for the I2S
Rx direction interrupt. Multiple sources may be ORed.

Table 4.14: I2S Rx Interrupt Source

4.11.6 I2S Error Handling

Two error conditions can occur if the transmit FIFO is empty, and a subsequent read occurs, i.e.,
a transmit underflow, or the receive FIFO is full and a subsequent write occurs, i.e., a receive
overflow. If the transmit FIFO becomes empty, and data is not available for transmission while
transmission is enabled, i.e., a Transmit underflow, the component will force the constant trans-
mission of 0s. Before transmission begins again, transmission must be disabled, the FIFOs should
be cleared, data for transmit must be buffered, and then transmission re-enabled. The CPU can
monitor this underflow condition using the transmit status bit I2S_TX_FIFO_UNDERFLOW.
An interrupt can also be configured for this error condition. While reception is enabled, if the re-
ceive FIFO becomes full and additional data is received (Receive overflow), the component stops
capturing data. Before reception begins again, reception must be disabled, the FIFOs should be
cleared, and then reception re-enabled. The CPU can monitor this overflow condition using the
receive status bit I2S_RX_FIFO_OVERFLOW. An interrupt can also be configured for this
error condition.

4.12 Local Interconnect Network (LIN)

The LIN standard was co-developed by a set of companies involved in the automotive industry.126

It was intended from the outset to serve as a multiplexed communication system that was much
simpler than the controller area network (CAN), or the serial peripheral interface(SPI). LIN
functions as a subnetwork to CAN and is based on an architecture that supports only a single
masterm, and multiple slaves. It is not as robust, has smaller bandwidth/bit rate and offers
less functionality than CAN, but it is much more economical. LIN targets low-cost automotive
networks as a complement to the existing portfolio of automotive multiplex networks and is
typically used for networking sun roof controls, rain detection systems, automatic headlight
controls, door locks, interior lighting controls, etc.

The LIN specification consists of an API specification, a configuration/diagnostic specification,
a physical layer specification. a node capability language specification and protocol specification.

125At the next word select falling edge, data reception is no longer sent to the receive FIFO.
126The original concept for the LIN protocol is attributed to Motorola but they were soon joined in supporting

the new standard by Audi, BMW, Daimler Chrysler, Volkswagen and Volvo.The current version is LIN 2.0 and
was issued in September 2003.

c©Copyright 2012 Cypress Semiconductor

4.12. LOCAL INTERCONNECT NETWORK (LIN) 291

• The API specification describes the interface between the application program and the
network.

• The configuration/diagnostic specification is a description of LIN services available above the
data link layer associated with sending configuration and diagnostic messages. The physical
layer specification defines clock tolerances, supported bit rates, etc.

• The node capability language specification defines the langauge format for certain types of
LIN modules employed in plug and play applications.

• The capability language specification defines the format of the configuration file used to
configure the LIN network.

The LIN system functions as an asynchronous communications system that operates without
requiring a clock. Therefore, it functions as a single wire system127 that does not require arbitra-
tion. Baud rates are limited to 20 kbits/second to avoid EMI issues. The master is responsible
for determining the priority, and therefore order of message transmission. The master employs a
stable clock for reference and monitors data and check bytes, while controlling the error handler.
The master controls the bus and transmits Sync Break, Sync Byte, and ID data fields. Two to
sixteen slaves receive/transmit data when there respective IDs are transmitted by the master.128

Slaves can transmit 1,2,4 or 8 data bytes at a time, together with a check-byte.

The main properties of the LIN bus are:

• Data format similar to the common serial UART format,

• Safe behavior with data checksums,

• Self-synchronization of slaves on master speed,

• Single-master, multiple-slaves (up to 16 slaves),

• Single-wire (max 40 m),

and,

• Speeds up to 19.2 Kbps (choice is 2400, 9600, 19200 bps).

Figure 4.38: The LIN message frame.

The message frame format employed by LIN consists of a break containing 13 bits followed
by a delimiter of one bit which alerts all of the nodes on the LIN bus and signals the start
of a frame. This is immediately followed by a clock synchronization, or sync field (x55), that
allows the slaves to adjust their respective internal baud rates to that of the bus. An message
identifier (ID) follows the sync field that consists of a 6-bit message and a 2-bit parity field. IDs
0-59 are assigned to the signal-carrying data frames, 60-61 to the diagnostic data frames, 62 to
user-defined extensions and 63 is reserved for future use129. The slaves listen for IDs and check
the respective parities for which they are either a publisher or subscriber. The slave response
consists of one-to-eight data bytes followed by an 8-bit checksum130.
127Such systems are often referred to as one-wire systems, but in point of fact an additional wire is required to

provide to provide a ground return for the system.
128It should be noted that a master can also serve as a slave.
129ID 63 always employs the classic checksum algorithm.
130The classic checksum algorithm is used with LIN 1.3 nodes and the enhanced checksum algorithm is used

c©Copyright 2012 Cypress Semiconductor

292 CHAPTER 4. COMMUNICATION PERIPHERALS

4.12.1 LIN Slave

PSoC Creator’s LIN Slave component implements a LIN 2.1 slave node on PSoC 3 and PSoC 5
devices. Options for LIN 2.0, or SAE J2602-1, compliance are also available. This component
consists of the hardware blocks necessary to communicate on the LIN bus, and an API to allow
the application code to easily interact with the LIN bus communication. The component provides
an API that conforms to the API specified by the LIN 2.1 Specification. This component provides
a good combination of flexibility and ease of use. A customizer for the component is provided
that allows all of the LIN Slave parameters to be easily configured.

Supported features include:

• Automatic baud rate synchronization,

• Automatic configuration services handling,

• Automatic detection of bus inactivity,

• Customizer for fast and easy configuration,

• Editor for *.ncf/*.ldf files with syntax checking,

• Full LIN 2.1 or 2.0 Slave Node implementation,

• Fully implements a Diagnostic Class I Slave Node,

• Full transport layer support,

• Full error detection,

• Import of *.ncf/*.ldf files and *.ncf file export,

and,

• Supports compliance with SAE J2602-1 specification.

The LIN bus is based on a single wire, wired-AND, with a termination resistor placed at each
node131 for each slave, and the supply voltage ranges from 8 to 18 volts, as shown in Figure. The
LIN slave component has the following I/O connections:

• RXD - a digital input terminal

• TXD - a digital output terminal which transmits the data sent via the LIN bus by the LIN
node.

4.12.2 PSoC and LIN Bus Hardware Interface

A LIN physical layer transceiver device is required when the PSoC LIN slave node is connected
directly to a LIN bus. In such cases, the txd pin of the LIN component connects to the TXD
pin of the transceiver, and the rxd pin connects to the RXD pin of the transceiver, as shown in
Figure 4.39. The LIN transceiver device is required because the PSoC’s electrical signal levels
are not compatible with the electrical signals on the LIN bus. Some LIN transceiver devices also
have an enable or sleep input signal that is used to control the operational state of the device.
The LIN component does not provide this control signal. Instead, a pin is used to output the
desired signal to the LIN transceiver device, if this signal is needed.

with LIN 2.0. The enhanced checksum algorithm requires that the data values be summed and if the sum is
greater than, or equal to, 256, 255 is subtracted and the result is appended to the message response.
131Typical resistor values are 1kΩ for each each master, 30kΩ

c©Copyright 2012 Cypress Semiconductor

4.13. LCD (VISUAL COMMUNICATION) 293

Figure 4.39: The LIN bus physical layer.

4.13 LCD (Visual Communication)

Visual displays are often an important component of an embedded system for displaying impor-
tant messages, certain parameter values and/or to facilitate debugging. PSoC 3 has as many as
64 built-in segment LCD drivers that be interfaced directly with wide variety of segment, LCD,
glass types. This gives it the capability to drive up to 768 pixels (16 commons x 48 segments).

The features supported by the PSoC3 LCD drivers are:

• Adjustable refresh rate from 10 Hz to 150 Hz. Configurable power modes, which allows
power optimization,

• Direct drive with internal bias generation no other external hardware is required,

• Maximum 64 in-built LCD drivers (which includes both common and segment pin driver).
No CPU intervention in LCD refresh,

• Static, 1/3, 1/4, 1/5 bias ratios. Supports 14-segment and 16-segment alphanumeric display,
7-segment numeric display, dot matrix, and special symbols,

• Support for both Type A and Type B waveforms,

• Support for LCD glass with up to 16 common lines,

and,

• Support for 14-segment and 16-segment alphanumeric display, 7-segment numeric display,
dot matrix, and special symbols.

Figure 4.40: Supported LCD segment types.

c©Copyright 2012 Cypress Semiconductor

294 CHAPTER 4. COMMUNICATION PERIPHERALS

PSoC Creator’s LCD component is based on a set of library routines that facilitate the use of
one, two or four-line LCD modules that employ the Hitachi HD44780 LCD display driver, 4-bit
protocol. The Hitachi interface has proven to be a widely adopted standard for driving LCD
displays of the type shown in Figure 4.41. Each of the 32 segments shown in the figure consist

Figure 4.41: Hitachi 2x16 LCD.

of an array of 40 elements (8x5). This particular LCD is capable of displaying two rows of 16
characters132 each and limited graphic displays. Seven logical port pins are used to transmit data
bits 0-3, LCD enable133, register select134 and read/not write135 to the display’s integral hard-
ware controller as shown in Table 4.15. The LCD_Char_Position() function manages display
addressing as follows: row zero, column zero is in the upper left corner with the column number
increasing to the right, as shown in Figure 4.41.136

Table 4.15: Logical to Physical LCD Port Mapping

132Custom character sets are also supported.
133Strobed to confirm new data available.
134Select for either data or control input.
135Toggle for polling the LCD’s ready bit.
136In a four-line display, writing beyond column 19 of row 0 can result in row 2 being corrupted because the

addressing maps row 0, column 20 to row 2, column 0. This is not an issue in the standard 2x16 Hitachi module.

c©Copyright 2012 Cypress Semiconductor

4.13. LCD (VISUAL COMMUNICATION) 295

4.13.1 Resistive Touch

PSoC Creator’s resistive touchscreen component137 is used to interface with a 4-wire resistive
touch screen. The component provides a method to integrate and configure the resistive touch ele-
ments of a touchscreen with the emWin138 Graphics library.[67] It integrates hardware-dependent
functions that are called by the touchscreen driver supplied with emWin, when polling the touch
panel.

Figure 4.42: Resistive touchscreen construction.

The supported I/O connections are xm, xp, ym, yp where

• xm is a digital I/O connection and designated as signal x- with low being active.

• xp is an analog/digital output connection designated as signal x+ from the x axis of the

The point of contact divides each layer in a series resistor network with two resistors, and a
connecting resistor between the two layers. By measuring the voltage at this point, information
about the position of the contact point orthogonal to the voltage gradient can be obtained. To
get a complete set of coordinates, a voltage gradient must be applied once in the vertical and then
in the horizontal direction. First, a supply voltage is applied to one layer and a measurement
made of the voltage across the other layer; then the supply voltage is applied to the other layer
and the opposite layer voltage is measured. When in touch mode, one of the lines is connected
to detect touch activity.

4.13.2 Measurement Methods

As shown in Figure 4.43, a touch by a finger, or a stylus, can be uniquely defined by the mea-
surement of three parameters, viz., the x-position, y-position and a third parameter related to
the touch pressure. The latter measurement makes it possible to differentiate between finger and

137This component provides a 4-wire resistive touch screen interface to read the touchscreen coordinates and
measure the screen resistance It provides access to the functionality of the SEGGER emWin graphics library for
translation of resistance to screen coordinates.
138emWin is a product of SEGGER Microcontroller that was designed to function as an efficient graphical

user interface that is processor- and graphical LCD controller-independent. (http://www.segger.com/embedded-
software.html)

c©Copyright 2012 Cypress Semiconductor

296 CHAPTER 4. COMMUNICATION PERIPHERALS

stylus contacts. The conductive bars are located on the opposite edges of the panel, as shown.
The voltage applied to the layer produces a linear gradient across this layer. The conducting lay-
ers are oriented so that the conducting bars are orthogonal to each other, and voltage gradients
in the respective layers are also orthogonal. An equivalent circuit for a resistive touchscreen, can
be based on treating the conductive layers as resistors placed between the conductive bars in the
corresponding layers. When the touchscreen is touched, a resistive connection is formed between
the two layers, as shown in Figure 4.43.

Figure 4.43: Resistive touchscreen equivalent circuit.

To measure a 4-wire touch sensor, a voltage (VCC) is applied to a conductive bar on one of
the layers and the other conductive bar on the same layer is grounded, see Figure 4.43. This
creates a linear voltage gradient in this layer. One of the conductive bars in the other layer is
connected to an ADC through a large impedance. The ADC reference is set to VCC, which makes
the ADC range from 0 to the max ADC value. When the screen is touched, the ADC reading
corresponds to the position on one of the axes. To obtain the second coordinate, the other layer
must be powered and read by the ADC. VCC, GND, Analog hi-Z, and ADC input are switched
between the two layers, as shown in the y-position measurement in Figure 4.43. The second ADC
reading corresponds to the position on the other axis. Finally, to obtain the touch pressure, two
measurements of the cross-layer resistance are required. VCC is applied to a conductive bar on
one of the layers while a conductive bar on the other layer is grounded. The voltages on the
unconnected bars is then measured, as shown in Figures 4.44 c) and d), respectively.

Examination of Figure 4.44 a) shows that an equivalent circuit for this case is given by

x

ADmax
=

vin

vref
=

vin

vcc
=

iRx−

i(R−x + Rx+)
=

Rx−

R−plate
(4.2)

where x = ADC value when the ADC input voltage is equal to vin, ADmax = 2ADC_resolution,
vref is the ADC reference voltage and Rx_plate is given by

Rx_plate = Rx− + Rx+ (4.3)

A similar analysis of Figure 4.44 b), c) and d) gives

y

ADmax
=

Ry−

Ry− + Ry+
=

Ry−

Ry_plate
(4.4)

z1

ADmax
=

Rx−

Rx− + Rtouch + Ry+
(4.5)

c©Copyright 2012 Cypress Semiconductor

4.13. LCD (VISUAL COMMUNICATION) 297

F
ig
ur
e
4.
44
:
R
es
is
ti
ve
to
uc
hs
cr
ee
n
eq
ui
va
le
nt
ci
rc
ui
t
m
od
el
s.

c©Copyright 2012 Cypress Semiconductor

298 CHAPTER 4. COMMUNICATION PERIPHERALS

and,

z2

ADmax
=

Rx− + Rtouch

Rx− + Rtouch + Ry+
(4.6)

Combining these equations yields

Rtouch = Rx_plate

[
x

2ADC_resolution

][
z2

z1
− 1

]

(4.7)

and,

Rtouch = Rx_plate

[
x

2ADC_resolution

][
2ADC_resolution

z1
− 1

]

− Ryplate

[

1 −
y

2ADC_resolution

]

(4.8)

Equation (4.7) assumes that xplate, x, z1 and z2 are known. Rtouch can also be determined by
evaluation of Equation (4.8), assuming that the values of xplate and yplate are known. A flowchart
is shown in Figure 4.45 that represents the steps required to measure the touchscreen parameters.

Figure 4.45: Touchscreen flowchart for parameter measurement.

c©Copyright 2012 Cypress Semiconductor

4.13. LCD (VISUAL COMMUNICATION) 299

4.13.3 Application Programming Interface

PSoC Creator supports the following functions for resistive touchscreens:

• void ResistiveTouch_Start(void) calls the ResistiveTouch_Init() and ResistiveTouch_Enable()
APIs.

• void ResistiveTouch_Init(void) calls the Init functions of the DelSig ADC or SAR ADC and
AMux components.

• void ResistiveTouch_Enable(void) enables the DelSig ADC or SAR ADC and the AMux
components.

• void ResistiveTouch_Stop(void) stops the DelSig ADC or SAR ADC and the AMux com-
ponents.

• void ResistiveTouch_ActivateX(void) configures the pins for measurement of X-axis. void
ResistiveTouch_ActivateY(void) configures the pins for measurement of Y-axis.

• int16 ResistiveTouch_Measure(void) returns the result of the A/D converter.

• uint8 ResistiveTouch_TouchDetect(void) detects a touch on the screen.

• void ResistiveTouch_SaveConfig(void) saves the configuration of the DelSig ADC or SAR
ADC.

• void ResistiveTouch_RestoreConfig(void) restores the configuration of the DelSig ADC or
SAR ADC.

• void ResistiveTouch_Sleep(void) prepares the DelSig ADC or SAR ADC for low-power
modes by calling SaveConfig and Stop functions.

• void ResistiveTouch Wakeup(void) restores the DelSig ADC or SAR ADC after waking up
from a low-power mode.

Figure 4.46: Pin configurations for measurement of the touch coordinates.

• void LCD_Char_Start(void) - initializes the LCD hardware module as follows:

– Enables 4-bit interface
– Clears the display
– Enables auto cursor increment
– Resets the cursor to start position
– If defined in PSoC Creator’s Customizer GUI, a custom LCD character set is also loaded.

• void LCD_Char_Stop(void) - turns off the LCD display screen.

• void LCD_Char_PrintString(char8 * string) - writes a null-terminated string of characters
to the screen beginning at the current cursor location.aaa

• void LCD_Char_Position(uint8 row, uint8 column) - moves the cursor to the specified
location.

c©Copyright 2012 Cypress Semiconductor

300 CHAPTER 4. COMMUNICATION PERIPHERALS

• void LCD_Char_WriteData(uint8 dByte) - writes data to the LCD RAM in the current
position. The position is then incremented/decremented depending on the specified entry
mode.

• void LCD_Char_WriteControl(uint8 cByte) - writes a command byte to the LCD mod-
ule.139

• void LCD_Char_ClearDisplay(void) - clears the contents of the screen, resets the cursor
location to be row and column zero and calls LCD_Char_WriteControl() with the appro-
priate argument to activate the display.

4.13.4 Capacitive Touchscreens

A capacitive touchscreen[54] can be used, as an alternative to resistive touchscreens , and consists
of an insulator, e.g., glass, coated with a transparent conductor such as indium tin oxide (ITO).
Because a human body is also an electrical conductor, touching the surface of the screen results
in a distortion of the screen’s electrostatic field that is measurable as a change in the screen’s
capacitance. The location that is touched can be determined by a variety of technologies, and
subsequently, can then be sent to the controller for processing. Unlike its resistive counterpart,
a capacitive touchscreen is not compatible with most types of electrically insulating materials,
e.g., gloves. A special capacitive stylus, or glove with finger tips that generate static electricity
is required. This disadvantage especially affects a capacitive touchscreen’s usability in consumer
electronics, such as touch tablet PCs and capacitive smart phones in cold weather.

Surface capacitance applications have only one side of the insulator that is coated with a
conductive layer. A small voltage is applied to that layer, resulting in a uniform electrostatic
field. When a conductor, such as a human finger, touches an uncoated surface, a capacitor is
formed, dynamically. The sensor’s controller can determine the location of a touch, indirectly,
based on the change in the capacitance, as measured from the four corners of the surface. The
controller has a limited resolution, is prone to false signals from parasitic capacitive couplings, and
requires calibration during manufacturing. It is therefore most often used in simple applications
such as industrial controls and kiosks.

Projected capacitive touch (PCT) is a capacitive technology, consisting of an insulator, such
as glass or foil, coated with a transparent conductor, e.g., copper, antimony tin oxide (ATO),
nanocarbon, or indium tin oxide (ITO), that permits more accurate and flexible operation by
etching, rather than coating, a conductive layer. An X-Y grid is formed, either by etching a single
layer to form a grid pattern of electrodes, or by etching two separate, perpendicular layers of a
conductive material, with parallel lines or tracks to form a grid, comparable to that of the pixel
grid found in many LCD displays. A higher resolution PCT allows operation without a direct
contact.

PCT is a more robust solution than resistive touch technology because the PCT layers are
made from glass. Depending on the implementation, an active, or passive, stylus can be used
instead of, or in addition to, a finger. This is common with point-of-sale devices that require a
signature capture. Gloved fingers may, or may not, be sensed, depending on the implementation
and gain settings. Conductive smudges and similar interference on the panel surface can interfere
with the performance. Such conductive smudges come mostly from sticky, or perspiring fingertips,
especially in high humidity environments. Collected dust, which adheres to the screen due to the
moisture from fingertips, can also be a problem.

There are two types of PCT: Self Capacitance and Mutual Capacitance. If a finger. which

139Different LCD models can have their own commands.

c©Copyright 2012 Cypress Semiconductor

4.14. EXERCISES 301

is also a conductor, touches the surface of the screen, the local electrostatic field, created by
the application of of a voltage to each row and column, distorts the local electrostatic field
and hence the effective capacitance, and this distortion can be measured to obtain the finger
coordinates. Currently, mutual capacitive technology is more common than PCT technology. In
mutual capacitive sensors, there is a capacitor at every intersection of each row and each column,
e.g., a 16-by-14 array has 224 independent capacitors.

A voltage is applied to the rows or columns so that a finger, or conductive stylus, close
to the surface of the sensor changes the local electrostatic field, thereby reducing the mutual
capacitance. The capacitance change at each point on the grid can be measured to accurately
determine the touch location by measuring the voltage on the other axis. Mutual capacitance
allows multi-touch operation where multiple fingers, palms, or styli, can be accurately tracked
at the same time. Self-capacitance sensors can have the same X-Y grid as mutual capacitance
sensors, but the columns and rows operate independently. With self-capacitance, the capacitive
load of a finger is measured as a current on each column, or row, electrode. This method produces
a stronger signal than the mutual capacitive method, but it is unable to detect accurately more
than one finger, which results in ghosting , or misplaced location sensing.

4.14 Exercises

1. Give examples of when each of the communications protocols discussed in this chapter might
be used to provide the most efficient and cost effective transmission channel.

2. Explain why a twisted pair of conductors is used when deploying communications protocols
such as USB. What is the significance of the use of 90 ohm impedance wiring in such cases? Can
50 ohm, or 72 ohm, impedance cable be used instead? If not, why not? And if so, what are the
constraints on their use, if any?

3. Calculate the CRC for a string of bytes consisting of 01010101, 00000000, 11111111, 00001111,
00000011, 01010101, 11110000 and 10101010.

4. Explain the advantages and disadvantages of using parity checks, versus cyclic redundancy, to
insure data integrity.

5. Prepare a table comparing each of the communication protocols discussed in this chapter with
respect to parameters such as path differences, transmission speeds, handshaking techniques,
multiple master, multiple slave support, error detection methods, etc.

6. When transmitting multiple bits in the form of bytes, are parallel transmission paths always
capable of transmitting data faster than serial paths? If not, give an example of a situation for
which serial transmission can be faster than parallel transmission.

7. Explain how arbitration works for each of the protocols discussed in this chapter, if applicable.
In particular, treat the case of multiple masters, and slaves, operating in the same network.

8. Estimate the propagation delay of individual bits when transmitted in serial fashion over a
distance of 5 meters, 30 meters and 1000 meters. State all of your assumptions.

9. What are the advantages of the USB protocol that have have led to its largely replacing the
once ubiquitous RS232 protocol?

10. Why do many automotive and other applications often employ multiple communications
protocols in the same environment, e.g., why are CAN, LIN and FlexRay sometimes employed
in the same vehicle?

c©Copyright 2012 Cypress Semiconductor

302 CHAPTER 4. COMMUNICATION PERIPHERALS

Chapter 5

Programmable Logic

5.1 Programmable Logic Devices

Embedded system have become truly ubiquitous, outnumbering their PC counterparts by at least
one to two orders of magnitude. In the most common incarnation, embedded systems perform a
function, or typically a limited set of functions, to which they are tightly constrained. They are
expected to be fast, inexpensive, highly responsive, require minimal power, etc. In addition many
embedded systems are often required to be aware of changes in their operating environment and to
make the necessary adjustments, if any, in order to maintain high performance. Computations and
decisions made by embedded systems are to occur in real time and not introduce any degradations
in overall system performance.

The designer is expected to produce a design capable of meeting, or exceeding, the design
specifications while operating well within the constraints imposed by cost effectiveness, small
size, low power consumption, etc. This inevitably results in the designer having to optimize
multiple facets of the design in order to produce a system that is overall highly optimized with
respect to the key design criteria. Typical metrics include, materials cost, size, robustness, power
consumption, manufacturing costs, critical component availability, time-to-market, development
cost, etc. In addition to creating an optimized design, the designer must also take into account
the various design metrics and arrive at a system which represents the best set of tradeoffs with
respect to these metrics.

A further complication is introduced by the fact that an embedded system is a synthesis of
hardware and software. Although an embedded system can be subjected to rigorous testing, the
software component is often difficult, if not impossible, to thoroughly test prior to release to the
market. An additional complication is that often the designer must have significant expertise
in both software and hardware design and implementation in order to effectively optimize the
hardware and software aspects of the system. Finally, the designer also needs to have tech-
nical competence in a variety of technologies, e.g., optics, analog/digital subsystems, sensors,
microcontrollers, ADC/DAC technology, communications protocols, etc.

As discussed briefly in Chapter 1, programmable logic devices allow designers to employ
existing generic devices that include the ability to either create internal connections, or destroy
existing connections, as may be required, to implement the required functionality. One of the
most common of such devices is the field programmable gate array (FPGA). Although PLDs can
reduce nonrecurring engineering (NRE1) costs and have the additional advantage that custom

1Non-recurring engineering costs are one-time costs related to the development, engineering testing and design

132 Programmable Logic

devices can be made available almost instantly, they have the disadvantages of often requiring
more power, being larger devices, potentially slower than their production counterpart would
be, and can be significantly more expensive. While they can be mask-programmed, i.e., factory
programmed, it is usually not practical to use this type of technology, except when large volumes
of devices are required. Field programmable devices can be rapidly produced in small quantities
and allow the designer to make “mid-course” corrections in the field. FPGA-based designs can
also be arbitrarily complex and are typically highly scalable.2

The hierarchy of programmable, solid state, logic devices is shown in Figure 5.1.

Figure 5.1: Hierarchy of programmable logic devices.

Fortunately, and as a practical matter, it often matters little whether some aspect of an
embedded system is implemented in hardware, software or some synthesis of both. As a rule the
decision as to what is to be implemented in software and what is to be implemented in hardware
is based on any one of a number of tradeoffs in terms of cost, power requirements, size, ability to
rapidly adapt to changing market needs, etc. In cases in which the anticipated production may
represent relatively low volume in terms of number of units, time-to-prototype, time-to-market,
NRE and/or the ability to adapt to changing market needs are major concerns, PLDs can provide
an excellent alternative to customized ICs.

PLDs typically consist of large numbers of flip-flops and gates3 which can be connected under
software control in arbitrarily complex configurations to provide specific logic functionality. As
discussed briefly in Chapter 1, there are three basic types of PLDs, viz., simple PLDs (SPLDs),
complex PLDs (CPLDs) and field programmable PLDs typically referred to as field programmable
gate arrays (FPGAs). The programmable logic arrays, which are one type of PLD, employ fuses
which can be permanently rendered in an open state by special types of hardware/software
programmers. The generic array logic (GAL) is a PLD similar to the PAL except that it is
reprogrammable and they are relatively high-speed devices that are compatible with both 3.3

of a system or product.
2As an example of complexity and scalability capability of FPGAs, designs exist that have the functionality

of 1000 distinct cores for use in extremely high speed image processing.
3PLDs typically have hundreds or thousands of AND, OR and NOT gates and in some cases flip-flops that

can be programmatically interconnected to provide a wide variety of devices.

5.2 Boundary Scanning 133

and 5 volt logic. In addition to array logic, both GALs and PALs include output logic, e.g., tri-
state controls and/or gates that allow the combination of logic arrays and output logic referred to
as a “macrocell” to be implemented. PALs and GALS typically have multiple inputs and outputs
which further increases their versatility and usefulness.

Programmable logic devices are programmed under software control and typically require
that the target device’s functionality be provided in the form of state equations, truth tables,
Boolean expressions, etc. The programming software can then use these descriptions to produce
an industry standard binary file known as a JEDEC file4 which is subsequently loaded into a
hardware programmer capable of erasing, copying, verifying and/or programming PLDs.

5.2 Boundary Scanning

While it is sometimes highly desirable for a designer to be able to incorporate custom devices into
a design or application to facilitate its optimization, it is imperative that the designer be assured
that in doing so a new level of complexity has not been introduced . An important aspect of in-
corporating programmable devices particularly into sophisticated designs is the ability to confirm
that each such device is in and of itself meeting the relevant specifications and expectations of
the designer. Complex systems are generally challenging enough without introducing additional
challenges in the form of anomalous or unintended behavior/consequences of a programmable
device that is a subcomponent of the system.

Boundary scanning5 is a technique that allows programmable devices to be tested externally,
i.e., without access to the internal logic. Internal registers are provided by the device’s man-
ufacturer that allow testing of the internal logic and interconnections. However, the device is
not aware that such scanning is taking place and therefore the tests can be carried out while
the device under test (DUT) is operating in an unperturbed state, or states. PSoC3/5 include,
within their respective architectures, a test controller that can be used to access the device’s I/O
pins for boundary testing by employing an internal serial shift register routed across all of their
pins and hence the name “boundary scan”.

The circuitry at each PSoC3/5 pin is supplemented with a multipurpose element called a
boundary scan cell and most GPIO and SIO port pins have a boundary scan cell associated with
them. The interface used to control the values in the boundary scan cells is called the Test Access
Port (TAP) and is commonly known as the JTAG interface. It consists of three signals: (1) Test
Data In (TDI), (2) Test Data Out (TDO), and (3) Test Mode Select (TMS). Also included is
a clock signal (TCK) that clocks the other signals. TDI, TMS, and TCK are all inputs to the
device, and TDO is output from the device as shown in Figure 5.2. This interface enables testing
multiple ICs on a circuit board, in a daisy-chain fashion.

The TMS signal controls a state machine in the TAP. The state machine controls which
register (including the boundary scan path) is in the TDI-to-TDO shift path, as shown in Figure
5.3 for which:

• ir refers to the instruction register,

• dr refers to one of the other registers (including the boundary scan path), as determined
by the contents of the instruction register,

4The Joint Electron Devices Engineering Council (JEDEC) has defined standard object file transfer formats
for file transport to PLD programmers, e.g., JESD3-C.

5PSoC3/5 Support boundary scanning in accordance with the JTAG IEEE Standard 1149.1-2001 Test Access
Port and Boundary-Scan Architecture

134 Programmable Logic

Figure 5.2: PSoC3/5 JTAG interface architecture.

5.2 Boundary Scanning 135

Figure 5.3: Tap state machine.

136 Programmable Logic

• capture refers to the transfer of the contents of a dr to a shift register, to be shifted out on
TDO (read the dr)

and,

• update refers to the transfer the contents of a shift register, shifted in from TDI, to a dr
(write the dr)

The registers in the TAP are:

• Instruction - Typically 2 to 4 bits wide and holds the current instruction that defines which
data register is placed in the TDI-to-TDO shift path.

• Bypass - 1 bit wide, directly connects TDI with TDO, causing the device to be bypassed
for JTAG purposes.

• ID - 32 bits wide and used to read the JTAG manufacturer/part number ID of the device.

• Boundary Scan Path (BSR) - Its width equals the number of I/O pins that have boundary
scan cells, used to set or read the states of those I/O pins.

Other registers may be included in accordance with device manufacturer specifications. The
standard set of instructions (values that can be shifted into the instruction register), as specified
in IEEE 1149, are:

• EXTEST - Causes TDI and TDO to be connected to the boundary scan path (BSR). The
device is changed from its normal operating mode to a test mode. Then, the device’s pin
states can be sampled using the capture dr JTAG state, and new values can be applied to
the pins of the device using the update dr state.

• SAMPLE - Causes TDI and TDO to be connected to the BSR, but the device is left in its
normal operating mode. During this instruction, the BSR can be read by the capture dr
JTAG state, to take a sample of the functional data entering and leaving the device.

• PRELOAD - Causes TDI and TDO to be connected to the BSR, but the device is left in
its normal operating mode. The instruction is used to preload test data into the BSR prior
to loading an EXTEST instruction. Optional, but commonly available, instructions are:

• IDCODE - Causes TDI and TDO to be connected to an IDCODE register.

• INTEST - Causes TDI and TDO to be connected to the BSR. While the EXTEST instruc-
tion allows access to the device pins, INTEST enables similar access to the core logic signals
of a device.

5.3 Macrocells, Logic Arrays and UDBs

Combining gate arrays and macrocells6 provides a significantly higher level of functionality,
particularly when the macrocells include registers, ALUs, flip-flops, etc., than that obtain-
able through the use of gates alone. One of the simplest configurations of such a combination
consists of a sum-of-products (SoP) combinatorial logic function and a flip-flop. An exam-
ple of a device employing multiple such macrocells, as first defined, cells, Logic arrays is
shown in Figure 5.4. and serve as fundamental building blocks of PLDs. Combinations of
macrocells and gates can be configured in arbitrarily large arrays to provide very complex

6In the present discussion, the term macrocell refers solely to a combination of flip-flops and I/O devices
exclusive of logic arrays and OR-gates. However, some definitions of the term macrocell represent a broader
definition and include all of the logic required to provide the Boolean functionality, flip flops and I/O other than
that provided by the logic array. The latter definition is intended to completely encapsulate all of a particular
functionality and is often referred to as a “block’. In the case of PSoC Creator, a comprehensive set of such
“building blocks” are provided and they are referred to as UDBs, or universal digital blocks.

5.3 Macrocells, Logic Arrays and UDBs 137

Figure 5.4: A simple device consisting of gate arrays and macrocells.

138 Programmable Logic

sequential and combinatorial logic. Some configurations are driven by lookup tables and
programmable memory. The information stored in the LUTs can be loaded into memory as
required to provide the required logic functions. While in principle the number of inputs to
a macrocell are unlimited and therefore should make it possible to have arbitrarily complex
functions, a linear increase in fan-in7 results in a geometric increase in the number of bits
to be stored in the LUT.

PSoC Creator allows the designer to employ universal digital blocks based on macrocell-
gate array combinations that are that are not only configurable but are specifically designed
to serve as customizable blocks within PSoC3/5 for a broad range of embedded system
applications that incorporate a microcontroller and associated peripherals. These blocks,
referred as UDBs consist of a combination of uncommitted logic similar to programmable
logic devices, structured logic (datapaths) and a flexible routing scheme. The UDBs can be
further enhanced and supplemented by Boolean elements constructed from basic logic func-
tions supported by PSoC Creator such as AND, NAND, OR, NOR, NOT, XOR, XNOR, D
flip-flops, etc.8 Boolean functions can be created using these basic logic functions to provide
the additional functionality that is required for specific applications. Thus designers can
create sophisticated systems using the standard set of PSoC3/5 blocks or create combina-
tions of Boolean elements and UDBs to provide the required functionality by employing
Verilog/Warp9.

PSoC3 has 24 UDBs and in the case of pulse width modulators (PWMs), PSoC Creator
will allow the creation of as many as 24 PWMs each of which has two independent outputs.
Thus it is possible to have 48 PWM outputs.10 It is also possible to use the 24 UDBs to
configure 12 UARTs in a single PSoC3/5 device.

In addition to UDBs, which can be used to provide programmable peripheral functions,
PSoC3/5 also includes a suite of user-configurable blocks that provide a wide range of
additional capability, e.g., analog, CapSense, communications, digital logic, displays, filters,
ports/pins and system blocks as shown in Figure 5.5. All of these blocks, i.e., digital, analog
and UDBs, are interoperable and in addition external components such as resistors and
capacitors can be used to further extend PSoC3/5’s capability as is shown in Chapter 9.

UDB blocks support the following:

– Universal digital block arrays as large as 64 UDBs.
– Portions of UDBs can be either chained, or shared, to enable larger functions.
– Multiple digital functions supported by the UDBs include timers, counters, PWMs (with

dead band generator), UART, SPI, and CRC generation/checking.
– Each UDB includes:

∗ an ALU-based, 8-bit datapath
∗ Two fine-grained PLDs11

∗ A control and status module
∗ A clock and reset module

7Fan-in is defined as the number of inputs to a gate, or other device.
8Throughout this textbook both upper and lower case will be used when referring to logical operators primarily

as a notational convenience.
9The discussion of Verilog/Warp begins in section 5.13.

10An additional four, single-output PWMs are also available by using PSoC3’s fixed function
counter/timer/PWMs.

11Fine-grained in the present context refers to the implementation of relatively large numbers of simple logic
modules as opposed to coarse-grained which implies relatively fewer but larger logic modules often each with two
or more sequential logic elements.

5.3 Macrocells, Logic Arrays and UDBs 139

Figure 5.5: Basic building blocks supported by PSoC Creator.

140 Programmable Logic

As shown in Figure 5.6, the UDB consists of a pair of PLDs, a datapath and control, status

Figure 5.6: UDB Block Diagram.

clock and reset functions. The PLDs accept input from the routing and form registered,
or combinational sum-of-products logic, to implement state machines12, control datapath
operations, condition inputs, and drive outputs. The datapath block contains a dynamically
programmable ALU, two FIFOs, comparators, and condition generation. The control and
status registers provide a way for the CPU firmware to interact, and synchronize, with
UDB operations. Control registers drive internal routing, and status registers read internal
routing. The reset and clock control block provides clock selection/enabling, and reset
selection, for the individual blocks in the UDB. The PLDs and datapath have chaining
signals that enable neighboring blocks to be linked to create higher precision functions.
UDB I/Os are connected to the routing channel through a programmable switch matrix for
connections between blocks in one UDB, and to all other UDBs in the array. All registers
and RAM in each UDB are mapped into the system address space and are accessible as
both 8- and 16-bit data.

In addition to a UDB’s datapath, status register, control register and 2 PLDs, there is also
a count7 down counter available that uses certain resources in the UDB, i.e., the control
register, the status register’s mask register and if a routed load or enable is used, the status
register’s inputs. In the latter case if the inputs are not used by the count7, the status
register remains available for use.13 In PSoC Creator count7 can be implemented as shown
in Figure 5.7.

Figure 5.8 shows the internal structure of the PLDs. They can be used to implement state
machines, perform input or output data conditioning, and to create lookup tables (LUTs).
The PLDs may also be configured to perform arithmetic functions, sequence the datapath,
and generate status. General purpose RTL14 can be synthesized and mapped to the PLD

12State machines are discussed in section 5.12
13However, the status register’s interrupt capability (statusi) not available for use under these circumstances.
14RTL refers to register-level-transfer with respect to Verilog code that describes the transformation of data as

5.3 Macrocells, Logic Arrays and UDBs 141

Figure 5.7: Implementation of a count7 down counter in PSoC Creator.

blocks. Each has 12 inputs which feed across eight product terms (PT) in the AND array.
In a given product term, the true (T) or complement (C) of the input can be selected. The
output of the PTs are inputs into the OR array. The letter C in 12C4 indicates that the OR
terms are constant across all inputs, and each OR input can programmatically access any,
or all, of the PTs. This structure gives maximum flexibility and ensures that all inputs and
outputs are permutable. Note that there are four outputs OUT0,OUT1, OUT2 and OUT3.

Figure 5.8: PLD 12C4 Structure

PSoC3/5’s macrocell architecture is shown in Figure 5.9. The output drives the routing
array, and can be registered or combinational. The registered modes are D Flip-Flop with

it is passed from register-to-register.

142 Programmable Logic

Figure 5.9: PSoC3/5 macrocell architecture.

true or inverted input, and Toggle Flip-Flop on input high or low. The output register can
either be set or reset for purposes of initialization, or asynchronously during operation under
control of a routed signal. The outputs of the two PLDs are mapped into the address space
as an 8-bit, read-only, UDB working register, that is directly addressable by the CPU’s
firmware, as shown in Figure 5.10.

The PLDs are chained together (the PLD carry chain) in UDB address order. The carry
chain input is routed from the previous UDB in the chain, through each macrocell in both of
the PLDs, and then to the next UDB as the carry chain out. To support the efficient mapping
of arithmetic functions, special product terms are generated and used in the macrocell in
conjunction with the carry chain.

Figure 5.10: Macrocell architecture read-only register.

5.4 The Datapath 143

5.4 The Datapath

The datapath, shown in Figure 5.11, contains an 8-bit single-cycle ALU15, with associated com-
pare and condition generation circuits. A datapath may be chained with datapaths in neighboring
UDBs to achieve higher precision functions. The datapath includes a small, RAM-based con-
trol store16, which can dynamically select the operation and configuration to perform in a given
cycle. The datapath is optimized to implement typical embedded functions, such as timers, coun-
ters, PWMs, PRS, CRC, shifters and dead band generators. The addition of add and subtract
functions allows support for digital Delta Sigma operations.

Dynamic configuration, or perhaps more appropriately “dynamic re-configuration”, refers to
the ability to change the datapath functions and interconnections, on a cycle-by-cycle basis under
sequencer control. This is implemented using the configuration RAM, which stores eight 16-bit
wide configurations. The address input to this RAM can be routed from any block connected to
the digital peripheral fabric, most typically PLD logic, I/O pins, or other datapaths.

The ALU can perform eight general-purpose functions: increment, decrement, add, subtract,
AND, OR, XOR, and PASS. Function selection is controlled by the configuration RAM on a
cycle-by-cycle basis. Independent shift (left, right, nibble swap) and masking operations are
available at the output of the ALU.

Each datapath has two comparators, with bit-masking options, which can be configured to
select a variety of datapath register inputs for comparison. Other detectable conditions include
all zeros, all ones, and overflow. These conditions form the primary datapath output selects to
be routed to the digital peripheral fabric as outputs, or inputs, to other functions.

The datapath has built-in support for single-cycle Cyclic Redundancy Check (CRC) compu-
tation and Pseudo Random Sequence (PRS)17 generation of arbitrary width and arbitrary poly-
nomial specification. To achieve CRC/PRS widths greater than 8 bits, signals may be chained
between datapaths. This feature is controlled dynamically, and therefore can be interleaved with
other functions. The most significant bit of an arithmetic and shift function can be program-
matically specified (variable MSB). This supports variable width CRC/PRS functions and, in
conjunction with ALU output masking, can implement arbitrary width timers, counters, and
shift blocks.

5.4.1 Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, that can be individually configured for direction as
an input buffer (system bus writes to the FIFO, datapath internals read the FIFO), or an output
buffer (datapath internals write to the FIFO, the system bus reads from the FIFO). These FIFOs
generate status that can be routed to interact with sequencers, interrupt, or DMA requests.

5.4.2 Chaining

The datapath can be configured to chain conditions and signals with neighboring datapaths. Shift,
carry, capture, and other conditional signals can be chained to form higher precision arithmetic,
shift, and CRC/PRS functions.

15The single-cycle, arithmetic logic units (ALUs) fetch, execute and store results in a single clock cycle.
16The control store holds the microinstructions that are used to implement the ALU’s instruction set. Some

ALUs have been implemented with writable control stores that allow the instruction set to be altered in real time.
17Pseudo random refers to the fact that sequence is deterministic and at some point repeat itself. Section

9.15.14 presents a discussion of PRS generation techniques.

144 Programmable Logic

Figure 5.11: Datapath (Top Level).

5.4 The Datapath 145

In applications that are oversampled, or do not need the highest clock rates, the single ALU
block in the datapath can be efficiently shared with two sets of registers and condition gener-
ators. ALU and shift outputs are registered and can be used as inputs in subsequent cycles.
Usage examples include support for 16-bit functions in one 8-bit datapath, or interleaving a CRC
generation operation with a data shift operation.

5.4.3 Datapath Inputs and Outputs

The datapath has three types of inputs: configuration, control, and serial/parallel data. The
configuration inputs select the control store RAM address. The control inputs load the data
registers from the FIFOs and capture accumulator outputs into the FIFOs. Serial data inputs
include shift in and carry in. A parallel data input port allows up to eight bits of data to be
brought in from routing.

There are a total of 16 signals generated in the datapath. Some of these signals are conditional
signals, e.g., compares, some are status signals, e.g., FIFO status, and the rest are data signals,
e.g., shift out. These 16 signals are multiplexed into the six datapath outputs and then driven to
the routing matrix. By default the outputs are single-synchronized (pipelined). A combinational
output option is also available for these outputs.

5.4.4 Datapath Working Registers

Each datapath module has six, 8-bit working registers all of which are readable and writable by
the CPU and DMA:

• Accumulator (A0,A1) - The accumulators may be both a source and a destination for the
ALU. They may also be loaded from a Data register, or a FIFO. The accumulators typically
contain the current value of a function, such as a count, CRC, or shift.

• Data (D0,D1) - The Data registers typically contain constant data for a function, such as
a PWM compare value, timer period, or CRC polynomial.

• FIFOs (F0,F1) - The two 4-byte FIFOs provide both a source and a destination for buffered
data. The FIFOs can be configured as one input buffer and one output buffer, two input
buffers or two output buffers. Status signals indicate the read and write status of these
registers. The FIFOs can be used to buffer TX and RX data in the SPI or UART and
PWM compare and timer period data.

Each FIFO has a variety of possible operational modes and configurations:

• Input/Output - In input mode, the system bus writes to the FIFO and the data is read
and consumed by the datapath internals. In output mode, the FIFO is written to by the
datapath internals and is read, and consumed, by the system bus.

• Single Buffer - The FIFO operates as a single buffer with no status. Data written to the
FIFO is immediately available for reading, and can be overwritten at anytime.

• Level/Edge - The control to load the FIFO from the datapath internals can be either level
or edge triggered.

• Normal/Fast - The control to load the datapath is sampled on the currently selected
datapath clock (normal), or the bus clock (fast). This allows captures to occur at the
highest rate in the system (bus clock), independent of the datapath clock.

• Software Capture - When this mode is enabled, and the FIFO is in output mode, a
read by the CPU/DMA of the associated accumulator (A0 for F0, A1 for F1) initiates a
synchronous transfer of the accumulator value into the FIFO. The captured value may then

146 Programmable Logic

be immediately read from the FIFO by the datapath internals. If chaining is enabled, the
operation follows the chain to the MS block for atomic reads by datapaths of multi-byte
values.

• Asynch - When the datapath is being clocked asynchronously to the system clocks, the
FIFO status for use by the datapath state machine (blk stat) is resynchronized to the current
DP clock.

• Independent Clock Polarity - Each FIFO has a control bit to invert polarity of the FIFO
clock with respect to the datapath clock.

The configurations controlled by the FIFO direction bit are shown in Figure 5.12. The TX/RX

Figure 5.12: FIFO configurations.

mode has one FIFO in input mode and the other in output mode. The primary use for this
configuration is serial peripheral interface (SPI) bus communications. The dual capture configu-
ration provides independent capture of A0 and A1, or two separately controlled captures of either
A0 or A1. The dual buffer mode provides buffered periods and compares, or two independent
periods/compares.

5.5 Datapath ALU

The Datapath block’s ALU consists of three, independent, 8-bit, programmable functions that
employ an arithmetic/logic, a shifter unit and a mask unit. The ALU functions shown in Table
5.1 are configured dynamically by the RAM control store18.

5.5.1 Carry Functions

The carry in option is used in arithmetic operations. There is a default carry in value for each
function as shown in Table 5.2. In addition to the default arithmetic mode for carry operation,

18“srca” and “srcb” refer to the ALU a and b inputs, respectively.

5.5 Datapath ALU 147

Table 5.1: ALU Functions

Table 5.2: Carry In Functions

there are three additional carry options, as shown in Table 5.3. The CI SELA and CI SELB
configuration bits determine the carry in for a given cycle. Dynamic configuration RAM selects
either the A or B configuration on a cycle-by-cycle basis. When a routed carry is used, the

Table 5.3: Carry In Functions

meaning with respect to each arithmetic function is shown in Table 5.4. Note that in the case of
the decrement and subtract functions, the carry is active low (inverted).

The carry out option is a selectable datapath output and is derived from the currently defined
MSB position, which is statically programmable. This value is also chained to the next most
significant block as an optional carry in. Note that in the case of decrement and subtract
functions, the carry out is inverted. Options forcarry in, and for MSB selection for carry out
generation, are shown in Figure 5.13. The registered carry out value may be selected as the carry
in for a subsequent arithmetic operation. This feature can be used to implement higher precision
functions in multiple cycles.

148 Programmable Logic

Table 5.4: Routed Carry In Functions

Figure 5.13: Carry operation block diagram.

Additional carry in functions are provided by CI SEL A and CI SEL B. A value of 00 imposes
the default carry mode. A value of ‘01’ sets the carry mode as registered so that add with carry
and subtract with borrow operations can be implemented. In this mode, the carry flag represents
the result of the previous cycle. A value of ‘10’ sets the routed carry mode for cases in which
the carry is generated somewhere else and routed to the input allowing controllable counters
to be implemented. Finally, the value ‘11’ sets the chainable carry mode allowing the carry to
be chained from the previous datapath and used to implement single-cycle operations of higher
precision involving two or more datapaths.

5.5.2 ALU Masking Operations

An 8-bit mask register in the UDB static configuration register space defines the masking op-
eration. In this operation, the output of the ALU is masked (ANDed) with the value in the
mask register. A typical use for the ALU mask function is to implement free-running timers and
counters in “powers-of-two” resolutions.

5.5.3 All Zeros and Ones Detection

Each accumulator has dedicated all zeros and all ones detect capability. These conditions are
statically chainable as specified in UDB configuration registers. In addition, the requirement
to chain, or not chain, these conditions is statically specified in UDB configuration registers.
Chaining of zero detect is the same concept as the compare equal. Successive chained data is
ANDed, if the chaining is enabled.

5.5.4 Overflow

Overflow is defined as the XOR of the carry into the MSB and the carry out of the MSB. The com-
putation is done on the currently defined MSB as specified by the MSB SEL bits. Although this
condition is not chainable, the computation is valid when done in the most significant datapath
of a multi-precision function, as long as the carry is chained between blocks.

5.5 Datapath ALU 149

5.5.5 Shift Operations

Shift operations, shown in Table 5.5, can occur independently from those of the ALU. A shift out

Table 5.5: Shift functions.

value is available as a datapath output. Both shift out right (sor) and shift out left (sol msb) share
that output selection. A static configuration bit (SHIFT OUT in register CFG15) determines
which shift output is used as a datapath output. In the absence of a shift, the sor and sol msb
signal is defined as the LSB19 or MSB of the ALU function, respectively.

The SI SELA and SI SELB configuration bits determine the shift in data for a given operation.
Dynamic configuration RAM selects the A or B configuration on a cycle-by-cycle basis. Shift in
data is only valid for left and right shift; it is not used for pass and nibble swap. The selections
and usage apply to both left and right shift directions, and if for either SI SEL A or SI SEL B
the bit values are 00, the shift in source is default/arithmetic, i.e., the default input is the value
of the DEF SI configuration bit(fixed 0 or 1). However, if the MSB SI bit is set, then the default
input is the currently defined MSB, but for right shift only.

If the bit values are 01, then the shift in source is registered and the shift value is driven by
the current registered shift-out value from the previous cycle. The shift-left operation uses the
last shift-out left value.The right-shift operation uses the last shift-out right value. If the bit
values are 10, then the shift-in source is “routed”. Shift is selected from the routing channel, i.e.,
the SI input. Finally, if the bit values are 11, the shift-in source is chained and shift-in left is
routed from the right datapath neighbor.

The shift-out data comes from the currently defined MSB position and the data that is shifted
in from the left (shift-in right) goes into the currently defined MSB position. Both shift-out data
(left or right) are registered and can be used in a subsequent cycle. This feature can be used
to implement a higher precision shift in multiple cycles. The bits that are isolated by the MSB
selection are still shifted.

In the example shown in Figure 5.14, bit 7 still shifts in the sil value on a right shift and bit
5 shifts in bit 4, on a left shift. The shift out, either right or left, from the isolated bits is lost.

5.5.6 Datapath Chaining

As discussed previously, each datapath block contains an 8-bit ALU, which is designed to chain
carries, shifted data, capture triggers, and conditional signals to the nearest neighbor datapaths
to create higher precision arithmetic functions and shifters. These chaining signals, which are
dedicated signals, allow single-cycle 16-, 24- and 32-bit functions to be efficiently implemented
without the timing uncertainty of channel routing resources. In addition, the capture chaining
makes possible an atomic read of the accumulators in chained blocks. As shown in Figure 5.15,
all generated conditional and capture signals chain in the direction of least significant to most

19The acronym for least significant byte is LSB.

150 Programmable Logic

Figure 5.14: Shift Operation.

Figure 5.15: Datapath chaining flow.

significant blocks. Shift left also chains from the least-to-most significant block and shift right
chains from the most-to-least significant block. The CRC/PRS chaining signal for feedback chains
from the least-to-most significant block; the MSB output chains from the most-to-least significant
block.

5.5.7 Datapath and CRC/PRS

The datapath has special connectivity to allow cyclic redundancy checking (CRC) and pseudo
random sequence (PRS) generation. Chaining signals are routed between datapath blocks to
support CRC/PRS bit lengths of more than 8 bits. The most significant bit (MSb) of the most
significant block in the CRC/PRS computation is selected and routed, while chained across
blocks, to the least significant block. The MSB is then XORed with the data input (SI data)
to provide the feedback (FB) signal. The FB signal is then routed and chained across blocks
to the most significant block. This feedback value is used in all blocks to gate the XOR of the
polynomial from the Data0 or Data1 register with the current accumulator value.

Figure 5.16 shows the structural configuration for the CRC operation. The PRS configuration
is identical except that the shift in (SI) is tied to ‘0’. In the PRS configuration, D0 or D1 contain
the polynomial value, while A0 or A1 contain the initial or seed20 value and the CRC residual
value at the end of the computation. To enable CRC operation, the CFB EN bit in the dynamic
configuration RAM must be set to ‘1’. This enables the AND of SRCB ALU input with the CRC
feedback signal. When set to zero, the feedback signal is driven to ‘1’, which allows for normal

20The phrase “seed value” is used throughout this textbook in various contexts and refers to an initial value
with which to begin a process.

5.5 Datapath ALU 151

Figure 5.16: CRC Functional Structure.

arithmetic operation. Dynamic control of this bit on a cycle-by-cycle basis gives the capability
to interleave a CRC/PRS operation with other arithmetic operations.

5.5.8 CRC/PRS Chaining

Figure 5.17 illustrates an example of CRC/PRS chaining across three UDBs. This arrangement
is capable of supporting a 17- to 24-bit operation. The chaining control bits are set according to
the position of the datapath in the chain, as shown.

Figure 5.17: CRC/PRS Chaining Configuration

The CRC/PRS MSB signal (cmsbo, cmsbi) is chained based on the following:

• If a given block is the most significant block, the MSb bit (according to the polynomial
selected) is configured using the MSB SEL configuration bits. If a given block is not the
most significant block, the CHAIN MSB configuration bit must be set and the MSb signal is
chained from the next block in the chain. If a given block is the least significant block, then
the feedback signal is generated in that block from the built-in logic that takes the shift in
from the right (sir) and XORs it with the MSb signal. (For PRS, the sir signal is tied to
’0’.)

• If a given block is not the least significant block, the CHAIN FB configuration bit must be
set and the feedback is chained from the previous block in the chain.

152 Programmable Logic

The CRC/PRS MSb signal (cmsbo, cmsbi) is chained based on the following:

• If a given block is the most significant block, the MSB bit (according to the polynomial
selected) is configured using the MSB SEL configuration bits. If

• If a given block is not the most significant block, the CHAIN MSB configuration bit must
be set and the MSB signal is chained from the next block in the chain.

5.5.9 CRC/Polynomial Specification

The following is an illustrative example of how to configure the polynomial for programming into
the associated D0/D1 register. Consider the CCITT21 CRC-16 polynomial, which is defined as
x16 + x12 + x5 + 1. The method for deriving the data format from the polynomial is shown in
Figure 5.18. The X0 term is inherently always ’1’ and therefore does not need to be programmed.

Figure 5.18: CCITT CRC 16 Polynomial

For each of the remaining terms in the polynomial, a ‘1’ is set in the appropriate position in the
alignment shown.22

Assuming that D0 contains the polynomial and A0 is used to compute CRC/PRS a suitable
polynomial has to be selected and written into D0. Next a seed value is selected and written into
A0.

5.5.10 External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS) to enable support for external computation
of a CRC or PRS. As shown in Figure 5.19, computation of the CRC feedback is done in a PLD
block. When the bit is set, the CRC feedback signal is driven directly from the CI (Carry In)
datapath input selection mux, bypassing the internal computation. The figure shows a simple
configuration that supports up to an 8-bit CRC or PRS, inclusive. Normally the built-in circuitry
is used, but this feature allows more elaborate configurations, such as up to a 16-bit, inclusive,
CRC/PRS function in one UDB, using time division multiplexing. In this mode, the dynamic
configuration RAM bit CFB EN still controls whether the CRC feedback signal is ANDed with
the SRCB ALU input. Therefore, as with the built-in CRC/PRS operation, the function can be
interleaved with other functions, if desired.

21CCITT is an abbreviation for Comité Consultatif International Téléphonique et Télégraphhique which is an
international standards organization involved in the development of communications standards.

22This polynomial format is slightly different from the format normally specified in HEX. For example, the
CCITT CRC16 polynomial is typically denoted as 1021H. To convert it to the format required for datapath
operation, shift right by one and add a ‘1’ in the MSb location. In this case, the correct polynomial value to load
into the D0 or D1 register is 1810H.

5.5 Datapath ALU 153

Figure 5.19: External CRC/PRS Mode.

5.5.11 Datapath Outputs and Multiplexing

Datapath outputs and multiplexing conditions are generated from the registered accumulator
values, ALU outputs, and FIFO status. These conditions can be driven to the UDB channel
routing for use in other UDB blocks as interrupts, DMA requests, or applied to globals and I/O
pins. The 16 possible conditions are shown in Table 5.6. Conditions are generated from the
registered accumulator values, ALU outputs, and FIFO status. These conditions can be driven
to the UDB channel routing for use in other UDB blocks, use as interrupts or DMA requests, or
to globals and I/O pins. The 16 possible conditions are shown in the Table 5.6. There are a total

Table 5.6: Datapath Condition Generation

of six datapath outputs. Each output has a 16-1 multiplexer that allows any of these 16 signals

154 Programmable Logic

to be routed to any of the datapath outputs.

5.5.12 Compares

There are two compares, one of which has fixed sources (Compare 0) and the other has dynam-
ically selectable sources (Compare 1). Each compare has an 8-bit, statically programmed mask
register, which enables the compare to occur in a specified bit field. By default, the masking is off
(all bits are compared) and must be enabled. Comparator 1 inputs are dynamically configurable.
As shown in Table 5.7, there are four options for Comparator 1, which applies to both the“less
than” and the“equal” conditions.

The CMP SELA and CMP SELB configuration bits determine the possible compare config-
urations. A dynamic RAM bit selects one of the A or B configurations on a cycle-by-cycle basis.
Compare 0 and Compare 1 are independently chainable to the conditions generated in the pre-

Table 5.7: Compare Configurations

vious datapath (in addressing order). Whether to chain compares, or not, is statically specified
in the UDB configuration registers. Figure 5.20 illustrates compare equal chaining, which is just
an ANDing of the compare equal in this block with the chained input from the previous block.
Figure 5.21 illustrates compare less than chaining.

Figure 5.20: Compare Equal Chaining.

In this case, the “less than” is formed by the compare less than output in this block, which is
unconditional. This is ORed with the condition where this block is equal, and the chained input
from the previous block is asserted as less than.

5.6 Dynamic Configuration RAM (DPARAM) 155

Figure 5.21: Compare Less Than chaining.

5.6 Dynamic Configuration RAM (DPARAM)

Each datapath contains a 16 bit-by-8 word dynamic configuration RAM, which is shown in Figure
5.22. The purpose of this RAM is to control the datapath configuration bits on a cycle-by-cycle

Figure 5.22: Configuration RAM I/O

basis, based on the clock selected for that datapath. This RAM has synchronous read and write
ports for purposes of loading the configuration via the system bus. An additional asynchronous
read port is provided as a fast path to output these 16-bit words as control bits to the datapath.
The asynchronous address inputs are selected from datapath inputs and can be generated from
any of the possible signals on the channel routing, including I/O pins, PLD outputs, control block
outputs, or other datapath outputs. The primary purpose of the asynchronous read path is to
provide a fast single-cycle decode of datapath control bits.

5.7 Status and Control Mode

When operating in status and control mode, this module functions as a status register, interrupt
mask register, and control register in the configuration shown in Figure 5.23.

5.7.1 Status Register Operation

One 8-bit, read-only status register is available for each UDB and inputs to this register come
from any signal in the digital routing fabric. The status register is non-retentive, i.e., it loses its
state during sleep intervals and is reset to 0x00 upon awakening. Each bit can be independently

156 Programmable Logic

Figure 5.23: Status and Control Operation

programmed to operate in one of two ways, 1) for STAT MD = 0, a read returns the current
value of the routed signal (transparent) and 2) for STAT MD = 1, a high on the internal net is
sampled and captured (sticky, clear on read).23

An important feature of the status register clearing operation is that clearing of status is only
applied to the bits that are set. This allows other bits that are not set to continue to capture
status, and a coherent view of the process can be maintained.

5.7.2 Status Latch During Read

Figure 5.24 shows the structure of the status read logic. The sticky status register is followed by
a latch, which latches the status register data and holds it stable during the duration of the read
cycle, regardless of the number of wait states in a given read.

5.7.3 Transparent Status Read

By default, a CPU read of this register transparently reads the state of the associated routing
net. This mode can be used for a transient state that is computed and registered internally in
the UDB.

5.7.4 Sticky Status, with Clear on Read

In this mode, the associated routing net is sampled on each cycle of the status and control clock.
If the signal is high in a given sample, it is captured in the status bit and remains high, regardless
of the subsequent state of the associated route. When CPU firmware reads the status register,

23It is cleared when the register is read.

5.8 Counter Mode 157

Figure 5.24: Status Read Logic

the bit is cleared. The status register clearing is independent of mode and occurs even if the
block clock is disabled; it is based on the bus clock and occurs as part of the read operation.

5.8 Counter Mode

When a UDB is in counter mode, the control register operates as a 7-bit down counter with
programmable period and automatic reload that can be used for UDB internal operations or
firmware applications. 7-bit down counter. Routing inputs can be configured to control both the
enable and reload of the counter. When enabled, control register operation is not available.

The counter has the following features:

• a 7-bit read/write period register, a 7-bit count register that is read/write but can only be
accessed when the counter is disabled,

• automatic reload of the period to the count register on terminal count (0),

• a firmware control bit in the Auxiliary Control working register called CNT START, to start
and stop the counter,24

• selectable bits from the routing for dynamic control of the counter enable and load functions:
EN, routed enable to start or stop counting and LD, routed load signal to force the reload
of period,25

• it is level sensitive and continues to load the period while asserted. The 7-bit count may be
driven to the routing fabric as sc out[6:0],

• the terminal count may be driven to the routing fabric as sc out[7].

To enable this mode, the SC OUT CTl[1:0] bits must be set to counter output. In this mode
the normal operation of the control register is not available. The status register can still be used
for read operations, but should not be used to generate an interrupt because the mask register
is reused as the counter period register. The use of SYNC mode depends on whether or not the
dynamic control inputs (LD/EN) are used. If they are not used, SYNC mode is unaffected. If
they are used, SYNC mode is unavailable.

5.8.1 Sync Mode

As shown in Figure 5.25, the status register can operate as a 4-bit double synchronizer, clocked
24This is an overriding enable and must be set for optional routed enable to be operational.
25When this signal is asserted, it overrides a pending terminal count.

158 Programmable Logic

Figure 5.25: Sync Mode

by the current SC CLK, when the SYNC MD bit is set. This mode may be used to imple-
ment local synchronization of asynchronous signals, such as GPIO inputs. When enabled, the
signals to be synchronized are selected from UDB pins SC IN[3:0], the outputs are driven to
the SC IO OUT[3:0] pins, and SYNC MD automatically puts the SC IO pins into output mode.
When in this mode, the normal operation of the status register is not available, and the status
sticky bit mode is forced off, regardless of the control settings for this mode. The control register
is not affected by the mode. The counter can still be used with limitations. No dynamic inputs
(LD/EN) to the counter can be enabled in this mode.

5.8.2 Status and Control Clocking

The status and control registers require a clock selection for any of the following operating modes:

• Control register in counter mode

• Status register with any bit set to “sticky” 26

• Sync mode

The clock for this block is allocated in the reset and clock control module.

5.8.3 Auxiliary Control Register

The read-write Auxiliary Control register is a special register that controls fixed function hardware
in the UDB. This register allows CPU firmware to dynamically control the built-in interrupt,
FIFO, and counter hardware. The register bits and descriptions are shown below:

26Sticky bits are defined as bits that retain their current value until they are reset, e.g., by the CPU.

5.9 Boolean Functions 159

5.9 Boolean Functions

George Boole27 published a seminal work in 1847, entitled “The Mathematical Analysis of Logic”
that was followed by a second equally important work in 1854 entitled “An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities”.
His approach was to develop a type of linguistic algebra28 based on the three constructs AND
(A ∙B), OR (A+B) and NOT (A).29 He was then able to show that they could be used to carry
out basic mathematical functions and comparisons. Thus it became possible to express logical
statements in terms of algebraic equations. His work ultimately formed the basis for much of
modern computer technology. Claude Elwood Shannon30 was the first use Boolean algebra in
describing digital circuits.

Simply stated, Boolean Algebra allows any computable algorithm, or realizable digital circuit,
to be expressed as a system of Boolean equations. AND, OR and NOT can be easily constructed
from NAND gates which is equivalent to an AND gate followed by a NOT gate, as shown in
Figure 5.26. Having a single type of building block, i.e., NAND gates, as the basis for these

Figure 5.26: The NAND gate as the basic building block for AND, OR and NOT (inverter) gates.

three functions allows very complex circuits to be created from the same building block. Boolean
functions operate on Boolean variables and the resulting value of a Boolean function is either one
or zero.

The formal definition of a Boolean function is given by:

A Boolean function is a mapping from the Cartesian product xn{0, 1} to {0, 1}, i.e., a func-
tion F : xn{0, 1} ⇒ setB = {0, 1} where xn{0, 1} is the set of all n-tuples {x1, x2 ∙ ∙ ∙ .xn}
and the xn are either one or zero.

27George Boole (1815-1864), a mathematician, introduced not only a seminal theory on symbolic logic which
was ultimately to be known as Boolean logic, but also two important treatises on differential equations and the
calculus of finite differences.

28Which ultimately became universally referred to as “Boolean Algebra”.
29Note that although AND and OR are binary operators, NOT is a unary operator since it operates on only

one operand.
30Claude E. Shannon is regarded by many as the founding father of the electronic communications age. Both

a mathematician and an engineer, he applied Boole’s logical algebra to telephone switching circuits and authored
a classic paper entitled “A Symbolic Analysis of Relay and Switching Circuits”. His work on information theory
beginning with his two-part paper entitled “A Mathematical Theory of Communication” continues to be widely
studied and has contributed much to the evolution of modern computer technology.

160 Programmable Logic

The set B = {0,1} is arguably one of the most used sets in the world. Boolean algebra provides
the operations and rules for working with this set and forms the foundation for development and
use of digital circuits and for VLSI design. A Boolean algebra consists of a set of operators and
a set of axioms. The operators for the Boolean algebra to be discussed here are +, ∙ and ′ for
OR, AND and the complement31, respectively. The order of precedence for these operators is
complement, product and then sum.

The set of postulates include:

• closure,32

• the existence of identity elements for AND (1), and, OR (0) but not for NOT,
(A + 0 = A, A ∙ 1 = A)

• associative: A + (B+C) = (A+B) +C,

• commutative: A + B = B + A and A ∙ B = B ∙ A,

• distributive: A + (B ∙ C) = (A + B) ∙ (A + C) and A ∙ (B + C) = (A ∙ B) + (A ∙ C),

and,

• inverse: A + A′ = 1 and A ∙ A′ = 0.

Boolean expressions are given either in terms of minterms or maxterms which are defined respec-
tively as the product of N literals, each of which occurs only once, and the sum of N literals, each
of which occurs only once. A literal a variable within a term of the expression that may, or may
not, be complemented. A Boolean function is a mapping from a domain consisting of n-tuples of
zeros and ones to a range consisting of an element of B. Boolean functions can be expressed as a
sum-of-products (SoP)

F = (A ∙ B) + (A ∙ B) (5.1)

or as a product-of-sums (POS)

F = (A + B) ∙ (A + B (5.2)

It is possible to derive a sum-of-products expression for any digital logic circuit, no matter
how complex, provided that a description of it in the form of truth table exists. However, using
sum-of-products does not guarantee that the end result will be an optimal design. This is of
concern because as a practical matter minimizing the number of gates required can result in
very significant reductions in cost, better performance and often increased speed. What may
appear to the causal observer, in what follows, as addition and multiplication operations is in
fact the operations of OR and AND, respectively. Various notations have been adopted for these
operations, e.g.,

A ∙ B = AB = A OR B = A ∨ B (5.3)

A + B = A AND B = A ∧ B (5.4)

The AND and OR operators are associative,

(A ∙ B) ∙ C = A ∙ (B ∙ C) (5.5)

(A + B) + C = A + (B + C) (5.6)

31The complement of one is zero and the complement of zero is one.
32x is a Boolean variable if, and only if (iff), its values are restricted to elements of B under AND, OR and

NOT.

5.9 Boolean Functions 161

commutative,

A ∙ B = B ∙ A (5.7)

A + B = B + A (5.8)

and distributive,

A ∙ (B + C) = (A ∙ B) + (A ∙ C) (5.9)

A + (B ∙ C) = (A + B) ∙ (A + C) (5.10)

In addition, for any value A there exists and A’ such that A+A′ = 1 and A ∙A′ = 0. All of which
leads to some very important and useful results, e.g.,

A ∙ B = B ∙ A

A + B = B + A

A ∙ (B ∙ C) = (A ∙ B) ∙ C

A + (B + C) = (A + B) + C

A ∙ (B + C) = (A ∙ B) + (A ∙ C)

A + (B ∙ C) = (A + B) ∙ (A + B)

A ∙ A = A

A + A = A

A ∙ (A + B) = A

A + (A ∙ B) = A

A ∙ A′ = 0

A + A′ = 1

(A′)′ = A

(A ∙ B)′ = A′ + B′

(A + B)′ = A′ ∙ B′

A + 1 = 1

A ∙ 1 = A

A ∙ 0 = 0

A + 0 = A

∙ ∙ ∙

It should be noted that for any valid Boolean expression, if the + operators in the expression are
replaced by ∙ operators, the ∙ operators by + operators and 0’s for 1’s and 1’s for 0’s the result is
also a valid Boolean expression, although the values of the two expressions may not be the same.
This property is referred to as duality.

DeMorgan’s Theorem33 states that the complement of the product of variables is equal to the
sum of the complements of the variables and conversely the complement of the sum of variables
is equal to the product of the complements of the variables34, i.e.,

A + B = A ∙ B (5.11)

33Augustus De Morgan (1806-1871). DeMorgan a British mathematician and logician, born in India, who was
contemporary of Charles Babbage and William Hamilton He introduced the phrase “mathematical induction” and
served as a significant reformer of mathematical logic. He is best remembered for his work on purely symbolic
algebras, De Morgan’s laws and symbolic logic.

34Note that in general A ∙ B ∙ C ∙ ∙ ∙ ∙ = A + B + C + ∙ ∙ ∙ and A + B + C + ∙ ∙ ∙ = A ∙ B ∙ C ∙ ∙ ∙ ∙ .

162 Programmable Logic

and

A ∙ B = A + B (5.12)

which often makes it possible to simplify Boolean expressions and thereby simplify the logic.
Some of the most important algebraic rules for Boolean functions are shown in Table 5.8.

Table 5.8: Algebraic rules for Boolean functions

Associative (A ∙ B) ∙ C = A ∙ (B ∙ C) (A + B) + C = A + (B + C

Distributive A ∙ (B + C) = (A ∙ B) + (A ∙ C) A ∙ (B + C) = (A ∙ B) + (A ∙ C)

Idempotent A ∙ A = A A + A = A

Double Negation (A) = A —

DeMorgan’s A ∙ B = A + B A + B = A + B

Commutative A ∙ B = B ∙ A A + B = B + A

Absorption A + (A ∙ B) = A A ∙ (A + B) = A

Bound A ∙ 0 = 0 a

Negation A ∙ (A) = 0 A + A = 1

5.9.1 Simplifying/Constructing Functions

A function can be expressed as a logic (circuit) diagram, truth table or expression. Logic diagrams
show how the individual gates are interconnected. Examples of truth tables are shown in Tables
5.9 and 5.10. The number of possible functions given n inputs and m outputs can be expressed
as

N = 2m2n

(5.13)

so that for 2 inputs and one output there are 22 = 4 functions, for two inputs and two output
there are 28 = 256 functions, for 3 inputs and two outputs there are 216 = 65,536 functions, etc.

In order to optimize a logic diagram for which there can be many different implementations
possible, the designer can begin with a truth table, for example consider the truth table, shown
in Figure 5.9, for the function F as defined in Equation (5.14).

Table 5.9: A simple truth table.

A B A ∙ B A + (A ∙ B)
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

5.9 Boolean Functions 163

F = A + A ∙ B = A ∙ 1 + A ∙ B (5.14)

= A ∙ (1 + B) (5.15)

= A ∙ 1 (5.16)

= A (5.17)

Note that the initial expression for F with a requirement for two gates could be simplified resulting
in an implementation requiring no gates. A more complex case whose truth table , shown in Table
5.10, is illustrated next.

Consider the following:

F = A ∙ B + A ∙ B + B ∙ C (5.18)

By employing the distributive, inverse, and identity properties together with DeMorgan’s theorem
the function can be significantly simplified, e.g., Equation (5.18) can be expressed as

F = A ∙ (B + B) + B ∙ C (5.19)

= A ∙ 1 + B ∙ C (5.20)

= A + B ∙ C (5.21)

which reduces the number of gates required to implement this function by 50%.

And finally, a still more complex example is given by

F = A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C (5.22)

= A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C (5.23)

= (A ∙ B ∙ C + A ∙ B ∙ C) + (A ∙ B ∙ C + A ∙ B ∙ C) + (A ∙ B ∙ C + A ∙ B ∙ C) (5.24)

= (A + A) ∙ B ∙ B ∙ C + (B + B) ∙ C ∙ A + (C + C) ∙ A ∙ B (5.25)

= B ∙ C + C ∙ A + A ∙ B (5.26)

which reduces the number of gates from 14 to 5.

Table 5.10: A more complex example.

A B C A ∙ B A ∙ B B ∙ C A ∙ B + A ∙ B + B ∙ C A + B ∙ C

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 0

0 1 1 0 0 1 1 1

1 0 1 0 1 0 1 1

1 1 1 1 0 1 1 1

164 Programmable Logic

5.9.2 Karnaugh Maps35

Karnaugh maps can be used to convert truth tables and logic equations into logic diagrams and
as a substitute for both. In addition, Karnaugh maps make it possible to simplify logic diagrams.
Consider the truth table shown in Table 5.11. A Boolean function can be expressed as a sum-of-
products derived from the corresponding Karnaugh map (K-Map) shown in Table 5.12 and by
inspection is found to be

F = ABCD + ABCD + ABCD + ABCD (5.27)

where each square of the Karnaugh map represents one row of the truth table. Note that the
Karnaugh map is configured with respect to variables in a manner that allows only one variable
to change as you move from one cell to another, whether horizontally or vertically, i.e., AB, AB,
AB, AB and not AB, AB, AB, AB, because AB ⇒ AB is a change in two variables.36 Any
“cell” of the K-Map containing a one represents what is referred to as a minterm, i.e., a product
term of N variables.

The process involved is largely a mechanical one as opposed to manipulating Boolean expres-
sions, and is considerably simpler. As a practical matter this technique is useful for expressions
of six, or less, variables. If more than six variables is involved the Quine-McCluskey (Q-M)
methodology is preferable.37

The Q-M algorithm offers a number of advantages:

• There is no limitation on the number of input variables

• It always finds the “prime implicants”38

• The algorithm can be applied in the form of a computer program

Both K-Map and Q-M rely on a very simple expression, viz.,

A ∙ B + A ∙ B
and it follows that

A ∙ B + A ∙ B = A ∙ (B + B) = A ∙ 1 = 1 ∙ A = A (5.28)

It is this simple relationship that forms the basis for the Karnaugh map algorithm.

The following steps allow a K-map to be used to simplfy a Boolean expression:

1. Draw a “map” in the form of a table with each product term represented by a cell in the
table. The cells must be arranged so that moving from one cell to another either horizontally
or vertically changes one and only one variable.

2. Place a check mark in each box whose labels are product terms and their respective com-
plements.

35Some of the material in this section is based in part on examples provided by Bob Harbort and Bob Brown,
Computer Science Department, Southern Polytechnic State University and reproduced here with their permission.

36This type of arrangement is sometimes referred to as Gray coding for a binary system in which any two
successive values, eg.g. bytes, differ by only one bit.

37The Quine-McCluskey algorithm is based on two fundamental properties of Boolean expressions: 1) A ∙A = 1
and 2) the distributive law. In addition to being implementable as an efficient computer algorithm, it provides a
way to confirm that the resulting Boolean function is in minimal form.

38The a product term of a Boolean function F is a prime implicant iff the function’s value is 1 for all minterms
of the product term. In terms of K-maps, a prime implicant is any loop that is fully expanded. An essential prime
implicant is any loop that does not intersect any other loop.

5.9 Boolean Functions 165

Table 5.11: Example Truth Table

A B C D F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

Table 5.12: Corresponding K-map

CD CD CD CD

AB 0 1 0 0

AB 0 0 1 0

AB 0 1 0 0

AB 0 0 1 0

3. Draw loops around each horizontally, or vertically, adjacent pairs of check marks.39

4. For each loop, form an unduplicated list of the terms. Multiple instances of a literal should
be reduced to one instance, and a literal and its complement in the list should be deleted
from the list.

5. Form the Boolean product of the terms remaining after step 4.

6. Form the Boolean sum of the products resulting from step 5.

The following simple example will illustrate the procedure outlined by steps 1-6. Assume
that the expression to be simplified is A ∙ B + A ∙ B which is an expression with two variables,
A and B. A table is drawn as shown in Figure 5.27. Check marks have been placed in the cells
representing the AB and AB product terms. The loop drawn around these two cells contains
A, B, A and B. The B and B cancel and the duplicated A’s are reduced to a single A. The end
result is: AB + AB = A. Next consider the expression A ∙ B + A ∙ B + A ∙ B. IN this case check
marks are placed as shown in Figure 5.28. Two loops imply that there will be two terms in the
simplified expression. The vertical loop yields A, B, A and B and the horizontal loop contains
A, B, A, B which are reduced to A and B, respectively. After removing duplicates and invoking
the inverse law the expression reduces to

A ∙ B + A ∙ B + A ∙ B = A + B (5.29)

A third example illustrates the simplification of a three variable Boolean expression, viz.,

A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C
39A cell may be in more than one loop and a single loop can span multiple rows, columns or both, provided

that the number of enclosed check marks is a multiple of 2, e.g., 1, 2, 4, 8, 16,...

166 Programmable Logic

Figure 5.27: Karnaugh map for A ∙ B + A ∙ B

Figure 5.28: Karnaugh map for A ∙ B + A ∙ B + A ∙ B

The K-map for this example is shown in Figure 5.29. This example involves a toroidal loop

Figure 5.29: Karnaugh map for A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C

encompassing cells ABC and ABC. The simplified expression in this case is given by

F = B ∙ C + A ∙ B ∙ C (5.30)

Next consider a SoP with five product terms each consisting of three variables, viz.,

F = A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C (5.31)

The K-map for this example is shown in Figure 5.30, and the equivalent logic circuit is shown
in Figure 5.31. The truth table representing this configuration is shown in Table 5.13.

After removing redundant instances of variables and variables and their complements have
been removed, the expression is reduced to A ∙ C + B and can be implemented in discrete logic
as shown in Figure 5.32.

5.9 Boolean Functions 167

Figure 5.30: A five product K-map.

Figure 5.31: Logic circuit for a five term SoP expression.

Table 5.13: Truth Table for Eq. 5.31

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 5.32: Simplified version of the logic circuit in Figure 5.31.

168 Programmable Logic

The loops in a Karnaugh map should be made as large as possible subject to the constraint
that the number of check marks within any given loop must be an integer multiple of two. When
a Karnaugh map consists of more than two rows, it represents more than three variables and
the top and bottom edges are treated as adjacent. A loop that is within loops is not considered
because all of its terms have been accounted for in the other loops.

5.10 Combinatorial Circuits

A combinatorial circuit is defined as any combination of the basic operations AND, OR and NOT
that includes both inputs and outputs. Each of the outputs is related to a unique function. A
classic example of a combinatorial circuit is the “half-adder” which is capable of producing a
1-bit sum, and carry, based on the following functions:

Sum = A′ ∙ B + A ∙ B′ (5.32)

and the resulting carry bit, if any, by

Carry = A ∙ B (5.33)

However, although a half-adder can generate a carry it does not have the ability to add a carry
in (Ci) to the sum. This capability is embodied in what is referred to as a full-adder which can
be represented in terms as

Sum = ABCi + AB′C
′

i + A′BC
′

i + A′B′Ci (5.34)

and carry out (Co) by

Co = ACi + BCi + AB (5.35)

Thus a half-adder cascaded with an n-1 number of full-adders can be used to add n bits. However,
because combinatorial circuits are employed, some form of memory is needed. This is because for
combinatorial circuits, any change in an input results in a change in the outputs40 and therefore
the circuits are memoryless.

Fortunately, it is possible to create a very simple memory device from the same basic building
block as the logic functions, i.e., from a NAND gate as shown in Figure 5.33. This configuration is
a two state, or bistable configuration for which R and S are normally both set to 1. If input R or S
is toggled momentarily, then Q and Q’ are forced into opposite states and will remain there until
one of the inputs is toggled again. However, if both inputs are set to zero contemporaneously, Q
and Q’ are forced into the 1 state.

A simple modification of this circuit resolves this potential problem and requires the flip-flop
to operate in a synchronous manner when changing state. Figure 5.34 shows the modification
which involves the addition of three NAND gates, one of which is configured as an inverter. This
configuration is known as a data or D flip-flop and has a clock input (Clk) which allows the flip-
flops operation to be synchronous. A clock input, 0 –1– 0, will cause the data input to be copied
to the Q output where it will be “latched” i.e., retained, until the next clock pulse. Flip-flops
can be combined in either parallel configurations to function as memory into which bits may be
stored and retrieved in parallel, e.g. as in the case of conventional registers or in a daisy-chain
to function as shift registers.41

40There is of course some finite amount of propagation delay through a logic circuit, but for the purposes of
the present discussion such delays will be ignored. However, it should be noted that propagation delays are often
cumulative and in such cases it may not be appropriate to ignore them.

41Flip-flops are discussed in more detail in section 5.11.

5.11 Sequential Logic 169

Figure 5.33: A NAND gate implementation of a RS flip-flop.

Figure 5.34: A D flip-flop.

5.11 Sequential Logic

Unlike combinational logic which has no internal state and whose output depends solely on the
state of the input, at any given time, sequential logic output is a function of its internal state
at any given time and inputs. Sequential logic is “clock-based” and relies on a combination of
combinational logic and one, or more, flip-flops as shown in Figure 5.35. Flip-flops provide a

Figure 5.35: Sequential circuit block diagram.

mechanism for remembering a state and thus for storing data, a capability not achievable by
using combinational logic alone. The simplest example of sequential logic is the flip-flop, which
can be connected in various configurations, e.g., counters, timers, registers, RAM, etc. Counters
are sequential circuits that have a clock signal as their input. The electronic flip-flop was invented
by F.W. Jordan and William Eccles in 1919 as a bistable device consisting of two vacuum tubes42.
The simplest from of flip-flop is the SR flip-flop, sometimes referred to as the SR latch. Its inputs
consisted of S(et) and R(eset). The truth table for this device is shown in Table 5.14. A JK
flip-flop, shown in Figure 5.36, is similar to a D flip-flop except that indeterminate states are
avoided for cases in which both inputs are being held high by requiring that in such cases, the

42Sometimes referred to as a bistable multivibrator. Monostable (pulse) and astable (oscillator) functions using
two vacuum tubes in similar configurations were also possible.

170 Programmable Logic

output “toggles”43 with the clock, cf. Table 5.15.

Figure 5.36: A JK flip-flop.

In some cases, additional control pins are provided for JK flip-flops which allow asynchronous
clearing and presetting. The D, or data flip-flop, has the same value as the input when a clock
“edge” occurs44, as shown in Table 5.16.

Table 5.14: Truth Table for a RS Flip-flop

S R Q Q

0 0 Unchanged Unchanged

0 1 0 1

1 0 1 0

1 1 Indeterminate Indeterminate

Table 5.15: Truth Table for a JK Flip-flop

J K Q Q

0 0 Unchanged Unchanged

0 1 0 1

1 0 1 0

1 1 Toggle Toggle

Flip-flops can be configured in a variety of ways to provide very useful functionality, e.g., four
flip-flops can be configured, as shown in Figure 5.37, to provide a register that accepts serial data
as input and makes the data available in a parallel output format. Each time a clock pulse occurs
data stored in each of the flip-flops will be moved one bit position to the right. The bit asserted
at the input will move to the first flip-flop and be accessible at output Q0, the data formerly
stored in the first flip-flop will move to second flip-flop and be accessible at the Q1 output and
so on. Thus the bit stored originally stored in the fourth flip-flop is lost. Obviously, the number
of clock pulses applied must correspond to the number of bits being added to the shift register

43Toggle refers to changing the state of a two state device, i.e., causing it to change to the other state, by some
event, or action,

44Some D flip-flops are positive- and some are negative-edge triggered.

5.11 Sequential Logic 171

Table 5.16: Truth Table for a D Flip-flop

Clock D Q Q

Edge 0 0 1

Edge 1 1 0

Non-edge Unchanged Hold Hold

Figure 5.37: A serial shift register using D flip-flops (SIPO).

for storage. This type of register may be used as a method of converting serial input to parallel
output (SIPO) and/or as a storage location for four bits.

Alternatively the four flip-flops can also be configured, as shown in Figure 5.38, to provide
parallel input and parallel output (PIPO). Each time a clock pulse occurs the four input bits
are stored in their respective flip-flop locations and appear in parallel on Q0, Q1, Q2 and Q3
respectively. If the input data is from a 4-bit parallel data bus, this configuration provides a way
to retain bus data in a 4-bit register. This is a common technique for temporarily storing data
in a microprocessor.

Figure 5.38: A parallel input/output register using D flip-flops.

An important consideration when configuring groups of flip-flops that share a common clock

172 Programmable Logic

signal is related to the phenomenon known as clock skew. This occurs when a device such as a
flip-flop is edge triggered and the clock edge does not arrive at the clock input for each of the flip-
flops at the same time. Clock skew can arise as a result in differences in the paths that the clock
signal must traverse to reach the clock inputs of the flip-flops. It can also be compounded by the
use of a group of flip-flops that are triggered on different edges of the clock signal. Also in some
configurations of flip flops, gates are required in order to achieve the required sequential logic.
In such cases the gates introduce delays if they are in the clock path. In addition to the spatial
variations in clock edges i.e., clock skew, temporal variations can occur as well, the latter being
referred to as clock jitter. Obviously, in a given situation, clock skew is not subject to variation
from one clock signal transition to another for any given device, whereas, clock jitter can and
often does vary as a function of time on a cycle-by-cycle basis. Clock skew can be introduced not
only by path length differences but also by power supply, temperature and clock driver variations.
Jitter can arise as a result of variations in the clock source, power supply/temperature variations
and capacitive loading and/or coupling.

Flip-flops are often used as static memory devices in that they are bistable devices which
are capable of storing a given state for as long as power is maintained as opposed to dynamic
memory devices that store a state in the form of charge on parasitic capacitors and require
continuous refreshing. While simpler and cheaper to manufacture dynamic memory is subject to
noise adversely affecting their ability to retain a given state.

Some logic devices are limited to a maximum of two inputs. This restriction can be overcome
by combining several devices as shown illustratively in Figures 5.39 and 5.40.

Figure 5.39: Three and four input configurations for AND gates.

PSoC Creator allows the designer to configure logic devices such as those shown in Figure 5.41.
However, this type of expansion of inputs obviously increases propagation time and therefore

latency and can result in race45 problems, an example of which is shown in Figure 5.42.

Assume that input A was asserted previously at a point in time, t<0, sufficient to allow the
logic shown in the figure to reach a steady state condition. If at t = 0, A = 0 is asserted then
after a propagation delay of Δt1, introduced by the inverter, A = 1, as shown. This means that
for duration of Δt1, both A and A = 1. This produces a pulse of width Δt1 displaced in time by
Δt2. It is this pulse that is referred to as a “glitch” and said to be caused as a result of “race”
conditions in the signal path.

45Race conditions can occur in logic circuits as a result of propagation time differences that result in an output
changing to an inappropriate state, often referred to as a “glitch”, caused by a delay in one or more input signals
with respect to other inputs to the circuit.

5.11 Sequential Logic 173

Figure 5.40: Three and four input configurations for OR gates.

Figure 5.41: Examples of multiple input gates available in PSoC Creator.

Figure 5.42: A simple example of a race condition resulting in a “glitch”.

174 Programmable Logic

5.12 Finite State Machines

The concept of a finite-state machine (FSM) is an abstraction of a system whose allowed states
are restricted to only one of a finite number of states at a time and the “transitions”46 between
those states.47 A transition between states occurs only as a result of inputs, sometimes referred
to as being event-driven. While a given state machine may produce an output, or outputs, some
state machines do not. It may be the case that the result of a state transition is simply to place
the system in a different state. Some machines may have an error state to handle unanticipated
and/or unexpected inputs. Once a state machine enters an error state it remains there, even in the
presence of subsequent inputs. Transitions are governed by so-called“rules” or “conditions” and
typically these are expressed in the form of case statements. Transitions are triggered by “events”
which may be either external or internal. Switch statements and state tables are commonly use
to implement FSMs.

FSMs are frequently used in natural language processing, text processing, cellular automata,
natural computing, electronic design automation, communications, artificial intelligence, video
games, vending machines, traffic control, speech recognition, speech synthesis, parsing, web ap-
plications, neurological system modeling, protocol design, process control, vending machines and
many other applications.

FSMs are defined in terms of the:

• allowed states

• input signals,

• output signals,

• next-state function,

• output function,

and,

• an initial state.

and, as a result, FSMs are sequential machines.

The Moore state machine, shown schematically in Figure 5.43, has the characteristic that
outputs are independent of inputs, i.e., outputs are created within a given state and can only
change with a change of state.48 State assignments may be either arbitrary, or specified. Arbitrary
state assignments depend on either combinatorial, or registered, decoded state bits. Specified
state assignments are based on either state bits, or on so-called “one-hot” encoding, e.g. as
shown in Table 5.17.49 For state machines using one-hot encoding, n flip-flops, often referred to
as the state memory, can be used to represent the n states of the FSM.

The state vector is the value currently stored in the state memory. Moore FSM outputs are
a function of the state vector, but the outputs of a Mealy FSM, shown in Figure 5.44, are a
function of the inputs and thestate vector. While this method does require n flip-flops to encode
and decode the FSM’s current state, decoding is simplified by virtue of the fact that no other
logic is required to determine the current state of the machine. The outputs of Mealy machine
are determined either by the present state, or by a combination of the current state and the then

46Transition” in the present context refer simply to the change from one state to another.
47In theory, any system utilizing memory can be treated as a state machine.
48Although inputs can cause a change of state, they do not determine the state to which the FSM moves.
49“One-hot” refers to the case in which given a string of bits, only one can be non-zero, e.g., 00010000. The

inverse situation is referred to as one-cold, e.g., 11101111. On-hot code is often used decoder, ringer counter and
some state machine implementations.

5.12 Finite State Machines 175

Figure 5.43: Moore state machine.

Figure 5.44: Mealy state machine.

176 Programmable Logic

Table 5.17: One-hot versus Binary Encoding

current inputs.50 Some applications employ both Moore and Mealy FSMs and as a practical
matter similar FSMs can be functional equivalents.

State machines are often represented by state graphs as shown in Figures 5.45 and 5.46.
By convention, arcs and/or straight lines are used to represent state transitions and each node
represents a specific state. In the case of self-transitions, the source state and target state are
the same states. Moore outputs are given within the circle or “bubble” representing the state.
Mealy outputs are shown on the associated arc or line.

State machines can also be represented as algorithmic state machines (ASMs) in which case
the graphical representation is in the form of a flow chart with state, decision and conditional
boxes. ASMs can be recast as state graphs and vice versa.

Typically, Mealy machines:

• typically have fewer states than that of their Moore counterparts,

• react faster to inputs,51

• has outputs that are a function of both current state and inputs that can change asyn-
chronously,52

• outputs can change asynchronously,

• can have fewer states than a Moore FSM,

and,

• can sometimes introduce delays in critical paths.

Figure 5.45: A very simple finite state machine.53

PSoC3/5 are quite capable of implementing state machines and this is facilitated in part by
the fact that PSoC Creator supports look up tables (LUTs). LUTs have the characteristic that a
particular combination of input values results in the output of a specific combination of outputs.

50It should be noted that Mealy FSM outputs can change asynchronously.
51Moore machines have to wait for the next clock cycle before changing state.
52This can give rise to “glitches”. Moore FSMs do not produce glitches.

5.12 Finite State Machines 177

Figure 5.46: A more complex FSM representing a shift register.

This allow a LUT to provide virtually any logic function and in the case of PSoC Creator, each
LUT component is configurable to have as few as one input inputs and one output, e.g., as in0
and out0 or as many as five inputs and eight outputs as in0, in1, in2, in3, in4 and out0, out1,
out2, out3, out4, out5, out6, out7, respectively. The default configuration is two inputs and two
outputs.

Registering the outputs is accomplished by simply clicking on a check box in PSoC Cre-
ator’sConfigure ‘LUT’ dialog box, cf. Figure 5.47. Registering the outputs and routing some
on the outputs back to the inputs allows state machines to be implemented. The actual imple-
mentation of LUTs is based on logic equations stored in the PLDs. LUTs save the designer the
trouble of having to create them using combinatorial logic components and by registering a LUT
it can be used to implement sequential logic. The registering of the outputs causes the LUT
to register the output on the rising edge of the LUT’s clock input. The clock speed should not

Figure 5.47: a) Unregistered versus b) registered PSoC3/5 LUT.

exceed 33 MHz if any of the LUT’s outputs are connected to I/O. It should be noted that the
LUT is implemented as a hardware-only design and therefore there is no LUT API.

As an example, consider a rising edge detector implemented as a Moore state machine, as
shown in Figure 5.48, that produces a pulse each time a rising edge is detected[23]. Creation of a
LUT-based state machine begins with the creation of a table which contains each possible state
and all possible combinations of inputs. Next consideration turns to defining the next state for
each state and the associated inputs. It is then possible to create the LUT. Once this table has
been completed, its entries can be entered into the Configure ‘LUT’ dialog box in PSoC Creator.
The implementation of the edge detector LUT is shown in Figure 5.49.

178 Programmable Logic

Figure 5.48: An edge detector implemented as a state machine.

Figure 5.49: A PSoC3/5 implementation of an edge detector as a FSM.

5.13 Hardware Description Languages (HDL) 179

5.13 Hardware Description Languages (HDL)

VLSI digital circuits often involve hundreds of logic cells and perhaps thousands of interconnec-
tions.Therefore the associated difficulty of developing such PDL applications capable of perform-
ing complex functions has given rise to what are termed hardware description languages which
allow the designer to model digital systems. These HDL languages are supported by development
environments that typically have the ability to provide schematic design, simulations/verification
and the ability transform the design into a “configuration file and then download it to the tar-
geted device. The HDL form of a design is a temporal and spatial description of the design and
includes expressions that formally describe the design’s digital logic circuits. The descriptions are
text-based, include explicit time dependencies, and take into account interconnections between
blocks that are expressed in a hierarchial order. The process of converting from the description
of a logic circuit to an implementation defined in terms of gates is referred to as synthesis. The
output of the synthesis process is a netlist54.

An ideal HDL should be capable of supporting designs involving tens of thousands of gates,
provide high level constructs for describing complex logic, support modular design methodologies
and multiple levels of hierarchy, support both design and simulation, be capable of producing
device-independent designs, support schematic capture as well as HDL descriptions, etc. In the
discussion that follows several HDLs are discussed, each of which, to a greater or lesser degree
meet these criteria.

5.14 Design Flow

Various modelling techniques are employed in designing embedded systems, e.g., dataflow for
systems involving parallelism and signal analysis, discrete-event for systems involving explicit
time dependencies, state machines for systems based on sequential decision logic, time-driven
for systems that involve periodic and/or time dependent action, continuous time for systems
involving dynamics, etc. HDLs are capable of facilitating each of these approaches in a wide
variety of cases, but may have some limitations with respect to certain types of applications.

A design can begin with a graphical representations of the logic circuits, i.e., a schematic,
or a purely text-based description of the design. Available tools often include both schematic
and HDL editors and when the HDL, or schematic design, phase has been completed, it is then
possible to simulate the design for the purposes of behaviorial evaluation, conducting preliminary
performance evaluations, creation of test vectors, etc. Test bench waveforms can also be intro-
duced as part of the simulation process. Following the synthesis phase of the design it is possible
to carry out additional simulation tests to verify the performance of the logic design including
timing, which although limited in scope in some cases, can still provide important information
about the design.

Once the descriptions, constraints and netlists have been created, they can then be merged
into a database so that the place and route process can be invoked. In modern development
environments the floorplan and routing are displayed graphically providing the designer with
additional control over the design by instituting manual changes in the design.

So detailed and complete are these descriptions that they can be used in conjunction with
simulators that use the descriptions as input to study the corresponding circuit’s behavior and
performance in complete detail. Furthermore, once the modeling is completed using simulators,
the descriptions can be employed as input to CAD tools to synthesize hardware designs. HDLs

54A netlist is a text-based description of the gates used in the design and their interconnections.

180 Programmable Logic

are used to create formal descriptions of digital circuits. Some simulators can actually interact
with hardware implementations of the design to further optimize the system under design.

VHSP/VHDL was originally designed to ease the documentation challenges of ASIC designs
but was soon found to be to facilitate the design of very high-speed integrated circuits ad is
referred to as VHSIC. VHDL is a VHSIC hardware description language based on ADA and
developed by the Department of Defense beginning in 1983.

5.14.1 VHDL

While some may choose to characterize VHDL as simply “yet another programming language”
it is in reality much more. It came into being as a result of a government initiative in 1980 by
the Department of Defense (DoD) and was originally intended to be a formal methodology for
describing digital circuits. However, it soon became apparent that its scope could be extended to
allow it to serve not only as a language standard for digital circuit descriptions but for simulation
of digital circuitry as well. VHDL has gone through a number of reincarnations55 and its notation
is defined in each case by a language reference manual (LRM). It is regulated by the IEEE and
is maintained as an international standard. VHDL supports both top-down/bottom up and as
some have suggested even “middle-out”.[2]

The VHSIC56 hardware description language (VHDL) offers a designer a number of important
benefits in developing new designs, particularly those that involve tens of thousands of logic gates.
For example, VHDL supports very sophisticated and powerful constructs for describing complex
logic, a modular design methodology, multiple levels of hierarchy and a VHDL description can
used for both design and simulation. The resulting designs are device-independent and therefore
highly portable so that the designer can select a the optimum vendor, device and synthesis.

A designer can begin with a very high level abstraction for a design, use VHDL to develop
an architecture for the design and then decompose that structure into subsystems, sometimes
referred to as “sub-designs”. These subsystems can often in turn be decomposed further into
subsystems of subsystems until one finally arrives, if required, at the equivalent of a standard set
of basis modules, e.g., commonly available integrated circuits.

A simple module at the lowest level of this hierarchy might well consist of a device, or devices,
with two inputs and one output, e.g, a gate. Such a module, referred to as an instance of entity,
need not be decomposed any further and can be treated strictly in terms of its characteristics,
i.e. the relationship(s) between the input and output signal levels, propagation delays, etc. [1]
Modules at the base of such a hierarchy are typically described in behaviorial, or functional terms.
However, if the basis modules employ feedback, the behaviorial/functional module descriptions
become complex. Fortunately VHDL is designed to address this situation, as well.

VHDL is based on constructs such as architectures, configurations entities, packages and the
corresponding package bodies. Architectures are functional descriptions of modules, configura-
tions that define the architecture and entities required to build a model. Entities define interfaces
and often involve a port list. Packages contain the definitions of data types such as constants, var-
ious data types and subprograms57. In addition, process code, which is a sequence of statements
executed in a defined order, is employed as a concurrent object.

VHDL supports both sequential and concurrent statements. Sequential statements are con-

55While there are a number of versions of VHDL extant e.g., VHDL’87, VHDL’93, VHDL’2000, VHDL’2008,
etc. version.VHDL’93 remains the most widely used version.

56Very-high-speed integrated circuit.
57Subprograms in VHDL are the analog of functions in C.

5.14 Design Flow 181

tained within functions, procedures or process statements. If-then-else, case and loop statements
are examples of sequential statements. Concurrent statements are occur within the architecture in
the form of statements containing concurrent procedure calls, signal assignments and component
instantiations.58

Signals are used to transmit information between design statements, specifically between
entities and processes. They are treated as globals in architectures and blocks. When declared in
a PORT, signals must be assigned a direction. However, if they are declared in an architecture,
block or package, no direction is required. Signal assignments typically include specifications,
i.e., time expressions of the delay time that must occur before the signal is allowed to assume
a new value. If the time expression is not specified the default value is zero femtoseconds.59 It
should be noted that variable updates occur immediately in VHDL while signal updates occur
after a delay or at the end of a process.

The design flow diagram, shown in Figure 5.50, illustrates the various stages in development of
a VHDL-based design. The basic steps in the design flow are as follows:

1. Design entry - this is often done with in the context of a computer-aided design (CAD) tool,
and results in the design being available in a machine-readable format.

2. Functional simulation - step 1 produces the design description and this step simulates the
design to confirm that the design does in fact meet the requirements specification. This is
often referred to as a behaviorial, or functional simulation60and its purpose is to verify that
the behavior is correct from a logic perspective.

3. Synthesis - a CAD tool is employed for this step to interpret the VHDL description and em-
ploy a sufficient set of standard building blocks, e.g., LUTs, multiplexers, registers, adders,
etc., to implement the design. The step produces a netlist61 which will be used by the next
step, viz.,Implementation.

4. Implementation - this step involves the invoking of a translate phase (TRANSLATE) which
translates the netlist produced by the previous step into a format consistent with the targeted
device. A mapping process (MAP) maps the standard set of blocks used by the synthesis
process onto the available devices in the target hardware. This is followed by allocation
of the target resources and routing of all of the required interconnections between these
resources (PLACING and ROUTING). At this juncture, because the actual propagation
and other types of delays have been taken into account, it is possible to carry out what is
referred to as the POST-PLACE and ROUTE simulation which represents a modeling of
the actual behavior of the physical design.

5. Programmer Download - At this stage the design has been verified and is ready for down-
loading to the target device. This is accomplished by the creation of a file that is downloaded
in serial fashion to a programmer for the target device.62

58There is a distinction to be made between concurrency and parallelism in that concurrency refers to parts
of a program that at the conceptual level are to be executed simultaneously, i.e. logical concurrency. Parallelism
implies that certain parts of a program are in fact executed simultaneously at the hardware level. Programs
that execute instructions sequentially are therefore non-concurrent. Some compilers are capable of carrying out a
dataflow analysis and outputting parallel code for hardware capable of supporting parallelism.

59fs is a acronym for a femtosecond and represents 1x10−15 of a second.
60It is important to bear in mind that this type of simulation does not any of the physical implementation

details, e.g., actual propagation and other types of timing delays introduced by the various physical components
involved is not taken into account by this level of simulation. Therefore while the simulation may be regarded as
a necessary step, it is hardly sufficient, in and of itself. It is however, possible to include at this level statements
which assign values for various delays, but these are of course noth synthesizable and are included merely to reflect
the impact of the delays on behavior.

61In the case of PLDs and CPLDs a sum-of-products equations may be produced instead of a netlist.
62This step should be regarded as nonlinear in the sense that system performance can depend in a nonlinear

manner on the components selected by this process.

182 Programmable Logic

Figure 5.50: VHDL design flow diagram.63

As discussed previously, VHDL designs are descriptions, also referred to as “design entities”,
consisting of an ENTITY declaration that describes the design’s I/O and an ARCHITECTURE
body that describes the content of the design, e.g., a two input AND function can be expressed
in VHDL as

ENTITY and2 IS PORT (
a,b : IN std_logic;

f:OUT std_logic);
END and2;
ARCHITECTURE behavioral OFand2IS
BEGIN

f <= a ANDb;
END behavioral;

The ENTITY declaration is formally defined as

ENTITY entity_name IS PORT (
-- optional generics
name : mode type
...

);
END entity_name;

where entity name is an arbitrary name, generics are used for defining parameterized components,
name is the signal/port identifier64, mode describes the direction of data flow and type defines
the set of values a port name may be assigned. PORTS are points of communications, often
associated with a device’s pins, that are a special class of SIGNAL with an associated name,
mode and type.

64This can be a separate list for ports for ports of identical modes and types.

5.14 Design Flow 183

MODE represents the direction of data flow and can be

• IN - data enters the entity but does not exit from it,

• OUT - data leaves the entity but does not enter and is not used internally,

• INOUT - Data goes in and out of the entity, i.e., it is bidirectional,

or,

• BUFFER - data exits the entity and is also fed-back internally.

5.14.2 VHDL Abstraction Levels

VHDL allows the designer to approach a design at varying levels of abstraction, viz., at the
algorithm level which is merely a set of instructions to be carried out without regard for the
clock, except perhaps loosely in terms of the ordering of execution of instructions, or delay issues.
Alternatively a register level approach can be employed that is referred to as register transfer
level (RTL). At this level of abstraction, the description includes clock dependence which gates
all operations. However, propagation and the various forms of temporal delay are not supported.
And finally, at the lowest level of abstraction, the description is expressed in terms of a network
of registers and gates that are instantiated from standard libraries.

VHDL has available five very fundamental constructs:

1. Entity declarations that specify NAME and PORTS.65

2. Architecture bodies that model the circuits within an entity Configuration declarations that
define which architecture is to be used with which entity.66

3. Package67 declaration which is similar in function to that of a header file in a C program.

4. Package bodies that are similar to implementation files in C programs.

In addition to supporting multiple architectures within a given entity, VHDL allows the
designer to determine which architecture is to be employed during the synthesis phase. The order
of these constructs within a VHDL file are entity, architecture and configuration. The IEEE has
defined certain standard VHDL libraries, e.g, IEEE 1164 which establishes both standard signals
and data types.

Consider the case of a four input, single output logic function, an entity description can be of
the form:

library IEEE;
use IEEE>std_logic_1164.all;
entity LogicFunction is

port (
a: in std_logic;
b: in std_logic;
c: in std_logic;
d: in std_logic;

65Entities are analogous to the classic “Black Box” for which the internal functionality is hidden but the
input and output ports, that is the interfaces, are specified. The entity is the functional equivalent of a software
“wrapper’.’

66The architecture contains a detailed description of the entity’s internal functionality/behavior.
67Packages are libraries of procedures, functions, overloaded operators, type declarations and components that

consist of a BODY section and a declarative section. The constituents of a package can be used by more than
entity in a design.

184 Programmable Logic

e: out std_logic;
);

end entity LogicFunction;

The architecture body defines the internal functionality of the entity, i.e., the circuitry, based on
one of the following four modalities:

1. Behavioral modeling in the form of a set of sequential assignment statements referred to as
a process.

2. Dataflow modeling expressed in terms of a set of “concurrent” signal assignment statements.

3. Structural modeling in terms of a set of interconnected components.

or, as

4. Some permutation of the behavioral, dataflow and/or structural modeling.68

As an example, consider a single bit full adder as shown in Figure 5.51. The VHDL description
for this circuit is

entity full_add_1 is
port(

a1: in bit; addend in
a2: in bit; addend
c1: in bit; carry in
sum: out bit; sum

c2: out bit); carry out
end full_add_1

Figure 5.51: A single bit full adder

where port is defined in terms such as input, output or bidirectional. Thus a port is defined in
terms of the signal associated with the port, its direction and type. The signal type can be either
the single bits, 0 or 1, or in the form of a bit vector representing an array of bits. User-defined
data types are also supported, such as bytes or mnemonics.

The previous example of a single bit adder can be extended as in the case of an 8-bit adder
represented by the following code fragment:

entity: full_add_8 is
port(

68Such combinations are often referred to as “mixed models”.

5.14 Design Flow 185

a1: in bit_vector(7 downto 0);
a2: in bit_vector(7 downto 0);
c1: in bit; carry
sum: out bit_vector(7 downto 0); sum
c2: out bit);

end full_add_8;

It is also possible, using VHDL, to describe the behavior of a module at a higher level of
abstraction for a single-bit adder, as illustrated by the code fragment:

architecture dataflow of full_add_1 is
begin

sum <= a1 xor a2 xor c1 after 3 ns;
c2 <= (a1 and a2) or (a1 and c1) or (a2 and c1) after 3 ns;

end;

Identifiers are not case sensitive and must not contain any keywords. Underscores may be used
in identifiers, but they must not occur at the beginning, or end, of an identifier and two or more
underscores cannot occur in succession69. Extended identifiers are formally defined as:

extended_identifier ::= \ graphic_character {graphic_character}

An extended identifier is case sensitive and may contain spaces, consecutive underscores and/or
keywords. Supported delimiters70 are shown in Table 5.18. The supported character set for

Table 5.18: Delimiters Supported by VHDL

VHDL’93 consists of 256 characters consisting of uppercase letters, lowercase letters, digits, and
a collection of non-alphanumeric characters.

69The 1993 standard for VHDL (VHDL’93) permits the use of identifiers that are case sensitive, begin or end
with a backslash, consist of graphical characters in any order and arbitrary length.

70Delimiters are defined as separators which have predefined meanings.

186 Programmable Logic

Character strings are delineated by double quotes, e.g.,

“This is a string”

becomes

““This is quoted a string””

Bit strings are expressed as arrays of type bit, e.g.,

literal bit string ::= base-specifier “bit value”

5.14.3 VHDL Literals

VHDL supports five types of literals: bit strings71, enumeration, numerical, strings and NULL.
Bit string literals begin and end with ”, may include underscores, e.g., B“0101 0101”, and are
treated as one-dimensional arrays that comply with VHDL’93 256 character specifications. Sup-
ported bases include binary(B), octal(O) and hexadecimal(X). While the bit string may contain
underscores, the length of the string does not include the underscores. Enumeration literals may
be bit, or character.

Numerical literals can contain underscores, the letters “E”, or “e”, to denote the inclusion of
an exponent and “#” to define a base within the range of 2-16 inclusive. Physical types must
have a space between the numerical value and the physical type’s unit of measure. The NULL
literal’s use is restricted to pointers in cases for which the pointer is “empty”. The “based”
literals are formally defined as

based_literal::= base#based_integer{based_integer}#{exponent}

and

based_integer::=extd_digit{[underlined]extd_digit}

where

extd_digit::=digit|letters_A-F

and the base and exponent must be expressed in decimal form. Numeric literals default to
decimal, may contain underscores to enhance readability but not spaces and should not have a
base point or negative exponents. The use of scientific notation is restricted to integer exponents

Examples of VHDL Literals:

a) VHDL Bit String Literals:

B“10101010” - - decimal 170
B“1010 1010” - - decimal 170

O“252” - - decimal 170
X“AA” - - decimal 170

b) VHDL Numeric Literals:

5.14 Design Flow 187

Figure 5.52: VHDL Data Types

5.14.4 VHDL Data Types

Each of VHDL’s data objects have associated data types, cf. Figure 5.52, that define the allowable
set of values for the data type. VHDL is a strongly-typed language72, i.e., each data object is a
predefined type. This constraint means that a data object of one type can not be assigned to an
object of another data type.

VHDL supports the following data types:

1. Integers - allowable values -2147483647 to 214748347

2. Floating point (Real) - allowable values -1.0 E 38 to 1.0 E 38. Precision is a minimum of
six decimals.

3. Physical - a numerical type that represents physical quantities such as time, mass, length,
voltage, resistance, etc. The base unit must be specified in the declaration, e.g.,

type r e s i s t a n c e i s range 0 to 1E8
un i t s

ohms ;
kohms=1000 ohms ;
Mohms=1E6 ohms ;

end un i t s ;

4. Arrays - no limit on array dimensions, can be indexed by any discrete type, logical and shift
operations only applicable to arrays with bit or elements.

5. Signals - within a block or architecture signals are global. Signals are assigned values through
the use of ‘<=’ and receive default values through the use of ‘:=’ Signals associated with a
port must have a direction, but not within a block or architecture.

71Bit strings are frequently used to in initialize registers.
72The phrase strongly-typed is somewhat ambiguous but implies, inter alia, that the type of each variable must

be declared prior to use and includes strict rules with respect to any variable manipulations. One advantage of
such languages is that their respective compilers are able to catch many bugs prior to runtime. C++, C# and
Java are regarded as strongly-typed whilst C is regarded as weakly or loosely-typed. It is perhaps more accurate
to state that the former are more strongly typed languages than the latter.

188 Programmable Logic

6. Signal attributes73 -
signal name’event (returns Boolean TRUE for signal event occurrence, else returns Boolean
FALSE)
signal name’active (returns Boolean TRUE if a transaction on a signal occurs, else returns
Boolean FALSE)
signal name’transaction (returns a signal of type bit that toggles for each subsequent trans-
action on the signal)
signal name’last event (returns Boolean TRUE if a signal event occurs else returns Boolean
FALSE)
signal name’last active (returns Boolean TRUE if a signal event occurs else returns Boolean
FALSE)
signal name’delayed(T) (returns Boolean TRUE if a signal event occurs else returns Boolean
FALSE)
signal name’stable[T] (returns Boolean TRUE if no event on signal has occurred during
time T, else returns Boolean FALSE. Default value of T is zero.)
signal name’quiet[T] (returns Boolean TRUE if no transaction on signal has occurred during
time T, else returns Boolean FALSE. Default value of T is zero.)

7. Scalar attributes -
scalar type’left (returns the first or left-most value)
scalar type’left (returns the last or or right-most value)
scalar type’low (returns the lowest value)
scalar type’high (returns highest value)
scalar type’ascending (returns TRUE if T is ascending, else FALSE)
scalar-type’value(s) (returns value T represented by the string value s)

and,

8. Array attributes:
MATRIX‘left(N) (left-most element index)74

MATRIX‘right(N) (right-most element index)
MATRIX’high‘(N) (upper bound)
MATRIX‘low(N) (lower bound)
MATRIX’length(N) (number of elements)
MATRIX’range(N) (range)
MATRIX’reverse range(N) (reverse range)
MATRIX’ascending(N) (TRUE if index is an ascending range, else FALSE)

In VHDL, enumeration, numeric and physical data types are scalar. Numeric data types can
be either real or integer [-2147482647, 2147482647]. Physical data types are scalar numeric
values associated with a system of units and/or physical measurements. Time is supported as
a predefined physical type but other physical types must be defined by the user. Time values
may range from 0 to 1E20 with units in femtoseconds. Arrays, consisting of multiple elements of
the same type are supported by VHDL with strings, bit vectors (Bit vector) and standard logic
vectors (Std logic vector) being predefined arrays.

5.14.5 Pre-Defined Data Types and Subtypes

VHDL supports a number of predefined data types, viz, integers, reals, time (fs), bit (0,1), (true,
false), bit vector (an unconstrained array of bits), character (128 chars in VHDL’87 and 256 in

73Attributes are functions that return a value type or range of a data type.
74N is optional for any array attribute for which the matrix is a one-dimensional array.

5.14 Design Flow 189

VHDL’93), severity level (note, warning, error, failure), file open kind (read mode, write mode,
append mode)file open status (open ok, status error, name error, mode error), string (an un-
constrained array of characters). The predefined subtypes are natural (0-2147483647), positive
(1-2147483647) and delay length 90 fs - 2147483647).

The precedence for:

• integers, reals and time is abs, **, *, /, mod, rem, +(sign), -(sign), + (addition), - (subtrac-
tion), =, /=, <, <=, >, and >=,

• bit vector(s) is NOT, &, sll, srl, sla, sra, rol, ror, =, /=, <, <=, >, AND, NAND, OR,
NOR, XOR, and XNOR. The precedence for bit and is NOT, =, /=, <, <=, >, >=, AND,
NAND, OR, NOR, XOR, and XNOR,

• natural and positive is the same as that for integers,

and

• delay length is the same as that for time.

5.14.6 Operator Overloading

VHDL allows the user to assign new definitions to existing operators such as +, -, *, NAND,
etc. when creating user-defined data types.75 This object-oriented approach relies on VHDL
determining what the appropriate operator action is for a given data type (argument). Objects
can be overloaded by overloading, operators, parameters or subprogram names. Overloaded
functions can have the same name but a different number of arguments or different argument
types. In such cases VHDL uses the number, or type, of arguments to determine the appropriate
action(s). Function names can also be in the form of an operator, so that a function can be
called by symbols such as +, -, >, <, etc. For example the + operator could be “overloaded” to
support vector addition, addition of two strings, etc.

5.14.7 VHDL Data Objects

VHDL data objects include variables, signals and the associated signal attributes. Variables
must be declared before they can be used and only with the context of a subprogram or process.
Variable declarations must also include a specification of the data type. Initializing variables at
the time of declaration is optional but if left unspecified, then the default value is the leftmost
element of the declared data type declared.

Signals are declared in a similar manner to that of variables and are subject to the to following
conditions and constraints:

• They are declared as either intermediate nodes (architecture) or ports (entity)

• Entities can have port access.

• Assignment of values to input ports is supported by VHDL.

• “Signals” refer to nodes which may have voltage dependencies which are a function of time.

• Signal assignments employ the “<=” delimiter.

• A transaction is the scheduling of a value to a signal.

• An “event” is said to have occurred when a signal’s value changes.

• Signals that are assigned a value without the specification of a delay will, during simulation,
only change value after the simulation’s sub-interval has transpired.

75The assignment of a new function to an existing operator is referred to “operator overloading”.

190 Programmable Logic

• Signals have the following attributes:

1. X’active returns TRUE if a transaction has occurred during the current simulation time.
otherwise it returns FALSE.

2. X’quiet(n) returns TRUE if no transaction has occurred during the previous ‘n’ seconds.
3. X’event returns TRUE if the value of X changed during the current simulation time.
4. X’stable(n) returns TRUE if X did not experience an event during the past ‘n’ seconds.
5. X’delayed delays the signal X for n seconds.
6. X’last active returns the time that has elapsed since the last transaction.
7. X’last event returns the time that has elapsed since the last event.
8. X’last value returns the previous value of X.

5.14.8 VHDL Operators

VHDL expressions consist of operators and so-called primaries.76 Logical operators such as
AND, NAND, OR, ROR, NOR and NOT can operate on arrays as well as can be applied to one
dimensional arrays, s or values of type bit. Operator types include:

1. Logical operators77: AND, NAND, XOR, OR, NOR, XNOR and NOT

2. Unary sign operators: plus (+) and minus(-)

3. Addition operators: plus (+),

4. Addition operators: Plus (+), minus (-) and concatenation78 (&),

5. Shift operators79: Shift right logical80 (srl), shift left logical (sll), shift left arithmetic81 (sla),
shift right arithmetic (sra), rotate left (rol) and rotate right (ror,)

6. Multiplication operators: multiply (*), divide [0, modulus82 (mod) and remainder (rem)],

7. Exponentiation (**) is subject to the constraint that the lefthand operand must be an
integer, or floating point, value and the righthand operand must be integer only.

8. Absolute value (abs) This operator can be applied to any numeric type within an expression.

9. NOT - the inversion operator.

The order of precedence for these operators from highest precedence to the lowest is: exponenti-
ation, absolute value and not (inversion) followed by multiplication, addition, shifting, relational
and finally logical operators. If two operators of equal precedence are encountered then the left-
hand operator is evaluated followed by the righthand operator. All of these rules are applied
beginning with the most deeply nested parentheses in the expression.

Arithmetic operations such as division and multiplication can be applied to floating point
and integer values. If the righthand operand is negative, the lefthand operand must be a floating
point value floating point numbers or physical types. While the exponential operator can be
applied to either floating point or integer values, the righthanded operand must be an integer.
Relational operators such as =, /=, >, >=, < and <= produce results but both the righthand

76The term primaries refers to function calls, object names, literals and parenthetical expressions.
77These operators are not subject to any precedence order so liberal applications of parentheses is recommended.
78The concatenation operator combines the bits on either side of the concatenation operator.
79Shift operators have two operands. The lefthand operand is the bit vector to be shifted, or rotated, and the

righthand operand is an integer value representing to number of shifts or rotates. A negative value for the latter
results in the inverse operation being invoked.

80The fill value for sll and srl is ‘0’.
81The fill value for sla is the righthand bit and the lefthand bit for sra.
82This mod and rem operators are only applicable to integer types

5.14 Design Flow 191

and lefthand operands operand must be the same type. Two values are treated as equal provided
that the corresponding elements of each are equal. The concatenation operator, typically used
to join strings, can be applied to two one-dimensional arrays with as little as one element each.
Single elements can be concatenated with multi-element arrays.

5.14.9 Conditional Statements

VHDL supports both if-then-else and case statements. Execution is subject to user defined
conditions in the form of expressions which evaluate to values. If such an expression evaluates as
true then the corresponding statements are executed otherwise the else statements are executed.

If statements are of the general form83

if <condition> then
statements

...
[
elsif <condition> then

statements
...

else
statements

...
]
end if;

and case statements are of the form

case <expression> is

when <choice(s)> =>

<expression>;
...

when ...

[when others => ...]

end case;

Case statements allow execution to depend on the value of a selection statement. Case statements
must include all possible values of the expression to be evaluated, however, values that are not to
be treated by the case statement can be included as “OTHERS’ in conjunction with the reserved
word “NULL” resulting in no action with for those values. Supported expression types include
integer, enumerated and one dimensional character arrays.

5.14.10 FOR, WHILE, LOOP, END and EXIT

FOR and WHILE loops are supported in VHDL together with EXIT which is used to leave a
loop84 and END LOOP to end a loop. LOOP can be used to repeat a loop indefinitely, e.g.,

83Note that “conditions” are restricted to type , “elsif” contains one “e” and “end if” is two words.
84Also referred to as “jumping out of a loop”.

192 Programmable Logic

loop
some_activity;

end loop;

The formal syntax for both WHILE and FOR is

loop statement ::=
[loop label :] [while -expression | for]

loop
{ statements }

end loop

The while reserved word evaluates a test condition prior to each iteration and if the expression
evaluates as true the next iteration in invoked, otherwise the loop terminates. The for iteration
loops for a predefined number of iterations. and a loop parameter keeps track of the number of
iterations that have occurred. A next statement can be used to terminate the current iteration
and an exit statement terminates the loop thereby passing control to the next statement to be
executed. The null statement is typically used to indicate no action is to take place.

The assert statement provides exception handling and is of the following formal form:

assertion_statement::=[label :]assertion;

where

assertion::=
Assert condition

[Report expression]
[Severity expression];

If the status is not consistent with this condition and the report clause is present, a message,
e.g., “assertion violation” occurs. The severity clause assigns a severity level, viz., note, warning,
error or failure . If the severity clause is not present, then the security level defaults to error.
The assert statement can be used to halt the execution of a simulation.

5.14.11 Object Declarations

Three types of objects are supported in VHDL, viz., variables, constants and signals. Constants
are initialized with a specific value which may not be modified thereafter85 unlike variables
whose values may be modified after initialization. A deferred constant declaration occurs in
a corresponding package declaration, but is assigned a value in the package body. Non-shared
variables are treated as local variables in subprograms and processes and shared variables are
treated as global variables. Variables are assigned values by use of “ := ”. If an object is merely
declared without initialization, its value defaults to that of the first value occurring in the package
body.

5.14.12 FSMs and VHDL

Finite state machines are often described in VHDL by using processes sensitive only to clock and
asynchronous resets for state transitions. Outputs, in such cases, are expressed as concurrent
statements external to the process. State machines can be viewed simply as black boxes and

85In effect, constants in VHDL are read-only.

5.15 Verilog 193

therefore a behaviorial model utilizing an entity/architecture pair is sufficient to describe it.86The
internal states can be defined in terms of enumerated types.

A combinatorial process can be used to provide the next-state conditioning logic, a syn-
chronous process can be used to provide the current state variables and a third process can
provide the output logic. Each of the processes operates concurrently in VHDL, and therefore
the combination would function as a FSM. The next-state conditioning logic determines the next
state as a function of the current state and the inputs. In VHDL the selection of the next state
can be managed by the use of a case statement.87 The synchronous process can handle register
the current state condition and to reset the state machine to a predefined state. The output logic
can be implemented in VHDL as a set of if-then-else statements.88

5.15 Verilog

Verilog is a hardware description language, similar in some respects to VHDL, that is used
to model electronic circuits primarily at the register level.89 Originally introduced in 1984, it
provided designers with a description language that for most designs was much easier to learn and
use than VHDL. With fewer data types than VHDL, limited casting allowed, no user-defined types
supported and relying on primitive types, the language could employ a fast, memory efficient,
simpler compiler than that required for VHDL. While originally a proprietary language, in 1990,
Open Verilog International (OVI) was formed and a joint effort was undertaken to create a Verilog
standard reference manual that ultimately led to the establishment of an IEEE standard for the
language.

The Verilog reserved word list (aka keywords list) is shown in Table 5.19. Both line and
block comments are supported in Verilog with two forward slashes representing the start of the
comment which is assumed to extend to the end of that line. Block comments begin with /* and
end with */ and cannot be nested.

Identifiers that begin with a backslash (\) and end with a whitespace, e.g., newline, space or
tab are treated as “escaped” identifiers. However the leading backslash and ending whitespace
are treated as part of the identifier.

In Verilog a bit can take of one of four values: 0, 1, X or Z corresponding to logic zero, logic
one, an unknown logic value90 or high impedance (floating).

5.15.1 Constants

Constant values can be expressed as either simple decimals, i.e., as a sequence of digits employing
values 0-9 or as a sized constant91 representing a based92 number. String constants are treated
as unsigned integer constants represented by a sequence of 8-bit ASCII values, with each such
value representing a particular character.

86The entity defines the interface and the architecture defines the internal behavior.
87It is important specify all the possibilities for a given case statement, even if some possibilities are not used

in order to avoid exceptions.
88It’s a good practice to include an else statement for each if statement, because VHDL signals have “implicit

memory”.
89Verilog takes into account signal timing, propagation delays and edge transitions in the description and

modeling.
90Unknown logic values are restricted to 0, 1 or Z or a transition from one of three to another of the three

allowed values. X represents either a “don’t know” or “don’t care” state, or both.
91Sized constants consist of three tokens, viz., an optional size, a single quote followed by a base formed

character and a sequence of digits representing the value.
92For example: hexadecimal, octal, binary or decimal.

194 Programmable Logic

5.15.2 Data Types

Verilog supports data types belonging to one of three classes, viz.,

• nets - The net data type represents a physical connection between hardware blocks and can
be driven by a continuous assignment statement or the output of a module or gate. However,
a net data type does not store its value. A net data type can be a wire93, tri, supply0 or
supply1 type. Wire and tri data types are identical in terms of syntax and functionality
and are supported to delineate between wire nets that are driven by a single gate and tri
nets that are driven by multiple drivers, supply0 and supply1 are the nets representing logic
0 (ground) and logic1 (power) when modeling power supplies. Declaration of a scalar net
must include the range of bits, e.g.,

wire [7:0] dataA; /*dataA where bit0 is the LSB and bit7 is the MSB.

wire [0:7] dataA; /*dataA where bit0 is the MSB and bit7 is the LSB.

A net can be either a scalar94 or vector, the former representing individual signals and the
latter representing bus signals. The strength of a net is specified by drive strength95 and
charge.96

• Registers - Register data types store their values, until changed by an assignment in always
blocks functions or tasks, and are used as variables. To declare a reg type the reserved word
reg. is employed and is declared by using the keyword reg.97 The integer register data type
is used for values that are not to be treated as registers. Register variables may be declared
as either scalars or vectors. Vector register declarations include a specification of the range
of the bits after reg or integer. The left and righthand values in this range specify the most
significant and least significant bits, respectively.

• Parameters - Parameter values are used in parameterized models are treated as constants
during runtime and are declared as follows98:

parameter parameter_assignment {,parameter_assignments}
parameter_assignment ::= parameter_identifier=constant_expression

Examples of parameter use are given by:

parameter lsb = 0, msb =3; // lsb and msb are parameters
reg [msb,lsb] x ; // x is a vector with range 3:0
parameter tPD = 7 ; // parameter tPD is used to represent

propagation delay

Parameters are treated as strings of arbitrary length unless constrained by the user, e.g.,

parameter unconst_param = 12 /* unconstrained
// (size is determined by usage) */

parameter [3:0] const_param = 12; //constrained to 4 bits

93A wire represents a 1 bit interconnection between modules.
94By default all nets are treated as scalars.
95Specified as weak0, weak1, highz0, highz1, pull0, pull1, pullup or pulldown.
96Specified as small, medium or large.
97It should be noted that reg is not necessarily a hardware register or flip-flop but rather simply denotes the

fact that the value is retained.Uninitialized reg values are treated as X, i.e., undefined.
98If a given parameter is not intended to be modified by a higher level module, the compiler directive define

should be used.

5.15 Verilog 195

Table 5.19: Verilog Reserved Words

5.15.3 Modules

A Verilog module encapsulates the description of a design that can be either:

1. a behavioral (algorithmic) description that defines the behavior of a circuit in abstract, high
level algorithms, or expressed in terms of low level boolean equations,

or,

2. a structural description that defines the structure of the circuit in terms of components
and resembles a net-list that describes a schematic equivalent of the design and supports
concurrency.99

5.15.3.1 Module Syntax

A Verilog design consists of one or more modules100 interconnected by ports. Each port has an
associated name and mode, viz., input, output and inout. Module definitions cannot be nested.
A module is defined using the following syntax:

module <name> (interface_list) ;{ module_item }
endmodule
interface_list ::= port_reference
| {port_reference {, port_reference}}
port_reference ::= port_identifier
| port_identifier [constant_expression]

99Structural descriptions contain a hierarchy in which the components are defined at different levels and the
logic is defined in terms of gate primitives.

100Warp treats the keywords macromodule and module as synonyms.

196 Programmable Logic

| port_identifier [msb_constant_expression : lsb_constant_expression]
module_item ::= module_item_declaration
| continuous_assignment
| gate_instantiation
| module_instantiation
| always_statement
module_item_declaration ::= parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| task_declaration
| function_declaration

Example:

// a module definition for a d flip-flop
module
my_dff (clk, d, q);
input clk, d;
output q;
wire clk, d;
reg q ;
always @(posedge clk)
begin
q = d ;
end
endmodule
// a module definition for module
my_dff (clk, d, q);
input clk, d;
output q;
wire clk, d;
reg q ;

always @(posedge clk)
begin

q = d ;
end

endmodule

5.15.4 Operators

Verilog supports a variety of operations including arithmetic, bit-wise , concatenation, conditional,
equality, logical, reduction , relational, replication, and shift :

• arithmetic operators - Binary operators for addition, subtraction, multiplication divisions
and modulus and unary operations for specifying the sign of a value, i.e., plus or minus.
Integer division is supported but truncates the fractional part. Register data types are
treated as unsigned values and negative values are expressed in a twos-complement format.
The modulus operator assigns the result the same sign as the that of the first operand.

5.15 Verilog 197

• bit-wise operators - perform bit-wise operations on the respective bits of the two operands.
If the two operands are of different bit lengths the shorter value, bitwise, will be padded with
zeros sufficient to match the bit length of its counterpart. Supported bit-wise operations
include and (&), inclusive or (|), exclusive or (ˆ) and exclusive nor (ˆ˜or ˜ˆ), i.e., equivalence.

• concatenation operator - uses braces to encapsulate the values to be concatenated. Each
such value is delimited by a comma, e.g., {a, eb[4:0], c, 5’b11011}.

• conditional operators - have the following syntactic form

cond i t i on ? expr e s s i on1 ; expr e s s i on2

If condition evaluates as false, i.e., zero, then expression2 is evaluated, otherwise expression1
is evaluated. If condition evaluates as either z or v, then both expression1 and expression2
are evaluated and the resulting value is determined by a bit by bit examination based on
Figure 5.53. If expression1, or expression2, are of type real the value of the whole expression
is zero. If expression1 and expression2 are of different lengths, then the length of the entire
expression is assigned the length of the longer expression and trailing zeros are added to the
shorter expression as required.

Figure 5.53: Value of conditional expressions containing x,z,1 and/or 0.

• equality operators - there are two types of equality operators, viz., case and logical. For
case equality the operators are a===b (a is equal to be for 0,1,z and x) and a!==b (a is
not equal to be for 0,1,z and x). For logical equality the operators are a==b and a!=b and
in some cases the result may be undefined. These operators are compared bit-by-bit with
zeros being added to make the two operands the same length. If either operand contains a
z or an x, then the result is x for a == b and a! = b. If either operand contains an x or a
z, then a===b and a!==b can only be true if the respective bits in a and b have the same
values of x and z.

• logical operators - are logical negation (|), logical or (||) and logical and (&&). Logical
negation and logical and are evaluated from left to right.

• reduction operators - are the unary operators and, or, xor, nand, nor and xnor that are
bit-wise operations on a single operand and produce a single-bit result, e.g.,

&(4’b0101) = 0 & 1 & 0 & 1 = 1’b0.

• relational operators - are the less than, greater than, less than or equal to and greater than
or equal to operators that produce a scalar value of zero is the relation is false, 1 if the
relation is true and x if any of the operands contains unknown x bits. If any operand is x
or z, the result is treated as false.

• replication operators - replicates a group of bits n times, e.g., {1, 1,{3{1,0}}}= 11101010.

198 Programmable Logic

• shift operators - performs right- or left-shifts on the righthand operand where the number
of shifts, right (>>) or left (<<), is determined by the value of the righthand operand.101

The following is an illustrative example of a Verilog program designed to compute square root:

module sqrt32(clk, rdy, reset, x, .y(acc));
input clk;
output rdy;
input reset;
input [31:0] x;
output [15:0] acc;
// acc = accumulated result, and acc2 = accumulated acc^2
reg [15:0] acc;
reg [31:0] acc2;
// Track bit being worked on.
reg [4:0] bitl;
wire [15:0] bit = 1 << bitl;
wire [31:0] bit2 = 1 << (bitl << 1);
// Output ready when bitl counter underflows.
wire rdy = bitl[4];
// guess h=next values for acc. guess2=square of that guess h.
// guess2 = (acc + bit) * (acc + bit)
// = (acc * acc) + 2*acc*bit + bit*bit
// = acc2 + 2*acc*bit + bit2
// = acc2 + 2 * (acc<<bitl) + bit
// Note: bit and bit2 have only a single bit in them.
wire [15:0] guess = acc | bit;
wire [31:0] guess2 = acc2 + bit2 + ((acc << bitl) << 1);
(* ivl_synthesis_on *)
always @(posedge clk or posedge reset)
if (reset) begin

acc = 0;
acc2 = 0;
bitl = 15;

end else begin
if (guess2 <= x) begin
acc <= guess;
acc2 <= guess2;

end
bitl <= bitl - 5’d1;

end
endmodule

5.15.5 Blocking versus Nonblocking Assignments

In Verilog/Warp a blocking statement , which is part of a sequential block, must be executed prior
to the execution of those statements that follow it. In the case of nonblocking statements, assign-
ments occur without blocking the procedural flow. Blocking assignments employ the symbol “=”
and nonblocking statements employ the symbol “<=” for assignment. Nonblocking statements
allow events to be scheduled for a later time.

101Vacated bits are replaced by zeros.

5.15 Verilog 199

5.15.6 wire versus reg Elements

wire elements are used in Verilog applications to connect the input and output ports of a module
instantiation with other elements within a design. However, unlike their counterpart, reg, they
are not able to store values and must be driven. In effect wires serve as “state-less” connection
mechanisms. wire elements are only used in cases for which the model is based on combinatorial
logic. reg elements perform a function similar to that of wires but have the ability to store
values in a manner analogous to that of registers. These elements are used in both sequential and
combinatorial logic models. While reg cannot be used on the lefthand side of an assign statement,
it can be used to create registers in conjunction with always@(posedge clock) statements/blocks.
reg can also be used on the lefthand side of always@block = or <= symbol. It can also be used
as the input to a module, or within a module declaration, but not to connect to the output port
of a module.

5.15.7 always and initial Blocks

In modeling combinatorial and sequential elements the initial and always blocks play important
roles. initial blocks102 are procedural blocks consisting of sequential statements that are executed
only once, typically at the start of execution of a simulation, whereas an always block is always
available for as long as the program is executing. An always statement contains a sensitivity
list103 that determines when the block of code associated with the always block is to be executed.
Any change in the signals contained in the sensitivity list will cause the always block to be
executed.

The standard format for an always statement is defined as:

always@(event_expression_1 [or event_expression_2]{or event expression_3}])

event expressions can contain timing controls which are either posedge or negedge for positive
or negative-edge triggering, respectively. If sequential triggers are employed in the sensitivity
list, sequential logic is synthesized. Asynchronous, or synchronous, triggers may be used in the
sensitivity list, but not both.

// Always block with asynchronous triggers:
always @(x or y)

begin
...

end
/* Always block which realizes sequential logic with
rising edge of a clock: */
always @(posedge clock)
begin

...
end
/* Always block which realizes a sequential logic with
falling edge of clock and an asynchronous preload */
always @(negedge clock or posedge load)
begin

...
end

102Warp ignores initial constructs.
103Sometimes referred to as the sensitive list.

200 Programmable Logic

The following are equivalent syntactically:

always@(signal_1 or signal_2 or signal_3 or signal_4)
always@(signal_1,signal_2, signal_3, signal_4)
always@(*)
always@*

where * refers to all of the signals within the always block.

5.15.8 Tri-State Synthesis

Warp does not synthesize tri-state logic. In order to include tri-state logic in a Verilog module
the cy bufoe104 must be instantiated. The tri-state output of this module, y, must then be
connected to an inout port on the Verilog module. That port can then be connected directly
to a bidirectional pin on the device. The feedback signal of the cy bufoe, yfb, can be used to
implement a fully bidirectional interface, or can be left floating to implement just a tri-state
output.

module ex_tri_state (out1, en, in1);
inout out1;
input en;
input in1;
cy_bufoe buf_bidi (

.x(in1), // (input) Value to send out

.oe(en), // (input) Output Enable

.y(out1), // (inout) Connect to the bidirectional pin

.yfb()); // (ouptut) Value on the pin brought back in
endmodule

5.15.9 Latch Synthesis

Warp synthesizes a latch whenever a variable inside an always block with asynchronous trigger,
has to hold its previous value. The following code fragment synthesizes a latch.

// example: latch synthesis with if statement
always @ (signal1 or signal2)
begin

if(signal1)
begin

out_sig = signal2 ;
end

end

5.15.10 Register Synthesis

A register is typically a set of flip-flops that share a common clock input and is used to store a
group of bits. The register is updated when the next clock edge occurs. Most registers employ
both a reset and load input controls. In the case of a shift register, the flip-flops are connected in
a chain in which the output of one flip-flop becomes the input to the next flip-flop in the chain.

104cy bufoe is a tri-state, non-inverting buffer with an active high output enable input.

5.15 Verilog 201

This interconnection scheme allows data to be shifted to the next flip-flop each time a clock edge
occurs. Shift registers can be serial-in-serial-out (SISO), parallel-in-parallel-out (PIPO), serial-
in-parallel-out (SIPO) or parallel-in-serial-out (PISO). Thus in order to synthesize registers it is
necessary to be able to synthesize flip-flops.

5.15.10.1 Edge-Sensitive Flip-Flop Synthesis

Warp uses the following templates to synthesize synchronous flip-flops. The template for the
positive edge sensitive flip-flop is:

always @ (posedge clock_signal)
synchronous_signal_assignments

and the template for the negative edge sensitive flip flop is:

always @ (negedge clock_signal)
synchronous_signal_assignments

5.15.10.2 Asynchronous Flip-Flop Synthesis

Warp uses the following format to synthesize asynchronous flip-flops with reset, or preset.

always @ (edge_of clock_signal or
edge_of preset_signal or
edge_of reset_signal)

if (reset_signal)
reset_signal_assignments

else if (preset_signal)
preset_signal_assignments

else
synchronous_signal_assignments

The posedge construct is used to specify an active high condition and the negedge construct
to specify active low condition. The variables in the sensitivity list can appear in any order.
Subsequent reset, or preset, conditions can appear in the else-if statements. The last else block
represents the synchronous logic. The polarity of the reset/preset signal condition used in the
sensitivity list and the polarity of the reset/preset condition in the if/else-if statements should
be the same.

Example: A posedge reset signal condition in the sensitivity list is required when the reset
condition is one of the following forms:

if(reset_signal)
if(reset_signal == constant_one_expression)

A negedge reset signal condition in the sensitivity list is required when the reset condition is one
of the following forms:

if(!reset_signal)
if(~reset_signal)
if(reset_signal == constant_zero_expression)

Warp generates an error if the polarity restriction mentioned above is violated. Warp allows more
than two asynchronous if/else-if statements before the synchronous else statement as shown in
the following example.

202 Programmable Logic

// An example of two different preset signals:
module asynch_rpp(in1, clk, reset, preset, preset2, out1);
input in1, clk, reset, preset, preset2;
output out1;
reg out1;
always @ (posedge clk or posedge reset or posedge preset or posedge
preset2)

if (reset)
out1 = 1b0;

else if (preset)
out1 = 1b1;

else if (preset2)
out1 = 1b1;

else
out1 = in1;

endmodule

The posedge and negedge keywords are use to specify active high and low conditions, respectively.
Variables in the sensitivity list can occur in any order. The polarity of reset/preset signal condi-
tions in a sensitivity list and the polarity of the reset/preset conditions in corresponding if/else-if
statements must be the same.

A posedge reset signal condition in the sensitivity list is required when the reset condition is
one of the following forms:

if(reset_signal)
if(reset_signal == constant_one_expression)

A negedge reset signal condition in the sensitivity list is required when the reset condition is one
of the following forms:

if(!reset_signal)
if(~reset_signal)
if(reset_signal == constant_zero_expression)

Warp generates an error if the polarity restriction mentioned above is violated. Warp allows more
than two asynchronous if/else-if statements before the synchronous else statement as shown in
the following example.

// An example of two different preset signals:
module asynch_rpp(in1, clk, reset, preset, preset2, out1);
input in1, clk, reset, preset, preset2;
output out1;
reg out1;

5.15.11 Verilog Modules

Verilog modules105 are used to encapsulate the description of a design expressed either as a
behavioral or structural description. A behavioral description defines the behavior of a circuit in
terms of abstract, high-level algorithms or in terms of low-level equations.

105A Verilog module may represent a single gate, flip–flop- or register or other much more sophisticated circuits.

5.15 Verilog 203

A structural description defines the circuits structure in terms of components and resembles
a net-list that describes a schematic equivalent of the design. Structural descriptions contain
hierarchy in which components are defined at different levels.

A Verilog design consists of one or more modules106 connected with each other by means
of ports which provide a means of connecting various hardware elements. Each port has an
associated name and mode (input, output and inout). A module is defined using the following
syntax:

module <name>(interface_list) ;{ module_item }
endmodule
interface_list ::= port_reference
| {port_reference {, port_reference}}
port_reference ::= port_identifier
| port_identifier [constant_expression]
| port_identifier [msb_constant_expression : lsb_constant_expression
module_item ::= module_item_declaration
| continuous_assignment
| gate_instantiation
| module_instantiation
| always_statement
module_item_declaration ::= parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| task_declaration
| function_declaration

In Verilog, hierarchical designs are specified by instantiating one, or more, modules in a top level
module not instantiated by any other module. The syntax of the module instantiation statement
is as follows:

<module_name> [parameter_value_assignment]
<instance_name>
module_instance {, module_instance} ;
module_instance ::= instance_identifier
([list_of_module_connections])
list_of_module_connections ::= ordered_port_connection {,
ordered_port_connection }
| named_port_connection {,named_port_connection }

One or more instantiations of the same module can also be specified in a single module instanti-
ation statement. The four instantiation statements in the above example can be combined into
one instantiation statement as follows:

my_dff inst_3(clk, d, q0),
inst_2(clk, q0, q1),
inst_1(clk, q1, q2),
inst_0(clk, q2, q) ;

106Module definitions cannot be nested.

204 Programmable Logic

A module connection describes the connection between the signals listed in the module instanti-
ation statement and the ports in the module definition. This connection can be specified in two
ways: ordered port association and named port association. In the case of ordered port associa-
tion, the signals in the instantiation statement should be in the same order as the ports listed in
the module definition. In the case of a named port association, the port names of instantiated
modules are also included in the connection list.

my_dff inst_3(clk, d, q0) ; // ordered connection list.
my_dff inst_3(.d(d), .q(q0), .clk(clk)) ; /* named association: q0 is

connected to the port q of
my_dff module. */

The port expression in the module connection list can be one of the following: a simple identifier,
a bit-select of a vector declared within the module or a part-select of a vector declared within
the module or some concatenation thereof.

The following describes the behavior of a counter that increments the count by 1 on the rising
edge of a clock (trigger). It also contains an asynchronous reset signal that resets the counter to
zero.

module counter (trigger, reset, count);
parameter counter_size = 4;
input trigger;
input reset;
inout [counter_size:0] count;
reg [counter_size:0] tmp_count;
always @(posedge reset or posedge trigger)
begin

if (reset == 1b 1)
tmp_count <= {(counter_size + 1){1b 0}};

else
tmp_count <= count + 1;

end
assign count = tmp_count;

endmodule

5.15.12 Verilog Tasks

Tasks are sequences of declarations and statements that can be invoked repeatedly from different
parts of a Verilog description. They also provide the ability to break up a large behavioral
description into smaller ones for easy readability and code maintenance. A task can return zero
or other values.

A task declaration has the following syntax:

task \textless task_name\textgreater\ ;{ task_item_declaration}
statement_or_null endtask
task_item_declaration ::= parameter_declaration
reg_declaration
integer_declaration
input_declaration
output_declaration
inout_declaration

5.15 Verilog 205

Warp ignores any timing controls present inside a task. The order of variables in the task
enable statement calling a task must be the same as the order in which the I/Os are declared
inside a task definition. Only reg variables can receive output values from a task, i.e., wire
variables cannot. Note that Datapath operator inferencing is not supported inside tasks. When
datapath operators (+, -, *) are used inside tasks, at least one of the operands must be a constant
or an input.

The following is an example of a module task:

module task_example(a,b,c,d,sum);
output sum;
input a,b,c,d;
reg sum;
always @(a or b or c or d)
begin

t_sum(a,b,c,d,sum);
end
task t_sum;

input i1,i2,i3,i4;
output sum ;
begin

sum = i1+i2+i3+i4;
end

endtask
endmodule

5.15.13 System Tasks

Verilog supports a number of system tasks that support I/O and measurement functions. These
tasks are all prefixed by the symbol “$” and include the following:

• $display - writes text to the screen

$display(<parameter_1>, <parameter_2>, <parameter_3>)

• $dumpfile - declare the output file name (VCD format)

• $dumpports - dump the variables (extended VCD format)

• $dumpvars - dump the variables.

• $fdisplay - print to the screen and add a newline.

• $fclose - close and release an open filehandle.

• $fopen - open a handle to a file for either a read or write.

• $fscanf - read a format-specified string from a variable.

• $fwrite - write to a file without a newline.

• $monitor - print the listed variables when any of them change value.

• $random - return a random value.

• $readmemb - read the binary file content into a memory array.

• $readmemh - read the hex file content into a memory array.

• $sscan - read a format specified string from a variable

• $swrite - print a line without the newline to a variable.

• $time - the value of the current simulation time.

• $write - write a line to the screen without a newline.

206 Programmable Logic

5.16 Verilog Functions

Similar to tasks, functions are also sequences of declarations and statements that can be invoked
repeatedly from different parts of a Verilog design. As is the case with tasks, functions pro-
vide the ability to break up a large behavioral description into smaller ones for readability and
maintenance. Verilog functions are formally defined as:

function [range_or_type] <function_name>
function_item_declaration {function_item_declaration}
statement endfunction

function_item_declaration ::= parameter_declaration
| reg_declaration
| integer_declaration
| input_declaration

Unlike a task, a function returns only one value. The function declaration will implicitly declare
an internal register which has the same type as the type specified in the function declaration.
The return value of the function is the value of this implicit register. A function must have at
least one input type argument. It can not have an output or inout type argument.

A function declaration can consist of the following types of declarations: input, reg, integer,
or parameter. The order in which the inputs are declared should match the order in which the
arguments are used in the function call. Timing controls and nonblocking assignment statements
are not allowed inside a function definition. Datapath operator inferencing is not supported
inside functions. When datapath operators (+, -, *) are used inside functions, at least one of the
operands must be a constant or an input. The function inputs can not be assigned to any value,
inside the function. All system task functions are ignored by Warp.

Example:

module func_example(a,b,c,d,sum);
output[2:0] sum;
input a,b,c,d;
reg[2:0] sum;
always @(a or b or c or d)
begin

sum = func_sum(a,b,c,d);
end
function[2:0] func_sum;

input i1,i2,i3,i4;
begin

func_sum = i1+i2+i3+i4;
end

endfunction
endmodule

5.17 WarpTM

Cypress Semiconductor supports a subset of Verilog known as WarpTM[57]. However, there are
a number of significant differences between Verilog and Warp, viz.,

• Warp requires that the first character in an identifier must be a letter.

5.17 WarpTM 207

• Warp renames identifiers beginning with an underscore by adding the prefix ‘warp’.

• Warp does not support “escaped” identifiers.

• If an underscore is used in a constant, it is ignored by Warp.

• Warp allows parameters to appear on the righthand side of another parameter definition.

• Warp ignores the delay expressions, i.e., minimum, typical, and maximum.

• Warp treats the keywords macromodule and module as synonyms.

• Warp ignores the charge strength, drive strength and delay specified in the continuous
assignment statements.

• Warp ignores all system tasks and system function identifiers.

• The following Verilog net types are not supported by Warp.

1. tri0

2. tri1

3. wand tri

4. and

5. wor

6. trior

7. trireg

• Warp ignores the strengths associated with any net. Warp treats integers as 32-bit signed
quantities and reg datatypes as unsigned quantities, by default, unless specified to be signed
quantities.

• Warp does not support multiple drivers for register and integer variables.

• The time, real and realtime declarations are not supported in Warp.

• Ranges and arrays for integers are not supported by Warp. Arrays of register data types
(memories) are also not supported in Warp.

• Warp does not automatically handle the size or the signed/unsigned nature of parameters.

• Warp uses the default values, if a parameter does not have a size constraint or a type
(signed/unsigned/ integer/etc.) designation.

• Warp allows only defparam to be used to modify the parameters of immediate instances.

• Parameter values in a module can also be re-defined by using the defparam construct. At any
level of the design, Warp allows the re-definition of parameters of the modules instantiated at
that level only. More than one levels of hierarchical path names are not currently supported.

• Warp does not support the case equal operators === and !==.

• Although concatenation can be repeated using a repetition multiplier in Verilog, Warp
requires that the repetition operator be a constant.

• Warp does not support range specifications in module instantiations (array of instances).

• Warp supports the following primitive gates: and, nand, or, nor, xor, xnor, buf, not, bufif0,
bufif1, notif0, notif1.

• Warp does not allow assigning a value to a register variable using either blocking or non-
blocking assignment.

• Nonblocking assignment statements within a function/task are not supported by Warp.

• Warp does not support parallel block.

208 Programmable Logic

• Warp partially supports casex and casez statements. For the casex statement, ?, x, z are
allowed in a case-item expression but not allowed in a case expression. Similarly, for the casez
statement ?, z are allowed in a case-item expression, but not allowed in a case expression.

• When Warp synthesizes any of the case statements, it synthesizes a memory element for
each output assigned to it in the case statement, in order to maintain any outputs at their
previous values, unless one of the following conditions occurs: 1) All outputs within the body
of the case statement are previously assigned a default value within the always block, 2)
The case statement completely specifies the design’s behavior following any possible result
of the conditional test.107

• Warp supports two kinds of loop statements: for and while.108

• Warp ignores the intra-assignment timing controls, delay-based timing controls and wait
timing controls.109

• In structured procedures, Warp ignores the initial construct.

• Warp requires that an always statement have a sensitivity list.

• Warp ignores any timing controls present inside a task.

• Warp does not support the disabling of named blocks and tasks using the disable construct.

• Warp ignores all system tasks and system task functions.

• When an ifdef compiler directive is used, Warp compiles only the code within the ifdef
Warp block.

• Warp issues a warning when it encounters any of the unsupported compiler directives.

• Warp does not synthesize tri-state logic.110

• Warp synthesizes a latch whenever a variable inside an always block, with an asynchronous
trigger, has to hold its previous value.

• Warp uses the following templates to synthesize synchronous flip-flops. For a positive edge
sensitive flip-flop:

always @ (posedge clock_signal)
synchronous_signal_assignments

and,

always @ (negedge clock_signal)
synchronous_signal_assignments

is the template for the negative edge-sensitive flip-flop.

• Warp uses the following format to synthesize asynchronous flip-flops with reset or preset:

107The best way to ensure complete specification of design behavior is to include a default clause within the
case statement. Therefore, to use the fewest possible resources during synthesis, either assign default values to
outputs in the always block or make sure all case statements include a default clause.

108In Warp, the loop variable must be initialized to a constant value and the step assignment must be + or
-.The following is the while loop template supported in Warp: while (<comparison> <number>).

109Event timing controls are partially supported (only posedge and negedge event timing controls are supported
when used with an always @).

110In order to include tri-state logic in a module, the cy bufoe must be instantiated. The tri-state output of this
module, y, must then be connected to an inout port on the Verilog module. That port can then be connected
directly to a bidirectional pin on the device. The feedback signal of the cy bufoe, yfb, can be used to implement
a fully bidirectional interface or can be left floating to implement just a tri-state output.

5.18 Verilog/Warp Component Examples 209

always @ (edge_of clock_signal or
edge_of preset_signal or
edge_of reset_signal)

if (reset_signal)
reset_signal_assignments

else if (preset_signal)
preset_signal_assignments

else
synchronous_signal_assignments

The posedge construct is used to specify an active high condition and the negedge construct
is used to specify an active low condition. The variables in the sensitivity list can appear
in any order. Subsequent reset or preset conditions can appear in the else-if statements.
The last else block represents the synchronous logic. The polarity of the reset/preset signal
condition used in the sensitivity list and the polarity of the reset/preset condition in the
if/else-if statements must be the same.

• Warp allows more than two asynchronous if/else-if statements before a synchronous else
statement.

• Warp allows the user to specify a particular case block to be implemented, e.g., a multi-
plexer (parallel case) rather than a priority encoder (full case). A parallel case or a full
case is specified by including the directives warp parallel case and warp full case before a
case statement. These directives can be specified within the Verilog comment section (line
comment or block comment). The directive must follow the word ”warp”.

5.18 Verilog/Warp Component Examples

A common use for Verilog/Warp is the creation of special components, e.g., a divide by N, four
bit counter can be easily created using the Verilog/Warp support provided by PSoC Creator,
Cypress Semiconductor’s development environment. After loading PSoC Creator and starting
a new project, e.g., CountByN, navigate to the components tab in the Workplace Explorer and
right click on Project ‘CountByN’. This will bring up a menu from which you can select Add
Component Item. The Add Component window will then appear at which point you must select
Symbol Wizard and optionally provide a name for your component, e.g., DivideByNCounter.
Next, click on the Create New button.

This will load the Symbol Creation Wizard whose window allows you to select the name, type
and direction of the DivideByN Counter ’s terminals. Note that the counter output is labeled
count[3:0] indicating that the output is four parallel bits. This window also displays a preview
of the DivideByN Counter ’s symbol. In the current example, reset and clock are input terminals
and count is a 4-terminal output as shown. Clicking OK will load the DivideByN Counter.cysym
page. Right click in area within this window away from the counter symbol. This will load a
small menu from which you can select Symbol Parameter... At this point is necessary to define
the parameter N in terms of its type and value. Select int and set the value to ‘1’.

Example 1: The source code template produced by PSoC Creator will be of the form:

//==
module CountByN (

count;
clock;
reset;

210 Programmable Logic

);
output [3:0]
input clock;
input reset;

parameter N=1;
// ‘#start‘ body -- edit after this line, do not edit this line

reg [3:0] count;
always@(posedge clock or posedge reset)

begin
if (reset) count \textless= 4’b0;
else count \textless= count + N;

end
// ‘#end‘ -- edit above this line, do not edit this line
endmodule

Example 2: Similarly the Verilog/Warp code for a four bit counter with an enable terminal that
count from 0 to some defined limit can be expressed as:

module Count4Enable (
count;
clock;
enable;

);
output [3:0] count;
input clock;
input enable;
Parameter Limit= 15;

//‘#start body -- edit after this line, do not edit this line
reg [3:0] count;
always@(posedge clock)
begin

if (enable) begin
if (count == Limit) count = 4b’0;
else count <=count +1;
end

end
//‘#end‘ -- edit above this line, do not edit this line
//endmodule

Example 3: A Clocked register equivalent to can be expressed as:

module DFF (
clk;
D;
Q;

)
input clk;
input D;
output Q;

// ‘#start‘ body -- edit after this line, do not edit this line
reg Q;
always@(posedge clk)

5.18 Verilog/Warp Component Examples 211

begin
Q <= D;

end
//‘#end‘ -- edit above this line, do not edit this line
endmodule

Example 4: A clocked register with an asynchronous reset can be implemented by the following:

module DFFR (
clk;
D;
R;
Q;

)
input clk;
input D;
input R;
Output q;
reg q;
always @ (posedge clk or posedge R)
begin

if (R) Q <= 1’b0;
else Q <= D;

end
endmodule

Example 5: A clocked register with an asynchronous “Set” can be implemented as:

module DFFS (
clk;
D;
S;
Q;

)
input clk;
input D;
input S;
output Q;
reg Q;
always @ (posedge clk or posedge S)
begin

if (S) Q <= 1’b1;
else Q <= D;

end
endmodule

Example 6: A 2-input, 1-output mux can be implemented by the following:

module muxA (
sel;
A;
B;

212 Programmable Logic

Z;
)

reg Z;
always@(sel or A or B)
begin

if (sel) Z = A;
else Z = B;
end

endmodule

Note that assignment in this example uses the “=” symbol since the assignments are combinato-
rial, i.e., there is no storage of values. This module is a representation of the boolean expression

Z = sel ∙ A + sel ∙ B (5.36)

5.19 Comparison of VHDL, VERILOG and Other HDLs

The decision as to which is the best approach to modeling a circuit or system depends heavily
on the application, the technology to be employed, the sophistication of the designer, ease of
associated tools use, steepness of the associated learning curves, compatibility with other tools,
etc. Some designs are not appropriate for HDLs, e.g, simple designs, or designs that cannot take
advantage of the benefits of HDLs.

Verilog is based on a simple language syntax and structure allowing a designer to learn Ver-
ilog quickly, model both digital and analog circuits111 Verilog also allows a model’s code to be
monitored to identify errors at early stages in the design process. Verilog models typically require
less memory and therefore often run significantly faster during simulations than is available from
similar VHDL models.

VHDL does offer better reusability capability by allowing procedures and functions to be
encapsulated in packages. VHDL supports libraries as stores for configurations, architectures
and packages but no similar concept exists for Verilog.112 Unlike Verilog, VHDL has functional-
ity intended to facilitate the management of large designs, e.g., generate (structure replication),
generic (generic models), package(model reuse) and configuration (design structure). Verilog sup-
ports reduction operators but VHDL does not. Verilog’s support for system tasks and functions
allows a designer to incorporate control commands into a description to facilitate debugging, this
debugging technique is not supported in VHDL. However, concepts such as user-defined types are
supported in VHDL but not in Verilog and there is much more support in VHDL for high-level
modeling.

VHDL is often described as “verbose” when compared to other languages in that it offers
more than one way of expressing things. VHDL is strongly-typed and Verilog is weakly-typed.
VHDL provides a “rich” set of data types and Verilog is a smaller language and typically much
easier to use. Verilog and VHDL are syntactically similar but there is no guarantee that Verilog
models will behave the same in different tools. Verilog is generally regarded as much easier to
learn than VHDL in part because Verilog is more “C-like” than VHDL.

111Verilog-AMS supports both analog and mixed-signal in part by supporting a continuous time simulator
capable of solving differential equations in the analog domain and providing the ability to cross-couple the digital
and analog domains.

112It should be noted that Verilog began life as an interpreter and therefore libraries were not supported.

5.20 Summary 213

SystemC113 is sometimes used as an HDL to provide “VHDL-like” capability, but its use can
be challenging, when modeling complex circuits. It allows the concept of time and concurrency
to be employed in C++ applications, as for example when modeling synchronous hardware.
Because it is C++ -based it is supported on a wide range of C++ platforms. SystemC has
support for modules that communicate via ports, concurrent processes, channels114, events, and
fixed point/logic/extended standard data types.

The following is a example of a simple adder written in SystemC.

include "systemc.h"
#define WIDTH 4
SC_MODULE(adder) {

sc_in<sc_uint\textless <WIDTH> > a, b;
sc_out sc_uint<WIDTH> > sum;
void do_add() {

sum.write(a.read() + b.read());
}

SC_CTOR(adder) {
SC_METHOD(do_add);
sensitive << a << b;
}
};

5.20 Summary

In this chapter attention has been focussed on the virtues of programmable logic devices, bound-
ary scanning techniques for testing programmable devices, Boolean functions and their simplifi-
cation using Karnaugh maps. Macrocells and logic arrays are shown to form the basis for UDBs
are discussed in some detail and the steps required to simplify Boolean expressions have been
outlined in detail. Programmable logic devices based on combinations of macrocells and logic
arrays and discussed in some detail and their use in one incarnation in the form of universal
digital blocks. An integral part of using such devices is the ability to form and simply Boolean
expressions derived from truth tables or Karnaugh maps. that represent the required logic.

A simple, but straightforward technique has been presented for evaluating Karnaugh maps,
suggested by Mendelson [34], Harbort and Brown [10], et al, that simplifies Boolean expression
to minimize hardware requirements in the subsequent implementations. PSoC3/5s universal dig-
ital block is discussed with resect to its internal architecture and relationship/interaction with
the datapath. Backus-Naur notation is introduced within the context of a discussion of HDLs
and the basic constructs of VHDL, Verilog and WARP are discussed and illustrated by example.
Additionally, finite state machines are introduced and an example of a state machine implemen-
tation of a UART using Verilog was presented. PSoC3/5 architecture details and functionality
were used throughout this chapter to illustrate key aspects of the material presented.

113SystemC is a collection of open source, C++ classes and macros that function as an event-driven simula-
tion kernel that can be used to model concurrent processes capable of communicating in a simulated, real-time
environment.

114Channels may be wires, bus channels, FIFO’s, signals, buffers, semaphores,etc.

214 Programmable Logic

5.21 Exercises

1. Express the function given by Equation (5.22) in the form of a truth table. Use this table to
sketch the associated logic diagram. Repeat this process for Equation (5.26) and write a brief
comparison of the two logic diagrams listing the number and types of gates used in both cases.

2. Show that

F = A ∙ B ∙ D + A ∙ B ∙ C + A ∙ B ∙ D + A ∙ D + B ∙ C ∙ D

can be reduced to

F = A + B ∙ D

3. Simplify the function F and show that F=1.[16]

F = A ∙ B ∙ C ∙ D + A ∙ B ∙ C ∙ D + A ∙ D + A ∙ B ∙ C + A ∙ B ∙ C ∙ D + B ∙ C ∙ D + A ∙ C ∙ D

4. Which of the following is a sum of products and which is a product of sums:

ABC + ABC

AB C + ABC

(A + B)(B + C + D)

(A + B + C)(B + C)

AB C + AB C + A B C

5. Sketch the logic circuit for: (A + B + C)(A + B + C)(A + B + C).

6. Show how to implement a NOT, OR and AND gate using 1, 2 and 3 NOR gates respectively.

7. Express each of the following expressions as a sum-of-products:

a) (A + B) ∙ (A + B)

b) A ∙ (B + C)

c) −(A + B ∙ C)
8. Write a VHDL entity declaration with the following characteristics:

• Port A is a 12 bit output bus

• Port AD is a 12-bit, three-state bidirectional bus

• Port INT is a three-state output

• Port AS is an output that is used internally

• Port OE is an input bit

• Port CLK is an input bit

9. Given the following entity declaration for a comparator:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY compare IS PORT (
a, b: IN std_logic_vector(o TO 3);
aeqb: OUT std_logic);
END compare;

5.21 Exercises 215

Write the VHDL code for an architecture that causes aebq to be asserted when a is equal to b
using a) conditional assignment, b) boolean equations and c) a process with sequential statements.

10. Simplify A ∙ B ∙ C + A ∙ B ∙ C + A ∙ B ∙ C using a Karnaugh map.

11. The truth table for binary addition has three inputs: addedin, augend and carry in. The
output consist of a sum and a carry. What is the truth table for the summing portion of binary
addition? Simplify the expression representing this table by using a Karnaugh map.115

12. Draw the state diagram for a 3-bit binary counter as a state machine include any associated
truth tables. Show how this counter can be implemented using combinatorial logic and D flip-
flops.

13. Write an entity/architecture pair for the following circuit:

115Exercises 10 and 11 were suggested by Bob Harbort and Bob Brown, Computer Science Department, Southern
Polytechnic State University.

216 Programmable Logic

Chapter 6

Mixed-Signal Processing

In this chapter, discussion focuses on mixed-signal processing1, and in particular the various
components often incorporated into an embedded system to provide the necessary functionality
for a particular application. As in the previous chapters, PSoC3/5 serves the various needs for
illustrative examples of key concepts throughout this chapter. It should be noted that many of the
blocks, also referred to as “modules”, found in devices such as PSoC3 and PSoC5 are in reality
repeated instantiations of some fundamental hardware components with variations whose charac-
teristics are controlled and/ or defined by registers. Therefore the discussion makes occasional
references to the controlling and other related registers merely to highlight the functionality at a
lower level of abstraction and to emphasize the fact that the behavior of the various modules can
be changed dynamically under program control, and in real time.

6.1 Mixed-Signal Evolution

Prior to 1970, applications of digital technology was somewhat limited as a result of the fact
that vacuum tubes and the associated analog technology had dominated the world of electronic
applications for more than two thirds of the 20th century. Although Transistor-Transistor Logic
(TTL) was developed in 1961, the first widely-used, commercial versions, known as the “Texas
Instruments 5400 Series” did not appear until 1963. This was soon followed, circa 1966, by Texas
Instruments 7400 series which was widely adopted as the defacto standard for hardware logic
components.

The 7400 series low cost, and the relative ease with which digital logic-based systems could be
developed lead designers to make more and more use of microcontrollers and digital techniques.
This was further motivated by the fact that analog components such as resistors, capacitors,
inductors, as well as, vacuum tubes, tend to exhibit some degree of variation in component values
as a function of aging, temperature, vibration, humidity, etc., which could substantially alter a
system’s performance However, given the fact that the real world is predominantly analog, it was

necessary to combine both analog and digital techniques in implementing an embedded system
in order to meet the requirements of increasingly more complex, and sophisticated embedded
systems.2 Most embedded systems involve both analog and digital signal processing techniques

1However, it has not been possible in this textbook to engage in a detailed discussion of signal processing.
Instead, certain common signal processing applications will be discussed, e.g., mixing and other examples that
involve both analog and digital signal processing, commonly encountered in embedded systems.

2Software-Defined Radios (SDRs), cell phones, digital television, etc., are excellent examples of a merging of
digital and analog, i.e., mixed-signal, techniques to provide increasingly more sophisticated receivers and trans-

146 Mixed-Signal Processing

for handling I/O requirements, data acquisition and storage, data/signal conditioning, etc., and
are hence often referred to as “mixed-signal” systems. PSoC3 and PSoC5 include both analog and
digital modules that are interoperable, and highly configurable, as is shown in this chapter. Their
mixed-signal architectures allow them to address a myriad of embedded system applications.

The reader would be well advised to bear in mind that in mixed-signal design it is often best
to Redde Caesari quae sunt Caesaris3 and use the digital/analog techniques and components that
best meet the application’s requirements and in the most beneficial combination. For example,
in filter design, and deployment, there are frequency ranges for which digital techniques are quite
unsuitable, in spite of their ability, in principle at least, to often provide far superior filtering
than that of traditional analog techniques.

6.2 Analog Functions

Embedded systems are often called upon to handle a wide variety of inputs that include both dig-
ital and analog control/command signals. Analog functions employed in implementing embedded
systems include:

• Analog-to-Digital Conversion
Many transducers used in conjunction with embedded systems produce voltages or currents
that are related to a parameter, or parameters, that the transducer is experiencing as inputs.
Analog-to-digital conversion of the outputs of such transducers may be required to prepare
these signals for acceptance and processing by the embedded system.

• Current and Voltage Sensing
Transducers used in conjunction with embedded systems introduce a variety of voltage and
current levels, some of which may be required to be in the form of analog signals that fall
within certain ranges in terms of power, current and/or voltage.

• Current and Voltage Output
Embedded systems are often required to provide specific current and voltage levels to ex-
ternal devices in ranges beyond the capacity of microcontrollers which are generally limited
to output currents on the order of 25 milliamperes and voltages less than ±12 vdc.

• Analog Filters4

Many embedded systems include the ability to recover signals, remove interference, etc. and
both digital and analog filters each play an important role in such cases. The most common
types of filters are defined as:

– highpass filters that pass frequencies above a certain frequency and block lower frequen-
cies,

– lowpass filters that pass frequencies below a certain frequency and block higher frequen-
cies,

– bandpass filters that pass all frequencies within a specified range and block all other
frequencies,

– notch filters, also referred to as bandstop or bandreject, filters that are extremely narrow
band filters with steep sides that remove a narrow band of frequencies while passing,
those frequencies above and below that band with constant, e.g., unity, gain,

– allpass filters that pass frequencies within a specified range without altering their mag-
nitude and at constant phase delay, and

mitters.
3“Render unto Caesar those things which are Caesar’s ...”
4Assumed for the purpose of this section to be ideal filters, cf Section 6.10.1.

6.2 Analog Functions 147

– adaptive filters that can change their characteristics to meet changing conditions en-
countered by an embedded system.

• Analog Mixing (Up-Conversion and Down Conversion)
Some transducers and other signal sources produce modulated carriers and the embedded
system must be able to extract the data signal in such cases. Similarly some embedded
applications require outputs to external devices in the form of modulated carriers.

• Current-to-Voltage and Voltage-to-Current conversion
In addition to the fact that input signals can be in the form of current or voltage signals,
the ability to convert from one to the other may be required be required for output signals
provided by an embedded system.

• Analog Signal Pre- and/or Post-Conditioning
It is often necessary to subject input signals to some form of pre- post-conditioning, e.g.,
filtering, voltage/current level shifts, up/down frequency conversion, etc., prior to/or after
their processing by the embedded system

• Amplification5

Amplification is an important consideration in many systems, whether as part of a signal
conditioning requirement for input signals, or for driving external devices such as motors
and other actuators.

• Current/Voltage-to-Frequency Conversion
Depending on the type of I/O devices involved in an embedded system, it may be necessary
to convert current and/or voltage to frequency.

• Frequency-to-Voltage/Current Conversion
Depending on the type of I/O devices involved in an embedded system it may be necessary
convert frequencies to voltages/currents.

• Pulse Width Modulation/Demodulation
PWMs are often used to provide proportional control of external devices, e.g., motors,
illuminators, etc., and demodulation of pulse width modulated signals.

• Integration
Integration of signals is sometime employed as part of the input signal conditioning, or for
other reasons, in an embedded system.

• Pulse Shaping
Pulse re-shaping may be required to restore a signal that has been distorted, e.g., to improve
pulse width, pulse height, overall shape and/or timing.

• Differentiation
Some embedded systems require that analog signals be differentiated.

• Analog Voltage-to-Reference Voltage Comparison Many embedded systems employ
comparators to compare an input signal to a reference value which serves as a threshold for
action, or inaction, by the embedded system.

• Track and hold amplifier
Track and hold amplifiers are used to maintain a signal input level, i.e., a sample, for a
period of time to allow processing of the sample to be completed before the system accepts
the next sample to be processed.

• Unity Gain Buffer
Such buffers are used to avoid overloading a previous stage, or input source.

5Amplification of this type is sometimes referred to as “multiplication”.

148 Mixed-Signal Processing

• Voltage Summing

Allows an embedded system to sum multiple input/output signals.

• Logarithmic Amplifier “Log amps” are often used with transducers, or other devices,
with a wide dynamic range in order to bring both high and low level signals into an acceptable
range for either input to, or output from, an embedded system

• Exponential Amplifier

These amplifiers can be used with sensors, or other sources, producing logarithmic signals.

• Instrumentation Amplifier

These amplifiers are often used to make high accuracy, non-perturbing voltage/current mea-
surements in an embedded system application.

• Digital-to-Analog Conversion OpAmps are sometimes used in conjunction with other
components to provide an analog output of a digital input.

Operational amplifiers frequently play an important role with respect to the providing these
types of analog functions, as shall be shown in the remaining discussions in this chapter. Much
of the discussion that follows focuses on idealized operational amplifiers. Related discussions of
some of the analytical aspects of non-ideal operational amplifiers can be found in Appendix E.

6.2.1 Operational Amplifiers (OpAmps)

The “Operational Amplifier” or “OpAmp”6 was developed in the 1930s, under a Federal grant,
with the specific goal, among others, of finding a replacement for mechanical integrators used in
various military applications7, e.g., the ball and disk integrator8 which was subject to slippage
and therefore error.[15] The result was a vacuum tube based design, that was to serve as a key
component in a wide variety of military and civilian applications, and ultimately become the
basic building block for a large number of early analog computers. The following example clearly
illustrates how one might use such devices as the basis for analog computers capable of solving,
inter alia, differential equations9.

Consider the differential equation

d2x

dt2
= −ω2x (6.1)

Given an electrical, or mechanical, integrator with the property10 that

f(t)out = −
∫

g(t)in (6.2)

it follows that substituting the LHS of Equation (6.1) into Equation (6.2) yields -dx/dt which can
then be substituted into Equation (6.2) for a second time to produce x. If x is then multiplied
by −ω2, the result is equal to d2x/dt2. The OpAmp configuration capable of solving Equation
(6.1) is shown in Figure 6.1. This configuration is sometimes used as a sine wave generator to
produce tones.

6Sometimes referred to as an “OpAmp”.
7Airborne Sextants, fire control systems, etc.
8Hence the name operational amplifier because it was to perform the “operation” of integration.
9Analog computers have also proven superior to digital computers in solving certain types of partial differential

nonlinear equations.
10Unless otherwise noted functions such as f(t) and g(t) are assumed to be ”well-behaved”.

6.2 Analog Functions 149

Figure 6.1: An analog computer solution of a differential equation.

It should be noted that this method of solving differential equations, and in particular complex
systems of differential equations was to remain in popular use for almost fifty years. Much of the
early verification of various aspects of chaos theory was carried out on analog computer systems.

The earliest commercially available operational amplifiers, circa 1941, were general purpose,
DC-coupled11, voltage amplifiers that had high gain and employed a feedback loop. The passive
components employed in the feedback loop, and for input, usually a capacitor or resistor, allowed
operational amplifiers to serve as integrators, differentiators, summers, scalers, multipliers, fol-
lowers, etc. A short list of possible operational amplifier configurations is shown in Table 6.1.
They were followed by a succession of solid state devices, initially based on discrete transistors

Table 6.1: Examples of OpAmp applications

(1961) and ultimately in the form of integrated circuits, most notably the μA709 (1965) operating
at significantly lower supply voltages, e.g., ±15 vdc.

However, these early solid state devices devices were prone to oscillate, sometimes at such high
frequencies, that the then commonly available oscilloscopes had a hard time“seeing” the oscil-

11DC-coupled refers to the fact that the amplifiers could handle both DC and AC signals.

150 Mixed-Signal Processing

lations. This type of oscillation was to plague some designers so much that they referred to
operational amplifiers as “operational oscillators”. Oscillation, and other problems associated
with the μA709, were resolved in 1968 with the introduction of the μA741 which remains the low
cost OpAmp of choice for many applications to this day.

The development of the Field Effect Transistor led to the introduction of FET-based OpAmps
as the next step in the evolution of operational amplifiers providing much higher input impedances12

and therefore significantly lower input currents and the capability of operating at much higher
frequencies. Additionally, the requirement for external dual power supplies for OpAmps was
removed by the introduction of devices such as the LM324 (1972) which has multiple OpAmps
in a single package and operates from a single external supply.13

Modern operational amplifiers are usually classified in terms of their input/output type as a

• voltage-controlled voltage source (VCVS) whose gain is represent by Ao and defined as the
ratio of output voltage to input voltage (vo/vi),

• voltage-controlled current source (VCCS)whose gain is represent by the symbol gm as the
ratio of output current to input current,

• a current-controlled voltage source (CCVS) represented by the symbol rm and defined as
the ratio of output voltage to input current (vo/ii).

or,

• current-controlled current source (CCCS) represented by the symbol Ai and defined as the
ratio of output current to input current (io/ii).

Examples of just a few of the many applications of operational amplifiers are given in Table 6.1.

6.3 Fundamental Linear System Concepts

Before proceeding with a discussion of operational amplifiers, analog/digital filters and other
topics discussed in this chapter, some fundamental concepts must be introduced. Important defi-
nitions and figures of merit related to operational amplifiers will be presented to help characterize
the behavior of operational amplifiers in a variety of configurations commonly found in, or related
to, embedded systems. It has of course not been possible to cover these topics in great detail but
s number of references are provided that should be of help for those interested in more detailed
discussions.

6.3.1 Euler’s Equation

Leonhard Euler (1707-1783) a Swiss physicist and mathematician made a number of important
contributions to science including his discovery that

ejθ = cos(θ) + jsin(θ) (6.3)

and therefore

e−jθ = cos(θ) − jsin(θ) (6.4)

12The input impedance of a typical μA741 is of the order of 2 MΩ. OpAmps with input impedances that exceed
1012 Ω are now available.

13It should be noted that the LM324 is inherently a dual supply system. However, by employing a “virtual”
ground it is possible to operate its OpAmps using only a single supply.

6.3 Fundamental Linear System Concepts 151

which leads to the important results that

sin(θ) =
ejθ − e−jθ

2j
(6.5)

cos(θ) =
ejθ + e−jθ

2
(6.6)

and because

θ = ωt = 2πft =
2πt

T
(6.7)

it follows that

sin(ωt) =
ejωt − e−jωt

2j
(6.8)

cos(ωt) =
ejωt + e−jωt

2
(6.9)

so that for well-behaved functions, i.e., functions that are continuous, periodic, etc., can be
expressed as an infinite complex exponential series, viz.,

f(t) =
∞∑

k=−∞

gke−jkω0t (6.10)

which expresses a continuous, periodic function in the time domain as an infinite sum of discrete
values in the frequency domain and ω0 the fundamental frequency and its harmonics represented
by kω0.

If the function f(t) is an aperiodic, continuous-time signal it can be expressed in terms of a
complex integral, known as the Fourier Transform, as

f(t) =
1
2π

∫ ∞

−∞
G(jω)ejωtdω =

∫ ∞

−∞
G(j2πf)ej2πftdf (6.11)

6.3.2 Impulse Characterization of a System

By determining the response of a LTI system to a very fast input pulse it becomes possible to
ascertain the system’s response to an arbitrary input. This type of analysis is facilitated by
an important class of functions known as generalized functions which are particularly useful in
understanding the behaviour of embedded systems.

Two of these functions are the Kronecker and Dirac delta functions. These functions have
some very unique properties, e.g., the Dirac delta function, also known as the unit impulse
function, is defined as

δ =

{
∞ if x = 0

0 if x 6= 0
(6.12)

subject to the constraint that

∫ ∞

−∞
δ(x)dx = 1 (6.13)

152 Mixed-Signal Processing

The Dirac delta function also has the property called sampling or sifting , viz.,

∫ ∞

−∞
f(x)δ(x − x0)dx = f(x0) (6.14)

The Kronecker delta function is given by

δij =

{
1 if i = j

0 if i 6= j
(6.15)

or as an integer function as

δ[n] =

{
1 if n = 0

0 if n 6= 0
(6.16)

Thus
∞∑

i=−∞

aiδij = aj (6.17)

In the case of continuous-time systems the Dirac delta function is used as the impulse function
and for discrete-time systems the Kronecker delta function is used. A system’s response to an
impulse function is called the the impulse response function. As shown in a later section of this
chapter, the Laplace transform of the impulse response function is the system’s transfer function.
Both the Kronecker and the Dirac delta functions are mathematical models of a real world pulse
that can be used to determine the behavior of discrete- and continuous-time systems, respectively.

6.3.3 Fourier, Laplace and Z Transforms

Engineers, scientists and a variety of technologists often rely on a family of mathematical tools
known collectively as “transforms”. These powerful tools make it possible to analyze, in consider-
able detail, a wide variety of physical systems and phenomena. By transforming a problem into a
different function space it is often possible to gain considerable insight into the characteristics and
behavior of a system while avoiding what can be substantial mathematical analysis challenges.
Inverse transforms are also available which allow the completed analysis to then be returned a
spatial or temporal domain from which it originated.

Signals can be broadly classified as either periodic, or aperiodic, and discrete, or alternatively
as continuous and either periodic or continuous. Powerful tools are often required to investigate
such a diversity of signals and their processing.

In this and other chapters use will be made of the:

• Laplace transform14 which originally developed as a technique for solving ordinary differen-
tial equations (linear). It provides a method of mapping continuous time-domain functions
to the s-domain where s = σ + jω that is defined in bilateral form as

L{f(t)} =
∫ ∞

−∞
f(t)e−stdt (6.18)

14MatLab provides, as part of its symbolic toolbox, laplace() and ilaplace() functions to computer Laplace
transform and the inverse Laplace transform of a function, respectively.

6.3 Fundamental Linear System Concepts 153

• Fourier transform15 which is a method of solution of differential equations that provides
the steady state response of a system. It can be used to map discrete time signals, that is
continuous16, periodic functions to/from the frequency domain.

F (ω) =
∫ ∞

−∞
f(t)e−jωtdω (6.19)

• Fourier Series is a method of expressing well-behaved, continuous function in terms of an
infinite series, or approximated by a a partial sum thereof, consisting of sine and/or cosine
terms. This series produces a frequency domain representation of a periodic, continuous-time
signal.

f(x) = a0 +
N∑

n=1

[ancos(nx) + bsin(nx) (6.20)

an =
∫ π

−π

f(x)cos(nx)dx n > 0 (6.21)

bn =
∫ π

−π

f(x)sin(nx)dx n > 1 (6.22)

and the

• Z-transform which is the discrete-time equivalent of the Laplace transform and is a mapping
from the time-domain to the z-domain and expressed as

Z{x[n]} = X(z) =
∞∑

n=−∞

x[n]z{−n} (6.23)

6.3.4 Linear Time Invariant Systems (LTIs)

A system which is definable in terms of a single input x(t) signal and a single output signal y(t)
(SISO) such that there exists an F(x(t)) for which

y(t) = F (x(t)) (6.24)

is said to be “linear”17 if

F (x1(t) + x2(t)) = F (x1(t)) + F (x2(t)) (6.25)

and,

F (ax(t)) = aF (x(t)) ∀a ∈ < (6.26)

Furthermore, if

y(t − T) = F (x(t − T)) ∀T ∈ < (6.27)

15The Fourier transform is equivalent to the Laplace transform when s = jω.
16The reader is cautioned to delineate between continuous time functions and the mathematical meaning of

“continuous” when refereeing to a aperiodic functions.
17It is often suggested that nonlinear system with nonlinear terms that are deemed “small” can be treated as

linear. However, in some systems it is the existence of small terms and not their magnitude which determines
whether the system will behave in a quasi-linear fashion or is capable of becoming significantly nonlinear. If the
signal levels are sufficiently low it may be possible to constrain a system to operating in a linear region, e.g. as is
often the case with transistors.

154 Mixed-Signal Processing

the system is said to be linear and time invariant, or equivalently LTI. Linearity gives rise to a
number of important benefits perhaps the greatest of which in the present context is superpo-
sition which allows the response of a LTI system to be determined by inputting the individual
components of a signal into a system, determining the output in each case and then summing the
individual responses to obtain the overall response of the system to the composite input signal.

If there exists a function h(t) referred to as the impulse function such that:

y(t) =
∫ ∞

−∞
h(ν)x(t − ν)dν (6.28)

the system can also be said to be LTI. Conversely, if a system is LTI then there exists an impulse
function, h(ν). Equation (6.28) is called the convolution integral and h(ν) is referred to as
the “unit impulse response”. A step function can also be used to characterize a system just
as completely as the unit impulse. However, for the purposes of these discussions an impulse
function will suffice.

The existence of an impulse response function for a system allows an arbitrary input to
be represented as a set of impulse functions of the appropriate amplitude and the response
of the system to each such impulse function determined so that the response to an arbitrary
input can be viewed as the sum of the responses to the impulse functions making up the input
signal. The process of decomposing the input signal into a series of impulses is referred to as
impulse decomposition . The combing of the resulting impulse responses is referred to as synthesis.
However, there is an even simpler technique which relies on the impulse being known and the
existence of an analytic expression for the input. This process is known as convolution and is
discussed in a later section.

The characterization of systems and signals of the types under discussion in this and subse-
quent chapters typically depend less on the shape of the time domain input waveform, and more
on their respective amplitude (gain) amplitude, frequency and phase of its spectral components.
Therefore the ability to map time domain functions that fully embody the system’s characteristics
into the frequency domain is an important part of predicting behavior. Any LTI18 system can be
characterized, in principle at least, by its transfer function which is simply a function that gives
the output of the system as a function of the input19, or in more formal Laplace terms, a trans-
form function, H(s), for a LTI system, is a linear mapping by the Laplace transform20, L{f(t)},
of the input, referred to X(s), to the output, Y(s) where the Laplace Transform is defined as

L{f(t)} =
∫ ∞

0

f(t)e−stdt (6.29)

and its inverse21, as

L−1{f(s)} = −
1

2πj

∫ α +j∞

α−j∞
f(s)estds (6.30)

and for which s = σ + jω.

18Linear Time Invariant systems, in addition to being linear, exhibit no explicit time dependence. Such systems
are completely characterized by the system’s impulse response, or equivalently its step response.

19Assuming zero initial conditions.
20The Laplace transform allows LTI systems to be mapped to the frequency domain and completely character-

ized by their respective frequency transfer function H(s).
21Using the integral form of the inverse Laplace transform requires integration in the complex plain and it is

often preferable to instead rely on partial fraction expansion, i.e., a sum of simpler fractions, and tables of known
transforms.

wka
Note
is "combing" intended here ? not defined so far, may want to define before using term for textbook purposes

6.3 Fundamental Linear System Concepts 155

Example 6.1
MatLab provides a very convenient method for finding the inverse Laplace transform of a
complex function in the form of the “ilaplace” operator.

Assuming that:

H(s) =
amsm + am−1s

m−1 + . . . + a1s + a0

bnsn + bn−1sn−1 + . . . + b1s + b0
=

s(s − 7)(s + 4)
(s + 2)(s2 + 5s + 6)

[MatLab]

>> ilaplace((s ∗ (s − 7))/((s + 2) ∗ (s2 + 5 ∗ s + 6)))
ans = 30*exp(-3*t)+(-29+18*t)*exp(-2*t)

6.3.5 Impulse and Impulse Response Functions

A transfer function is defined in the Laplace domain as the ratio of the output function to the
input function assuming that the initial conditions are zero.

Therefore if

L{y(t)} = Y (s) (6.31)

and

L{x(t)} = X(s) (6.32)

Then the transfer function for a given system leads to the following

H(s) =
Y (s)
X(s)

(6.33)

Y (s) = H(s)X(s) (6.34)

y(t) = L−1{H(s)X(s)} (6.35)

Table 6.2 shows that the Laplace transfer of the Dirac delta function is

L{δ(t)} = 1 (6.36)

so that if x(t) = δ(t), Y (s) = (1)H(s) and therefore the impulse response of a system occurs
when an impulse function is applied to the input.

The computation of Laplace transform of a function f(t) is relatively straightforward because
it involves integration in the real domain as opposed to the computation of the inverse Laplace
transfer which is defined in terms of integration in the complex domain. In most cases the
computation of the Laplace transform is straightforward and the explicit and sometimes tedious
computation of the inverse based on integration in the complex plane can be avoided by employ-
ing tables of Laplace transform inverses. Table 6.2 shows some of the more common Laplace
Transforms. A combination of partial fraction expansion and utilization of such tables is much
easier than having to employ integration techniques in the complex plane. MATLAB provides
an even simpler approach as shown in Example 6.2.

wka
Note
Please note that this requires a toolbow (symbolic ?)

156 Mixed-Signal Processing

Example 6.2 MATLAB can be used to find the impulse response of a system’s transfer
function, e.g.,

H(s) =
s + 2

s3 + 4s2 + 5
=

1s1 + 2
1s3 + 4s2 + 0s1 + 5

(6.37)

by the following:

[MatLab]
>> num = [1 2]
>> den = [1 4 0 5]
>> impulse(num, den)

The graphical result is shown in Figure 6.2.

Figure 6.2: Impulse response for Example 6.2.

6.3.6 Transfer, Driving and Response Functions

Consider a causal22, linear. time invariant (LTI) system which has a single input and single output
(SISO) that can be represented by an ordinary differential equation with constant coefficients,
e.g.,

yn+ a1y
(n−1)+ . . .+an−2ÿ +an−1ẏ+ any = b1x

m+ b2x
(m−1)+ . . .+ bm−1ẍ + bmẋ + bm+1(6.38)

22Causal systems are defined as systems for which the output at a particular time, t0, depends only on the
input for t ≤ t0 and not on any time in the future, i.e. for all t ≥ t0.

6.3 Fundamental Linear System Concepts 157

Figure 6.3: Bode plot for Equation (6.37).

Taking the Laplace Transform of both sides yields:

Y (s) = H(s)X(s) (6.39)

and therefore,

H(s) =
Y (s)
X(s)

(6.40)

where,

L{x(t)} =
∫ ∞

0

x(t)e−stdt = X(s) (6.41)

and,

L{y(t)} =
∫ ∞

0

y(t)e−stdt = Y (s) (6.42)

Y(s) is referred to as the response function, X(s) as the driving function and H(s) as the transfer
function. The most general form23 of a transfer function for continuous-time systems of the type
under discussion is represented by:

H(s) =
amsm + am−1s

m−1 + . . . + a1s + a0

bnsn + bn−1sn−1 + . . . + b1s + b0
=

M(s)
N(s)

(6.43)

23It assumed that at least for the sake of this discussion that H(s) is a rational function, i.e., it can be written
as the ratio of two polynomials which is usually the case.

158 Mixed-Signal Processing

Table 6.2: Some Common Laplace Transforms.

Time Domain Description Frequency Domain

δ Unit Impulse 1

A Step
A

s

t Ramp
1
s2

e−at Exponential Decay
1

s + a

sin(ωt) Sine Function
ω

s2 + ω2

cos(ωt) Cosine Function
s

s2 + ω2

te−at 1
(s + a)2

t2e−at 2
(s + a)3

e−atsin(ωt) Decaying Sine
ω

(s + a)2 + ω2

e−atsin(ωt) Decaying Cosine
s + a

(s + a)2 + ω2

and in an equivalent factored form as:

H(s) =
(s − zm)(s − zm−1) . . . (s − z2)(s − z1)

(s − pn)(s − pn−1) . . . (s − p2)(s − p1)
(6.44)

As discussed in Section 6.10.3 of this chapter, the transfer function for a simple RC circuit is
given by:

H(s) =
sRC

1 + sRC
(6.45)

which has both a zero for s = 0 and a pole for s=-1/RC. Poles/Zeros refer to points in the complex
plane for which the denominator/numerator of the transfer function becomes zero, respectively.

This can be formally expressed as

lims→ziH(s) = 0 (6.46)

and

lims→piH(s) = ∞ (6.47)

6.3 Fundamental Linear System Concepts 159

for the general form of a transfer function of the type shown in Equation (6.44) which is expressed
in terms of the roots of the denominator and numerator of a complex transfer function. If the
system is to be stable, then the poles must lie in the left hand side of the complex plane.

6.3.7 Common Mode Voltages

OpAmps are inherently two input devices and therefore input signals24 that are common to both
must be taken into account when analyzing an OpAmps characteristics. The common mode input
voltage is defined as:

vicm =
(vi1 + vi2)

2
(6.48)

Similarly the common mode output voltage is defined as:

vocm =
(vo1 + vo2)

2
(6.49)

6.3.8 Common Mode Rejection

Embedded systems employing OpAmps are often in environments containing a variety of sources
of electronic noise25, as well as, signal. An important figure of merit for an OpAmp is the value
of a parameter known as the Common Mode Rejection Ratio, or CMRR.

The output of an OpAmp can be expressed as

vo = Ad(vi1 − vi2) + Acm

[
v+ + v−

2

]

(6.50)

where Ad is the differential gain and Acm is the common mode gain. CMRR is a quantitative
measure of a device’s ability to reject common mode signals, i.e., signals applied to both inputs
and has been formally defined by the IEEE as:

CMRR = 10 log10

[
A2

d

A2
cm

]

= 20 log10

[
Ad

| Acm |

]

(6.51)

Obviously it is desirable for the CMRR to be as low as possible, particularly when the signal
of interest is small relative to the ambient common mode signals such as signals originating from
thermocouples, thermistors, etc.

6.3.9 Total Harmonic Distortion (THD)

An important parameter for many devices and applications with both inputs and outputs is known
as Total Harmonic Distortion, or THD. Nonlinearities in a system can give rise to unwanted
harmonics which are “injected” into a signal, and THD is an important measure of such effects.
In the case of a pure sine wave, THD is defined as the ratio of the sum of the higher harmonics
present to the first harmonic of the distorted signal, i.e.,

THD =
∞∑

n=2

Pn

P1
=

∞∑

n=2

V 2
n

V 2
1

=
Ptotal − P1

P1
(6.52)

24In this case inclusive of signals containing or representing noise. Note that in some environments it is possible
for the desired signal to appear on both inputs albeit at different signal strengths.

25Noise is sometimes referred to as “the part you don’t want”, whereas signal is defined as “the part you do
want”.

160 Mixed-Signal Processing

where Pn is the power of the nth harmonic and Ptotal represents the total power of the distorted
signal and Vn is the amplitude of the voltage of the nth harmonic. THD is sometimes also
combined with noise and defined as:

THD + N =

∑
Harmonic Power + Noise Power

Fundamental Power
(6.53)

If the output signal is weakly distorted, it is possible to use a Taylor series26 expansion to model
the output signal in terms of the input signal and thereby quantify the distortion.[13]

That is,

vo = a0 + a1v
2
i + a3v

3
i + a4v

4
i + ∙ ∙ ∙ =

∞∑

n=0

anvn
i (6.54)

where,

an =
1
n!

[
dnvo

dv2
i

]

vi=0

(6.55)

which for an input of the form

vi = V cos(wt) (6.56)

can be expressed as

vo =

[

a0 +
1
2
V 2a2

]

+

[

a1 +
3
4
V 2a3

]

V cos(ωt) +

[
a2

2

]

V 2cos(2ωt) +

[
a3

4

]

V 3cos(3ωt) + ∙ ∙ ∙(6.57)

where a0 and a1 represent the DC component and circuit gain, respectively. This result shows
that second and third order harmonics occur within the first four terms of this series which for
many applications is sufficient to characterize the harmonics distortion. Second and third order
distortion are defined as

HD2 =
1
2

a2

a1
V (6.58)

HD3 =
1
4

a3

a1
V 2 (6.59)

and the total harmonic distortion is given by

THD =
√

HD2
2 + HD2

3 + HD2
4 + ∙ ∙ ∙ (6.60)

6.3.10 Noise

Noise27 has been characterized as “... the part we don’t want...” and it is present in every
real world system to a greater or lesser degree. Before beginning a discussion of noise it will

26The Taylor series is a series expansion of a function based on its value and that of its derivatives at a single
point. In this particular case, the series is actually a Maclaurin Series since it is being evaluated at the origin, i.e.,
in the neighborhood of vi = 0.

27“Like diseases, noise is never eliminated, just prevented, cured, or endured, depending on its nature, serious-
ness, and the cost/difficulty of treating it.” from Analog-Digital Conversion Handbook, by D.H. Sheingold, Analog
Devices.

6.3 Fundamental Linear System Concepts 161

prove helpful to define some key concepts, e.g., methods for arriving at average values for a given
parameter. Root mean square, or RMS as it is commonly referred to, is defined by the following:

RMS value of f(t) =

√
1
T

∫ T

0

f2(t)dt (6.61)

where T represents a characteristic time interval, e.g., the period of the function f(t). In case of
truly random noise28, its average value will be zero, however it does in power being dissipated,
thus the RMS value of the noise is an important parameter when considering circuit/device noise.

Example 6.3
Assuming a frequency of 60 Hz and a wave form given by f(t) = (1.697x10−3)sin(t),
Equation (6.61) becomes

RMS f(t) =

√
1
T

∫ T

0

[169.7 sin(t)]2(t)dt =
1.697x10−3

√
2

≈ 1.20millivolts

for T = 1.66x10−2, i.e. 60 Hz.

Noise is present in all circuits, and in multiple forms, including:

• White Noise29 is a generic term that refers to any noise source for which noise as a function
of frequency is constant, and usually within a specified range.

• Thermal30 - J. B. Johnson [16] was the first to report the existence of thermal noise by
noting that the statistical fluctuation of electric charge in conductors results in a random
variation in potential across a conductor. H. Nyquist [32] confirmed Johnson’s observations
by providing a theoretical basis for what Johnson had observed. The random motion of
charge carriers gives rise to a what is approximately Gaussian noise, i.e., statistical noise
with a probability density that is a normal distribution, i.e. Gaussian. In the case of
resistors, the RMS value of the voltage associated with such noise is given by:

vrms =
√

4kTΔfR (6.62)

and therefore where k is Boltzmann’s constant, T is the temperature of the resistor in Kelvin,
Δf is the bandwidth of interest, and R is the value of the resistance. Note that if both sides
of Equation (6.62) are squared then

v2
rms = 4kTΔfR ⇒

v2
rms

R
= 4kTΔf = P (6.63)

which is the noise power, P, dissipated in the resistor31. The noise power spectral density is
a measure of the noise present in a 1 Hz bandwidth and is defined as:

Psd =
P

Δf
= 4kT (6.64)

28Noise that is in reality completely random probably doesn’t exist, but for the sake of these discussion “rela-
tively random” shall suffice.

29A true white noise source would be required to supply infinite energy across an infinite spectrum, therefore
physical white noise sources are necessarily restricted to finite portions of the spectrum. Approximations to a
white noise source are sometimes referred to as non-white, colored or pink noise sources.

30Thermal noise is also referred to as Johnson, Nyquist or Nyquist-Johnson noise.
31Some portion of the noise can also be distributed throughout any circuit that the resistor is connected or

that is within close proximity. Since the noise power is directly proportional to Δf, one way to minimize circuit
noise is to limit the bandwidth as much as possible

162 Mixed-Signal Processing

and has units of V 2/Hz. Thermal noise, in the case of an MOS device, is modeled as a
current source in parallel with drain and source. Noise in resistors can be modeled as a noise
source in series with an ideal noise-free resistor with the noise power being expressed as the
ratio of noise power to 1 milliwatt and designated as dBm.

Example 6.4
Noise power relative to 1 milliwatt can be expressed as

Prel = 10 log10

[
Pnoise

1x10−3

]

= 10 log10

[
Pnoise

]
+ 30 dBm

so that in the case of thermal noise in a resistor, if R = 50Ω, Δf = 10 kHz and T =
300 K

Prel = −134dBm (6.65)

• Flicker noise is modeled as a voltage source in series with the gate for example of a CMOS,
MOSFET or similar device and results from trapped charged carriers. It is inversely pro-
portional to frequency and is related to DC current flow. The average mean square value is
given by:

e2 =
∫ [

K2
e

f

]

df (6.66)

i2 =
∫ [

K2
i

f

]

df (6.67)

where Ke and Ki are voltage and current constants, respectively, for the device under
consideration and f is frequency.

• Burst noise is found in semiconductor devices and may be related to imperfections in semi-
conductor materials and heavy ion implants. It occurs at rates less than 100 Hz.

• Avalanche noise is found in Zener diodes and occurs when a PN junction is in reverse break-
down mode. In such cases, the reversal of the electric field in the junction’s depletion region
allows electrons to develop sufficient kinetic energy to collide with the crystal lattice’s atoms
and thereby create additional electron-hole pairs. Avalanche noise sources are sometimes
used as a “white noise” sources for testing filters, amplifiers, etc.32

• 1/f Noise origin is unclear although it is known to be ubiquitous and that in many situations
the transition between so-called “white noise”33 and 1/f noise occurs in the region between
1 to 100 Hz.

• Shot Noise is created by current flow as a result of charges crossing a potential barrier such
as that of a PN junction and is given by

i2n = (i − iD)2 = 2
∫

q iD df (6.68)

where q is the charge on an electron34 and df is the frequency differential. Note that shot
noise is not a function of temperature and that its value is constant with respect to frequency.

32A zener diode operating in avalanche mode is capable of producing ‘white noise” up to frequencies as high
as several hundred MHz.

33White noise is noise which contains equal amounts of noise at all frequencies.
34The charge on an electron is 1.62x10−19 coulomb.

6.3 Fundamental Linear System Concepts 163

6.3.11 Multiple Noise Sources

Modern electronic devices are contain multiple noise sources and therefore it is important to
determine how such noise is to be combined in order to determine the overall noise signal. Noise
sources can be internal, external or a combination of both. In addition to internal noise sources
interacting with external sources to introduce noise in an embedded system, different parts of
an embedded system can interact to produce noise. Although noise is a random process and
therefore cannot be predicted, it is possible to predict the noise power, in some cases. Resistors,
which are a common elements in operational amplifier implementations, are sources of noise that
can, in some cases, be significant concern. An ideal resistor in series with a noise voltage source
can be used to model actual resistors.

For example, two resistors independently giving rise to noise can be represented by

e2
1 =

∫
4kTR1df (6.69)

e2
2 =

∫
4kTR2df (6.70)

respectively.

If the average mean voltage, Etotal
2 is the voltage resulting from the two resistors being

connected in series and Etotal is given by:

Etotal = e1(t) + e2(t) (6.71)

then

Etotal(t)2 =
[
e1(t) + e2(t)

]2
= e1(t)2 + e2(t)2 + 2e1(t)e2(t) (6.72)

However, in this case e1 and e2 are independent noise sources and therefore the average value of
the product of e1(t) and e2(t) is zero and therefore:

Etotal(t)2 = e1(t)2 + e2(t)2 (6.73)

Thus the average mean square value of multiple noise sources is the sum of the average mean
square value of the noise from each source whether the sources are current or voltage sources.

6.3.12 Signal-to-Noise Ratio

Because signals and noise coexist, it is important to have a measure of the the relative strengths
of each, in part, as a way of quantifying how significant noise is in a given system. It is formally
defined as the ratio of the signal power to the noise power and frequently measured in dB.

Thus:

SNR =
Psignal

Pnoise
(6.74)

and, in terms of dB:

SNRdB = 10 log10

[
Psignal

Pnoise

]

= 20 log10

[
v2

signal

v2
noise

]

(6.75)

wka
Cross-Out

164 Mixed-Signal Processing

6.3.13 Impedance Matching

There are many situations for which it is necessary to consider how much power is being trans-
ferred from a source to a sink, i.e., to a load. In some cases it is desirable to deliver as much power
from the source to the load as possible. However, in other situations it is important to deliver as
little power as possible to the load, or the next stage, if only to avoid loading the previous stage
and degrading the signal.

Figure 6.4: Impedance matching example.

Assuming that Z1 and Z2 are the source and load impedances, respectively, as show in Figure
6.4 and that

Z1 = R1 (6.76)

Z2 = R2 (6.77)

so that

ii =
vi

R1 + R2
(6.78)

and therefore

P = i2i R2 =

[
vi

(R1 + R2)

]2
R2 (6.79)

and setting

dP

dR2
=

d

R2

([
vi

(R1 + R2)

]2
R2

)

= 0 (6.80)

implies that

R1 = R2 (6.81)

In which case the case second derivative can be shown to be negative and therefore Equation
(6.81) must hold, i.e., in order to deliver the maximum power to the load the resistance of the
source must be equal to the resistance of the load.

In order to carry out a similar calculation for the case in which the source and the load have
both resistive and reactive components, refer again to Figure 6.4. The magnitude of the current
passing through Z1 and Z2 is given by

| ii |=
| vi |

| Z1 + Z2 |
(6.82)

6.4 OpAmps and Feedback 165

and power dissipated in Z2, i.e., the power dissipated in the resistive component of RZ2 is given
by

P = i2RMSR2 =

[√
1
2π

∫ 2π

0

I2 sin2(ωt)dt

]2

=

[
I
√

2

]2
R2 (6.83)

and therefore

P =
1
2

[
| vi |

| Z1 + Z2|

]2
RZ2 =

1
2

| vi |2

| Z1 + Z2 |2
RZ2 =

1
2

[
| vi |2

(R1 + R2)2 + (X1 + X2)2

]

RZ2 (6.84)

Again setting the derivative of power P with respect to Z2 to zero yields the result that

R1 + X1 = R2 − X2 (6.85)

and therefore

R1 = R2 (6.86)

X2 = −X2 (6.87)

which is equivalent to requiring that Z1 be the complex conjugate of Z2.

6.4 OpAmps and Feedback

As discussed in Chapter 1, the generalized SISO system can be represented as shown in Figure 6.5.
Positive feedback is less frequently employed with operational amplifiers because feeding back a
positive signal can cause the amplifier to saturate. Negative feedback35, however, is widely used
with operational amplifiers in a a variety of contexts and with a wide range of important and
useful results.

Figure 6.5: A generalized SISO feedback system.

In general,

f(t)
s(t)

=
G1

1 + G1G2
(6.88)

and in the present case

vo

vi
= −

A0

(1 − βA0)
= Closed Loop Gain = Af (6.89)

where A0 is the open loop gain of the amplifier, β is the feedback coefficient and βA0 is the loop
gain. If βA0 >> 1, then Af ≈ 1 and if βA0 <<1, then Af ≈ A0. In the event that βA0 ≈ 1,
the system can be expected to become unstable and oscillation may occur.

35Feedback amplifiers began to appear as early as the 1920’s, as a result of the efforts of Harold S. Black, a
Western Electric engineer interested in developing better repeater amplifiers.[5][6][17]

166 Mixed-Signal Processing

6.5 Operational Amplifier Incarnations

6.5.1 The Ideal Operational Amplifier

The so-called “Ideal OpAmp”36 is assumed to have the following characteristics:

• Infinite input impedance, regardless of the amplitude, or frequency, of the input signal, i.e.
input current to both inputs is zero.

• Zero output impedance, regardless of the output frequency.

• Infinite “open-loop”37 gain, where gain is defined as the ratio of output voltage to input
voltage.

• Zero input offset.38

• An infinite slew rate.39

• Introduces zero degrees of variation from a 180◦ of phase shift from input to output, as a
function of frequency.

• No nonlinear effects at any frequency.

• No noise at any frequency.

• Output power is delivered to the load without internal loss within the OpAmp.

It is helpful to think of the ideal OpAmp in terms of the following five rules:

1. “For any output voltage in the linear operating region of an OpAmp with negative feedback,
the inputs are at virtually the same potential.” [17]

2. No current enters either of the OpAmp’s input terminals.

3. KCL40 is to be applied liberally in analyzing various configurations of an OpAmp.

4. Input voltages times their respective closed loop gains, add algebraically at the output.

5. Voltages applied to either input are multiplied by the non-inverting gain.

6.5.2 Non-Ideal Operational Amplifiers

While the discussion in this chapter has thus far focused on ideal operational amplifiers, it is
important to consider the characteristics of actual operational amplifiers in order to appreciate
in what manner, and to what extent, they deviate from their idealized counterpart. Although
ideal operational amplifiers do not exist, in many cases they can be sufficiently approximated by
real world devices. The reality is that commercially available operational amplifiers often vary
significantly from the ideal operational amplifier, e.g., the input impedance is not infinite but
typically in the M Ω range, open loop voltage gain ranges from 100K to 1M+, etc. A brief review
of the comparisons between ideal OpAmps and real OpAmps follows.

36While such an ideal device does not actually exist, OpAmps are available with input impedances as high
as 106Ω for bipolar devices and 1012 Ω for FET (Field Effect Transistor) devices, gains as high as 109, output
impedances as low as 100Ω and a gain-bandwidth product of 20 MHz.

37Open-loop gain is the amplifier’s gain without feedback.
38This implies that when the input is zero volts, the out is also zero volts.
39Slew rate is defined as the maximum rate of change with respect to time of the output voltage for all possible

input voltages, typically in terms of volts/μsecond. This upper limit is caused, in the case of operational amplifiers,
by limitations of charge and discharge rates of capacitors within the amplifier.

40KCL refers to Kirchoff’s Current law which states the sum of all currents into the node of a circuit must
equal the sum of all currents out of the node.

6.5 Operational Amplifier Incarnations 167

• Input Impedance - The input impedance of an OpAmp is characterized by two parameters:
1) common mode impedance and 2) differential impedance. The former is the impedance of
each of the inputs with respect to ground and the latter refers to the impedance between the
two inputs. An ideal amplifier is assumed to have infinite input impedance. Real OpAmps
have finite input impedances, although in some cases the impedance can be as high as 1014

Ω.

• Output Impedance - The output impedance of a typical OpAmp is non-zero and nominally
100 Ω.

• Input Current depends on the type of OpAmp input stage. For those with JFET or MOS,
the input current can be in the range of 1-10 pA. While this represents relatively small
current, in the presence of large impedances, significant voltages can arise. In most cases
the currents involved are different for the inputs which can give rise to an offset voltage as
defined below.

• Gain - While the open loop41 gain is assumed to be infinite for the ideal OpAmp, in reality
open-loop DC gains vary from 100,00 to 1,000,000+. For many applications employing
negative feed, this range of gain can be quite acceptable. When real OpAmps are used with
negative feedback42 as is shown later in the chapter the closed loop gain is a function of the
amount of feedback employed.

• Offset voltage - Because the transistors in an operational amplifier are not actually identical,
grounding the inputs does not assure that the output will be zero. The input bias currents
associated with each of the inputs can be assumed to be different for each input. The offset
voltage is by definition the input that is required to provide an output of zero volts.

• Slewing is the rate of change of the output is not infinite, as has been assumed for the
ideal operational amplifier, due in part to capacitances within the OpAmp. Slew rates of 5
volts/microsecond and higher are typical.

• Saturation - Dynamic range is often important when employing OpAmps, and therefore,
the closer the output can be to the rails the better. However, it is possible to drive the
output into “saturation” if the gain is set sufficiently high to cause an output that attempts
to exceed the supply voltage as shown in Figure 6.6.

• The power supply rejection ratio is defined as:

PSRR =
ΔVps

Δvo
(6.90)

and is a measure of the effects of power supply voltage variations, including noise in the
OpAmp’s output. (The parameters ΔVps and Δvo are expressed as RMS values.)

• Power dissipation - There are no intrinsic power limitations associated with ideal OpAmps.
However, solid state devices by their nature, are inherently power, current and voltage
limited. A real OpAmp is generally limited to output currents that do not exceed 25 mA
and maximum voltages of ± 15 volts.

6.5.3 Inverting Amplifiers

An ideal inverting amplifier has the following transfer characteristic:

Vout

Vin
= −A (6.91)

168 Mixed-Signal Processing

Figure 6.6: An example of clipping.

Figure 6.7: Inverting amplifier configuration.

6.5 Operational Amplifier Incarnations 169

Figure 6.7 shows the configuration of an inverting amplifier and since:

ii =
Vin

Ri
= if = −

Vo

Rf
(6.92)

Vo = −
Rf

Ri
Vi = AVi ⇒ A = −

Vo

Vi
=

Rf

Ri
(6.93)

for the ideal OpAmp.

6.5.4 Miller Effect

Operational amplifiers employing negative feedback are subject to a phenomenon first discovered
with vacuum tubes known as the “Miller Effect” which arose because of unintended capacitive
coupling between the input and the output. In the case of operational amplifiers this effect can
significantly reduce their performance at high frequencies.[29]

As shown in Figure 6.8, given an operational amplifier with a gain of A,43 the input current is
given by:

i =
vi − vo

Z1
=

vi − Avi

Z1
= vi

[
1 − A

Z1

]

(6.94)

and because the input impedance is given by:

Zi =
vi

ii
(6.95)

it follows that:

Zi =
Z1

1 − A
(6.96)

Therefore, if Z1 is a capacitor the effective input capacitance is increased by a factor of 1 − A,
and if Z is an inductor, or a resistor, it is reduced by that same factor.

Figure 6.8: Miller effect.

41Open loop gain implies gain in the absence of any feedback.
42Positive feedback can cause the output to saturate, i.e., to be driven out of the linear range.
43Note that in most cases A < 0, i.e., it is negative.

170 Mixed-Signal Processing

If the feedback impedance Z1 is replaced by Z2 and Z3 as shown in Figure 6.8 , then

Z2 = Z3

[

1 −
vo

vi

]

= Z3(1 − A) (6.97)

Z3 =
AZ1

A − 1
≈ Z1 (6.98)

Thus the Miller effect reflects the fact that parasitic capacitances can be viewed as equivalent
to the presence of unintended input and output capacitances, i.e., Z2 and Z3, respectively, as
shown in Figure 6.8. A technique known as “compensation” is used in some cases to minimize
the adverse effects of the Miller Effect. Replacing Z1 with Z2 and Z3 means that the current
through Z1, Z2 and Z3 must be the same. If the gain A is sufficiently large, the input capacitance
can function as a short and thus block the input signal.

Finally,

Z3(vi − vo) = Z2vi (6.99)

jωCout(vi − vo) = jωCinvi (6.100)

Cout

[

1 −
vo

vi

]

= Cin (6.101)

Cin = [1 − A]Cout (6.102)

6.5.5 Noninverting Amplifier

For the case of the noninverting amplifier configured as shown in Figure 6.9 and

vo

vi
= A (6.103)

and,

v0 =

[
R1 + R2

R1

]

vi ⇒ A = 1 +
R2

R1
(6.104)

Figure 6.9: A noninverting amplifier.

6.5.6 Summing Amplifier

Similarly, an ideal weighted44 summing, or “adder”, amplifier is based on an operational amplifier
configured as shown in Figure 6.10.

44Resistor values can be selected to combine signals of different amplitudes.

6.5 Operational Amplifier Incarnations 171

Figure 6.10: Summing amplifier.

Because

vo =

[
v1

R1
+

v2

R2
+ ∙ ∙ ∙ +

vn

Rn

]

Rf =

[
Rfv1

R1
+

Rfv2

R2
+ ∙ ∙ ∙ +

Rfvn

Rn

]

(6.105)

and therefore,

Vo =

[

A1v1 + A2v2 + ∙ ∙ ∙ + Anvn

]

(6.106)

and if,

R = R1 = R2 = ∙ ∙ ∙ = Rn ⇒ A = A1 = A2 = ∙ ∙ ∙ = An (6.107)

Equation (6.106) becomes

vo = A

[

v1 + v2 + . . . + vn

]

(6.108)

6.5.7 Difference Amplifier

In this example, as shown in Figure 6.11, the fact that the difference amplifier circuit is linear
allows superposition to be imposed so that by inspection, and referring to Equation (6.104), it
follows that:

vo = A2vi2 − A1vi2 =

[
1 + R1

R2

1
+

R3

R4

]

vi2 −

[
R2

R1

]

vi1 (6.109)

and if

R1 = R2 = R3 = R4 (6.110)

then,

vo = vi2 − vi1 (6.111)

and the difference amplifier is referred to as a “differential amplifier”.

172 Mixed-Signal Processing

Figure 6.11: Difference amplifier configuration.

6.5.8 Logarithmic Amplifier

When dealing with a signal that has a large dynamic range it can sometimes be difficult to keep
high levels of the signal from masking the lower levels. One technique for addressing this problem
is to use a logarithmic amplifier configuration, as shown in Figure 6.12, to effectively expand the

Figure 6.12: An example of a logarithmic amplifier.

lower levels of a signal and compress the higher levels so that both fall into a detectable range
that can best be handled by the embedded system. The current through a diode is well known
to be given by:

id = is

[

e
vd

(nVT) − 1

]

≈ Ise
vd

nVT (6.112)

where vd is the voltage across the diode, is is the reverse bias saturation current, VT is the
“thermal voltage”45 and the so-called ideality factor is assumed to be equal to one, in most cases.

Therefore,

id =
vi

R
=

ise
vd
VT

R
(6.113)

can be expressed as

vo = −VT ln

[
vi

isR

]

⇒ vd = −VT ln[vi] − constant (6.114)

45The thermal voltage is given by kT/q where T is the absolute temperature of the diode’s PN junction, q is
the charge on an electron and k is the Boltzmann constant that at room temperature is ≈ 25mV .

6.5 Operational Amplifier Incarnations 173

where constant = isR.

6.5.9 Exponential Amplifier

As shown in Figure 6.13, an exponential amplifier can be configured by placing a diode at the
input to the OpAmp with Equation (6.112) representing the input current and therefore:

vo = idR = is

[

e
vd

(nVT) − 1

]

R ≈ IsRe
vd

nVT = αReβvi (6.115)

where α = Is and β = 1
nVT

.

Figure 6.13: An exponential amplifier (evi).

6.5.10 OpAmp Integrator

One of the most common configurations of OpAmps, at least historically, has been as an integrator
as illustrated in Figure 6.14.

Figure 6.14: An OpAmp configured as an integrator.

The current into the circuit is given by

i =
vi

Ri
= iC = −C

dv0(t)
dt

⇒
dv0(t)

dt
= −

vi

RC
(6.116)

which is a first order, linear differential equation whose general solution can be expressed as

v0(t) = −
1

RC

∫ t

0

vidt + constant (6.117)

where the constant refers to the voltage on the capacitor at the start of the integration cycle, i.e.,

174 Mixed-Signal Processing

t=0. It should be noted that in some applications it is necessary to reset the integrator, typically
by shorting the integrating capacitor, as for example in the case of a constant input voltage
whose application is significantly greater than the RC time constant, because the time integral
of a constant integrator is a linear function of time which could ultimately lead to saturation of
the integrator. One application for this type of circuit has been in implementing the dual-slope,
analog-to-digital converter.

6.5.11 Differentiator

An OpAmp can also be configured as a differentiator by using a resistor for feedback and a
capacitor for input as shown in Figure 6.15.

Figure 6.15: An idealized differentiator.

The amount of charge, q, stored in a capacitor is given by:

q = CV (6.118)

Thus the output voltage46 is given by:

ii =
dq

dt
= C

dvi

dt
= −

vo

R
(6.119)

and therefore,

vo = −RC
dvi

dt
(6.120)

Unfortunately, differentiators tend to amplify high frequency noise and therefore represent
perhaps the least used configuration of OpAmps. In some applications a resistor is placed in series
with the input capacitor in order to limit the gain (Rf/Ri) of higher frequency components, while
still allowing the low frequency gain to be determined by the capacitor and feedback resistor.
However the cutoff frequency is subsequently determined by:

fcut off =
1

2πRiC
(6.121)

6.5.12 Instrumentation Amplifiers

The so-called instrumentation amplifier, one configuration of which is show in Figure 6.16, is used
in applications for which a small differential signal, often in the presence of a strong common mode
signal, must be measured. Instrumentation amplifiers are designed to ignore the common mode

46Note that the positive input terminal is grounded and therefore the negative input terminal can be expected
to be a ground also.

6.5 Operational Amplifier Incarnations 175

Figure 6.16: A classical instrumentation amplifier configuration.

signal while amplifying the differential input signal. Furthermore, such signals are often provided
by sources of relatively low input impedance. This circuit provides very high input impedance
that assures that the input signal is not subjected to an impedance that will degrade the input
signal. As shown, this particular configuration consists of a differential input amplifier followed
by a difference amplifier both of which are discussed in this chapter. The former providing very
high input impedance and common mode rejection while the latter provides single ended output.

vo1 = vi2 + (v2 − v1)

[

1 +
R1

2R2

]

(6.122)

von = v2 + (v1 − v2)

[

1 +
R1

2R2

]

(6.123)

vop − von = (v2 − v1)

[

1 +
R1

2R2

]

(6.124)

vo2 = vcm +
vd

2

[

1 +
R1

2R2

]

(6.125)

vo1 = vcm −
vd

2

[

1 +
R1

2R2

]

(6.126)

and,

vo = [vo1 − vo2]
R4

R3
(6.127)

vo = vd

[

1 +
R1

2R2

]
R4

R3
(6.128)

In the sections that follow, discussion will focus on various configurations of a fundamental
building blocks used in both PSoC3 and PSoC5, unless otherwise noted, that are referred to as
the switched-capacitor and continuous-time (SC/CT) blocks.

176 Mixed-Signal Processing

6.5.13 Transimpedance Amplifier (TIA)

Embedded systems often make use of a variety of sensors some of which supply currents that are
proportional to the parameter being sensed, e.g., photodetectors, photomultipliers, etc. Similarly,
some external peripheral devices require current for input. As a result there is a need for interfaces
that convert current-to-voltage and/or voltage-to-current. OpAmps can be very useful when
configured as shown in Figure 6.17. A specific example involving a photodetector is shown47 in

Figure 6.17: A generic TIA.

Figure 6.18. The output of the transimpedance amplifier is a voltage proportional to the current
flowing in the photodiode as the result of radiation detected from a laser.

Figure 6.18: A typical application of TIA and photodetector.

The output voltage of this configuration is given by:

vout = −iphotoRf (6.129)

A small capacitor, CF , is sometimes used to assure that the transimpedance amplifier remains
stable.

6.5.14 Analog Comparators

It has been suggested that the comparator is the fundamental building block of mixed-signal
design[45]. Comparators compare the differential voltage resulting from the voltages applied to
both inputs and produce an output voltage that has the same sign and a magnitude as that of one

47It should be noted that the actual circuit would be subject to additional capacitances that are ignored in this
discussion, viz, a capacitance introduced by the photodiode and the OpAmp’s common mode capacitance.

6.5 Operational Amplifier Incarnations 177

of the supply voltages. Analog comparators are basically differential amplifiers with extremely
high open loop gain and high slew rates48. They can be employed to compare one analog signal
to another, e.g., a reference voltage, in terms of sign and magnitude. This is particularly useful
for applications requiring the monitoring of various types of threshold which can be expressed as
a voltage level, e.g., light levels, temperatures, fluid levels, etc., particularly in situations which
require a rapid response to levels reaching some predefined threshold.

Generic OpAmps can be used for this purpose but have some potentially serious limitations
in such applications, e.g., slower slew rates than obtainable with devices designed specifically to
function solely as comparators. Also, comparators are designed to work with large differential
inputs which OpAmps are not. Although OpAmps have high input impedance and draw very
little current they can be damaged by large differential voltages and their input characteristics
in terms of impedance and input (bias) current, can depart significantly from their otherwise
normal values when inputs exceed a few hundred millivolts. The idealized form of a comparator
is shown in Figure 6.19.

Figure 6.19: An ideal comparator.

Because comparators are intended to function as nonlinear devices, they are not used with
negative input feedback in order to avoid degrading their switching speeds. When used with
positive feedback the comparator functions as a bistable49 device. While similar to operational
amplifiers in that idealized comparators are assumed to have infinite gain, require no input cur-
rent, and have zero offset/bandwidth, unlike their OpAmp counterpart, comparators are designed
to saturate and recover quickly, are not compensated, operate either in an open loop mode or
with positive feedback and typically have open collector, open drain or open emitter outputs.
Although an analog device, it functions as an analog input device with a “digital”, i.e., binary,
output.

If the voltage applied to the positive input terminal is greater than that applied to the
negative input terminal, then the output voltage rapidly increases until it reaches the positive rail
voltage50. Similarly, if the voltage applied to the positive terminal is less than that applied to the
negative terminal, the output rapidly becomes equal to the negative supply voltage. But there is
a potential problem, viz., what happens when the two inputs are such that difference is “zero”51

or perhaps more importantly when the difference between the two inputs is approximately zero.

If the inputs are such that

| V+ − Vn |< ε (6.130)

for sufficiently small ε, noise can cause a transition, or multiple undesirable transitions to occur,

48Slew rates for comparators are usually expressed in terms of propagation delays.
49That is there are only two stable states, the output is either at the positive rail potential or the negative rail

potential.
50The phrase “positive rail voltage is a term of art that refers to the positive supply voltage level. Most

OpAmps operate between either positive and negative supply voltages or the equivalent by employing so-called
“virtual grounds”. In each case, the effective positive and negative supply voltages are referred to respectively as
the positive and negative rails. If an OpAmp’s output is “on one of the rails” meaning either at the positive or
negative supply voltage, the output is said to be “saturated’.’

51Zero volts in actual analog circuits is a topic in and of itself and shall not be treated in detail in this textbook
except to note that in practice designs relying on a potential of precisely zero for functioning should be avoided.

178 Mixed-Signal Processing

and, in addition, the comparator may begin to function as a linear device with respect to output.
This condition allows noise to be transmitted from the input to the output and therefore to
devices external to the comparator. The problem also arises with OpAmps because of the inherent
difficulty in establishing and/or maintaining either an absolute, or differential, value of zero volts.

Ideally the comparator should function in a manner that assures that when the differential
voltage between the input terminals crosses zero the output state changes. Adding hysteresis
establishes not one but two trigger points, V+switch and V−switch, for a change of state.

In such cases, the hysteresis voltage is defined by:

V+switch − V−switch = Vhysteresis (6.131)

If an offset voltage is present it becomes the mean value of V+switch and V−switch and not zero.
Unfortunately, the offset voltage is a function of both the supply voltages and the temperature.
However, using positive feed back can improve the situation substantially as is shown in the next
section.

6.5.15 Schmidt Triggers

As discussed in the previous section, one of the challenges presented by comparators is their
behavior near threshold. As the voltage level approaches a threshold value, noise can cause a
transition to occur prematurely. Perhaps worse is the possible that noise could cause multiple
premature transitions near threshold. The addition of hysteresis is one way to minimize this
effect. The technique is to feed back some of the output signal to the positive input. Schmitt
triggers are special cases of comparators that are typically used to improve pulse shape and as
a way of generating very fast rise/fall time pulses. Pulses tend to degrade over time and the
Schmitt trigger has been commonly employed to “sharpen-up”52 such degraded pulses. The
Schmitt trigger[40] was invented by Otto H. Schmitt53, circa 1937, in part to study squid nerves
and has the interesting property of limited memory of prior events in the form of hysteresis which
is a property exhibited by a variety of systems, e.g., those involving magnetic materials. Two
bistable configurations of the Schmitt trigger are shown in Figures 6.20 and 6.21. The positive
input to the non-inverting Schmitt trigger can be derived by noting that:

v+ = (vo − vi)

[
R1

R1 + R2

]

+ vi =

[
R1

R1 + R2

]

vo +

[
R2

R1 + R2

]

vi (6.132)

and therefore:

v+ ≈
R1

R1 + R2
vo (6.133)

which represents the amount of hysteresis. If the comparator is in a “saturated” state, for which
the output voltage is equal to the “positive rail”, e.g., +15 vdc and R2 = 14R1, then the hysteresis
is ±1 vdc.

52Perhaps an unfortunate use of the language, but the basic idea is to restore the pulse to faster fast rise and/or
fall times, referred to by some as “squaring-up” the pulse.

53Schmitt described his invention as a simple hard valve circuit, ie.e. vacuum tube, which provides positive off-
on control with any differential from 0.1 v to 20 volt while requiring less than a microampere to do so. Transition
time was approximately 10μseconds

wka
Note
Schmitt ?

6.6 Switched-Capacitor Blocks 179

Figure 6.20: Inverting Schmitt trigger.

Figure 6.21: Non-Inverting Schmitt trigger.

6.6 Switched-Capacitor Blocks

Switched-capacitor modules are based on a very simple and fundamental concept that allows
resistors to be replaced with capacitor-switch combinations that function as resistors. This tech-
nique was developed in part as a result of the difficulty of fabricating precision resistor values
at the chip level. Switches, capacitors and operational amplifiers have proven relatively easy to
manufacture at the chip level. Combinations of switches and capacitors are an attractive alter-
native to resistors, particularly in light of the fact that in such applications capacitor which is
desirable in that such capacitors track with temperature variances.

The fundamental concept involved in switched-capacitors is illustrated in Figure 6.22. A

Figure 6.22: The basic switched-capacitor configuration.

capacitor is alternately connected to ground and/or an input/output voltage connections v1

and v2 by the clocks Θ1 and Θ2. With Switch 2 open and Switch 2 closed, the charge Cvi is
transferred to the capacitor. Switch 1 then opens and switch 2 closes allowing the charge, Cvo

to be transferred to the load.

180 Mixed-Signal Processing

Thus a net charge,

Δq = C(vo − vi) (6.134)

is transferred during each cycle of period Ts.

The operation of these switches is subject to the following requirements:

1. the Θ1 and Θ2 switches must not be closed at the same time,

2. the Θ1 switch must be open before the Θ2 switch closes,

3. the Θ2 switch must be open before the Θ1 switch closes,

and finally,

4. the frequency, fs, used for switching must allow the capacitor to fully charge, and discharge
during each cycle.54

By definition:

i =
Δq

Δt
(6.135)

and,

R =
v

i
⇒ R =

vΔt

Δq
=

vΔt

vC
=

Ts

C
=

1
fsC

(6.136)

it should be noted therefore, that the ratio of two resistances is simply the inverse ratio of their
corresponding capacitive equivalents, i.e.,

R1

R2
=

1
fsC1

1
fsC2

=
C2

C1
(6.137)

and thus the ratio of switch capacitance, is independent of the clocks, and consequently so are
the equivalent resistances. Furthermore, while in effect the charge is being delivered in discrete
packets by this method, just as charge in a resistor that has been subjected to an applied potential
difference is also delivered in the form of quanta, each of which carries a fixed amount of charge,
viz., the charge on an electron, 1.6x10−19 coulombs.

Filters and other analog switched-circuits make frequent use of RC constants which can be
implemented using only capacitances and switches. In addition to requiring less real estate than
their resistor counterparts, switched-capacitors provide better linearity, closer tolerances (±1.0%),
better matching (±0.1%) wider range and allow the RC time constants to be varied by varying
the switching frequency. Figure 6.23 shows a switched-capacitor integrator.

However, switched-capacitance inputs and outputs are subject to the same issue as that of
any sampled system, viz, “what you find, depends on when you look”.

54This constraint is imposed to assure that the value of charge on the capacitor accurately represents the input
voltage during that cycle.

6.7 Switched-Capacitor and Continuous-Time Devices 181

Figure 6.23: A switched-capacitor integrator.

6.7 Switched-Capacitor and Continuous-Time Devices

The PSoC3/5 switched-capacitor (SC) and continuous-time (CT) module shown in Figure 6.24
is a general purpose, highly optimized block that can be configured as a:

• CT, unity gain, amplifier,

• CT, programmable gain amplifier,

• CT transimpedance amplifier,

• CT mixer,

• Delta Sigma modulator,

• Operational amplifier,

• Sampled Mixer,

or a

• Track and hold amplifier,

with programmable power and bandwidth, routability to GPIO, routable reference selection and
sample and hold capability.

Table 6.3: Register-Selectable Operational Modes.

However, it should be noted that the SC/CT block in PSoC3/5 differs from that implemented
in PSoC1 in that the former has been optimized to carry out the specific functionality refer-
enced above in terms of gain, bandwidth product and slew rate. Therefore implementation of
functionality such as integrators, differentiators and filters, using OpAmps and discrete exter-
nal components, as discussed in previous sections in this chapter, in some cases may be more
appropriate or, alternatively, the PSoC1 should be used.[13]

wka
Note
Not sure we should be comparing to PSOC1 here. I would remove the comparison (in textbook context)

182 Mixed-Signal Processing

Figure 6.24: Switched-capacitor and continuous-time block diagram.

The simplest configuration of the SW/CT block is the OpAmp. In this mode the internal resistors
and capacitors associated with the SW/CT block feed and input terminals are disconnected. This
allows external components to be used for input and feedback and the techniques discussed in
earlier sections to be employed. This mode can be selected by setting the MODE[2:0] bits in the
SC[0...3] CR0 to 000. The OpAmp is two stage, rail-to-rail amplifier with a folded cascode55 first
stage and Class A56 second stage which is internally compensated. The value of the compensation
capacitor and the drive strength of the output stage are both programmable to accommodate
different loading conditions. The appropriate setting is a function of the minimum required slew
rate57 and load capacitance.

The load current is given by:

iload = Cload

[
Δv

Δt

]

(6.138)

where Cload includes both the internal capacitance and the capacitance of the load.

Assuming a value of 10 pF for the internal capacitance, the drive controls SC DRIVE[1:0] should
be set according to the slew requirements at the output in the SC[0..3] CR1[1:0]register bits.

55Cascode refers to a two stage amplifier which consists of a transconductance amplifier and a current buffer.
It is capable of providing higher bandwidth, output impedance, input impedance and higher gain than a single
stage amplifier while significantly improving input/output isolation since there is no direct coupling between input
and output. This configuration is not subject to the Miller effect (cf. Section 6.5.4).

56Class A amplifiers produce outputs that are undistorted replications of the input and conduct during the
entire input cycle. Alternatively, they are linear amplifiers that are always conducting.

57Which is the desired rate of change of the signal with respect to time.

6.7 Switched-Capacitor and Continuous-Time Devices 183

Table 6.4: Miller capacitance between amplifier output and output driver.

Table 6.5: SC/CT block drive control settings.

This OpAmp configuration has three control options for modifying the closed loop bandwidth
and stability applicable to all configurations:

1. Current through the first stage of the amplifier (BIAS CONTROL),

2. Miller capacitance between the amplifier input and output stages (SC COMP[1:0]),

and,

3. Feed back capacitance between the output stage and the negative input terminal
(SC REDC[1:0]).

The bias control doubles the current through the amplifier stage. The BIAS CONTROL
should be set to 1 to provide greater overall bandwidth once the circuit is stabilized rather than
using the option of less current in the first stage. The bias current can be doubled by setting the
SC[0..3] CR2[0] register bit. The SC COMP bits set the amount of compensation and directly
affects the amplifier’s gain-bandwidth. The Miller capacitance should be set to one of the four
values for the SC[0..3] CR[3:2] as shown in Table 6.6.

There is also an option related to the capacitance between the output driver and the negative
input terminal that affects the stability-capacitance option. This option contributes to a higher
frequency zero and a lower frequency pole which reduces the over all bandwidth and provides
some additional phase margin at the unity gain frequency, depending on the CT configuration.
Table 6.7 shows the available settings.

PSoC3 and PSoC5 each have 4 operational amplifiers configured as shown in Figure 6.25 which
have the following features:

• 25 ma drive capability,

• 3 MHz gain-bandwidth into a 200 pF load

• Low noise

184 Mixed-Signal Processing

Figure 6.25: PSoC3/5 operational amplifier connections.

6.7 Switched-Capacitor and Continuous-Time Devices 185

Table 6.6: Miller Capacitance between Amplifier Output and Output Driver.

Table 6.7: CFB for CT Mix, PGA, OpAmp, Unity Gain Buffer and T/H Modes.

• Less than 5 mV of offset

• Rail-to-rail capability to within:

1. 50mV of Vss or Vdd for a 1 mA load.

2. 500 mv of Vss or Vdda for a 25 mA load.

• A slew rate of 3V μs for a 200 pF load.58

The OpAmps are configurable either as uncommitted OpAmps, or as unity gain buffers. Access
to the negative and positive inputs of the OpAmps is provided by muxes and analog switches.
An analog global, local analog bus or reference voltage is connected to an input via a mux. A
GPIO is connected to an input via an analog switch.

6.7.1 PSoC3/5 OpAmps and PGAs

PSoC3 provides Operational Amplifiers and Programmable Gain Amplifiers as shown in Figure
6.26. The OpAmp is able to function either in a basic operational amplifier configuration, or as
a simple follower. PSoC3/5 OpAmps can also be used by employing available internal resistors,
capacitors and multiplexers, or in conjunction with external components, as shown in Figure
6.27. Output current from the OpAmp should not exceed 25 mA and output loads should not
exceed 10K Ω.

The programmable gain amplifer’s gain can be set as one of the following values: 1 (default
value), 2, 4, 8, 16, 24, 25, 48,or 50) shown in Table 6.8. There four power settings: minimum,
low, medium (default value) or high. The power settings affect the PGA’s response time with
low power resulting in the slowest response time and high power the fastest. Vref Input is a

58Or the equivalent of 3 megavolts/second!

186 Mixed-Signal Processing

Figure 6.26: PSoC Creator’s graphical representation of an OpAmp and a PGA.[37]

Table 6.8: PGA Gain Settings

parameter that can be set either as Internal Vss which sets

V ref input = V ss (6.139)

i.e., the reference input is set to an internal ground, or as External which sets

V ref input = External (6.140)

for cases in which the reference input is to be connected to an arbitrary reference signal.

Figure 6.27: PSoC3/5 operational amplifier configured as an inverting, variable gain OpAmp
using external components. [37]

6.7 Switched-Capacitor and Continuous-Time Devices 187

Example 6.6: Sample C source program for initializing and starting a PGA:

#include <device.h>
void main()
{
PGA_1_Start();
PGA_1_SetGain(PGA_1_GAIN_24);
PGA_1_SetPower(PGA_1_MEDPOWER);
}

The PGA is constructed from a generic SC/CT block. The gain is selected by adjusting two
resistors, Ra and Rb, that are shown in Figure 6.28. Ra may be set to either 20K or 40K ohms.
Rb may be set between 20K and 1000K ohms, to generate the possible gain values selectable
in either a parameter dialog in PSoC Creator, or via the SetGain function which selects the
proper resistor values for the selected gain. The OpAmp component can be configured as either

Figure 6.28: PGA internal gain resistors.

a follower or as an OpAmp that can be used in conjunction with external components. It can
be used to drive loads that are less than 10K and provide a maximum driving current of 25 ma.
When used as a follower, the negative input is inaccessible.

6.7.2 Continuous-Time Unity Gain Buffer

The CT, unity gain buffer is, as shown in Figure 6.29, simply an OpAmp with the inverting input
connected to the output and used when an internally generated signal is being used with high
output impedance, e.g., a voltage DAC driving a load, or an external, high impedance source
impedance driving a significant on-chip load, such as the continuous-time Mixer.

Figure 6.29: An OpAmp configured as a unity gain buffer.

6.7.3 Continuous-Time, Programmable Gain Amplifier

The programmable gain amplifier (PGA) is a continuous-time OpAmp, configured as shown in
Figure 6.30, with selectable taps for the input and feedback resistors. It is selectable by setting
MODE[2:0] bits in the SC[0,,3] CR0 register to ‘110’. The PGA can be implemented as either
a positive or negative gain topology, or as half of a differential amplifier. Gain is selected by

188 Mixed-Signal Processing

setting bit [5] ‘1’(SC GAIN) in the SCL[0..3] CR1 register. If SC GAIN is set to one, then the
configuration is non-inverting with a gain of (1 + RF B

Rin
). If SC GAIN is set to zero then the

configuration is inverting with a gain of −RF B

Rin
. As shown in Figure 6.31 it is possible to create

a differential amplifier by connecting two PGAs as shown. A low impedance external resistor
RLAD are used to reduce gain error. The differential amplifier’s gain is given by

vo+ − vo− = A(vi+ − vi−) (6.141)

and he common mode voltage of the output is also the common voltage input, viz.,

V CM =
(vi+ − vi−)

2
(6.142)

Figure 6.30: CT PGA configuration. [37]

Figure 6.31: Differential amplifier constructed from two PGAs.

6.8 PSoC3/5 Comparators 189

6.7.4 Continuous-Time Transimpedance Amplifier

PSoC3/5’s transimpedance amplifier is a continuous-time OpAmp with a dedicated and selectable
feedback resistor. The TIA configuration is selected by setting the MODE[2:0] bits in the
SC[0..3] CR0 register to ‘001’. The output of the transimpedance amplifier is a voltage that
is proportional to the input current. The conversion gain is determined by the feedback resistor
value, Rfb, so that:

vo = vref − (ii)Rfb (6.143)

The output voltage, vo, ie referenced to vref which can be a routed reference. The value of the
feedback resistor, Rfb, can be selected programmatically as one of eight values over a range from
20k Ω to 1.0 MΩ, as shown in Table 6.9.

Table 6.9: Transimpedance Amplifier feedback resistor values

The inverting input shunt capacitance resulting from parasitic capacitances introduced by the
analog global routing and at the input pin can adversely affect stability and therefore an internal
shunt capacitance is employed to assure that the TIA remains stable. The feedback capacitance
is set by the SC REDC[1:0] bits in the SCL[0..3] CR2 register bits [3:2] and the SCR[0..1] CR2
register, bits [3:2], a shown in Table 6.10.

Table 6.10: TIA Feedback Capacitance Settings.

6.8 PSoC3/5 Comparators

Comparators make it possible to make fast comparisons between two voltages particularly with
respect to other methods, such as using an ADC. In some applications a DAC is connected

190 Mixed-Signal Processing

to the negative input to allow the reference voltage to be varied programmatically to allow
the comparator to be “adjustable”. The positive input is connected to the voltage that is being
compared to a reference value. In this case the output goes high when the voltage being compared
to the reference voltage is greater than the reference voltage. The output of the comparator can
be sampled in software, or digitally routed to another component.

PSoC3/PSoC5 have four comparators configured as shown in Figure 6.32. The configuration
of the inputs to the comparators is controlled by the CMPx SW0, CMPx SW2, CMPx SW3,
CMPx SW4, and CMPx SW6 registers.

Figure 6.32: Comparator block diagram.

Inputs to the positive terminal can me made from the analog globals, analog locals, the analog
mux and the comparator reference buffer. Inputs to the negative input can be made from analog
globals/locals/mux and the voltage reference.

6.8.1 Power Settings

The PSoC3/5 comparators can operate in one of three power modes, viz., fast, slow and ultra low
power which are selected by the power mode select bits SEL[1:0] in CMPx CR, the comparator
control register. Power modes differ in response time and power consumption. Power consumption
is maximum in the fast mode and minimum in the ultra low power mode. The three speed levels
are provided to enable a comparator to be optimized for either speed or power consumption.

Inputs to the comparators are via muxes whose inputs include analog globals (AGs), the
local analog bus (ABUS), the Analog Mux Bus (AMUXBUS), and precision references. The
output from each comparator is routed through a synchronization block to a two-input Lookup
Table (LUT). The output of the LUT is routed to the UDB Digital System Interface (DSI). The
comparator can also be used to wake-up the device from sleep. An “x” used with a register name
denotes the particular comparator number (x = 0 to 3). Connection to the positive input is from
analog globals, analog locals, analog mux bus, and comparator reference buffer. Connection to
the negative input is from analog globals, analog locals, analog mux bus, and voltage reference.

6.8 PSoC3/5 Comparators 191

Comparator output can be passed through an optional glitch filter59. The glitch filter is
enabled by setting the filter enable (FILT) bit in the control (CMPx CR6) register. The output
of the comparator is stored in the CMP WRK register and can be read over the PHUB interface.

PSoC3/5 comparators have the following features:

• Low input offset

• Low power mode

• Multiple speed modes

• Output routable to digital logic blocks or pins

• Selectable output polarity

• User controlled offset calibration

• Flexible input selection

• Speed power tradeoff

• Optional 10 mV input hysteresis

• Low input offset voltage (<1 mV)

• Glitch filter for comparator output

• Sleep wake-up

Four LUTs allow logic functions to be applied to comparator outputs. The LUT logic has two
inputs:

• Input A is selected using MX A[1:0] bits in LUT control (LUTx CR1:0) register

• Input B is selected using MX B[1:0] bits in LUT Control (LUTx CR5:4) register

The logic function implemented in the LUT is selected using control bits (Q[3:0]) in the LUT
Control register (LUTx CR). The bit settings for various logic functions are given in Table 6.11.

The output of the LUT is routed to the digital system interface of the UDB array. From the
digital system interface of the UDB array, these signals can be connected to other blocks in the
device, or to an I/O pin.

The state of the LUT output is indicated in the LUT output (LUTx OUT) bit in the LUT
clear-on-read sticky60 status (LUT SR) register and can be read over PHUB interface. The
LUT interrupt can be generated by all four LUTs and is enabled by setting the LUT mask
(LUTx MSK) bit in the LUT mask (LUT MSK) register.

59Glitch filters are employed to remove transients, i.e., “glitches” in the output of a comparator.
60A sticky bit is a bit in a register that retains its value after the event that caused it value has occurred.

192 Mixed-Signal Processing

Table 6.11: Control Words for LUT

6.8.1.1 Hysteresis

As discussed previously, hysteresis helps to avoid excessive toggling of the comparator output
when the signals are noisy in applications that compare signals that are very close to each other
in terms of sign and magnitude,. The 10 mV hysteresis level is enabled by setting the hysteresis
enable (HYST) bit in the control (CMPx CR5) register.

6.8.1.2 Wake-Up from Sleep

The comparator can run in sleep mode and the output can be used to wake-up the device from
sleep. Comparator operation in sleep mode is enabled by setting the override (PD OVERRIDE)
bit in the control (CMPx CR2) register.

6.8.1.3 Comparator Clock

The comparator output changes asynchronously but it can be synchronized with a clock. The
clock source can be one of the four digitally-aligned analog clocks or any UDB clock. Clock
selection is done by the mx clk bits [2:0] of the CMP CLK register. The selected clock can be
enabled or disabled by setting or clearing the clk en (CMP CLK [3]) bit. Comparator output
synchronization is optional and can be bypassed by setting the bypass sync (CMP CLK [4]) bit.

6.8.1.4 Offset Trim

Comparator offset is dependent on the common mode input voltage to the comparator. The
offset is factory trimmed for common mode input voltages 0.1V and Vdd - 0.1V to less than 1

6.9 PSoC3/5 Mixers 193

mV. If the the common mode input range at which the comparator is to operate is known a
priori, a custom trim can be done to reduce the offset voltage further.

6.9 PSoC3/5 Mixers

PSoC3 and PSoC5 provide two types of “mixers”61, viz., continuous and sampled. These com-
ponents are single-ended and not intended to function as “precision” mixers. The continuous-
time configuration is suitable for multiplying and up-mixing. The discrete-time configuration
(sampled) has sample-and-hold capability and is appropriate for sampled- or down-mixing. The
continuous-time mixer uses input switches to toggle between the inverting and non-inverting in-
puts of a programmable gain amplifier for which the gains are 1 and -1, respectively. If a fixed
local oscillator is used as a sampling clock, the mixer can be used to perform frequency conversion
of a signal.

The PSoC3/5 mixer has the following features:

• Power settings are adjustable.

• Continuous-time up-mixing62 with input frequencies up to 500 kHz and sample clock rates
up to 1 MHz. Discrete time samples and hold mixing with input frequencies up to 1 MHz
and sample clock rates to 4 MHz.

• Selectable reference voltages.

6.9.1 Basic Mixing Theory

Before proceeding some basic mixing concepts need to be introduced. The term “mixing” in the
present context refers to the mixing, or more accurately stated, multiplying of two signals. Given
two signals such as

y1 = A1sin(ω1t + φ1) (6.144)

y2 = A2sin(ω2t + φ2) (6.145)

The product, Y, is given by

Y = y1y2 = A1A2[sin(ω1t + φ1)][sin(ω2t + φ2)] (6.146)

but,

sin(u)sin(v) =
1
2

[

cos(u − v) − cos(u + v)

]

(6.147)

and therefore,

Y =
A

2

[

cos[(ω1 − ω2)t + Φ1 − cos[(ω1 + ω2)t + Φ2]

]

(6.148)

where A = A1A2, Φ1 = φ1−φ2 and Φ2 = φ1 +φ2. Thus the result of mixing two sine wave signals
is to produce the sum and difference of the the two signals in terms of frequency which together
with the two original signals, results in the presence of four signals. Note that the resulting sum
and difference signals have also undergone a phase shift. Any of the resulting signals can, if
necessary, be subsequently removed, e.g., by filtering.

194 Mixed-Signal Processing

Figure 6.33: An example of cosine harmonics used to represent a square wave.[47]

If y2 is a square wave, then it can be expressed as a trigonometric partial sum by the following:

y2 =
4
π

[

cos(ω2t) −
cos(3ω2t)

3
+

cos(5ω2t)
5

− ∙ ∙ ∙

]

(6.149)

as illustrated in Figure 6.33.63

If y1 is defined as:

y1 = cos(ωit) (6.150)

Then,

Y = y1y2 =

[

A1cos(ω1t)

]
4
π

[

cos(ω2t) +
cos(3ω2t)

3
+

cos(5ω2t)
5

− . . .

]

(6.151)

so that,

Y = yiyclk =
2A1

π

[

cos(ω−t) −
cos(3ω3−t)

3
+

cos(5ω5−t)
5

− . . .

]

(6.152)

+
2A1

π

[

cos(ω+t) −
cos(3ω3+−t)

3
+

cos(5ω5+t)
5

− . . .

]

(6.153)

61Mixing in the present context is in actuality the multiplication of two signals resulting in the production of
four output signals, viz., the sum, difference and two mixed signals.

62Up-mixing refers to mixing to signals and producing a signal at a frequency which is the sum of the two mixed
signal frequencies. Similarly, down-mixing produces a signals whose frequency is the difference of the frequencies
of the two mixed signals.

63The ”ringing effects“ seen at the corners of this square wave are known as the Gibbs’ or Gibbs-Wilbraham
phenomenon and was first observed by Wilbraham in 1848 [46] and subsequently “rediscovered” by Gibbs in 1898
who provided a much more rigorous mathematical foundation for it. This effect is commonly encountered in the
course of processing digital signals, e.g., to the series.

6.9 PSoC3/5 Mixers 195

where,

ω+ = ωclk (6.154)

ω3+ = 3ωclk + ωi (6.155)

ω5+ = 5ωclk + ωi (6.156)

∙ ∙ ∙ (6.157)

ω− = | ωclk − ωi | (6.158)

ω3− = | 3ωclk − ωi | (6.159)

ω5− = | 5ωclk − ωi | (6.160)

∙ ∙ ∙ (6.161)

(6.162)

Thus in this case, in addition to the sum and difference frequencies for vi and vclk the third,
fifth and all additional higher-order, odd harmonics are present in the output.64 The unwanted
harmonics can be removed by suitable filtering.

6.9.2 PSoC3/5 Mixer API

The PSoC3/5 mixer has an API consisting of three function calls:

• void Mixer Start(void) powers up the Mixer. Performs all of the required initialization
for the mixer and enables power to the block. The first time the routine is executed, the input
and feedback resistance values are configured for the operating mode selected in the design.
When called to restart the mixer following a Mixer Stop() call, the current component
parameter settings are retained.

• void Mixer Stop(void) powers down the Mixer. This does not affect mixer type or power
settings.

and

• void Mixer SetPower(uint8 power) - Set drive power to one of the following four levels.
Mixer MINPOWER -Lowest active power and slowest reaction time.
Mixer LOWPOWER - Low power and speed.
Mixer MEDPOWER - Medium power and speed.
Mixer HIGHPOWER - Highest active power and fastest reaction time.

6.9.3 Continuous-Time Mixer

As shown in Figure 6.34, the OpAmp is configured as a PGA that uses the lo clock input signal
to toggle between an inverting uniy gain PGA and a non-inverting unity gain buffer. The output
signal includes frequency components at (Fclk ± Fin) plus terms at odd harmonics of the LO
frequency ± the input signal frequency: 3 ∗ Fclk ± Fin, 5 ∗ Fclk ± Fin, 7 ∗ Fclk ± Fin, etc. The
continuous-time mode is preferable for “up-conversion” since it provides much higher conversion
gain than the sampled mixer. In order to assure optimal performance the value for Fclk should
meet the Nyquist criteria65, viz.,

Fclk > 2Fout (6.163)

64Note that the vi and vclk frequencies are not present in the output.
65Simply stated, the Nyquist criteria states that a sampled, band-limited, analog signal can be completely

reconstructed if the sampling rate is twice the highest frequency component in the original analog signal.

196 Mixed-Signal Processing

Figure 6.34: PSoC3/5 configuration for a CT mixer. [37]

An example of an implementation of the CT mixer input and output waveforms is shown in
Figure 6.35 and is based on a CT block.

Figure 6.35: An example of CT Mixer input and output waveforms. [37]

6.9.4 Sampled-Mixer

Before beginning a discussion of the sampled-mixer it will be necessary to discuss two of the
types of encoding used in digital systems, viz.,

• Non-Return to Zero (NRZ-L) - two distinct voltage levels are used to represent zeros
and ones.x A voltage level of zero is not used to represent the binary value zero. Typically
a positive value is used for one and a negative value for zero with both being of the same
absolute value.

• Non-Return to Zero Inverted (NRZI) - any transition to high or low represents the a
binary value of one, the absence of a transition represents a binary value of zero.

The sampled-mixer provided in PSoC3/5 is basically a NRZ sample and hold circuit66 with very
fast response. Unlike the CT mixer which has an upper frequency limit of 4 MHz, the sampled

66Sample and hold circuits are used to sample a time dependent signal and then hold that sample for a period
of time to allow certain operations to be carried out with respect to the sample. A common method of “holding”
is to store the sample via a capacitor that is capable of holding the sample for the time required without degrading
it, i.e., with sufficiently low leakage current.

6.9 PSoC3/5 Mixers 197

mixer can accept input frequencies as high as 14 MHz. The output of the sampled-mixer can be
used as input to an internal ADC67 via analog routing, or in conjunction with an external device
such as a ceramic filter68.

As mentioned previously, the sampled mixer shown in Figure 6.36 is used primarily for down-

Figure 6.36: Sampled (Discrete-Time) sample and hold mixer. [37]

conversion which can be accomplished by removing the undesired products resulting from mixing
the input frequency and the sample clock. The NRZ sample and hold functionality is based on
alternately selecting one of two capacitors as the the integrating capacitor. Thus one capacitor,
either C1 or C4, serves as the integrating capacitor, while the other is used to sample the input
signal. This configuration is designed such that the input signal is sampled at a rate less than
the input signal frequency and the integration of each new value occurs on the rising edge of fclk.

If fclk > fin/2, then

fout =| fin − fclk | + aliasing components (6.164)

If fclk < fin/2, then

fout =| fin − Nfclk | (6.165)

for the largest integer value of N such that Nfclk < fin

For example, if the desired down-converted frequency is 500 kHz and the input frequency is
13.5 MHz, Equation (6.165) is satisfied for values of N = 7 and fclk = 2 MHz. Examples for
N=1 and N=3 are shown in Figures 6.37 and 6.38, respectively.

67If the output is routed to an internal ADC both the mixer and the ADC must employ the sample sample
clock.

68For example the 455 kHz Murata Cerafil. 455 kHz is a standard frequency used in receivers as part of the
intermediate frequency (IF) stage.

198 Mixed-Signal Processing

Figure 6.37: Sampled mixer waveforms for N=1. [37]

Figure 6.38: Sampled mixer waveforms for N=3. [37]

Example 6.6: C source code for implementing a mixer that employs an internal
local oscillator

#include <device.h>
#include "Mixer_1.h"
#include "lo_clk.h"
void main()
{
/* Setup Local Oscillator Clock */
lo_clk_Enable();
lo_clk_SetMode(CYCLK_DUTY);
/* API Calls for Mixer Instance */
Mixer_1_Start();
Mixer_1_SetPower(Mixer_1_HIGHPOWER);
while (1)
{
}
}

6.10 Filters 199

6.10 Filters

Almost all embedded systems are confronted with the potential for noise altering the response
and/or performance of the system. Various techniques exist for dealing with noise, depending on
the source, type of noise, amplitude, spectral composition, etc. While the best cure for noise is
to avoid it, the reality is that it is almost always present and must be dealt with directly. Analog
filters are often used for this purpose and consist of two fundamental types, viz., passive and
active. Digital filters are also used but typically require that the analog signal to be filtered first be
converted to a digital format, processed and then converted back to analog form. Although digital
filters do have truly outstanding characteristics they also involve what can be significant and
perhaps prohibitive overhead in some applications that may not be acceptable in some application.
At very high frequencies, digital filters are less attractive than their analog counterparts for a
variety of reasons.

6.10.1 Ideal Filters

Filters provide a method for separating signals, e.g., as in the case of an amplitude modulated or
frequency carrier69, allow signals to be restored by removing unwanted signals/noise, and restore
a signal that may have been otherwise altered. Filters may be based on combinations of RLC
components, rely on mechanical resonances, employ the piezoelectric effect, utilize acoustic wave
techniques, etc. , depending on the operating environment the application, frequency range and
the desired filter characteristics.

Ideal filters can be characterized as:

• Lowpass (LPF) - “passes” all frequencies below a certain frequency with no change in
amplitude and specifiable phase shift.

• Bandpass (BPF) - “passes’ all frequencies above a given frequency and below an upper
frequency with no change in amplitude and specifiable phase shift.

• Highpass (HPF) - “passes” all frequencies above certain frequency with change in ampli-
tude and specifiable phase shift.

• Notch (NPF))- “blocks” frequencies within a specified range.

• Allpass (APF) - “passes” all frequencies and alters only the phase, e.g., unity gain at all
frequencies. The phase shift at the corner frequency for all frequencies is 90◦. This type of
filter is often used to match phase, introduce a delay and creating a 90◦degree phase shift
for certain types of circuits. (See Figure

Ideal filters have a number of important characteristics that should be kept in mind when de-
signing a filter for a particular application, viz., no attenuation in the passband, sharp cutoff and
complete attenuation in the stop band. Such filters are referred to a “brickwall” filters and are
represented graphically as shown in Figure 6.39.
Thus a filter is considered ideal if

| H(ω) | =

{
1, if ω is in the passband

0, if ω is in the stopband
(6.166)

and,

∠H(ω) =

{
−ωτ, if ω is in the passband

0, if ω is in the stopband
(6.167)

69There are of course a variety of techniques for demodulating signals of which filters represent but one, e.g.
mixing techniques, a topic discussed in section 6.9.

200 Mixed-Signal Processing

Figure 6.39: “Brickwall”Transfer functions for ideal filters.

where τ is a positive constant. The phase shift for ideal filters is shown in Figure 6.40.

Figure 6.40: Phase as a function of frequency for ideal filters.

6.10.2 Bode Plots

Filter design has been greatly facilitated by the availability of computer programs designed to
handle the mathematical complexities. Their ability to display the results of the associated
calculations significantly simplifies the designers task. A common graphical characterization of a
filter is the so-called Bode Plot70. A Bode plot is a graphical representation of a transfer function
that represents a linear, time-invariant system in which the abscissa is usually the log of the

70This technique was introduced by Hendrik Bode in 1938 at Bell Laboratories where he worked as an engineer.

6.10 Filters 201

frequency and the ordinate is the log of the system’s gain. A typical Bode plot is shown in Figure
6.41.

Figure 6.41: Bode plot characteristics for a 1st-order Butterworth filter.

6.10.3 Passive Filters

Passive filters typically consist of combinations of resistors, capacitors and in some cases in-
ductors71 configured in various ways to provide the type of filter needed and the desired filter
characteristics. Passive filters do not power supplies. However, passive filters are affected by
changes in the components’ capacitance, resistance and inductance as a result of humidity, tem-
perature, aging, vibration, etc., because any such variation can seriously, and adversely, alter a
filter characteristics. Also, at low frequencies the physical size of components, given the inverse
relation between physical size and operating frequencies, can be a problem. However, even though
passive filters are inherently stable, unlike their active filter counterparts which can oscillate, they
tend to be more linear than active filters, and can be designed to handle arbitrarily large volt-
ages, currents and frequencies. Active filters employing solid state devices, such as operational
amplifiers, tend to be frequency, current and voltage limited.

One of the simplest forms of passive filter consists of a combination of resistor and capacitor
as shown in Figure 6.42. Although this type of filter is simplicity itself it is instructive to carry
out a brief analysis in order to illustrate some important aspects of filters.

Treating this circuit as a voltage divider and defining s = σ + jω leads to the result that:

vr =
sRC

1 + sRC
vi(s) (6.168)

and,

vc =
1

1 + sRC
vi(s) (6.169)

71Inductors are often not used because of size, cost and other considerations.

202 Mixed-Signal Processing

therefore the transfer functions for the resistor and capacitor are given by:

Hr(s) =
vR

vi
=

sRC

1 + sRC
(6.170)

Hc(s) =
vR

vi
=

1
1 + sRC

(6.171)

Note that assuming that the excitation is steady state, then s = jω, so that when:

s = −
1

RC
(6.172)

Equations (6.170) and (6.171) become infinite and Equation (6.172) is said to be a“pole’72’ for
both transfer functions. In addition Equation(6.170) is zero when s = 0 which is referred to as a
“zero” of the resistor’s transfer function.

Figure 6.42: A very simple, passive, lowpass filter.

Gain is defined as the ratio of output voltage to input voltage and therefore for the capacitor:

AC =
∣
∣HC

∣
∣ =

1
√

1 + (wRC)
2 (6.173)

and for the resistor:

AR =
∣
∣HR

∣
∣ =

ωRC
√

1 + (wRC)
2 (6.174)

Notice that as expected the capacitor gain approaches zero, but the resistor gain approaches
unity, as the frequency increases. Thus the RC combination shown in Figure 6.42 functions as
a lowpass filter if the output is taken across the capacitor and as a highpass filter if the output
is taken across the resistor. Such filters are used, but because of the resistive component it does
degrade the signal can making them unsuitable for some applications. One of the problems with
this type of filter is that either resistive or reactive loads will change the characteristics of this
filter and therefore must be take into account in designing the filter. An operational amplifier
can be used to address both of these types of degradation, but has the undesirable feature of
increasing the amplitude of any noise present at the input terminals73. The phase shift introduced
by the resistor and capacitor are given by:

Θr = tan−1(
1

ωRC
) (6.175)

and,

Θc = tan−1(−ωRC) (6.176)

72A pole is defined as
73Filters employing operational amplifiers are referred to “active” filters because they require power supplies.

6.10 Filters 203

Active filters require external power, and may cost more, but may also be of much smaller
size and offer better characteristics and performance than their passive counterparts. However,
active filters can introduce noise into a system74, if not carefully designed and implemented. This
can arise as a result of noise introduced through the power supplies, introduction of noise as a
result of the use of operational amplifiers, etc.

6.10.4 Analog Active Filters

Analog active75 filters are characterized by a number of factors including the:

1. number of stages or sections employed in a cascaded fashion76,

2. cutoff frequency, i.e., the point at which the response of the filter falls below 3 dB,

3. response of the filter in the stop band,

4. gain as a function of frequency in the passband,

5. phase shift in the passband,

6. degree of ringing, if any,

7. rate of roll-off,

and

8. transient response

Lowpass filters of the four types shown in Figure 6.43 are commonly used and of these the
Butterworth77 filter is sufficient for most lowpass applications. Items 2-6 of this list can be
determined by examining the Bode plots of the type shown in Figure 6.41 for the phase and gain
of a filter. A fifth type, the Bessel filter, is very flat in the passband but rolls off more slowly
than Butterworth,Elliptic and Chebyshev filters.

6.10.4.1 Sallen-Key Filters (S-K)

PSoC3 does not provide explicit internal support for analog LPF, BPF, HPF and BSF because
the switched-capacitance block designed for PSoC3 has been optimized for other configurations.
However, PSoC3/5 do have operational amplifiers that can be used in conjunction with external
components to provide analog filtering. A popular design methodology in such cases was sug-
gested by Sallen-Key [39]. This type of filter is referred to as a voltage-controlled, voltage source,
or VCVS filter. It has gained widespread popularity in part because of its relative simplicity, abil-
ity to employ conventional operational amplifiers, excellent passband characteristics, relatively
low cost, requires few components and the fact that multiple S-K filters can be cascaded without
significant signal degradation.

Assuming the generic configuration of the unity gain Sallen-Key filter shown in Figure 6.44 the
transfer function for this type of unity gain filter is given by:

vo

vi
=

Z3Z4

Z1Z2 + Z4(Z1 + Z2) + Z3Z4
(6.177)

74One potential noise source for active filters are the power supplies required for the operational amplifier(s).
75An active filter is one which is a combination passive components and components capable of adding gain .

The latter therefore requires input power.
76The advantage of cascading filters is that it increases the overall effective “order” of the filter which in turn

increases the roll-off at a rate of 6 dB/octave times the equivalent order of the cascaded filters. One heuristic often
employed to determine the order of each filter stage is to count the number of storage elements in each stage, e.g.,
the number of capacitors, which is usually the same as that stage’s order.

77In 1930, S Butterworth published an important paper describing his design methodolgy for what became
known as the Butterworth filter. He wound wire around cylinders that were 1.25 inches in diameter and 3 inches
long to create resistors and inductors and placed capacitors inside the cylinders to complete the filter.

204 Mixed-Signal Processing

Elliptic Butterworth

Chebyshev1 Chebyshev2

Figure 6.43: Normalized graphs of common 5th-order lowpass filter configurations.

Figure 6.44: The generic form of the Sallen-Key filter.

6.10 Filters 205

By choosing different impedances for Z1, Z2, Z3, Z4 the Sallen-Key topology can be transformed
into a filter exhibiting highpass, bandpass and lowpass characteristics. The nominal frequency
limit of a filter is referred to as the “corner” frequency which is the frequency at which the input
signal is reduced to 50% of it power78 just prior to the output terminals.79 Beyond that point
the attenuation is usually referred to in terms of dB/octave80 or dB/decade.

A typical lowpass filter response curve is shown in Figure 6.45. As shown the “cutoff fre-

Figure 6.45: Bode plot of an nth order Butterworth filters for n = 1-5.

quency” is defined as the point at which the response curve is -3 dB down and in this particular
case the response curve falls off at the rate of -20 dB/decade. As can be seen from this figure,
the order of the filter dramatically effects the rate of roll of from the passband to the stopband.

6.10.4.2 Sallen-Key Unity-Gain Lowpass Filter

As shown in Figure 6.46, a Sallen-Key lowpass filter can be configured by setting:

Figure 6.46: A Sallen-Key unity-gain lowpass filter.

Z1 = R1 (6.178)

Z2 = R2 (6.179)

Z3 = −
j

ωC1
=

1
sC1

(6.180)

Z4 = −
j

ωC2
=

1
sC2

(6.181)

78The so-called “half power point”.
79This is also referred to as the “- 3dB down” point.
80An octave implies a doubling of frequency, e.g., -6 dB/octave implies that the signal is reduced by 50% if the

frequency is doubled. Decade refers to a change in frequency by a factor of ten.

206 Mixed-Signal Processing

and after rearranging,

H(s) =
1

R1R2C1C2

s2 +

[
R1+R2

R1+R2C1

]

s + 1
R1R2C1C2

(6.182)

which is in the form of the transfer function of a second order unity-gain lowpass filter, i.e.,

H(s) =
ω2

c

s2 + 2ζωcs + ω2
c

(6.183)

If ω2
c is defined as

ω2
c =

1
R1R2C1C2

= ω0ωn (6.184)

then

fc =
1

2π
√

R1R2C1C2

(6.185)

and,

2ζ =
1
Q

=

√
R1R2C1C2

R1C1 + R2C1
=

[
1

R1
+

1
R2

]√
R1R2C1C2

C1
(6.186)

After rearranging, Equation (6.186) becomes

Q =

√
R1R2C1C2

C2(R1 + R2)
(6.187)

The Q or selectivity value value determines the the height and width of the frequency response
and is defined for bandpass filter as

Q =
fc

fH − fL
=

fc

Bandwidth
(6.188)

and

fc =
√

fHfL (6.189)

which is the geometric mean for the -3 dB points of fH and fL. The reader may be puzzled by
the meaning of Q for a lowpass filter given how it is defined. In the case of a Butterworth lowpass
filter81 it is used as a measure of the filters response, i.e. under-, critically- or highly-damped.
Because R1, R2, C1 and C2 are independent variables, it is possible to simplify Equations 6.185
and 6.187 by choosing R2 and and C2 to be integer multiples of R1 and C1, respectively.

6.10.4.3 Sallen-Key Highpass Filter

Similarly, the configuration for a Sallen-Key 2nd-order highpass filter is shown in Figure 6.47. In
this case the transfer function for the S-K bandpass filter is given by

H(s) =
s2

s2 + R1

R1R2

(
C1C2

C2+C2

)s + 1[
R1R2

(
C1C2

C1+C2

)]
(C1+C2)

(6.190)

6.10 Filters 207

Figure 6.47: A Sallen-Key highpass filter.

and the general for for a 2nd-order high pass filter is given by

H(s) =
s2

s2 + 2ζωcs + ω2
c

(6.191)

and therefore

Q =

√
R1R2C1C2

R1(C1 + C2)
(6.192)

and

fc =
1

2π
√

R1R2C1C2

(6.193)

6.10.4.4 Sallen-Key Bandpass Filter

Similarly, the transfer function for the bandpass filter shown in Figure 6.48 is given by

H(s) =
Ra+Rb

Ra

s
R1C1

s2 +

[
1

R1C1
+ 1

R2C1
+ 1

R2C2
− Rb

RaRf C1

]

s +

[
R1+R2

R1Rf R2C1C2

] (6.194)

The denominator is of the general form for bandpass filters and expressed as:

H(s) =
Gω2

ns

s2 + 2ξω0s + ω2
0

(6.195)

where G is the so-called inner gain82 of the filter and given by

G =
Ra + Rb

Ra
(6.196)

and the gain at the peak frequency83 is given by

A =
G

G − 3
(6.197)

and the center frequency by

f0 =
1
2π

√
Rf + R1

R1R2RfC1C2
(6.198)

208 Mixed-Signal Processing

Figure 6.48: A Sallen-Key bandpass filter.

Setting

C1 = C2 (6.199)

R2 =
R1

2
(6.200)

Ra = Rb (6.201)

yields

G = 2 (6.202)

A = 2 (6.203)

f0 =
1
2π

√
Rf + R1

R2
1C

2
1Rf

=
1

2πR1C1

√

1 +
R1

Rf
(6.204)

6.10.4.5 An Allpass Filter

The phrase “allpass filter” is in some respects a misnomer because such filters pass all frequencies
at constant gain. The important characteristic of this particular type of so-called filter is that its
phase response varies linearly with respect to frequency. This makes allpass filters useful R and
C form a lowpass filter as shown previously and therefore its transfer function is given by

H(s) =
1

1 + sRC
(6.205)

The current into the negative feedback loop is given by

vi − v−input

Rf
=

vi − viH(s)
Rf

v+input − ifRf = viH(s) −

[
vi − viH(s)

Rf

]

Rf

= [2H(s) − 1]vi

=

[
2

1 + sRC

]

vi =

[
1 − sRC

1 + sRC

]

vi (6.206)

81A 4th order Butterworth filter having a Q of .707 is maximally flat in he passband.
82This is the gain determined by the negative feedback loop.
83Note that if the gain is 6 3 the circuit will oscillate.

6.10 Filters 209

and therefore

| H | = 1 (6.207)

and

∠H = −2 tan−1(ωRC) (6.208)

which for

ωRC = 1 ⇒ ∠H = −90◦ (6.209)

which means that gain is independent of frequency and phase that is dependent on frequency.

Figure 6.49: A simple first-order allpass filter.

6.10.5 Digital Filters

The conventional wisdom that digital techniques are universally superior to that of their analog
counterparts is not always correct. In principle, the concept of converting all incoming signals to
digital form and then carrying out whatever programmatic operations may be required, on those
signals, to determine what actions should, or should not be taken, if any, would seem to be the
best approach.

Digital filters certainly have much to offer when compared to their analog counterpart in terms
of significantly better performance in terms of passband ripple, greater stopband attenuation,
greatly reduced design times, better signal to noise characteristics84, less nonlinearity but are not
necessarily the answer for all embedded systems. In cases for which the responsiveness of the
system is a primary concern the processing overhead, i.e., latency, associated with digital filters
can in some cases make them inapplicable. Digital filters are generally more complex than analog
filters, have good EMI and magnetic noise immunity, very stable with respect to temperature
and time, provide excellent repeatability, but do not generally speaking offer the dynamic range
of analog filters or have the capability operate over as wide a frequency range of a comparable
analog filter.

Since digital filters are discrete time devices, difference equations are often used to model
their behavior, e.g,

yn = −a1yn−1 − a2yn−2 − ∙ ∙ ∙ − aNyn−N + b0xn + ∙ ∙ ∙ + bn−M (6.210)

= −
∑

akyn−k +
∑

bkxn−k (6.211)

84Digital filters do introduce some noise in terms of quantization noise, as a result of the conversion from analog
to digital and digital to analog of filtered signals, etc.

210 Mixed-Signal Processing

where ak and bk ∈ Z.

In the z-domain, the transfer function for a LTI IIR digital filter is of the general form given
by:

H(z) =
b0 + b1z

−1 + b2z
−1 + b3z + . . . + bnz−n

1 + a1z−1 + a1z−1 + a1z + . . . + amz−m
(6.212)

If n>m then the filter is said to be a nth order filter and conversely, if m>n, then the filter is
said to be an mth order filter.

Digital filters are modeled in terms of adders, multipliers and positive and negative delays.

The are two fundamental types of digital filters:

• Finite Impulse Response (FIR) filters that are nonrecursive, stable, linear with respect to
phase, are relatively insensitive to coefficient quantization errors and depend on either the
difference of contiguous samples or weighted averages. The latter serves as a lowpass filters
and the former as a highpass filter. The impulse function for an FIR filter is of finite
duration. Such filters can be expressed mathematically as

y[n] =
M∑

k=0

bk[n − k] (6.213)

where M is the number of feed forward taps.

MATLAB provides support for window-based FIR filters by providing

1. b = fir1(n,Wn)

2. b = fir1(n,Wn,’ftype’)

3. b = fir1(n,Wn,window)

4. b = fir1(n,Wn,’ftype’,window)

5. b = fir1(...,’normalization’)

for windowed linear-phase FIR digital filter design.

• Infinite Impulse Response (IIR) filters have impulse responses of infinite duration and can
be expressed mathematically as

y[n] = −
N∑

k=1

aky[n − k] +
M∑

k=1

bkx[n − k] (6.214)

where N,M are the number of feedforward taps and feedback taps, respectively, and a {k}
is the kth feedback tap.85 Because the output of an IIR filter output is a function of both
the previous M outputs and N inputs, it is a recursive filter whose impulse response is of
infinite duration. IIR filters typically require fewer numbers of multiplications than than
their FIR counterparts, can be used to create filters with characteristics of analog filters but
are sensitive to coefficient quantization errors.86

In addition to butter, cheby1, cheby2, ellip and bessel which represent a complete filter
design suite, MatLab support for IIR filters includes:

1. buttord
85If ak = 0, then this expression reverts to that of the FIR filter.
86Because digital filters introduce quantization errors the positions of poles and zeros in the complex plane can

shift which is referred to as coefficient quantization error.

wka
Note
Please note toolbox requirement; which toolbox ?

6.10 Filters 211

2. cheb1ord,
3. cheb2ord

and,

4. ellipord

6.10.6 Finite Impulse Response (FIR) Filters

Finite impulse filters, of the type shown in Figure 6.50 are causal (non-recursive), inherently

Figure 6.50: A generic Finite Impulse Response filter of order n.

stable (BIBO), do not need feedback, are relatively insensitive to coefficient quantization errors,
and capable of providing the same delay for all components of the input signal87. In addition,
FIR filters are further characterized by the fact that their impulse response is finite. FIR filters
are quantifiable in terms of following linear constant-coefficient difference (LCCD) equation:

y[n] = b0x[n] + b1x[n − N] + . . . + bNx[n − N] =
N∑

k=0

bkx[n − k] (6.215)

where N is the number of “taps”,88 y[n] is the output at the discrete time instance n and similarly
x[n] is each of the input samples. Note that this type of filter does not depend on previous values
of y. To determine the impulse response of this particular configuration,

x[n] = δ[n] (6.216)

so that Equation (6.215) becomes

y[n] = b0δ[n] + b1δ[n − N] + . . . + bNδ[n − N] =
N∑

k=0

bkδ[n − k] = bn (6.217)

One of the most commonly encountered types of FIR filers is known as a “Moving Average
Filter” which can be either LP, BP, or HP. It is based on a concept of averaging a number of
samples to produce each of the output values, i.e.,

y[n] =
1
M

M−1∑

k=0

x[n + k] (6.218)

where M is the number of samples in the average. As simple as this technique is, it turns about
to be an excellent method for removing random noise while retaining a sharp step response.

87A very important consideration for audio and video applications.
88The number of taps is a measure of the number of terms in Equation (6.215) which is (N + 1) and N is the

order of the filter. The filter coefficients, bj , are referred to as the jth feedforward taps

wka
Note
please define BIBO

212 Mixed-Signal Processing

6.10.7 Infinite Impulse (IIR) Response Filters

The infinite Impulse Response or IIR filter has an impulse response which is infinite in duration89.
The transfer function for an IIR filter is of the form:

H(z) =
p0 + p1z

−1 + p2z
−2 + . . . + pMz−M

d0 + d1z−1 + d2z−2 + . . . + dNz−N
(6.219)

In terms of a difference equation, it is defined by a set of recursion coefficients and the following
equation:

y[n] = −
M∑

k=1

aky[n − k] +
N∑

k=1

bkx[n − k] (6.220)

The transfer function for IIR filters for which m

(6.221)

where ak is the kth feedback tap which depends on previous outputs, M is the number of feedback
taps and N is the number of feedforward taps. The ak coefficients are referred to as the recursive
or “reverse” coefficients, and the bk coefficients are called the “forward” coefficients. Therefore
unlike its FIR counterpart, the IR filter output is a function of the previous outputs and inputs
which is a characteristic common to all IIR structures and is responsible for the infinite duration
of the impulse response. Note that if ak = 0, then Equation (6.220) becomes identical to Equation
(6.215).

6.10.8 Digital Filter Blocks (DFBs)

PSoC3/5 have support for filter components called Digital Filter Blocks (DFBs)90 that have two
separate filtering channels. The DFB has its own multiplier and accumulator which supports
24-bit x 24-bit multiplication and a 48-bit accumulator. This combination is used to provide a
Finite Impulse Response (FIR) filter with a computation rate of approximately one FIR tap for
each clock cycle.

The DFB features include:

• data alignment support options for I/O samples,

• one interrupt and two DMA request channels,

• three semaphore bits programmatically accessible,

• two usage models for block operation and streaming,

• cascading of 2-4 stages per channel with each stage having their own filter class, filter type,
window type, # of filter taps91,center frequency and bandwidth specifications.

and,

• two streaming data channels.

The DFB is implemented as a 24-bit, fixed point, programmable, limited scope, DSP engine
as shown in Figure 6.51. The DFB supports two streaming data channels, where programming

89Since the IIR filter is a ”recursive” filter and has the property that its impulse response is in terms of
exponentially decaying sinusoids and therefore infinitely long. Of course, in real world systems at some point the
responses fall below the roundoff noise level, and thereafter may safely be ignored.

90Only one filter component can be incorporated in a design at a time.
91Filter taps are limited to a maximum of 128 taps for each channel.

6.10 Filters 213

Figure 6.51: The Digital Filter Block Diagram.

214 Mixed-Signal Processing

instructions, historic data and filter coefficients, and results are stored locally with new periodic
data samples received from the other peripherals and blocks through the PHUB interface. In ad-
dition, the system software can load sample and coefficient data in/out of the DFB data RAMs,
and/or reprogram them for different operations in block mode. This allows for multi-channel
processing, or deeper filters than supported in local memory. The block provides software config-
urable interrupt (DFB INTR CTRL) and two DMA channel requests (DFB DMA CTRL). Three
semaphore bits are available for system software to interact with the DFB code (DFB SEMA).

Data movement is typically controlled by the system DMA controller, but it can also be moved
directly by the CPU. The typical usage model is for data to be supplied to the DFB over the
system bus, from another on-chip system data source such as an ADC. The data typically passes
through main memory, or is directly transferred through DMA. The DFB processes this data and
passes the result to another on-chip resource, such as a DAC, or main memory, via DMA on the
system bus. Data movement in, or out of, the DFB is typically controlled by the system DMA
controller, but can be moved directly by the CPU.

The DFB consists of subcomponents, viz., a

1. controller,

2. bus interface,

3. Datapath,

and,

4. an Address Calculations Units (ACUs).

The DFB’s programmable controller has three memories92 and a relatively small amount of
logic and consists of a RAM-based state machine, RAM-based control store, program counters
and “next state” control logic, as shown in Figure 6.51. Its function is to control the address
calculation units and the Datapath, and to communicate with the bus interface to move data in,
and out of, the Datapath.

The Datapath subblock is a 24-bit fixed point, numerical processor containing a Multiply and
Accumulator (MAC), a multi-function Arithmetic Logic Unit (ALU), sample and Coefficient/
Data RAM (Data RAM is shown in Figure 30-1) as well as data routing, shifting, holding, and
rounding functions. The Datapath block is the calculation unit inside the DFB.

The addressing of the two data RAMs in the Datapath block are controlled by the two
(identical) Address Calculation Units (ACUs), one for each RAM. These three sub-functions
make up the core of the DFB block and are wrapped with a 32-bit DMA-capable AHB-Lite Bus
Interface with Control/Status registers.

These three sub-functions make up the core of the DFB block and are wrapped with a 32-bit
DMA-capable AHB-Lite Bus Interface with Control/Status registers. The Controller consists
of a RAM-based state machine, a RAM-based control store, program counters, and next state
control logic. Its function is to control the address calculation units and the Datapath, and to
communicate with the bus interface to move data in and out of the Datapath.

Proprietary assembly code and an assembler allow the user to write assembly code to im-
plement the data transform the DFB should perform. Alternatively, a “wizard” is provided to
facilitate digital filter design for both FIR and FII filters. The wizard allows the designer to
set either one or two data stream channels, referred to as Channel A and Channel B, of a filter
component that is passing data either in, or out, using DMA transfers or register writes, via

92The code that embodies the data transform function of the DFB resides in these memories.

6.10 Filters 215

firmware. and an integral co-processor. The filter has 128 taps that determine the frequency
responses of the filter. Either channel can be configured to produce an interrupt in response to
receiving a data-ready event which in turn enables the interrupt output.

6.10.9 PSoC3/5 Filter Wizard

PSoC Creator includes a powerful wizard for configuring digital IIR and FIR filters. The wizard
shown in Figure 6.59 provides a graphical representation of the filter by displaying the response

Figure 6.52: PSoC3/5’s Filter Configuration Wizard.

for each of the following in a color-coded format:

1. Amplitude - gain is displayed graphically as a function of frequency.

2. Phase - phase is displayed graphically as a function of frequency.

3. Group Delay - occurs when phase as a function of frequency is non-linear. If the frequency
components of a signal are propagated through a device with no Group Delay, then the
components experience the same time delay. If some frequencies are traveling faster than
others then there is group delay and distortion results.

4. Impulse Response - the impulse response completely characterizes the filter.

5. Tone Input Wave - an input signal (sinusoid) is shown graphically for a bandpass filter

6. Tone Response Wave - the response to the tone input into a bandpass filter is shown
graphically.

Several different types of “windows”93 are supported that offer various combinations of band
width transition, pass band ripple and stop band attenuation characteristics:

93Windows, or more properly, windows functions are functions that are defined as zero outside of a specified
interval.

216 Mixed-Signal Processing

1. Rectangular - large pass band ripple, sharp roll-off and poor stop band attenuation. Rarely
used because of the large ripple effect as a result of the Gibb’s94 phenomenon.

w(n) = 1 (6.222)

2. Hamming95 - smoothed pass band, wider transition band and better stop band attenuation
than

w(n) = 0.54 − 0.46 cos

[
2πn

(N − 1)

]

(6.223)

3. Gaussian - Wider transmission band, but greater stop band attenuation and smaller stop
band lobes than Hamming.

w(n) = exp

[

−
1
2

(2n
N−1 − 1

σ

)2]

σ ≤ 0.5 (6.224)

4. Blackman - provides a steeper roll-off than its Gaussian counterpart, but similar stop band
attenuation although larger lobes in the stop band.

w(n) = a0 − a1cos

[
2πn

(N − 1)

]

+ a2cos

[
4πn

(N − 1)

]

(6.225)

Windows are often employed to deal with undesirable behavior taking places at the edges of a
filter’s characteristics. They are introduced either by multiplication in the time domain, or by
convolution in the frequency domain.

The sample data rate is the design rate but the operational rate is determined by the data
source driving the filter. There are no decimation or interpolation stages and therefore the sample
rate is the same throughout each channel. The maximum sample for a channel is:

fsMax =
Clkbus

ChannelDepth + 9
(6.226)

where Clkbus is the bus clock speed and Channel Depth is the total number of taps used for a
given channel.

If both channels are used then Equation (6.226) becomes:

fsMax =
Clkbus

ChannelDepthA + ChannelDepthB + 19
(6.227)

The filter component can alert the system of availability of data either via a DMA request that is
specific to each channel. or through an interrupt request shared between the two channels, or the
status register can be polled to check for new data ready. Although the output holding register
is doubled buffered, it is important to remove the data from the output before it s overwritten.
Each channel can have as many as four cascaded96 stages assuming that sufficient resources are
available. The cutoff frequency parameter is used to set the ‘edge” of the passband frequencies
for Lowpass, Highpass and Sinc4 filters

94The best known Gibb’s phenomenon is the so-called ringing effect observed and the leading and trailing edges
of a square wave.

95This should not be confused with Hanning Window which is defined as w(n) = 0.5(1 − cos[(2πn)/M) for
0 ≤ n ≤ M and zero for all other values of n. It is sometimes referred to as the “raised cosine” window.

96Cascading of stages refers to the use of multiple filters which are interconnected so that the output of one
filter stage becomes the input of another filter stage.

6.10 Filters 217

The filters center frequency is defined as the arithmetic mean of the upper and lower cutoff
frequencies for the bandpass stop and pass filters:

fc =
fu + fl

2
(6.228)

and the bandwidth (BW) is defined as:

BW = fu − fl (6.229)

The wizard allows the designer to:

• view graphical representations of the frequency response, phase delay, group delay, and
impulse and step responses,

• select from 1 to 4 filter stages,

• zoom in and out to provide a view of the filter’s responses with either a linear or logarithmic
frequency scale, respectively, over a frequency range from DC to the Nyquist frequency.

• enable or disable the filter cascade’s response to a positive step function,

• enable or disable the filter cascade’s response to to a unit impulse,

• select a tone97 input wave at the center frequency of the bandpass

• implement both FIR and FII filters

This function is capable as acting as a filter that

6.10.9.1 Sinc Filters

The normalized sinc function, shown in Figure 6.53 is defined as:

Figure 6.53: The “normalized”sinc function.

sinc(x) =
sinc(πx)

πx
(6.230)

and can be used as the basis for a sinc-based lowpass digital filter with a linear phase character-
istic. A related function, shown in Figure ?? called the rect function is defined as

rect(t) = u(t) =

0 if |t| > 1
2

1
2 if |t| = 1

2

1 if |t| < 1
2 .

(6.231)

218 Mixed-Signal Processing

Figure 6.54: The rectangular or Rect function,

These two functions are related by the fact that Fourier Transform of the rect function is the
sinc function and the inverse Fourier Transform of rect is the sinc function, i.e., given that the
Fourier Transform and its inverse are defined by

F (ω) =
∫ ∞

−∞
f(t)e−iωtdt (6.232)

and

F−1(t) =
∫ ∞

−∞
F (f)eiωtdω (6.233)

It follows that

F(ω) =
∫ ∞

−∞

sin(ωt)
πω

dx = rect(ω) (6.234)

F−1(t) =
∫ ∞

−∞
rect(t)ei2πftdf =

1
√

2π
sin

[
ωt

2π

]

(6.235)

Thus the impulse function for a rect function in the frequency domain is the sinc function in the
time domain and conversely a rect function in the time domain is mapped to a sinc function in
the frequency domain. If the sinc function is “convolved” with with an input signal, theoretically
an ideal lowpass filter could be realized. However, the fact that the sinc function extends to ±∞
presents a problem. One approach is to just cutoff all of the points on the sinc curve beyond a
certain point and the examine the Bode plot to determine the resulting effect.

This technique can lead to undesirable ripple in the passband and outside of the passband as
a result of the steepness of the truncated ends of the sinc function. and outside the passband.
Another possibility is to employ so-called window functions, e.g., the Blackman or Hamming
windows, that are multiplied by the truncated sinc function. This results in steeper roll-off and
less ripple in the passband and stop bands. If stopband attenuation is a major concern the
Blackman window should be employed but it will result in some degradation of the roll-off. If
roll-off is the primary concern then the Hamming window is the better choice.

97The tone is a sine wave whose frequency is the center frequency of the bandpass filter.

6.11 Data Conversion 219

6.11 Data Conversion

Embedded systems by necessity are required to carry out various operations with digital and
analog data. Input of digital data can be provided by external communications channels, digital
sensors or other digital sources. Analog inputs often have to be converted to equivalent digital
data to permit numerical and logic processing, storage in memory, etc. In addition, digital data
may have to be converted to its analog equivalent to allow it to control external devices such as
motors, other actuators, etc., or for other purposes. Thus analog-to-digital and digital-to-analog
conversion is an important capability for many embedded systems.

6.12 Analog to Digital Conversion

Since the world is essentially analog, it is not surprising to find that embedded systems make
extensive use of analog-to-digital and digital-to-analog techniques in order to get the real world
into the computational domain. Although different architecturally one is rarely to be found
without the other nearby. Arguably much of the world at increasingly finer grain levels appears
not continuous but discrete, embedded systems are typically dealing with an environment full
of continuous sources some of which of necessity must be monitored by the embedded system.
Digital-to-analog converters, of necessity, must bridge the gap between the discrete-value envi-
ronment of the digital domain and that of the continuous value98, to allow embedded systems to
communicate and to some extent control external processes.

Analog-to-digital converters are presented with continuous-valued inputs, continuous-time
signals and expected to provide digital equivalents in the form of discrete values and discrete
times to what has become ever increasing degrees of resolution.

6.13 Basic ADC Concepts

There are a number of important and very fundamental concepts involved in the use and deploy-
ment of analog-to-digital converters including:

• Aliasing is the introduction of spurious signals as a result of sampling at at a rate below the
Nyquist criteria, i.e., a rate less than the high frequency component in the input signal.

• Resolution refers to the number of quantization levels of an ADC, e.g., an 8-bit ADC has a
resolution of 256.

• Dither refers to the addition of a small amount white noise to low level, periodic signals
signal prior to conversion by an ADC. The addition of noise as shown in Figures 6.55 and
6.56. Note that in Figure 6.56 the noise added before the analog-to-digital conversion is
subtracted at the output and is referred to as “subtractive dithering”.

Figure 6.55: Simple dither application using a analog noise source.

98Often after some lowpass filtering.

220 Mixed-Signal Processing

Figure 6.56: Dither application using a digital noise source

• Sampling rate refers to the number of samples per unit time. It is usually chosen to be at
least twice the highest frequency component in the signal being sampled.

• Oversampling is the process of collecting more samples than would other wise be needed to
accurately reproduce a signal that reduces the in-band quantization noise by a factor equal
to the the square root of the oversampling ratio, e.g., reducing the noise by a factor of two,
increases the effective processing gain of 3dB. Keep in mind that we are only talking about
broadband noise here. Other sources of noise and other errors cannot simply be removed
by oversampling.

• Undersampling is a technique used in conjunction with ADCs that allows an it to function
as a mixer. Thus a high frequency signal can be input and the output of the ADC is a
lower frequency. However, this technique does require digital filtering in order to recover
the signal of interest.

• Decimation refers to the use in oversampling applications and the subsequent discarding
of samples after conversion in a way that does not significantly alter the accuracy of the
measurement.

• Quantization is the process of breaking a continuous signal into discrete samples or quantum.

• Quantization error is defined as the arithmetic difference between an actual signal and its
quantized, digital value.

• Dynamic range is the range between the noise floor and the maximum output level.

6.13.1 Delta-Sigma ADC

The delta-sigma99 modulator emerged from the early development of pulse code modulation
technology and as originally developed in 1946. However, it remained dormant until 1952 when
it appeared again in various publications including a related patent application. Its appeal was
the fact that it could offer increased data transmission since it could transmit the changes, i.e.,
“deltas”, in value between consecutive samples, instead of transmitting the actual values of the
sample. A comparator is used as a one-bit ADC and the output of the comparator was then
converted to an analog signal, using a 1-bit DAC, the output of which was then subtracted
from the input signal after it had passed through an integrator. Delta sigma modulators rely on
techniques known as “over-sampling” and noise-shaping in order to provide the best performance.
A greatly simplified example of a Delta-Sigma modular is shown in Figure 6.57

In this example the input voltage, vi, is added to the output of the single-bit, digital-to-analog
converter and the sum is then integrated and the output applied to input of the comparator. The
output of the comparator is either high, or low, i.e., one or zero, depending on whether the output

99The literature refers to both “delta-sigma” and “sigma-delta” modulators. Purists argue that the proper
name is delta sigma since the signal passes through the delta phase prior to the sigma phase. Not withstanding,
the distinction is comparable to that between Tweedle Dee and Tweedle Dum.

6.13 Basic ADC Concepts 221

Figure 6.57: An example of a First-Order, ΔΣ modulator.

of the integrator output is > zero or negative, respectively. The output of the comparator is then
provided to the input of the DAC and the process is repeated. The output of the DAC is ± the
reference voltage.

Example 6.7 - As a quantitative, illustrative example consider the following:

Let the reference voltage be +/- 2.5 volts and assume that the input voltage
is 1 volt. Then when the process begins the output of the DAC is zero so
that 1+ 0 = 1 which when integrated becomes 1 and the comparator outputs
a one which is then applied to the DAC with the result that the DAC output
becomes 2.5 volts. When this is summed with the input the total is -1.5 vo
t which is integrated to produce an output from the integrator 0f -.5 volt.
The comparator outputs a zero and the process continues.

Table 6.13 shows the results of the process outlined in Example 6.7. Figure 6.58 shows the
configuration of a 2nd-order Delta Sigma modulator. A graphical representation of the various
associated signals of a Delta Sigma modulator with a sinusoidal input is shown in Figure 6.60.

Figure 6.58: An example of a Second-Order, Delta Sigma modulator.

wka
Note
I think a diagram showing the effects of noise spreading and a z-domain equation for the first-order Del-Sig woul d help in this section

222 Mixed-Signal Processing

6.13.2 PSoC3/5 Delta Sigma Converter

The architecture of PSoC3/5 includes a very high SNR/resolution Delta Sigma ADC that em-
ploys oversampling, noise shaping, averaging and decimation. A Delta Sigma Analog-to-Digital
Converter (ADC) has two main components: a modulator and a decimator. The modulator
converts the analog input signal to a high data rate (oversampling), low resolution (usually 1 bit)
bitstream, the average value of which gives the average of the input signal level. This bitstream is
passed through a decimation filter to obtain the digital output at high resolution and lower data
rate. The decimation filter is a combination of downsampler and a digital low pass (averaging)
filter that averages the bitstream to get the digital output.

Features of the PSOC3/% Delta Sigma converter include:

• 12- to 20-bit resolution

• An optional input buffer with RC lowpass filter

• Configurable gain rom 0.25 to 256

• Differential/single-ended inputs

• Gain ad offset correction

• Incremental continuous modes

• Internal and external reference options

• Reference filtering for low noise

The PSoC3/5 uses a 3rd-order modulator with a high impedance front end buffer followed by
a bypassable RC filter. The modulator sends out a high data rate bitstream in thermometric
format. The output of the modulator is passed on to the analog interface that converts the
thermometric output to twos complement (4 bit) and passes it on to the decimation filter. The
decimation filter converts output of the modulator into a lower data rate, high resolution output.

The input impedance of the modulator is too low for some applications and therefore higher
input impedance, low noise, independent buffers have been provided for each of the differential
inputs. These buffers can be bypassed/powered down by setting DSM BUF0[1], DSM BUF1[1]
and/or DSM BUF0[0], DSM BUF1[0], respectively. The buffers have adjustable gains (1, 24or8)
determined by DSM BUF1[3 : 2]. The buffers can operate either in a level shifted mode to allow
the input level to be shifted above zero and rail-to-rail when the input is rail-to-rail. input to
the buffers can be from analog globals, analog locals, the analog mux bus, reference voltages and
Vssa.

The PSoC3/5 Delta Sigma modulator consists of three active, OpAmp-based integrators
(INT1, INT2 and INT3), an active summer, a programmable quantizer and switched-capacitor
feedback DAC as show in Figure 6.59. The three active integrators function as a 3rd-order
modulator whose transfer function together with the quantizer provide highpass noise shaping.
Increasing the order of the modulator, improves the highpass filter response and lowers noise
present in the signal frequency band. The three integrators and quantizer stages are followed by
an active summer. The analog input and the output of all three opamp stages are then summed.
The summer output is quantized by a quantizer that is programmable to output 2, 3, or 9 levels.
The DAC connects the quantizer output back to the first stage OpAmp input. It is this feedback
DAC that ensures that the average of the quantizer output is equal to the average input signal
level.

The quantization level can be set as 2,3, or 9. The lowest level provides the best linear-
ity and the highest provides the best SNR. The number of quantization levels is configured in

6.13 Basic ADC Concepts 223

Figure 6.59: Delta Sigma modulator block diagram.

224 Mixed-Signal Processing

DSM CR0[1:0] register bits. The quantizer output is stored in the register DSM OUT1. The
quantizer outputs data in a format referred to as the thermometric100 and is illustrated by the
pattern of output levels shown in Table 6.12.

Table 6.12: Quantizer Output Data

6.13.3 Successive Approximation Register ADC

As shown in Figure 6.61, there are four components that make up a Successive Approximation
Register ADC (SAR):

1. A voltage DAC that converts the SAR output to an analog voltage which can then be used
to compare with the input voltage.

2. A comparator that compares the analog input to the DAC output.

3. A successive approximation register which, based on the output of the comparator, provides
the appropriate input to the DAC.

4. A Track and hold circuit that holds an input value constant during the conversion at which
point it loads another sample of the input.

PSoC3/5 have 8 bit voltage DACs and therefore the SAR is limited to 8-bit resolution. Al-
though PSoC3/5 do not currently have explicit support for a SAR, it is possible to construct a
SAR based on the resources that are available in PSoC3/5[30]. SAR logic must set or reset a
given bit based on the output of the comparator.

In a typical implementation, this operation is repeated 8 times until the SAR generates an
“end of conversion” signal and latches the data. The VDAC can accept data from the DAC bus
and therefore data can be transferred directly from the SAR to VDAC without incurring CPU
overhead. However, it is necessary to generate a strobe using SAR logic when data is available
on the DAC bus so that the VDAC will produce a corresponding output voltage.

100In the thermometric format, the number of ones increases from LSB to MSB as the quantization level increases.

6.13 Basic ADC Concepts 225

Table 6.13: Delta Sigma Example Output.

226 Mixed-Signal Processing

Figure 6.60: First order, Delta-Sigma modulator signals with sinusoidal input.

Figure 6.61: A schematic diagram of a SAR ADC.

6.13 Basic ADC Concepts 227

The limitation on speed of conversion are set primarily by:

1. The speed with which the comparator is able to resolve differences between v {i} and the
output of the DAC.

2. The DAC’s settling time which is a function of the settling time for the MSB.

3. Overhead introduced by the latency of the various components of the SAR ADC. Such
factor include the sample and hold acquisition time, sample and hold settling time, EOC
recognition time by the CPU, etc.

The change of state of the comparator signals that the binary representation of the input signal
has been found and that the data can then be accessed programmatically.

6.13.4 Analog MUX

A multiplexer, or Mux, is a device that allows one, or more, inputs to be switched, and/or
combined, programmatically to one, or more, outputs. These inputs/outputs may be either
digital or analog, respectively. Typically muxes are controlled by digital signals consisting of one
or more binary inputs. Depending on the “address” represented by the the binary inputs one of
the input sources is connected to the output of the mux, as shown in Figure 6.62.

Figure 6.62: A simple analog multiplexer.

The analog multiplexer, or AMux, is a passive device that can combine multiple analog signals,
or multiple pairs thereof, in a single signal, or pair, to allow the output signal to be routed to a
single input of some other component. The AMux also allows multiple input simultaneous input
connections to be routed to a single connection. The AMux employs individual switches that
connect blocks to analog busses, and analog busses to pins.

Unlike most hardware multiplexers, the AMux is a collection of independent switches that
are controlled by firmware, and not by hardware. This makes AMux much more flexible than
other types of multiplexers because it allows more than one signal at time to be connected to
the common output signal. Note that in the “Differential Mode” the firmware will not allow the
differential signals to be connected to each other and instead treats such cases as two parallel
multiplexers controlled by the same signal.

228 Mixed-Signal Processing

6.13.4.1 Allowable Input/Output Connections

There are various types of input/output connections that are supported by the AMux:

• aN (Analog) - the AMux supports 2 - 32 analog inputs, inclusive.

• bN (Analog)101 - the paired inputs (aN,Bn) are only used when the Mux Type parameter
is set to “Differential”.

• y (Analog) - This is a required connection and is the output of the AMux.

• x (Analog) - the “x” signal is the output connection when using the AMux in a differential
mode. Its output is determined by the “void AMux Select(void)” function.

In setting up an AMux, certain parameters must be set in order to achieve the desired con-
figuration, i.e.:

• Channels - this parameter specifies the number of single or paired inputs and may have a
value of 2-32, inclusive.

• MuxType - this parameter determines whether a single input per connection (Single)102.
or dual input per connection (Differential) is to be used. If two, or more, input signals
have different signal references, the “Differential” mode must be used. This mode is often
employed when the output of the mux is connected to an ADC with a differential input.

6.13.4.2 The AMux API

The application programming interface or API for the AMux provides programmatic access
to various routines that allow the designer to configure the AMux. By default, PSoC Creator
assigns the instance name “AMux 1” to the first instance of AMux. The API function calls
for AMux are:

• void AMux n Start - disconnects all channels.103

• void AMux n Stop - disconnects all channels.104

• void AMux n Select(uint8 chan) - disconnects all other channels and then connects the
selected channel (chan) signal.

• void AMux n FastSelect(uint8 chan) - disconnects the last connection made with either
FastSelect or Select function calls and then connects the “init8 chan”.105

• void AMux n Connect(uint8 chan) - connects the given channel to the common signal
without affecting any previous channel connection.

• void AMux n Disconnect(chan) - disconnect only the specified channel from the output.

• void AMux n DisconnectAll(void) - disconnect all channels.

101This type of I/O may be hidden on the symbol under the conditions listed in the description of that I/O.
102Single refers to cases in which each input signal is referenced with respect to a common signal, e.g., V ssa
103With respect to AMux function calls, there are no return values, side effects or parameters to specify, unless

otherwise noted.
104The Stop API call is not really required but is provided for “compatibility’ reasons.
105If the Connect function was used to select a channel prior to calling FastSelect, the channel selected will not

be disconnected which is useful when parallel signals need to be connected.

6.13 Basic ADC Concepts 229

6.13.5 Analog/Digital Virtual MUX

PSoC3/5 have support for analog/digital “virtual” muxes which are analogous to hardware muxes
in that they connect a selected input to an output. However, unlike their hardware counterpart,
virtual muxes are can not be dynamically controlled. They can be used at the schematic level to
chose from a variety of different sources, e.g., to select from a number of different clock sources.
The actual connection to be made is selected at build time. The default number of inputs106

is two with a maximum of sixteen and the selected input Virtual muxes do not consume any
resources but merely connect a pre-defined input to the output.

6.13.6 PSoC3/5 Delta Sigma ADC (ADC DelSig)

The Delta-Sigma ADC provided in PSoC3/5 supports resolutions from 8-20 bits, continuous
mode operation, an adjustable sample rate (10-375,000 sps), a high input impedance input buffer
and selectable input buffer gain all of which makes it ideal for sampling signals over a wide
range of frequencies. Whether used to sample input from strain gauges, thermocouples or other
forms of high precision but low amplitude sensors, the ADC DelSig is designed to spread the
quantization noise across a sufficiently wide spectrum to allow it to be moved out of the input
signal’s bandwidth and the filtered by a lowpass filter.

The Delta-Sigma ADC is an inherently three terminal device with an optional fourth and fifth
pin for a start of conversion (SOC)which occurs as a result of the presence of a rising edge and
an external clock source, respectively. The other three pins are positive input, negative input
and end of conversion (EOC). This positive input is used for a positive analog signal input to
the ADC DelSig. The conversion result is a function of the positive minus the voltage reference,
which is either negative or Vssa.107

The ADC DelSig’s negative input functions as the reference input and the result of a con-
version is a function of the positive input minus the negative input. If the ADC INPUT Range
option is selected for this device, then the following modes are available:

0.0 +/- 1.024V (Differential) -Input +/- Vref
0.0 +/- 2.048V (Differential) -Input +/- 2Vref
0.0 +/- 0.512V (Differential) -Input +/- Vref/2
0.0 +/- 0.256V (Differential) -Input +/- Vref/4

User definable parameters for the ADC DelSig include the following:

• Variable power settings: - Low, Medium or High.

• Conversion modes: Continuous, Fast Filter or FIR.

• Resolution: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20.

• Input buffer gain: 1, 2, 4 or 8108 Start of conversion:

• Start of Conversion: Can be initiated at the hardware, or the software level.

• Conversion Rate: 10 to 375,000 samples second

• Clock Source: External or internal.

• Input Range:
0.0 to 1.024 V(Single-Ended)
0.0 to 1.024 V(Single-Ended)
Vssa to Vdda, (Single-Ended)

106The number of inputs is specified by NumInputTerminals
107Vssa is analog ground.
108The input buffer gain can also be disabled.

230 Mixed-Signal Processing

0.0 ± 1.024V (Differential) Negative Input ± Vref

0.0 ± 2.048V (Differential) Negative Input ± 2(Vref)
0.0 ± 0.512V(Differential) Negative Input ± Vref/2
0.0 ± 0.256V (Differential) Negative Input ± Vref/4

The ADC DelSig consists of three blocks: an input amplifier, a 3rd-order Delta-Sigma mod-
ulator, and a decimator as shown in Figure 6.63. The input amplifier provides a high impedance

Figure 6.63: The PSoC3/5 ADC DelSig block diagram.

input and a user-selectable input gain. The decimator block contains a 4 stage CIC decimation
filter109 and a post-processing unit. The CIC filter operates on the data sample directly from the
modulator. The post-processing unit optionally performs gain, offset, and simple filter functions
on the output of the CIC decimator filter. Decimation is a combination of downsampling and
filtering where downsampling refers to the discarding of samples particularly in cases when over-
sampling110 is employed. In some cases lowpass filtering is employed prior to to downsampling
in order to remain consistent with the Nyquist criteria.

6.14 I/O Pins

In order for an embedded system to interact with the real world there must obviously be provision
for hardware connections for both input and output. Microcontrollers have pins for this purpose
and for PSoC3/5 the I/O pins are as important, as is their potential configurability. In addition
to the pins being configurable at the schematic level, they can also be configured dynamically
through program control. At the schematic level the pins component is definable as analog,
digital input, digital output or bidirectional with an initial state of high or low.

Implementing embedded systems with PSoC3/PSoC5 typically requires extensive use of var-
ious types of I/O pins including:

• Analog Pins

• Digital Input Pins

• Digital Output Pins and

and,

• Digital Bidirectional Pins

PSoC3/5’s Pins components can be configured into complex combinations of input, output, bidi-
rectional, and analog I/O connections to provide both on- and off-device signals via physical I/O

109Cascaded integrator comb filters (CIC) is a linear-phase FIR filter and are more efficient than conventional
FIR filters.

110Oversampling is sampling at rates greater than the Nyquist criteria.

6.14 I/O Pins 231

pins. A pin component can have 1-64 pins inclusive with a default value of 1 pin. It provides
access to external data via an appropriately configured physical I/O pin. It allows electrical char-
acteristics to be associated with one or more pins. These characteristics are then used by PSoC
Creator to automatically place and route the signals constrained within the component. Pins can
be used from schematics and/or software. To access a Pins component from component APIs, the
component must be contiguous and non-spanning. This ensures that the pins are guaranteed to
be mapped into a single physical port. Pins components that span ports, or are not contiguous,
can only be accessed from a schematic, or with the global per-pin APIs.111

An analog Pins component may also support digital input or output connections, or both,
as well as, bidirectional connections, e.g., analog with digital input, analog with digital output,
analog with digital input and output and analog with bidirectional digital I/O. Digital input pins
can also support digital output and analog connections. Digital output pins can support digital
input and analog connections. Bidirectional pins can support analog connections. When the Pins
component is used in conjunction with an internal reference voltage (Vref) an SIO pin must be
used, however, Vref can only be used with another digital connection, i.e. analog pins cannot be
used. Digital pins can be used with an IRQ but not an analog pin. There are eight available
drive modes for pin as shown in Figure 6.64 .

The drive modes for pins includes:

• Strong drive

• High impedance analog

• High impedance digital

• Open drain drives high

• Open drain drives low

• Resistive pull-up

• Resistive pull-down

• Resistive pull-up and pull-down

• Resistive pull up/pull down

The defaults for drive modes are high impedance for analog, digital and digital I/O and open
drain (drives low) for bidirectional. All other

111#defines are created for each pin in the Pins component to be used with global APIs.

232 Mixed-Signal Processing

Figure 6.64: PSoC3/5 pin drive modes.

6.15 Digital to Analog Converters (DACs) 233

6.15 Digital to Analog Converters (DACs)

Digital to analog converters are an important component in embedded systems that allows the
system to covert digital data into its analog equivalent for driving actuators, motors, switches,
etc. Selection of a DAC is based on a number of factors, one of which is the desired resolution
which determines the number of analog levels that the DAC is capable of producing and the N-bit
resolution, where N is the power of 2 representing the number of possible output levels. Dividing
the number of levels into the DAC’s maximum output voltage determines the voltage step size,
i.e.,

Output Voltage Step Size =
Maximum Output Voltage

2N
(6.236)

Another factor is the sampling frequency, which refers to the maximum rate of output that
the DAC is capable of producing. This is an important consideration when the accuracy, or
fidelity, of the output analog signal is of concern. If the Nyquist-Shannon condition is to be met
then the DAC must be capable of producing analog values at a rate of at leat twice the highest
frequency component to be included in the output. A third concern is the so-called monotonicity
of the output from a DAC. In particular, if the output voltage is assumed to be increasing, or
decreasing, each actual output step must represent a monotonic increase, or decrease, in the
output. Dynamic range is also a consideration and is a function of the resolution of the DAC
and the noise floor. Total harmonic distortion is a figure of merit for DACs and may need to be
taken into account when selecting a DAC, depending on the application.

PSoC3/5 DACs generate either a voltage or a current output and employ a current mirror112

architecture in which current is mirrored from a reference source to a mirror DAC. Calibration
and value current mirrors are responsible for the 8-bit calibration [DACx.TR] and the 8-bit DAC
value. The current is then diverted into the scaler to generate the current corresponding to the
DAC value. The DAC value can either be given from the register DACx.D or from 8 lines from
the UDB. This selection is made using the DACx.CR1[5] bit. The DAC is strobed to get its
output to change for the input code. The strobe control is enabled by the DACx.STROBE[3] bit.
The strobe sources for the DAC can be selected from the bus write strobe, analog clock strobe
to any UDB signal strobe. This selection is based on the setting in DACx.STROBE[2:0].

• Voltage (VDAC) Mode - The current is routed through resistors according to the range
and voltage across it provided as output. The output from the DAC is single-ended in both
IDAC and VDAC modes.

• Current (IDAC) Mode - The two mirrors for the current source and sink provide output
as a current source or current sink, respectively. These mirrors also provide range options
in the current mode.

The outputs from the PSoC3/5 DACs is single-ended in both IDAC and VDAC modes.

6.15.1 PSoC3/5 Voltage DAC (VDAC8)

The VDAC8 is an 8-bit voltage digital-to-analog converter that can be configured in various ways
depending on the application. It is controllable via hardware, software or a combination of both
hardware and software. It can be employed as a fixed or programmable voltage source with:

• a CPU, DMA or UDB data source text,

112Current mirrors are circuits designed to accurately replicate a reference current referred to as the “golden
current source”, and sometimes includes scaling of the replicated current. Current mirrors can be thought of as
ideal current amplifiers. Golden current sources are expected to be relatively temperature and voltage independent.

234 Mixed-Signal Processing

• Software, or clock-driven, output strobe,

• Two ranges: 1.020V and 4.096V full scale

• Voltage output

6.15.1.1 Input/Output Connections

When used as a VDAC, the output is an 8-bit digital-to-analog conversion voltage to support
applications where reference voltages are needed. The reference source is a voltage reference from
the Analog reference block called VREF(DAC). The DAC can be configured to work in voltage
mode by setting the DACx.CR0 [4] register.

In this mode, there are two output ranges selected by register DACx.CR0 [3:2].

• 0V to 1.024V

• 0V to 4.096V

Both output ranges have 255 equal steps.

The VDAC is implemented by driving the output of the current DAC through resistors and
obtaining a voltage output. Because no buffer is used, any DC current drawn from the DAC
affects the output level. Therefore, in this mode any load connected to the output should be
capacitive. The VDAC is capable of converting up to 1 Msps. However, the DAC is slower in
4V mode than 1V mode, because the resistive load to Vssa is 4 times larger. In 4V mode, the
VDAC is capable of converting up to 250 ksps. The VDAC8’s output can be routed to any analog
compatible pin on PSoC3/5.

An 8-bit wide data signal, i.e., data[0:7], connects the VDAC8 directly to the DAC Bus. The
DAC Bus may be driven by UDB based components, control registers, or routed directly from
GPIO pins. Input is enabled by setting the Data Source parameter to “DAC Bus”. data[7:0] input
should be used when hardware is capable of setting the proper value without CPU intervention
and the strobe option should be set as External. For many applications this input is not required,
but instead the CPU or DMA will write a value directly to the data register. In firmware, the
SetRange() function or directly writing a value to the VDAC8 n Data register (assuming an nth
instance name) should be used.

In strobe input mode, the data is transferred from the VDAC8 register to the DAC on the
next positive edge of the strobe signal. If this parameter is set to “Register Write”the pin will
disappear from the symbol and any write to the data registers will be immediately transferred to
the DAC. For audio or periodic sampling applications, the same clock used to clock the data into
the DAC could also be used to generate an interrupt. Each rising edge of the clock would transfer
data to the DAC and cause an interrupt to get the next value loaded into the DAC register.

The output voltage is determined by:

vo = 1.020

[
value

256

]

volts (6.237)

or,

vo = 4.096

[
value

256

]

volts (6.238)

depending upon the selected output range and 0 ≤ (value) ≤ 255.

6.15 Digital to Analog Converters (DACs) 235

6.15.2 PSoC3/5 Current DAC (IDAC8)

When used as an IDAC, the output is an 8-bit digital-to-analog conversion current. This is done
by setting the DACx.CR0 [4] register. The reference source is a current reference from the analog
reference called IREF(DAC). In this mode, there are three output ranges selected by register
DACx.CR0 [3:2].

• 0 − 2.048 mA, 8 μA/bit

• 0 − 256 μA, 1μA/bit

• 0 − 32 μA, 0.125 μA/bit

For each level, there are 255 equal steps of M/256 where M=2.048 mA, 256μA, or 32μA. In
the 2.048 mA configuration, the block is intended to output a current into an external 600Ω
load. The IDAC is capable of converting up to 8 Msps. The user also has the option of selecting
the output as either a current source, or a current sink. This is controlled by the DACx.CR1[2]
register. This selection can also be made by using a UDB input. UDB control for the source/sink
selection is enabled using the DACx.CR1[3] bit. Separate muxes are used for current and voltage
modes.

It is possible to achieve a higher resolution current output DAC by summing the outputs of
two 8-bit current DACs, each one having a different segment of the input bus for input, as shown
in Figure 6.65. The range of the two DACs used partially overlap.

Figure 6.65: Higher resolution current DAC configuration.

For example, the implementation of a 12-bit DAC using two 8-bit DACs require: One DAC
scaled to the range 0 - 2.048 mA and the second one scaled to the range 0 − 32μA. The middle 4
bits of the lowest range DAC are used as inputs to the lower 4 bits. This architecture may have
problems of there is a mismatch between the two DACs, and therefore, adjustment and scaling
may be required. The last two bits of the LSB DAC are used for minor calibration requirements.

6.15.3 Digital Functions

PSoC3/5 provide a powerful suite of digital functions that are interoperable with their analog
counterparts. In addition to digital functionality such as counters, timers, cyclic redundancy

236 Mixed-Signal Processing

check modules, pulse width modulators, quadrature decoders, shift registers, pseudo random
sequence (PRS) generators, and precision illumination signal modulators (PrISM) a full set of
logic functions such as AND, OR, (NOT), NOR, NAND, XOR, XNOR, and inverters is also
provided to provide all of the basic boolean operations. Arbitrarily complex combinations of
these logic functions allows the design to create logic configurations for a wide variety of situations
involving PSoS3/5’s analog and digital blocks. With the exception of the inverter which functions
as a NOT gate all of the included logic gates have two digital inputs as a default. The inverter
has a single input and a single output but the other gates can have as many as eight digital
inputs (NumTerminals), inclusive. A second parameter TerminalWidth defines the number of
bus connections that can be attached to the same number of discrete logic gates in parallel.

All of the digital logic gates used are converted to their VHDL113 equivalents and reduced
to a sum of products and then placed into the Universal Digital Blocks (UDB) Programmable
Logic Devices (PLD). This process results in digital logic gates being automatically optimized
and placed into the PSoC device. Resource usage is dependant upon the specific logic created
and can not be determined prior to project compilation in PSoC Creator.

6.15.4 Gates

Logic levels for the PSoC3/5 gates are defined as:

• True = 1 = high logic level

• False = = = low logic level

The AND gate, shown symbolically in Figure 6.66 functions in the same manner as a logical AND
operator, viz., the output is true when all inputs are true and is otherwise false.

Table 6.14: AND gate truth table.

Figure 6.66: AND gates perform logical multiplication.

The OR gate, shown symbolically in Figure 6.67, functions in the same manner as a logical OR
gate, viz., the output is true if any input is true and false if all inputs are false.

113The Very High-level design language (VHDL) was created as a hardware description language for the devel-
opment of high-speed integrated circuits and has evolved to an industry standard language for describing digital
systems.

6.15 Digital to Analog Converters (DACs) 237

Table 6.15: OR gate truth table.

Figure 6.67: OR gates perform logical addition.

The inverter, shown symbolically in Figure 6.68, which is also referred to as a NOT gate, performs
a logical inversion function, viz., the output state of the inverter is the inverse state of the input.

Table 6.16: NOT gate truth table.

The NAND gate, shown symbolically in Figure 6.69, is the equivalent to a logical AND gate
followed by an logical inverter. If all of the inputs to the NAND gate are true, the output is false,
otherwise the output is true.

The NOR gate, shown symbolically shown in Figure 6.70, functions as a logical OR gate followed
by a logical NOT gate, viz., the output is true if all of the inputs are false, otherwise the output
is false.

Figure 6.70: The NOR gate functions as a combination of a logical OR and NOT gates.

The XOR (exclusive-OR) gate, shown symbolically in Figure 6.71, is useful as a parity generator.
It has two or more inputs and one output. As shown in the Table 6.19, the XOR’s output is true
when there are an odd number of true inputs. Otherwise, the output is false. The XNOR gate,
shown symbolically in Figure 6.72, is an exclusive-NOR gate that functions as a logical XOR gate
followed by a logical NOT gate, viz., the output is true when there is an even number of true
inputs and otherwise the output is false.

238 Mixed-Signal Processing

Figure 6.68: An inverter functions is a NOT gate.

Table 6.17: NAND gate truth table.

Figure 6.69: The NAND gate functions as the combination of a logical NAND and NOT gate.

Table 6.18: NOR Gate truth table.

Table 6.19: Exclusive-OR (XOR) truth table.

6.15 Digital to Analog Converters (DACs) 239

Figure 6.71: An exclusive-OR gate.

Table 6.20: Exclusive-NOR (XNOR) truth table.

Figure 6.72: An exclusive-NOR (XNOR) gate.

240 Mixed-Signal Processing

6.15.5 Tri-State Buffer (Bufoe 1.10)

The PSoC3/5 Tri-State Buffer (Bufoe) component is a four terminal, non-inverting buffer with
an active high output enable signal shown symbolically in Figure 6.73. When the output enable
signal is true, the buffer functions as a standard buffer. When the output enable signal is false,
the buffer turns off. It is used to interface to a shared bus, e.g., I2C. Bufoe’s should be used
with an I/O pin and not be used in conjunction with internal logic.

Figure 6.73: A Bufoe is a buffer with an output enable signal (oe).

The four connections are:

x -Input to the Bufoe.
oe (output enable) - The Bufoe is enabled when oe is ‘1’ and otherwise the output is in a

high impedance state (referred to as “tri-stated”).

y - This connection is connected to the output of the buffer. When oe is true (‘1’), this
connection is an output, and y has the same value as x. When oe is false (‘0’), this connection
may be used as an input.

yfb (output) - This is the feedback signal from the y connection. When oe is true (‘1’) the
yfb and y have the same value as x. When oe is false (’0’), yfb has the same value seen at y
irrespective of x.

6.15.6 D Flip-flop

A “D flip-flop”, shown in Figure 6.74 is a bistable device that can be used to store a digital value
that can be preset or reset asynchronously. It functions nominally as a three terminal device

Figure 6.74: PSoC3/5’s D Flipflop.

with signal input (d), clock input (clock) and output (q) and is frequently used to implement
sequential logic. The D flip-flop output (q) tracks with the D flip-flop output (q) so that it can
serve as a storage device.

A fourth input terminal called the asynchronous preset (ap) is accessible when the PresetOr-
Reset parameter is set to Preset. The ArrayWidth parameter, whose default setting is ‘1’, allows
an array of D flip-flops to be created when the input or output is a bus. The PresetOrReset

6.15 Digital to Analog Converters (DACs) 241

parameter controls whether the asynchronous preset (ap) input or asynchronous reset (ar) is
visible with a default of “None”. All D flip-flop components in the same UDB must have the
same ar or ap input. In addition D Flip Flop components in the same PLD must have the same
clock signal. Resources The D Flip Flop uses one macrocell. If the ArrayWidth parameter is
greater than 1, the D flip-flop uses a number of macrocells equal to ArrayWidth.

6.15.7 Digital Multiplexer and Demultiplexer

The PSoC3/5 digital multiplexer is used to select 1 of n inputs and the digital demultiplexer is
used to dynamically route a signal to one of n outputs, under firmware or hardware control. The
most common control method is to connect the mux select signals to a control register using a
bus. The control register is then used to select the input or output for the mux/demux. Another
option is to drive the select signals from hardware control logic to provide dynamic hardware
routing. Tables show the truth tables for a 4-input multiplexer and a 4-output demultiplexer,
respectively.

There are three parameters that control multiplexers and demuxiplexers:

NumInputTerminals determines the number of inputs of a multiplexer. The default is 4. The
acceptable values are 2, 4, 8, and 16 and the corresponding select input widths are 1, 2, 3 and 4.

NumOutputTerminals determines the number of outputs of a de-multiplexer. The default is 4.
The acceptable values are 2, 4, 8, and 16 and the corresponding select input widths are 1, 2, 3
and 4.

TerminalWidth is used to create an array of parallel multiplexers or de-multiplexers when the
inputs and outputs are buses. It defines the bus width of the inputs and outputs and has a
default value of 1. The width of the Select input is not affected by this parameter.

Table 6.21: 4-Input Multiplexer Truth Table

6.15.8 Lookup Tables (LUTs)

PSoC3/5 have a lookup table component that can be used to provide any logic function with as
many as five inputs and eight outputs, inclusive. Such functions are implemented by creating
logic equations that are implemented in the UDB PLDs. The LUT should be used any time that
a particular input combination should generate a specific set of outputs. The LUT allows an
easy method of specifying the input to output relationship without having to generate specific
gate level combinatorial logic. Use of the optional registered output mode allows the generation

242 Mixed-Signal Processing

Table 6.22: 4-Output Demultiplexer Truth Table

of sequential logic. State machines may also be created by registering the outputs and routing
some of the outputs back to the LUT inputs. The LUT can configure all of its outputs for all of
the possible input combinations. Additionally it can be configured to register the output data on
the rising edge of an input clock. Because the LUT is a hardware-only block it does not have any
software configuration options. The default LUT is configured with two inputs and two outputs,
and the ”Register Outputs” option is not selected.

The Clock input of the LUT is only available if the ”Register Outputs” option is selected.
All outputs will be registered on the rising-edge of this clock. Any clock in the system can be
selected however it should be noted that that if any of the outputs go to an I/O they will not
work correctly if the LUT is operating faster than the fastest I/O operating speed of the type of
PSoC used, e.g., 33 MHz in the case of the PSoC3.

6.15.9 Logic High/Low

Logic High/Low components are provided as part of the PSoC3/5 architectures to provide con-
stant digital values used to hard code digital inputs to in part optimize resource usage. The logic
high and logic low functions are used for inputs that remain constant, e.g., for enabling timers,
‘1’ counters, etc. Logic low is defined as ‘0’ and logic High as ‘1’.

6.15.10 Registers

PSoC3/5 provide two types of very special registers, i.e., control and status. The former is used to
control/interact with a module and the latter is used when the firmware needs status information
about a module. Thus the status register allows the firmware to read digital signals and the
control register can be used as a configuration register to allow the firmware114 to specify the
desired behavior of the digital system. The status register has a clock input and eight connections
for status input, status0 − status7. The number of inputs depends on the NumInputs parameter
and the firmware queries the input signals by reading the status register. The firmware sets the
values of the output terminals for the control register by writing to it. The number of outputs
depends on the NumOutputs parameter represents the number of output terminals (specified as
1-8) with a default value of 8.

The Bit0Mode Bit7Mode parameters are definable in PSoC Creator and used to set specific
bits of the Status Register to be held high after being registered, until a read is executed which

114Note: The terms firmware and software are used throughout this text interchangeably and it is left as an
exercise for the reader to determine which if either is more appropriate within a given context.

6.15 Digital to Analog Converters (DACs) 243

also clears all of the registered values. The settings are: Transparent and Sticky (Clear on Read).
By default, a CPU read of this register will transparently read the state of the associated routing
net. This mode can be used for a transient state that is computed and registered internally in
the UDB.

In the Sticky Status, with Clear on Read mode, the associated routing net is sampled on each
cycle of the status and control clock and if the signal is high in a given sample, it is captured in
the status bit and remains high, regardless of the subsequent state of the associated route. When
the CPU firmware reads the status register, the bit is cleared. Clearing of the status register is
independent of the mode and will occur even if the block clock is disabled, it is based on the bus
clock and occurs as part of the read operation.

Example 6.5: Sample C source code for reading/writing from/to the
status/control registers.

include <device.h>
void main()
{
uint8 value;
value = Status_Reg_1_Read();
}

#include <device.h>
void main()
{
uint8 value;
Control_Reg_1_Write(0x3E);
value = Control_Reg_1_Read();
}

6.15.11 PSoC3/5 Counters

PSoC3/5 architecture includes counters and timers which are important in most embedded sys-
tems. These counters are capable of counting up, down or up-and-down and are configurable to
allow them to operate as 8, 16, 24 or 32-bit counters. Options include compare out and capture
input. Additionally, enable and reset inputs can be synchronized with other PSoC components
and the period of a count is programmable.

Counters are particulary useful in situations that require the “counting” of events and if
required capturing the current count value for programmatic use or to compare an output for
hardware synchronization and.or signaling. In the simplest configuration Counters count either
up or down and utilize a single input from either other components internal to PSoC, or from
an I/O pin. A “count event” occurs with each rising edge of the input and continues until the
terminal count is reached at which point the Counter is “reloaded”. In the case of a “down”
counter the terminal count when the Counter reaches zero and subsequently the Counter is
reloaded with the Period value. Counters also have optional “capture” functions that allow the
current count to be captured for comparison, or for software processing.

Up/down counters are similar to up and down counters, but there are some important differ-
ences. One configuration provides a count input and a direction input. When active a 1 on the

244 Mixed-Signal Processing

up and down input forces the counter to increment by one on a rising edge of the count input, a
0 on the up and down input causes the counter to decrement by one on a rising edge of the count
input. The other configuration provides an up count input and a down count input. The counter
will increment or decrement based on which respective count input had a rising edge. This ver-
sion of the counter requires an additional oversample clock input while all other versions do not.
On counter underflow and overflow, flags are set and the period reloaded allowing glitch proof
counter expansion in firmware. During each clock cycle, the optional compare output compares
the current count to the compare value. The compare mode is configurable to all the standard
Boolean comparison modes providing several waveform options. The compare output provides a
logic level that may be routed to I/O pins and to other component inputs.

An optional capture input copies the current count value into a storage location on a rising
edge. Firmware can be used to read the capture value at any time without timing restrictions
as long as the capture FIFO has room. The Capture FIFO allows storage for a maximum of 4
capture values. The enable and reset inputs allow the Counter to be synchronized with other
internal or external hardware. The Counter enable signal may be generated by a software API,
the hardware compare input or the AND of both. For the hardware Enable input the counter
only counts while the Enable input is high. A rising edge on the reset input causes the counter to
reset its count as if the terminal count was reached. If the reset input remains high the counter
will remain in reset. An interrupt can be programmed to be generated under any combination of
the following conditions: when the counter reaches the terminal count, the comparator output is
asserted, or a capture event has occurred.

In the default mode the counter counts the number of rising edge events on the count input.
The counter can also be used as a clock divider by supplying a clock signal to the count input
and using the compare, or terminal count, outputs as the divided clock output. Furthermore, the
counter can be employed as a frequency counter by using a known period on the enable input of
the counter while counting the signal to measure on the count input. After the enable period, the
counter will contain the number of rising edges measured during that period allowing calculation
of the input frequency. The up and down counter may be used to measure complementary events
such as the output of a quadrature decoder to measure a sensors position. A timer component is
is a better choice for timing the length of events, measuring the interval of multiple rising and/or
falling edges, or for multiple capture events. Another option is to use a PWM when multiple
compare outputs are involved because of the support a PWM provides for center alignment,
output kill and deadband115 outputs.

The input and output connections for PSoC3/5’s counter component includes a clock input
which defines the oversample clock rate required to increment on upCnt, or decrement on dwnCnt,
or alternativey cause neither an upCnt or dwnCnt. The count input is the input connection for
the signal to be counted. The counter value is either incremented or decremented depending
on the the assigned direction or pin usage selected for the Clock Mode parameter. The reset
input resets the counter to the starting value. For the “Up Counter” configuration, the starting
value is zero and For “Down Counter”, “Count Input and Direction” and “Clock With UpCnt &
DwnCnt” configurations, the starting value is set to the current period register value.

6.15.11.1 UDB Implementation of a Counter

When the UDB mode is selected for a Counter component:

• The Resolution parameter defines the bit-width resolution of the counter. This value may

115Deadband refers to a signal range for which nothing happens is often employed to prevent oscillation of a
device or “hunting”. A deadband is analogous to mechanical backlash in a gear system.

wka
Note
UDB Definition ? Also please put in context as general-purpose programmable logic

6.15 Digital to Analog Converters (DACs) 245

be set to 8, 16, 24 or 32 for maximum count values of 255, 65535, 16777215, and 4294967295
respectively.,

• The Compare Mode (software option) parameter configures the operation of the Compare
output signal which is the status of a compare between the compare value parameter and
current counter value. It defines the initial setting loaded into the control register which
can be updated at any time to re-configure the compare operation of the counter.

1. Less Than : The Counter value is less than the compare value

2. Less Than Or Equal To: The Counter value is less than or equal to the compare value

3. Equal To: The Counter value is equal to the compare value

4. Greater Than : The Counter value is greater than the compare value

5. Greater Than Or Equal To : The Counter value is greater than or equal to the compare
value

6. Software Controlled : The compare mode can be set during runtime with the SetCom-
pareMode() API call to any one of the 5 compare modes listed above.

• The Clock Mode can be up counter, down counter, count input and direction, and count with
upCnt and dwnCnt. This parameter configures the desired clocking and direction control
method. The value is an enumerated type and can be set to any of the following options:

1. Count Input + Direction : The counter is a bi-directional counter counting up while the
up ndown input is high on each rising edge of the input clock and counting down while
up ndown is low on each rising edge of the input clock.

2. Clock with UpCnt DwnCnt : The counter is a bi-directional counter incrementing the
counter by 1 for each rising edge on the upCnt input and decrementing the counter by
1 for each rising edge of the dwnCnt input.

3. Up Counter : The counter is an up counter only configured to increment on any rising
edge of the input clock signal while the counter is enabled.

4. Down Counter : The counter is a down counter only configured to decrement on any
rising edge of the input clock signal while the counter is enabled.

• The Period parameter defines the max counts value (or rollover point) for the counter. This
parameter defines the initial value loaded into the period register which can be changed at
any time by the software with the Counter WritePeriod() API. The limits of this value are
defined by the Resolution parameter. For 8, 16, 24 and 32-bit Resolution parameters the
maximum value of the Period value is defined as (28)− 1, (216)− 1, (224)− 1, and (232)− 1
or 255, 65535, 16777215, and4294967295 respectively. When Clock Mode is configured as
“Clock with UpCnt & DwnCnt” or “Count Input and Direction” the counter is set to the
period at start and any time the counter overflows at all 0xFF or underflows at all 0x00.

• The Capture Mode parameter configures the implementation of the capture input. This
value is an enumerated type and can be set to any of the following values:

1. None: No capture implemented and the capture input pin is hidden

2. Rising Edge : Capture the counter value on any rising edge of the capture input Falling
Edge: Capture the counter value on any falling edge of the capture input

3. Either Edge : Capture the counter value on any edge of the capture input

4. For the Software Controlled mode, the mode is set at runtime by setting the Compare
Mode bits in the control register Counter CTRL CAPMODE MASK with the enumer-
ated capture mode types defined in the Counter.h header file.

• The Enable Mode parameter configures the enable implementation of the counter. This
value is an enumerated type and can be set to any of the following options:

246 Mixed-Signal Processing

1. Software: The Counter is enabled based on the enable bit of the control register only.

2. Hardware: The Counter is enabled based on the enable input only.

3. Software And Hardware : The Counter is enabled if, and only if, both the input and the
control register bits are active.

• The Reload Counter parameters allow the counter value to be reloaded when one or more of
the following selected events occur. The counter is reloaded with its start value (for an up
counter this is reloaded to a value of Zero, for a down counter this is reloaded to the max
counts or period value). This configuration is ORd with all of the other Reload Counter
parameters to provide the final reload trigger to the counter.

1. On Capture The counter value will be reloaded when a capture event has occurred.
By default this parameter is set to false. This parameter is only shown when UDB is
selected for Implementation.

2. On Compare - The counter value will be reloaded when a compare true event has
occurred. By default this parameter is set to false. This parameter is only shown when
the UDB is selected for Implementation.

3. On Reset - The counter value will be reloaded when a reset event has occurred. By
default this parameter is set to true. This parameter is always shown, but it is only
active when UDB is selected for Implementation.

4. On TC - The counter value will be reloaded when the counter has overflowed (in count
up mode) or underflowed (in count down mode). By default this parameter is set to
true. This parameter is always shown, but it is only active when UDB is selected for
Implementation. When the clock mode is set to “Clock with UpCnt & DwnCnt” this
option reloads to the period value when counter is 0x00 or all 0xFF. This configuration
is OR’d with all of the other reload parameters to provide the final reload trigger to the
counter.

• The Interrupt parameters allow the initial interrupt sources to be configured. These values
are ORd with any of the other Interrupt parameters to give a final group of events that can
trigger an interrupt. The software can re-configure this mode at any time; this parameter
simply defines an initial configuration.

1. On TC -This option is always available; it is set to false by default.

2. On Capture - This option is set to false by default. It is always shown, but it is only
active when UDB is selected for Implementation.

3. On Compare - This option is set to false by default. It is always shown, but it is only
active when UDB is selected for Implementation.

and

• The Compare Value (Software Option) parameter defines the initial value loaded into the
compare register of the counter. This value is used in conjunction with the Compare Mode
parameter selected to define the operation of the compare output. This value can be any
unsigned integer value from 0 to (2Resolution− 1), but it must be less than the max counts
or Period value. If the value is allowed to be larger than max counts, the compare output
would be a constant 0 or 1 value and is therefore not allowed.

6.15.11.2 Clock Selection

The Counter component’s clock/count input can be any signal whose rising edges are to be
counted. When configured to utilize the fixed function timer block in the device, the clock input
to the Counter component has the following restrictions:

6.15 Digital to Analog Converters (DACs) 247

1. The clock input must be from a user-defined clock that is synchronized to the bus clock or
directly from the bus clock via a clock defined using the existing clock feature, and with a
source of the bus clock.

2. If the frequency of the clock matches the bus clock, then the clock must be a direct connection
to the bus clock using the existing clock scheme listed earlier. A user-defined clock with a
frequency that matches the bus clock will generate an error during the build process.

The Timer, Counter and PWM components share a common set of internal requirements
and are therefore implemented in PSoC3/5 as fixed function blocks. When the Fixed Function
implementation of a Counter, Timer or PWM is to be employed, certain limitations are imposed.,
viz., operation is restricted to

• 8 or 16-bits only

• Down count only

• Reload on Reset and

• Terminal Count only

• Interrupt on Terminal Count only

When configured to utilize the fixed function timer block, the clock input to the Counter com-
ponent will have the following restrictions:

1. The clock input must be from a user-defined clock that is synchronized to the bus clock or
directly from the bus clock (via a clock defined using the existing clock feature, and with a
source of the bus clock).

2. If the frequency of the clock matches the bus clock, then the clock must be a direct connection
to the bus clock (again using the existing clock scheme listed earlier). A user-defined clock
with a frequency that matches the bus clock will generate an error during the build process.

Thus the default configuration of the Counter component provides the a very simple counter that
increments a count value on every rising edge of the clock input. The count input is the signal
whose rising edge is counted and the reset input provides a hardware mechanism for resetting the
count value. Since this is configured as an up counter by default, when a reset event occurs on the
reset input, the counter value is reset to zero. Terminal count indicates in real time whether the
counter value is at the terminal count (Maximum value or Period). The period is programmable
to be any value from 1 to (2Resolution) − 1.

The compare output is a real time indicator that the count value compares to the compare
value as defined in the compare configuration. The compare configuration is set in the control
register for the component and can be set by software at any time. The default Maximum Count
(Period) is set to 2Resolution −1 and the compare value is set to 1/2 of that number. The counter
increments on any rising edge clock until it rolls over at the terminal count.

A simple extension of the default configuration provides a clock divider with programmable
duty cycle. If a clock input is applied to the counter clock input with the default period and
compare parameter settings, the compare output will be a 50% duty cycle clock with 1/256th
the frequency of the input clock. This is because the default compare configuration is less than
or equal to which would have a high state on the compare output from 0 to 127 and a low signal
from 128 to 255. Any even number period setting can have a 50% duty cycle if the compare
value or compare configuration is changed. Adding hardware enable functionality to the basic
counter allows a frequency counter function to be implemented. If the Enable input is driven by
a known period signal such as a 1KHz Clock starting with a counter value of 0x00 and an up
counter implementation, the frequency of an input signal is easily determined.

248 Mixed-Signal Processing

6.15.12 Timers

Timers are a form of counter designed to time the interval between hardware events. They are
ubiquitous in embedded systems being used to determine elapsed times between events, periods
of recurrent events, triggers for various types of events, elapsed time since an event or function
last occurred, etc. Timers have some of the same features found in Counters and PWMs. Typical
uses of a PSoC3/5 timers include recording the number of clock cycles between events, measuring
the number of clock cycles between two rising edges generated for example by a tachometer sensor
or the measurement of the period and duty cycle of a PWM input.

For PWM measurement, a PSoC3/5 timer is configured to start on a rising edge, capture the
next falling edge and then capture and stop on the next rising edge. An interrupt on the final
capture signals the CPU that all the captured values are available in the FIFO. The PSoC 3/5
timer can be used as a clock divider by driving a clock into the clock input and using the terminal
count output as the divided clock output. In general, timers share many features with counters
and PWMs. A counter is better used in situations that require the counting of a number of events
but also provides rising edge capture input and compare output. A PWM is more appropriate for
situations requiring multiple compare outputs with control features like center alignment, output
kill and deadband outputs.

PSoC3/5 timers are designed to provide an easy method for timing complex, real time events
with great accuracy and minimal CPU overhead. Timers of this type only count down from
a predefined state defined by the “period value” which is inversely proportional to the timer’s
clock frequency. Therefore the minimal time interval that can be measured is determined by the
timer’s clock.

The maximum timer interval that can be measured is given by:

Tmax = (T imer Clock Frequency)(T imer Resolution) (6.239)

The Timer component provided with PSoC includes a function known as “capture”. This function
is an extremely useful feature in that it makes it possible to “capture” the Timer’s “count” at any
particular moment and save that value in a FIFO116 storage location. The FIFO is capable of
storing four such values after which the data in the FIFO will be overwritten by new “captured”
data.117 This data can be accessed programmatically, that is by the firmware, without destroying
the data read from the FIFO.118

PSoC3/5 timers are specifically designed to provide an easy method of timing complex real
time events accurately with minimal CPU intervention and may be combined with other analog
and digital components to create complex peripherals. PSoC3/5 timers count only in the down
direction starting from the period value and require a single clock input. The input clock period
is the minimum time interval able to be measured. The maximum timer measurement interval is
the input clock period multiplied by the resolution of the timer. The signal interval to be captured
may be routed from an I/O pin, or from other internal component outputs. Once started, the
timer operates continuously and reloads the timer period value on reaching the terminal count.
The timer capture input is the most useful feature of the timer because on a capture event the
current timer count is copied into a storage location. Firmware can then read the capture value at
any time without timing restrictions as long as the capacity of the capture FIFO is not exceeded.

116FIFO = First-In First-Out
117The oldest data is overwritten first and therefore the newest data is returned the next time the FIFO is

“read”.
118T

6.15 Digital to Analog Converters (DACs) 249

However, it is important to not write to the FIFO when it is full to avoid overwriting the
oldest value. If the oldest value is overwritten, the newly captured value will be returned in its
place the next time the FIFO is read.It is up to the software to keep track of the amount of data
that is written to the FIFO, if unwanted overwriting of its data is to be avoided.

The Capture FIFO allows storage of up to 4 capture values. The capture event may be
generated by software, rising or falling edges, or all edges allowing great measurement flexibility.
To further assist in measurement accuracy of fast signals an optional 7-bit counter may be used
to capture every n[2..127] of the configured edge type. The trigger and reset inputs allow the
timer to be synchronized with other internal or external hardware. The optional trigger input is
configurable so that a rising edge, falling edge or all edges to start the timer counting. A rising
edge on the reset input causes the counter to reset its count as if the terminal count was reached.

PSoC3/5 timers support:

• 8-, 16-, 24- or 32-bit resolution,

• implementation as a Fixed Function or UDB device,

• a 4-deep capture FIFO, an optional capture edge counter,

• configurable hardware/software enable

• continuous or single shot running modes.

6.15.12.1 PSoC3/5 Timer I/O Connections

Timer I/O connections for a PSoC3/5 timer include:

• a clock input that determines the operating frequency of the timer,

• a capture input that copies the period counter value to a 4-sample FIFO in the UDB, or
alternatively to a single sample register in the Fixed Function block,

• a capture out output that is an indicator of when a hardware capture has been triggered

• an interrupt output that is a copy of the interrupt source a terminal count (tc) output that
goes high if the current count value is equal to the terminal count (zero)119

• a reset input that resets the period counter, to the period value, and the capture counter.
This reset function is synchronous and requires at least one rising edge of the clock.

• an enable input that enables the period counter to decrement on each rising edge of the
clock. If the enable value is low, then the outputs remain active but the timer does not
change states,

6.15.13 Shift Registers

Shift registers are sequential logic circuits that typically consist of cascaded flip-flops sharing a
common clock with the output of one flip-flop serving as the input for the next flip-flop in the
chain. They are available in a number of configurations as discrete devices, e.g.,

• serial-in, serial-out shift registers120

• serial-in parallel out shift registers

• parallel in serial out shift registers

119The terminal count output is a zero compare of the period counter value, i.e., if the period counter is zero
the output will be high.

120Serial shift registers in their simplest form allow shifting in only one direction, i.e., from the input towards
the output, often referred to as “right-shift” or “left-shift”.

250 Mixed-Signal Processing

• bidirectional (reversible) shift registers121

PSoC3/5’s Shift Register component provides synchronous shifting of data into and out of a
parallel register. The parallel register can be read or written to by the CPU or DMA. The Shift
Register component provides universal functionality similar to standard 74xxx series logic shift
registers including: 74164, 74165, 74166, 74194, 74299, 74595 and 74597.

In most applications the Shift Register is used in conjunction with other components and logic
to create higher level application specific functionality, such as a counter to count the number
of bits shifted. In general usage, the PSoC3/5 shift register functions as a 1-32 bit shift register
that shifts data on the rising edge of the clock input.

The shift direction is configurable and allows a right shift where the MSB shifts in the input
and the LSB shift out the output, or a left shift were the LSB shifts in the input and the MSB
shifts out the output. The reset input (active high) causes the entire shift register contents to be
set to all zeros. The reset input is synchronous to the clock input. The shift register value may
be read by the CPU or DMA at any time.

A rising edge on the optional store input transfers the current shift register value to the FIFO
from where it can later be read by the CPU. The store input is asynchronous to the clock input.
The shift register value may be written by the CPU or DMA at any time. A rising edge on the
optional load input transfers pending FIFO data (already written by CPU or DMA) to the shift
register. The load input is asynchronous to the clock input. The Shift Register component may
generate an interrupt signal on any combination of the following signals; Load, Store or Reset.

6.15.14 Pseudo Random Sequence Generator (PRS)

The PSoC3/5 pseudo random sequence generator122 supported in the PSoC3/5 architecture can
be used to provide a pseudo random bitstream or random bits as required. It utilizes a Galois123

linear feedback shift register124 (LFSR) to produce the bitstream based on maximal code length,
or period. Setting the Enable Input on the PRS allows the PRS to run continuously and it can
be started with a nonzero “seed” value. By implementing the LFSR in hardware it is possible to
generate very fast pseudo-random sequences. GPS, spread spectrum, video games, cryptography,
noise generators, and many other applications make use of such sequences. A simple example of
a Galois PRNG employing D-type flip-flops and exclusive OR (XOR) gates is shown in Figure
6.75. For the implmentation shown the initial state can be arbitrarily chosen except for all zeros
because in that case the system would remain in the “zero” state.

The PRS has the following features:

121Bidirectional shift registers allow shifts in either direction, e.g., left-to-right or right-to-left.
122A pseudo-random number generator does not generate a truly random sequence of values because ultimately

it will repeat the sequence.
123Galois was a nineteenth century French mathematician who made some significant contributions to Group

Theory and to the algebra of polynomials.
124A LFSR is a finite state machine which consists of a combination shift register and XOR function in which

a seed value is placed in a shift register and is shifted one bit to the right and if the bit value shifted from the
rightmost bit position is a 1, then the register is XORed with a mask, otherwise the bit register is shifted one
bit position to the right again and then the process of examining the bit and determining if the register should
be subjected to an XOR with the mask is repeated. This process continues for a long as required to produce
the required pseudo-random bit stream. In some applications single-stepping is employed to produce individual
random bit values as required. The number of bits that are generated before the sequence repeats is referred
to as its “period”. Maximal period LFSRs generate 2n−1 bits before repeating where n is the bit length of the
register. A 32-bit LFSR will produce in excess of 4 billion bits before repeating. Each of the bit positions in the
shift register that have an effect on the next state are referred to as “tap”. The speed of the LFSR in generating
pseudo random bitstreams is largely a result of the minimal use of combinational logic.

wka
Note
Can we just call this LSFR ? I think we can say it was invented by Galois if true but otherwise it implies that this is a class of a LSFR which is probably too complicated for this book

6.15 Digital to Analog Converters (DACs) 251

Figure 6.75: A simple example of a Galois PRNG.

• continuous, or single-step, run modes,

• an enable input for synchronized operation with other components,

• a computed pseudo-random number can be read directly from the LFSR,

• either a standard of custom polynomial/seed value can be employed,

• a serial output bit stream

• a PRS sequence lengths 2-64 bits in length

The repeating sequence of states of an LFSR allows it to be used as a divider, or as a counter
when a non-binary sequence is acceptable. LFSR counters have simpler feedback logic than
natural binary counters or Gray code counters, and therefore can operate at higher clock rates.
However it is necessary to ensure that the LFSR never enters an all-zeros state, for example by
presetting it at start-up to any other state in the sequence. The PRS has an enable input, a
clock input and a serial bitstream output. The clock input is used in continuous mode only and
the output is synchronized and when operated in continuous modes The PRS runs as long as the
Enable input is held high.

6.15.15 Pulse Width Modulator (PWM)

The pulse width modulator is a component that provides user selectable pulse widths for use
as single or continuous hardware timing control signals. The most common use of a PWM is
to generate periodic waveforms with adjustable duty cycles. The PWM also provides optimized
features for power control, motor control, switching regulators and lighting control. It can also
be used as a clock divider by supplying it with a a clock input and using the terminal count, or
a PWM output, as the divided clock output.

While PWMs, Timers and Counters share many capabilities each provides very specific func-
tionality. A Counter component is used in situations that require the counting of a number of
events but also provides rising edge capture input as well as a compare output. A Timer com-
ponent is used in situations focused on timing the length of events, measuring the interval of
multiple rising and/or falling edges, or for multiple capture events. The PSoC3/5 PWM mod-
ule is provided with an Application Programming Interface (API) that allows the designer to
configure the PWM in software.

PSoC3/5’s PWM component provides compare outputs to generate single or continuous tim-
ing and control signals in hardware. The PWM is designed to provide an easy method of gener-
ating complex real time events accurately with minimal CPU intervention. The PWM features
include

• 8 or 16 bit resolution

• Configurable Capture

252 Mixed-Signal Processing

• Configurable Dead-band

• Configurable Hardware/Software Enable

• Configurable Trigger

• Multiple Configurable Kill modes.

and the PWM component may be combined with other analog and digital components to create
custom peripherals. The PWM generates up to 2 left- or right-aligned PWM outputs, or 1 center-
aligned or dual-edged PWM output. The PWM outputs are double buffered to avoid glitches
due to duty-cycle changes while running. Left-aligned PWMs are used for most general purpose
PWM uses. Right-aligned PWMs are typically used only in special cases which require alignment
opposite of left-aligned PWMs. Center-aligned PWMs are most often used in controlling an AC
motor to maintain phase alignment. Dual-edge PWMs are optimized for power conversion where
phase alignment must be adjusted.

The optional deadband provides complementary outputs with adjustable dead time where
both outputs are low between each transition. The complementary outputs and dead time are
most often used to drive power devices in half bridge configurations to avoid shoot-through
currents and the resulting potential for damage. A kill input is also available that, when enabled,
immediately disables the deadband outputs. Three kill modes are available to support multiple
use scenarios. Two hardware dither125 modes are provided to increase PWM flexibility. The first
dither mode increases effective resolution by 2-bits when resources or clock frequency preclude
a standard implementation in the PWM counter. The second dither mode uses a digital input
to select one of the two PWM outputs on a cycle by cycle basis typically used to provide fast
transient response in power converts.

The trigger and reset inputs allow the PWM to be synchronized with other internal, or exter-
nal, hardware. The optional trigger input is configurable so that a rising edge starts the PWM.
A rising edge on the reset input causes the PWM counter to reset its count, as if the terminal
count was reached. The enable input provides hardware enable to gate PWM operation based on
a hardware signal. An interrupt can be programmed to be generated under any combination of
the following conditions; when the PWM reaches the terminal count or when a compare output
goes high.

The clock input defines the signal to count and increments or decrements the counter on each
rising or following edge of the clock. The reset input resets the counter to the period value and
then normal operation continues. The enable input works in conjunction with the software enable
and trigger input, if the latter is enabled.126

The kill input disables the PWM output(s). Several kill modes are supported all of which
rely on this input to implement the final kill of the output signal(s). If deadband is implemented
only the deadband outputs (ph1 and ph2) are disabled and the pwm, pwm1, and pwm2 outputs
are not disabled.127 The cmp sel input selects either pwm1 or pwm2 output as the final output
to the pwm terminal. When the input is 0 (low) the pwm output is pwm1 and when the input
is 1(high) the pwm output is pwm2 as shown in the configuration tool waveform viewer.128

125Dithering is sometimes used as a method for reducing harmonic content and involves frequency modulation
within a narrow band. In some applications dither is used when a PWM is being used to control a mechanical
device, e.g., a valve or actuator , as method of overcoming static friction by introducing some ripple into the
actuating current.

126The enable input will not be visible in PSoC Creator if the EnableMode parameter is set to ”Software Only.”
This input is not available when the Fixed Function PWM implementation is chosen.

127The kill input is not visible if the kill mode parameter in PSoC Creator is set to Disabled. When the Fixed
Function PWM implementation is chosen kill will only kill the deadband outputs if deadband is enabled. It will
not kill the comparator output when deadband is disabled.

128The cmp sel input is visible when the PWM mode parameter is set to Hardware Select.

6.15 Digital to Analog Converters (DACs) 253

The capture input forces the period counter value into the read FIFO. There are several
modes defined for this input in the Capture Mode parameter.129 When the Fixed Function
PWM implementation is chosen the capture input is always rising edge sensitive.

The trigger input enables the operation of the PWM. The functionality of this input is defined
by the Trigger Mode and Run Mode parameters. After the Start API command the PWM is
enabled but the counter does not decrement until the trigger condition has occurred. The trigger
condition is set with the Trigger Mode parameter.130The terminal count output is 1 when the
period counter is equal to zero. In normal operation this output will be 1 for a single cycle where
the counter is reloaded with period. If the PWM is stopped with the period counter equal to
zero then this signal will remain high until the period counter is no longer zero. The interrupt
output is the logical OR of the group of possible interrupt sources. This signal will go high while
any of the enabled interrupt sources remain true.

Figure 6.76: A block diagram of PSoC3/5’s PWM architecture.

The pwm or pwm1 output is the first, or only, pulse width modulated output and is defined
by the PWM Mode, compare modes(s), and compare value(s) as indicated in waveforms in
the Configure dialog in PSoC Creator. When the instance is configured in one output, Dual
Edged, Hardware Select, Center Aligned, or Dither PWM Modes, then the output pwm is visible.
Otherwise the output pwm1 is visible with pwm2 the other pulse width signal. The pwm2 output
is the second pulse width modulated output. The pwm2 output is only visible when the PWM
Mode is set to Two Outputs.

The ph1 and ph2 outputs are the deadband phase outputs of the PWM. In all modes where
only the pwm output is visible these are the phased outputs of the pwm signal which is also
visible. In two output mode these signals are the phased outputs of the pwm1 signal only.131

The bit-width resolution of the period counter is 8-16 bits with 8-bits as the default value.

6.15.16 Precision Illumination Signal Modulation (PrISM)

PSoC3/5 have precision illumination signal modulation (PrISM) components that use linear
feedback shift registers (LFSRs) of the type discussed in section 6.15.14 to generate a pseudo
random bit stream sequence and up to two user-adjustable, pseudo random, pulse densities.

129The capture input is not visible if the Capture Mode parameter is set to None.
130The trigger input is not visible if the trigger mode parameter is set to None.
131Both of these outputs are visible if deadband is enabled in 2-4 or 2-256 modes and are not visible if deadband

is disabled.

254 Mixed-Signal Processing

ranging from 0 to 100. The PrISM runs continuously after started and as long as the Enable
input is held high. Its pseudo random number generator may be started with any valid seed value
excluding 0.

The result is modulation technology that significantly reduces low-frequency flicker and radi-
ated electro-magnetic interference (EMI) which are common problems with high brightness LED
designs. The PrISM is also useful in other applications requiring this capability, such as motor
controls and power supplies.

6.15.17 Quadrature Decoder

PSoC3/5’s Quadrature Decoder (QuadDec) component provides the ability to count transitions
of a pair of digital signals. The signals are typically provided by a speed/position feedback system
mounted on a motor or trackball. The signals typically called A and B are positioned 90 out-of-
phase, which results in a “Gray” code output. A Gray code is a sequence of bits in which only one
bit changes on each count. This is essential to avoid glitches, and it allows detection of direction
and relative position. A third optional signal, named index, is used as a reference to establish an
absolute position once per rotation. Quadrature Decoders are used to decode current position,
velocity and direction of an object (mouse, trackball, robotic axles) inputs. It can also be used
for precision measurement of speed, acceleration and position of a motor’s rotor and with rotary
knobs, to determine user input.

Figure 6.77: Counter resolution for 1x,2x and 4x.

The index input detects a reference position for the quadrature encoder. If an index input is
provided, when inputs A, B, and index are zero, the counter is reset to zero. Additional logic is
typically added to gate the index pulse. Index gating allows the counter to be reset only during
one of many possible rotations, e.g., as in the case of a linear actuator that only resets the counter
when the far limit of travel has been reached. This limit is signaled by a mechanical limit switch
whose output is AND-ed with the Index pulse.

The clock input clock input is required for sampling and glitch filtering of the inputs. If
glitch filtering is used then the filtered outputs will not change until three successive samples of
the input are the same value. For effective glitch filtering, the sample clock period should be

6.15 Digital to Analog Converters (DACs) 255

greater than the maximum time during which glitching is expected to take place. A counter can
be incremented/decremented at a resolution of 1x, 2x, or 4x the frequency of the A and B inputs
as shown in Figure 6.77. The clock input frequency should be greater than, or equal to, 10x the
maximum A or B input frequency.

An interrupt output is provided following the occurrence of one or more of the following
events:

• counter overflow and underflow

• counter reset due to index input (if index is used)

• invalid state transition on the A and B inputs

The counter size is defined in terms of the number of bits. The counter holds the current
position encoded by the quadrature encoder. A counter size should be selected that is large
enough to encode the maximum position in both the positive and negative directions. The 32-bit
counter implements the lower 16 bits in the hardware counter and the upper 16 bits in software
to reduce hardware resource usage. Available settings include: 8, 16, or 32 bits.

A field is provided in PSoC Creator that determines whether or not to apply digital glitch
filtering to all inputs. Filtering can be applied to reduce the probability of having miscounts
due to glitches on the inputs. Some filtering is already done using hysteresis on the GPIOs, but
additional filtering may be required. If selected, filtering is applied to all inputs. The filtered
outputs do not change until three successive samples of the input are the same value. For effective
filtering, the period of the sample clock should be greater than the maximum time during which
glitching is expected to take place.

256 Mixed-Signal Processing

Example 6.7 Sample source code demonstrating the use of the quadrature
decoder and writing the position information to an LCD.

#include <device.h>
void main()
{
uint8 stat;
uint16 count16;
uint8 i;
CYGlobalIntEnable;
LCD_1_Start();
QuadDec_1_Start();
QuadDec_1_SetInterruptMask(QuadDec_1_COUNTER_RESET |
QuadDec_1_INVALID_IN);
stat = QuadDec_1_GetEvents();
LCD_1_Position(1, 0);
LCD_1_PrintInt16(stat);
while(1)
{
CyDelay(150);
count16 = QuadDec_GetCounter();
LCD_1_Position(2, 0);
LCD_1_PrintInt16(count16);
}
}

6.15.18 Cyclic Redundancy Check (CRC)

A Cyclic Redundancy Check or CRC-check as it is commonly referred to is a method of ascertain-
ing the integrity or lack thereof of digital data that is often used when transferring data from one
spatial domain to another. It is equivalent to conducting polynomial long division and retaining
only the remainder. The remainder is then appended to the data and transmitted to another lo-
cation. Upon arrival the division process is repeated and the transmitted remainder is compared
to the locally calculated one. If they do not agree some system return a negative acknowledgment
is sent back to the transmitter if the data usually causing the data to be retransmitted. This
type of check is supported by PSoC3/5 and in the default configuration is used to compute the
CRC value for a serial bit stream of arbitrary length that is sampled on the rising edge of the
data clock. The CRC value is either reset to 0 before starting or can optionally be seeded with
an initial value. Following the computation of the CRC for a particular bitstream, the computed
CRC value is available. CRCs are often used for checking the integrity of stored data as well as
transmitted data.

PSoC3/5’s CRC component has provisions for inputting data and a clock signal with the
result of the check being accessible programmatically.

6.15 Digital to Analog Converters (DACs) 257

Example 6.4 The following C source code illustrates how to computer
a CRC using PSoC3/5’s CRC component.

#include <device.h>
void main()
{

uint32 crc_val = 0;
uint16 crc_part1 = 0;
uint16 crc_part2 = 0;
uint8 i = 0;
uint8 j = 0;

clock_Enable();
di_Enable();
LCD_Start();
CRC_Start();
for(i=0;i<4;i++)
{

for(j=0;j<=13;j+=5)
{

crc_val = CRC_ReadCRC();
crc_part2 = HI16(crc_val);
crc_part1 = LO16(crc_val);

LCD_Position(i, j);
LCD_PrintInt16(crc_part2);

j+=4;
LCD_Position(i, j);
LCD_PrintInt16(crc_part1);
CyDelay(500);

}
}

for(;;){}
}

258 Mixed-Signal Processing

