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Abstract. It is an open problem to characterize those spaces X for which
Ck(X), the space of real-valued continuous functions on X with the compact-

open topology, has various completeness properties, in particular, the Baire
property. We investigate completeness properties of Ck(X) for a class of spaces
X having intermediate topologies between the metric and sequential fans. We

obtain necessary and sufficient conditions on these X for Ck(X) to be Baire,
and show that, except for the sequential fan whose function space is completely
metrizable, these Ck(X), while they can be Baire, are never hereditarily Baire
or Choquet (a property also known as weakly α-favorable).

1. Introduction

It is an unsolved problem to find an internal characterization of those spaces X
for which the space Ck(X) of all continuous real-valued functions on X with the
compact-open topology is a Baire space. Gruenhage and Ma in [GM] show that
for locally compact or first-countable X, Ck(X) is Baire if and only if X has the
Moving Off Property (abbreviated MOP; see the next section for definitions). It
is not known if this characterization is valid for all completely regular spaces X.
Other relevant known facts are that Ck(X) is metrizable iff X is hemicompact and
Ck(X) is completely metrizable iff X is a hemicompact k-space [MN].

If M is the so-called metric fan, then M is metrizable, non-locally compact, and
non-hemicompact, so M does not have the MOP and Ck(M) is not Baire or metriz-
able. On the other hand, if Sω denotes the sequential fan, then Sω is a hemicompact
k-space, hence Ck(Sω) is completely metrizable. In this paper we use filters u on
ω to define spaces Su which are fans whose topologies lie between the metric fan
and the sequential fan. We will show that the MOP also characterizes Baireness
of Ck(Su). We also characterize hemicompactness and the k-space property on Su

by properties on the filter u, and show that if Ck(Su) is Baire, then Ck(Su) must
be metrizable. We also show that for a free filter u that Ck(Su) is never hereditar-
ily Baire or Choquet. Finally we give examples of filters u for which Ck(Su) has
combinations of properties that are not disallowed by our results; in particular, we
prove that if u is a free ultrafilter, then Ck(Su) is Baire (and, by afore-mentioned
results, metrizable, but not hereditarily Baire or Choquet), and if u is isomorphic
to the co-nowhere-dense filter on the rationals, then Ck(Su) is metrizable but not
Baire.

All spaces in this paper are assumed to be completely regular.
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2. Background Definitions and Results

We say that a family A of sets move off a family B of sets if for any B ∈ B there
exists an A ∈ A such that A∩B = ∅. A necessary and sufficient condition on X for
the space Cp(X) of all continuous real-valued functions on X with the topology of
pointwise convergence to be Baire was given independently by E. K. van Douwen
(unpublished; see page 34 in [vD]) and E.G. Pytkeev [Py]. It is equivalent to the
following.

Theorem 2.1. Cp(X) is Baire if and only if any collection F of finite subsets
of X that move off the finite subsets of X contains an infinite strongly discrete
subcollection.

Here, a collection G of subsets of X is discrete if each point of X has a neighbor-
hood meeting at most one element of G, and is strongly discrete if for each G ∈ G
there is an open superset UG of G such that {UG : G ∈ G} is discrete.

As mentioned in the introduction, it is unknown if there is a property on X
which is necessary and sufficient for the compact-open topology Ck(X) to be Baire.
Gruenhage and Ma [GM] conjectured that the above characterization for Cp(X) can
be naturally generalized via the following property: A space X is said to have the
Moving Off Property (MOP) if any collection K of compact subsets of X that move
off the compact subsets of X contains an infinite strongly discrete subcollection.

Conjecture [GM]. Ck(X) is Baire if and only if X has the Moving Off Property.

It is often helpful to use a game characterization of the Baire property when
working with the compact-open topology. Recall that the Choquet game on X,
denoted Ch(X), is a game with two players E and NE.1 On move 0, E chooses a
non-empty open set U0 and NE responds with an non-empty open set V0 ⊆ U0. On
move n > 0, E chooses a non-empty open set Un ⊆ Vn−1 and NE responds with a
non-empty open set Vn ⊆ Un. E wins if

∩
{Ui : i ∈ ω} = ∅. NE wins otherwise.

The space X is said to be Choquet if NE has a winning strategy in Ch(X).2

Theorem 2.2. [Ox] X is Baire if and only if E has no winning strategy in Ch(X).

A game characterization of the Moving Off Property was discussed in [GM].
Consider the game GK,L(X) with two players K and L. On move 0, K chooses
a compact set K0 and L responds with a compact set L0 such that L0 ∩K0 = ∅.
On move n, K plays compact set Kn with no restrictions and L responds with
compact Ln such that Ln ∩Li = ∅ all i < n and Ln ∩Kn = ∅ for all i ≤ n. K wins
if {Li : i ∈ ω} is strongly discrete. L wins otherwise.

Recall that a space X is a q-space if each x ∈ X has a sequence of neighborhoods
U0, U1, . . . such that xn ∈ Un for all n implies that the set {xn}n∈ω has a cluster
point. Clearly every locally compact space and every first countable space is a
q-space.

Theorem 2.3. [GM]

(a) If Ck(X) is Baire, then X has the Moving Off Property.
(b) If X is a q-space which has the Moving Off Property, then X must be locally

compact.

1This game is also referred to as the Banach-Mazur game with players β and α taking on the

roles of E and NE, respectively
2This property is also known as weakly α-favorable.
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(c) If X is a q-space, then Ck(X) is Baire if and only if X has the Moving Off
Property.

(d) If Ck(X) is Choquet then K has a winning strategy in GK,L(X).
(e) A space X has the Moving Off Property if and only if L has no winning

strategy in GK,L(X).

Proving the converse of (a) would establish the Gruenhage-Ma conjecture. It is
also not known if the converse to (d) holds; it does for locally compact spaces, a
result essentially due to D.K. Ma [Ma].

McCoy and Ntantu studied completeness properties on Ck(X) and many results
were obtained. Recall that a space X is said to be hemicompact if there exists a
sequence {Ki : i ∈ ω} which dominates the compact sets; i.e. if K is compact then
there is a j ∈ ω such that K ⊆ Kj .

Theorem 2.4. [MN]

(a) Ck(X) is metrizable if and only if X is hemicompact.
(b) Ck(X) is completely metrizable if and only if X is a hemicompact k-space.

3. Fans

A fan is the set (ω×ω)∪{∞} with a topology where points in ω×ω are isolated
and the subspace topology on {i} × ω ∪ {∞} is a convergent sequence for each
i ∈ ω. If H ⊆ ω then let PH = {(i, j) ∈ ω × ω : i ∈ H} ∪ {∞}. In particular if
n ∈ ω the set P{n} is a homeomorphic to a convergent sequence with its limit point
and is called a blade of the fan. If X is a fan and A ⊆ X we will use the notation
π(A) = {i ∈ ω : there exists j ∈ ω such that (i, j) ∈ A}. So PH = π−1(H) ∪ {∞}.

Classical examples of fans are the metric fan M and the sequential fan Sω. A
basis for ∞ in M are all sets of the form B(n) = {(a, b) ∈ ω×ω : b ≥ n} ∪ {∞} for
n ∈ ω. And a basis for ∞ in Sω are all sets of the form B(f) = {(a, b) ∈ ω × ω :
b ≥ f(a)} ∪ {∞}, where f ∈ ωω. Note that the topology on Sω is finer than M .
We will consider fans with intermediate topologies between M and Sω.

For future reference, we note here that Sω is hemicompact (witnessed by {PF :
F ⊂ ω, |F | < ω}), while M is not. The former is easy to check. For the latter,
suppose K0,K1,K2, . . . are compact subsets of M . For each n, ω × {n} is closed
discrete in M , so we may choose a point an ∈ ω such that (an, n) ̸∈ Kn. Then
{(an, n) : n ∈ ω} ∪ {∞}. is compact and not contained in any Kn.

For each filter u on ω we define Su to be the fan for which

{⟨f,A, n⟩ : f ∈ ωω, n ∈ ω,A ∈ u},
is a local base at ∞ where

⟨f,A, n⟩ = {(a, b) ∈ ω × ω : (a ∈ A ⇒ b ≥ n) ∧ (a ̸∈ A ⇒ b ≥ f(a)}.
We will call such spaces filter-fans. If u is a (free) ultrafilter, then we will refer to
Su as a (resp. free) ultrafilter-fan.

The metric and sequential fans are special cases of filter-fans. If u is the co-finite
filter then Su = M and if u is a fixed ultrafilter then Su = Sω.

We observe that, except for mentioning Sω, we may as well restrict ourselves
to considering free filters. Suppose ∩u = A ̸= ∅. If A is cofinite, then Su is the
metric fan. Suppose A is finite. If A ∈ u, then Su = Sω. If A ̸∈ u, then Su = Sv,
where v is the free filter generated by u ∪ {ω \ A}. Finally, suppose that A is
infinite and co-infinite. If A ∈ u, then Su is homeomorphic to the quotient space of
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the topological sum of the metric fan and Sω which identifies the two non-isolated
points. Finally, if A ̸∈ u, then Su is homeomorphic to the corresponding quotient
space of the topological sum of the metric fan and Sv, where v is isomorphic to the
filter u restricted to ω \A.

In the following section we study the properties of filter fans and their function
spaces. Among other things, we will show that the Gruenhage-Ma conjecture holds
for this class of spaces.

4. The Compact-Open Topology on Fans

We have noted that the metric fan is not hemicompact while Sω is hemicompact,
and that the family K = {PF : F ⊆ ω, |F | < ω} is a dominating family of compact
subsets of Sω. The result below shows that a filter-fan is hemicompact if and
only if it doesn’t contain a copy of the metric fan, and furthermore, if a filter-
fan is hemicompact then the above set K of compact sets is a dominating family.
Hemicompactness of the filter-fan Su is also characterized by an internal property
of the filter u, and by the space ω ∪ {u}, where ω is the set of isolated points and
a neighborhood of u has the form F ∪ {u}, where F ∈ u.

Recall that, given a filter u on ω, a subset A ⊆ ω is called u-positive if A∩F ̸= ∅
for all F ∈ u. Equivalently, A is u-positive if and only if Ac /∈ u.

Proposition 4.1. Let u be a free filter on ω. Then the following are equivalent

(i) Su is hemicompact.
(ii) Su doesn’t contain a copy of the metric fan.
(iii) There is no infinite A ⊆ ω such that A is almost contained in every filter

member; i.e. there is no infinite A ⊆ ω such that |A \ F | < ω for all F ∈ u.
(iv) For all infinite J ⊆ ω there is an infinite subset A ⊆ J such that A is not

u-positive.3

(v) The space ω ∪ {u} has no non-trivial convergent sequences.
(vi) The family {PF : F ⊆ ω finite} is a dominating family of compact sets.
(vii) Ck(Su) is metrizable.

Proof. The equivalence of (iii), (iv) and (v) is clear.
Statement (vi) immediately implies (i). According to Theorem 2.4 statements

(i) and (vii) are equivalent.
We show (i) implies (ii). Suppose Su is hemicompact but contains a copy Y of the

metric fan. Since ∞ ∈ Y it follows that Y is closed and therefore Y is hemicompact,
contrary to the fact that the metric fan is not hemicompact. Therefore (i) implies
(ii).

To show that (ii) implies (iii), suppose that there is an infinite J ⊆ ω such
that J is almost contained in every filter member. Consider the set Y = PJ with
the subspace topology. We claim that Y is a copy of the metric fan. Suppose
⟨f,A, n⟩ ∩ PJ is a basic open set around ∞ in Y . Then J \ A = J ′ is finite. Let
m = max{f(a) : a ∈ J ′} ∪ {n}. Then ⟨f,A, n⟩ ∩ SJ ⊆ {(j, k) ∈ J × ω : k ≥ m}.
It follows that each open set in Y contains a metric-fan open set. The converse is
clear.

It remains to prove (iii) implies (vi). Suppose that {PF : F ⊆ ω finite} is not
a dominating family of compact sets. Let K ⊆ Su be compact but not contained
in any PF . Let J = {i ∈ ω : K ∩ Pi ̸= ∅}. By assumption |J | = ω. We will show

3Equivalently, the co-ideal is tall (see, e.g., [Mat]).



COMPLETENESS PROPERTIES IN THE COMPACT-OPEN TOPOLOGY ON FANS 5

that J is almost contained in every filter element. Suppose there is a filter element
A′ ∈ u such that |J \ A′| = ω. For each i ∈ J let ai ∈ ω such that (i, ai) ∈ K, and
let B = {(i, ai) : i ∈ J \ A′}. Then it is easy to check that ∞ /∈ cl(B). So B is an
infinite closed discrete subset of K, contradicting that K is compact. So J is an
infinite subset of ω which is almost contained in every filter element. �

If the Gruenhage-Ma conjecture fails in the class of all completely regular spaces,
in view of the fact that it does hold for locally compact spaces, it may still be
reasonable to conjecture that it holds more generally for all k-spaces. So we consider
when Su is a k-space. Since compact subsets of Su are countable, hence metrizable,
k-ness of Su is equivalent to it being Fréchet (i.e., x ∈ A \A implies that there is a
sequence of points in A converging to x). It is not hard to see that if Su is Fréchet,
then ω ∪ {u} must be Fréchet as well. It turns out that Fréchetness of ω ∪ {u} is
not sufficient, but a little stronger property is.

Recall that a space X is said to be strongly Fréchet if for any sequence of sets
A0 ⊇ A1 ⊇ A2 · · · and any x ∈

∩
{Ai : i ∈ ω}, there exists a sequence (ai) that

converges to x such that ai ∈ Ai for each i ∈ ω.4

Proposition 4.2. Suppose u is a free filter on ω. Su is Fréchet (or a k-space) if
and only if ω ∪ {u} is strongly Fréchet.

Proof. Suppose Su is Fréchet. We need to check that ω∪{u} is strongly Fréchet at u.
Let A0 ⊇ A1 ⊇ A2 ⊇ · · · be a sequence such that u ∈

∩
{Ai : i ∈ ω}. This implies

that each Ai is u-positive. For each i ∈ ω let Di = Ai×{i}. Let D =
∪
{Di : i ∈ ω}.

Then ∞ ∈ D. Let ((ni,mi)) be a sequence of points in D that converge to ∞. We
may assume mi < mi+1. For each j ∈ ω let aj = min{ni : mi ≥ j}. It is easy to
chech that aj ∈ Aj for each j ∈ ω and (aj) limits to u. Therefore ω∪{u} is strongly
Fréchet.

To show the converse suppose that ω ∪ {u} is strongly Fréchet. Aiming to show
that Su is a Fréchet, suppose D ⊆ Su and ∞ ∈ D. Let A0 = π(D). For all i > 0
let Ai = π(D \ ω× {0, 1, · · · , i− 1}). Then A0, A1, A2, · · · is a decreasing sequence
of u-positive sets. Let (ai) be a sequence that converges to u such that ai ∈ Ai for
each i ∈ ω. For each i ∈ ω let bi ∈ ω such that bi ≥ i and (ai, bi) ∈ D. Then the
sequence ((ai, bi)) converges to ∞, hence Su is Fréchet. �

Proposition 4.1 and Proposition 4.2 immediately give the following corollary.

Corollary 4.3. Suppose u is a free filter on ω. If Su is a k-space then Su is not
hemicompact and Ck(Su) is not metrizable.

Corollary 4.4. Suppose u is a free filter on ω. Then Ck(Su) is not completely
metrizable.

Proof. This follows immediately by Theorem 2.4 and from the fact that Su can not
be both a k-space and hemicompact. �

We will see later that for a filter-fan Su, Ck(Su) can be Baire, but is never
Choquet or hereditarily Baire.

4This property has also been called countably bi-sequential[Mic], and is also equivalent to
Fréchet together with the property α4 as defined by Arhangel’ski[Ar1, Ar2].
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Definition 1. If u is a filter on ω define a game G(u) with two players P1 and P2

as follows. P1 chooses a finite subset A0 ⊆ ω and then P2 chooses a finite subset
B0 ⊆ ω. On play n > 0, P1 choose a finite subset An such that An ∩ Ai = ∅
and An ∩ Bi = ∅ for all i < n, and P2 chooses a finite subset Bn ⊆ ω (with no
restrictions). P1 wins if

∪
{Ai : i ∈ ω} is u-positive. P2 wins otherwise.

Proposition 4.5. Let u be a free filter on ω. Then P2 has no winning strategy in
G(u), and if u is an ultrafilter, then G(u) is undetermined.

Proof. It is easy to show that G(u) is equivalent, in terms of the existence of winning
strategies, to the game G′(u) in which P2 has to play by the same rules as P1, i.e.,
Bn ∩ Ai = ∅ for all i ≤ n, and Bn ∩ Bi = ∅ for all i < n. Then it follows that
neither player can have a winning strategy in which the union of his chosen sets
lies in the filter u; for if he did, his opponent could essentially employ the same
strategy to also force the union of his chosen sets to also be in u, yielding a pair of
disjoint filter members. Also, in either game, P1 or P2 can always guarantee that∪

n∈ω An ∪Bn = ω by adding {n} to his/her play in round n if {n} hasn’t already
been covered.

Now to prove the proposition. By the above comment, a winning strategy for
P2 in G′(u) would give one in which the union of P2’s sets are in u; hence P2 has
no winning strategy in either game. For ultrafilters, u-positive sets are in u, so we
get a similar contradiction if we assume a winning strategy for P1. �

Hemicompactness of the space Su is desirable since it allows the use of a simple
family of dominating compact sets. The following two lemmas will be of use.

Lemma 4.6. Suppose u is a free filter. If P1 has no winning strategy in G(u) then
Su is hemicompact.

Proof. Suppose Su is not hemicompact. We will show that P1 has a winning strat-
egy in G(u). By Proposition 4.1 there is an infinite set A ⊆ ω which is almost
contained in every filter element. If P1 chooses points from A, then P1 will win the
game G(u). �
Lemma 4.7. Suppose u is a free filter on ω. If Su has the Moving Off Property
then Su is hemicompact.

Proof. Suppose Su is not hemicompact. Then by Proposition 4.1, Su contains a
closed copy M of the metric fan. Since the metric fan is a non-locally compact
metric space, it follows that M doesn’t have the Moving Off Property by Theo-
rem 2.3(b). Since the Moving Off Property is hereditary under closed sets it follows
that Su doesn’t have the Moving Off Property. �
Corollary 4.8. Suppose u is a free filter on ω. If Ck(Su) is Baire, then Su is
hemicompact and Ck(Su) is metrizable.

Proof. Suppose Ck(Su) is Baire. It follows from Theorem 2.3(a) that Su has the
Moving Off Property. By Lemma 4.7 Su is hemicompact. Therefore by Theorem 2.4,
Ck(Su) is metrizable. �

The converse of the above corollary is not true, as is shown by Example 5.3 in
the next section.

We now show that there is a strong connection between the games G(u) and
GK,L(Su).
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Proposition 4.9. Suppose u is a free filter.

(i) P1 has a winning strategy in G(u) if and only if L has a winning strategy in
GK,L(Su).

(ii) P2 has a winning strategy in G(u) if and only if K has a winnings strategy in
GK,L(Su).

Proof. We will begin by showing (i). Suppose σ is a winning strategy for P1 in G(u)
but L doesn’t have a winning strategy in GK,L(Su). This implies by Lemma 4.7
that Su is hemicompact. Define a strategy τ for L in GK,L(Su) as follows.

G(u) GK,L(Su)
A0 = σ(∅) K0

B0 = π(K0) L0 = τ(K0) = A1 × {0}
A1 = σ(B0) K1

B1 = π(K1) L1 = τ(K0,K1) = A2 × {1}

A2 = σ(B0, B1)
...

To interpret the chart: A0 is P1’s first play using σ in G(u), and K0 is K’s first
play in GK,L(Su). Then we let B0 = π(K0) be P2’s response, which is finite since
Su is hemicompact, and consider P1’s reply A1 to this play. Then let τ(K0) = L0 =
A1 × {0} be L’s response to K0, etc.

Since σ is a winning strategy for P1 it follows that
∪
{Ai : i ∈ ω} is u-positive.

Hence if F ∈ u then {i ∈ ω : Ai ∩ F ̸= ∅} is infinite. Suppose U = ⟨f, F, n⟩ is a
basic open set around ∞ in Su. By the previous observation {i > n : Ai ∩ F ̸= ∅}
is infinite. Therefore {i : Li ∩ U ̸= ∅} is infinite. It follows that {Li : i ∈ ω} is not
a strongly discrete family. Therefore τ is a winning strategy for L in GK,L(Su), a
contradiction.

On the other hand suppose σ is a winning strategy for L in GK,L(Su). By
Lemma 4.6, Su is hemicompact. Define a strategy τ for P1 in G(u) as follows.

G(u) GK,L(Su)
A0 = τ(∅) = {0} K0 = PB0∪A0

B0 L0 = σ(K0)
A1 = τ(B0) = π(L0) K1 = PB1∪A1

B1 L1 = σ(K0,K1)
A2 = τ(B0, B1) = π(L1) K2 = PB2∪A2

B2

...

That is, start with τ(∅) = {0} = A0, let B0 be P2’s response, then let K0 =
PB0∪A0 be K’s first play in GK,L(Su), and if L responds with L0, let τ(B0) be
A1 = π(L0), etc.

We claim that τ is a winning strategy. Assume towards a contradiction that∪
{Ai : i ∈ ω} is not u-positive. Let F ∈ u such that F ∩Ai = ∅ for all i ∈ ω. Since

∞ /∈ Li for any i ∈ ω, it follows that each Li is a finite subset of ω×ω. Furthermore
Pπ(Li) ∩ Pπ(Lj) = ∅ if i ̸= j. Therefore we can pick a function f : ω → ω that
dominates

∪
{Li : i ∈ ω} in the sense that, for any k ∈ ω, f(k) > max{j : (k, j) ∈∪

i∈ω Li} . Then the open set U = ⟨f, F, 0⟩ is a basic open set around ∞ that
misses each Li. It follows that {Li : i ∈ ω} is a (strongly) discrete family, contrary
to the fact that σ is winning for L. This completes the proof of statement (i).
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We will now show (ii). Suppose K has a winning strategy σ in GK,L(Su). We
may assume ∞ ∈ σ(∅). Since L doesn’t have a winning strategy in GK,L(Su) it
follows that Su has the Moving Off Property and is hemicompact by Lemma 4.7.
Construct a winning strategy τ for P2 in G(u) as follows.

G(u) GK,L(Su)
A0 K0 = σ(∅)

B0 = τ(A0) = π(K0) L0 = A1 × {0}
A1 K1 = σ(K0, L0)

B1 = τ(A0, A1) = σ(K1) A2 × {1}

A2

...

Since σ is a winning strategy for K in GK,L(Su) it follows that there is a basic
open set U = ⟨f, F, k⟩ around ∞ such that U ∩ Li = ∅ for all i ∈ ω. Therefore
{i ∈ ω : F ∩Ai ̸= ∅} ⊆ {0, 1, . . . , k} is finite. So

∪
{Ai : i ∈ ω} is not u-positive.

On the other hand suppose σ is a winning strategy for P2. Since P1 doesn’t
have a winning strategy it follows that Su is hemicompact by Lemma 4.6. Define a
strategy τ for K in GK,L(Su) as follows.

G(u) GK,L(Su)
A0 = π(L0) K0 = τ(∅) = P0

B0 = σ(A0) L0

A1 = π(L1) K1 = τ(L0) = PB0∪A0

B0 = σ(A0, A1) L1

A2 = π(L2) K2 = τ(L0, L1) = PB1∪A1

B1 = σ(A0, A1, A2) L2

... τ(L0, L1, L2) = PB2∪A2

Since σ is a winning strategy for P2 in G(u) it follows that
∪
{Ai : i ∈ ω} is not

u-positive. Let F ∈ u such that F ∩ Ai = ∅ for all i ∈ ω. By similar observations
as above we can find a function f : ω → ω that dominates

∪
{Li : i ∈ ω}. Let

U = ⟨f, F, 0⟩. Then U ∩Li = ∅ for all i ∈ ω. It follows that {Li : i ∈ ω} is strongly
discrete. Hence τ is a winning strategy for K in GK,L(Su). �
Corollary 4.10. Suppose u is a free filter on ω. Then Ck(Su) is not Choquet.

Proof. By Proposition 4.5, P2 does not have a winning strategy in G(u). Conse-
quently by Proposition 4.9, K does not have a winning strategy in GK,L(Su), and
so by Theorem 2.3, Ck(Su) is not Choquet. �

The next corollary, which is immediate from Corollaries 4.8 and 4.10, shows
that Sω is the only space among those we are considering whose function space is
completely metrizable.

Corollary 4.11. Let u be a free filter. If Ck(Su) is Baire, then Ck(Su) is metrizable
but not Choquet.

We proceed to characterize when Ck(Su) is Baire. First, we give a characteriza-
tion on the filter u for P1 not having a winning strategy in G(u). By Lemma 4.6
and Proposition 4.1, we know if P1 has no winning strategy in G(u) then for all
infinite J ⊆ ω there is an infinite subset A ⊆ J such that A is not u-positive. A
strengthening of this will give us our characterization.
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Proposition 4.12. Suppose u is a free filter on ω. The following are equivalent.

(i) P1 has no winning strategy in G(u).
(ii) If F is a collection of finite subsets of ω that moves off the finite sets, then

there exists an infinite F ′ ⊆ F such that
∪
F ′ is not u-positive.

Proof. We will show (ii) → (i) by contrapositive. Suppose σ is a winning strategy
for P1 in G(u). Let {B0, B1, . . .} denote the finite subsets of ω. Let A∅ = σ(∅). For
each i ∈ ω let Ai = σ(A∅, Bi). If As has been defined for all s ∈ ω<ω such that
|s| = n then for each i ∈ ω let:

Asai = σ(A∅, Bs(0), As(0), Bs(1), A(s(0),s(1)), . . . , Bs(i), As�i+1, . . . , Bs(n−1), As, Bi)

This defines a tree whose branches correspond to plays of the game G(u). Note
if s ∈ ωω then

∪
{As�n : n ∈ ω} is u-positive. We will create a collection F of

finite sets which moves off the finite sets such that if F ′ ⊆ F is infinite, then
∪
F ′

contains the union of {As � n : n ∈ ω} for some sequence s ∈ ωω; consequently∪
F ′ is u-positive.
LetK0 = {(0)} and F0 =

∪
{A0}. LetK1 = {(1), (0, 1)} and F1 =

∪
{A1, A(0,1)}.

In general let Kn = {s : s is a finite increasing sequence in ω whose last term is n}
and let Fn =

∪
{As : s ∈ Kn}. Note if s ∈ Kn then since s(n − 1) = n it follows

that As is a play in response to P2 playing Bn, hence As ∩ Bn = ∅. Therefore
Bn ∩ Fn = ∅. Thus F = {Fi : i ∈ ω} moves off the finite sets.

Suppose F ′ ⊆ F is infinite. Then write F ′ = {Fn0 , Fn1 , . . .} where s = (ni)i∈ω is
an increasing sequence. The sequence s � (i+1) ∈ Kni since s � (i+1) is increasing
and s(i) = ni. Hence As�(i+1) ⊆ Fni for all i ∈ ω. Therefore

∪
{As�i : i ∈ ω} ⊆∪

F ′, and consequently
∪
F ′ is u-positive.

Thus we have shown that there exists a collection F of finite sets that move off
the finite sets that has the property that if F ′ ⊆ F is infinite then

∪
F ′ is u-positive.

This is the negation of statement (ii).
On the other hand, to show (i) → (ii), suppose P1 does not have a winning

strategy inG(u), and suppose F is a collection of finite subsets of ω that move off the
finite subsets of ω. Clearly there is a strategy σ for P1 such that P1 always plays a
member of F . Since σ can’t be winning, there must be a sequence F ′ = {F0, F1, . . . }
of members of F corresponding to plays by P1 using σ whose union is not u-
positive. �

Lemma 4.13. Suppose u is a free filter on ω. If P1 has no winning strategy in
G(u), then Ck(Su) is Baire.

Proof. Suppose P1 has no winning strategy in G(u). Then Su is hemicompact
by Lemma 4.6. By Proposition 4.1 we have that K = {PF : F ⊆ ω, |F | < ω}
dominates the compact subsets of Su. We will show that E has no winning strategy
in Ch(Ck(Su)).

Recall that a basic open set in Ck(X) has the form B(f,K, ϵ) = {g ∈ Ck(X) :
|g(x)− f(x)| < ϵ for all x ∈ K}, where f ∈ Ck(X) and K is compact. This is still
a base if the compact sets are restricted to members of a dominating family. So in
the play of the game, we may assume the players are restricted to choosing basic
open sets B(f,K, ϵ) where K ∈ K.

Aiming towards a contradiction, suppose that Ck(Su) is not Baire. Then E
has a winning strategy σ in Ch(Ck(Su)). Let NE choose finite sets G0, G1, . . .
as follows. Suppose A0 = σ(∅) = B(f0, PF0 , ϵ0) is E’s first play in the Choquet
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game. Let G0 be any finite set such that G0 ∩ F0 = ∅ and {0} ⊆ G0 ∪ F0.
Define B0 = B(g0, PF0∪G0 , ϵ0/4) as NE’s first play, where g0 � PF0 = f0 and
g0 � SF c

0
= f0(∞). Then B0 ⊆ A0, and it therefore legal play by NE. Suppose

A0, F0, f0, B0, G0, g0, . . . , An−1, Fn−1, fn−1, Bn−1, Gn−1, gn−1 have been defined as
above, then let

An = σ(A0, B0, . . . , An−1, Bn−1) = B(fn, PF0∪G0∪···∪Fn−1∪Gn−1∪Fn , ϵn)

where Fn is disjoint from all previous Gi’s and Fi’s. Let NE pick a finite set Gn

disjoint from all previous Fi’s and Gi’s such that {0, . . . , n} ⊆
∪
{Gi ∪ Fi : i ≤ n}

and define NE’s play at round n as:

Bn = B(gn, PF0∪G0∪···∪Fn∪Gn , ϵn/4)

where gn � PF0∪G0∪···∪Fn = fn and gn � (PF0∪G0∪···∪Fn)
c
= fn(∞).

We claim that if σ is winning strategy, then
∪
{Fi : i ∈ ω} is u-positive. Suppose∪

{Fi : i ∈ ω} is not u-positive. We will show that there is a continuous function
in

∩
{Bi : i ∈ ω}. Let F =

∪
{Fi : i ∈ ω} and H = ω \ F . Note H ∈ F . Define a

function g : SF → R by g(x) = lim
i→∞

gi(x). We will show that g is continuous.

Let ϵ > 0. Let n ∈ ω such that ϵn < ϵ/3. Then for all x ∈ SH we have

|gn(x)− g(x)| ≤
∞∑
i=0

|gn+i(x)− gn+i+1(x)| <
∞∑
i=0

ϵn/2
i = ϵn < ϵ/3.

Let A =
∪
{Gi : i ≤ n} which is finite. By definition, for all b ∈ H \ A and for all

i ∈ ω we have gn(b, i) = fn(∞). For each a ∈ A let Na ∈ ω such that if i > Na

then |gn(a, i)− gn(∞)| < ϵ/3. Let N = max{Na : a ∈ A}. Then for all h ∈ H and
all i > N it follows that |gn(h, i)− gn(∞)| < ϵ/3. Consequently for all h ∈ H and
all i > N we have

|g(h, i)− g(∞)| ≤ |g(h, i)− gn(h, i)|+ |gn(h, i)− gn(∞)|+ |(gn(∞)− g(∞)| < ϵ

For all i ∈ F we have that g � Pi is continuous, since Pi is compact and the
gi’s uniformly converge to g. For each i ∈ F let ni ∈ ω such that if m > ni then
|g(i,m)−g(∞)| < ϵ. Define a function f : ω → ω by f(i) = ni if i ∈ F and f(i) = 0
otherwise. Then for all x ∈ ⟨f,H,N⟩ we have |g(x)− g(∞)| < ϵ.

It follows that g is continuous and g ∈
∩
{Bi : i ∈ ω}. Therefore σ isn’t a

winning strategy. In summary, if σ is a winning strategy for E then
∪
{Fi : i ∈ ω}

is u-positive. Therefore if σ is a winning strategy there will be a corresponding
winning strategy for P1 in G(u), which is a contradiction. Hence E has no winning
strategy. It follows that Ck(Su) is Baire. �

We can summarize the above results by proving the following equivalent condi-
tions for Ck(Su) being Baire.

Theorem 4.14. Suppose u is a free filter on ω. The following are equivalent.

(i) Su has the Moving Off Property.
(ii) L has no winning strategy in GK,L(Su).
(iii) P1 has no winning strategy in G(u).
(iv) For any collection F of finite subsets of ω that moves off the finite sets, there

exists an infinite F ′ ⊆ F such that
∪

F ′ is not u-positive.
(v) Ck(Su) is Baire.
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Proof. (i) implies (ii) by Theorem 2.3(e). (ii) implies (iii) by Proposition 4.9.
Proposition 4.12 shows (iii) and (iv) are equivalent. Proposition 4.13 shows (iii)
implies (v). And Theorem 2.3 shows (v) implies (i). �

We will now show for a free filter u that Ck(Su) is not hereditarily Baire. Recall
that the Strong Choquet Game on a topological space X, denoted Ch∗(X), is a
game with two player E and NE. On move 0 E chooses a non-empty open set U0

and a point p0 ∈ U0. NE responds with a open set V0 such that p0 ∈ V0 ⊆ U0. On
move n > 0 E chooses a non-empty open set Un ⊆ Vn−1 and a point pn ∈ Un. NE
responds with a open set Vn such that pn ∈ Vn ⊆ Un. E wins if

∩
{Vn : n ∈ ω} ̸=

∅. While the Choquet game Ch(X) characterizes Baireness of X, Debs shows in
[De] the strong Choquet game Ch∗(X) characterizes hereditary Baireness for many
spaces.

Theorem 4.15. [De] Let X be a regular first-countable space in which every closed
set is a Gδ-set. Then the following are equivalent:

(i) X is hereditarily Baire;
(ii) E has no winning strategy in Ch∗(X).

Proposition 4.16. Suppose u is a free filter on ω. Ck(Su) is not hereditarily Baire.

Proof. If Ck(Su) is not Baire, then of course it is not hereditarily so, thus we may
suppose Ck(Su) is Baire. Then by Corollary 4.8, Ck(Su) is metrizable.

We will show that E has a winning strategy in Ch∗(Ck(Su)). By Corollary 4.8
and Proposition 4.1, {PF : |F | < ω} is a dominating family of compact subsets of
Su. Thus if E plays the non-empty open set U and the point f ∈ U , we may assume
U is of the form B(f, PF , ϵ). If NE responds with the basic open set V , then f ∈ V
so we may assume V has the form B(f, PF∪G, δ), where G ∩ F = ∅ and δ ≤ ϵ.

Define the strategy σ for E in Ch∗(X) as follows. Let F0 = {0}, ϵ0 = 1, and

f0(x) =

{
1 : x = (i, j), i ∈ ω, j = 0
0 : otherwise

Let σ(∅) = U0 = B(f0, PF0 , ϵ0⟩). Suppose NE responds with V0 = ⟨f0, PF0∪G0 , δ0⟩.
Let F1 = {min{i ∈ ω : i /∈ F0 ∪G0}}, ϵ1 = δ0/2, and

f1(x) =

 f0(x) : x ∈ PF0∪G0

1 : x = (i, j),x /∈ PF0∪G0 , i ∈ ω, j ≤ 1
0 : otherwise

Let σ(U0, V0) = U1 = B(f1, PF0∪G0∪F1 , ϵ1).
Suppose Ui, Vi, fi, Fi, Gi, ϵi, and δi have been defined for all i ≤ k. Let Fk+1 =

{min{i ∈ ω : i /∈ F0 ∪G0 ∪ · · · ∪ Fk ∪Gk}}, ϵk+1 = δk/2 and

fk+1(x) =

 fk(x) : x ∈ PF0∪G0∪···∪Fk∪Gk

1 : x = (i, j),x /∈ PF0∪G0···∪Fk∪Gk
, i ∈ ω, j ≤ k + 1

0 : otherwise

Let σ(U0, V0, U1, V1, · · · , Uk, Vk) = B(fk+1, PF0∪G0∪···∪Fk∪Gk∪Fk+1
, ϵk+1).

We will show that
∩

Ui = ∅. Let f = lim fi, where the limit is the pointwise
limit. Since lim ϵi = 0 and ω =

∪
(Fi∪Gi) it follows that f is the only candidate for

a point in
∩

Ui. We will show that f is not continuous at ∞. Note that f(∞) = 0.
Let ⟨g,A, n⟩ be a basic open set around ∞. Since u is free, the filter element A

is infinite. Let k ∈ A such that k /∈ F0 ∪G0 ∪ · · · ∪Fn ∪Gn. Then (k, n) ∈ ⟨g,A, n⟩
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and |f(∞)−f(k, n)| = |0−1| = 1. It follows that f is not continuous and
∩

Ui = ∅.
We have constructed a winning strategy σ for E in Ch∗(Ck(Su)). Since Ck(Su) is
metrizable, it follows from Theorem 4.15 that Ck(Su) is not hereditarily Baire. �

5. Examples of specific filter fans

Example 5.1. Let M be the metric fan. Then Ck(M) is neither Baire nor metriz-
able.

Proof. As pointed out earlier, M = Su, where u is the cofinite filter. By Propo-
sition 4.1 it follows that M is not hemicompact. By Corollary 4.8, Ck(M) is not
Baire. �
Example 5.2. Ck(Sω) is completely metrizable.

Proof. By a simple argument Sω is hemicompact. Furthermore it is a k-space since
its the quotient image of countably many convergent sequences. The result follows
from Theorem 2.4. �

Below is an example that shows that the converse of Corollary 4.8 is not true.

Example 5.3. Suppose u is isomorphic to the co-nowhere-dense filter n on the
rationals Q; i.e. A ∈ n iff Q \ A is nowhere-dense. Then Su is hemicompact and
Ck(Su) is metrizable, but Ck(Su) is not Baire.

Proof. It is easy to see that every infinite subset A of Q contains an infinite nowhere-
sense subset. E.g., if no point of A is a limit point of A, then A is nowhere-
dense, while if some point x of A is a limit point of A, then any sequence in A
converging to x is nowhere-dense. Thus Su is hemicompact and Ck(Su) is metrizable
by Proposition 4.1.

It is also easy to see that P1 has a winning strategy in the game G(n): in round
n, he simply has to choose a rational within 1/2n of qn, where Q = {qi}i∈ω. It now
follows from Theorem 4.14((v)⇒(ii)) that Ck(Su) is not Baire. �
Example 5.4. Suppose u is a free ultrafilter on ω. Then Ck(Su) is Baire and
metrizable but not hereditarily Baire or Choquet, hence not completely metrizable.

Proof. By Proposition 4.5, P1 has no winning strategy in G(u), hence Ck(Su) is
Baire by Theorem 4.14((i) ⇐⇒ (iii)). The rest is immediate from Corollary 4.11
and Proposition 4.16. �

Our final example shows that a free filter u need not be an ultrafilter for Ck(Su)
to be Baire.

Example 5.5. There is a free filter v on ω which is not an ultrafilter such that
Ck(Sv) is Baire.

Proof. Let u be a free ultrafilter on ω. Let u2 be the filter on two disjoint copies
of ω such that F ∈ u2 iff F meets each copy in a member of u. Then u2 is not an
ultrafilter because the disjoint copies of ω are both u2-positive. It is easy to see
that if P1 had a winning strategy in G(u2), then he would have one in G(u) too,
a contradiction. (The idea is that if F is a play of P1 in G(u2) using a winning
strategy, then the union of the traces of F on the two copies should win for P1 in
G(u).) So P1 has no winning strategy in G(u2). Hence if v is a filter on ω isomorphic
to u2, then v is not an ultrafilter and Ck(Sv) is Baire by Theorem 4.14. �
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