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Abstract
The electronic band structure of solids contains relevant information about their
behavior, particularly in metals and superconductors. There is a recent thrust that
allows achieving detailed understanding of the band structure in an energy range
just a few meV close to the Fermi level. This is supported by experiments that
provide detailed measurements of the electronic band structure and in some cases
by calculations. Scanning Tunneling Microscopy (STM) stands out because of the
superior resolution in energy, the spatial imaging capabilities and because it provides
empty as well as filled electronic states.
Here, I will address the problem of understanding better superconductivity, for

which I have chosen a few model systems. Superconductivity often emerges close to
vanishing magnetism. However, the emergence of superconductivity often obscures
the processes that destroy magnetism. To understand such processes, I have
first studied the band structure of Ce(Ru0.92Rh0.08)2Si2, with a magnetic ground
state that can be easily modified by an applied magnetic field. My results show
that the Zeeman splitting by the magnetic field eliminates magnetism, without
radically modifying the low energy band structure, which is dominated by Kondo
hybridization between Ce 4f -electrons and conduction electrons.
I have then addressed the band structure of WTe2, finding a band structure

close to the Fermi level that compares very well to density functional calculations.
I have shown that in this case the band structure does not change when applying
a magnetic field. I have furthermore addressed the surface band structure, finding
relevant features that point to the presence of surface bands close to the topologically
nontrivial type II Weyl points of the bulk band structure.
I have then analyzed a superconducting system, Au2Pb, where superconductivity

arises in a phase where a structural distortion has opened a gap in a Dirac cone of
the band structure. I will show that the superconducting density of states is finite
at the Fermi level and explore the possibility that this feature is connected to the
closing of the Dirac cone at the surface. I will discuss possible superconducting
states that might arise in this situation.
Finally, I have studied the superconductor FeSe. I have measured the temperature

and magnetic field dependence of the superconducting gap and the vortex lattice
in a hitherto unexplored field range (up to 15 T). My results show that the
bottom of an electron band lies completely within the superconducting gap. This
peculiar situation produces a hitherto unobserved electron-hole asymmetry in
the superconducting density of states. Furthermore, I find a new charge density
wave at high magnetic fields, whose wavevector varies with field together with the
wavevector of the vortex lattice. This unique effect might be related to the peculiar
low energy band structure of this system.
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Resumen
La estructura de bandas de los sólidos contiene información relevante acerca de
su comportamiento electrónico, particularmente en metales y superconductores.
Últimamente, se han concentrado muchos esfuerzos en la comprensión detallada de
la estructura de bandas en un rango de energía de sólo unos pocos meV alrededor del
nivel de Fermi. Estos esfuerzos se han apoyado en experimentos que proporcionan
medidas detalladas de la estructura de bandas electrónica y, en algunos casos, en
cálculos. La microscopía de efecto túnel (STM) destaca en este aspecto gracias a su
resolución en energía, superior a otras técnicas, su capacidad para obtener imágenes
con resolución espacial y gracias a que es capaz de resolver tanto estados electrónicos
vacíos como ocupados.
En esta tesis, abordaré el problema la superconductividad, tratando de

comprender mejor algunos aspectos relevantes. Para ello, he elegido varios sistemas
modelo. La superconductividad aparece a menudo cerca de fases magnéticas.
Sin embargo, la aparición de la superconductividad suele eclipsar los procesos
que destruyen el magnetismo. Para entender estos procesos, en primer lugar he
estudiado la estructura de bandas en Ce(Ru0.92Rh0.08)2Si2, cuyo estado fundamental
magnético puede ser modificado fácilmente aplicando un campo magnético.
Mis resultados muestran que el desdoblamiento Zeeman inducido por el campo
magnético elimina el magnetismo sin modificar radicalmente la estructura de
bandas a bajas energías, dominada por la hibridación Kondo entre los electrones
4f del Ce y los electrones de conducción.
Posteriormente, he abordado la estructura de bandas en WTe2, determinando

una estructura de bandas cerca del nivel de Fermi consistente con cálculos teóricos.
Se ha demostrado que en este caso la estructura de bandas no cambia al aplicar
campo magnético. También he explorado la estructura de bandas en la superficie,
encontrando características que apuntan a la presencia de bandas de superficie cerca
de los puntos de Weyl de tipo II topológicamente no triviales de la estructura de
bandas del volumen.
Asimismo, he analizado un sistema superconductor, Au2Pb, en el que la

superconductividad aparece en una fase en la que una distorsión estructural ha
abierto un gap en un cono de Dirac de la estructura de bandas. Mostraré que
la densidad de estados superconductora es finita al nivel de Fermi y exploraré la
posibilidad de que este fenómeno esté conectado con el cierre del cono de Dirac en
la superficie, discutiendo posibles estados superconductores que puedan surgir en
esta situación.
Por último, he estudiado el superconductor FeSe. He medido la dependencia del

gap superconductor con la temperatura y el campo magnético, así como la red de
vórtices en un rango de campo magnético no explorado hasta ahora (hasta 15 T).
Mis resultados muestran cómo el fondo de una banda de electrones se encuentra
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completamente dentro del gap superconductor. Esta situación tan particular da
lugar a una asimetría electrón-hueco en la densidad de estados superconductora que
no ha sido observada hasta ahora. Adicionalmente, he encontrado una nueva onda
de densidad de carga a altos campos magnéticos cuyo vector de onda varía con el
campo junto con el vector de onda de la red de vórtices. Este efecto tan peculiar
puede estar relacionado con la estructura de bandas tan singular de este sistema a
bajas energías.
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1
Introduction
Unveiling the electronic properties of quantum materials is essential to walk
towards new applications. In this sense, condensed matter systems provide a unique
framework to explore some collective phenomena which cannot be accessed in any
other way. A great example of these collective phenomena is superconductivity,
where quantum coupling of electrons results in a macroscopic state which displays
zero electric resistance. The dream of room temperature superconductivity that
would turn the industry of applications upside down is still far, but the discovery of
high critical temperature superconductivity in copper based, and more recently, in
iron based compounds, has provided new scenes to explore the microscopic origin
of unconventional superconductivity and eventually find out the recipe for room
temperature superconductors.
In this first chapter, I will present some remarks on conventional and

unconventional superconductivity, as well as a brief introduction to different
techniques used to measure the electronic band structure of different materials that
will be useful to understand the context of the experimental results that will be
discussed throughout this thesis.

1.1 Introduction to superconductivity

In 1908, Heike Kamerlingh Onnes managed to liquefy He at the Leiden Laboratory
having access for the first time to temperatures below 4.2 K, the boiling temperature
of liquid He. This allowed him to explore the behavior of electrical resistivity in
different metallic materials in a temperature range out of the influence of thermal
excitations. In 1911, when probing the electrical resistivity of mercury, one of the
purest compounds that could be obtained at that time, he observed a drop in the
resistivity of several orders of magnitude in a temperature range of a few mK around
4.15 K [1] (see fig. 1.1). The result was so striking that he originally thought that
there was a problem with his experimental instruments, but all of them were working
properly. He had just discovered superconductivity.
Soon after, it was realized that the superconducting state was destroyed above

some critical values of temperature, Tc, magnetic field, Hc, and electrical current
density, Jc, which are different for each superconductor. The evolution of the critical
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1. Introduction

Figure 1.1: Adapted from [1]. Measured resistivity (vertical axis) versus temperature
(horizontal axis) in mercury by H.K. Onnes in 1911 showing the superconducting transition
at 4.2 K.

field with temperature was experimentally determined and it follows a parabolic
shape:

Hc�T � �Hc�0� �1 � �T ~Tc�2� (1.1)

The difference between the free energies of the normal (Gn) and superconducting
states (Gs), which stands for the energy required to destroy superconductivity by
unit of volume, can be written as a function of the critical field:

Gn �Gs � µ0
H2
c �T �
2 , (1.2)

where µ0 is the vacuum magnetic permeability.
For two decades after the discovery of superconductors, it was believed that

they were just characterized by the zero resistance state. It was in 1933 when
W. Meissner and R. Ochsenfeld noticed that magnetic properties of materials were
completely altered in the superconducting state. They observed that when applying
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1.1 Introduction to superconductivity

Perfect conductor Superconductor

T > Tc

T < Tc

Hext Hext

Hext Hext

Figure 1.2: Schematic representation of the behavior of a perfect conductor (left)
and a superconductor (right) under an externally applied magnetic field. Below the
superconducting critical temperature, magnetic field is expelled from the superconductor,
which acts as a perfect diamagnet. Field lines are represented as black arrows.

a magnetic field, as long as it was not higher than Hc, it was expelled from the
inside of the superconducting material [2] (see fig. 1.2). This perfect diamagnetism
in superconductors is known as the Meissner effect, and it is observed regardless of
whether magnetic field is applied before or after the superconducting transition.
The first phenomenological theory to explain the electrodynamic properties of

superconductors and the Meissner effect was proposed in 1935 by the brothers Fritz
and Heinz London [3]. In this picture, the expulsion of magnetic field is produced
by supercurrents flowing in the surface of the superconductor, which screen the
external field. Supercurrents flow in a small region of the surface where magnetic
field is not perfectly expelled, but decays exponentially with the distance inside the
superconductor. The characteristic length of this exponential decay is called London
penetration depth, λL.
This flux expulsion occurs just in type I superconductors. Type II

superconductors, far more numerous, allow the magnetic field to enter the sample
in form of flux quanta. To make this classification of superconductors in two
types and analyze their properties, we need to go beyond London theory and
describe Ginzburg-Landau theory. Most of the known superconducting compounds
are type II and show magnetic behaviors that are essentially different from that
of type I superconductors. The classification of superconducting materials in
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1. Introduction

these two types came thanks to the Ginzburg-Landau theory, which provided
a phenomenological explanation for many experimentally observed macroscopic
properties of the superconducting state.

1.1.1 Ginzburg-Landau theory

In 1950, L.D. Landau and V.L. Ginzburg published a phenomenological quantum
theory describing the thermodynamic properties of the superconducting transition.
This theory is based on the theory of second order phase transitions previously
developed by Landau, which states that a second order phase transition occurs
when there is a gradual change in the state of the system but its symmetry changes
abruptly at the transition temperature. The reduced symmetry most ordered phase
is the low temperature one. To describe the transition, there is an order parameter
in the free energy whose value is zero in the least ordered symmetric phase and
gradually increases with decreasing temperature. In the superconducting transition,
the order parameter introduced by the Ginzburg-Landau theory is a complex wave
function, Ψ � SΨS eiφ, describing the macroscopic properties of the superconducting
condensate. The squared modulus of this wavefunction, SΨS2, provides the density
of superconducting electrons. Ginzburg and Landau built a free energy functional
in terms of the order parameter Ψ to describe the superconducting state:

G � S dÑr � 1
2m�

S�iÒh©� e� ÑA�ΨS2 � αSΨS2 � βSΨS4 � 1
2µ0

�©� ÑA�2
� �©� ÑA� ÑH� , (1.3)

where α and β are phenomenological parameters specific for each material, ÑA is the
vector potential, ÑH is the external magnetic field, and m� and e� are the mass and
the charge of the superconducting electrons, respectively. As I will discuss below,
BCS theory shows that m� and e� are, respectively, two times the mass and two
times the charge of the electron. Ginzburg-Landau differential equations can be
obtained by minimizing the free energy functional with respect to Ψ and ÑA:

1
2m�

�iÒh©� e� ÑA�2Ψ � βSΨS2Ψ � �αΨ (1.4)

�Ñj � ©2 ÑA
µ0

�
ie�Òh
2m�

�Ψ�
©Ψ �Ψ©Ψ�� � e�2

m�
SΨS2 ÑA (1.5)

These two equations describe the evolution of the magnetic field and the order
parameter in a superconductor. In this case, as the whole magnetization of the
system is considered, one can access the inner structure of the superconducting
state finding that there are alternative solutions for the magnetic response of
a superconductor apart from the perfect Meissner effect. In certain situations,
magnetic field can penetrate in a non-uniform way giving rise to an inhomogeneous
distribution of normal and superconducting regions. The Ginzburg-Landau theory
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1.1 Introduction to superconductivity

µ0Hext
ψ0

ξ

λ

B(r)

r

Normal phase Superconducting phase

Figure 1.3: Evolution of the magnetic field and the superconducting order parameter in
an interface between a normal metal and a superconductor showing the two characteristic
lengthscales of Ginzburg-Landau theory, λ and ξ, for a type I superconductor.

describes the spatial variations of the superconducting properties in terms of
two characteristic lengthscales: the penetration depth, λ, which is related to the
London penetration depth and represents the distance over which magnetic field
penetrates in the superconductor, and the coherence length, ξ, which accounts for
the distance over which the order parameter decays with respect to its equilibrium
value (see fig. 1.3). Both length scales present a similar temperature dependence
around the critical temperature, Tc:

λ, ξ �
1�Tc � T �1~2 (1.6)

Therefore, the ratio of these two lengths is temperature independent and it is
defined as the Ginzburg-Landau parameter:

κ � λ~ξ (1.7)

The relation between λ and ξ, and thus, the value of κ, determines the
response of a superconductor to an external magnetic field. A few years after the
publication of the Ginzburg-Landau theory, A.A. Abrikosov predicted a new type
of superconducting system based on the value of the Ginzburg-Landau parameter,
which establishes if the penetration of magnetic field and the consequent creation
of interfaces between normal and superconducting regions is energetically favorable
or not [4]. For ξ à λ (κ ß 1~º2) the field penetration is not energetically favorable,
but for λ à ξ (κ à 1~º2), magnetic field penetration through normal state domains
lowers the total energy of the system. Superconducting materials with perfect
Meissner effect are called type I superconductors, while superconductors in which
magnetic field can penetrate are called type II superconductors.
As I will discuss below, in type II superconductors, the magnetic field penetrates

the superconductor through flux tubes or vortices [4]. The magnetic flux going
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Figure 1.4: Schematic magnetic field versus temperature phase diagram of type I (left)
and type II (right) superconductors.

through a normal phase inside a type II superconductor is an integer number of
times the quantum flux, Φ0:

Φ0 �
h

2e � 2.068 � 10�15 Wb, (1.8)

where h is the Planck constant and e is the electron charge. It is important to note
that there is a term 2e in the denominator due to the formation of Cooper pairs in
the superconducting phase as explained by BCS theory (see section 1.2).
Type I superconductors are perfect diamagnets below the critical field, which is

given by

Hc �
Φ0

4
º

2πλξ
(1.9)

In type II superconductors there are two critical fields, Hc1 and Hc2. Below
Hc1 there is Meissner effect. Above Hc1 magnetic field starts penetrating until
superconductivity is fully destroyed above Hc2. The region between Hc1 and Hc2 in
which there is coexistence between the superconducting state and magnetic field is
known as the mixed state or Shubnikov phase [5]. Ginzburg-Landau theory provides
the following expressions for Hc1 and Hc2:

Hc1 �
Φ0

4πµ0λ2 lnκ (1.10)

Hc2 �
Φ0

2πµ0ξ2 � 1 � T

Tc
(1.11)
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Figure 1.4 shows the temperature dependence of the critical fields for type I and
type II superconductors. Although eq. (1.11) predicts a linear increase of Hc2 as
temperature approaches 0 K, experimental determinations of Hc2�T � are below the
extrapolated linear dependence. Refined calculations show that Hc2�0� is 0.69 times
the value obtained from the Ginzburg-Landau theory [6].

1.1.2 Superconducting vortices

As stated by Abrikosov in 1957, in the mixed state of type II superconductors,
magnetic field penetrates in the form of quantized field lines known as
superconducting vortices. Each vortex consists of a normal state central core in
which the order parameter goes to zero, and circular supercurrents surrounding
this core flowing in the direction that would generate a field that coincides with the
applied magnetic field. Figure 1.5a sketches the evolution of the order parameter,
the magnetic field and the supercurrent density inside a superconducting vortex.
The superconducting density of states goes to zero in the vortex core and recovers
the equilibrium values in a typical distance of the order of ξ. On the other hand,
the magnetic field is maximum in the vortex core and gradually decays in a typical
distance of the order of λ as we move away from the core. Each vortex carries a
quantum of flux and its energy by unit of length is given by

ε �
Φ2

0
4πµ0λ2 ln�λ

ξ
� (1.12)

Since field lines of all the vortices are parallel, the magnetic interaction between
them is repulsive. Abrikosov showed that this interaction results in the arrangement
of the vortices in a triangular lattice with hexagonal symmetry (see fig. 1.5b).
This vortex lattice receive the name of Abrikosov lattice and is the most common
arrangement of vortices in the mixed state of type II superconductors. However,
vortices arranged in a square lattice have also been experimentally observed in some
superconducting compounds [7]. The intervortex distance in a triangular and a
square lattice decreases with applied magnetic field (B) according to the following
expressions:

dQ � �4
3�1~4 �Φ0

B
�1~2

(1.13)

dj � �Φ0

B
�1~2

(1.14)

These equations show that the intervortex distance only depends on the applied
magnetic field. In this picture, the upper critical field Hc2 can also be understood
as the value of the magnetic field at which the distance between two consecutive
vortices becomes smaller than the coherence length, ξ.
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Figure 1.5: (a) Schematic representation of a superconducting vortex showing the
behavior of the order parameter (blue), the magnetic field (orange) and the supercurrent
density (red) inside the vortex core. (b) Top view of a triangular Abrikosov vortex lattice.

There are different vortex imaging techniques that have been developed during
the last decades. Magnetic decoration [8], SQUID-on-tip [9] and magnetic force
microscopy (MFM) [10] are some examples of magnetic field sensitive experiments
that can resolve single vortices over large areas. However, they are only useful at
relatively low magnetic fields, when the distance between vortices is of the order
or below λ. The overlap between vortices at higher magnetic fields results in a
loss of contrast in the images obtained by magnetic field sensitive techniques that
eventually leads to the loss of single vortex resolution. This problem can be solved
by directly measuring the spatial variations of the density of states using scanning
tunneling microscopy (STM) [11, 12]. STM allows for direct observation of vortices
at any field below Hc2 given the fact that the superconducting density of states
varies on a lengthscale of the order of ξ, which only becomes of the order of the
intervortex distance at Hc2. Therefore, STM arises as a very versatile technique
with which one can obtain detailed information of the electronic properties of single
vortex cores while having access to the structural and dynamic properties of the
lattice. Nonetheless, at very low magnetic fields, the intervortex distance becomes
comparable to the rather small STM field of view (�1 µm2, see section 2.3.2), what
eventually hinders the STM observation of very large vortices.

1.2 BCS theory

Although the phenomenological theories introduced above achieved to accurately
describe many properties of superconductors, it was not until 1957 that J. Bardeen,
L.N. Cooper and J.R. Schrieffer came up with a consistent microscopic explanation
for the superconducting state. This microscopic theory is known as the BCS theory
[13, 14].
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Figure 1.6: Schematic representation of the phonon mediated electron-electron pairing.
(a) An electron (blue) moving to the left attracts the ions of the lattice (grey) creating an
accumulation of positive charge (green shadow). (b) A second electron (red) moving to
the right feels the positive charge imbalance and is attracted to it.

Several experimental observations pointed to a very unusual behavior of electrons
in the superconducting phase. For instance, it was observed that the electronic
contribution to the specific heat vanished below the superconducting transition. An
entropy reduction in the superconducting phase was also reported. This suggested
that, since the symmetry of the crystal remains unchanged in the superconducting
transition, there should be a higher electronic order in the superconducting state.
But probably the most determinant hint came from the discovery of the isotope effect
in 1950 [15, 16], which exposed the relevance of the crystal lattice in superconductors.
The isotope effect leads to a difference on the superconducting critical temperature
of the same metal using different isotopes. Thus, even if the lattice symmetry is not
altered by the superconducting transition, it was clear that it should somehow affect
the conduction electrons in the superconducting phase.
It was H. Fröhlich in a previous work also in 1950 who explained the contribution

of the crystal lattice to the superconducting state proposing that the electron-phonon
interaction results in a weak attractive electron-electron interaction [17]. This
process is schematically represented in fig. 1.6. In this picture, a negatively charged
electron moving through the crystal would attract the possitive ions of the lattice
by simple Coulomb interaction, what would create a local accumulation of possitive
charge. A second electron moving by the same region would thus be attracted to
the possitive charge cloud, absorbing the phonon associated to the lattice vibration.
Six years after Fröhlich’s proposal, L.N. Cooper rigorously proved the existence

of bound states close the the Fermi level. These states are formed by pairs of
electrons of opposite momenta and spin when the attractive interaction between
electrons overcomes Coulomb repulsion [18]. The bound electrons are called
Cooper pairs. As the movement of the ions in the lattice is much slower than the
almost instant Coulomb repulsion, the attractive interaction between electrons
is retarded. Therefore, the typical distance between coupled electrons that form
a Cooper pair is of the order of 100 nm as estimated from the Fermi velocity
of electrons, vF � 108 cm/s, and the frequency of the vibrations of the lattice,
ωD � 1013 s�1, where ωD is the Debye frequency. This distance in which the Cooper
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pair wavefunction is coherent is known as the intrinsic coherence length, ξ0, and
represents the size of the Cooper pair.
Bardeen, Cooper and Schrieffer extended Cooper’s approach to the case of many

electrons. BCS theory states that if the effective interaction between electrons is
attractive, the system becomes unstable and the total energy is reduced by the
formation of Cooper pairs. The superconducting ground state is then described by
a single macroscopic wave function that is coherent within a distance of ξ0. Since
ξ0 is much larger than the typical electron-electron distance in a metal, which is
of the order of 1 Å, there is some overlap between Cooper pairs that gives rise to
a quantum coherent state. When Cooper pairs are exposed to an external electric
field, they move through the lattice as a particle with an electric charge of 2e. As all
Cooper pairs form a coherent state, the movement of each of them is determined by
the dynamics of all the other pairs. This way, the zero resistance state is explained
by the fact that the movement of Cooper pairs, as a coherent state, is not affected
by the presence of imperfections or impurities in the lattice, which are responsible
for the finite electric resistance in normal metals.
BCS theory managed to describe the equilibrium superconducting properties

already explained by the phenomenological theories and introduced the concept
of the superconducting gap, ∆. This gap represents an energy region around the
Fermi level in which electronic excitations are not allowed. The BCS spectrum for
the available excited states in a superconductor is given by

Ek �
¼

∆2 � ε2
k, (1.15)

where εk � �Òh2k2~2m��EF is the kinetic energy and ∆, the superconducting gap. As
εk can be arbitrarily small, eq. (1.15) manifests that the minimum energy required to
create an excited state is equal to ∆ (see fig. 1.7a). Therefore, ∆ represents a gap in
the quasiparticle energy spectrum. However, since electrons in the superconducting
ground state are forming Cooper pairs close to the Fermi level, the total minimum
energy needed to break a Cooper pair and create excited states is 2∆. From
eq. (1.15), in the limit εk Q ∆, the normal metal free electron gas picture is recovered.
The total amount of electronic states is conserved in the superconducting

transition:

Nn�εk�dεk � Ns�εk�dEk, (1.16)

where Nn and Ns are the density of states in the normal and superconducting states,
respectively. Combining eq. (1.15) and eq. (1.16) and assuming that Nn�ε� can
be considered constant and equal to Nn�0�, one can obtain the following analytic
expression for the normalized superconducting density of states:

Ns�E�
Nn�0� �

¢̈̈̈¦̈̈̈¤
0 E @ ∆
Eº

E2 �∆2
E A ∆ (1.17)
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Figure 1.7: (a) Schematic representation of the ground state and the first excited states in
a superconductor showing the energy gap, ∆. (b) BCS density of states (blue) normalized
to the normal state density of states (orange).

Figure 1.7b plots the superconducting density of states showing the absence of
states inside the superconducting gap and a divergence at E � ∆ known as the
quasiparticle peak. Besides, BCS theory also unveils a relation between the value
of the superconducting gap at zero temperature and the superconducting critical
temperature for the case of weak electron-phonon interaction:

∆ � 1.76kBTc (1.18)

Figure 1.8a shows the BCS numerical solution for the evolution of the
superconducting gap size with temperature, ∆�T �. The value of ∆ is nearly
constant up to Tc~2. Above that temperature, the presence of thermally excited
quasiparticles gradually diminishes the gap size until it eventually becomes zero at
Tc. Figure 1.8b depicts the temperature evolution of the superconducting density
of states showing the gradual effect of temperature smearing until the curve is
completely flat at T � Tc.
The equivalence between phenomenological Ginzburg-Landau theory and

microscopic BCS theory was established in 1959 by L. Gor’kov [19]. Ginzburg-
Landau equations can be derived from BCS theory in a temperature range close
to the second order transition at Tc identifying the order parameter Ψ with the
macoscopic BCS wavefunction, which is directly related to ∆. Although these
equations would only be strictly valid close to Tc, the results obtained using
Ginzburg-Landau equations are in practice reliable enough in a temperature range
well below Tc. In his work, Gor’kov redefined the two characteristc lengths of the
superconducting state in terms of microscopic parameters:
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Figure 1.8: (a) Superconducting gap size versus temperature obtained numerically from
BCS theory. (b) Normalized tunneling conductance versus bias voltage for different
temperatures featuring the BCS superconducting density of states convoluted with the
derivative of the Fermi function for different temperatures (see section 2.1.3 for more
details). The temperature of each curve is that of the same color point in (a).

ξ�T � � 0.74ξ0

¾
Tc

Tc � T
(1.19)

λ�T � � 1º
2
λL�0�¾ Tc

Tc � T
(1.20)

κ � 0.96λL�0�
ξ0

(1.21)

with λL�0� �»3c2~�8πe2v2
FN�EF ��.

Multiband superconductivity

The Fermi surface of a particular compound can consist of several different bands.
Multiband superconductivity was first proposed by H. Suhl, B.T. Matthias and
L.R. Walker in 1959, who considered a two bands model [20]. Cooper pairs might
form through electron-phonon interaction within the same band (intra-band) or
among different bands (inter-band). If the electron-phonon interaction strength is
very different in different portions of the Fermi surface, one can obtain a situation
where the superconducting gap strongly changes over the Fermi surface. For
example, there might be one Fermi surface sheet with particularly large intra-band
electron-phonon interaction and a gap much larger than in other sheets of the
Fermi surface. This is called multigap superconductivity and eventually leads to
several superconducting gaps, all closing at a single critical temperature (fig. 1.9).
Often, it is sufficient to consider a distribution of the superconducting gaps
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Figure 1.9: Temperature dependence of the superconducting gaps, ∆1 and ∆2, in a two
band superconductor. As interband scattering is nonzero, the band showing a larger gap
induces superconductivity in that with a smaller gap leading to a temperature dependence
of the smaller gap that deviates from BCS behavior following the dashed line.

centered around two gap values. Interactions due to impurity scattering generally
wash out the differences in the superconducting gap over the Fermi surface. The
critical temperature is then generally reduced, up to the level corresponding to an
homogeneous superconducting gap over the Fermi surface.
Therefore, the simple model of a two band superconductor is of great use. In this

model, assuming that the inter-band scattering is completely negligible, one could in
principle consider the superconducting properties of each band separately and define
two superconducting gaps and two critical temperatures. However, electronic bands
in real materials are never completely independent, and even if there might be two
superconducting gap values, above the expected critical temperature of the smallest
gap, the non-zero inter-band scattering makes the Fermi surface shell showing a
bigger gap to induce superconductivity in that with a smaller gap. This deviates
the temperature evolution of the smaller gap from the BCS prediction and Tc ends
up being the same for both bands (see fig. 1.9).

1.3 Unconventional superconducting pairing

In 1986, the discovery of high critical temperature superconductivity in cuprates
by J.G. Bednorz and K. A. Muller [21] completely shocked the condensed matter
community. The electron pairing mechanism in these materials was different
from the phonon-mediated one in conventional superconductors described by
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Figure 1.10: Comparison of different symmetries of the superconducting gap function in
the kx-ky plane. (a) BCS isotropic gap. (b) Gap function with dx2�y2 symmetry as in
cuprates showing four nodes, marked as black dots. (c) Gap function with s�� nodeless
symmetry as in multiband iron based superconductors, where the sign change occurs
between different pockets of the Fermi surface. Green and red colors represent opposite
signs of the gap function.

BCS theory. Some compounds from the cuprates family were reported to display
superconducting critical temperatures well above 100 K [22, 23], what brought a
lot of excitement regarding possible applications. High-Tc superconductivity was
also reported in iron based systems in 2008 [24]. The discovery of high critical
temperature superconductivity in cuprates and iron based superconductors was
fascinating not just because of the much higher values of Tc with respect to
conventional superconductors, but also because in these materials, the formation
of Cooper pairs occurs through repulsive Coulomb interaction. Compounds where
electronic pairing is not described by BCS theory are known as unconventional
superconductors, and a rigorous understanding of their pairing mechanism is still
lacking nowadays.
The s-wave order parameter in BCS theory is completely isotropic for a spherical,

single band Fermi surface. However, conventional s-wave pairing symmetry is
not present in all superconducting materials. Some pairing mechanisms different
from BCS electron-phonon interaction are possible. At the beginning of the
1960’s, the possibility of pure repulsive electron-electron interaction resulting in
a condensate state was studied in the context of 3He superfluidity [25, 26, 27],
where the orbital angular momentum of electrons, L, is different from zero. In
this framework, there is a decoupling of the BCS gap equation into independent
pairing channels for each value of the angular momentum (L � 0,1,2,3...). Even
if the net electron-electron interaction is repulsive, some channels may show
attractive interactions. Unconventional superconductivity arises when at least one
of these channels undergoes a superconducting transition at a finite Tc. Angular
components of the electron-electron interaction were shown to be attractive at large
L by W. Kohn and J. Luttinger in 1965 [28].
To minimize the repulsive Coulomb interaction, the gap function presents sign

changes, which typically involve pair wavefunctions with L x 0 [29]. Unlike retarded
electron-phonon interactions, the time scale of electronic fluctuations is much smaller
and comparable to that of the motion of electrons. Thus, paired electrons use space
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Representation Parity Base functions
A1g S � 0 1
A1u S � 1 ẑkz;knx � kny ; n � 1,3
A2g S � 0 kxky�k2

x � k
2
y�

A2u S � 1 ŷkx � x̂ky;kxky�x̂kx � ŷky�;kxkykz�k2
x � k

2
y�

B1g S � 0 k2
x � k

2
y

B1u S � 1 ẑ�k2
x � k

2
y�kz; x̂knx � ŷkny ; n � 1,3

B2g S � 0 kxky
B2u S � 1 ŷkx � x̂ky;kxky�ŷkx � x̂ky�;kxkykz ẑ
Eg S � 0 kzkx;kzk3

x

kzky;kzk3
y

Eu S � 1 ẑkn�1
x

ẑkn�1
y

; x̂kzknx
ŷkzkny

kxkzky
ŷknx
x̂kny

; n � 0,2

Table 1.1: Irreducible representations of the tetragonal point group D4h.

rather than time to avoid Coulomb repulsion, what results in highly anisotropic gap
functions in momentum space, ∆�Ñk�, that can even feature gap nodes in which the
sign of the gap function changes. For instance, the L � 2 d-wave gap function in
cuprates has nodes for kx � �ky and they show what is called dx2�y2 superconductivity
[30, 31] (see fig. 1.10b).
Actually, cuprates, as well as any superconducting system, have a crystal lattice.

Contrary to 3He, where atomic wavefunctions are described by spherical harmonics,
electrons in a solid are described by Bloch functions. Bloch functions that build the
electronic state at the Fermi surface of a usual metal have the full symmetry of the
crystal lattice. In a superconductor with L x 0, the Cooper pair wavefunction does
however not have the full symmetry of the crystal lattice. Instead, its symmetry
follows one or several of the irreducible representations of the point group. For
instance, in cuprates, the dx2�y2 superconducting state with L � 2 in a crystal
with tetragonal symmetry corresponds to the B1g state of the D4h point group [32]
(see table 1.1). Other states, singlet and triplet, can be discussed in terms of the
corresponding irreducible representation of the point group.
The situation is a bit more complex in multiband systems like iron based

superconductors. There, instead of pair wavefunction with finite angular momenta,
it is assumed that the pair wavefunction changes sign on different sheets of the
Fermi surface. For example, in the two band model shown in fig. 1.10c, the
inner Fermi surface sheet (usually a hole pocket) and the outer sheets (usually
four electron pockets at the corners of the Brillouin zone), carry each isotropic
superconducting pair wavefunctions. However, the relative sign among these
changes. This picture is compatible with magnetically mediated interactions
that form Cooper pairs by coupling electrons in different sheets. In such a
superconducting gap function there are no nodes. This state is called s�� and it is
related to the dx2�y2 state in the sense that there are sign changes of the Cooper
pair wave function. However, contrary to the dx2�y2 state, there are no nodes
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because the gap changes sign in different sheets of the Fermi surface. Figure 1.10
compares the gap functions of isotropic s-wave BCS superconductors, dx2�y2 state
in copper based superconductors, and s�� state in iron based superconductors.
Although some other symmetries involving nodes in the gap function have

been proposed for the superconducting state of iron based superconductors , s��
symmetry is the most accepted scenario for the majority of iron based compounds,
as evidenced, for instance, by the observation of a resonance peak in neutron
scattering experiments which has been associated with the sign difference between
the electron and hole pockets [33]. Superconductivity with s�� symmetry requires
electronic interaction to be stronger between different pockets than within them.
Spin fluctuations have been consensually established as the main mechanism behind
the inter-pocket interaction as the Ñq vector of the spin density wave ground state
coincides with the distance between electron and hole pockets in reciprocal space.
Up to this point, all the superconducting paired states I have described are spin

singlet (S � 0), but there is yet another situation that involves spin triplet (S � 1)
superconducting pairing [34]. Pauli principle forces the Cooper pair wavefunction
to be antisymmetric under momentum and spin exchange. The pair wavefunction
can be split into an orbital and a spin part. To fulfill the anticommuting properties
of fermions, if the paired electrons are in a spin singlet state (antisymmetric), the
orbital part of the wave function must be symmetric with angular momentum
L � 0 (s-wave), 2 (d-wave), etc. Contrarily, spin triplet states (symmetric) are
accompanied by an antysimmetric orbital wavefunction with L � 1 (p-wave),
3 (f -wave), etc. One example of spin triplet superconductivity can be found in
UTe2, which has been recently reported as an unconventional superconductor
where ferromagnetic fluctuations drive the superconducting transition [35, 36].
The irreducible representations of the tetragonal D4h point group for the case of a
triplet state (S � 1) are shown in table 1.1.

1.3.1 Correlations close to quantum criticality

Superconductivity in cuprates, iron based and heavy fermion compounds appears
close to an antiferromagnetic phase upon doping or pressure. Figure 1.11 shows two
typical temperature versus doping or pressure phase diagrams for unconventional
superconductors where a superconducting dome arises neighboring and even
coexisting with antiferromagnetism. Cuprates and iron based superconductors
display very rich phase diagrams, including a pseudogap and a spin glass phase
in cuprates or a nematic phase coupled to a structural transition in iron based
superconductors.
In fig. 1.11 we observe quantum phase transitions in which antiferromagnetism

disappears at zero temperature. To understand the phase diagrams that lead to
the appearance of superconductivity, it is necessary to understand what happens
with the electronic correlations when magnetism disappears. Thus, we decided to
address a system where antiferromagnetism disappears by a control parameter,
without having superconducting correlations that obscure the low energy properties
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Figure 1.11: Schematic temperature versus pressure or doping generic phase diagrams
for unconventional superconductors showing (a) competition between antiferromagnetism
(red) and superconductivity (blue) and (b) coexistence between antiferromagnetic and
superconducting phases.

of the band structure. It is very difficult to find such systems, because magnetism
is generally a robust phenomenon and it is not easy to find an accesible control
parameter to make such an experiment. For this purpose, the best materials are
probably heavy fermion metals. There, f -electrons hybridize with conduction
electrons, transferring their magnetic entropy to the free electron bath at very low
temperatures. When these order magnetically, the energy range required to modify
or eliminate magnetism is drastically reduced with respect to the range required
in other magnetic systems. Thus, quantum critical points are particularly easy to
access. With this in mind, we have studied the phase diagram of a prototypical
antiferromagnetic heavy fermion, where antiferromagnetism disappears into a
paramagnetic phase by applying a magnetic field of several Tesla (see chapter 3).

1.4 Experimental determination of band
structures

In condensed matter systems, the band structure represents the available electronic
states as a function of the energy and the momentum. The shape of the band
structure in different materials is key to understand its electronic behavior.
However, the experimental determination of electronic band structures presents
some challenges, particularly under high magnetic fields or in situations where the
band structure changes with magnetic field.
Angle-resolved photoemission spectroscopy (ARPES) is probably the most

popular technique to measure the surface band structure of crystalline compounds.
It uses the photoelectric effect and record the energy and angle dependence of the
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electrons extracted from the probed material by a beam of photons. Although
ARPES has been proved to be a reliable technique to map the band structure for
occupied states below the Fermi energy, it cannot access unoccupied states above
the Fermi level. Besides, this technique can only be used at zero magnetic field.
The study of quantum oscillations can also be used to measure the band structure

of different materials. When magnetic field is strong enough and the mean free
path of the electrons in the sample is large enough for them to complete full
cyclotron orbits without being scattered, the band structure becomes quantized into
discrete Landau levels. When ramping the magnetic field, this quantization produces
oscillations in macroscopic parameters that depend on the density of states, such as
the electronic resistivity (Shubnikov-de Haas effect) or the magnetic susceptibility
(de Haas-van Alphen effect) [37]. When plotted against one over the magnetic field,
the frequencies of these oscillations are proportional to the size of the maximal areas
of the Fermi surface in momentum space in the plane perpendicular to the direction
of the applied magnetic field. Thus, varying the orientation of the magnetic field with
respect to the sample, the three-dimensional structure of the Fermi surface can be
measured. The main drawback of this technique arises when working with systems
whose band structure presents changes with magnetic field. In this situation, the
changes in the size of the Fermi surface pockets with magnetic field will complicate
the determination of single frequencies and this technique might fail. Furthermore,
the states above and below the Fermi level are not accessible.
STM measures the band structure of different compounds through quasiparticle

interference scattering (QPI). This technique is based on the analysis of the
oscillating patterns on the surface of the sample coming from the scattering of
electrons around impurities or defects. In contrast to ARPES, that can only probe
occupied states, studying the evolution of these QPI patterns as a function of the
energy we can reconstruct the band structure above and below the Fermi energy.
QPI is perfectly compatible with high magnetic fields and it allows to map the
changes in the band structure with magnetic field. Besides, the energy resolution
of QPI measurements is determined by the energy resolution of the STM. In our
case, this energy resolution is of the order of 9 µeV (see section 2.3.3), which is
much higher than that typical ARPES systems. QPI technique is discussed more
in detail in section 2.1.4.
In this thesis, I have used quasiparticle interference to measure the band

structure of three different materials. In chapter 3, I will present QPI measurements
in the different magnetic phases of the antiferromagnetic heavy fermion
Ce(Ru0.92Rh0.08)2Si2. In chapter 4, I will show the bulk band structure measured in
the semimetal WTe2 and discuss its consistence with first principles calculations,
and, in chapter 6, I used this technique to measure the electron and hole pockets of
the iron based superconductor FeSe in a very small energy range around the Fermi
level.
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1.5 Scope

In the following chapters I will present a review of all the technical, experimental
and analytical work I have accomplished during my PhD thesis. The purpose
of this thesis was to build and operate a new experimental setup that enabled
scanning tunneling microscopic measurements at the highest standards of low
temperature and high magnetic field, and take advantage of it to investigate novel
electronic properties and how they are affected by very high magnetic fields in
some interesting materials. In chapter 2, I will present the experimental methods
I developed and used in my PhD. Among these, a STM capable of working at
100 mK and magnetic fields as high as 17 T. I set up, improved and characterized
this system. The system is now fully operational and contains several original
solutions to the technological challenges involved in cooling and applying high
magnetic field to scanning microscopes [38]. I will also describe the software I
developed to be able to carry out the representations and analysis discussed in the
other chapters of this thesis [39].
In chapter 3, I will present a model antiferromagnetic system, Ce(Ru0.92Rh0.08)2Si2,

in which antiferromagnetism disappears with the application of a magnetic field.
I will show in detail how the magnetic field modifies the band structure (obtained
through tunneling conductance and quasiparticle interference experiments) and
discuss the consequences for the magnetic transitions.
In chapter 4, I will present results obtained in a model topological semimetal,

WTe2, where I have characterized the band structure using quasiparticle interference.
I will show detailed aspects of electronic scattering and discuss their relation to the
bulk band structure.
In chapter 5, I will present results obtained in the supposedly simple

superconductor Au2Pb. I will provide measurements of the superconducting gap
and its temperature and magnetic field evolution. The large amount of states
we find at zero bias is very puzzling and show, together with band structure
calculations, the possible unconventional nature of superconductivity in Au2Pb,
related to the topological properties of its band structure.
Finally, in chapter 6, I will discuss the iron based superconductor FeSe. I will

determine its band structure and vortex lattice, reproducing previous results showing
that this material is a two-gap superconductor with a very small Fermi energy and
a strong one-dimensional electronic character. I will study, for the first time, the
properties of the vortex lattice at high magnetic fields, unveiling Zeeman splitting in
the superconducting band structure and the influence of the periodic vortex lattice
in the electronic properties of a novel high field superconducting phase.
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Experimental methods
As obvious as it sounds, the experiment is the biggest deal for any experimental
scientist. Reliable research requires deep knowledge about the specifics of the
experimental setup and its limitations as well as the different measuring techniques
used. Besides, when the researcher him or herself is directly involved in the setting
up process, overcoming any eventual complication becomes far easier.
Scanning tunneling microscopy (STM) is a very powerful well-established

technique in condensed matter physics to investigate the electronic properties of
different materials. However, only a few groups around the world count with low
temperature and high magnetic field STM setups [40]. In this thesis, I modified
previous designs of standard STMs used in the lab to build up and characterize
a small-sized ceramic STM capable to operate at very low temperatures (below
100 mK) and very high magnetic fields (up to 17 T). Such low temperatures are
achieved using a dilution refrigerator, while high magnetic fields are provided by
superconducting magnets. In this chapter, I will review the basic principles behind
dilution cryogenics and scanning tunneling microscopy, going through the different
STM measuring techniques. Furthermore, I will discuss all the efforts to reduce
mechanical and electrical noise in the experiment.
STM control frameworks were also upgraded throughout this thesis implementing

a new USB based digital unit to handle all the electronic signals going to and coming
from the STM. This new device significantly reduced the data acquisition time, but
it forced us to come up with new software to manage the different signals of the
experiment and to process the huge amount of collected data. The fundamentals of
the data acquisition and data analysis software I developed during this thesis will
be also presented in this chapter.

2.1 Scanning tunneling microscopy

The first scanning tunneling microscope (STM) was conceived and developed by
G. Binnig and H. Rohrer at IBM laboratories in Zurich in 1981 [41]. The invention
of the STM was a revolution for the study of materials at the nanoscale, and only five
years after, in 1986, they were awarded the Nobel Prize in Physics. The functioning
of this device relies in the combination of two well-known physical principles: the
quantum tunneling effect between an atomically sharp tip and a flat conducting
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sample through a vacuum barrier, and the piezoelectric effect that provides precise
subnanometric positioning of the tip over the sample. STM allows us to study the
electronic properties down to atomic scale and is highly sensitive to the surface
topography and the shape of electronic wavefunctions.

2.1.1 Principle of operation

In 1961, J. Bardeen came up with a tunneling Hamiltonian to understand planar
junctions experiments applying time dependent perturbation theory [42]. He stated
that the overlap of the wavefunctions of the two electrodes was responsible for
electrons tunneling from one electrode to the other. Soon after the STM was
invented, J. Tersoff and D.R. Hamann applied Bardeen’s theory to STM [43, 44]
using the typical distances found in experiments. Assuming a weak interaction
between the tip and the sample, they treated Bardeen’s Hamiltonian in first order
perturbation theory. In this formalism, considering an elastic tunneling regime where
the energy is conserved, the expressions for the current flowing between the two
electrodes are the following:

Isample�tip �
4πeÓh S

ª

�ª

SM S2Ns�Es�Nt�Et��f�Es��1 � f�Et���dE
Itip�sample �

4πeÓh S
ª

�ª

SM S2Ns�Es�Nt�Et��f�Et��1 � f�Es���dE, (2.1)

where e is the electron charge, Óh the Plank constant, Ns and Nt the densities of states
of sample and tip, respectively, and f�E,T � the Fermi distribution function1 for an
energy, E, and a temperature, T . SM S2 stands for the tunneling matrix element or
transmission probability. From eq. (2.1), the current is given by

I � Isample�tip � Itip�sample �

�
4πeÓh S

ª

�ª

SM S2Ns�Es�Nt�Et��f�Es��1 � f�Et�� � f�Et��1 � f�Es���dE, (2.2)

where Es and Et are the energies of the states at the sample and tip, respectively.
When applying a voltage, V, between the two electrodes, the Fermi levels of tip and
sample are shifted by eV (see fig. 2.1). Thus, Es � E � eV and Et � E, and eq. (2.2)
can be written as

I �
4πeÓh S

ª

�ª

SM S2Ns�E � eV �Nt�E��f�E � eV � � f�E��dE (2.3)

For simplicity, the Fermi function can be approached by a Heaviside step function,
f�E� � Θ��E�. This approximation is valid for temperatures at which kBT is well

1Fermi distribution function: f�E,T � � �1 � exp�E�EF

kBT
���1, where EF is the Fermi energy and

kB is the Boltzmann constant.
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Figure 2.1: Schematic diagram of the tunneling process between the tip and the sample
thorough a vacuum barrier of width z. When a positive voltage, V , is applied to the sample,
electrons tunnel from occupied states in the tip (Ψt) to empty states in the sample (Ψs).
φt and φs stand for the work function of the tip and sample, respectively.

below the energies where we observe changes in the densities of states. For instance,
in a usual metal, the density of states is flat at energies below some meV, so at
4.2 K (kBT � 0.36 meV) we can apply the Heaviside step function substitution in
the different expressions. However, in a heavy fermion metal or in a semimetal, the
density of states presents lots of variations inside an energy range of a few meV
around the Fermi level. Thus, one has to cool down to 100 mK to be able to use
the Heaviside function approximation. Making this assumption, the limits in the
integral in eq. (2.3) are truncated:

I �
4πeÓh S

eV

0
SM S2Ns�E � eV �Nt�E�dE (2.4)

We can model a one-dimensional energy barrier of width z and height φ, being φ
the average workfunction of tip and sample (see fig. 2.1). In the limit eV P φ we
can assume that the matrix element SM S2 does not depend on energy. Hence, we can
write

SM S2 � exp��eº2mφÓh z�, (2.5)

where z would be the tip-sample distance andm is the mass of the tunneling electron.
Using this expression for the matrix element, eq. (2.4) turns into:

I � c e
�
z
zφ S

eV

0
Ns�E � eV �Nt�E�dE, (2.6)
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Figure 2.2: (a) Sketch of the piezotube where the STM tip is mounted. Electrodes +X,
�X, +Y and �Y for the in-plane movement, and Z for the vertical movement are depicted
in dark grey over the ceramic material (light grey). Vertical and lateral movements of
the tip are illustrated in blue and magenta, respectively. (b) Cross-section view of the
piezotube showing the electrodes configuration.

where c is a proportionality constant that absorbs all prior constants, and we define
zφ �

Óh~º8mº
φ

as a parameter dependent on the average workfunction, φ. The tunneling
current decays exponentially with the distance, and thus, it is highly sensitive to
small variations in the separation between tip and sample, which is key in the huge
resolution of the STM in the vertical direction. Introducing typical values for the
workfunction in metals of around 5 eV in eq. (2.6), we obtain that the tunneling
current increases by one order of magnitude when the tip-sample distance is reduced
in 1 Å.
The piezoelectric effect allows to move the tip over the sample with subnanometric

precision. This effect is based on the ability of piezoelectric materials to deform when
a voltage difference is applied to them. Typical piezoelectric deformations in STM
are of the order of some nm/V. The configuration we use is a piezoceramic tube.
The tip is attached to one of the edges of the piezotube while the other edge is fixed
to the STM body. The outer electrode of the piezotube is divided into four sections
that are responsible for the lateral movement of the tip over the sample. The inner
electrode accounts for the vertical displacement (see fig. 2.2). This way, applying
voltage differences to the different electrodes we can reproducibly position the tip
over the sample in the subnanometric scale.
Combining the tunneling effect and the piezoelectric effect, topographic images

of the sample mapping the electronic density over the surface can be taken. These
topography records can be obtained using two different modes of operation: the
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Figure 2.3: Schematic representation of the STM control unit. DAC modules of the
electronics send the bias voltage signal to the sample as well as amplified signals to the
piezos. The tunneling current is read by an ADC module. All operations are governed by
the data acquisition software.

constant height and the constant current modes. For the first one, a constant
voltage is applied to the Z electrode of the piezotube as it scans along x and y
directions. The value of the tunneling current as a function of the position, I�x, y�,
will change following the spatial variations in the density of states of the sample, Ns,
which occur at atomic scale, and provide, in a first approximation, the atomically
resolved corrugation or topography of the surface. However, this mode of operation
is restricted to very flat areas where the size of the surface corrugation should be
far below the tip-sample distance at the beginning of the experiment. On the other
hand, the constant current mode sets a constant setpoint value for the tunneling
current and uses a PID feedback loop to adjust the voltage sent to the Z electrode
to keep the current constant at the setpoint value during the scan. In this case, from
the voltage signal sent to piezo2 Z as a function of the position, VZ�x, y�, one can
reconstruct the topography of the surface. All topographic images presented in this
thesis were acquired using the constant current mode.
To manage all the signals needed for the STM to operate, we use a digital

electronics unit developed at the university support services (Segainvex [45]) that
includes DAC (digital to analog) and ADC (analog to digital) modules to send and
read signals from the experiment, respectively. DACs provide DC voltage signals
between �10 V and �10 V that are amplified by a factor 14 before sending them
to the piezos. Bias voltage signal is normally attenuated using a voltage divider to
increase the energy resolution of the measurements. The tunneling current is read
by an ADC after going through a current to voltage converter with a gain that can
be adjusted from 105 to 109 V/A. The electronics unit is controlled using homemade
software that implements a digital PID loop. A diagram of the STM control unit is
shown in fig. 2.3. All the data acquisition software will be discussed more in detail
in section 2.4.1.

2For simplicity, we use the word piezo when referring to the different electrodes of the piezotube.
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Figure 2.4: Schematic diagram of the experimental setup. The cryostat is fixed to a
floating floor that isolates the experiment from the vibrations of the pumps of the system
and from the rest of the vibrations of the building. The tubes coming from the pump room
pass through two sand boxes to reduce the mechanical noise before touching the floating
floor. The experiment is remotely controlled from the outside.

2.1.2 Vibration isolation

The exponential dependence of the tunneling current on the tip-sample distance
makes STM measurements extremely sensitive to mechanical vibrations. In the
tunneling regime, tip and sample are separated just by a few Å, and, as we
discussed above, a change of 1 Å in the distance typically produces a change in the
tunneling current of one order of magnitude. Vibrations should produce variations
in the position of the tip and the sample that, ideally, leave the tunneling current
unaffected. In practice, this means that these variations are smaller than the noise
level of the voltage sent to the piezo. Typical values of the tunneling current noise
levels produce changes in the tip-sample distance of the order of the pm. Thus,
reducing mechanical vibrations is key in every STM setup.
Noise attenuation becomes challenging when working at very low temperatures

inside a dilution refrigerator. In this configuration we have to deal with all the
vibrations coming from the pumps needed for the gas handling operations regarding
the dilution unit. First important aspect in this matter is to fix the dilution insert to
the 4He cryostat in such a way that it takes advantage of the large spring supported
mass and does not vibrate independently from it. We used glass fiber to cover some
parts of the insert so that the fitting inside the cryostat was as tight as possible.
The free space in the upper part of the dilution unit was filled with EVA foam to
minimize the 4He evaporation rate. EVA foam forces the passage of He vapor close
to the inner walls of the Dewar, which improves their cooling and increases the He
holding time.
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2.1 Scanning tunneling microscopy

As a general rule, the resonant frequency of the STM head should be as large as
possible, while keeping that of the supporting assembly as low as possible. This way,
low frequency perturbations, that are unavoidable in practice, will move the tip and
sample in phase holding their relative position stable [11]. In section 2.3 we describe
the homemade STM we built during this thesis and we discuss the material choices
for noise reduction purposes.
The standard method used in our laboratory to mechanically isolate the whole

cryostat from the vibrations of the building was to suspend it from the ceiling
on some ropes that absorbed all the mechanical vibrations. During this thesis
we moved the experimental setup we assembled to a new laboratory taking the
mechanical isolation system to the next level as the experiment was installed inside
an anti-vibration room with a floating floor (see fig. 2.4). The cryostat is fixed to a
15.7 ton concrete block holding on 18 springs with elastic constant k � 3 � 104 N/m
that separate it from the building foundation. The resonant frequency of this system
is around 1 Hz, so all mechanical vibrations with frequencies higher than that will
be significantly damped by the floating floor.
The pumps of the gas handling system from the dilution unit are placed in a

separated room with double wall and glass fiber in between, and all the tubes coming
from the pump room go through a sand box that partially absorbs the vibrations
before they reach the floating floor. The power supply of the 17 T magnet is also
inside the pump room. In this configuration, the whole experiment can be remotely
controlled from the outside with no need to go inside the experiment room and
step on the floating floor while the experiment is running. Therefore, the eventual
mechanical and acoustic vibrations caused by usual system management situations
are reduced to minimum.
To characterize the damping system we used two SM-24 geophones from SENSOR

Nederland b.v. [46]. Geophones consist of a magnetic mass suspended by a spring
inside a coil. The motion of the mass produces an induced voltage in the coil, which
we amplify using a EGG 5113 preamplifier by a factor of 500. We then read the
resulting voltage using the USB acquisition we will describe later on in section 2.4.1.
We record curves with 12000 points in 60 seconds and Fourier transform the obtained
signal. The resolution in time is 5 ms. We can thus measure vibrations up to
200 Hz. As the device is a simple damped harmonic oscillator, its resonance modifies
the measurement. The natural frequency of the device is 10 Hz with a tolerance
of �2.5 %. We correct the frequency response by multiplying the result with the
sensitivity curve provided by the supplier. When we compare the level of vibrations
obtained in the floor of the new location with that of the previous location, we
observe a decrease by nearly an order of magnitude (fig. 2.5a). To test the mechanical
response of the floating floor damping system we turned the pumps on removing
their dampers so that they were directly hammering the floor in the pump room.
This introduces a large noise level over the entire measured spectrum. Inside the
experiment room, we placed a geophone on top of the floating floor and another
one on top of the unfloated floor at the edges of the room. Figure 2.5b plots the
simultaneously acquired vibrational noise signals by both devices. We see that the
additional noise level is reduced by the suspended floor system to a level which is
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Figure 2.5: Plots of the standard deviation of the velocity of a mass suspended on a
damped spring with a resonant frequency of 10 Hz as a function of the frequency. The
velocity is measured using an inductive technique (SM-24 Geophone Element). The
damping below the resonance is corrected using a sensitivity function provided by the
supplier. (a) Results on the floor of the previous location of the cryostat (green) and on
the floor of the new location (red). (b) Results in the new location when we were operating
a pump without rubber damping support. The pump creates large vibrations seen in the
red curve. The floating floor (blue line) shows a significant damping of the vibrations.

comparable or better than the floor. Thus, the suspension system allows to isolate
the experiment from the environment effectively.
Nevertheless, for frequencies below about 10 Hz, it is very challenging to measure

if the floating floor is really efficient or not. To add an additional damping in
that range of frequencies, we have tested S-2000A active air damping model from
Newport [47] and Gimbal Piston air vibration isolation system from TMC [48]. We
observe that the Newport system does not bring any improvement to our setup.
Possibly, the system we use to support the cryostat, which is far more complex than
the optical tables often used in conjunction with Newport vibration isolators, makes
it very difficult to balance all the dampers and may alter their response. It turns
out to be very difficult to adjust the Newport devices in such a way that there is no
touch between the floating and rigid parts, which introduces a direct connection and
removes damping. On the other hand, with TMC dampers, there is considerable
room to adjust the position of the cryostat so that suspended and rigid parts are
not in direct contact with each other. This results in an efficient damping below
approximately 10 Hz.

2.1.3 Spectroscopy with STM

STM can also be used as a powerful tool to probe the spectroscopic properties of
the sample with high energy resolution around the Fermi energy. The energy range
of all the studies presented in this thesis fulfill the condition eV P φ, where φ is the
average work function of tip and sample. In this limit, the transmission probability
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2.1 Scanning tunneling microscopy

of the tunneling barrier can be assumed to be constant and eq. (2.3) can be written
as

I�V �� S
ª

�ª

Ns�E � eV �Nt�E��f�E � eV � � f�E��dE (2.7)

For simplicity, in the following discussion I will assume that we are using a normal
non-superconducting tip. However, superconducting tips are widely used in scanning
tunneling microscopy [49]. In fact, some of the results I will present in the iron
based superconductor FeSe (chapter 6) were obtained using a superconducting Pb
tip. Tunneling conductance curves measured with superconducting tips accentuate
every small feature in the density of states of the sample [50]. When probing
a superconducting sample, the resulting conductance curve will present sharper
quasiparticle peaks whose voltage position will be at the sum of the superconducting
gap sizes of tip and sample, ∆t � ∆s (see section 2.3.3). Besides, superconducting
tips open the door for Josephson spectroscopy.
Coming back to the case of a normal metallic tip, the density of states, Nt, can

be approached to a constant value in this small energy range we are considering.
Therefore, eq. (2.7) can be simplified to

I�V �� S
ª

�ª

Ns�E � eV ��f�E � eV � � f�E��dE (2.8)

Differentiating the tunneling current with respect to the applied voltage we obtain
the following expression for the tunneling conductance, σ�V �

σ�V � � dI�V �
dV

� S
ª

�ª

Ns�E�∂f�E � eV �
∂V

dE (2.9)

Tunneling conductance is proportional to the convolution of the density of states
of the sample and the derivative of the Fermi function. Hence, from STM tunneling
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Figure 2.6: (a) Density of states for a BCS superconductor as a function of the energy
in units of the superconducting gap, ∆. (b) Derivative of the Fermi distribution at a
temperature T . The width at half maximum is kBT . (c) Measured tunneling conductance
curve for a sample displaying the density of states in (a) at the same temperature, T .
The shape of the curve is the result of the convolution of the density of states (a) and the
derivative of the Fermi distribution (b) following eq. (2.9).
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conductance versus bias voltage curves one can extract information about the density
of states of the sample. The derivative of the Fermi function displays a bell shape
with a width given by kBT (see fig. 2.6b). At very low temperatures, the width of
this bell becomes very narrow and it tends to a Dirac delta function, δ�E � eV �,
as the temperature, T , goes to zero. In this extremely low temperatures limit, the
tunneling conductance is directly proportional to the density of states of the sample:

σ�V � � dI�V �
dV

� Ns�E � eV � (2.10)

Thus, we can use STM tunneling conductance measurements to directly determine
the density of states of the sample as a function of the energy. However, this is not
always true due to the so-called setpoint effect.

Setpoint effect

STM allows to spatially map the spectroscopic properties of the sample as we will
discuss in the following section. To obtain 2D maps, feedback loops are widely used
for tip positioning before every spectroscopic curve is taken. The setpoint value of
the feedback loop can affect the results of the measurements if there is a dependence
on the position, Ñr � �x, y�, in the density of states [51, 52].
In the low temperature limit, assuming a normal metallic tip, from eq. (2.6), the

tunneling current can be written as

I�Ñr, V � � C S eV

0
Ns�Ñr,E�dE, (2.11)

where we define C � c d
�
z
zφNt�0� for simplicity. The setpoint current will be thus

given by:

I0 � I�Ñr, V0� � C S eV0

0
Ns�Ñr,E�dE, (2.12)

where V0 is the setpoint voltage. Differentiating eq. (2.11) we obtain the following
expression:

dI�Ñr, V �
dV

� CNs�Ñr, eV � (2.13)

Comparing eqs. (2.12) and (2.13) we obtain a conductance that depends on the
setpoint current, I0, and voltage, V0 as

σ�Ñr, V � � dI�Ñr, V �
dV

�
I0Ns�Ñr, eV �

R eV0
0 Ns�Ñr,E�dE (2.14)
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Figure 2.7: Illustrative example of the setpoint effect. (a) Schematic density of states as
a function of the energy on two different positions on the surface of the sample, Ñr1 (blue)
and Ñr2 (red). (b) Tunneling current obtained from eq. (2.11) at these two positions. If
the PID loop is acting at the position V0, it will result in a correction of the current curve
such that I� Ñr1, V0� � I� Ñr2, V0�. Thus, the prefactor C in eq. (2.11) will be different in Ñr1
than in Ñr2.

From this relation we can conclude that, although the tunneling conductance is
proportional to the density of states of the sample, the proportionality constant can
vary with the position if the integrated density of states up to the setpoint voltage
presents spatial inhomogeneities. Figure 2.7 illustrates the setpoint effect for a case
in which the density of states as a function of the energy on site 1 ( Ñr1) is slightly
different to that on site 2 ( Ñr2). Both curves coincide in most of the energy range,
but on site 2 there is a peak in the density of states at a certain energy below eV0.
As the tunneling current is defined as the integral of the density of states multiplied
by a constant C (eq. (2.11)), we see from the example in fig. 2.7 that the feedback
loop can introduce a modification in C as a function of the position, C�Ñr�, leading
to a spatial variation in the dI

dV �Ñr, V � images that makes it impossible to obtain the
density of states, N�Ñr,E�, directly from dI

dV �Ñr, V �. To correct for this issue, we can
divide each conductance curve, dI

dV �Ñri, V �, by the value of the conductance in that
site Ñri at a voltage close to and below V0:

σ�Ñri, V �
σ0�Ñri, V0� � Ns�Ñri, eV �

Ns�Ñri, eV0� (2.15)

This simple correction eliminates the spatially varying prefactor C�Ñr� and provides
normalized tunneling conductance curves that are indeed proportional to the density
of states of the sample.

2.1.4 Scanning spectroscopy with STM

Scanning tunneling spectroscopy (STS) allows to study local differences in the
electronic properties of a sample taking advantage of the high spatial resolution
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Figure 2.8: Schematic representation of the simultaneous topographic and spectroscopic
data acquisition process. The data shown in this example belong to some QPI
measurements in Ce(Ru0.92Rh0.08)2Si2. As the tip scans over the sample (a), at every
pixel of the image the feedback loop is disconnected and a spectroscopic IV curve is
taken. Tunneling conductance curves (b) are obtained by differentiating these IV curves.
Conductance curves can be rearranged into conductance maps for different bias voltages
(c). Fourier transforming these conductance maps (d) the spectroscopic properties can be
studied in reciprocal space.

of STM. Following the spatial spectroscopic differences is key, for instance, to map
superconducting vortex lattices or to study the quasiparticle interference scattering
(QPI) in the surface of the sample.
Spectroscopic maps are normally acquired simultaneously to a topographic image.

The tip scans over the sample with the feedback loop on to keep the current constant
as in the usual acquisition process of a topographic image, but in this case, the tip
stops at every pixel of the image and the feedback loop is disconnected to take a
spectroscopic current versus bias voltage curve (IV curve). Then, the feedback loop
is reconnected and the tip moves to the next point of the scan keeping the current
constant. After the whole scan is finished, every pixel of the topography has an
associated IV curve. Numerically differentiating these IV curves we obtain tunneling
conductance versus bias voltage curves that can be used to build up spectroscopic
images mapping the value of the tunneling conductance as a function of the position
and the bias voltage (see fig. 2.8).
Forth and back scans of the tip over the surface result in two separated images

for each measurement. Besides, two voltage ramps (from positive to negative, and
backwards) are taken at each point of each image. Typical image dimensions range
from 64 � 64 to 512 � 512 pixels. Thus, a spectroscopic measurement holds a huge
amount of IV curves, each of them containing from 64 to 512 points. To choose
the size of the images and the IV curves we have to reach a compromise between
the space and energy resolution desirable to study a particular phenomenon and
the available time for the measurements. In our case, the latter is usually limited
by the remaining time until the next helium transfer to keep the experiment cold.
Thanks to the improvement and work made during this thesis, the time between
helium transfers in the setup that I mounted is around 6-7 days when operating at
base temperature (0.1 K), what provides more than enough time to perform large
spectroscopic measurements. Besides, the new data acquisition system implemented
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2.1 Scanning tunneling microscopy

along this thesis using digital USB based electronics (see section 2.4.1) has noticeably
reduced the time of the measurements. With previous analog electronics, it could
take around 60 hours to measure a 512 � 512 pixels image with 64 points in the
IV curves. Our new standards allow us to perform even larger images of 512 � 512
pixels with up to 256 points in the spectroscopic curves in less than 24 hours without
increasing the noise level. However, this major improvement in the acquisition
process brings the necessity to deal with very heavy files (of the order of several
gigabyte) when coming to data analysis. In section 2.4.2, I discuss how we addressed
this new situation developing new data treatment software.

QPI analysis

Studying the quasiparticle interference scattering (QPI) in STS measurements one
can get information about the band structure of the sample. The relation between
the measured local density of states (LDOS) and the momentum eigenstates Ψ� Ñrk�
is given by

LDOS�E, Ñr��Q
Ñk
SΨ� Ñrk�S2 δ�E � ε�Ñk��, (2.16)

where Ñk is the wavevector and ε�Ñk� is the dispersion relation of the material. When
the periodicity of the crystal is broken by the presence of impurities or defects on the
surface, electrons are scattered around producing oscillations in the LDOS. These
scattering processes are typically elastic. In this picture, scattering between states
with Ñki and Ñkf will give rise to a modulation with Ñq � Ñkf � Ñki in the LDOS that can
be observed in the tunneling conductance with the STM. The scattering between an
initial state, i, and a final state, f , is described by the Fermi golden rule:

w�i� f�� 2πÓh SV �Ñq�S2Ni�Ei, Ñki�Nf�Ef , Ñkf�, (2.17)

where Ei � Ef for elastic scattering, Ñq � Ñkf � Ñki is the scattering vector, Ni and
Nf the initial and final densities of states, and V �Ñq� the scattering potential. This
scattering potential can be different for different types of impurities or defects, and
it can also be anisotropic [54]. We can define the joint density of states (JDOS)
from the momentum-resolved density of states of the sample:

JDOS�Ñq,E� � S N�Ñk,E�N�Ñk � Ñq,E�d2Ñk (2.18)

From eq. (2.17) and eq. (2.18) we can deduce that, in first approximation, the
scattering Ñq vectors connecting states with higher JDOS will produce a higher QPI
signal.
The intensity of the scattering signal depends on the strength of the scattering

potential at Ñq � Ñkf � Ñki, V �Ñq�, and the JDOS. The scattering potential can be
anisotropic and can enhance or reduce the scattering intensity at a given Ñq. The
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Figure 2.9: (a) Adapted from [53]. Constant current STM topographic image taken
at 150 mK in Cu(111) with a bias voltage of �5 mV. In the presence of point like
defects, electrons are scattered producing oscillating patterns on the surface. Fourier
transform of the image indicating the main scattering vector is shown in the inset. (b)
Schematic diagram illustrating how the parabolic dispersion relation in Cu(111) could
be reconstructed by measuring the main scattering vector for different values of the bias
voltage.

JDOS provides the amplitudes of the density of states (DOS) at initial and final
scattering states and will be higher at certain locations on the band structure, for
example at van Hove anomalies or when scattering occurs between flat parts of
the Fermi surface. Thus, by plotting the maxima in the scattering intensity as a
function of the bias voltage, we can follow the JDOS for certain Ñq as a function
of the energy. Using this information, we can reconstruct the electronic dispersion
relation (see fig. 2.9). This reconstruction is most easily obtained in those parts of
the band structure that interact with defects and impurities and provide largest V .
Furthermore, STM can follow the band structure of the material for both occupied
and empty states, what is a major advantage if we compare it with techniques like
angle-resolved photoemission spectroscopy (ARPES), that can only access states
below the Fermi energy.
Noise reduction is essential in QPI measurements when trying to identify

the different Ñq vectors. As can easily be understood, JDOS(Ñq) contains all
the symmetry operations of the crystal at its surface. However, V �Ñq� includes
additional components depending on the internal shape of the defects and the
way these interact with the electrons of the compound. Being mostly interested
in JDOS (Ñq), we can use the symmetry properties of the crystal to enhance the
signal to noise ratio [55]. For instance, in a square lattice with four-fold symmetry,
all the scattering information in reciprocal space can be collapsed into just one
quadrant. Therefore, if we take the average value of the four quadrants of our
2D fast Fourier transform (FFT) maps after applying the proper rotation and
mirroring operations, the QPI signal is enhanced over the background noise, that
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Figure 2.10: (a) 2D FFT of a conductance map measured at 1 mV in
Ce(Ru0.92Rh0.08)2Si2 with STM. White arrows mark the direction of the crystallographic
axes. (b) 16.5X rotation of the image to align the crystallographic axes with the vertical
and horizontal directions. (c) Four-fold symmetrization of the image to enhance the
signal to noise ratio. The size of the scale bar is 0.4 π~a, where a is the lattice constant.

is ideally averaged out to zero. Figure 2.10 illustrates the symmetrization process
for a case of a 4-fold symmetry crystal. After rotating the 2D-FFT maps to align
the crystallographic axes with the vertical and horizontal directions, we apply the
symmetry averaging operations and crop the images to the first Brillouin zone
limits. As one would expect, the averaging processes applied will be different for
crystals showing different symmetries.
Once the data is symmetrized we can follow the different Ñq vectors with the energy

to reconstruct the band structure of the material. In section 2.4.2, I will describe
the data analysis software I developed to simplify this procedure.
It is worth mentioning that when Fourier transforming the conductance maps, the

central point of the 2D-FFT corresponds to the sum of the values of all the individual
pixels in the conductance map and is useless for the scattering analysis. Large
wavelength oscillations or modifications of the density of states generally produce a
large signal for the few pixels around the central pixel. These are usually difficult
to interpret, and often have only a weak dependence on energy. However, if there
is an energy dependence, these pixels close to the center of the Fourier transform
might be also indicative of long wavelength scattering processes. In case these large
wavelength modulations are not crucial, we can apply a Gaussian core subtraction
to the center of the maps in order to reduce the intensity at the smallest wavevectors
and increase the contrast of the images.

2.2 Cryogenics

Since the beginning of the 20th century, the development of cryogenic technologies
has opened the door to very interesting novel physical phenomena like
superconductivity. STM has been evidenced as a very powerful tool to explore the
electronic properties of materials at very low temperatures.
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Figure 2.11: Temperature (T ) versus 3He concentration (x) phase diagram for a 3He/4He
mixture. For x � 0 there is no 3He, and for x � 1 there is only 3He in the mixture.

Among all the cryogenic techniques, 3He/4He dilution refrigeration stands out
as a very versatile one when working with STM. First of all, it allows to cool
down the STM below 100 mK. At such low temperatures thermal excitations
are considerably reduced increasing the energy resolution in the spectroscopic
measurements (kBT � 8.6 µeV at 100 mK). Besides, dilution refrigerators are
able to ceaselessly maintain the experiment at those very low temperatures.
This is specially important for us when trying to perform the long spectroscopic
measurements we described in the previous section.
In a dilution cryostat, the cooling power at temperatures below 100 mK is larger

than that in other cryogenic methods [56]. Furthermore, unlike techniques like
adiabatic demagnetization, the functioning of the dilution system is not affected by
the presence of a magnetic field. This turns to be crucial for us as our experimental
setup is equipped with a 17 T superconducting magnet to perform high magnetic
field STM measurements.
In this section, I will describe the principle of operation of a dilution refrigerator

and how we implemented it to cool the STM well below 100 mK.

2.2.1 Dilution refrigerator

The working principle of dilution cryogenics is based on the quantum properties of
a mixture of the two stable isotopes of helium, 3He and 4He [57]. Figure 2.11 shows
the temperature (T ) versus 3He concentration (x) phase diagram for a 3He/4He
mixture. Above the coexistence curve, the mixture can be in the superfluid state
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at the left side of λ-line or in the normal fluid phase at the right side. Below the
coexistence curve there is a phase splitting into a concentrated phase (C) rich in 3He
and a dilute phase (D) rich in 4He. As the density of 3He is lower than that of 4He,
the concentrated phase will float over the dilute phase.
To illustrate the phase separation process we can take the starting point (T , x)

with x � 0.2 in fig. 2.11 inside the superfluid region. When the temperature decreases
at a constant concentration, the mixture reaches the coexistence curve at T � T � and
separates into a dilute phase and a concentrated phase. If the temperature keeps
going down until T � T ��, 3He concentration in the concentrated phase will grow up
to x��C , while that in the dilute phase will go down to x��D. Thus, 3He concentration
in both phases depends on the temperature following the coexistence curve. When
the temperature is further reduced, 3He concentration is almost 1 below 0.1 K, and
it varies between 0.07 at 0.1 K and 0.064 at 0 K in the dilute phase. The fact that
the 3He concentration at zero temperature in the dilute phase is finite is key in the
performance of the dilution refrigerator [58].
To understand the lack of separation into pure 3He and 4He even at 0 K we have

to recall quantum statistics. 4He is a boson with zero nuclear spin. Below 0.5 K
it is in the superfluid state and the amount of excited phonons and rotons is very
small. Therefore, it remains inert from a thermodynamic perspective. On the other
hand, 3He has nuclear spin 1/2 and it obeys Fermi-Dirac statistics. In the range of
temperatures where a dilution refrigerator operates, 3He can be considered as a Fermi
liquid with a renormalized effective mass whose value depends on the concentration
in the dilute phase. In this model, the balance of the chemical potentials in both
phases provides the equilibrium condition:

µ3C�T,xC� � µ3D�T,xD�, (2.19)

where µ3C � g3C � h3C � Ts3C and µ3D � �∂G3D~∂n3�T,P,n4
3. The latent heat of

vaporization of 3He in the concentrated phase at zero temperature is related to the
chemical potential through L3C�0� � �µ3C�0�. Therefore, the energy required to
extract one atom of 3He from the concentrated phase is L3C�0�~NA � �µ3C�0�~NA,
where NA is the Avogadro constant. On the other hand, the binding energy of
one atom of 3He in the dilute phase is �µ3D�0,0�~NA. As µ3D�0,0� is bigger
than µ3C�0�, the binding energy of 3He to 4He atoms is higher than that among
3He atoms and thus, there is a flow of 3He atoms from the concentrated to the
dilute phase. However, this process is limited because the binding energy in
the dilute phase decreases as xD increases. Since 3He atoms follow Fermi-Dirac
statistics, the Fermi energy (kBTF �xD�) increases with the concentration. Then,
as µ3D�0, xD�~NA � �ε3D�0, xD� � kBTF �xD�, the binding energy ε3D�0, xD� varies

3Upper and lower case letters represent extensive and molar quantities, respectively. h, s and g
stand for the molar enthalpy, entropy and Gibbs free energy, respectively, and n for the number
of moles. Subscripts 3 and 4 refer to 3He and 4He.
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Figure 2.12: Photograph (left) and schematic diagram (right) of our dilution refrigerator.

with the concentration to keep the chemical potential constant. Substituting in
eq. (2.19), the equilibrium condition can be rewritten as

L3C�0�~NA � �ε3D�0, xD� � kBTF �xD� (2.20)

Introducing measured values for the Fermi temperature and the binding energy,
the concentration below which the transfer of 3He atoms from the concentrated to
the dilute phase is no longer energetically favorable is xD � 0.064 [56].
This means that, at equilibrium, there is a non-zero amount of of particles in

the dilute phase. Hence, if the concentration of 3He atoms is reduced in the dilute
phase, some 3He atoms will cross the interface from the concentrated phase to the
dilute phase to fulfill the equilibrium condition. This process is responsible for the
cooling in the system since the enthalpy of 3He is larger in the dilute phase than in
the concentrated phase.
Figure 2.12 shows a photograph of the dilution system used during this thesis

together with a schematic diagram depicting the main parts of a dilution refrigerator.
The 3He/4He mixture is injected through the condensing line and it is precooled
by the 1 K pot, that is a small vessel filled with liquid 4He from the bath that
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Figure 2.13: (a) Photograph of a 17 T superconducting magnet with its supporting
structure. (b) Top view diagram of the coiling of the superconducting magnet. Two
different superconducting materials are used: NbTi and Nb3Sn. (c) Sketch of a
cross-section cut of the superconducting wires used to build the magnets. Superconducting
filaments are embedded into a copper matrix.

is continuously pumped out to reduce its temperature down to 1.5 K. At this
temperature, some impedances keep the value of the pressure above the vapor
pressure of 3He limiting the flux and allowing condensation. After leaving the 1 K
pot, the mixture goes through several heat exchangers where it is cooled down using
the enthalpy of the outgoing mixture coming upwards in the dilute phase.
Phase separation takes place in the mixing chamber, which is the coldest part of

the dilution system. There, the concentrated phase is floating over the dilute phase.
The mixing chamber is connected to the still or evaporator, that is the place where
the liquid-gas interface is located. The dilution of 3He atoms is forced by a pumping
system that constantly removes 3He from the dilute phase in the still. This way, 3He
concentration is reduced in the still producing an osmotic pressure gradient between
the still and the mixing chamber that drives 3He atoms towards the still after crossing
the phase boundary in the mixing chamber. The 3He flowing upwards in the dilute
phase is used to cool down the mixture coming down to the mixing chamber in the
concentrated phase. The difference between the vapor pressures of 3He and 4He at
the still temperature (� 0.7 K) implies that, when the still is pumped, the main part
of the evaporated gas is pure 3He. Sometimes it is necessary to apply some heat to
the still in order to keep its temperature at around 0.7 K to improve the efficiency of
the process. The evaporated 3He is purified in a liquid nitrogen trap with activated
carbon filters before it reenters the cryostat in the concentrated phase. The choice
of the initial 3He concentration and volume of the mixture is crucial for the phase
separation to occur inside the mixing chamber and for the liquid-gas interface to lie
inside the still.
The experiment, in our case, the STM, is thermally attached to the mixing

chamber, which is the coldest part of the cryostat. The dilution refrigerator used
in our experimental setup is the model MX400 from Oxford Instruments [59] (see
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fig. 2.12). For the gas handling system, we used Kelvinox 25 model from the
same company. The design, assembly and leak testing operations regarding all the
pumping lines were performed during this thesis. As we discussed in the former
section, the gas handling system and the pumps are placed outside the experiment
room to reduce the mechanical vibrations.
Our cryostat is equipped with a 17 T superconducting magnet also from Oxford

Instruments (see fig. 2.13). The magnet consists of two concentric coils that use
two different superconducting materials. The outer one is made of NbTi wires,
with lower values of the critical magnetic field and critical current, and the inner
one uses NbSn3 wires, that remain superconducting to higher magnetic field and
current. Superconducting wires consist of several filaments of superconducting
material embedded inside a copper matrix. In this configuration, copper provides
mechanical stability and is a low resistance parallel conduction path for the huge
currents that circulate through the superconducting filaments in case the values for
the superconducting critical temperature or the critical current are exceeded [60].
In case the magnet quenches, there is a security system with a set of diodes to avoid
high voltages at the leads and a set of low impedance parallel resistors to absorb
part of the heat generated by the decaying circulating current.
Liquid 4He refrigeration is needed for the superconducting magnet to work. One

of the main advantages of superconducting coils is that, once they are charged,
they can work in persistent mode with no need of any current supply. This way we
reduce the 4He evaporation rate and the helium consumption of the system. Besides,
mechanical noise associated to helium boiling off is also decreased. Finally, current
fluctuations and noise associated to magnetic field changes are also hindered. To
operate in persistent mode, the coil is shunted by a superconducting switch with
a heater. Turning on the heater we connect the magnet to the current supply for
charging and discharging operations, but when the heater is off the magnet becomes
a closed circuit with no losses.
This magnet provides magnetic fields up to 15 T at 4.2 K and up to 17 T at

2 K. On the top part of the magnet there is a copper serpentine with a needle valve
(lambda plate). Pumping through the needle valve, the temperature of the bath
goes down to 2 K below the lambda plate while it stays at 4.2 K above [61]. This
way we are able to transfer helium to the cryostat even if the magnet is delivering
the maximum magnetic field (17 T).

2.3 Implementation of the setup

Many of the properties that can be explored with a STM depend strongly on the
magnetic field. In fact, if the field is strong enough, it can even modify the materials
giving rise to new phases. However, high magnetic field environments can produce
heating and mechanical noise issues that have to be addressed when designing a very
low temperature STM. In this section, I present the high magnetic field ceramic STM
I developed and characterized for this thesis. I will show as well how we made sure
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Figure 2.14: Schematic diagram of the wiring of the experiment. RC filters are used
outside the cryostat at room temperature to filter high voltage signals for the piezos (X,
Y, Z, Z�). The cut-off frequency, fc, depends on the values used for the resistance, R,
and the capacitance, C. Twisted pairs of manganin and copper are depicted in yellow and
orange, respectively.

that the resolution in voltage of the tunneling conductance curves, which provides
the resolution in energy of the features we can resolve in the density of states, is not
larger than the thermal energy. Finally, I will discuss the method we use to prepare
the tip and sample for STM measurements in cryogenic conditions.

2.3.1 Wiring and thermalization

When working with a dilution refrigerator STM, the wiring of the setup must be
carefully designed to keep all the signals as clean as possible while avoiding heating
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Figure 2.15: (a) Photographs of the supporting structure for the STM showing the small
coils (black arrows) used to filter the signals. (b) Cartoon representation of one of the
coils together with the diagram of the RCL filter. (c) Measured gain versus frequency for
one of the coils.

of the experiment. A proper filtering and screening of the electric signals is needed to
obtain a resolution in voltage that allows to perform density of states measurements
that are limited by the thermal energy and not by the noise in the voltage.
The wiring of our system was entirely designed and assembled during this thesis.

It can be divided in two different stages. The first one goes from the external
connectors outside the cryostat at room temperature to some other connectors
in mixing chamber (� 80 mK), and the second one carries the signals from these
connectors in the mixing chamber down to the STM.
In the first stage, we used twisted pairs for the signal of the piezos (X, Y, Z, Z�).

The twist is made using a cable carrying the signal, which can be a manganin cable
(200 Ω), and a copper cable that is grounded. Thanks to the twist, both cables are
strongly joined all over the length, what means that we have a large resistance and
a distributed capacitance to ground [62, 63]. As the wires display a resistance of
� 200 Ω and a capacitance to ground of � 1 nF, they act as a continuous RC filter
for high frequency signals (see fig. 2.14). In this first stage, we use manganin for
the signals X, Y, and Z. It presents significantly lower thermal conductivity than
copper and it reduces the thermal contact between the outside of the cryostat and
the mixing chamber. Besides, manganin wires display higher resistance than copper
wires, improving the filtering of the signals. However, for the signal going to the
piezostacks for the coarse vertical movement (Z�) we use copper wires. This way the
resistance of the circuit is decreased allowing for the fast voltage ramps needed for
the inertial motion (see section 2.3.2). The signals for the current (I) and the bias
voltage (V) come down to the mixing chamber in a coaxial cable to ensure a perfect
screening.
For the connections between the mixing chamber and the STM we use twisted

pairs of copper for all the signals to enhance thermalization. High voltage signals of
the piezos (X, Y, Z, Z�) and current and voltage signals (I, V) follow separated paths
down to the STM to avoid noise induction in the latter. The signals of the piezos
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Figure 2.16: Photographs of the insert illustrating the thermalization mechanisms. All
the wires come down to the experiment stuck to the copper structure (A). We use copper
plates coated with gold (B) to thermalize the wires in several stages. The piano string
needed for the movement of the sample holder is also thermalized in different points
(C). Germanium (D), RuO2 (E) and Cernox (F) thermometers are installed at different
locations of the copper structure that supports the STM.

are filtered outside the cryostat using low-pass RC filters with cut-off frequencies of
10 kHz for X, Y and Z, and 50 kHz for Z� .
To improve high frequency filtering of the signals, the wires coming down from

the mixing chamber are wound around three different small copper cylinders before
they are soldered to the STM body. These small coils are fixed to the bottom part of
the STM supporting structure as shown in fig. 2.15a. The purpose of this winding
is twofold. First, to improve the thermalization of the wires as detailed below,
and second, to induce a high impedance for the high frequency signals that pass
through the RC circuit (see fig. 2.15b). The main conduction at high frequencies
occurs through the skin effect, which increases the impedance at high frequencies.
Using powder surrounding the signal-carrying wire, we increase the surface ratio of
the wire, improving the damping by the skin effect. Furthermore, the particles are
magnetic, what helps eliminate spurious resonances that might appear depending
on winding conditions [64].
The whole cabling system is tested by introducing a signal through one cable and

collecting it on another cable, both being joined at low temperatures. We can see
that the attenuation at high frequencies of the whole system is considerable (see
fig. 2.15c). Thus, the use of a set of different filters is very efficient to clean up the
electronic signal and achieve high bias voltage resolution.
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The thermal contact between the mixing chamber and the STM should be as
good as possible to reach temperatures below 100 mK. The STM is placed in a
copper structure that is fixed to the mixing chamber. This copper structure is
coated with gold to increase its thermal conductivity. All the wires coming down
from the mixing chamber are stuck to this structure using varnish and copper tape
(fig. 2.16(A)) to help thermalization and provide a last capacitance. The wires go
up and down several times over the structure to increase the contact surface. The
wires coming from outside the cryostat at room temperature are thermalized at the
different stages of the dilution refrigerator (1 K pot, still and mixing chamber). At
every stage, they are sandwiched between two gold-coated copper plates that are
screwed to the insert (fig. 2.16(B)) [65]. We use high thermal conductivity vacuum
grease to enhance thermal exchange between the cold plates and the wires. The
steel cable used to mechanically control the position of the sample holder from the
outside is also thermalized at several points using thick copper wires coated with tin
(fig. 2.16(C)). The functioning of this positioning system will be described below.
We installed three Lake Shore [66] resistance thermometers to monitor the

temperature of the coldest part of the experiment (see fig. 2.16(D,E,F)). The
first one is a germanium based thermometer (D) that lies next to the mixing
chamber and operates in a range from 50 mK to 100 K. It provides submillikelvin
sensibility with an excellent reproducibility of � 0.5 mK at 4.2 K. However, it is
not recommended at very high magnetic fields due to its strong magnetoresistance.
The second one is a RuO2 based thermometer (E). It works down to 50 mK with
low magnetic field-induced errors below 1 K and it is placed in the top part of
the STM cage. Finally, a Cernox thin film sensor (F) is installed right below the
STM. It ranges from 100 mK to 300 K and it presents the best performance under
magnetic field.
Four terminal resistance measurements are performed using a Lake Shore Model

372. Thanks to all the thermalization methods described above, when the mixing
chamber is at 80 mK, the temperature read of the closest thermometer to the STM
is of around 85 mK.

2.3.2 Realization of the STM

As a general rule, magnets that supply the more intense magnetic fields leave the
smaller room for the experiment inside the coiling. For instance, the inner diameter
of the most powerful hybrid magnets in high magnetic field facilities is of around
20 mm. The cross-section diameter of previous standard STM designs in our group
was no smaller than 40 mm [67]. Nonetheless, this already compact STMs still did
not fit in the very narrow space inside the most powerful superconducting magnets
we work with in the lab (17 T and 22 T). Hence, the size our STM designs had to
be further reduced and a 30 mm diameter STM was built [68].
As I introduced in section 2.1.2, to minimize sensitivity to mechanical vibrations,

the resonance frequency of the head of the STM should be as high as possible.
Materials with the larger ratio between the Young modulus and the density present
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Figure 2.17: Photographs of the shapal-made STM built in this thesis. (a) Front view.
(b) Top view. (c) Top view of the base part. Horizontal scale bar is 10 mm long.

the highest resonance frequencies (see table 2.1). All the microscopes in our lab
were made of a non-magnetic titanium alloy (Ti-Grade 5) that provided the good
thermal conductivity at low temperatures expected for a metal. However, metallic
components can be a problem at very low temperatures due to the Joule heating
produced by Foucault currents when ramping the magnetic field. To avoid this issue,
for the STM we constructed in this thesis we modified the 30 mm design using shapal
instead of titanium. Shapal is a non-magnetic, non-metallic, light and rigid ceramic
material with a Young modulus to density ratio even larger than in Ti-Grade 5.
Besides, its thermal conductivity is quite good at low temperatures. The main
drawback of shapal lies in its brittleness. Although it turns to be very challenging
to machine, even the smallest pieces were successfully obtained in the workshop of
the university (Segainvex [45]). Mechanical properties and thermal conductivity of
sapphire position it as an interesting option to consider for low temperature STM
purposes. Nevertheless, it is more expensive and even more fragile than shapal.
Figure 2.17 shows some pictures of the shapal STM we assembled. The base part

(fig. 2.17c) includes a rail coated with alumina for the movement of the sample
holder described in section 2.3.4. The sliding piece is made of shapal while we use
copper for the sample holder. Two non-magnetic copper-beryllium springs, one in
the bottom and another one in the front, are tied to the sliding piece to keep the

Material Density (kg m�3) Young modulus (GPa) Ratio � 100
TiGrade 5 (Ti6Al4V) 4420 110 2.4

Al 7075 2700 70 2.5
Macor 2520 66 2.6
Shapal 2900 190 6.6

Sapphire (α-Al2O3) 3980 340 8.5
WC 15500 550 3.5

Table 2.1: Properties of typical materials used in STM designs [11].
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sample holder over the sliding track and to help it recover the rest position when the
tension in the piano string is released. The guillotine for the cleaving process can be
fixed at different positions using the available threaded holes, and the rest position
of the sample holder can be adjusted by moving the two screws in the front. We
usually glue two samples in the sample holder: a sample of the material of interest
for the experiment and a sample of the same material of the tip (typically gold).
This way we can clean and sharpen the tip using the indentation method that will
be described in section 2.3.4. A copper wire for the bias voltage contact is soldered
to one of the corners of the sample holder.
The tip filament is glued to a small tip-holder screw that is fixed to one of the edges

of the piezotube. In our STM design, we place the tip on the piezotube while the
sample is glued on top of the sample holder. The piezotube deformation depends
on its geometry and on the voltage difference applied to the different electrodes
(Vx,y, Vz) [69]:

∆X � ∆Y �
0.9d31l2Vx,y

dmt

∆Z �
d31lVz
t

,

(2.21)

where l is the length of the piezotube, t, its thickness, and dm the average between
the inner an outer diameters. The so-called piezoelectric coefficient (d31) takes a
value of 0.31 Å/V at 4.2 K in the piezoelectric materials we used. In our particular
case, l � 11 mm, dm � 2.667 mm and t � 254 µm. Therefore, since we apply voltage
differences of �140 V, our maximum scanning area is 1.4 � 1.4 µm2 and the maximum
vertical displacement is 370 nm.
The piezotube is screwed to a mobile shapal prism that has some tracks to collect

all the contacts for the piezos (X, Y, Z) and the current (I). Using a spring, this
mobile piece is attached to two stacks of piezoelectric plates that are responsible
for the macroscopic movement of the tip in the vertical direction (Z�). Each of
the piezostacks consists of five 10 mm � 5 mm � 0.5 mm piezoelectric plates that
present a shear deformation when a voltage difference is applied between its faces.
The direction of the shear deformation depends on the sign of the applied voltage.
Each plate counts with a corner cut that marks its polarity. To synchronize the
deformation of all of the plates inside a stack we glued them as shown in fig. 2.18a
using Stycast 2850FT. To apply the voltage signals needed for the deformation,
copper wires are glued between consecutive plates with conductive silver epoxy.
Applying a sawtooth voltage signal to the piezostacks (fig. 2.18b), they behave as
an inertial motor with a working principle based on the stick-slip effect [38]. During
the slow part of the voltage ramp (several ms), the piezostacks deform upwards
or downwards dragging the mobile prism by means of friction. The fast part of the
sawtooth signal (� 5 µs) forces the piezostacks to recover the non-deformed situation
very rapidly sliding over the mobile piece without moving it. This way, repeating
the cycles of the sawtooth signal sent to the piezostacks we achieve a continuous
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Figure 2.18: (a) Schematic representation of a piezostack consisting of 5 piezoelectric
sheets sandwiched by two pieces of alumina. The polarity of two consecutive sheets is
opposite. (b) Schematic representation of the coarse vertical inertial movement of the tip
produced by the piezostacks when a sawtooth voltage signal is applied. The mobile head
of the STM is dragged by the deformation of the piezostacks during the slow voltage ramp
(1 - 2). Then, the piezostacks go rapidly back to their initial position sliding over the STM
head.

motion of the tip in the vertical direction. Inverting the sign of the sawtooth signal
we change the direction of the movement. This process is described in more detail
in Ref. [38].
The principles behind this effect are far from trivial. The functioning is based on

the interplay between a force that joins the two parts together and allows motion
when they are moved slowly, and a force that leads to detachment of both parts
when they are moved rapidly. This interplay is particularly tricky when the motor
is operated in a vertical position, as in our case. In this situation, the only force that
keeps the mobile prism together to the STM body is the force applied through the
spring in the back part of the STM. There are several designs of piezoelectric motors
[70, 71, 72, 73]. Improvements are mostly based on systems that hold some piezos
still and move others fast in such a way that they are operated in a step-by-step
manner [74]. However, this increases the size of the microscope and is not really
efficient as the motion principle still requires a balance between attachment and
sliding. In our microscope, we provide this balance by searching for the position of
the mobile part which produces largest motion. Besides, for both contact surfaces
we use alumina coated with graphite, which is stiff enough so that both parts remain
toghether when they move (stick), but breaks on fast shear action allowing motion
when it is required to slip [38].
The implementation of digital electronics has considerably simplified the STM

control unit. All the signal reading, processing, sending and amplifying procedures
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are managed by one single device (LHA-Digimod from Segainvex) connected to a
measuring computer. This electronics device is not bigger than a shoe box and
the data acquisition software to control it can even run in a non specially powerful
laptop, what makes the whole experimental system very portable and opens the
door to use it in high magnetic field facilities.

2.3.3 Characterization of the setup

Our STM was designed to work at very low temperatures and very high magnetic
fields. It is attached to the cold part of a dilution refrigerator inside a cryostat that
counts with a 17 T superconducting magnet. We tested and characterized some
STM operations under these extreme conditions to ensure a correct functioning
of the system. The choice of non-metallic ceramic shapal for the STM eliminates
variations in temperature due to Joule heating when ramping up and down the
magnetic field. With previous titanium designs, magnetic field ramps of several
Tesla produce a temperature rise of several hundred of millikelvin and the system
needed a few minutes to recover the base temperature.
Figure 2.19a shows an atomic resolution topographic image taken at 14 T in a

WTe2 sample (see chapter 4). Low mechanical and electrical noise levels in our
system allow to resolve the atomic structure on clean surfaces of the sample even at
very high magnetic fields. The digital electronics unit includes voltage attenuation
devices that can be applied to the signals sent to piezos X and Y to make use of the
entire 16 bit depth of the voltage ramp in a smaller range and increase the spatial
resolution of the images.
We used an aluminum tip and an aluminum sample to test the indentation process

at 17 T. Applying small voltage ramps to piezo Z we can crash and separate the tip
from the sample in a controlled way [75]. In this process, atomic contacts are formed
between the sample and the tip apex and we observe step jumps in the tunneling
conductance versus distance curves every time every time the contact is widened in
one atom and a new conductance channel appears (see fig. 2.19b). The height of
the first steps is the value of the conductance quantum, σ0. Figure 2.19c displays a
histogram of the normalized conductance values obtained repeating the indentation
process thousands of times. In this histogram we observe a peak near every multiple
of the conductance quantum. The particular shape of p-orbitals in aluminum makes
the steps in the conductance versus distance staircase-like plot a little tilted [76, 77].
The same indentation process using gold tip and sample produces pretty straight
steps and the peaks in the histogram lie right at the conductance quantum and its
multiples, but the tilting in the steps when using aluminum drives the peaks in our
histogram to slightly lower values.
To characterize the energy resolution of the system we studied the

superconducting-superconducting (S-S) tunneling junction using again aluminum
for both tip and sample. Aluminum is a well known BCS superconductor below
a critical temperature of 1.2 K. When taking spectroscopic IV curves in S-S
junctions at very low temperatures, the tunneling current equals zero for voltages
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Figure 2.19: (a) Atomic resolution topographic image measured at 14 T in WTe2. Scale
bar: 2 nm. (b) Conductance versus distance curves acquired at 17 T as the aluminum
STM tip approaches (green) and separates (red) from the aluminum sample. Conductance
values are normalized to the conductance quantum, σ0. (c) Histogram of the normalized
conductance values collected after thousands of indentation cycles at 17 T.
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Figure 2.20: (a) Normalized tunneling conductance curve measured in an aluminum
sample using an aluminum tip. BCS fit using ∆ = 161 µV and T = 100 mK is plotted in
red over the experimental points. (b) Zoom into one of the peaks together wit a gaussian
fit of the data (red line). From the width at half maximum of the peak, we obtain a value
of 9 µV for the energy resolution of the system.
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smaller than twice the superconducting gap value, and it presents a jump atSV S � 2∆ that leads to a divergence in the conductance curves. In the case of
aluminum, as the peak broadening effects caused by anisotropy or strong coupling
can be neglected [78], the width of the peaks in the conductance curves gives us
the energy resolution of the system. Figure 2.20a shows a measured tunneling
conductance curve at 100 mK using an aluminum tip and an aluminum sample
together with the corresponding BCS fit using ∆ � 0.161 meV as the gap value
and T = 100 mK. To adjust the finite width of the peak in the conductance curve
caused by the voltage noise, we used a gaussian distribution [49]. This way, the
energy resolution is given by the σ width of the distribution (fig. 2.20b). We
measured a 9 µV energy resolution for the system improving previous standards of
the laboratory (� 15 µV) and obtaining values better or comparable to literature
[40, 67, 79, 80, 81, 82, 83, 84, 85, 86]. We achieve this energy resolution using a
single filter that includes all the different cables (see fig. 2.15). Other systems use
individual filters for each cable [79] but they do not obtain better values than ours.

2.3.4 Cryogenic sample and tip preparation

Our STM is designed in such a way that we can prepare the sample and the tip in a
cryogenic vacuum environment. It has a macroscopic positioning system that allows
for a controlled lateral displacement of the sample with respect to the tip. This
system is described in [67]. The sample holder is mounted on top of a mobile piece
that can slide over a track covered with alumina to reduce friction (see fig. 2.21).
Using a Kevlar thread, this sliding piece is connected to a steel cable (piano string)
that is soldered to a micrometric screw in the upper part of the cryostat. The
movement of the sample holder is mechanically controlled by the tension applied
to the piano string when moving the micrometric screw from the outside. The
sliding piece is attached to the STM base using two copper-beryllium springs: one
in the bottom part that keeps it over the rail, and a second one in the front to
help the sample holder recover the rest position when the tension in the piano
string is released. We use Kevlar threads to tie the STM to the copper supporting
structure. This helps thermalization and keeps the microscope still when we move
the micrometric screw. The whole installation and calibration of this system was
performed during this thesis.
This positioning system brings several advantages for low temperature STM. First

of all, unlike other macroscopic positioning methods that use piezoelectric materials,
with this technique we can modify the position of the sample holder without heating
the experiment. The micrometric screw allows to move the sample holder up to
� 5 mm in steps of several hundreds of nanometers. With this design we can access
more than one sample in the same sample holder with no need to heat up the
experiment and break the vacuum every time we wanted to change the sample.
Besides, as the surfaces of a sample are not always perfect, we can explore different
regions until we find the suitable one for our measurements.
But what is probably the most interesting feature of this particular design is that

this mechanism we use to move the sample holder can also be used to cleave the
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Figure 2.21: 3D illustration of the sample cleaving process. (a) Base part of the STM.
The sample holder is mounted on a sliding piece that can be moved from the outside in
the direction indicated by the arrows. A gold sample (yellow) and a layered sample (dark
grey) are glued on top of the copper sample holder. A piece of alumina (white) is glued
on top of the layered sample that is going to be exfoliated. The alumina is connected to a
counterweight by a Kevlar thread. (b) The process begins with the sample holder at rest
position. (c) The sample holder starts to slide and the alumina hits a copper bar that is
placed across the sample holder track. (d) The sample breaks and the counterweight pulls
the alumina out of the measuring zone. (e) The sample holder gets back to the initial
position with a clean surface to measure.

1 2 3

4 5 6

Au tip

Au sample

Figure 2.22: Schematic representation of the tip sharpening process. Each ball represents
one Au atom. Starting from a separated configuration, the tip moves downwards until it
crashes the sample. Then it goes back up and at some point the atomic contact is broken.
The tip gets sharper with every iteration of the indentation loop 1-6 until it ends up being
one atom wide.
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samples in situ in cryogenic conditions. The cleaving process can be slightly different
depending on the properties of the crystal to be cleaved. For layered samples we use
an exfoliation method (see fig. 2.21). We mount the sample in the sample holder
with a piece of alumina glued on top. We screw a copper bar across the sliding track
that acts as a guillotine. It is important to adjust the height of the guillotine to
make sure that everything but the alumina piece can pass below the bar. When the
experiment is cold, we move the sample holder with the micrometric screw and the
alumina crashes the guillotine. As the interlayer bonding of the sample is weaker
than that between the alumina and the sample, provided by the glue, the sample
gets exfoliated leaving a clean surface to explore. To avoid eventual blocks in the
track on the way back of the sample holder, we glue a counterweight to the alumina
to get rid of the exfoliated part of the sample. This exfoliation method was used
to cleave the WTe2 and FeSe samples we measured in this thesis (see chapter 4 and
chapter 6, respectively). For harder crystals we can replace the guillotine with a
ceramic blade to directly cut the sample in cryogenic conditions as we did in the
cleaving process of Rh-doped CeRu2Si2 or in Au2Pb (see chapter 3 and chapter 5,
respectively).
The tip can also be refined at low temperatures at any stage of the experiment.

We use a 0.5 mm diameter metallic filament as a tip. In all the measurements
presented in this thesis we use either Au or Pb for the tip, as they present the
proper mechanical properties to obtain sharpen apexes after the low temperatures tip
fabrication process. The metallic filament is glued to a M1 screw using conducting
silver epoxy. This screw fits into a nut that is fixed to the free edge of the piezotube.
Before cooling down, we pre-sharpen the tip making a diagonal cut with some
scissors.
The procedure we follow to sharpen the tip at low temperatures and cryogenic

vacuum using the STM control unit is described in Ref. [75]. For this method to
work, apart from the sample of the material of interest, we need to mount a sample
of the same material of the tip. Once the experiment is at low temperatures, we
use the positioning system described above top place the tip over the sample of its
same material. In this configuration, the control feedback loop is disconnected and
we send a voltage to the electrode Z of the piezotube to approach the tip towards
the sample. When they reach contact, we send small voltage ramps to piezo Z to
repeatedly crash and separate the tip from the sample. This process removes any
eventual oxide layer from the tip apex, and after several nanoindentation cycles, we
achieve single atom point contacts as sketched in fig. 2.22.

2.4 Software

STM control electronics is governed by a computer software that manages all the
signals going to and coming from the experiment. This software is used to program
the specific measurements and collect and save the measured data. During this
thesis, I implemented a new digital USB based electronics system different from the
previous analog one used in our lab. These new standards required us to develop
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new data acquisition software capable to handle all the digital signals through an
USB port [39]. On the other hand, data processing software is needed to treat all
the collected raw data and generate the different images and maps to analyze the
spectroscopic measurements. The new electronics we set up brought the opportunity
to perform larger spectroscopic surveys (more number of points in both topography
and spectroscopic curves) in less amount of time. However, the generated files were
too heavy (several gigabyte) and the already existing analysis programs became
obsolete. Hence, I led the development of a new data treatment software to deal
with these big files in a more efficient way [39]. This program also includes some
useful tools to analyze the generated images in both real and Fourier space. In the
following lines, I will describe the basics of the data acquisition and data processing
software we developed during this thesis.

2.4.1 Data acquisition

The digital electronics unit we used is the LHA-Digimod model from Segainvex
[45]. Digital to analog (DAC) modules provide voltage signals from �10 V to �10
V with 16 bit resolution (216 points), what results in a resolution in voltage of
0.3 mV. The electronics is connected to the measuring computer through an USB
port and it has high voltage amplifiers we use for the signals of the piezos. The
data acquisition software that controls the electronics was developed in a Pascal
programming environment called Delphi [87]. As sketched in the block diagram
of fig. 2.23, the program provides all the tools required to scan over the sample
to acquire topographic images. It also manages all the procedures to take single
spectroscopic curves. Thus, combining these two features, this software allows us to
perform scanning tunneling spectroscopic (STS) studies with full control of all the
different parameters.
The scanner module includes an interactive window that controls the position of

the tip over the sample and shows the size of the scan, that can be modified before
the scanning starts (see screenshots in fig. 2.24). When double-clicking at any point
of the window, the program will send the voltage signals to the piezos X and Y to
position the tip at that specific location. The speed of the tip when changing its
position can be adjusted by the user. The program includes a digital PID algorithm
that adjust the voltage value sent to piezo Z to keep the current constant along the
scan to acquire topographic images in constant current mode. Proportional (P),
integral (I), and differential (D) parameters as well as the setpoint current can be
tuned by the user, and the PID feedback loop can be connected or disconnected at
any time. The program also offers the possibility to change between x and y for the
fast scan direction. While the scan is running, the topographic profile is displayed
in real time. There is also a live preview of forth and back topographic images as
they are being acquired. After the scan finishes, the topography can be saved in
WSxM format [88] and pasted over the scanning window of the scanner module.
To do spectroscopic curves, the program disconnects the PID loop and stores the

value of tunneling current as it ramps the bias voltage from �Vbias to �Vbias and back
to �Vbias. The number of points and the speed of the ramps can be modified using
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Figure 2.23: Block diagram of the different operations of the data acquisition software
and its communication with the digital electronics. There is a coarse positioning module
(Z� positioning), a spectroscopic module to take current versus voltage, or current versus
distance curves (Spectroscopy IV/IZ) and an image module (STM topography). The
program controls the electronics (red box) through a USB controlled interface called
LHA-Digimod. The STM setup, with the piezotube, approach system, tip and sample, is
indicated by the dark green box. Some additional equipment as the voltage divider and
the current to voltage converter are indicated in white boxes. The digital feedback module,
schematically shown in light blue, runs to maintain a constant current during operation,
fed by the current measurement and acting on the piezo Z. The signal sent to the piezo Z
is used to trace the STM topography.

different sliders. This process results in two separated IV curves (forth and back)
that can be saved into a binary file. This software offers the possibility of averaging
the current measurements from several voltage ramps to build the current versus
voltage curve. To keep the same starting conditions for all the averaged curves,
the feedback loop is connected and disconnected again between two consecutive
ramps. The user can also change the time the feedback is controlling between the
ramps. After measuring an IV curve, the program can calculate in real time and
plot the derivative of the current versus the voltage. This feature turns to be very
useful and it optimizes the experimental time as no external software is needed for a
preview of the tunneling conductance. Instead of ramping the bias voltage, similar
voltage ramps can be sent to piezo Z recording the value of the current as the height
of the tip over the sample varies (IZ curves). This way the program can control,
for instance, the indentation process we described in the previous section for tip
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Figure 2.24: Screenshots from the data acquisition software. (a) Scanner interface. Blue
cross and blue square mark the position of the tip and the scanning size, respectively.
Acquired images depicting terraces and an atomically resolved area are pasted in the
background. Data were obtained on FeSe at 100 mK and at a magnetic field of 14.5 T
with a bias voltage of 5 mV and a tunneling current of 4 nA. (b) Interface for the live
preview of the scan. The central panel shows the live tip height profile and the progress
of topographic images made by scanning on the �y directions is shown in the right panels.
(c) Digital PID feedback interface window. (d) Coarse vertical movement (Z�) control
window. (e) Curve acquisition interface showing the current versus voltage as blue and
red lines.

sharpening purposes. This method can also be used to measure the quantum of
conductance as I discussed in section 2.3.3.
One of the main advantages of using a USB data acquisition system is that

it becomes much easier to keep low electronic noise levels. Besides, as it is
the most extended protocol regarding digital data transfer, there are plenty of
accessible devices and solutions in the market. However, when implementing
USB communication routines we had to deal with the associated latency issues.
Adapting the USB latency to that of the operating system of the measuring
computer is specially important in our case, as the data acquisition software we
developed is constantly sending and receiving data through the USB port to
maintain the feedback loop operative. To face this intrinsic problem, we exploited
the power of USB data buffers when coding our program. USB protocol allows us
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to send several orders in packages with no need to wait until the receipt of the
answer to each order before sending the next one. Thus, making use of this data
buffering, we manage not only to avoid eventual latency issues, but we can also
significantly speed up the spectroscopy acquisition process. In fact, we can reduce
the acquisition time by more than a factor 10, what becomes specially important
when performing large spectroscopic studies. Nevertheless, the use of the USB
buffers can be disabled in the program to recover the point by point method.
Combining scanning and spectroscopic tools, the software is capable to perform

STS measurements. For that, the tip stops at every pixel of the topography as
it scans over the sample, the PID loop is disconnected, and an spectroscopic IV
curve is taken before reconnecting the feedback loop and moving to the next point
of the scan. The result of the STS measurement is a file with a matrix of points
containing the topographic information, and a binary file with all the spectroscopic
IV curves. Normally, the program takes four spectroscopic curves at each point of
the topography (forth and back in the scan and forth and back in the IV curve).
However, spectroscopic curves acquisition can be disabled for either forth or back
topography scans to reduce even more the time of the measurements.
Finally, the software incorporates another module to control the coarse vertical

movement of the tip over the sample sending sawtooth voltage signals to Z�

piezostacks (see section 2.3.2). The program controls the size and speed of the
ramps as well as the number of steps. It includes an autoapproach function that
moves the tip towards the sample until the program detects a current value above
a certain threshold. This way we can reach tunneling regime in a controlled way
from a separated configuration.

2.4.2 Calculation of images and their treatment

Analyzing STS data we have to deal with two separated files: a 2D matrix with the
topographic information, and a binary file containing all the spectroscopic curves
obtained along the scanning with no spatial information. It is then necessary to
reorganize the spectroscopic data assigning a local position to each curve so that for
a given energy (bias voltage) and a given location in the topography we can read
just one current value. We used MATLAB environment [89] to develop this software
taking advantage of some built-in functions as well as the app designer tool for the
graphic user interface.
The program is capable of reading raw binary files and generating the conductance

matrices needed for further analysis. After this reading process, the program uses
these matrices to produce real and reciprocal space images providing different tools
to treat them and extract the desired information. As shown in the block diagram of
fig. 2.25, the STS analysis unit of the program consists of a reading module and an
image processing module that can work independently from each other. Thus, one
can use this software just to read binary current versus voltage files and convert them
into 2D matrices, but one can also input the program some previously generated 2D
matrices and directly enter the image processing part.
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Figure 2.25: Block diagram of the data analysis software. The data are stored in a binary
file with the required headers to return image size, position, etc. There is a curve reading
module (Single curves) which allows rendering the data and performing basic operations to
understand tunneling current curves, such as derivation, temperature deconvolution and
plots including many curves. The spectroscopy module (Scanning tunneling spectroscopy)
is separated into a reading module (Reading) which creates current and conductance
matrices, and from these, conductance and Fourier transform maps at given bias voltage
values. The image processing module (Image processing) allows rendering the images in
a user friendly manner and making different operations required to understand real and
Fourier space images.

Reading module

The reading module needs two main inputs: the N by M dimensions of the
topographic image and the corresponding binary file containing the associated
spectroscopic curves. As described above, typical spectroscopic techniques take
curves in both forth and back directions of the topography scan, and these curves
record current data ramping forth and back in bias voltage. Therefore, we will
have four different curves for every pixel of the topography, and the total number
of curves in the binary file will be 4 � N �M . If there are more than 4 � N �M
curves in the file, the program will use by default the first 4 �N �M ones, but the
user will be able to choose a different starting point. The program gives the option
to select which of those four curves will be used to average the tunneling current
value at each pixel. The number of rows (N) and columns (M) is read from the
size of the topographic image, but the user is also allowed to change those values.
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At the beginning of a new analysis, the program asks for the real size of the image
and the value of the lattice parameters to generate well defined units in real and
reciprocal space.
Although our binary file contains the tunneling current data, the important

magnitude for the spectroscopic analysis is the tunneling conductance, that can
be obtained by numerically differentiating the current versus voltage curves. The
derivatives are made following a least square approach to the finite difference
method [90]. The program counts with an interface where the user can modify the
number of derivative points used, correct any offset in the voltage and visualize
the resulting conductance curves (fig. 2.26b). These curves can also be normalized
by the average conductance value inside a certain voltage range to correct for the
setpoint effect as we described in section 2.1.3.
Once the conductance curves have been generated, the program organizes them in

N by M conductance maps for different energies (bias voltages) so that the value of
the pixel �n,m� of a conductance map comes from the spectroscopic curve taken at
the pixel �n,m� in the topographic image. The user introduces the range of voltage
of the maps, the voltage step between two consecutive maps and a small voltage
range, δ�V �, within which conductance values are averaged. As an example, if the
user choose to show conductance maps from �10 mV to +10 mV in steps of 2 mV with
δ�V � = 0.5 mV, the number of generated maps will be 11, and the conductance value
at each pixel inside each map will be computed by averaging �0.25 mV around the
voltage value of each map. The resulting conductance maps are shown in a different
interface together with their 2D fast Fourier transform (FFT). If the previewed
results are satisfactory, the data can be saved into a structure object that stores all
the variables needed for a further image processing analysis.

Image processing module

The image processing module provides a series of useful tools to modify the
conductance maps in real space and their corresponding FFT in reciprocal space,
but once the different matrices have been generated, they can be freely transformed
using any available software. First thing the programs offers is the opportunity
to cut the conductance maps introducing starting and final values for the rows
and columns to focus the analysis in a specific region. FFTs are automatically
recalculated after the cutting process, but the program allows to recalculate them
at any point after any modification to the conductance maps.
Real and reciprocal space maps are analyzed separately. The program counts with

a live viewer where the user can see in real time the adjustments introduced to the
maps (fig. 2.26c,d). Previewed maps can be copied to the clipboard as a raster image
or as a vector object using the built-in MATLAB tools. The user can choose among
several preset colormaps, and the contrast of the images can be controlled using two
sliders. It can be saved individually for each energy. Single spectroscopic curves
can be accessed by mouse-clicking in different points of the maps in the viewer, and
by click-and-dragging over the maps, the averaged curve inside the selected region

66



2.4 Software

a

c

b

d

e f

Figure 2.26: Screenshots from the data analysis software. (a) Main window of the
program with the different modules separated in menu items. (b) Conductance curves
calculation window showing the superconducting gap at a magnetic field of 0.1 T obtained
in β-Bi2Pd as blue lines. (c) Conductance maps visualization window showing an image
of the vortex lattice of in β-Bi2Pd obtained from the zero bias conductance map. (d)
Window showing the Fourier transform of the image in (c). A number of operations can
be performed on the Fourier transform, like rotating, filtering, symmetrizing, etc. (e) Main
window to plot and make calculations on tunneling current and tunneling conductance vs
bias voltage curves. (f) Tunneling current (left panel) and tunneling conductance (right
panel) obtained using Al tip and sample below 100 mK.

is displayed. The averaged current versus voltage and conductance versus voltage
curves in the whole image can be shown by pushing the corresponding buttons in the
real space tab of the main window of the program. Real space maps can be rotated
a certain angle and gaussian-filters with a certain width σ can also be applied.
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Figure 2.27: Peak tracking example showing one of the QPI measurements we performed
in WTe2 (see chapter 4). (a) qy = 0 profiles of the FFT of the conductance maps along
the qx-direction inside the first Brillouin zone for all the energies of the study (black lines).
Colored circles mark the main peaks we observe. (b) Measured Ñq vectors in (a) are plotted
as colored circles with error bars reconstructing the band structure. Calculated bulk band
structure is shown in grey in the background.

Custom profiles can be calculated by positioning a line over the maps in the
viewer. The resulting graph will plot the conductance in the z-axis as a function of
the energy and the distance along the mentioned line. If the profile is performed in
reciprocal space, the FFT amplitude will be plotted as a function of the energy and
the k-distance.
Regarding superconducting data, the analysis software counts with some specific

tools to calculate and plot the size of the superconducting gap along the image. As
for the study of vortices, conductance maps at energies smaller than the gap will
provide the contrast needed to observe the vortex lattice. Once the vortex images
are generated, we can apply vortex identification and triangulation procedures also
developed in our group for a deeper analysis of the vortex lattice [68].
Reciprocal space analysis usually requires more sophisticated operations to extract

the needed information from techniques like QPI. FFT tab inside the program
offers some specific analysis options for these purposes. First of all, the program
allows to remove the unwanted central lines in the vertical and horizontal directions
that sometimes appear after Fourier transforming the real space maps. To reduce
the noise in FFT maps it is convenient to symmetrize the reciprocal space maps
following the symmetry of the crystal lattice. For this matter, as we discussed in
section 2.1.4, the user can first rotate the FFT maps to align the crystallographic
directions with the vertical and horizontal axes, and then apply the corresponding
symmetry transformation. The predefined symmetry operations in the program are
a single mirror, a double mirror in two perpendicular directions, and a rigorous 4-fold
or 6-fold symmetry, but higher order symmetry operations can be manually applied
as well. The FFT tab includes an n � n pixel averaging filter function to further
increase the signal to noise ratio, as well as a Gaussian core subtraction routine
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that reduces the intensity at the smallest wavevectors to increase the contrast of
the images. Warp correction is also available for minor tweaks if needed. As in the
case of real space analysis, FFT images can be gaussian-filtered. Besides, the viewer
can instantly alternate between showing the maps just inside the first Brillouin zone
(1BZ) and the whole range in k.
Profiles along the main symmetry directions are also accessible in the FFT tab.

The user can ask for profiles along the vertical, horizontal and diagonal direction,
as well as a radial profile. The result of these operations is a 2D mapping of the
FFT amplitude as a function of the energy and the reciprocal space distance along
the selected direction. These images provide very useful visual information for QPI
analysis. Applying the peak tracking function of the program to these profiles we can
follow the position of the main scattering vectors for different energies and plot the
reconstructed band structure along the particular direction of the selected profile.
Figure 2.27a shows as black lines the qy � 0 profiles extrated from QPI measuremets
in WTe2 (see chapter 4). From the energy evolution of the different peaks we observe
(colored circles) we can reconstruct the band structure of the material (fig. 2.27b).
Finally, apart from the STS processing tools, the program includes a single

curves analysis unit that differentiates, normalizes and corrects the offset of
individual spectroscopic curves (fig. 2.26e,f). This unit counts as well with some
algorithms to calculate the density of states versus energy curves by deconvoluting
the effects of the temperature of the measurement from the conductance curve of
normal-superconducting (N-S) or superconducting-superconducting (S-S) junctions.
Single curves can be stored with tagged temperature and magnetic field values, and
automated functions inside the program can generate miscellaneous plots including
the calculated conductance, density of states or second derivative of the curves at
different temperatures or magnetic fields.
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3
Magnetic correlations and
quantum criticality in
Rh-doped CeRu2Si2
3.1 Magnetism and heavy fermions

Heavy fermion systems are often compounds which include a rare earth and lighter
elements of the periodic table. The hybridization between localized 4f or 5f
electrons of the rare earth and the s, p or d conduction electrons of the lighter
elements can sometimes lead to metals whose electrons have very large effective
masses and small Fermi velocities. Heavy fermion compounds are of great interest
in the frame of this thesis because of two relevant aspects. First, they often present
magnetic order related to incomplete f -electron shells. Second, their high effective
masses result in an anomalously large electronic entropy conserved at very low
temperatures which leads to huge Grüneisen parameters. As a consequence, slightly
modifying a tuning parameter by doping, magnetic field or pressure, for example,
modifies the ground state.
Here, we are particularly interested on the phenomenon of the disappearance of

antiferromagnetism, which is often related to the appearance of superconductivity.
We studied the changes in the antiferromagnetic properties in a system that has
no superconductivity at all. Thus, we can directly access the band structure
modifications related to magnetic properties without any superconducting gap
opening. The hope is that the achieved understanding will also help better
understand situations that lead to the appearance of superconductivity. As we shall
see, the result is that we have identified the features in the tunneling conductance
which can be directly associated to magnetism and followed their evolution with
the magnetic field. All this occurs in an extremely small energy range, of just a
few meV, which makes the system very sensitive to the magnetic field through the
Zeeman shift of the band structure.
The ground state in a heavy fermion system is typically antiferromagnetic,

and upon pressure, the system enters a paramagnetic phase in which electronic
properties follow the Fermi liquid picture. These two phases are separated by a
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zero temperature phase transition at the so-called quantum critical point (QCP).
In some heavy fermion compounds, an unconventional superconducting dome
emerges around the QCP. High-Tc superconductivity in cuprates and pnictides
appears close to an antiferromagnetic phase as well (see section 1.3.1), and some
of the phases in twisted bilayer graphene might also present magnetic properties.
Therefore, understanding the origin of these magnetic phases, in particular
antiferromagnetism, and how they can be considerably modified by applying
a magnetic field, is key to explain such a complex collective phenomenon as
unconventional superconductivity.
Antiferromagnetism is intriguing because it can arise in different ways, many

of which are related to an exchange interaction between magnetic moments and
conduction electrons. For instance, the oscillatory nature of Bloch functions leads
to a form of the exchange interaction that changes sign at certain distances,
inducing antiferromagnetic order. This occurs in Cr, which is the prototypical
antiferromagnet. There, antiferromagnetism arises because there are portions of the
Fermi surface which are parallel to each other [91, 92]. This favors antiferromagnetic
indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions with a Ñq wavevector
connecting the two parallel surfaces (see left inset in fig. 3.1). Thus, there is a spin
density wave with a wavevector that coincides exactly with the Fermi wavevector
connecting the two parallel regions, and a gap opens in the band structure at the
nesting wavevector producing a peak in the resistivity [91, 93].
There is yet another situation caused by superexchange, a virtual process by which

an electron or hole leaves the ion and is replaced by an electron or hole of opposite
spin [94]. When superexchange occurs in a system with highly localized magnetic
states, like a few isolated f -electron ions, in coexistence with conduction electrons
from a solid of non-f -electron ions, it leads to the Kondo interaction [95]. The Kondo
interaction results in kind of a local antiferromgnetism in the sense that it creates
a cloud of conduction electrons around the magnetic impurity with opposite spin to
that of the localized magnetic moment (see bottom-right inset in fig. 3.1).
Figure 3.1 shows the Doniach diagram summarizing these two aspects and

showing how they compete with each other [96]. The temperature of the Kondo
interaction depends exponentially on the product of the exchange energy, J , and
the density of states, N . On the other hand, the RKKY temperature goes as
J2 � N . We find thus two ground states as a function of J , separated by a zero
temperature phase transition at a quantum critical point. One in which the RKKY
interaction dominates the Kondo interaction and the system shows RKKY induced
antiferromagnetic order, and another one where we find Kondo screened magnetic
moments.
The most intriguing features occur in systems which have an f -electron element

in each unit cell. In 1977, S. Doniach proposed that heavy electron metals can
be understood as Kondo lattices where every single local magnetic moment in the
lattice is Kondo screened by the conduction electrons sea [97]. In a situation like
this, the behavior is neither that of Cr with the RKKY spin density wave, nor that
of isolated magnetic impurities in a simple metal with the Kondo interaction. It
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Figure 3.1: Doniach diagram showing the competition between RKKY interaction and
Kondo screening in the temperature versus exchange interaction, J , plane. There are two
ground states, an antiferromagnetic and a Kondo state, separated by a zero temperature
phase transition at the quantum critical point. A non-Fermi liquid phase can arises in the
vicinities of the quantum critical point. Left inset: Fermi surface in bulk Cr. Electron and
hole pockets are represented by green and orange lines, respectively. Antiferromagnetism
originates from the Fermi surface nesting due to the presence of parallel regions connected
by the wavevector Ñq. Bottom-right inset: schematic representation of a local magnetic
moment (purple) Kondo screened by the conduction electron (or hole) sea (yellow cloud
around the magnetic impurity).

involves each and every electron in the system and one has to think of collective
phenomena.
In a simplified picture, we can take an f -electron band and consider its

hybridization with a light conduction electron band (see fig. 3.2). The result is a
system where there are nearly flat bands in both the antiferromagnetic and the
Kondo states. This system is known as a heavy fermion system, and it shows
behaviors that are different from the simple spin density wave scenario and RKKY
interactions. For instance, there is antiferromagnetism whose wavevector is not
connected to any Fermi wavevector and there is no single ion Kondo effect. Instead,
heavy fermions are typically good metals with high electron effective masses.
The central question in this debate, which I will address in this chapter, is how

does such an antiferromagnet cease to exist, or to say it otherwise, how should we
understand such an antiferromagnet: is antiferromagnetism a collective spin density
wave phenomenon that disappears at the quantum phase transition, or do electronic
correlations disappear with antiferromagnetism?
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Figure 3.2: Scheme of the hybridization of the band structure in a Kondo lattice at
low temperatures. The hybridization between the heavy f -band (purple) and the light
conduction band (orange) results in the hybridized bands represented as solid black lines.
Right panel shows a zoom into one of the contact points between the heavy and light
bands.

To answer this question we need to visualize electronic states around the Fermi
level making use of techniques like quasiparticle interference (see section 2.1.4). But
before discussing our STM results in the heavy fermion Ce(Ru0.92Rh0.08)2Si2, I will
briefly review some singularities which are needed to understand STM experiments
in heavy fermion systems.

3.1.1 Kondo tunneling

Tunneling into a single Kondo impurity

Let me start describing the situation of a single Kondo magnetic impurity on the
surface of a normal metal. When a magnetic adatom lies on top of a metallic
surface, at sufficiently low temperature, the antiferromagnetic exchange interaction
between conduction electrons of the metal and the localized magnetic f -state on the
Kondo impurity leads to a resonance close to the Fermi level (see fig. 3.3a). If we
approach the STM tip to a surface like this, electrons from the tip find three different
possibilities to tunnel into the sample. As sketched in fig. 3.3b, they can tunnel into
the empty states of the bulk above the Fermi level of the metal with a probability
t1, directly into the Kondo resonance close to the Fermi level with a probability
t2 (this tunneling process is also known as cotunneling [98, 99]), or indirectly into
the localized state of the magnetic adatom via spin-flip with a probability t3. The
tunneling current is determined by the quantum interference between the two first
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Figure 3.3: (a) Schematic representation of the electronic states in a metallic sample with
a Kondo impurity. In addition to the two states of the magnetic atom below and above
the Fermi level, a narrow Kondo resonance appears around EF . (b) Diagram of the three
available tunneling channels when approaching the STM tip. Electrons can tunnel to the
empty states of the bulk (t1), to the Kondo resonance (t2) or to the localized magnetic
state via spin-flip (t3). Spin-up and spin-down states are depicted as red and blue arrows,
respectively. (c) Expected shape for the tunneling conductance versus energy curves from
eq. (3.1) for different values of the form factor q.

processes, which preserve the spin [100, 101]. The third tunneling channel does not
interfere with the other two processes because of the spin flip.
The quantum interference between the two spin-preserving tunneling paths results

in an energy spectrum, ρ�E�, described by the Fano equation [102]:

ρ�E�� ρ0 �
�q � ε�2

1 � ε2 , (3.1)

where ε � E �E0, with E0 being the energy position of the Kondo resonance, and
the form factor q � t2~t1. Therefore, if we were to measure the tunneling conductance
versus bias voltage in a system like this, we would obtain the Fano curves shown
in fig. 3.3c with different shapes depending basically on the ratio between the two
transmission probabilities, t2 and t1.

Tunneling into a Kondo lattice

The situation is a little more complex if instead of a single Kondo impurity
we tunnel into a Kondo lattice. Here, the heavy f -band and the conduction
band hybridize giving rise to the so-called hybridization energy range [103, 104].
Figure 3.4a illustrates the situation of a Kondo insulator, where the hybridization
of the bands results in an absence of states at the Fermi level, and fig. 3.4b pictures
the hybridization scheme of a Kondo metal. In both cases, if there is not much
disorder, the hybridization energy range provides two sharp peaks located at the
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Figure 3.4: Schematic representation of the hybridization of the bands in a Kondo
insulator (a) and in a Kondo metal (b). (c) Density of states versus energy expected
from the hybridized band structure in (b) featuring two peaks at the energies where the
bands are flatter.

energies where the hybridized bands are flatter and the density of states is thus
higher (see fig. 3.4c).
This way, STM tunneling conductance versus bias voltage measured in a Kondo

lattice feature two peaks inside the hybridization energy range, whose position is
directly related to the energy position of the top and bottom of the hybridized
bands. The hybridization energy range can be much smaller than that of the Fano
resonance as I will discuss below in our STM results.

3.2 Ce(Ru0.92Rh0.08)2Si2: phase diagram and
surface characterization

To clarify the question I introduced above regarding antiferromagnetism and how
it disappears, we have chosen a system where we have heavy fermions, disorder
to produce scattering and study the band structure through QPI, and where we
can go from an antiferromagnetic to a paramagnetic phase in a small field range.
This system is the 8%-Rh-doped CeRu2Si2, which shows an antiferromagnetic
to paramagnetic phase transition at 2.5 T. There are other compounds such as
YbRh2Si2 which also show vanishing antiferromagnetism with magnetic field
[105]. The associated energy scales are however much smaller than those of
Ce(Ru0.92Rh0.08)2Si2. For instance, at zero magnetic field, the Néel temperature
(TN) above which the antiferromagnetic phase vanishes in YbRh2Si2 is lower than
100 mK, what makes it experimentally very challenging to explore the different
magnetic phases. In contrast, Ce(Ru0.92Rh0.08)2Si2 shows much higher critical
temperatures (TN�0 T� � 4.2 K) and the intrinsic doping allows us to directly
observe the electronic wavefunctions through QPI. It is important to note that
ARPES cannot be used to address a problem like this that requires the application
of a magnetic field and very low temperatures, and that other similar compounds
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Figure 3.5: (a) Adapted from [106]. Magnetic field-pressure-temperature phase diagram
in CeRu2Si2. (b) Magnetic field versus temperature CeRu2Si2 phase diagram for pressures
below the critical pressure, Pc. The antiferromagnetic to paramagnetic transition at Hc is
represented by a solid line. The dashed line marks the pseudo-metamagnetic transition at
finite temperatures. (c) Same for pressures above Pc. Low field nearly antiferromagnetic
phase and high field polarized paramagnetic phase are separated by a zero temperature
transition. (c) Magnetic field versus temperature phase diagram of Ce(Ru0.92Rh0.08)2Si2
showing the two clearly separated magnetic transitions at zero temperature.

require magnetic field or temperature ranges which are out of reach. Hence,
working with Ce(Ru0.92Rh0.08)2Si2 sets us in quite a unique and nice situation.
CeRu2Si2 is a very well known heavy fermion compound that displays different

magnetic phases upon pressure and applied magnetic field. The stoichiometric
compound displays a paramagnetic ground state that can be driven to an
antiferromagnetic phase by applying a slightly negative pressure of a few kbar
[107]. This can be achieved by La substitution on the Ce site. Figure 3.5a shows
the magnetic field-pressure-temperature phase diagram for CeRu2Si2. The zero
temperature phase transition between antiferromagnetic and paramagnetic states
occurs at 7.5 % of La doping. Applying external magnetic field below the critical
pressure, Pc, drives the system from an antiferromagnetic to a paramagnetic phase
above the critical field Hc�T �. The strong interplay between antiferromagnetic and
ferromagnetic correlations at Hc can lead to a highly polarized phase at high fields
[108, 109].
Close to Pc, the antiferromagnetic and Kondo fluctuations become comparable and

the phase transition at Hc is replaced by a so-called pseudo-metamagnetic crossover
phenomena, Hm, that is identified by a strong enhancement of the effective mass, a
decay in the field induced ferromagnetic fluctuations and a remarkable change in the
Fermi surface [107, 108, 111, 112, 113, 114]. For pressures below Pc, theHm crossover
meets theHc�T � line at a finite temperature. In this situation, at lower temperatures
there is an antiferromagnetic to paramagnetic first order metamagnetic transition
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Figure 3.6: (a) Sketch of the tetragonal atomic structure of CeRu2Si2. Ce, Ru and
Si atoms are represented as yellow, grey and blue balls. Rh-doping is introduced by
substitution in the Ru sites. (b) Adapted from [110]. Top: Schematic representation of
the reciprocal space in CeRu2Si2. The irreducible first Brilouin zone is delimited by red
lines. Bottom: neutron scattering intensity map of constant energy scans acquired with
E � 1 meV at 1.5 K showing antiferromagnetic spin correlations at the three wavevectors Ñk1,
Ñk2 and Ñk3. (c) Schematic diagram of the spin fluctuation in Ce(Ru0.92Rh0.08)2Si2. We show
ten unit cells along c-direction with Ce atoms represented as black circles. Local magnetic
moments are aligned to the c-axis and their intensity varies with the antiferromagnetic
vector Ñk3 following the color scale on the left where deep red and deep blue correspond to
spin �1~2 and spin �1~2, respectively.

at Hc�T �, and above a certain temperature, a polarized paramagnetic phase arises
when crossing the Hm frontier (see fig. 3.5b). For pressures higher than Pc, Hm and
Hc concur at T � 0 and we can have a zero temperature transition from a nearly
antiferromagnetic phase to a polarized paramagnetic phase (see fig. 3.5c).
Applying positive pressure by substituting Rh on the Ru sites decouples Hm

from Hc as shown in the magnetic field versus temperature phase diagram of the
8%-Rh-doped compound in fig. 3.5d. This phase diagram can be obtained from
macroscopic specific heat, magnetostriction or thermal expansion measurements,
which show clear features at the different phase transitions [111]. The ground state
of Ce(Ru1�xRhx)2Si2 is antiferromagnetic for x A xc � 0.05. For x � 0.08, the Néel
temperature is 4.2 K and we have two clearly separated zero temperature magnetic
transitions. One at 2.5 T above which magnetic order completely vanishes entering
a paramagnetic phase, and another one at 5.5 T from the paramagnetic state to a
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polarized paramagnetic phase. Therefore, Ce(Ru0.92Rh0.08)2Si2 allows us to explore
these magnetic phases in temperature and magnetic field ranges which are easily
accessible by the experimental setup developed in this thesis.
CeRu2Si2 crystallizes in a tetragonal structure belonging to the space group

I4mmm with lattice parameters a � 4.196 Å and c � 9.797 Å [115] (see
fig. 3.6a). Neutron inelastic experiments in stoichiometric CeRu2Si2 show
that antiferromagnetic correlations display three peaks at the wavevectorsÑk1 � �0.31,0,0�, Ñk2 � �0.31,0.31,0� and Ñk3 � �0,0,0.35�, as shown in the intensity
map of constant energy scans with E � 1 meV inside the first Brillouin zone
measured by Kadowaki et al. [110] (see fig. 3.6b). This means that there are three
main directions along which magnetic fluctuations are expeted to occur in this
material. As the fluctuating magnetic moments are oriented along c-axis, the two
first in-plane wavevectors, Ñk1 and Ñk1, are transverse modes, and Ñk3 is a longitudinal
one.
La-doped CeRu2Si2 presents transverse antiferromagnetic ordering along Ñk1 at zero

field. When increasing magnetic field the antiferromagnetic orientation changes fromÑk1 to Ñk2 before disappearing above Hc. It turns out that doping with Rh favors the
antiferromagnetic wavevector Ñk3, and thus, as sketched in fig. 3.6c, the ground state
of our Rh-doped sample is an antiferromagnet where the spin changes the orientation
along c-axis flipping every � 3 unit cells.

3.3 STM characterization of the surface

We measured single crystalline samples of Ce(Ru0.92Rh0.08)2Si2 grown by Dai Aoki
in Grenoble. We prepared rectangular bars of a few mm long and � 0.5 mm wide
oriented with the crystallographic c-axis parallel to the long direction. We inserted
one of these bars in a small hole in the sample holder and glued it with silver epoxy.
Once at 4.2 K, we cleaved the sample with a ceramic blade using the in-situ slider
described in section 2.3.4 obtaining very large atomically flat areas. Figure 3.7
shows some scanning electron microscope (SEM) images (a,b,c) as well as an optical
microscope image (d) from one of the Ce(Ru0.92Rh0.08)2Si2 samples we measured.
In these images we can appreciate how the cleaving process in cryogenic conditions
provides atomically flat areas all over the sample. We also spot lines that appear
during the breaking process and follow one of the in-plane crystallographic directions.
However, there is no evidence of a clear cracking point or modifications of the surface
structure by the cracking process like those previously reported in URu2Si2 [116].
This shows that Ce(Ru0.92Rh0.08)2Si2 surfaces are free of strain or modifications
induced by cracking, probably because the structural bonds are weak along the
c-axis.
Figure 3.8a shows one of the STM topographic images we obtained at 100 mK

and zero magnetic field inside a 26 � 26 nm2 region where we can see the square
arrangement of the atoms in the surface. The Fourier transform in the inset
features the Bragg peaks of the square lattice together with some scattering signal
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Figure 3.7: (a) Scanning electron microscope (SEM) image taken on one of the measured
Ce(Ru0.92Rh0.08)2Si2 samples after the cleaving process at cryogenic conditions. Red and
blue boxes mark the positions at which the SEM images in (b) and (c) were taken,
respectively. (d) Optical microscope image taken inside the region enclosed by the green
box in (a). Black horizontal scale bars are 20 µm long.
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Figure 3.8: (a) STM topograhic image taken at 100 mK and zero magnetic field in
Ce(Ru0.92Rh0.08)2Si2 with a bias voltage of 10 mV and a setpoint current of 2.5 nA. Black
scale bar is 5 nm long. Fourier transform of the topography is shown in the inset. First
order Bragg peaks are marked with white circles. (b) Strain as a function of the position in
the same field of view of (a) obtained by comparing the pattern observed in the topography
with a perfect undisturbed periodic lattice [52, 117]. Positive (red) and negative (blue)
values represent compressed and expanded regions, respectively. The distortion caused by
Rh atoms is randomly distributed over the sample, without clustering or any significant
internal strain. Strain map is superposed to a binary map of the topography in (a)
saturated for height changes below 0.4 Å. Black regions cover an 8.8 % of the sample.
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at small wavevectors introduced by the presence of Rh in the sample. Following
Refs. [52, 117], we can calculate a strain map from the height displacement
observed in the topography. To this end, we compare the pattern observed in
fig. 3.8a with that expected for a perfect periodic lattice and assume that height
displacements in the topography are due to lateral displacements coming from
the Ru/Rh substitution. The resulting strain map is shown in fig. 3.8b, with
positive strain (compression) represented in red and negative strain (expansion), in
blue. We observe a small (@ 1 %) and continuous distribution of strain without
any signatures of strain accumulation, what evidences a random distribution of
Rh on the Ru sites. The number of Rh atoms in fig. 3.8a can be estimated by
saturating the image at a height of about 0.4 Å. The resulting map is plotted in
the background of the strain map in fig. 3.8b and shows a distribution of Rh atoms
of 8.8 %, which is close to the nominal concentration of 8 %. Besides, we also
observe a correlation between the regions of the image with Rh substitution and
the regions of the sample showing expansive strain.

3.3.1 Tunneling spectroscopy with magnetic field

We analyzed the tunneling spectrum measuring conductance versus bias voltage
curves at 100 mK as a function of magnetic field from 0 T to 7.5 T. Figure 3.9 plots
the curves we measured in two different energy scales, �90 mV and �8 mV. I used
red, green and blue colors to represent the curves taken in the antiferromagnetic,
paramagnetic and polarized paramagnetic phase, respectively.
In a bigger energy scale from �90 mV to +90 mV (fig. 3.9a) the spectrum follows

the form of the Fano resonance. The general shape of the curves is similar in the
different magnetic phases and we do not appreciate any drastic change with magnetic
field. This evidences a cotunneling between a resonant state and a continuum. The
curves can be fitted to the Fano expression in eq. (3.1) (see black line in fig. 3.9a). We
find in particular E0 � 30 meV, which coincides with the lowest crystal field excitation
of 4f -electrons from Ce in CeRu2Si2 [118, 119, 120]. Thus, in this energy range, our
results evidence cotunneling between resonant 4f -states and free electrons.
Figure 3.9b shows the tunneling conductance curves measured between �8 mV

and +8 mV. Note that in this plot we have removed the linear background from the
curves coming from the shape of the Fano resonance. The tunneling conductance
curves show a dip close to the Fermi level (fig. 3.9b). The dip remains at all magnetic
fields. However, its internal structure is strongly magnetic field dependent. The dip
is asymmetric at zero field with a small peak observed at around 2 mV. When
increasing the magnetic field, the peak moves inside the dip and the dip widens
to approximately twice the zero field value. Black solid lines in fig. 3.9b mark
the size evolution of the dip with magnetic field. We identify this gap as the
hybridization energy range that hallmarks the Kondo lattice. This hybridization
energy range is clearly present in every magnetic phase of the phase diagram, what
means that Kondo screening and heavy electrons do not disappear at the quantum
phase transition and that they are present in the whole phase diagram.
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Figure 3.9: (a) Tunneling conductance versus bias voltage curves for different values
of the magnetic field for V � �90 mV. Black line fits the curve at 0 T to the Fano
expression using the lowest crystalline field splitting of Ce 4f -electrons. (b) Tunneling
conductance versus bias voltage for V � �8 mV, where the linear backgrounds coming
from the shape of the Fano resonance have been removed. Black continuous lines indicate
the hybridization energy range and black dashed lines, the magnetic field evolution of
the peak coming from the van Hove anomaly. All data are taken at 100 mK. Data in
the antiferromagnetic, paramagnetic and polarized paramagnetic phases are shown in red,
green and blue, respectively. Curves are shifted upwards for better visualization.

We can take a closer look at two representative curves at zero magnetic field
and at high field. Figure 3.10a shows the hybridization energy range in tunneling
conductance versus voltage curves at 0 T and 7 T in the antiferromagnetic and
highly polarized phases, respectively. Interestingly, we observe that the sign of
the derivative of the conductance curves at zero bias changes through the different
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Figure 3.10: (a) Conductance versus bias voltage curves at 0 T (red) and 7 T (blue).
Curve at 7 T is shifted upwards for better visualization. Orange lines mark the sign of the
derivative of the curves at zero bias. Black arrows mark the peaks coming from a van Hove
singularity. (b) Value of the zero bias derivative of the background removed conductance
versus voltage curves as a function of the voltage. Antiferromagnetic, paramagnetic and
highly polarized regions are shown in red, green and blue, respectively. Inset: adapted from
[121]. Measured thermoelectric power parallel to a-axis (purple) and to c-axis (orange)
versus magnetic field.

magnetic phases. It is positive in the antiferromagnetic phase and negative in the
high field polarized paramagnetic phase (see slope lines in fig. 3.10a). Figure 3.10b
plots the value of the zero bias derivative of the background removed conductance
curves we measured as a function of magnetic field. These points display two local
possitive peaks at 1.5 T and 4.5 T and a negative peak at 5.5 T coinciding with the
paramagnetic to polarized phase transition. Inset in fig. 3.10b shows the macroscopic
thermoelectric power measurements of the Seebeck coefficient in this material [121],
that mainly depend on the derivative of the density of states at the Fermi level.
The tunneling conductance, as well as the thermoelectric power, present a change
from a mainly positive sign at low magnetic fields (positive derivative dN~dE) to a
negative sign at high magnetic fields (negative derivative dN~dE).
To understand the behavior close to the Fermi level we can take a close look on

the band structure. The conductance curve at zero field shows a peak at around
2 mV that comes from the increase in the density of states at that energy due to the
presence of a van Hove singularity, which arises from the energy overlap between
flat regions of the hybridized band structure (see black arrow in fig. 3.10a). As I will
further discuss in the following section, as the Zeeman splitting of the hybridized
bands becomes stronger with increasing magnetic field, the energy at which the
flat parts of the bands overlap varies. Thus, the energy position of the van Hove
anomaly evolves with magnetic field. The peak we see in our curve at around 2 mV
at 0 T gradually moves to lower energies as magnetic field increases as shown by the
black dashed line in fig. 3.9b. This way we end up having the peak right inside the
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3. Magnetic correlations and quantum criticality in Rh-doped CeRu2Si2

hybridization energy range at high magnetic fields, what eventually alters the sign
of the derivative of the curves at zero bias.

3.4 QPI: band structure evolution through the
magnetic transitions

To further explore the shape of the bands through the different magnetic phases
of Ce(Ru0.92Rh0.08)2Si2, we performed some quasiparticle interference measurements
in each phase. The method we used is described in section 2.1.4. We studied
the scattering patterns in three different regions at 0 T, 3 T and 7.85 T in the
antiferromagnetic, paramagnetic and polarized paramagnetic phase, respectively.
All the measurements were performed at 100 mK.
Figure 3.11a-c show the topographic images of the regions where we performed

the QPI analysis at 0 T, 3 T and 7.85 T, respectively. In all of these images
we observe the square atomic lattice and some slightly lower areas (darker areas)
coming from the Rh defects, which provide the scattering signal needed for the
quasiparticle interference measurements. Although we performed the QPI analysis
in three different fields of view, we reproducibly found the same kind of surfaces
all over the sample. Besides, even if we observe some single impurities on top of
the surfaces (white spots in fig. 3.11a-c), the scattering signal is dominated by the
presence of Rh defects, that are randomly and homogeneously distributed over the
sample. Therefore, all the differences we observe in the scattering patterns measured
in the three different cases can be attributed to magnetic field induced modifications
in the band structure.
Fourier transforms of the topographic images are shown in the inset of fig. 3.11a-c

displaying the Bragg peaks of the square lattice and a huge amount of scattering
signal at small wavevectors. We took conductance curves between �10 mV and +10
mV at every pixel of the topographies and built spatially resolved conductance maps
for all the energies of the study. Figure 3.11d-f show some of these conductance maps
at some representative energies together with their Fourier transforms inside the first
Brillouin zone. To enhance the signal to noise ratio in the Fourier transform maps,
we symmetrized them following the C4 symmetry of the crystal and applied a 3 � 3
pixel average filter. We also applied a Gaussian core subtraction centered at Ñq � 0
to filter out the smallest wavevectors and increase the contrast of the images.
Starting in the antiferromagnetic phase at 0 T, the main part of the scattering

signal in the Fourier transform maps displays a circular shape around the center
that reaches its maximum intensity between 1 and 2 meV in agreement with the
position of the peak from the van Hove anomaly in the tunneling conductance curve
I discussed above. At 3 T, the maximum intensity of this circular feature around
the center also occurs between 1 and 2 meV, but the intensity of this circle in the
adjacent maps at 0 meV and 3 meV is higher than the case at 0 T. For the case of
7.85 T, the maximum intensity of the circular shape is reached between 2 meV and
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Figure 3.11: (a,b,c) STM topographic images taken at 100 mK and 0 T, 3 T and 7.85 T,
respectively, in three different regions where we studied the quasiparticle interference
scattering (Vbias � 10 mV, Isetpoint � 2.5 nA). White horizontal scale bar is 5 nm long.
Insets show the Fourier transforms of the images highlighting the first order Bragg peaks.
(d) 0 T conductance maps for some representative energies in the same field of view of
(a). The symmetrized Fourier transform maps inside the first Brillouin zone are shown
below the corresponding conductance map. (e) Same at 3 T in the field of view of (b).
(f) Same at 7.85 T in the field of view of (c). Yellow arrows mark the position of a four-fold
symmetric scattering point in the paramagnetic phase.

3 meV, but the behavior of this feature is much more homogeneous between 1 meV
and 4 meV.
Apart from the circular shape in the center, we also spot some directional features

in the maps at 0 T that turn the scattering circle into a star-like shape with the
vertices along qx1, which is the direction of the square atomic lattice. At 3 T, these
features materialize in four scattering points at around 0.45 π~a in qx that are clearly

1As the crystal is four-fold symmetric, qx and qy directions are equivalent.
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3. Magnetic correlations and quantum criticality in Rh-doped CeRu2Si2

visible in the maps between 1 meV and 4 meV (see yellow arrows in fig. 3.11e). These
points are not resolved in the maps at 0 T or at 7.85 T.
To better compare the scattering signal in the three different cases, we took profiles

along qx direction in the Fourier transform maps for all the energies of the study (see
white dashed lines in fig. 3.11d-f). Figure 3.12a-c respectively show these profiles at
0 T, 3 T and 7.85 T with qx in the horizontal axis and energy in the vertical axis. The
main part of the scattering lies inside a small energy range slightly above the Fermi
level and it extends up to approximately half the Brillouin zone. At 0 T (fig. 3.12a),
we see that the main scattering cloud displays an electron-like dispersion at positive
energies. At 3 T (fig. 3.12b), we clearly spot an additional scattering vector and
the electron-like line features become more obvious. The energy range for enhanced
scattering becomes wider with increasing magnetic field. At 7.85 T(fig. 3.12c), the
scattering intensity at small Ñq is much more spread along the whole energy range.
To understand the profile at 0 T we can discuss a simple hybridization band

scheme. To model a band structure that fits our QPI data, we used a sinusoidal
approach for the light and heavy bands:

E�kx� � E0 cos�π
a
kx� � ε, (3.2)

with E0,c � �110 meV and εc � 100 meV for the light conduction band, Ec�kx�, and
E0,f � �0.9 meV and εf � 1.2 meV for the heavy f -band, Ef�kx�. Figure 3.12d
plots the light conduction band in yellow and the heavy f -band in purple. The
hybridization of these two bands is given by:

E�

h�kx� � Ec�kx� �Ef�kx�2 �

¿ÁÁÀ�Ec�kx� �Ef�kx�2 �2

� s2, (3.3)

where we used s � 2 meV and s � 4 meV for E�

h�kx� and E�

h�kx�, respectively. The
hybridized bands are represented by solid black lines in fig. 3.12d. In this simplified
picture of a Kondo metal, the top and bottom of the hybridized bands are located
right above the Fermi level. In first approximation, to estimate the scattering signal
expected from such a band structure, we can calculate the joint density of states
(JDOS) and plot it in fig. 3.12g over our QPI profile. The JDOS map will display
higher intensity at Ñq vectors connecting certain regions of the band structure, for
instance flatter parts of the Fermi surface. Arrows in fig. 3.12d,g identify the regions
of the band structure responsible for the different lines we observe in the JDOS map.
As might be expected, the largest contribution to the scattering comes from the flat
portions of the band structure, where van Hove anomalies arise. It is concentrated
in a narrow energy range above the Fermi level, enclosed between the bottom and
top of the hybridized bands. Among other features, JDOS maps show a vector
at positive energies coming from the intra-band scattering in the E�

h band that
follows an electron-like dispersion. If we compare the calculated JDOS with our
QPI profile, we see that it quite well fits our data providing an interpretation for
the more intense scattering spots in the QPI data as coming from the scattering
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Figure 3.12: (a,b,c) Profiles from the Fourier transform of the conductance maps along
qx inside the first Brillouin zone for all the energies of the study measured at 0 T, 3 T and
7.85 T, respectively. (d) Simplified model for the band structure in Ce(Ru0.92Rh0.08)2Si2
at 0 T. Conduction band is depicted in yellow, heavy f -band, in purple, and hybridized
bands, in black. (e,f) Band schemes at 3 T and 7.85 T, respectively, introducing a Zeeman
splitting into the hybridized bands. Spin-up and spin-down components are shown in red
and blue, respectively. Zeeman splitting of the bands results in a spin imbalance at the
Fermi level for the case of 7.85 T as only the spin-down component of the upper band
crosses the Fermi level. (g,h,i) JDOS maps calculated from the hybridized band structures
in (d,e,f), respectively, plotted over the QPI profiles in (a,b,c). Arrows in (g) identify the
position of the scattering Ñq vectors marked in (d). Maps in (h,i) are calculated assuming
that scattering can only occur between bands with the same spin.

between the flat regions of the hybridized band structure. Intra-band scattering in
the E�

h band explains the increase of scattering intensity at higher energies. These
electron-like dispersive features are better resolved in the QPI profiles at 3 T.
As magnetic field increases, our QPI data show how the enhanced scattering cloud

at small Ñq in the profiles broadens in energy. To follow this energy broadening using
a band structure interpretation similar to what we did with the profiles at zero field,
we have to consider Zeeman splitting in the hybridized band scheme. Figure 3.12e,f
show the hybridized band scheme at 3 T and 7.85 T, respectively, where we have
introduced a Zeeman energy splitting of EZ~H � 0.12 meV/T to account for the
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3. Magnetic correlations and quantum criticality in Rh-doped CeRu2Si2

energy broadening we observe in our QPI data. Up and down spin components of
the bands are plotted in red and blue, respectively. JDOS maps in fig. 3.12h,i coming
from the split band structure were calculated as in the case of 0 T considering that
scattering among bands with different spin directions is forbidden. JDOS maps are
in good agreement with the QPI profiles obtained in the paramagnetic phase and
in the polarized paramagnetic phase showing how Zeeman splitting can account for
the energy broadening of the scattering signal in our QPI data.
In systems where the spin component of the orbital momentum, S is higher than

1/2, S and L (the orbital component), may not be good quantum numbers and
the total angular momentum, J � S � L, must be considered. In this situation, the
Zeeman energy is given by the following expression [122]:

EZ � µBgJJH, (3.4)

where µB is the Bohr magneton, gJ , the Landé g-factor, and H, the applied magnetic
field. The Landé g-factor can be obtained as a function of S, L and J [122]:

gJ �
3
2 �

S�S � 1� �L�L � 1�
2J�J � 1� (3.5)

In Ce systems like this, the multiplet J � 5~2 is typically considered, leading to
gJ � 6~7 [123]. Introducing these values into eq. (3.4), the expected Zeeman energy
is EZ~H � 0.124 meV/T. To compare this value with the experiments, let us note
that the entry into a polarized paramagnetic phase at 5.5 T implies a magnetic field
induced shift in the band structure which is large enough to make one spin polarized
band to cross the Fermi level, leaving the other spin polarization unoccupied. The
band structure we have calculated following our data (fig. 3.12d) provides such a
situation assuming a Zeeman energy of 0.12 meV/T.
Notice that, at 3 T, we observe two spots in our data at around qx � �0.45 π~a

centered at around 1 meV and their dispersive patterns for positive energies.
Although there is an increase in the JDOS pattern at finite qx due to the shifts in
the top and bottom of the bands, these features are not fully reproduced by our
simple band structure model (see (fig. 3.12h). The presence of this scattering vector
suggests the presence of a new band in the paramagnetic phase. The scattering
vector slightly reduces as energy increases, pointing to a hole-like character for
this band. This band is clearly directional along the crystallographic axes and
four-fold symmetric as shown by the QPI maps in (fig. 3.11e). At the highest
magnetic field (fig. 3.12i), the Zeeman shift minimizes overlap between portions of
the band structure and thus the pattern becomes washed out, as also observed in
the experiment.
Measured QPI patterns in fig. 3.12a-c show broadened features rather than lines.

This can be explained from an energy broadening of the band structure due to the
high electron-electron correlations in this material. To take this into account, we
can add a Lorentzian energy broadening, L�E�, to the hybridized band structures
in fig. 3.12d-f following the model presented by Nagaoka et al. [124]:
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Figure 3.13: (a,b,c) Profiles from the Fourier transform of the conductance maps along qx
inside the first Brillouin zone for all the energies of the study measured at 0 T, 3 T and 7.85
T, respectively. (d,e,f) Hybridized band structure from fig. 3.12d,e,f where we have applied
an energy broadening using the Lorentzian function from eq. (3.6) with T � 0.1 K and
TL � 4 K. (g,h,i) JDOS maps calculated from the broadened hybridized band structures in
(d,e,f), respectively, plotted over the QPI profiles in (a,b,c). Maps in (h,i) are calculated
assuming that scattering can only occur between bands with the same spin.

L�E� � 1

1 �
�� E»�πkBT �2 � 2�kBTL�2

��
2 , (3.6)

where kB is the Boltzmann constant, T , the temperature, and TL denotes an effective
temperature accounting for the electron-electron correlations. Figure 3.13d-f shows
the resulting hybridized bands after applying this broadening using T � 0.1 K and
TL � 4 K. Figure 3.13g-i shows the calculated JDOS maps from the broadened bands
in fig. 3.13d-f. In this case, we observe blurred structures in the JDOS maps around
the energies at which the band structure is flatter instead of the separated line
features in fig. 3.12g-i. Thus, we manage to more accurately fit our measured QPI
data thanks to the blurring introduced in the scattering predictions by the energy
broadening of the bands due to the strong electronic correlations in this compound.
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Figure 3.14: (a,b,c) Energy versus qx profiles from QPI measuments at 5 K and 0
T, 3 T and 4.5 T, respectively in the paramagnetic phase. Insets show the spatially
averaged normalized conductance versus voltage curve in each case. (d,e,f) Hybridized
band structure taking into account the Zeeman splitting of the bands at each field. We
have applied an energy broadening using the Lorentzian function from eq. (3.6) with T � 5
K and TL � 4 K. (g,h,i) JDOS maps calculated from the broadened hybridized band
structures in (d,e,f), respectively, plotted over the QPI profiles in (a,b,c). Maps in (h,i)
are calculated assuming that scattering can only occur between bands with the same spin.

The Lorentzian used to broaden the band structure has a width of TL � 4 K. This
observed value of TL at 100 mK is significantly below the Kondo temperature of
20 K. However, it is of the order of the antiferromagnetic transition temperature.
This might further suggest that the formation of antiferromagnetism is connected
with flat portions of the band structure. Besides, it is also consistent with the fact
that the high field polarized phase is observed mostly as a crossover that is smeared
when increasing temperature.
Finally, we studied the QPI patterns at 5 K, above the Néel temperature (4.2 K).

Figure 3.14a-c shows the QPI profiles along qx measured at 5 K and 0 T, 3 T and
4.5 T, respectively, in similar regions to those shown above. The spatially averaged
conductance versus voltage curves are plotted in the inset of each panel showing how
the hybridization energy range is strongly smeared with no features inside it. The
band structure used in the previous cases at low temperature is strongly smeared
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3.5 Conclusions

at 5 K (fig. 3.14d-f) and the corresponding JDOS contains no clear signatures but a
broadened energy range (fig. 3.14g-i). Thus, increasing temperature to 5 K leads to
a loss of the sharp effect of moving flat portions of the bands in the Zeeman induced
shifts.

3.5 Conclusions

In summary, we have studied the surface of Ce(Ru0.92Rh0.08)2Si2 using the STM
observing the square arrangement of the atoms and an � 8 % of the surface with
slightly reduced density of states due to the Rh doping introduced in the samples.
Rh atoms are randomly distributed over the sample and do not induce any significant
internal strain.
Tunneling spectroscopic curves show the Fano resonance and the opening of a

hybridization energy range that is present through all the different magnetic phases,
which means that there is Kondo screening and heavy electrons all over the phase
diagram.
Our QPI results are compatible with the hybridization scheme of a heavy f -band

and a light conduction band and they show that the hybridized bands undergo
a strong Zeeman splitting. This Zeeman splitting drives the different magnetic
transitions observed in this material and it is eventually responsible for the nearly
ferromagnetic phase at high magnetic fields as only one spin component of the
bands crosses the Fermi level. Strong electronic correlations introduce a Lorentzian
broadening in the hybridized band structure. The width of this broadening is of
the order of the energy associated to the Néel temperature, what suggests that the
presence of flat portions of the band structure is key to understand the origin of the
antiferromagnetic phase.
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4
High magnetic field band
structure in the
topological semimetal
WTe2

4.1 Transport and topological properties

4.1.1 Huge magnetoresistance

WTe2 is a semimetal with very low density of states around the Fermi level and
a huge mobility. It has recently attracted a lot of attention due to its huge,
non-saturating magnetoresistance [125]. Magnetoresistance (MR) is the change in
the electrical resistance driven by an external magnetic field. Although it is not
predicted to occur just considering a non-interacting free electron model, it is a
universal phenomenon in metals and semiconductors. It is defined as

MR�B� � ρ�B� � ρ�0�
ρ�0� , (4.1)

where ρ is the electrical resistivity and B is the magnitude of the externally applied
magnetic field. It is typically small and positive. The origin of the electrical resistity
is the scattering of electrons on a timescale τ , which is the characteristic scattering
time. When applying a magnetic field, electrons are forced to describe orbits with
an angular velocity equal to the cyclotron frequency, ωc � eB

m�
, where e is the the

electron charge and m�, its effective mass. Considering a nearly free electron model,
a quadratic dependence of the resistivity on the magnetic field, ρ�B�� B2, appears
as the simplest solution that fulfills Onsager’s reciprocity condition ρ�B� � ρ��B�.
In the high field limit (ωcτ Q 1) the mean free path is no longer modified by the
magnetic field and the magnetoresistance saturates. Quadratic magnetoresistance
saturating at high fields is often observed in metals with no or weak electronic
correlations [126, 127, 128]. When there is a compensation between the number
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4. High magnetic field band structure in WTe2

of electron and hole carriers, the magnetoresistance continues growing as B2 up
to much higher magnetic fields before reaching saturation. This is the case of the
semimetal Bi and some other metals in which there is this compensation between
electrons and holes [129, 130, 131]. Eventually, the saturation is never reached if the
compensation is perfect [126].
The quadratic behavior of the magnetoresistance can be understood from a

semiclassical approach [126]. If we assume that the external magnetic field is
applied along z-axis, we can write the resistivity tensor in the transverse plane (x,
y) for a free electron gas as

ρ̂ �

������
1
σe

ηe
σe

�
ηe
σe

1
σe

������ , (4.2)

where ηe � µeB, µe is the electron mobility and σe is the zero field conductivity. Note
that, in eq. (4.2), ρxx is equal to ρyy and non-dependent on magnetic field. Inverting
the resistivity tensor we obtain the following expression for the conductivity tensor
for a single isotropic electron band:

σ̂e �

�����
σe

1 � η2
e

�
ηeσe

1 � η2
e

�
ηeσe

1 � η2
e

σe
1 � η2

e

����� (4.3)

The expression for the resistivity tensor considering hole carriers is similar to
eq. (4.3), but there is a change of sign in the off-diagonal terms. When electron and
hole carriers are both present and considered as independent conduction channels,
one have to include the two contributions in the conductivity tensor:

σ̂ � σ̂e � σ̂h �

�����
σe

1 � η2
e

�
ηeσe

1 � η2
e

�
ηeσe

1 � η2
e

σe
1 � η2

e

����� �
�����

σh
1 � η2

h

�
ηhσh
1 � η2

h

�
ηhσh
1 � η2

h

σh
1 � η2

h

����� (4.4)

Inverting back σ̂ unveils the field dependence of the resistivity ρxx, x being the
direction of the current:

ρxx �
neµe � nhµh � µeµh�neµh � nhµe�B2

e��neµe � nhµh�2 � �ne � nh�2µ2
eµ

2
hB

2� , (4.5)

where we have used the Drude formula for conductivity, σ � neµ, with n being
the carrier density. Note that when electron and hole carrier numbers are equal,
the resistivity increases with magnetic field as B2 without saturation. Figure 4.1
sketches the shape of the resistivity versus magnetic field curves for different values of
the electron to hole ratio, ne~nh. We can understand the effect of slight deviations of
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Figure 4.1: Magnetoresistance as a function of magnetic field from eq. (4.5) for different
values of the electron to hole ratio, ne~nh. Perfect compensation situation is plotted in
red.

electron-hole carrier numbers from ne~nh � 1 by comparing eq. (4.5) for the resistivity
with a resonance. Ali et al. [125] did so and defined the Q factor of the resonance.
As the Q factor of the resonance increases with magnetic field, very small deviations
of ne~nh from 1 lead to saturation at large B. If B is weaker, the resonance is
broader and the B2 dependence of the magnetoresistance is easily attained. This is
the case of high-purity graphite below 0.2 T [132]. Over a few teslas, ρxx strongly
deviates from the square behavior [133]. In high-purity Bi, B2 magnetoresistance
starts falling apart above 1 T and reaches saturation above 10 T [134].
WTe2 seems to be the first material in which the electron-hole resonance is almost

perfect, as it displays a magnetoresistance that increases quadratically up to 107

% at 60 T with no signs of saturation [125] (see fig. 4.2). This value for the
magnetoresistance is reached when the current flows along a-axis and the magnetic
field is applied parallel to c-axis. Some other metallic or semimetallic compounds
have been reported to show huge and sometimes non-saturating magnetoresistance
[135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150], but
none of them as large and up to such high magnetic fields as WTe2. The exceptional
sensitivity of the resistivity to small changes of the magnetic field at high fields
positions WTe2 as a good candidate to work as a high field temperature sensor
in cryogenics. Besides, it is a very easy to exfoliate layered material that can be
tuned by chemical doping. Thus, it can be used to build advanced nanostructure
devices. Furthermore, high pressure measurements have reported a suppression
of the magnetoresistance at around 10.5 GPa accompanied by the emergence of
superconductivity with critical temperature up to � 6.5 K [151].
The overlap between conduction and valence bands in WTe2 is extremely small,

what typically favors compensation between the two types of carriers. Quantum
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Figure 4.2: Adapted from [125]. Magnetoresistance as a function of magnetic field in
WTe2 showing a quadratic evolution with no signs of saturation up to 60 T.

oscillation measurements confirm that WTe2 is electron-hole compensated within a
precision of 4 % (ne � 6.64 � 1019 cm�3 and nh � 6.9 � 1019 cm�3) [152]. However, it
is still unclear how the magnetic field modifies the band structure in WTe2 and if it
affects in some way the electron-hole compensation. Besides, a rigorous experimental
determination of the band structure in WTe2 for both filled and empty states is still
lacking. This is the main issue we tried to address with our QPI measurements, as
previous QPI measurements in this material have focused in the topological surface
states without discussing the bulk band structure with sufficient detail [153, 154,
155]. While the filled states and the Fermi surface have been measured using ARPES
and quantum oscillations, the band structure of empty states has not been addressed
in detail.

4.1.2 Weyl semimetal

WTe2 has been predicted to be a type II Weyl semimetal [156]. In
noncentrosymmetric systems like this, band crossings give rise to Weyl points
instead of Dirac points. These can host a massless quasiparticle called Weyl fermion
[157]. This type of fermion was first predicted in particle physics in 1929 [158].
However, as these quasiparticles break Lorentz invariance, they can only occur in
condensed matter systems [156].
Weyl fermions appear as low energy excitations around Weyl points. The massless

character of Weyl particles protects Weyl crossings from gapping. There are two
possible types of Weyl points with different thermodynamic properties. If the
protected band crossing is perpendicular we have the so-called type I Weyl points.
Electron and hole bands only overlap at the Weyl points, and thus, type I Weyl
semimetals display a closed point-like Fermi surface (fig. 4.3a). On the other hand, a
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Figure 4.3: (a) Sketch of the perpendicular band crossing giving rise to type I Weyl
points with point-like Fermi surface. (b) Type II Weyl points appearing at the contact
between electron and hole pockets in a tilted band dispersion. (a) and (b) are adapted from
[156]. (c) Schematic representation of a topological Fermi arc connecting the projection of
opposite chirality Weyl points into the surface.

type II Weyl point is still a protected crossing, but it emerges at the contact between
electron and hole bands in the tilted band dispersion of type II Weyl semimetals
(fig. 4.3b). The Fermi surface in this case is open and has a finite density of states
[156]. The topological features of type II Weyl points are different than in Weyl
points occurring at a single point touch with an untilted band dispersion.
Weyl semimetals set the scene for very unique physical properties, including

unconventional magnetotransport behavior [159, 160, 161, 162, 163, 164, 165].
Type I Weyl semimetal state was predicted to exist and experimentally confirmed in
the inversion breaking materials of the TaAs family [157, 166, 167, 168, 169, 170, 171].
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Figure 4.4: (a) Adapted from [156]. Zoom into the calculated bulk band structure
of WTe2 along the line K-K� showing one of the four pairs of Weyl points.
K = (0.1208, 0.0562, 0) and K� = (0.1226, 0.0238, 0) in units of reciprocal lattice
constants. (b) Location of the four pairs of Weyl points in the kz = 0 plane. Positive
and negative chirality points are depicted in blue and red, respectively. (c) Adapted from
[156]. Calculated spectral density function of the (001) surface of WTe2. The bulk band
structure is given by the orange shaded areas. The surface states join different parts of
the band structure giving the thin lines. Yellow arrows mark some of those surface states.
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Figure 4.5: Adapted from [186]. ARPES intensity measured at 16 K in WTe2 showing a
surface state (yellow arrows) connecting the electron and hole pockets.

Along with WTe2, some other transition metal dichalcogenides as MoTe2 [172, 173]
and MoxW1�xTe2 [174] have recently been proposed as type II Weyl semimetals.
Weyl points act as topological charges, being either sources or sinks of Berry

curvature. As the net topological charge (or Chern number) must be zero inside
the Brillouin zone, Weyl points always appear in pairs of opposite chirality. The
projections of these Weyl points into the surface are connected by a surface state
called Fermi arc (fig. 4.3c). It appears as an open contour in the surface Fermi
surface, with the edges of the arcs located at the Weyl points. Such open contours
were first observed in 3D Dirac systems [175].
As the surface Fermi arcs are directly related to the topologically nontrival features

of the bulk bands, the presence of such states in the surface is the main fingerprint to
seek for when studying Weyl semimetals. Angle resolved photoemission spectroscopy
(ARPES) has revealed the presence of arc-like surface states in TaAs [169, 170],
TaP [176] and MoTe2 [177, 178, 179]. However, it is often not easy to prove the
nontriviality of these surface states. STM quasiparticle interference measurements
(QPI) have also been established as a powerful technique to identify topological
surface states in Dirac and Weyl semimetals above and below the Fermi level [180,
181]. QPI has found surface states in several semimetals such as TaAs [182, 183],
NbP [184] or MoTe2 [177, 185], but additional signatures of the Weyl state are still
needed to dismiss topologically trivial interpretations for the surface states.
In WTe2, four pairs of type II Weyl points have been predicted to occur at 52

meV and 58 meV above the Fermi level [156] (fig. 4.4a). The location of the different

98



4.2 Atomic structure

Weyl points in reciprocal space is shown in fig. 4.4b. Figure 4.3c shows the Fermi
arcs expected to emerge in the surface connecting the electron and hole pockets.
ARPES measurementes made up to the Fermi level in the occupied states show the
electron and hole pockets below the Fermi level and a surface state joining them. It is
known from ARPES measurements that the band structure is strongly temperature
dependent. A Lifshitz transition where a temperature induced shift of the chemical
potential leads to hole pockets disappearing from the Fermi surface at about 160 K
has been reported [187]. Arc-like surface states have also been reported in this
material below the Fermi level by ARPES [186]. These surface states are clearly
connecting the electron and hole pockets as shown in fig. 4.5. However, the question
about the nontriviality of the surface states remains unsolved. In fact, ARPES data
seems to be well described by a topologically trivial model [188]. High temperature
ARPES measurements reveal features within the band structure of empty states that
have been associated to type II Weyl fermions [189]. Nevertheless, these are obtained
thanks to a large temperature induced smearing, which might considerably influence
the band structure [187]. QPI measurements have also attempted to explore the
surface states in WTe2 at zero magnetic field [153, 154, 155]. Some features above
the Fermi energy have been associated to the scattering between arc-like surface
states, but the relation between the features of the bulk band structure and STM
results is not clear yet.
In this chapter, I will present some STM measurements we performed for different

values of the magnetic field up to 14 T. I will also present the measured band
structure from QPI measurements and compare it with the bulk calculations. I will
also discuss some features that can be related to topologically nontrivial surface
states in WTe2.

4.2 Atomic structure

WTe2 crystallizes in an orthorhombic structure belonging to the noncentrosymmetric
Pmn21 space group [190]. The primitive unit cell contains four formula units and the
lattice parameters are a � 3.477 Å, b � 6.249 Å and c � 14.018 Å. As shown in fig. 4.6a,
WTe2 has the typical layered structure of transition metal dichalcogenides, with
strong covalent intra-layer bonding and weak van der Waals inter-layer interactions.
Each layer consists of a Te-W-Te sandwich with W atoms forming zigzag chains along
a-axis. The distance between two consecutive W atoms is significantly smaller along
a-axis than along b-axis or c-axis, what gives the material a quite one-dimensional
behavior.
The lack of inversion symmetry in this system results in a difference between the

two (001) terminations of the crystal [188]. Both inequivalent surfaces have identical
chemical composition and they even present the same buckling patterns for W and Te
atoms. Figure 4.6c compares a side view of the so-called top and bottom surfaces.
The position of top Te atoms is the same in both terminations, but the average
distance to the underlying W plane differs between both terminations. Depending
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Figure 4.6: Side view (a) and top view (b) of the atomic structure of WTe2. W atoms
are depicted in purple and Te atoms, in green. Black rectangle shows the unit cell. (c)
Comparison between the two possible terminations of the crystal. The position of top Te
atoms is the same for top and bottom terminations, but the distance to the underlying
W plane is different. Depending on the cleaving plane (blue and orange arrows in (a)) we
can access one termination or the other. Inequivalent positions of Te atoms are marked as
Te I and Te II in (c).

on the cleaving plane we can access one termination or the other. Surface states are
predicted to be slightly different in both terminations of the crystal.
High quality surfaces for STM can be found in WTe2 [154, 155, 191, 192]. STM

experiments show changes in the topographical structure at the surface when cooling
down to 4.2 K [191]. In this thesis, we measured WTe2 single crystals provided
by the group of Prof. Paul C. Canfield. They were grown from a Te-rich binary
melt following the procedure described in Refs. [187, 193]. The crystals were
plate-like with typical dimensions of 2 mm � 0.1 mm � 0.01 mm (fig. 4.7a). The
crystallographic c-axis was perpendicular to the largest crystal surface. Figure 4.7b
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Figure 4.7: (a) Optical microscope image of one of the measured WTe2 samples. Scale
bar is 100 µm long. (b) Adapted from [187]. Measured resistivity versus temperature
(black) and magnetoresistance ratio versus magnetic field (red) in one of the crystals from
the same batch we took our STM samples from.
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Figure 4.8: (a) STM topographic image of WTe2 taken at 100 mV with a setpoint current
of 6 nA (T = 100 mK, B = 0 T). Fourier transform of the topography with highlighted first
order Bragg peaks is shown in the inset. (b) 14 T STM topography measured at 100 mV
with a setpoint current of 4 nA displaying the same zero magnetic field atomic arrangement
(T = 4.2 K). Fourier transform is shown in the inset. (c) High resolution topography of a
smaller area where the two inequivalent positions of Te atoms are perfectly resolved. The
white rectangle defines the unit cell dimensions. Orange arrows mark the two inequivalent
positions of Te atoms. A diagram of the atomic structure for bottom termination is plotted
over the topography. Top Te atoms are depicted in green and subsurface W atoms, in
purple. White arrows indicate the orientation of a and b crystalline axes. Horizontal scale
bars in (a, b) are 2 nm long.

shows resistivity and magnetoresistance measurements in these crystals [187]. The
extremely high residual resistance ratio (RRR) of 907 reflects the high quality of
the crystals. Magnetoresistance goes up to 6.5 � 105 % at 9 T, confirming the large
quadratic response of resistivity to magnetic field previously reported by Ali et al.
[125].
We performed scanning tunneling measurements using the setup mounted during

this thesis (see chapter 2). We exfoliated the sample in-situ in cryogenic conditions
by gluing a post on top of the sample and pushing the sample holder at low
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Figure 4.9: (a) Large STM topographic image showing a region with different types of
defects. White and black arrows mark vacancy-like defects and interstitials, respectively.
Wavelike patterns can be seen coming from the scattering around the defects. (b) Zoom
into a vacancy-like defect showing the lack of a surface Te atom. The surface pattern caused
by this disruption is slightly asymmetric along b-direction. (c) Zoom into an interstitial-
like defect. The asymmetry along b-direction is more clear in this case. (d,e) Fourier
transforms of the images in (b) and (c), respectively, with highlighted first order Bragg
peaks. Topographies in (a, b, c) were measured at 100 mV with a setpoint current of 6 nA
(T = 100 mK, B = 5 T). Horizontal scale bars in are 2 nm long.

temperatures as described in section 2.3.4. As a result of the cleaving process, clean
surfaces of Te atoms were obtained. Figure 4.8a shows one of the STM topographic
images we took at 100 mK and zero magnetic field. The obtained topography is
equivalent to that found in previous works [153, 154, 155, 191, 192]. The surface
atomic structure consists of arrangements of Te atoms in which we can identify the
two inequivalent positions of these atoms. Te atoms order forming stripes along
the a-direction, which is also the orientation of the underlying W zigzag chains.
The patterns observed in STM images are exactly the same at 14 T (fig. 4.8b),
advancing that there are no strong magnetic field induced modifications in the
electronic structure of WTe2. Figure 4.8c shows the schematic atomic structure
for one the two possible terminations placed on top of a high resolution topographic
image in which Te atoms are perfectly resolved. The measured unit cell dimensions
are 3.5 Å along the a-axis and 6.3 Å along the b-axis.
As I introduced before, there is a difference between the two possible surface

terminations. However, from the STM point of view, the distribution of Te atoms
is completely identical in both situations. As shown in fig. 4.6c, the difference is
in the distance between adjacent planes. This makes it almost impossible for STM
topographic images to distinguish between the two unequal surfaces.
The mobility and the residual resistivity can be calculated from the density of

defects, which is quite small in agreement with the high RRR value of the crystals.
We can estimate a value for the density of defects of approximately 1.3 � 1012 cm�2

from the topographies we measured (fig. 4.9a). Using the lattice parameters a � 3.5 Å
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4.3 Bulk density of states

and b � 6.3 Å, we can assume that electrons can move freely along � 350 unit cells,
and thus estimate a mean free path of � 170 nm. Introducing these values in the
Drude model for the conductivity, we obtain a residual resistivity of � 1.9 µΩ�cm
and a mobility of � 4.3 m2/V�s. Although this is a very simple approximation, both
values are consistent with those previously reported [187].
We identify two different types of defects on the surface of WTe2 (fig. 4.9a). We

find either small point vacancies (white arrow) or bump-like features that we refer
to as interstitials (black arrow). High resolution topographies of a vacancy and an
interstitial are shown in fig. 4.9b,c, respectively. Electrons scatter around the defects
producing oscillating patterns that are clearly visible in the topography of fig. 4.9a.
The wavelike scattering patterns around the defects are quite one-dimensional along
a-direction and both types of defects produce asymmetric patterns along b-direction.
This asymmetry is more obvious in the case of interstitials (see fig. 4.9d). Fourier
transforms of the images in fig. 4.9b,c are shown in fig. 4.9d,e, respectively. The
features at smaller Ñq come from the electronic scattering around the defects and
studying their energy evolution we can extract information about the band structure
of the material as I will discuss below.

4.3 Bulk density of states

As introduced above, WTe2 is a semimetallic compound with very low density of
states around the Fermi level and a very weak overlap between conduction and
valence bands (see fig. 4.10). Bulk band structure calculations predict a couple of
hole pockets and a couple of electron pockets along the Γ-X direction [156, 187].
Figure 4.11a shows a zoom into the bulk calculated band structure along the Γ-X

direction inside the energy range we explored in our STM measurements. Electron
and hole bands are plotted in blue and red, respectively. Figure 4.11b shows some
spatially averaged tunneling conductance versus bias voltage curves we measured
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Figure 4.10: Adapted from [156]. Calculated bulk band structure of WTe2 along high
symmetry directions (left) together with the diagram of the Brillouin zone (right).
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Figure 4.11: (a) Calculated bulk band structure along the Γ (kx = 0) to X (kx = 1)
direction inside the energy range explored in the experiment. Electron and hole bands are
depicted in blue and red, respectively. The calculations are shifted 45 meV downwards to
match our experimental results. (b) Spatially averaged normalized tunneling conductance
versus bias voltage curves measured at magnetic field ranging from 0 T to 14 T (colored
lines). Normalized density of states obtained from the band structure in (a) is also plotted
(black line) in the same range of energies for comparison. Curves are shifted upwards for
better visualization.

for different values of the magnetic field together with the density of states expected
from the density functional theory (DFT) bulk band structure calculations in the
same energy range. The general shape of our measured conductance curves is similar
to that of the calculated density of states after shifting it 45 meV downwards. The
need of this shift comes from a certain ambiguity in the position of the Fermi level
in DFT calculations combined with the common presence of small surface potentials
in semimetals. The 45 mV shift is comparable to that of previous STM studies
[154, 155, 191]. Magnetoresistance in WTe2 is extremely high, so if this phenomenon
was driven by changes in the band structure of the material, we would expect to
see major modifications in the conductance curves when applying magnetic field.
However, we do not appreciate any drastic change in these curves with magnetic
field up to 14 T. This implies that the band structure in WTe2 remains constant
with magnetic field. Notice that Zeeman splitting is of the order of 1.6 meV at 14 T,
without spin-orbit coupling. Clearly, spin-orbit coupling does not enhance Zeeman
splitting enough to produce identifiable changes in the band structure.
Although we do not observe quantum oscillations in the high magnetic field

conductance curves shown in fig. 4.11b, Shubnikov-de Haas oscillations in WTe2
are observed at relatively low fields [152, 187]. This means that the high field band
structure is Landau quantized. Assuming a parabolic dispersion, starting from the
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Figure 4.12: (a) Simple model of a system with two quantized parabolic bands. Landau
levels are represented by blue and red circles in the electron and hole bands, respectively.
(b) Density of states versus energy coming from the same color quantized bands in (a).
Black line represent the smooth density of states curve that would measure an experiment
unable to resolve the individual peaks.

bottom (or top) of an electron (or hole) band, the energy of the discrete Landau
levels is given by

En � Òhωc�n � 1
2�, (4.6)

where ωc � eB~m� is the cyclotron frequency, e is the electron charge, B is the
magnitude of the applied magnetic field andm� is the effective mass of the quantized
band. If we were measuring a system with single quantized bands, the tunneling
conductance curve would feature peaks at the energies corresponding to the different
Landau levels. However, this is not the situation in WTe2. Here, we have four
different bands whose effective masses are of around 0.3 times the free electron mass
[187]. Introducing this effective mass in eq. (4.6), we estimate an energy separation
between consecutive Landau levels of around 0.39 meV/T. Thus, at 10 T, that
separation will be 3.9 meV, what falls well within our resolution in energy. However,
we observe a density of states which shows no features of Landau quantization. To
explain this, we have to consider different possible smearing sources. First, we have
to remind that we are measuring an average of the densities of states of a set of
different bands. Actually, four. Their bottom and tops are slightly shifted with
respect to each other. Therefore, the Landau levels are not located all at exactly the
same energy. As we schematically show in fig. 4.12, already two bands produce a
significant increase in the amount of observable Landau levels. If we add more bands
with uncoordinated Landau levels to the model, the energy difference between two
consecutive peaks in the density of states will reduce and eventually become smaller
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4. High magnetic field band structure in WTe2

than the finite energy resolution of a particular experiment. Thus, the experiment
will not be able to resolve the individual peaks and the result of the measurement of
the density of states will be a smooth curve (see black line in fig. 4.12b). In the case of
WTe2, increasing this to four bands may reduce the separation between consecutive
peaks down to 1 meV at 10 T in the worst case scenario. Still, we should be
able to resolve those features in our curves. Therefore, electronic scattering around
impurities may induce an energy smearing in the density of states that explains the
smooth curves we measure at high magnetic fields. Additionally, the curves we show
in fig. 4.11b are spatially averaged inside a region of around 20�20 nm2. Hence, any
eventual spatial dependence in the Landau oscillations might further contribute to
the energy smearing.

4.4 Band structure from QPI experiments

To explore the Fermi surface of WTe2 we performed some quasiparticle interference
measurements. For this technique to work it is necessary to have impurities or defects
in the surface to act as scattering points. The method is described in section 2.1.4.
As seen in fig. 4.9a, the scattering around the defects produce oscillating patterns in
the surface that, in the case of WTe2, are mainly one-dimensional along a-direction.
Figure 4.13 shows the topography (a), the normalized conductance map at 35 mV

(b) and its corresponding fast Fourier transform (FFT) inside the first Brillouin zone
(c) in a region showing some vacancy-like defects and one interstitial. FFT maps
are mirror symetrized along the two in-plane crystalline axes. We applied a 3 � 3
pixel average filter to further increase the signal to noise ratio, and we eliminated
results for low Ñq by subtracting a Gaussian core as described in section 2.1.4.
A typical image of the quasiparticle interference is given in fig. 4.13c. We observe

mostly a one-dimensional pattern along qx, with several scattering vectors along
the qy � 0 line. When leaving the qy � 0 line, scattering provides either opened
bow tie ("a`" shape with respect to qx � 0) or closed infinity-like ("`a" with respect
to qx � 0) shaped patterns. The position in qx and their shape along qy changes
considerably when modifying the bias voltage. Let us first focus on discussing the
energy dependence of the features using their position in qx.

4.4.1 Bulk band structure

Let us analyze the scattering patterns and the energy dependence of the bands at
qy � 0. QPI maps measured in the region shown in fig. 4.13 are shown in fig. 4.14a for
some representative energies. Colored circles in fig. 4.14a mark the position of the
main scattering vectors we observe at qy � 0. We use the same colors in fig. 4.15a,
where we show the qy � 0 profiles from our QPI maps for all the energies of the
study, and in fig. 4.15a, where we plot the different vectors we identify on top of the
calculated bulk band structure.
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Figure 4.13: (a) STM topographic images of the regions where we studied the QPI
scattering. It shows both vacancies (white arrow) and interstitials (black arrow). (b)
Normalized tunneling conductance map at 35 mV inside the region shown in (a).
Symmetrized FFT of this map inside the first Brillouin zone is shown in (c). Main
scattering Ñq vectors are obtained from the FFTs of the conductance maps. Horizontal
scale bars in (a) and (b) are 5 nm long.

Starting at positive energies, at 75 meV we can identify three main scattering
points given by the orange, green and pink points in fig. 4.14a. When decreasing
energy, the three scattering vectors reduce their size. At zero bias, the intensity is
smallest as the overall density of states is small. When reaching negative bias, we
can identify two spots (pink and green points in fig. 4.14a at �50 meV) and one
additional spot (light blue point). When looking on the qy � 0 profiles as a function
of the energy (fig. 4.15a), we can see more clearly the evolution of these spots as
bright nearly vertical stripes.
We can now compare our data with band structure calculations and identify

the most likely scattering patterns. Figure 4.14b shows the calculated constant
energy contours of the Fermi surface inside the first Brillouin zone for the same
representative energies. Calculations were performed by the group of R. Arita. We
should note from the start that nearly all bands are spin degenerate [194]. However,
the degeneracy is very small and the Zeeman effect of the magnetic field occurs
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Figure 4.14: (a) QPI maps at the some representative energies measured at zero field
in the region shown in fig. 4.13. Colored circles indicate the main scattering vectors
we identify for each energy. (b) Constant energy contours of the Fermi surface inside
the first Brillouin zone extracted from the calculated bulk band structure for the same
energies. Electron and hole pockets are plotted in blue and red, respectively. Same
color arrows indicate the regions of the Fermi surface connected by each of the scattering
vectors we identify in the (a). (c) Bulk scattering probability maps obtained from the
2D-autocorrelation of the contours in (b). Scattering vectors identified in (a) are plotted
in the same color over the maps in (c). White horizontal dashed lines mark the qy = 0
profiles plotted in fig. 4.15a.
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Figure 4.15: (a) qy = 0 profiles along qx-direction from the QPI maps (see horizontal
dashed lines in fig. 4.14) stacked for all the energies of the study. Colored points with
errorbars show the evolution of the main scattering Ñq vectors we observe. (b) Measured
scattering Ñq vectors from the profiles in (a) plotted over the calculated bulk band structure
(black lines in the background) in the energy range.

on a negligible energy range [194]. In principle, defects can be magnetic and favor
or impede scattering among bands with different spin texture. However, as the
degeneracy is very small, this effect can be neglected by now.
With these caveats in mind, we plot the scattering vectors we identify in fig. 4.14a

as same color arrows on top the calculated bulk Fermi surface in fig. 4.14b. We note
that the large orange scattering vector observed at 75 meV in fig. 4.14a is due to
scattering between the inner sides of the small electron pockets (see orange arrow in
fig. 4.14b). This vector decreases in size when decreasing energy and disappears for
negative bias, as the bottom of the electron band is close to 0 meV (see fig. 4.15b).
The green vector at 75 meV in fig. 4.14a is adscribed to intra-band scattering

inside the small electron pockets located at large kx. This vector decreases slightly
in size and continues below the Fermi level (see fig. 4.15b).
Finally, we identify the pink vector, which corresponds to small Ñq scattering

between different portions of the electron-like bands. Above 60 meV, this is due
to scattering inside a small electron band, and below, to scattering between locally
hole-like portions of the bands (see fig. 4.15b).
The pattern marked by pink dots below �25 meV in fig. 4.14a is due to intra-band

scattering in the hole band (see fig. 4.15b). At �75 meV we identify an additional
pink vector in fig. 4.14a due to the inter-band scattering between the electron and
hole pockets (see fig. 4.15b).
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Between �25 meV and +25 meV, we notice a strongly increased intensity for low Ñq
(see fig. 4.14a and fig. 4.15a). This can be attributed to the presence of flat portions
of the band structure due to the hole bands in this energy range (fig. 4.15b).
Now we can discuss the scattering patterns along qy expected from band structure

calculations. These scattering probability maps are shown in fig. 4.14c and were
calculated by applying a 2D-autocorrelation function to the calculated Fermi surface
maps in fig. 4.14b. Scattering Ñq vectors with higher intensity in the autocorrelated
maps connect states with large joint density of states (JDOS) [180]. We see that
there is a considerable amount of patterns. In the experiments, only a few of them
are observed. This might be due to the scattering potential or to smearing by
scattering. We can however qualitatively discuss the qy dependence of those spots
that we identified in fig. 4.14a, which are plotted on top of the scattering probability
maps in fig. 4.14c.
Generally, an opened bow tie shape ("a`" shape with respect to qx � 0) in the

scattering pattern implies scattering between two bands that draw two closed circular
patterns in qx-qy, while and infinity-like shape (""`a" shape with respect to qx � 0)
in the scattering pattern implies scattering inside a circularly shaped band in qx-
qy. The orange spot at 75 meV in fig. 4.14c provides a bow tie shape. The green
spot should provide the opposite, an infinity-like shape, at 75 meV. However, it also
provides a bow tie shape. This discrepancy will be discussed below. For energies
below the Fermi level, the patterns are nearly independent of qy, although a slight
bow tie shape can be identified for the light blue spot corresponding to the scattering
between the edges of the hole band at �25 meV and �50 meV.
Thus, we can make a rather detailed account of the the full band structure of

WTe2 from our QPI analysis. Our QPI data proves to be robustly consistent with
the calculations as every scattering Ñq vector we observe connects two intra-band or
inter-band points of the bulk calculated band structure in this range of energies.

4.4.2 Surface states

As bulk electron and hole bands also contribute to the scattering on the surface, it is
convenient to compare our QPI data with first-principles surface calculations to try
to distinguish the features coming from the surface states from those coming from
the bulk bands.
Surface calculations predict arc-like surface states connecting the electron and

hole pockets. Figure 4.16a shows the calculated spectral density maps at the surface
at �50 meV, with yellow arrows indicating the position of the arc states. We isolate
these arc states for better visualization and plot them in fig. 4.16b without the
contribution of the bulk bands to the spectral density at the surface. Same way we
proceeded with bulk calculations, 2D-autocorrelating the map with the two isolated
arc states we obtain the JDOS map associated to these surface states (fig. 4.16c).
When there are open contours in the surface Fermi surface, these surface scattering
probability maps are expected to show some characteristic features. For arc-like
states like those predicted in WTe2, the scattering of one of the arcs with itself
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Figure 4.16: (a) Calculated spectral density function at the surface of WTe2 at -50 meV.
Yellow arrows mark the surface states between the electron and hole pockets that are
plotted in (b) isolated from the contribution of the bulk bands to the spectral density.
(c) JDOS associated to the surface states in (b). (d) Measured QPI map at -50 meV.
Colored circles mark the bulk scattering vectors we identify at this energy. (e) Bulk JDOS
obtained from the calculated Fermi surface at -50 meV. Vertical dashed lines at qx � �0.5
π~a indicate the expected position of the features coming from the scattering between the
two arc states.

produces a cross-shaped pattern centered around qx � 0, and the scattering between
one arc and the other gives rise to arc-like features at a qx value that equals the kx
separation between the arc states in reciprocal space [180, 195].
Our QPI map at �50 meV is shown in fig. 4.16d. Looking for signatures of the

arc-like surface states in our QPI data, we observe a higher scattering intensity in
the center of the map in a Ñq range compatible with that of the expected cross-
shaped pattern in fig. 4.16c. In fact, the eventual cross coming from the arc
state is resolved at higher qy in our QPI map. Vertical dashed lines in fig. 4.16d
indicate the expected qx-position of the patterns shown in fig. 4.16c corresponding
to the scattering between the arcs. We find some features in our data that could
correspond to the inter-arc scattering. We can even identify how the scattering
intensity draws an arc shape in the qx-qy plane comparable to that predicted in
fig. 4.16c. Notwithstanding, there are very similar shapes in the bulk predicted
scattering maps (fig. 4.16e) at the same Ñq vectors, so it is very difficult to tell whether
these scattering vectors we see in our data come from the surface state or from the
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Figure 4.17: (a) Calculated spectral density function at the surface of WTe2 at 75 meV.
Yellow arrows mark the surface states. (b) Surface states isolated from the contribution
of the bulk bands to the spectral density. (c) JDOS associated to the surface states in
(b). (d) Measured QPI map at 75 meV. Colored circles mark the bulk scattering vectors
we identify at this energy. (e) Bulk JDOS obtained from the calculated Fermi surface at
75 meV. Vertical dashed lines at qx � �0.5 π~a indicate the expected position of the bow
tie features coming from the scattering between the two surface states.

bulk bands. In fact, in the previous section I discussed how all the scattering vectors
we observe at �50 meV can be attributed to the scattering between different parts
of the bulk bands (colored circles in fig. 4.16d,e).
Calculations also predict a surface state above the Fermi level (see fig. 4.4c).

Figure 4.17a shows the calculated spectral density at the surface at 75 meV. Yellow
arrows mark the position of the surface states. These surface states are isolated
in fig. 4.17b, and fig. 4.17c shows the JDOS map associated to them. Similar to
the previous case at �50 meV, the expected patterns from these surface states are
an arc-like bow tie shape due to the scattering between one surface state and the
other, and an eight-shaped pattern centered at Ñq � 0 accounting for the scattering
of each surface state with itself. Our QPI map at 75 meV is shown in fig. 4.17d
together with the scattering vectors we identified above. It shows bow tie features
at the qx position where the arc-like scattering features from the calculated surface
state are expected to occur (see vertical dashed lines). The shape of the features we
see in our data is very similar to that predicted by the calculations (see fig. 4.17c).
This might be indeed indicating the presence of a surface state at positive energies.
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However, here, bulk predicted scattering maps show similar features at the same Ñq
(see fig. 4.17e).
As I introduced above, we identified a scattering vector in our QPI data at

75 meV marked in green in fig. 4.17d whose size is consistent with an intra-band
scattering vector inside the electron pockets. However, although this would imply
an infinity-like shape in the qx-qy map, we rather observe a bow tie shape similar to
those in fig. 4.17c, but located at smaller qx. Such features are not present in the
calculated bulk scattering predictions around the green vector we identify (fig. 4.17e).
Therefore, our green vector might be a signature of a different surface state located
at smaller kx at 75 meV.
Extensive debates have been recently taking place regarding the nontriviality of

the surface states in this material. In principle, nontrivial Fermi arcs connecting the
projection of Weyl points into the surface should be much smaller accounting the
near k-space location of opposite chirality Weyl points in this material (see fig. 4.4b).
Therefore, the wide surface states joining the electron and hole pockets would
be topologically trivial [156, 188]. Although some works claim the experimental
detection of hallmark signatures of the smaller topological Fermi arcs through QPI
[153, 155], we believe that this is not yet settled. From our data, we identify a
possible surface state at 75 meV, and most likely another one at �50 meV. To discuss
the features of these states, we hope for further insight from the magnetic properties
of defects and their influence on the scattering by José J. Baldoví and coworkers at
Instituto de Ciencia Molecular (ICMol), Valencia.

4.5 Conclusions

In summary, we have made a careful study of atomically resolved surfaces in
WTe2 using very low temperature and high magnetic field STM. The surface is
characterized by chains of Te atoms. We have measured the spatially averaged
density of states as a function of the magnetic field and found no variation with the
magnetic field. This shows that the band structure does not show sizable Zeeman
splitting or any other significant modification when applying a magnetic field. The
absence of Landau quantization is a peculiar feature, possibly associated to the
presence of many bands in the energy range we have studied. It remains to be seen
how the density of states versus magnetic field behaves at atomic scale. There, it
might show Landau quantization.
On the other hand, there are intense scattering patterns due to the presence

of sparse defects, consisting essentially in interstitials and vacancies. Particularly,
interstitials provide a sizable scattering signal. From the quasiparticle interference,
and thanks to detailed comparison with band structure calculations, we can identify
the main electron and hole bands at energies close to the Fermi level. Furthermore, I
have discussed the possible appearance of surface states, identifying features of such
states at �50 and at 75 meV. The features at 75 meV can be better viewed in the
scattering signal, as these are distinguishable from bulk band structure features. It
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is yet to be seen if a more careful analysis, possibly taking into account magnetic
scattering, can lead to further insight in the possible topological features of the
surface states.
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5
States at very low energies
inside the superconducting
gap of Au2Pb
5.1 Au2Pb: a topological superconductor

candidate

Since the discovery of the quantum Hall state in 1980 [196], topological materials and
their novel and unique quantum states have attracted lots of attention. Recent efforts
in band structure calculations have revealed a considerable amount of intermetallic
compounds displaying nontrivial topological properties [197, 198, 199]. Some of these
compounds become superconductors at low temperatures while possibly hosting
topologically nontrivial excitations.
Similar to topological insulators, topological superconductors are characterized by

a fully gapped state in the bulk and gapless conduction modes on the surface. But
surface excitations in topological superconductors involve Bogoliubov quasiparticles
that might display properties of Majorana fermions [200, 201]. The nonabelian
statistics of these protected Majorana surface states gives these materials interesting
potential applications in quantum computation [202]. Topological superconductors
are rather rare as they require unconventional pairing mechanisms for a topologically
nontrivial state. Some triplet superconductors, introduced in section 1.3, are actually
topological superconductors too. Here, the focus is on the properties of the surface.
The bulk might be a superconductor with a fully opened gap while unconventional
properties are expected to manifest just at the surface.
Topological superconductivity appears naturally in ferromagnetic, spin-triplet

superconductors such as UTe2 and other heavy fermion compounds [35, 36, 203].
There has been, however, an intense activity in trying to obtain unconventional
or topological superconducting properties in a number of other intermetallic
compounds without rare earths in the crystal structure. Topological superconductor
candidates can be obtained in artificial topological insulator-superconductor
heterostructures [204, 205]. Another recipe consists in doping or pressurizing a
topological material. One of the most studied cases is the topological insulator
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Figure 5.1: Schematic representation of the Au2Pb crystalline structures. Au atoms are
depicted in gold color and Pb atoms, in grey. Grey lines delimit the unit cell dimensions.
The room temperature Laves phase Fd3̄m is shown at the left followed by the proposed
low temperature phase, Pbcn, and other structures proposed to occur under pressure. All
structures derive from the room temperature cubic Laves phase by small distortions of
atomic positions.

Bi2Se3, which becomes metallic and superconductor upon Cu doping [206, 207, 208].
Bulk specific heat measurements unveil a full gap [209] and point contact
spectroscopy shows an anomalous zero bias conductance peak that seems to
be a signature of 2D Majorana fermions [207]. However, STM results reveal a
fully opened gap across terraces and in different regions of the surface [210].
These properties are compatible with simple s-wave superconductivity. The
latter experiments also show a strong tendency to have spatially inhomogeneous
superconducting properties, with regions on the surface that are normal. Similar
results are observed in Sr doped Bi2Se3 [211]. On the contrary, Nb and Tl doping
does not induce surface superconductivity in Bi2Se3 [212]. Some other topological
insulators become superconductors upon pressure [213, 214, 215, 216, 217, 218].
Nonetheless, in these cases the pressure-induced superconductivity is sometimes
associated to changes in the crystalline structure. Thus, it is important to
determine the gap structure and identify the Majorana surface states to label a
superconductor as topological.
Topological superconductivity can also be found in natural stoichiometric

compounds at ambient pressure. That is the case of PbTaSe2, a noncentrosymmetric
superconductor with Tc � 3.72 K [219]. PbTaSe2 fulfills the two required conditions
to be considered a topological superconductor candidate. It displays surface states
associated to nodal-line semimetallic states [220, 221] as well as a fully gapped bulk
superconducting state [222, 223, 224].
Among stoichiometric topological supercondutor candidates, Au2Pb stands out

because of the presence of a 3D Dirac cone [225]. Au2Pb crystallizes at room
temperature in a cubic Laves phase1 [226, 227]. Upon cooling, Au2Pb undergoes

1Named after the German crystallographer Fritz Laves (1906 - 1978), Laves phases are
intermetallic phases with composition AB2 where A atoms arrange in a diamond-like structure
an B atoms build tetrahedral structures around A atoms.
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Figure 5.2: (a) Calculated electronic band structure of the low temperature orthorhombic
Pbcn phase of Au2Pb including spin-orbit coupling. Calculations were performed by José
J. Baldoví at ICMol, Valencia. (b) Zoom into the gaped Dirac cone along the Γ-X direction
showing the Pb-sp3 character of the bands as a color code. (c) Schematic diagram of the
Brillouin zone.

a series of structural phase transitions, and enters an orthorhombic structure at
temperatures below 40 K. Calculations show that there are different crystalline
structures for Au2Pb that are energetically favorable at low temperatures [228] (see
fig. 5.1). At room temperature, the crystal structure is the cubic Laves phase Fd3̄m
(no. 227) with a cell parameter a � 7.9141 Å [227]. It is based on the pyrochlore
lattice, with Au atoms presenting a tetrahedral arrangement distributed inside a
face centered cubic lattice of Pb atoms. The structure of the low temperature phase
is derived from the cubic room temperature phase by small atomic distortions [226].
The structure is orthorhombic (Pbcn, no. 60). The structure of the intermediate
temperature phases is unknown. The ground state crystalline structure under
pressure was analyzed by Wu et al. [228]. It was found that Pba21 phase, with
slighly distorted atomic positions, is energetically more favorable than Pbcn at
ambient pressure. Furthermore, under pressure, the structure I 4̄2d, which results
from further small atomic distortions, was also proposed.
Band structure calculations predict a 3D Dirac cone [226, 227] in the room

temperature cubic phase due to symmetry allowed band crossings. Angle resolved
photoemission studies (ARPES) confirm the presence of the bulk Dirac cone [225].
In the low temperature phase below 40 K, the lowering of the crystal symmetry
lifts the band degeneracy that allows crossing and the bands gap at the Dirac
cone. Figure 5.2a shows the calculated bulk band structure on the low temperature
phase of Au2Pb, and fig. 5.2b shows a zoom into the gapped Dirac cone along the

117



5. States at very low energies inside the superconducting gap of Au2Pb

Γ-X direction. The Pb-sp3 character of the bands is given as a color code, with
the remaining percentage until 100 % showing Au-d orbital character. Calculations
were performed by José J. Baldoví at ICMol, Valencia. The gapped phase is
expected to host topologically nontrivial edge states at the surface [226, 225].
These surface states coexist with electron and hole bands crossing the Fermi
energy and the latter dominate the optical conductivity [226, 225, 229]. At a
temperature below Tc � 1.1 K, orthorhombic Au2Pb becomes superconductor [230].
Superconductivity is expected to show nontrivial topological properties related to
those of the band structure [225, 231]. Low temperature specific heat and thermal
conductivity measurements suggest that the bulk superconducting state of Au2Pb
is fully gapped [226, 232]. Point contact spectroscopy measurements reveal a
superconducting gap and upper critical field that strongly increases due to the
pressure exerted by the tip [231]. Experiments in single crystals under pressures of
a few GPa show that Tc is slightly suppressed [227]. At higher pressures, above
5 GPa, an incomplete transition is found in the resistivity of powder samples with
a Tc � 4 K. Tc decreases down to 2 K at 24 GPa [228].
In this chapter, I present STM experiments on the surface of Au2Pb to study the

behavior of the superconducting density of states as a function of temperature and
magnetic field.

5.1.1 Crystal growth and characterization

Au2Pb samples were synthesized in our laboratory with a Pb flux growth method
[193, 226, 225, 233]. The obtained crystals typically had sizes of a few millimeters and
showed clean triangular dark-silvered facets. Figure 5.3 shows a picture of one of the
crystals we obtained, together with the x-ray data indexed with the crystallographic
planes. The peaks in the x-ray data match the expected reflections for the room
temperature Fd3̄m phase.
The resistivity and specific heat of the samples we obtained from this growth

were characterized at Instituto de Ciencias de Materiales de Madrid of the Spanish
National Research Council (ICMM-CSIC) from room temperature down to 2 K.
For the resistivity measurements, the usual four-probe AC method was used, with
electrical contacts made by gluing gold wires with silver epoxy. Specific heat
was measured using a PPMS system of Quantum Design. In fig. 5.4 we show
the resistivity as a function of temperature highlighting with colors the different
structures found when cooling. The specific heat is shown in the inset, displaying
three visible anomalies at the structural transitions. These data coincide with
previous results in high quality single crystal Au2Pb [226, 225].
We performed STM measurements using the setup mounted during this thesis and

already presented in chapter 2. We cut single crystalline samples in rectangular bars
that were a few mm long and a fraction of a mm wide. One of these bars was inserted
in a hole in our sample holder and fixed there with silver epoxy, leaving one of the
plane facets of the cubic structure facing upwards. After cooling down to 4 K, we
moved the sample holder using the slider described in section 2.3.4 and approached
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Figure 5.3: X-ray scattering data of Au2Pb measured at room temperature. Vertical
lines over the horizontal axes provide the expected reflections for the room temperature
Fd3̄m crystal structure. Inset shows a picture of the Au2Pb single crystals obtained after
the growth. Horizontal scale bar is 1 mm long.
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Figure 5.4: Temperature dependent resistivity. Different colors highlight the different
crystalline structures obtained when cooling. Transition temperatures at 40 K, 50 K and
97 K are indicated. Inset shows the specific heat as a function of temperature displaying
a noticeable anomaly at the 97 K transition and a high peak at the 50 K transition.
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Figure 5.5: (a) Optical microscope image of one of the measured Au2Pb samples (scale
bar: 10 µm). (b) STM 200 � 200 nm2 topographic image taken at 100 mK and zero
magnetic field with a bias voltage of 1 mV and a setpoint current of 4 nA. Horizontal scale
bar is 50 nm long and color scale bar provided at the right ranges from zero (black) to
1.9 nm (white).

the bar to a ceramic blade to break the sample. We then measured the surface of the
broken sample. Ex-situ optical analysis made after finishing the experiment showed
rough surfaces with linear elongated facets (fig. 5.5a), indicating that we could not
break the sample on a clear cleaving plane. Figure 5.5b shows one of the STM
topographies we obtained in a 200�200 nm2 window. Typical corrugation found on
the surface was of the order of 2 nm and individual atoms were not resolved in any
of the locations we explored. We measured two in-situ broken samples and analyzed
in each up to 20 different fields of view accessed by moving the sample holder in-situ
at mK temperatures.

5.2 Superconducting gap characterization

As I discussed above, unveiling the gap structure of a superconductor is key
to identify its topological properties. Due to the small expected size of the
superconducting gap in Au2Pb, it is important to make sure that the energy
resolution of the tunneling conductance measurement setup is very high, of 9 µeV
in our case, and that previous measurements using the same equipment lead to
fully opened superconducting gap in conventional superconductors with similar Tc
such as Al (see section 2.3.3).
Figure 5.6 shows our scanning tunneling spectroscopy measurements of the

superconducting gap of Au2Pb as a function of temperature. At 0.1 K, we do not
observe a fully opened superconducting gap, but instead a large amount of states
at the Fermi level. As temperature increases, the zero bias conductance increases.
The quasiparticle peaks are already highly suppressed at low temperatures and not
noticed at all above 0.6 K. We can obtain the superconducting density of states,
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Figure 5.6: (a) Normalized tunneling conductance measured in Au2Pb as a function of
the bias voltage shown for increasing temperatures as colored lines. Curves are shifted
upwards for better visualization. Bottom curve is at 100 mK (cyan) and top one is at
1 K (red), with 100 mK increments. Black lines over conductance curves show the result
of the convolution of the density of states with the derivative of the Fermi distribution
at each temperature. The density of states used at each temperature are shown in (b).
(c) Temperature dependence of the position of quasiparticle peaks in the density of states
(black arrows in (b)). BCS prediction for the gap size with Tc � 1.1 K is depicted in black.

N�E�, versus temperature by seeking for the N�E� curve whose convolution
with the derivative of the Fermi function at each temperature best fits the
tunneling conductance (see eq. (2.9)). The resulting N�E� is shown in fig. 5.6b.
We determine the size of the superconducting gap, ∆, and its temperature
dependence from the position of the quasiparticle peaks in the density of states.
The temperature dependence of the gap size is shown in fig. 5.6c. We find a value
for the superconducting gap of ∆�T � 0� � 0.17 meV that decreases with increasing
temperature slightly deviating from BCS prediction (black line in fig. 5.6c). The
gap disappears at about 1.1 K, close to the temperature of the superconducting
specific heat anomaly and the temperature at which the resistivity becomes zero
in previous reports [226, 225, 231]. Despite the deviation of our data from BCS
predictions for the gap size in the intermediate temperature range, BCS expression
∆�T � 0� � 1.76kBTc provides ∆�T � 0� � 0.17 meV using Tc � 1.1 K, which is in
perfect agreement with the value found in the experiment.
The shape of the superconducting density of states is reproducibly found over large

areas of the surface, covering several hundreds of nm. These areas are not atomically
flat, but present a certain corrugation. Figure 5.7a shows a topographic image taken
in a region of 345� 345 nm2 with a corrugation of � 2 nm. The topography presents
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Figure 5.7: (a) STM topographic image measured at 100 mK and zero magnetic field
in a 345 � 345 nm2 region of the Au2Pb sample. (b) Normalized zero bias conductance
inside the same region of (a) 60 nm white scale bar is printed in the bottom-left corner
of (a, b). Vertical color scale bars are provided at the left of each panel. Inset in (b)
shows a histogram of the normalized conductance values. (c) Offset plot of the tunneling
conductance curves measured along the yellow line in (a, b).

ellipsoidal features of the order of a few nm height, indicating that the sample
does not easily break on an atomic plane. The zero bias conductance measured
at 100 mK and zero magnetic field as a function of the position in the same field
of view is mapped in fig. 5.7b. The tunneling conductance at zero bias presents
small variations around 30 % of the conductance at bias voltages well above the
superconducting gap, but it is always between 20 % and 30 % (see histogram in
fig. 5.7b). Although some patterns in the conductance map can be related some
features in the topography, there is no clear correlation between the two images.
Figure 5.7d presents an offset plot of the tunneling conductance curves along the
yellow line in fig. 5.7a,b,c evidencing that the measured superconducting gap size
remains basically unchanged over the image.
The zero bias conductance, σ�V � 0�, is of around 0.3 times the normal state

conductance at 100 mK and it increases with temperature as expected, but the
obtained zero energy density of states, N�E � 0�, is also nonzero (about a third of
the normal state density of states). In a usual s-wave BCS superconductor, N�E�
is exactly zero at zero energy and remains this way when increasing temperature
as long as the superconducting critical temperature is not surpassed. The effect
of temperature is just to decrease the distance between the quasiparticle peaks as
the superconducting gap size, ∆�T �, decreases with increasing temperature. To
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Figure 5.8: (a) Normalized tunneling conductance measured in Pb as a function of the
bias voltage shown for increasing temperatures as colored lines. Curves are shifted upwards
for better visualization. From bottom to top, the temperatures of the curves are 150 mK,
250 mK, 1 K, 3 K, 5 K, 6 K, 7 K and 7.5 K, respectively. Black lines are the density of states
convoluted with the derivative of the Fermi function at the corresponding temperature.
The density of states used at each temperature are shown in (b). (c) Temperature
dependence of the gap size obtained from the position of the quasiparticle peaks in (b).
BCS prediction for the gap size with Tc � 7.2 K is depicted in black. (d) Zero energy
density of states versus temperature as obtained from (b). Temperature is normalized to
Tc.

illustrate this, we measured a set of tunneling conductance curves from 0.15 K
up to 7.5 K on a pure Pb surface (fig. 5.8). In this case, the energy position of
the quasiparticle peaks is closer to zero as temperature increases (fig. 5.8b,c), but
fig. 5.8d shows how the zero energy density of states remains strictly equal to zero
until we go beyond the superconducting critical temperature of Pb (Tc � 7.2 K).
In Au2Pb, however, our data show that the zero energy density of states is already
finite at low temperatures far from Tc.
It is quite clear from our data that we can identify large areas on the sample

(fig. 5.7) that present the same homogeneous critical temperature of bulk
measurements. The value of the superconducting gap and, as we will describe
in section 5.3, the qualitative magnetic field behavior, are as expected from the
properties that we know from the the bulk. The finite density of states at the Fermi
level is however different from the Fermi energy density of states found in bulk
measurements in the superconducting phase, what is probably the most intriguing
finding of our experiments.
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5. States at very low energies inside the superconducting gap of Au2Pb

The finite zero energy density of states observed in our experiments evidences
that the surface superconductivity is radically different from the bulk one. This
difference could be attributed to the presence of a trivial normal layer due to surface
degradation, but the huge coherence length, ξ, of bulk Au2Pb, of 60 nm or larger
(see magnetic field behavior in section 5.3), implies however that the normal layer
should be tens of nm thick to sufficiently disturb the superconducting density of
states at the surface and provide a sizable zero energy density of states. Having
cleaved the sample at low temperatures in cryogenic vacuum conditions eliminates
the appearance of oxides or chemical decomposition.
As I introduced above, there are Dirac cones in the high temperature phase

along the Γ-X line of the Brillouin zone. In the low temperature phase, symmetry
breaking allows band mixing and the Dirac cone gaps out. As shown by Cheon
et al. [234], the structural distortion can lead to a fully gapped bulk superconductor
with surface states that show topologically nontrivial properties. Cheon et al. [234]
analyze the irreducible representations of the point group of Au2Pb and derive from
these the possible superconducting gap symmetries. They start assuming a high
temperature D4h phase with a Dirac cone. When cooling, this phase distorts into
a D2h phase and the Dirac cone gaps out, leaving surface states. The nature of
superconductivity in these surface states is analyzed depending on the irreducible
representation of the superconducting order parameter. In particular, it is found
that, if the initial D4h phase is an odd superconductor with B1u symmetry and
nodes in the superconducting gap, the distorted phase will have Au symmetry, and
thus, no nodes in the bulk band structure. The surface, on the contrary, will show
the closed Dirac gap, and thus, a closed gap and a linear dispersion relation. A
schematic representation of this situation is shown in fig. 5.9.
This would explain some of our observations. The analysis of other changes in

the surface properties in the structural transition lead to superconducting properties
with nodes in the bulk, or to a fully gapped trivial superconductor. The presence of
nodes is not compatible with macroscopic specific heat measurementes. The linear
dispersion in the density of states (fig. 5.6b) suggests a connection to the expected
Dirac-like linear dispersion of the surface state discussed above. However, there is
a large amount of states inside the superconducting gap. It has been shown by
Wehling et al. [235] that a Dirac dispersion relation is strongly affected by disorder,
which induces states inside the gap (see fig. 5.9b). The presence of a large amount
of such in-gap states at different energies could explain the observed finite density
of states at low energies.
Figure 5.10 shows some first-principles calculations of the band structure on

the (010) surface of the low temperatures phase of Au2Pb. Calculations were
performed by José J. Baldoví at ICMol, Valencia. We observe several surface
states inside the gapped bulk band structure along Γ-X line. Some of them show
a linear energy dispersion forming Dirac cones at the surface (see green box in
fig. 5.10a). Figure 5.10b shows the calculated surface Fermi surface in the kx-kz
plane, and spin texture of the surface states is added as green arrows in fig. 5.10c.
The Berry flux computed along closed paths of the surface states in the Γ-X line
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Figure 5.9: (a) Schematic representation of the band structure of a gapped system (black
lines) with two relativistic surface states (blue lines) inside the energy gap which may show
superconductivity. (b) Superconducting density of states in the surface states in (a), with
no states at the Fermi level (blue). Disorder introduces states inside the superconducting
gap (red) which can lead to a finite density of states at the Fermi level in strongly disordered
surfaces [235].
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Figure 5.10: (a) Projected energy spectrum for the right-side termination of the (010)
surface calculated for the low temperature structure of Au2Pb. Surface states arise inside
the gapped bulk band structure along the Γ-X direction. Green square marks the cone-like
dispersion of some surface states. (b) Calculated Fermi surface for the right termination
of the (010) surface of Au2Pb showing several surface states inside the first Brillouin
zone. (c) Same as (b) adding green arrows marking the spin texture of the surface states.
Calculations were performed by José J. Baldoví at ICMol, Valencia.
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5. States at very low energies inside the superconducting gap of Au2Pb

gives a topological invariant Z2 � 1, meaning that the cone-like surface states are
topologically nontrivial.
Thus, we can conclude that our results are compatible with fully gapped

odd paring in Au2Pb giving a surface state with a Dirac dispersion inside the
superconducting gap. Of course, to get bulk odd superconducting pairing with
Au symmetry, we do need electronic correlations [234]. This possibility has to be
studied with more measurements of the bulk properties of Au2Pb, for instance
Knight shift or neutron scattering. By now, there is no evidence for the needed
electronic correlations that could lead to such a peculiar superconducting state.
It is now useful to remind the situation in other compounds such as β-Bi2Pd

or BiPd [236, 237]. The latter is a noncentrosymmetric system expected to show
spin polarization as a consequence of broken inversion symmetry and spin-orbit
coupling. Nonetheless, it was shown that spin polarization induced by spin-orbit
coupling can also occur in centrosymmetric compounds, such as β-Bi2Pd [238].
Both compounds show a largely opened superconducting gap at the surface [239],
although there are also reports of unconventional behavior at the surface of β-Bi2Pd
[240, 241, 242]. In β-Bi2Pd, at about 2 eV below the Fermi level, a bulk gap is
closed at the surface by a surface Dirac cone as shown by band structure calculations
involving just a few layers [236]. Spin resolved ARPES measurements showed that
the Dirac cone is spin-polarized, resembling the helical surface state of topological
insulators [236]. The topological invariant for the corresponding gap is Z2 � 1,
which requires an odd number of surface states, and thus spin-polarized surface
bands [236]. Furthermore, there are two surface states appearing at the Fermi
level, one of which is also topologically nontrivial and lies very close to the bulk
bands in k-space. ARPES identified spin polarization in both topologically trivial
and nontrivial surface states. STM shows a spin arrangement from scattering that
supports the presence of spin-polarized bands [240]. However, the superconducting
gap is fully open [239, 240].

5.3 Magnetic field behavior

To further explore the superconducting properties of Au2Pb, we studied the
tunneling spectroscopy in a magnetic field. Previous bulk measurements have
found a first critical field, Hc1 , of about 30 mT, a second critical field, Hc2 , of
the same order, with values ranging between 20 and 80 mT, and a coherence
length of ξ � 60 nm. This value was extracted from the temperature dependence
of the second critical field [226, 225, 231, 232]. There is clear Meissner field
expulsion until several tens of mT at low temperatures [231]. Hence, we can
expect nearly type I superconductivity with strong field expulsion and concomitant
demagnetizing effects, similar to those that can be found in elemental Pb or in
Nb at small magnetic fields [243, 244, 245]. Our sample is nearly plate-like, with
demagnetizing factor close to one, which implies extreme field enhancement at
the edges of the sample and that the sample almost immediately enters a state
with a highly inhomogeneous magnetic field [246, 247, 248, 249, 250]. This leads
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Figure 5.11: (a) Magnetic field dependence of the superconducting tunneling
conductance. The values of the magnetic field are indicated in the panel. (b) Zero bias
conductance as a function of magnetic field for increasing (dark red) and decreasing (green)
magnetic fields. (c, d) Same panels for a different magnetic field ramp. Error bars are
indicative of the dispersion of the zero bias conductance value found over areas covering
a few hundred of nm. Inset of (d) shows a representative image of the zero bias tunneling
conductance measured at 100 mK at an applied field of 10 mT inside a 305�305 nm2 area.
Horizontal scale bar is 50 nm long and vertical scale bar ranges between zero (blue) and
1 (red).

to the so-called intermediate state, which consists of normal and superconducting
areas of macroscopic sizes. Eventually, in areas of the sample with a reduced
mean free path, one might also expect the intermediate mixed state, consisting of
superconducting and mixed state vortex areas that appear between the Meissner
phase and the complete suppression of superconductivity [251]. Nevertheless, in
all cases, we expect macroscopically differing areas with fully superconducting
and normal properties, being each respectively at zero magnetic field and at the
critical field, and a strong hysteretic dependence on the magnetic field history due

127



5. States at very low energies inside the superconducting gap of Au2Pb

to pinned normal areas that move through the sample at each modification of the
magnetic field [246, 247, 248, 249, 250, 251].
We indeed observe strongly hysteretic behavior, as shown in fig. 5.11.

Superconductivity disappears most often between 20 mT and 30 mT depending
on the area over the sample where we are scanning, in agreement with bulk
superconducting properties. We could find no indications of separated normal and
superconducting areas within our fields of view. Inset in fig. 5.11d displays the
homogeneous zero bias conductance map taken at 10 mT inside a 305 nm � 305 nm
area. Therefore, as the normal and superconducting areas of the intermediate state
form over length scales of the order of the coherence length, ξ, our measurements
confirm that its value is certainly as estimated from bulk measurements (60 nm) or
even larger. We also found no evidence for vortices, although this is not surprising
given the demagnetizing effects and our limited field of view of about 2 µm � 2 µm.
Interestingly, the zero bias conductance in the superconducting areas does not

remain constant with magnetic field but shows a clear variation. For example, in
fig. 5.11a,b we observe an increase of the zero bias conductance when increasing the
magnetic field and a decrease when decreasing the magnetic field. In this field ramp
we did not reach full suppression of superconductivity. In fig. 5.11c,d we measure up
to slightly higher fields and observe again an increasing zero bias conductance when
increasing the magnetic field. Here, in contrast to the previous case, the field remains
trapped with the system in the normal phase down to very small magnetic fields.
Actually, after applying a magnetic field, we often observed zero bias conductance
larger than those shown in fig. 5.6.
We can discuss this behavior in terms of the Dirac cone at the surface. As shown

by the hysteretic behavior (fig. 5.11b,c), when applying a magnetic field, there are
certainly normal areas that nucleate close to our field of view. Given the large value
of the coherence length, these normal areas broaden localized states inside the Dirac
dispersion relation. This broadening can lead to an increased zero energy density of
states with magnetic field.

5.4 Conclusions

In summary, we have studied the surface of Au2Pb with STM measuring the
superconducting gap as a function of the temperature and magnetic field. We
find a superconducting gap compatible with a critical temperature of 1.1 K in
agreement with bulk transport measurements. When applying magnetic field, we
observe a small critical field over large areas on the surface as well as an hysteretic
behavior of the zero bias conductance. This serves us to identify Au2Pb as a type I
or very weak type II superconductor.
The superconducting gap is not fully opened, but we have found a finite residual

density of states at the surface that remains larger than about a third of the normal
phase value. Besides, the measured superconducting gap is homogeneous over
large areas of the sample. We discussed possible explanations, including sample
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inhomogeneities and the presence of in-gap states on a surface Dirac cone. The
large value of the bulk coherence length favors the latter option.
It would be great to find atomically flat surfaces and study the superconducting

behavior on such surfaces. Spin resolved measurements of the bulk properties
should also provide further insight into the bulk superconductivity, which is key to
understand the effects of the surface. In all, Au2Pb is an intriguing superconductor.
As compared to all other intermetallic superconductors where topological properties
are discussed in the literature in absence of strong correlations (such as heavy
fermions or proximity to a magnetic phase), Au2Pb is the only one (to our knowledge)
which shows a robust zero energy density of states covering the whole surface. This
in itself is an indication of a bulk state with different properties, although it requires
further study by spin sensitive bulk techniques.

129





6
High magnetic field vortex
lattice in the iron based
superconductor FeSe
6.1 Iron based superconductivity

Two decades after the first report of high-Tc superconductivity, unconventional
superconductivity was also observed in a family of iron based materials. It was first
discovered in LaFePO with Tc � 4 K [252] and in LaNiAsO with Tc � 2.4 K [253],
but the first report of an iron based high-Tc superconductor was LaFeAsO1�xFx
with a Tc of 26 K [24]. Magnetism and superconductivity were considered to be
competing phenomena, so the discovery of superconductivity in materials based on
Fe, which is a well known magnetic element, was indeed surprising, and iron based
compounds were soon considered as the perfect candidates to study the interplay
between magnetic correlations and the formation of superconducting Cooper pairs.
Besides, the normal state of these materials is metallic, what makes iron based
superconductors interesting for applications as compared with cuprates, which
are ceramic materials that are not easily workable and typically require higher
manufacturing costs.
There is a wide variety of different iron based superconductors. They are all

obtained by combining Fe with elements from the group 15 (pnictogens) or the
group 16 (chalcogens) of the periodic table. They can be classified in families by
the stoichiometric relations between the different elements (11, 111, 122, etc.). All
the families have a common building block that consists of a Fe-As plane for the
pnictides and a Fe-Se/Te plane for the chalcogenides [254, 255].
Iron based superconductors are strongly correlated systems that present

very particular properties such as multiband superconductivity with a unique
situation having a Cooper pair wavefunction that changes sign in different sheets
of the Fermi surface. Their phase diagrams feature magnetic ordered phases,
superconductivity, electronic nematicity and quantum criticality [255]. Similar
to cuprates, superconducting regions in the phase diagram appear close to
antiferromagnetism. In fact, in the most accepted scenario, pairing is mediated by
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Figure 6.1: Generic temperature versus pressure or doping phase diagram for iron based
superconductors. The ground state is an antiferromagnet with strong nematic properties
(red region). Depending on the particular compound, the magnetic phase transition
can be coupled to or separated from the structural transition. Above these transitions
there is a nematic phase (orange region) usually coupled to the magnetic and structural
transitions. Upon doping or pressure, a superconducting dome emerges (blue region).
The highest critical temperature for the superconducting state is reached at the optimal
doping, which usually coincides with the extrapolation of the magnetic phase transition
to zero temperature.

spin fluctuations with the antiferromagnetic vector connecting electron and hole
pockets. The highest superconducting critical temperatures in single crystal iron
based superconductors are close to 60 K [254, 255], while monolayer FeSe displays
a Tc above 100 K [256].
Figure 6.1 shows the generic temperature versus pressure (or doping) phase

diagram for iron based superconductors. The ground state of the parent compound
is antiferromagnetic and sometimes shows nematic properties [257]. There is a
structural phase transition that is many times coupled to the magnetic transition.
In compounds showing nematic properties, the nematic phase transition lies
very close to the structural and magnetic transitions. These three transitions
are strongly coupled to each other and it is thus very difficult to disentangle
their origin [258]. With increasing doping (or pressure), a superconducting dome
emerges. The optimal doping at which the superconducting critical temperature
is higher is reached close to the extrapolation of the magnetic transition at zero
temperature. Magnetic order and superconductivity coexist in a small region of the
phase diagram of some materials.
Two months after the discovery of superconductivity in the 122 systems,

superconductivity was reported in FeSe below a critical temperature of about 8-9 K
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Figure 6.2: Schematic representation of the low temperature Cmma orthorhombic
atomic structure of FeSe. Fe atoms are depicted in brown and Se atoms, in green. General,
lateral and top points of view are shown in left, middle and right panels, respectively. Light
grey lines delimit the unit cell dimensions (a � 5.318 Å, b � 5.343 Å and c � 5.495 Å). Black
circles mark the top Se atoms accessible with the STM tip after the cleaving process. The
square arrangement of top Se atoms is tilted 45° with respect to the orthorhombic a and
b axes.

[259]. This report attracted lot of attention regarding the unusual simplicity of this
compound, which consists only of two different elements in the same stoichiometric
proportion. The critical temperature of FeSe is not as high as that of other iron
based superconductors, but by applying pressure or doping, Tc can be considerably
increased. FeSe is a good system to study the interplay between nematicity,
magnetism and superconductivity given the unusual correlations between these
three phenomena.
In this chapter, I will show our STM results in high quality FeSe single crystals

grown by the group of Paul C. Canfield. Among the iron based superconductors,
FeSe has a peculiar band structure with small Fermi surface pockets and Fermi
energies. Furthermore, since the critical field is of about 17 T [260], we can nearly
access the whole magnetic field range.

6.1.1 Atomic structure

FeSe crystallizes in a tetragonal phase at room temperature. It undergoes a
structural transition below � 90 K to an orthorhombic phase in which the symmetry
between a and b axes is broken [259, 261, 262] and nematicity appears [263]. The
lattice parameters of this orthorhombic phase belonging to the space group Cmma
are a � 5.318 Å, b � 5.343 Å and c � 5.495 Å.
FeSe is an easily exfoliable layered material with layers van der Waals-stacked

along the crystallographic c-axis. Each layer consists of an Fe plane sandwiched by
two Se planes (see fig. 6.2). Inside the Fe plane, the distance between consecutive Fe
atoms is aFe � 2.659 Å along a-direction and bFe � 2.672 Å along b-direction. On the
other hand, Se planes comprise a square lattice of Se atoms separated 3.769 Å whose
orientation is tilted 45° with respect to aFe and bFe. Unlike WTe2, the other layered

133



6. High magnetic field vortex lattice in the iron based superconductor FeSe

compound studied in this thesis, in FeSe the inversion symmetry is not broken. The
top Se plane presents a two-dimensional structure in contrast to that of top Te atoms
in WTe2, which arrange in stripes along one of the crystalline axes giving rise to
quasi-one-dimensional electronic properties (see chapter 4).
Nematicity in this compound concerns a difference in the electronic properties

along a and b crystalline axes. For instance, superconducting vortices in FeSe are
observed as ellipsoidal features with the bigger axis of the ellipse pointing to one of
the two orthorhombic axes. The ab reference plane rotates 90° every time a nematic
twin boundary is crossed as I will discuss in section 6.3.

6.1.2 Superconductivity and nematicity in FeSe

The atomic structure of bulk FeSe at room temperature is tetragonal. Lowering
the temperature, it enters an orthorhombic phase below Ts � 90 K [259, 261, 262].
This phase transition is analogous to the nematic transtion observed in many other
iron based materials. The parent compound is paramagnetic at ambient pressure
[262, 264] and spin fluctuations are found to be enhanced only at low temperatures,
which raises the question about the origin of the structural transition [264]. Unlike
other iron based superconductors, FeSe does not show antiferromagnetic ordering
at low temperatures and ambient pressure. When applying pressure, the system
becomes magnetically ordered at � 1 GPa [264, 265] and there is a significant increase
of the superconducting critical temperature, that reaches a maximum of Tc � 37 K
at � 6 GPa [266, 267, 268, 269].
The unconventional pairing mechanism in FeSe seems to be sign-changing

spin-fluctuation-mediated as pointed by the observation of a spin-resonance mode
[270]. The change of sign in the superconducting pair wavefunction between
the electron and hole pockets of the Fermi surface has been confirmed by
STM experiments [271, 272, 273]. Strong electron-phonon interaction has also
been recently reported exposing the importance of the interplay between the
electron-electron and the electron-phonon interactions [274].
The Fermi surface of FeSe obtained by tight binding models consists of three

bands, α, ε and δ [276, 277]. The hole-like α-band produces an ellipsoidal pocket
centered at the Γ � �0,0� point of the Brillouin Zone, with its major axis aligned to
the orthorhombic b axis. The electron-like ε-band is located around the X � �π~a,0�
point. This band is even more elongated than the α-band, but in this case the
major axis is oriented along the orthorhombic a axis. Finally, a δ-band pocket
has been also predicted at the Y � �π~b,0� point with its major axes aligned to the
orthorhombic b axis. Figure 6.3 shows a schematic representation of the three bands,
with the orbital character as a color code. The calculated α-band and ε-band Fermi
surface pockets agree with Fermi surface size and geometry obtained from angle
resolved photoemission spectroscopy (ARPES) [278, 279] and quantum oscillations
[280, 281]. The δ-band has not been observed experimentally yet. Recent ARPES
studies suggest that the single hole pocket around Γ splits into two pockets at the
surface, leading to spinful surface bands [282].
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Figure 6.3: Adapted from [271]. Schematic diagram of the FeSe Fermi surface. The
black square marks the limits of the first Brillouin zone. Hole-like α-band is shown around
the Γ point, electron-like ε-band, around the X point, and δ-band, around the Y point.
Orbital character of the bands is given by the color code (see Ref. [275]).
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Figure 6.4: QPI results obtained by Sprau et al. [271]. (a) Tunneling conductance versus
bias voltage. (b) Increasing energy (red to purple) constant energy contours of the gapped
α-band showing the three scattering vectors they identify as black arrows. Dashed line
sketches the ellipsoidal shape of the normal state Fermi surface. (c) Same for the scattering
vectors identified in the gapped ε-band. (d) Energy evolution of the α-band scattering
vectors in (b). (e) Energy evolution of the ε-band scattering vectors in (c).
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The shape of α and ε bands at the Fermi level has been measured by Sprau et al.
[271] through quasiparticle interference imaging. Figure 6.4a shows the tunneling
conductance curve measured in this work, which is very similar to the curves we
measure in our FeSe sample (see section 6.2.1 and fig. 6.8). Authors show that,
depending on the coupling between the STM tip and the sample, they can either
access some scattering vectors inside the α-band or inside the ε-band. They identify
three vectors due to the scattering in the α-band (fig. 6.4b,d) and another three
vectors due to the scattering in the ε-band (fig. 6.4c,e), and resolve the elongated
shapes of the α and ε bands along ky and kx, respectively. These results show that
superconducting paring in FeSe is orbital selective [271], what has been confirmed
by calculations [283, 284].
Figure 6.5 plots the magnetic field parallel to c-axis versus temperature phase

diagram showing the superconducting region below Hc2�T � 0� � 17 T and
Tc�H � 0� � 9 K. Figure 6.6 shows the superconducting vortex lattice measured up
to 8 T by Song et al. [285]. Nematicity in this material results in the observation of
elongated vortices along the orthorhombic a-direction.
A new high magnetic field phase has been proposed related to features observed

in the thermal conductivity versus magnetic field [260, 286] (see fig. 6.5). The
upper critical field of FeSe is so large that the Zeeman induced spin splitting of the
superconducting density of states is of the order of the superconducting gap at about
15 T. Actually, taking a Landé factor g � 2, we can estimate the Zeeman splitting
to be 1.74 meV at 15 T, which is of the order of the size of the superconducting gap
(� 2 meV). This suggests that the putative high magnetic field superconducting
phase is related to the Zeeman spin polarization. In presence of a large spin
polarization, Fulde, Ferrel, Larkin and Ovchinnikov (FFLO, [287, 288]) proposed
that a superconductor might show a spatial modulation of the superconducting
pair wavefunction. This leads to a sort of modulated order parameter with a spin
and orbital structure that is intricate and has not been resolved yet. The FFLO
modulation coexists with the vortex lattice. Some calculations propose, for example,
coupled in and out of plane modulations as a result of Zeeman splitting and in-plane
supercurrent quantization. The authors of Refs. [260, 286, 289] propose that the
high field superconducting phase might be related to the FFLO prediction. A recent
striking result by Hanaguri et al. [290] shows that the vortex lattice vanishes in the
high magnetic field phase.
As I have discussed above, the Fermi surfaces and Fermi energy of FeSe are

extremely small. This leads to a very peculiar situation in which the superconducting
gap is of the order of the Fermi energy. The small value of the superconducting gap
with respect to the Fermi energy is probably the main postulate of BCS theory. The
influence of such a situation in a superconductor is under debate. Some authors
propose that it could lead to a more Bose-Einstein like condensation (BEC) of
Cooper pairs instead of BCS theory [260, 291].
Here, I will present a comprehensive STM study of the superconducting

properties of FeSe. First, I will discuss the gap structure as obtained from tunneling
spectroscopy using normal and superconducting tips. With the latter, we could
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according to Kasahara et al. [260]
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Figure 6.6: FeSe vortex lattice measured by Song et al. [285] at 0.4 K and (a) 4 T and
(b) 8 T in a 60 � 60 nm2 region. Vortices show elongated shapes along a-axis.
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obtain an improved energy resolution with respect to previous work. Finally, and
probably most importantly, we observed the vortex lattice in the whole magnetic
field range and found a new charge density wave at very high magnetic fields.

6.2 Characterization of the FeSe surface

FeSe single crystals were grown by the group of Paul C. Canfield following the
method described in Ref. [193]. Resulting crystals are plate-like with the c-axis
perpendicular to the flat surface. Crystals are � 0.05 mm thick with typical in-plane
dimensions of � 1 mm. We used the experimental setup developed during this thesis
to measure two different FeSe samples, one using a normal Au tip and other one using
a superconducting Pb tip. Samples were in-situ exfoliated at 5 K by gluing a piece
of alumina on top of them and pushing the sample holder towards a transversely
placed copper bar as described in section 2.3.4. The cleaving process resulted in very
clean flat Se surfaces extended over several tens of µm. Figure 6.7a shows an optical
microscope image taken on one of the FeSe samples after the cleaving process. We
can find large flat areas all over the sample with some perpendicular breaking-lines
following the square lattice of Se atoms.
Figure 6.7b shows an 218 � 218 nm2 STM topographic image taken in one of the

flat areas where we found some atomic steps. Inset in fig. 6.7b displays a height
profile along the orange line in fig. 6.7b perpendicular to the steps. Each height
step corresponds to either one (� 5.5 Å) or two (� 11 Å) unit cells in c-direction,
proving that the cleaving always occurs between layers and that we can only access
the top Se planes marked with black arrows in fig. 6.2. If we zoom into one of the
atomic terraces, our STM topographic images clearly resolve the square lattice of
Se atoms (fig. 6.7c). All over the surface we find some randomly distributed defects
that appear as bump-like features in the topography.

6.2.1 Superconducting gap structure

Let us start presenting the tunneling conductance curve we measured in FeSe.
Figure 6.8a shows a conductance curve acquired at 100 mK and zero magnetic field
normalized to the conductance value at higher voltages outside the superconducting
gap. The conductance curve displays a V-shape with two maxima that correspond
to the position of the quasiparticles peaks of the bigger gap (at around �2 mV,
purple arrows in fig. 6.8a). Inside the bigger gap, we observe two additional features
at around �1 mV (green arrows in fig. 6.8a) coming from the quasiparticle peaks of
a smaller superconducting gap, evidencing the double gap structure of FeSe. The
sizes of the two superconducting gaps are ∆1 � 1.9 meV and ∆2 � 0.9 meV (measured
from the position of the maxima in the dN~dE curve). The V-shape of the density of
states and the multigap structure we observe is similar to that reported in previous
STM studies [260, 292, 271].
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Figure 6.7: (a) Optical microscope image on one of the FeSe samples we measured after
the cleaving process at cryogenic conditions. Perpendicular breaking-lines in the surface
reveal the orientation of the square lattice of Se atoms. Scale bar: 10 µm. (b) 218�218 nm2

STM topographic image of FeSe showing subsequent atomic terraces separated by steps.
Inset displays a height profile along the orange line across the steps. The height jump
between steps is always of one or two unit cells in c-direction. (c) 42.5 � 42.5 nm2 STM
topography showing square Se lattice with atomic resolution and several bump-like defects.
The Fourier transform of the image in the inset shows the Bragg peaks corresponding to
the observed Se lattice (scale bar is 2 nm�1 long). Topographic images in (b, c) were
measured with Au tip at 100 mK with a bias voltage of 10 mV at a setpoint current of
4 nA. Scale bars in (b, c) are 10 nm long. Vertical color scale is given at the right of each
panel. The orientation of a and b orthorhombic axes is indicated by black or white arrows
in each image.

The evolution of the measured conductance curves with increasing temperature
is shown in fig. 6.8b from 0.1 K up to 9.4 K as colored lines. The zero bias
conductance value gradually increases and the height of the quasiparticle peaks
gradually decreases until the curves eventually become flat above 8.6 K. To
obtain the dependence of the density of states, N�E�, with the temperature we
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Figure 6.8: (a) Tunneling conductance versus voltage curve measured with Au tip on the
FeSe surface using a setpoint current of 4 nA. The curve shows a double gap structure
identified by the quasiparticle peaks of the bigger gap (purple arrows) and two additional
in-gap features (green arrows). Conductance curves are normalized to the conductance
outside the superconducting gap. (b) Normalized conductance curves measured in FeSe as
a function of the bias voltage shown for increasing temperatures as colored lines. Curves
are shifted upwards for better visualization. Black lines account for the result of the
convolution of the density of states in (c) with the derivative of the Fermi distribution
at each temperature. The temperature of each curve is printed in (c). (d) Temperature
dependence of the gap size of the two gaps we spot in (a). The gap size is measured from
the position of the peaks in dN~dE and is depicted in purple for the bigger gap and in
green for the smaller one. BCS expected evolution of the gap size with temperature is
plotted in black for Tc � 8.6 K.

search for the N�E� curve that best recovers the measured conductance curve
after being convoluted with the corresponding derivative of the Fermi function
at each temperature (see eq. (2.9)). The N�E� curves we obtained are shown
in fig. 6.8c and their convolutions with the derivative of the Fermi distribution
at each temperature are plotted in black in fig. 6.8b on top of the corresponding
conductance curve.
From the density of states versus energy curves in fig. 6.8c we can obtain the

evolution of the gap size with temperature for both superconducting gaps (fig. 6.8d).
Values for the gap size determined from the position of the peaks in the dN~dE
curves for the bigger (∆1) and the smaller (∆2) gaps are depicted as purple and
green circles, respectively. The BCS expected behavior for the gap size as a function
of the temperature is shown as a black line in fig. 6.8d for a Tc of 8.6 K. The gap size
at low temperatures is slightly bigger than the BCS prediction for ∆1 and sligthly
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Figure 6.9: (a) Normalized tunneling conductance curves measured in FeSe as a function
of the bias voltage for different values of the magnetic field (thick colored lines). Curves
are shifted upwards for better visualization. (b) Density of states curves as a function
of the energy inferred from the conductance curves in (a). Magnetic field value of each
curve is printed in (c). For each magnetic field, light red lines in (a) show the result of
the convolution of the density of states curves in (b) with a Zeeman energy splitting of
0.067 meV/T with the derivative of the Fermi distribution at 100 mK. (c) Zero energy
density of states as a function of applied magnetic field showing a roughly linear behavior.

smaller for ∆2. The temperature dependence of the superconducting gaps roughly
follows BCS theory.

6.2.2 Zeeman splitting

As I introduced above, Zeeman energy in FeSe is comparable with the Fermi
energy of the bands and with the superconducting gap size. Assuming a typical
g-factor of 2, the estimation for the Zeeman energy (EZ) of FeSe at 15 T is of
EZ � µBgB � 1.74 meV, where µB is the Bohr magneton. Thus, as the bigger
superconducting gap size we measure is ∆1 � 1.9 meV, it is reasonable to expect
that a band splitting of the order of the superconducting gap would considerably
alter the density of states at high magnetic fields.
Figure 6.9a shows the normalized conductance versus voltage curves we measured

at 100 mK with the Au STM tip in FeSe as thick colored lines for different values
of the magnetic field from 0 T to 15 T. To make sure that the curves belong to the
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6. High magnetic field vortex lattice in the iron based superconductor FeSe

superconducting phase, we took vortex images at each field and positioned the STM
tip in a space between vortices. At lower magnetic field, the zero bias conductance
is smaller and the quasiparticle peaks are higher. As magnetic field increases, the
quasiparticle peaks become wider and the zero bias conductance rises. To obtain
the density of states versus the energy we tried to find the N�E� curve whose
convolution with the derivative of the Fermi distribution at 100 mK best fit the
measured conductance at each field. However, we were not able to fit the curves at
higher magnetic fields without completely distorting the shape of the N�E� curves
used at lower magnetic fields. Thus, we introduced an energy splitting in the N�E�
curves that increases linearly with magnetic field. This way, when convoluting the
N�E� curve after being energy-split by a certain Zeeman energy with the derivative
of the Fermi distribution, we can reproduce the broadening of the quasiparticle
peaks observed in the conductance curves as magnetic field increases. After this
fitting process, we found this Zeeman energy to be 1 meV at 15 T, slightly smaller
but of the same order of the estimation made above. The resulting density of states
curves are plotted in fig. 6.9b and the corresponding energy-split and temperature
convoluted curves are plotted in light red on top of the corresponding conductance
curves in fig. 6.9a. Interestingly, the position of the quasiparticle peaks, and thus,
the gap size, remains constant up to 15 T, but the zero energy density of states
increases with magnetic field following an almost linear trend (see fig. 6.9c). Such a
behavior is a consequence of a Zeeman splitted density of states with a linear density
of states at low energies.
With this simple analysis, we see how Zeeman splitting can explain the

broadening of the quasiparticle peaks at higher magnetic field. However, it does
not destroy completely superconductivity even at 15 T and we have relatively deep
superconducting gaps that allow us to see vortices at very high magnetic fields.

6.3 High magnetic field vortex lattice

Superconducting vortices in FeSe have been extensively studied with STM at
relatively low magnetic fields (lower than 8 T) [285, 293, 294]. However, an
analysis of the vortex lattice near Hc2 � 17 T was still lacking. A high magnetic
field superconducting phase has been proposed above 13-14 T arising from the
BCS-BEC crossover regime given the comparable scales of the Zeeman energy, the
Fermi energy and the superconducting gap size in this material [260, 286], but no
experimental observation of the vortex lattice has been reported in the vicinities of
that proposed transition.
Vortices in FeSe appear as elongated features as a result of the difference between

coherence lengths, ξ, along the a and b directions, what mainly reflects the twofold
symmetry of the gap function. The major axis of the ellipsoidal shape of the vortex
cores lies along two perpendicular directions in different areas separated by twin
boundaries. The presence of this twinned domains is well noticed in our STM
vortex images. Figure 6.10a shows a topographic image taken at 100 mK and 8 T
in a region where we found two line defects crossing the image from bottom to top.
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Figure 6.10: (a) 236.3�236.3 nm2 STM topographic image measured at 8 T and 100 mK
showing several bump-like defects and two line defects (Vbias � 5 mV, Isetpoint � 4 nA).
(b) Zero bias normalized conductance map in the same field of view at 8 T showing the
superconducting vortex lattice. Vortices are elongated along orthorhombic a-direction and
line defects act as twin boundaries rotating the reference ab-plane 90°. The orientation of
a and b axes is marked with white arrows in (b) for each twinned domain. Horizontal scale
bar is 50 nm long and vertical color scale bars are provided at the right of each panel.

The zero bias normalized conductance at 8 T in the same field of view is mapped
in fig. 6.10b. The shape of the superconducting vortices we see is ellipsoidal as
reported in previous works [285] (see fig. 6.6), but our field of view is significantly
larger. The line defects we observed in the topography act as twin boundaries that
change 90° the direction of the nematic domain [285]. The reference ab-plane rotates
90° every time a twin boundary is crossed so that vortices are always elongated along
a-direction (see a and b axes reference in fig. 6.10b). In each twinned domain, the
inter-vortex distance is that expected for a typical Abrikosov vortex lattice at 8 T
(� 17.7 nm). Inside the twin boundaries pair-breaking intensifies and the vortex
density becomes much higher. This shows that the twin boundaries act as pinning
centers.
Far from the influence of any twin boundary we can resolve individual vortices

and thus we chose these regions study the vortex lattice at high magnetic fields.
Figure 6.11 shows a series of 71.3 � 71.3 nm2 vortex images acquired at different
values of the magnetic field ranging from 8 to 15 T. Vortex density increases
with magnetic field and the inter-vortex distance matches the expected one
for an Abrikosov lattice at each field (see fig. 6.11g). The contrast between
superconducting and non-superconducting areas decreases with increasing magnetic
field as a consequence of the increase of the zero bias conductance with magnetic
field I discussed above. However, to enhance the visibility of the vortex lattice, we
applied individual contrast to each image (see color scale bars in fig. 6.11).
With these results we prove that superconducting vortices are observable in FeSe

very close to Hc2 (at least up to 15 T) and that in case there is a high magnetic
field superconducting phase somehow different than the low field phase, it does not
really affect the vortex behavior.
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Figure 6.11: Zero bias normalized conductance maps showing the vortex lattice in FeSe
at 100 mK inside a 71.3 � 71.3 nm2 region at (a) 8 T, (b) 12 T, (c) 13 T, (d) 14 T,
(e) 14.5 T and (f) 15 T. White arrows mark the orientation of the orthorhombic a and b
axes. Horizontal scale bar is 10 nm long and the normalized conductance is given by the
color code provided at the top of each panel. (g) Measured average inter-vortex distance
versus magnetic field. We have applied the Delaunay triangulation algorithm described in
Ref. [68] to the images in (a-f) to obtain the red data points. Black line represents the
Abrikosov inter-vortex distance as a function of magnetic field.
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Figure 6.12: Fourier transforms of the conductance maps in fig. 6.11 at (a) 8 T, (b) 12 T,
(c) 13 T, (d) 14 T, (e) 14.5 T and (f) 15 T. White circles highlight the characteristic
wavevectors we observe at each field and blue circles mark the average position of these
wavevectors. (g) Average size of the wavevectors at each field (blue) and size of the
wavevector of the vortex lattice (red) versus magnetic field. Black line indicates the size
of the characteristic wavevector of an Abrikosov lattice.

At high magnetic fields, together with the vortex lattice, in the zero bias
conductance maps we spot some stripe-like features that are clearly noticeable in
the images of fig. 6.11. The Fourier transforms of the images in fig. 6.11 are shown
in fig. 6.12a-f. Fourier transforms show several hot spots at the characteristic
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6. High magnetic field vortex lattice in the iron based superconductor FeSe

wavevectors of the stripe-like features (white circles in fig. 6.12a-f). These hot spots
are not aligned with any of the crystalline axes, and their magnetic field evolution
is quite strong. The average size of the wavevectors of these spots, indicated by
the blue circles in fig. 6.12a-f, increases with magnetic field. The characteristic
wavevectors of these modulations are significantly smaller than that of the atomic
periodicity (1~a � 1.87 nm�1). Red spots at smaller Ñq in fig. 6.12a-f are due to the
characteristic wavevectors of the vortex lattice.
Figure 6.12g plots this average size as a function of the magnetic field (blue),

together with the characteristic wavevector of the vortex lattice (red). These
modulations might be the signature of a strongly magnetic field dependent charge
density wave. As I will discuss in the following section, the band structure in
FeSe shows some bands that terminate very close to the Fermi level. This allows
scattering with wavevectors whose size is comparable to those of the Abrikosov
vortex lattice. The interaction between those scattering vectors and the vortex
lattice could lead to significant modifications in the band structure, and thus
favor the appearance of charge modulations. Due to the Zeeman shift of the band
structure, the periodicity of the charge density wave shows a strong magnetic field
dependence. In fact, if we assume that the bands follow a parabolic dispersion, the
k-dependence of the energy of the Zeeman split bands will be given by

Ek �Ez �
Òh2k2

2m�
, (6.1)

where m� is the effective mass of the band. Isolating k, we obtain the following
relation between k and Ez:

k �
»
Ek �Ez (6.2)

Therefore, as the Zeeman energy Ez increases linearly with the applied magnetic
field, H, the changes in k introduced by the Zeeman splitting of the bands will go
as k �

º
H. On the other hand, since the Abrikosov inter-vortex distance goes as

dvortices � 1~ºH, the wavevector associated to the vortex lattice will feature the
same field dependence as that of the Zeeman shifted band structure, kvortices �

º
H.

Both wavevectors show a similar magnetic field dependence and, when there are
bands terminating very close to the Fermi level, the size of the k wavevector of such
bands can become comparable with the wavevector of the high magnetic field vortex
lattice. Thus, the interference of two modulations with very similar but not exactly
equal wavevector might produce a supermodulation similar to a Moiré pattern with
a much larger wavevector. Although we do not have a theoretical explanation for
these observations, there seems to be a link between charge modulations and the
vortex lattice which has been, to our knowledge, never observed before.
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Figure 6.13: (a) STM topographic image taken at 100 mK and zero magnetic field in a
21.2 � 21.2 nm2 area where we studied the quasiparticle interference scattering (Pb tip,
Vbias � 10 mV, Isetpoint � 20 nA). We observe a height modulation over the square lattice
of Se atoms coming from the electronic scattering around defects outside this scanning
window. Scale bar: 5 nm. Inset: Fourier transform of the image showing the Bragg
peaks of the square Se lattice and the long wavelength scattering signal around the central
point. Scale bar: 2 nm�1. (b) Normalized tunneling conductance versus bias voltage curve
(black circles) measured in a Pb sample with the same Pb tip used in the topography
shown in (a). Red line on top of the data points shows a BCS fitting of the gap using
∆Pb � 1.4 meV. (c) Average tunneling current versus voltage curve measured in FeSe inside
the region shown in (a) with a Pb tip.

6.4 QPI: band structure and superconducting
gap symmetry

We performed QPI measurements in the 21.2�21.2 nm2 region with atomic resolution
shown in the topography of fig. 6.13a. The square lattice of Se atoms is clearly
resolved in this area. Although there are no defects in this particular scanning
window, the presence of nearby defects provides sufficient scattering signal for the
QPI analysis.
Unlike other QPI studies presented in this thesis, here we used a superconducting

Pb tip to increase the energy resolution. In this situation, the density of states of
the tip, Nt�E�, is not constant with energy but presents two very sharp peaks at
the position of the quasiparticle peaks in Pb (see fig. 6.13b). In a simplified picture,
Nt�E� can be approached by a function consisting of two δ-functions centered at
the position of the quasiparticle peaks of Pb and being exactly zero in between.
Introducing such Nt�E� in eq. (2.7), we will obtain that, at low temperatures,
the tunneling current measured with a superconducting tip is proportional to the
density of states of the sample with an energy offset equal to the superconducting
gap of the tip [50]. Thus, the QPI signal will be observed in the current maps
instead of the conductance maps. To correct for the energy offset introduced by the
superconducting Pb tip, we have to subtract ∆Pb to the data at positive energies
and add ∆Pb to the data at negative energies. This means that, for instance, as we
measure a value of ∆Pb � 1.4 mV from the Pb-Pb junction between the same Pb
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Figure 6.14: (a-l) Current maps (left) in the same field of view of the topography in
fig. 6.13a and their 2D-Fourier transform (FFT) maps inside the 1BZ (right) for some
representative energies from -6.6 meV to +6.6 meV (energy offset coming from the
superconducting Pb tip already corrected). Energy values are indicated in the top-right
corner of each current map. For better visualization, vertical color scale bar for current
maps covers a �1.5 nA range around the average current value of each map. The orientation
of the orthorhombic a and b axes is marked with white arrows in the left panel of (a). FFT
maps are shown from �π~a to �π~a along qa and from �π~b to �π~b along qb. qa and qb
directions are marked in the right panel of (a). (m) qb � 0 profiles for all the energies of
the study showing the scattering intensity of the FFT maps along qa. (n) Same for the
qa � 0 profiles along qb. Green and cyan bands plotted over the profiles mark, respectively,
the hole-like and electron-like dispersion of the scattering vectors we observe in our data.
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tip and a Pb sample (see fig. 6.13b), the scattering features that we observe in the
current when we apply a bias voltage of +3 mV will give as information about the
band structure of the sample at E = 3 mV � ∆Pb = 1.6 mV. Using a superconducting
Pb tip, at each nominal value of the energy, we are essentially probing the sample
with a narrower function in energy (with the width of the quasiparticle peaks of Pb),
what allows for smaller energy steps, and thus provides a higher energy resolution
of the measured density of states of the sample.
We took current versus voltage curves between �10 mV at every pixel of the

simultaneously acquired topography shown in fig. 6.13a. The average current curve
in the whole image is plotted in fig. 6.13c. From the current curves, we built spatially
resolved current maps for all the energies of the study and Fourier transform them
to access the main scattering Ñq vectors in reciprocal space. Fourier transform (FFT)
maps are mirror-symmetrized along the orthorhombic a and b axes to increase
the signal to noise ratio. Current maps and FFT maps inside the first Brillouin
zone (1BZ) are shown in fig. 6.14a-l for some representative energies. We applied
a 3 � 3 pixel average filter to further increase the signal to noise ratio and we
subtracted a Gaussian core centered at Ñq � 0 to filter out the smallest wavevectors and
increase the contrast of the images. Real space current maps show some modulations
that evolve with energy and decrease in intensity around the Fermi energy as the
superconducting gap of FeSe appears. FFT maps display a roughly round intensity
cloud around the central point at negative energies that shrinks and changes its
shape with increasing energy to end up as a more ellipsoidal feature along qb at
positive energies.
Seeking for signatures of the Fermi surface of FeSe described above, we plot profiles

of the FFT maps along a and b high symmetry directions for all the energies of
the study (see fig. 6.14m,n). Both profiles present a drop of the intensity around
the Fermi level as a consequence of the FeSe superconducting gap. The scattering
patterns along qa and qb are very similar, but the profile along qa shows higher
intensity for negative energies, while the scattering intensities in the qb profile are
of the same order at negative and positive energies. In both profiles, the enhanced
scattering cloud is centered at around 0.35 π~a at �7 meV and evolves to smaller Ñq
with increasing energy.
The fact that the scattering intensity along qa is higher at negative energies can

be understood if there are two hole pockets at the Γ point instead of just one, as
pointed out by Li et al. [282]. In this picture, one of the hole bands terminates very
close to the Fermi level. At negative energies we observe scattering vectors coming
from both bands, while the scattering intensity at positive energies is only due to
the scattering inside the remaining band. Such a situation is qualitatively plotted in
green in fig. 6.14m on top of the QPI profiles. This scheme is also compatible with
our QPI data along qb (fig. 6.14n), but there, the scattering clouds appear at slightly
higher Ñq. If we take a look at the shape of the hole-like α-band shown in fig. 6.3,
it has a rather ellipsoidal shape with its mayor axis aligned to the orthorhombic
b axis. Thus, we expect to observe scattering features along qa to be at slightly
smaller Ñq than that along qb. This is exactly what we observe in our QPI data.
However, the scattering signal along qb at positive energies is much more intense.
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Figure 6.15: Measured QPI maps inside the first Brillouin zone between +1 meV and
+2 meV (a-f) and between -1 meV and -2 meV (g-l). White arrows in (a) mark qa and qb
directions. (m) Scattering intensity profile along the white circle in (a-l) as a function of
the energy and the angle measured from qa. Grey arrows mark the four-fold symmetric
bright spots at around �2 meV along the crystallographic axes, red arrows mark the four
bright spots along the diagonals at around �1 meV and yellow arrows mark the two-fold
symmetric bright spots along qb at positive energies. Colored lines in (a-l) indicate the
angles marked by colored arrows in (m).

To account for this enhanced scattering we have to consider a new contribution to
the scattering. Figure 6.14n shows a scattering cloud centered at around 0.25 π~a
at 7 meV that evolves to smaller Ñq as energy decreases and terminates at around
�2 meV (cyan line in fig. 6.14n). Coming back to the band scheme in fig. 6.3, the
electron-like ε-band centered at the X point is very elongated along the a axis, so
we expect higher scattering intensity along qb connecting the flatter regions of the
band, that lie parallel to b-direction. Therefore, the electron-like scattering features
are expected to be much more intense along qb than along qa, what explains the
difference in intensity in our QPI profiles along qa and qb at positive energies. Notice
that the size at E = 0 of the hole and electron bands we measure is in agreement
with α and ε bands obtained by ARPES [278, 279] or QPI [271, 260].
We observe a symmetry change with energy in our QPI maps (fig. 6.14a-l). At

negative energies, the maps are nearly four-fold symmetric, while at positive energies
the symmetry is clearly two-fold. In the band scheme we inferred from our QPI data,
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at negative energies we only have two hole bands whose size is just slightly higher
along qb than along qa. This explains the nearly four-fold symmetry in our maps
at negative energies. Conversely, at positive energies the presence of the directional
electron-band introduces another contribution to the scattering only along qb that
reduces the symmetry in our maps from four-fold to two-fold.
Figure 6.15 shows the QPI maps inside the first Brillouin zone between +1 meV

and +2 meV (a-f) and between �1 meV and �2 meV (g-l). At positive energies, the
symmetry of the scattering patterns is two-fold, with two brighter spots along qb.
At negative energies, the ellipsoidal patterns at �1 meV and �1.2 meV evolve to a
nearly four-fold symmetric pattern below �1.6 meV.
To better characterize the changes in the superconducting gap symmetry,

fig. 6.15m plots a profile of the QPI maps along the white circles in fig. 6.15a-l as
a function of the angle and the energy. The radius of the white circle is 0.2 π~a
for positive energies and 0.25 π~a for negative energies. Starting at �2 meV, the
symmetry is four-fold with the symmetry axes along the crystallographic a and b
axes (grey arrows in fig. 6.15m). Around �1 meV, the symmetry is still four-fold,
but the symmetry axes are no longer along the crystallographic axes, but along
the diagonals (red arrows). Finally, at positive energies the gap shows two-fold
symmetry with the more intense spots along qb (yellow arrows). As discussed
above, this symmetry change can be understood from the presence of bands that
terminate very close to the Fermi level, specially the electron-like ε-band, which is
very directional along qb.

6.5 Conclusions

In summary, we have probed the surface of the iron based superconductor FeSe. Low
temperature cleaving results in clean flat surfaces where we can clearly resolve the
square Se lattice. We have measured the density of states around the Fermi energy
at 100 mK spotting the double gap structure. We followed it up to 9.4 K finding a
superconducting critical temperature of around 8.6 K, in agreement with previous
results from macroscopic transport measurements in bulk FeSe single crystals. We
studied the shape of the superconducting gap with magnetic field up to 15 T and
show how a Zeeman splitting in the density of states can explain the broadening of
the quasiparticle peaks we observe as magnetic field increases.
We have also studied the vortex lattice up to 15 T. In some regions of the sample,

we observed ellipsoidal nematic vortices whose bigger axis rotates 90° in the nematic
twin boundaries. In areas of the sample far from any domain boundary we clearly
spot the vortex lattice and tracked it up to 15 T. We observe a charge density wave
at high magnetic fields that depends strongly on magnetic field possibly originating
from the interaction between the vortex lattice and the low energy band structure.
We have performed QPI measurements inside a �8 meV energy range around the

Fermi level using a superconducting tip. From the QPI data we resolve two hole
pockets, and one electron pocket. One of the hole pockets and the highly anisotropic
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electron pocket terminate very close to the Fermi level. We have also been able to
measure the superconducting gap symmetry from our QPI data, noticing a change
from a nearly four-fold symmetry at negative energies to a two-fold symmetry at
positive energies.
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General conclusions
In summary, I have covered the aspects which I believe are most interesting to
understand superconductivity in topical systems. I have taken two model systems,
Ce(Ru0.92Rh0.08)2Si2 andWTe2, and studied, respectively, magnetism and low energy
band structure in these systems. I have then taken two superconductors, Au2Pb and
FeSe, and analyzed their low energy properties.
In Ce(Ru0.92Rh0.08)2Si2, I have analyzed the problem of vanishing magnetic order.

I have shown that the Zeeman splitting of the band structure produces the different
magnetic transitions and eventually eliminates magnetism. The low energy band
structure is not radically affected by magnetic field and it is dominated by Kondo
hybridization between the heavy 4f -electrons of Ce and the light conduction
electrons. This hybridization is present in the whole phase diagram. Future
experiments should probably address the behavior of La-doped CeRu2Si2 just at
the verge of magnetism at zero field. The low energy band structure should show
features related to magnetism in absence of a magnetic field.
In WTe2, I determined the band structure, finding a good match between

calculations and experiments. The magnetic field does not significantly influence
the band structure. A more careful, atomic size study of the band structure is
needed to address issues like Landau quantization. Furthermore, I have addressed
the properties of surface states. I have found two energy ranges where scattering
possibly shows surface states. Their topological properties remain to be analyzed
using further experiments and calculations. In all, the determination of the low
energy band structure of WTe2 is quite complete and highlights the peculiar aspects
that arise in an electronic band structure when looking on the detailed features at
low energies.
In Au2Pb, I have characterized the superconducting properties as a function of

temperature and magnetic field. I have shown that there is a finite density of states
at the Fermi level and discussed how these states could be related to the closing of a
Dirac cone at the surface. Au2Pb, being in principle a simple compound, shows a rare
situation with many structural phase transitions below room temperature, indicating
a considerable sensitivity to stress. Probably, modifying the cleaving mechanism,
or cleaving at another crystalline phase, could lead to the desired observation of an
atomically resolved surface. By now, the picture is that Au2Pb is the only system
with topologically nontrivial excitations showing a finite density of states at the
Fermi level over large areas at the surface.
Finally, I have studied in great detail FeSe, finding radically new features. I have

imaged for the first time the vortex lattice at high magnetic fields and tracked it up
to 15 T. I found that the bottom of an electron band lies inside the superconducting
gap, what leads to an electron-hole asymmetry in the superconducting density of
states that had not been observed before. Besides, I observed a new charge density
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wave. The wavevector of this modulation follow a magnetic field dependence similar
to the wavevector of the vortex lattice. The origin of this charge density wave might
be related to the unique features of the low energy band structure in this material.
Exploring the phase diagrams by doping with Te and S should probably help better
understand the surface properties of this high temperature superconductor. It would
be important to perform syncroton or neutron scattering experiments to see if the
charge density wave is a feature of the surface or if it is related to the features
observed in the thermal conductivity at high magnetic fields.
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En resumen, a lo largo de esta tesis he tratado los aspectos que considero más
interesantes para entender el fenómeno de la superconductividad en distintos
sistemas. He utilizado dos sistemas modelo, Ce(Ru0.92Rh0.08)2Si2 y WTe2, y he
estudiado, respectivamente, el magnetismo y la estructura de bandas a bajas
energías en estos sistemas. Posteriormente, he caracterizado dos materiales
superconductores, Au2Pb y FeSe, y he analizado sus propiedades a bajas energías.
En Ce(Ru0.92Rh0.08)2Si2, he analizado el fenómeno de la desaparición del orden

magnético. He mostrado cómo el desplazamiento Zeeman de la estructura de
bandas da lugar a las diferentes fases magnéticas y acaba eventualmente con
el magnetismo. La estructura de bandas a bajas energías, dominada por la
hibridación Kondo entre los electrones pesados 4f del Ce y los electrones ligeros de
conducción, no se ve afectada en gran medida por el campo magnético. El esquema
de hibridación está presente en todo el diagrama de fases. Probablemente, trabajos
futuros deberían estudiar el comportamiento del CeRu2Si2 dopado con La en la
frontera del magnetismo a campo cero. La estructura de bandas a bajas energías
debería mostrar características relacionadas con el magnetismo en ausencia de
campo magnético.
En WTe2, he determinado la estructura de bandas, encontrando un buen

acuerdo entre los cálculos y los experimentos. El campo magnético no afecta
significativamente a la estructura de bandas, de acuerdo con previas sugerencias.
En el futuro, un estudio más detallado podría revelar algunos aspectos importantes
como la cuantización de Landau. Por otro lado, he estudiado las propiedades
de los estados de superficie. He encontrado dos rangos de energía en los que
el scattering electrónico puede estar relacionado con la presencia de estados de
superficie. Las propiedades topológicas de dichos estados deben ser aún analizadas
usando experimentos y cálculos más específicos. Pese a todo, se ha logrado una
determinación bastante completa de la estructura de bandas en WTe2 a bajas
energías, discutiendo los aspectos específicos que aparecen en una estructura de
bandas cuando se estudia a bajas energías.
En Au2Pb, he caracterizado las propiedades superconductoras en función de la

temperatura y del campo magnético. He observado una densidad de estados finita
al nivel de Fermi y he discutido cómo estos estados sugieren la presencia de un
cono de Dirac en la superficie. A pesar de que, en principio, el Au2Pb es un
compuesto sencillo, muestra un comportamiento singular con varias transiciones de
fase estructurales a bajas temperaturas, lo que indica una particular sensibilidad a
las tensiones. Posiblemente, modificando el mecanismo de clivaje o clivando en otra
fase cristalina se pueda tener acceso a superficies con resolución atómica. Por ahora,
la conclusión es que el Au2Pb es el único sistema con excitaciones topológicamente no
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triviales cuya densidad de estados es finita al nivel de Fermi a lo largo de superficies
extensas.
Por último, he estudiado con mucho detalle el superconductor FeSe, encontrando

características muy novedosas. He realizado por primera vez imágenes de la red de
vórtices a altos campos magnéticos y he seguido su evolución hasta 15 T. Por otro
lado, he observado que el fondo de una banda de electrones está situado dentro del
gap superconductor, lo que da origen a una asimetría electrón-hueco que no había
sido observada antes. Adicionalmente, he observado una nueva onda de densidad de
carga. El vector de onda de esta modulación sigue una dependencia con el campo
magnético muy similar a la del vector de onda de la red de vórtices. El origen de esta
onda de densidad de carga puede estar relacionado con las propiedades singulares
de la estructura de bandas a bajas energías en este material. Explorar el diagrama
de fases dopando con Te y S podría ayudar a entender mejor las propiedades de la
superficie en este superconductor de alta temperatura crítica. Sería importante llevar
a cabo experimentos de sincrotrón o de scattering de neutrones para ver si la onda
de densidad de carga es una característica de la superficie o si está relacionada con
propiedades observadas en la conductividad térmica a campos magnéticos elevados.
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