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ABSTRACT

In this paper, we show that a closed convex set C of a Banach space

is strongly proximinal (proximinal, resp.) in every Banach space

isometrically containing it if and only if C is locally (weakly, resp.)

compact. As a consequence, it is proved that local compactness of

C is also equivalent to that for every Banach space Y isometrically

containing it, the metric projection from Y to C is nonempty set-valued

and upper semi-continuous.
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1. Introduction

A closed subspace X of a real Banach space Y is said to be proximinal in Y if
the metric projection PX : Y → X defined by

PX(y) = {x ∈ X : ‖y−x‖ = inf
u∈X
‖y−u‖ ≡ d(y,X)}, y ∈ Y (1.1)

is nonempty valued at each point y ∈ Y . Clearly, if X is reflexive, then it is
proximinal. But the converse is not true. A Banach space X is said to be
super proximinal if it is proximinal in every Banach space Y isometrically con-
taining X, i.e. TX is proximinal in Y if T is a linear isometry from X into Y . It
is easy to observe that every reflexive space is super proximinal since a reflexive
space is again a reflexive subspace in its super spaces. Pollul [18] first showed that
the converse version is valid (see, also [4]), and Singer [20] gave Pollul’s result a
different proof.

A stronger notion under the name strongly proximinal first appeared in Gode-
froy and Indumathi [14] : A proximinal subspace X of a Banach space Y is said to
be strongly proximinal in Y provided the metric projection PX : Y → X satisfies
that for every ε > 0 and y ∈ Y there is δ > 0 such that

PX(y; δ) ⊂ PX(y)+εBX , (1.2)

where

PX(y; δ) = {u ∈ X : ‖y − u‖ < d(y;X) + δ}.

Since then, properties of strong proximinality have been extensively studied. We
refer the readers to Godefroy and Indumathi [14], Godefroy, Indumathi and Lust-
Piquard [15], Indumathi [16], Dutta and Narayana [9], [10] for strong proximinality
of finite-codimensional subspaces; to Dutta and Shunmugaraj [11], [12] for char-
acterizations of a closed convex set to be strongly proximinal and a quantitative
study of strong proximinality; to Fonf, Lindenstrauss and Veselý [13] for properties
of strong proximinality in polyhedral spaces; to Rao [19] for proximinality questions
for higher-ordered dual spaces; to Bandyopadhyay, Li, Lin, and Narayana [1] for
generalizations and applications of strong proximinality.

Strong proximinality of Banach spaces was further studied in Narayana [17]. A-
mong other things, the author proved that a finite-dimensional subspace X of a
Banach space Y is always strongly proximinal in Y , but every infinite-dimensional
Banach space X can be isometrically embedded as a non-strongly proximinal hy-
perplane in some space Y ; or equivalently, a Banach space X is strong proximinal
in every super space if and only if it is finite dimensional.

The aim of this paper is to give Pollul’s theorem [18] and Narayana’s theorem
[17] mentioned above a localized version, i.e. we show that a closed convex set C
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of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space
isometrically containing it if and only if C is locally (weakly, resp.) compact. Local
compactness of a closed convex set C is also shown to be equivalent to that for
every superspace Y of C, i.e. the space is isometrically containing C, the metric
projection PC from Y to C is nonempty set-valued and upper semi-continuous,
where PC : Y → C is defined by

PC(y) = {x ∈ C : ‖y−x‖ = inf
u∈C
‖y−u‖ ≡ d(y, C)}, y ∈ Y (1.3)

Recall that the metric projection PC from Y to C is said to be upper semi-
continuous(in short u.s.c.) on Y , if for any y ∈ Y and open set U of Y satisfy-
ing PC(y) ⊂ U , there exists some δ > 0 such that PC(z) ⊂ U , for any z ∈ Y
with ‖z − y‖ < δ. PC is said to be upper Hausdorff semi-continuous(in short
u.H.s.c.) on Y , if for any y ∈ Y and ε > 0, there exists some δ > 0 such that
PC(z) ⊂ PC(y) + εBY , for any z ∈ Y with ‖z − y‖ < δ.

2. Super proximinality of closed convex sets

In this section, we shall discuss super proximinality of closed convex sets of Ba-
nach spaces, i.e. proximinality of closed convex sets in their superspaces. A set A
in a Banach space X is said to be locally (weakly, resp.) compact if for every point
a ∈ A there is δ > 0 such that A∩{x ∈ X : ‖x− a‖ ≤ δ} is (weakly, resp.) compact.
We denote by B(a, δ) = {x ∈ X : ‖x − a‖ ≤ δ}, the closed ball centered at a with
radius δ. For a Banach space X, X∗ denotes its dual, and BX (SX , resp.) stands
for its closed unit ball(unit sphere, resp.). Let co(A) (co(A), resp.) be the convex
(closed convex, resp.) hull of a set A ⊂ X.

Proposition 2.1 Let C be a nonempty closed convex set of a Banach space
X. Then the following statements are equivalent.

i) C is locally weakly compact;
ii) C ∩ rBX is weakly compact for all r > 0;
iii) C ∩B(x0, r0) is weakly compact for some x0 ∈ C and r0 > 0;
iv) there is r > infx∈C ‖x‖ such that C ∩ rBX is weakly compact.

Proof. i)=⇒ ii). Given a ∈ C, we denote by Ca = C − a. Locally weak com-
pactness of C implies that Ca ∩ r0BX is weakly compact for some r0 > 0. Note that
for every r > 0 by letting s = r+‖a‖ we have C∩rBX ⊂ Ca∩sBX +a. It suffices to
show Ca ∩ sBX is weakly compact for all s ≥ 0. Nondecreasing monotonicity of sets
A(s) ≡ Ca ∩ sBX in s ∈ R+ allows us to assume s ≥ r0. Given s ≥ r0, convexity of
Ca together with 0 ∈ Ca entails λ[Ca∩sBX ] ⊂ {x ∈ Ca : ‖x‖ ≤ λs} for all λ ∈ [0, 1].
Let λ = r0/s. Then λ[Ca ∩ sBX ] ⊂ {x ∈ Ca : ‖x‖ ≤ r0}. Ca ∩ sBX is necessarily
weakly compact since {x ∈ Ca : ‖x‖ ≤ r0} is weakly compact.
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ii)=⇒ iii). It is trivial.

iii) =⇒ ii). Since C ∩ B(x0, r0) is weakly compact for some x0 ∈ C and r0 > 0,
C ∩B(x0, r0)− x0 = Cx0 ∩ r0BX is again weakly compact, where Cx0 = C − x0. By
a simple argument much like the proof of ”i)=⇒ ii)”, we obtain that Cx0 ∩ sBX is
weakly compact for all s ≥ 0. Clearly, this implies ii).

ii)=⇒ i) and ii)=⇒ iv) are trivial.

It remains to show iv)=⇒ iii). Choose any x0 ∈ C with ‖x0‖ < r and let
δ0 = r − ‖x0‖. Then C ∩ B(x0, δ0) ⊂ C ∩ rBX . Since C ∩ rBX is weakly compact,
we have iv)=⇒ iii).

A subset A of a Banach space X is said to be proximinal if the metric projection
PA : X → A is nonempty set-valued at each point of X.

Lemma 2.2 Let C be a closed convex subset of a Banach space X. If C ∩ rBX

is proximinal in X for every r > 0 then C is proximinal in X.

Proof Given u ∈ X, let α = d(u,C) ≡ infv∈C ‖u − v‖. Then for every
β > α + ‖u‖, we have

PC(u) ≡ {x ∈ C : ‖u− x‖ = d(u,C)} = {x ∈ C ∩ βBX : ‖u− x‖ = d(u,C)}

= {x ∈ C ∩ βBX : ‖u− x‖ = d(u,C ∩ βBX)}.
Since C ∩ βBX is proximinal in X, PC(u) 6= ∅.

We say that a subset A of a Banach space X is isometrically contained in an-
other Banach space Y if there is a linear isometry T : span(A) → Y . In this case,
we call the space Y a superspace of A. A is called proximinal in every superspace
provided for every Banach space Y , if T : span(A) → Y is a linear isometry then
TA is proximinal in Y . In this case, A is also called super proximinal. The following
result is a localized version of Pollul’s theorem [18].

Theorem 2.3 A closed convex subset C of a Banach space is super proximinal
if and only if C is locally weakly compact.

Proof Sufficiency. Suppose that Y is a Banach space and T : X ≡ span(C)→
Y is a linear isometry. Since C is convex and locally weakly compact in X, TC is
also convex and locally weakly compact in Y . Indeed, it immediately follows from
the following fact: for every x ∈ C and r > 0, T (C ∩ B(x, r)) = TC ∩ B(Tx, r).
Applying Proposition 2.1, we obtain that TC ∩ rBY is weakly compact, and which,
in turn, entails that T (C ∩ rBX) = TC ∩ rBY is proximinal in Y for all r > 0. By
Lemma 2.2, TC is proximinal in Y .
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Necessity. Suppose, to the contrary, that C is not locally weakly compact in
X ≡ spanC. Then again by Proposition 2.1 there exists r > 0 such thatD ≡ C∩rBX

is not weakly compact. By James’ theorem there exists a functional x∗ ∈ X∗ with
‖x∗‖ = 1 such that it does not attain the supremum on D. Let

a = sup
x∈D
〈x∗, x〉, b = sup

x∈D
‖x‖, Y = X×R, (2.1)

and define a norm ‖(·, ·)‖ for (x, t) ∈ Y by

‖(x, t)‖ = max{‖x‖, |〈x∗, x〉+t|}. (2.2)

Then, with respect to the norm, Y is a Banach space satisfying

‖(x, 0)‖ = max{‖x‖, |〈x∗, x〉|} = ‖x‖, ∀ x ∈ X. (2.3)

So X is linearly isometric to X × {0} ⊂ Y .
Let J : X → Y be the natural embedding. Then JX is a closed hyperplane of

Y . We want to show that JC is not proximinal in Y . Note JD = JC ∩ rBY and

d(u, JC) = min{d(u, JD), d(u, JC \JD)}, ∀u ∈ Y. (2.4)

Let u = (0, a+ b)(∈ X × R). Since ‖Jx‖ = ‖x‖ > r ≥ b for all x ∈ C \D,

‖u−Jx‖ = ‖(0, a+b)−(x, 0)‖ = max{‖x‖, |a+b−〈x∗, x〉|} ≥ ‖x‖ > r ≥ b. (2.5)

On the other hand, let {xn} ⊂ D be such that 〈x∗, xn〉 → a. Then

d(u, JD) = inf
x∈D
‖(0, a+ b)− (x, 0)‖ = b. (2.6)

Therefore, (2.4), (2.5) and (2.6) together imply that the image PJC(u) of the point
u under the metric project PJC is contained in JD.

We will show that PJD(u) is empty and this results a contradiction. For every
x ∈ D, we have

‖u− Jx‖ = ‖(0, a+ b)− (x, 0)‖ = max{‖x‖, |a+ b− 〈x∗, x〉|}

= a+ b− 〈x∗, x〉 > b = d(u, JD).

Corollary 2.4 A bounded closed convex set C of a Banach space X is super
proximinal if and only if C is weakly compact in X.

Corollary 2.5 (Pollul) A Banach space X is proximinal in all of its superspaces
if and only if it is reflexive.
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The following result follows from Theorem 2.3 and Proposition 2.1. It says that
global super proximinality of a closed convex set is equivalent to local super prox-
iminality.

Corollary 2.6 Let C be a nonempty closed convex set of a Banach space X.
Then the following statements are equivalent.

i) C is super proximinal;
ii) C ∩B(x, r) is super proximinal for some x ∈ C and r > 0;
iii) C ∩ rBX is super proximinal for all r > 0.

An (uniform, resp.) embedding from a subset A of a Banach space X to an-
other Banach space Y is a one-to-one mapping f : A → Y such that both f and
f−1 : f(A) → A are (uniformly, resp.) continuous. In this case, we also say that
f is an (uniform, resp.) isomorphism from A to f(A). An embedding f is said
to be a linear embedding if there is a linear operator (not necessarily continuous)
T : X → Y such that T |A = f . The well-known Davis-Figiel-Johnson-Pelzyński
lemma ([7]) deduces that a closed bounded convex subset K of a Banach space is
weakly compact if and only if it can be linearly (uniformly) embedded into a reflex-
ive space, i.e. there is a reflexive space Y and a linear mapping T : spanK → Y
such that T |K is a uniform embedding (see, for instance, [5] and [6]). The following
theorem says that it is valid again for unbounded sets.

Theorem 2.7 A closed convex set C of a Banach space is super proximinal if
and only if it is linearly isomorphic to a subset of a reflexive space.

Proof Without loss of generality we can assume 0 ∈ C.
Sufficiency. Let X = span(C). Due to Theorem 2.3 and Proposition 2.1, it

suffices to show C ∩ rBX is weakly compact for some r > 0. Let Y be a reflexive
Banach space and T : X → Y be a linear (not necessarily continuous) operator
such that T |C : C → TC is an isomorphism. TC is locally weakly compact s-
ince Y is reflexive. Thus, T−1|TC∩BY

: TC ∩ BY → C is a linear embedding, and
which implies that there is r > 0 such that C ∩ rBX ⊂ T−1(TC ∩BY ). By Lemma
2.4 of [5], T−1(TC∩BY ) is weakly compact. Therefore, C is locally weakly compact.

Necessity. Since C is super proximinal, by Theorem 2.3, it is locally weakly
compact. by Theorem 2.6 of [5], there is a reflexive Banach space Y and a linear
operator T : X → Y such that T |C∩BX

is a uniform isomorphism from C ∩ BX to
a subset A of Y . Note C = ∪nn(C ∩BX) and linearity of T . Clearly, TC is an
isomorphism from C to ∪nnA.

3. On super strong proximinality

In this section, we consider super strong proximinality of closed convex sets. As
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a result, we give Narayana’s theorem a localized version: A closed convex set of a
Banach space is super strongly proximinal if and only if it is locally compact. To
begin with, we restate the notion of strong proximinality of convex sets as follows.

A closed convex set C of a Banach space X is said to be strongly proximinal
provided the metric projection PC : X → C is nonempty set-valued everywhere in
X and satisfies that for every ε > 0 and every x ∈ X there is δ > 0 such that

PC(x, δ) ⊂ PX(x) + εBX , (3.1)

where
PC(x; δ) = {u ∈ C : ‖x− u‖ < d(x;C) + δ}.

Please note the difference between (3.1) and the upper semicontinuity of the
projection PC . C is called strongly proximinal in every superspace provided for
every Banach space Y , if T : span(C)→ Y is a linear isometry then TC is strongly
proximinal in Y . In this case, C is also called super strongly proximinal.

Let X ba a Banach space and Y is a superspace of X. It is known that if BX is
strongly proximinal in Y , then X is strongly proximinal in Y (see, for instance, [2]).
The following lemma is a localized version of this result.

Lemma 3.1 Let C be a closed convex subset of a Banach space X. If C ∩ rBX

is strongly proximinal in X for every r > 0 then C is strongly proximinal in X.

Proof Given y ∈ X, let α = d(y, C). Then for any fixed γ > 0,

α = inf{‖y − x‖ : x ∈ C, ‖y − x‖ ≤ α + γ}.

Now let β = α + γ + ‖y‖. Then PC(y, γ) = PC∩βBX
(y, γ). Since C ∩ βBX

is strongly proximinal in X, there exists γ > δ > 0 such that PC∩βBX
(y, δ) ⊂

PC∩βBX
(y) + εBX . PC(y, δ) = PC∩βBX

(y, δ) and PC(y) = PC∩βBX
(y) together entail

PC(y, δ) ⊂ PC(y) + εBX .

We have the following result whose proof is similar to that of Proposition 2.1.

Proposition 3.2 Let C be a nonempty closed convex set of a Banach space
X. Then the following statements are equivalent.

i) C is locally compact;
ii) C ∩ rBX is compact for all r > 0;
iii) C ∩B(x0, r0) is compact for some x0 ∈ C and r0 > 0;
iv) there is r > infx∈C ‖x‖ such that C ∩ rBX is compact.

The following theorem is a localization of Narayana’s Theorem [17]. The idea of
its proof is based on Narayana’s procedure [17]. We will use a basic sequence to con-
struct a norm on X×R. We refer the readers to [8] for classic renorming techniques.
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Theorem 3.3 Let C be a closed convex subset of a Banach space X. Then C
is super strongly proximinal if and only if C is locally compact.

Proof Sufficiency. Suppose Y is a Banach space isometrically containing
C. Without loss of generality, we can assume that C itself is a subset of Y . By
Proposition 3.2, for every r > 0, C∩rBY is compact. Therefore, C∩rBY is strongly
proximinal in Y . Due to Lemma 3.1, C is strongly proximinal in Y .

Necessity. Suppose that C is super strongly proximinal, and suppose, to the
contrary, that there exists r > 0 such that D ≡ C∩rBX is not compact. By Theorem
2.3, D is weakly compact. Therefore, there exist θ > 0 and {un} ⊂ D, u ∈ D such
that

un
w−→ u; ‖un − u‖ ≥ θ, ∀n ∈ N.

Without loss of generality we assume that u = 0 and D ⊂ BX . Applying Bessaga-
Pelczynski selection principle [3] we can obtain a basic sequence {xn} ⊂ {un}. Let
Z = span{xn} and let {x∗n} ⊂ Z∗ be the corresponding coordinate functionals of
{xn}. Next, let Y = X × R,

e = (0, 1), en = (−xn, 1−
1

n
) ∈ X × R, n ∈ N,

and

A = {e} ∪ {en, n ∈ N}.

Finally, let ‖·‖ be the Minkowski functional generated by co(BX×{0}∪±A). Then
‖ · ‖ is a norm on Y and the norm topology and the product topology of Y = X×R
are compatible and with respect to the norm

BY = co(BX × {0} ∪ ±A).

It is easy to see

BY ∩ (X × {0}) = BX × {0},

or, equivalently,

‖x‖ = ‖(x, 0)‖, ∀x ∈ X.

Let J : X → Y be the natural embedding from X to Y . Then JX = X × {0}
and JC = C × {0}. In the following, we often blur the distinction between X and
JX. Please note that we will finish the proof if we show the following two conditions.

(1) d(e, JC) = 1, PJC(e) = {0};

and

(2) PJC(e, δ) 6⊆ PJC(e) + θ
2
BY for all δ > 0.
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Proof of (1). In fact, (1) is equivalent to BY ∩ (e−JC) = {e}. Let f = (−c, 1) ∈
BY ∩ (e− JC) with c ∈ C. We will show c = 0.

Since BY = co(JBX ∪ ±A), there exists {fn} ⊂ co(JBX ∪ ±A), such that
f = limn→∞ fn. For every n ∈ N, let

fn = (zn, αn) = λnun + µnvn + ηnwn,

where
zn ∈ X,αn ∈ R, un ∈ JBX , vn ∈ co(A), wn ∈ co(−A);

and
λn, µn, ηn ∈ R; 0 ≤ λn, µn, ηn ≤ 1, λn + µn + ηn = 1.

Note
αn ≤ µn ≤ 1; zn → −c, αn → 1.

We have
µn → 1, λn → 0, ηn → 0.

Therefore, vn → f .
Without loss of generality we can assume {fn} ⊂ co(A). Then for every n ∈ N,

there exist
βn ≥ 0, λn,k ≥ 0; with βn +

∑
k≥1

λn,k = 1,

such that
fn = (zn, αn) = βne+

∑
k≥1

λn,kek.

Therefore,

αn = βn +
∑
k≥1

λn,k(1− 1/k).

So that
1− αn =

∑
k≥1

λn,k/k.

Consequently, for every k,
0 ≤ λn,k ≤ k(1− αn).

Since αn → 1, λn,k → 0 for every k ∈ N.

On the other hand, it follows from

zn =
∑
k≥1

λn,k(−xk) =
∑
k≥1

(−λn,k)xk → (−c),

c ∈ Z = span{xn} and

〈x∗k, c〉 = lim
n→∞
〈x∗k,−zn〉 = lim

n→∞
λn,k = 0, for every k ∈ N.
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Hence, c = 0 and f = (0, 1) = e, i.e. BY ∩ (e− JC) = {e}.

Proof of (2). It suffices to prove

PJC(e; 2/n) ≡ {f ∈ C : ‖e− f‖ < 1 + 2/n} 6⊆ PJC(e) + (θ/2)BY = (θ/2)BY

for all n ∈ N. With {xn} as the same as in the proof of (1), we first show (xn, 0) ∈
PJC(e; 2/n).

Since

(1− 1/n)(e− (xn, 0)) = (1− 1/n)(−xn, 0) + (1− 1/n)e+ 2/n(0, 0),

(1− 1/n)(e− (xn, 0)) ∈ BY . Consequently, ‖e− (xn, 0)‖ ≤ (1− 1/n)−1 < (1 + 2/n).

(xn, 0) /∈ θ/2BY follows from ‖(xn, 0)‖ = ‖xn‖ ≥ θ. Therefore, PJC(e; 2/n) 6⊆
PJC(e) + θ/2BY .

Corollary 3.4 A bounded closed convex subset C of a Banach space X is super
strongly proximinal if and only if C is compact in X.

Corollary 3.5 (Narayana) A Banach space X is strongly proximinal in all of
its superspaces if and only if it is finite dimensional.

The following result follows from Theorem 3.3 and Proposition 3.2. It says that
global super strong proximinality of a closed convex set is equivalent to local super
strong proximinality.

Corollary 3.6 Let C be a nonempty closed convex set of a Banach space X.
Then the following statements are equivalent.

i) C is super strongly proximinal;
ii) C ∩B(x, r) is super strongly proximinal for some x ∈ C and r > 0;
iii) C ∩ rBX is super strongly proximinal for all r > 0.

Narayana has showed [17] that if X is an infinite-dimensional Banach space, then
there exists a superspace Y of X such that the metric projection PX is not u.s.c.
We give it a localized version as follows.

Theorem 3.7 Let C be a closed convex subset of a Banach space X. Then for
any superspace Y of C, the projection PC from Y to C is nonempty set-valued and
u.s.c. if and only if C is locally compact.

Proof Sufficiency. Suppose that C is locally compact and Y is a superspace of
C. By theorem 3.3, C is strongly proximinal in Y . Theorefore, the metric projection
PC is u.H.s.c. (for upper Hausdorff semi-continuity). On the other hand, because
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for every y ∈ Y, PC(y) ⊂ C ∩ rBX for sufficiently large r > 0, PC(y) is compact due
to Proposition 3.2. Thus, these imply that PC is u.s.c.

Necessity. Without loss of generality we can assume 0 ∈ C. Let Y = X×∞R and
let J : X → Y be the natural embedding from X to Y . Then JX = X × {0} and
JC = C×{0}. Likewise, in the following we often blur the distinction between C and
JC. By necessity hypothesis, the metric projection PC from Y to C is u.s.c. on Y .
Let e = (0, 1) ∈ Y . Then we will finish the proof by showing that C ∩ BX = PC(e)
is compact.

Suppose that C ∩BX is not compact. We can choose a sequence {xn} ⊂ C ∩BX

which has no convergent subsequence such that ‖xn‖ ≥ θ for all n ∈ N and for

some θ > 0. For every n, let yn = (n+1)·θ
2n
· xn
‖xn‖ . Then θ

2
< ‖yn‖ = (n+1)·θ

2n
≤ θ.

Then {yn} ⊂ C since C is convex with 0 ∈ C. Obviously, {yn} has no convergent

subsequence and yn ∈ PC( (n+1)·θ
2n

e) \ PC( θ
2
e) for every n. Let U ≡ Y \ {yn}. Then

U is an open subset of Y satisfying PC( θ
2
e) ⊂ U and PC( (n+1)·θ

2n
e) 6⊆ U for every n.

This contradicts to the upper semi-continuity of PC at θ
2
e as long as we note that

(n+1)·θ
2n

e→ θ
2
e.

Corollary 3.8 (Narayana) Let X be a Banach space. Then for any superspace
Y of X, the projection from Y to X is nonempty set-valued and u.s.c. if and only
if X is finite dimensional.
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