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SEMISIMPLE ALGEBRAIC GROUPS WHICH ARE SPLIT

OVER A QUADRATIC EXTENSION

B. Ju. VEiSFEKLER UDC 519.4

Abstract. We consider algebraic groups defined over a field k and containing a
maximal torus Τ which is defined and anisotropic over k and split over a given
quadratic extension Κ of k. We study certain structural features of such groups, and
the results obtained are used to investigate the behavior of these groups over special
fields.

1. Introduction. Borel, Tits, Satake and others have studied the structure of iso-

tropic semisimple groups over arbitrary fields. Tn this present paper we consider the

simplest case of anisotropic groups, namely, groups which are split over a quadratic

extension of the base field. We obtain some elementary structural results for these

groups (§§7, 8).

The investigation is carried out as follows. If a group G is anisotropic, it contains

admissible tori, i.e. maximal tori which are defined over k and split over a given quad-

ratic extension K. The three-dimensional subgroups generated by the vector root sub-

groups Να and Ν α are defined over k and correspond to the quaternion algebras

2>α= {Κ, λ α ). We study (§8) how the Aadepend on the admissible torus, and from the

result obtained we deduce some basic consequences (§§9—17). When k = R is the field

of real numbers, we obtain (§11) as a corollary of our results the well-known theorem on

the conjugacy of the maximal tori in a compact Lie group. If the field k satisfies Serre's

condition (Cj) t 2 ] , then a corollary of our results is a special case (§12) of a conjec-

ture of Serre ([2], §3.1).

2. Notation and conventions. Throughout this paper we assume that k is the base

field, Κ a separable quadratic extension of k, Κ = k(b), σ £ ΓίΚ/k), 6 σ = 1 - b. Let G

be a semisimple algebraic group defined over k. Maximal tori of G which are defined

and anisotropic over k and split over Κ will be called admissible. A group G contain-

ing an admissible torus will also be called admissible. If 3 is a central associative

algebra over k, the reduced norm homomorphism will be denoted by Nrd (recall that
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over k, Nrd coincides with the determinant). If Σ' is a root subsystem of a root system

Σ of G, we denote by ΰ(Σ') the algebraic subgroup of G realizing the subsystem Σ';

following Ε. Β. Dynkin, we call such subgroups regular.

3. Suppose the group G contains an admissible torus Τ, β is a Borel group of G

defined over Κ and containing T, and Σ is the root system, of G relative to T. For

each α £ Σ we denote by u^. k —> G the homomorphism defined over Κ which imbeds

the additive group of the field k into G as a root subgroup. Let GQ denote the simple

three-dimensional subgroup generated by the groups u^k) and u_a(k). Let X(T) be

the character group of T. Also, let « a(l) be the standard generators of G (the images

of the Chevalley basis under the mapping exp) (see [l !1, §§4.3 and 4.4).

Lemma, (a) σ = 1 on X(T).

(b) Τ = Β Π Βσ.

(c) (« α (0) σ = «_α(ξαί
σ)Υί € Κ, where ξ^ Κ.

(d) All of the groups G ure defined over k.

(e) // G is k-simple, then it is absolutely simple.

(f) if τι: G -^ G' is a central k-isogeny, then {n(ua(t)))'y = n{u_^ξ(χ1
σ)).

Proof. By hypothesis, the torus Τ has no characters defined over k. Since σ =

1, then σ = 1 on X(T). Properties (b)—(e) follow from this without difficulty [5]. In

view of (c) and (d) it is sufficient to prove (f) for groups of type A ; in this case it is

obvious.

4. Lemma (converse to Lemma 3). // fk,G = 0 and Β is any Borel K-group in G, then

Τ = Β Π Βσ is an admissible torus.

Proof. Since σ2 = 1 and K/k is separable, the group Τ = Β f] Βσ is defined over

k. Being the intersection of two Borel groups, it contains a maximal torus ([ 3]? §2.16)

and, since G is anisotropic, must coincide with it ([ 6], §1.1).

5. Groups of type A . Suppose that G is a simply connected admissible group of

type A As is well known [71, G can be identified with the kernel 3° of the reduced

norm homomorphism Nrd: 5) —> k of a suitable quaternion algebra 5). We use the notation

of §3 and we take Σ — !± aj, Β the upper triangular matrices in G, Β σ the lower, Τ the

diagonal matrices. Put e ^= Ε χ ν

 e

2

 = ^ l 2 ' e 3 = J^2 1' e 4 = ^22' u a= Ε + Ε l 2 and u _a =

Ε + Ε . In view if §3 we have

Using the condition σ - 1, we obtain

(<?i — e4) = (<?i — e j " = ([ea. e3if = [ | ae3. l-ae2] == — la • 1-a (<?i —

i.e. ξα. ξ_α= 1. Hence £ _ a = f;1 and f a = ^ ; that is, ξαΕ k*.
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On the other hand, according to the theory of cyclic algebras, 5)fe is isomorphic to

the algebra Κ + uK, where u2 = a E k*, Xu = uXaVXG K. Here a is determined by 3

modulo the norms of K* in k*, i.e. a £ k* modN(K ).

The matrix X+ uμ{X, μ£ Κ) has, relative to the basis {l, u\, the form

The determinant of this matrix is equal to λλσ - αμμσ, i.e. the group Nrd5)fe coincides

with the group of numbers λλ σ - αμμ°'. Considering the same matrix Α χ ^ and using the

theorem which states that the determinant of a product of matrices is equal to the pro-

duct of the determinants, we see that the group S° preserves the Hermitian form

f(x, y) = χχσ - ayya.

The matrices Α χ = e 2 + ae ^ and A 2 = be 2 + abae belong to 5)^. We have:

e2 = (&% - A2) (b° - b)-\ ef= (Mx - A2) .(-b°+ b)'1 = ae3

(since b°~ = 1 - έ>). It follows that ξα= a and that ξα is determined modulo N(K*).

Thus we have the following

Lemma. Suppose that C = 5) , where 5) is a central quaternion algebra which is

decomposable over K- Then the following assertions are valid.

(a) S), is a cyclic algebra (K, a), where a € k*modN(K*).

(b) §k = Κ + uK, where u1 = a and Xu = uXayXe K.

(c) The group Nrd5), coincides with the group οj numbers XX — αμμσ, Χ, μ 6 Κ.

(d) 3 is isomorphic to the group SU(J), where f is the Hermitian form χχσ — ayyu.

6. Elementary study of the numbers ξα We will apply the results of §3. We say

that a group G represents the set U J , λ α € k*/N(K*), with respect to the torus T,

if λ α = ξα· Ν(Κ*).

The group G represents the set ίλ„}„_ if a suitable admissible torus Τ can be

found. The sets ί λ α 1 σ ε 2 are obviously determined up to an automorphism of the root

system, i.e. iAj = ίλ ω α ! if ω 6 Autl.

Suppose that Δ is a system of simple roots in X, and let 5) be the cyclic algebra

Lemma, (a) The group 55° is isogenous over k to the group G .

(b) The set {€a\aesis completely determined by the set ! ^ Γ

α Ι α ε Δ .

(c) The set Ι ^ Ι ^ ^ 2 ' 5 completely determined (up to a natural equivalence) by the

Proof. The statement (a) follows from the fact that ξα and ξ_α determine G as a

&-form, and the fact that these numbers are the same for isogenous groups (see [5] and

§3 (0)· The groups Ga, α £ Δ, generate the algebraic group G; hence the assignment of

the ξα for a e Δ determines the action of σ on the whole group G„; this implies (b).
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To prove (c), we note that the replacement of f ^ J ^ by \ξα· να· νζ]^, where vaE
Κ· να+β=ν

α'
 ρβ> νΖΧ = u-a> determines the same group G (see [5], §13) anj hence

these two sets may be regarded as equivalent. Thus for α€ Δ we can replace the ξ

by any representatives modN(K*). To recover \ξα\αεΣ from U J ^ we proceed as

follows: for α Ε Δ we take ξα £ λα and, by means of (b), find all of the remaining ξ .

This construction is seen to be correct by what has been said above.

7.Associated tori. We use the notation of §§3 and 6. Let g Ε Gκ, Β = gBg~l

and φΒ(Τ) = Bg f] {Bg)
a. Suppose a Ε Δ. The torus φΒ (Τ) is said to be associated

with Τ via a if g e Ρa K and t\Ga= 0, where Ρα= Gα· Β- If the tori Γ and T' are

associated via β Ε Δ and ! λ α ! α £ 2 and { λ ^ } ^ are sets represented by G with re-

spect to Τ and Τ , then these sets are said to be associated via β.

The tori Τ and Τ j are said to be joined if we can pass from Τ to Τ by a finite

sequence of associated tori. We now put

<p£ (GP) = (ζΡβίΓ1) Π te^g-1)σ νβ e Δ.

Let Μβ be the set of those g for which the tori Τ and φΒ (Τ) ate joined.

Proposition. // ck^G = 0, then any two admissible tori are joined in \W\ steps

{where \W\ is the order of the Weyl group W of G). If G contains a regular subgroup Η

of type A which is split over k, then there exists an admissible torus Τ., joined to

Τ in a finite number of steps, and a group of type A , split over k, normalized by this

torus.

The proof is broken into several parts.

(a) If a e Δ, &kG 2 = 0 and g € Pa K, then φΒ (Τ) is an admissible torus.

Let 7 > 7 Π Ga,S = T f] Z(Ga),Ba=B f] Ga and T^igBj.-1) f] (gB^-ψ.

In view of our hypotheses, φ (G ) = G , and therefore, by §4, T, is an admissible torus

in Ga. Since Ρα= Β · Ga and mSm ~l = Sym € Ga, it follows that 5 QB . Since Γ =

Τ · S, then, by what has been said above, φ (Τ) = Τ, · S is an admissible torus.

(b) If g € MB, a £ Δ, rk^ (φΒ (Gj) = 0 and ρ Ε ΡaJ< , then gp e MB.

Let m = gpg~l- The assertion follows from the obvious equalities φ^8 · φΒ - φ^

and mg = gpg~l · g = gp.

(c) If rk,Η = 0 for every regular subgroup Η of type A ( which is defined over k

and split over K, then any two admissible tori are joined in |W| steps.

It follows from (b) that p j · p2 · · · pm Ε ΜΒ γρ. Ε Ρα{ί) κ , α (ζ) £ Δ. Since GK =

Β „ · W · Β „ and since the reflections in the simple roots lie in Ρa^\ and generate W,

we have GK C MB and not more than |W| steps are required for joining.

(d) The second assertion of our proposition is true.

Let us assume that we have taken \W\ steps and have not encountered a split

group. But then, as in (c), we have that GK C MB- Since Η and all of the Ga, α £ Δ,

are split over Κ and regular, there exist g € GK and β Ε Δ such that Η = g · Ggg~ l.
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Since g 6 MB, we see that φΒ (T) is an admissible torus normalizing the group Η =

(£B(Ga), which proves our proposition.

Remark. Since W is generated by the fundamental reflections in |Σ | steps, \W

may be replaced by |Σ |.

8. Interpretation of association.

Prosposition. Suppose that the conditions of §&3 and 6 are satisfied. Let Τ be

the torus associated with the torus Τ via the root β € Δ, and \\a\ and !λ ' α ! sets re

presented by G with respect to Τ and T'. Then \'a = ιλα'^ · λα, where i^CNrdS*^^.

For any v g Nrd %\ , the sets \\J and \v'-a'^ · \J are associated via β. Here

[α,β\ = 2 (α, β)/(β, β).

Proof, (a) Let T' = φξ(Τ), g € Ρ β κ , Τβ= Τ f] Gβ and Τ'β = Τ' f] Gp Then

there exists h € Gβ K such that hT J>~^ = TO· Since Τ „ and Τβ are defined over k

then hcrTj3h-°= Τ'β = hT J}~1. Hence we have

Since h € G „ and Go is defined over k, we have h~ ha 6 G a- Thus h · hc

Ν . ( T l Writing h in terms of the basis e e , e , e ,(§5), we obtain

h = αβχ + β^2 + Τ̂ 3 + 3e4, ct, β, γ, δ (ΕΞ /C, αδ — βγ == 1;

hT1 -h" = (δδ σ — αββα) ex + (α-ι Τ "ό — βασ) e»

+ (α«βσ — τ δ σ ) ^ + (αα^ — α-'γγ») e4.

Since δ δ σ - β ^ σ e Nrd3^ fe (§5), it follows that δ δ σ - αββσ = 0 if and only if δ = β =

0, which is impossible. Since the matrices in /VG ( T J are monoidal, h~l · ha £ Τβ,

i.e. ααβσ - γ§σ = 0. Now suppose ν € NrdS)^ k. We will show that we can find a, /3,

γ, S, e Κ such that h £ GβΙ<, h~ 1 . ha £ Τβ and δ δ σ - αββσ = v . For this it is suf-

ficient to select δ and /3 arbitrarily and solve the system of linear (in α and y) equa-

tions

α δ - γ β = 1 ,

— α (αβσ) + τ δ " = 0.

The determinant of this system is δ δ σ - αββσ = v φ 0. i.e. the system has a

solution.

(b) Let us now look at how the set \\J transforms. Since the torus hTh~ l is de-

fined over k and the groups hGJo~l = G'a are normalized by hTh~l, they are defined

over k. Hence hGJ>~ ! = φξ (Gj. To the G'a correspond the normed residues λ̂  ,

and we must find these. We have
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«ά (Ο = A · «α (Ο · Λ""1, Κ (Ο)° = h° • w-u (λα/σ) • h~°.
On the other hand,

(μα (t))a = t i l a (λaf) = h-U-3 (λαί
σ) • ft"1.

Therefore

U^(k'at
a) = (/I"1 · ft") Μ _ α ( λ α Ο (ft" 1 · ft0)"1.

Since h~l · ha € Τ „ and h~l • hcr has the form described above, then

This proves our assertion.

9. Isotropic groups.

Proposition. Suppose that G is an admissible group, rk.G > 0. Then G represents

a set JAai in which there is α β such that λ»= 1.

Proof. In view of §7, it is sufficient to find a regular ^-subgroup of G which is

^-isogenous to SL(2). If an anisotropic kernel S of G contains a root ^-subgroup Η of

type A j which is split over K, then the group G 1 = Z(H)° is split over K.

We may assume, because of §7 (c), that the admissible torus Τ normalizes H. Then

G. contains the admissible torus Τ = Τ f] G.. Applying this device several times, we

obtain a quasi-split admissible group G. Let TQ be a maximal split torus in G, Ζ the

system of έ-roots of G with respect to Τ„• The regular group G corresponding to the

£-root <x£ Σ is isogenous over k to one of the groups SL(2) or SU(3,f) (the form / rep-

resents 0) or /?„/, (5L(2)). In the first two cases Ga contains a regular ^-subgroup

which is ^-isogenous to SL(2). UVCLG Σ the group G a i s isogenous over k to

RK /k(SL(2)), the system Δ of simple roots cannot be connected and hence G =

/?„/, (G ) does not contain admissible tori, which contradicts the hypotheses.

10. Conjugacy of admissible tori.

Proposition. Suppose the conditions of §3 are satisfied, and let Τ and T' be two

admissible tori in G such that G represents the same set with respect to these tori.

Then there exists g S (AutG^) such that g(T) = T' .

Proof. The mapping uj,t) —» «'aW defines an automorphism of G. Since λ α = λ^ ,

this automorphism is defined over k, which was to be proved.

11. Real-closed fields.

Proposition. Suppose that char& Φ 2 and for every quaternion algebra ?)/& which

is split over Κ we have NrdS), = N{K) {this is true if k is a real-closed field). If

rk, G = 0, then all admissible tori in G are conjugate over k.

Proof, (a) The proposition is true for the group 5)°, where 2>/& is a quaternion

algebra which is split over K.

Indeed, according to [ i], admissible tori are conjugate in the group 5) .̂ The homo-

morphism Nrd: Q*k —» k* carries the centralizer of Τ in 2»* (i.e. the field K) into the
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image of the whole group 2>£. Hence the conjugacy classes of Τ in 3^ and in Sfe coin-

cide, as required.

(b) The proposition is true. In view of what has been said above and §7, conjugacy

over k and association are one and the same thing in simply connected groups. Hence

the proposition is proved for simply connected groups (even if chatk = 2). In order to

prove it in complete generality, it is sufficient to prove the analog of (a) for the adjoint

group Η of 3. In this case it follows from the separability of the isogeny S° —> Η

(since char& 4 2).

12. The field (C2).

Proposition. Suppose that for every algebra 3 = (K, a) (a 6 k*) over the field k we

have Nrd©* = k*. If rk^G = 0, then G is of type Α γ

Proof. This is a trival consequence of 98 and our hypothesis.

13- Fields of characteristic 2.

Proposition. Suppose that G is an admissible group, and charfe = 2. Then there

exists a purely inseparable extension of k over which G is quasi-split. In particular,

if k is perfect, G is quasi-split over k.

The proof follows immediately from the theory of algebras ([ 8 1, Theorem 7.21).

1 4 · £<*β=-ξα· ξ β-

Proposition. Suppose that char& > 3· Let Τ be an admissible torus in G and \ξ \

a set represented by G with respect to T- If α, β, a. + β £ Σ, then ζα+ο = - ξα· ξα-

Proof. Suppose that g and t are Lie algebras of the groups G and T, tC g, and

\E , Η .\ is a Chevalley basis in Q defined over K. As in ^5 we have E°= ζ Ε

Furthermore,

[Ea, Ε β] = ΝαφΕα+β, [Ε_α, £_ρ] = /V_u,_J3£'_a_p,

and, as is well known, Ν „ = — N_ _„• Applying σ to [Εα, Ε Λ, we obtain

This implies the proposition, since Ν α Φ 0 under our hypotheses.

15. Invariants of some admissible groups. Suppose the simple roots are enumerated

in the following way:

An

Bn

Cn

Dn

E,

1

1

1

1

1

2
2

2 .

2

2

3

3-

— . . . — η

. — (η — 1) =*• η

.-(n-l)^n

- 4 — 5 — 6
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Theorem. Suppose that G is an admissible group, rk,G = 0, and ίλ.,Ι a set rep-

sented by G with respect to the admissible torus T. Put χ . = λ γα . 6 A. Then the

following expressions are mvarjants of G (i.e. do not depend on the choice of the ad-

missible torus T).

X1 • X3 . . . X2ll-3 • Xtn—ι, if G is of type Λ 2n_r

Xn • Xn-x, if G is of type Όn,

X1 • X3 . . . X2n-i, Xzn-l · X*nf if G is of type D ^ ,

X1 • X3 . . . Xw-i, if G is of type 3 2n or B2n_v

Xn, if G is of type Cr,,

All of these invariants belong to the group k* /N(K*).

Proof. In S7 we showed that successive passages to associated tori via simple

roots allow us to join any two given admissible tori in a finite number of steps. Hence

we need only show that the above expressions are preserved under passage to associa-

ted sets (via β 6 Λ). We have /3 = as. Consequently

x\ = Xl . ν

[β»·°» ! , ν ΕΞ Nrd © J . v

Let / denote that set of indices for which we want to prove the invariance of the express-

ion Π ·„.* .. If s ε /, then χ. = χ . for i 6 /, since association affects only adjacent

roots, and roots connected to the a., / £ /, do not belong to /.

If 5 (£ /, there are three possibilities: a) a has two neighbors with subscripts in /;

in this case, as is evident from the Dvnkin diagram, x! .- χ .Vi 4- s + ; :> — 1, c , — χ . · ι

and x^ _ = x

s_-, · v, i.e. the invariant is multiplied by ν β Ν{Κ*); b) α^ has no

neighbors with subscripts in /; in this case association does not affect the roots with

subscripts in /, i.e. the invariant is preserved; c) α has one neighbor, say α, , with

a subscript in /; this happens when G is of type Β Ί , s = J_n, h, - 2n - 1 and when G

is of type C , s = η — 1, k = n- in these cases we have xl = x, · :/-ak>asi a n d [a a ] -:

2, i.e. the invariant is multiplied by ν 6 N(K ).

Remark. In the case G == SU(f), our invariant coincides up to sign with the di.-rcriini-

nant of the form /.

16. Elements of the form g~lga.

Theorem. Suppose that G is a simply connected admissible group, Γ en admissi-

ble torus in G, and rk,G = 0. // g ε G\, and g~ ga €. N(T), then g~ ga fz. Γ (where

r = U e τ ·. f.-- r !i = w e τ·. dt) e k yae Σ!). Let ν = \g e G... g 7;' β ι;. Then
f, r = V · U „ (where U is the unipotent part of a Bore I group Β ~2>Τ). In particular,

{g"-1^'. S S GK} = {ur-Hu", α €Ξ UK, t S T,}.

Proof. Let ίλ ! be a set represented by G with respec:t to T.
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a) If h€V, then h~'ihcr £ Tf.

Indeed, (b~lha)a = h-crb = (h-xh'T)-\

b) If h e GK and r ¥ e Λί(Τ), then T' = hTb~l is an admissible torus. If h €

V, then λ^ - λ α · α(<), where t = b-lhcr.

Indeed, the torus T' is defined over k, since h~lha £ N(T); it is split over Κ

since it is conjugate over Κ to a torus which is split over K; it is anisotropic since G

is anisotropic. The proof of the second assertion coincides word for word with the

argument in <§8b.

c) If h € V and η £ N(T) , then hn £ V.

Indeed, {hn)~ l · (hnf = n~l tn°', where / = 1}~ι1ισΕ Τ. Since σ α = - α Va € Σ,
then σ lies in the center of the Weyl group and hence η 6 nT. This implies our

assertion.

d) If h-1hcre N(T), then b € V.

Suppose h EV, h~1hCT = t e Tr and T' = hTb~ Κ The groups G'a =bGah~l are de-

fined over k, since they are normalized by T. Let T" be the torus associated with the

torus T' via β 6 Σ. As we have already observed in ?8a, T" = gT'g~l, where g 6

G ' A K and g - 1 g c r e T' fl <^. We have T" = (g^)T(g^)-1 and hence (gh)-l(gb)a€

N(T). Put g = hmh~\ m€G»K· T f l e n gb = hm and we must consider (Ziw) ~ \bm)a.

We have (/?»m)- H/JTO)'7 = m~ ιΙτησ € N(T). As in <?8a,

m = aex + ββ2 + t ^ + 6e4,

m" = 0% -i- αγσβ2 -f- α-'β"^ + α%,

/ η - 1 = δί?! — β^2 — γΐ?3 + αί?4»

t = λ^ + μβ2,

m-^m0 = (λδδσ — μαββσ) e1 + . . . .

We will assume that m~ Im (£ Τ and will obtain a contradiction. Indeed, in this case

λδδ σ — μαββσ = 0,

which means that a · μ/λ 6 N{K*)- In view of b), we have

which means that rk^ C'n = 1, i.e. rk^ G > 0, a contradiction. Hence m~itmcr £ T.

Thus we have proved the following: if an admissible torus T" is joined to Τ and

δ 1 ^ 7 ' = 7"" ( i n o u r c a s e « ! = § * = ^""), then gf '.g^ £ Γ. But any two admissible

tori are joined(§7) and hence for any admissible torus Τ we can say that if h~ 1Th = f,

then h~xha Ε Τ.

To prove our assertion, we now need only quote b).

e) If B' is any Borel Κ -group in G, then Ξ h e V: hRh~l = β'. i n particular G =

v-uK. ' K
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Indeed, let Τ = β' ρ β'σ- Then 3 ^ 6 V: A j T ^ ' = Γ ' . Let Β ^ h~lBh χ. The

group β j contains the torus Τ and hence β ; = nhn~ l, η e N{T)K. Put h = h

Then h ; · η € V (see c)) and hBh~l = β' , as required.

Remark. If G is isotropic, our assertion is invalid.

Remark. If G = SU(f) and / = IXx^J, then

In particular, if A A* e Τ,, , then

where e e , · • · , e is an orthogonal basis of the underlying space.

Remark. If φ , φ ·· · , φ are the characters of the fundamental representations

of G, then the sets

are invariants of G. They clearly do not depend on the choice of the admissible torus T.

17. Inseparable extensions.

Theorem. Suppose that char& = p 4- 2, L is a purely inseparable extension of k, G

is an admissible k-group, and Τ is an admissible k-torus in G. Ij T' is an admissible

L-torus joined to Τ over L, and G represents the set \λα\ with respect to Τ (over L),

then G- represents the set ί^^/^(λα)ί over k and this set is representable with respect

to a k-torus which is joined to Τ {over k).

Corollaries, a) // r k L G > 0, then rk^G > 0.

b) // G and G_ are two admissible k-groups and G is isomorphic to G? over L,

then G , is isomorphic to G over k.

c) // G1 is an admissible L-group, there exists a k-group G such that G.2iG.

Proof of the corollaries, a) If rk.G > 0, then (§9) G represents a set !λαί over

L with respect to a torus joined to Τ over L, with λ = 1 for a suitable γ. By the

theorem, G represents the set U^ = ^ L / f e (A a ) i over k. Obviously λ' = 1, i.e. rk f e G>0.

b) If Gji lG,, then G1 and G 2 represent the same set over L. We may assume

that rk, G . = 0 (z = 1, 2) (otherwise we consider the centralizer of a maxiaml ^-trivial

subtorus). According to the theorem and §7, our groups represent the same set over k,

i.e. they are isomorphic over k.

c) Suppose G. represents the set ίλα1 over L. We construct an admissible &-group

G with respect to the set iWL/ fe(Aa)! ("56). Since /VL/fe(Aa) = λ*, q = pT = [L:k\ it

follows that Ν L/k(^^ = \xmodN LK/L (KL), i.e. G and G χ represent the same set over
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L, i.e. they are isomorphic over L.

The proof of the theorem is based on a theorem of Albert ([21, §2.2) and on the fol

lowing lemma.

Lemma. Suppose that 5) is a central simple algebra over the field k, and L an

extension of k. Then

Proof. We have 3 , C 1 . ® S t = ^, where q = [L: k\. We denote by det the

reduced norm homomorphism of % into k. Then det U C Nrdj^. On the other hand, when

ν β 3 L we clearly have

det υ = NmJk (t>) = NL/k (NLW/L (»))·

This implies our assertion.

We now prove the theorem. We have [L: k] = q = pT, p •/ 2, and Ν L uW) - aq ya €

L. Let Τ be an admissible &-torus in G, 1λα! a set represented by G with respect to

T. Since 2 / q,

i.e. our assertion is true for this set. Let us assume our assertion is true for some set

{λα1 . We will show that it is true for a set associated with it over L. Let β €. Σ and

ν € Nrd5)fl , . By a theorem of Albert ([21, §2.2), the algebra %R is defined over k

and, by the lemma, ΝL/kiv) = ν l € Nrd %β k. We have \NL/k(\av
ia^1) 1 = \λαν\α'β1\,

and our theorem now follows from v§7 and 8.

18. Appendix. Semisimple algebraic groups containing a maximal torus which splits

over a simple cyclic Galois extension.

AO. In this appendix, some of the results relating to quadratic extensions are ex-

tended to extensions of prime degree p > 2.

Al. Notation and conventions. We assume throughout that k is the base field,

p a fixed prime, Κ a Galois extension of k with Galois group Ζ , Γ = Γ (.K/k) (= Ζ ),

σ 6 Γ, and N(K*) the group of norms of K* in k*. We assume that Κ = k(b), where b,

ba, • · ·, ba is a basis for K/k; as is well known, det((aV)6) / 0. Let G be a

semisimple algebraic group defined over k. A maximal torus Τ of G which is defined

and anisotropic over k and splits over Κ will be called admissible. If G contains an

admissible torus, it will also be called admissible. Let Σ be the root system of G rel-

ative to T.

We first note that the admissiblility of G implies the existence in the group Aut Σ

of an element τ of order p having no fixed points in the space Σ · Ο . If Σ is connect-

ed, Aut Σ contains such an element τ only in the following cases (p > 2):



Β. JU. VEISFEiLER

68 ^p-i for any p;

Gz,Dv FVE6,ES for ρ = 3;

Eg for p = 5.
We also note that the class of admissible groups is not empty. This class contains

the groups of type DA, F4 and Ηύ (p = 3) related to the Jordan division algebra con-

structed by Albert [9"|.

A 2. Suppose the group G contains an admissible torus Τ, Β is a Borel group in G

defined over Κ and containing Τ, Σ is the root system of G relative to T, and u (k)

and "a(l) are chosen as in ?3· W Σ' is a root subsystem of Σ, then ΰ(Σ') denotes

the algebraic subgroup of G generated by the groups ua{k), a £ Σ ' . If α e Σ, then Σ

is the subsystem of Σ generated by the roots a, α°~> · *", α σ ρ ~ ' . Put G = 0 ( Σ α ) .
Lemma, (a) σ has no fixed points on X(T).

(b) r= nf:X'.
(c) (« α (ί)) σ = « a 9 - ( f a O Vi e K. where ^ e K*.

(d) All of the groups Ga are defined over k.

(e) // G is k-simple, then it is absolutely simple.

(f) T/>e numbers ξ a € Σ, depend only on the class of a central k-isogeny of G

{i.e. (77-(«α(Ο))σ= Ή"ασ(£αί<7))> '/ "• ' s a central k-isogeny).

(g) Σ α zs a subsystem of type A if Σ is connected and rk Σ > 2.

Proof. Statements (a)—(f) are proved as in c?2. Property (g) is proved as follows:

"Σa is a root system of rank (p - l) (since α, ασ, • · · , a generate 0 · Σ α and, by

(a), Σ?Γ;,α σ = 0). The group Aut Σ α contains an element of order p. These properties

are possessed only by the systems of type A and, for p --- 3, the system of type G .

Since no system Σ of rank greater than two contains a subsystem G,, (g) is proved.

A3. Lemma. Suppose that G is a. group of type A . , i'k,G = 0, and Ρ is a maxi-

mal parabolic K-group in G corresponding to the natural representation. Then Τ =

Π ?Ζ\,Ρσ is a n admissible torus.

The proof of the lemma employs the same reasoning as does the proof of the lemma

in f'4; the nontriviality of the intersection f| ? Γ 0 Ρ σ is guaranteed by the theorem on

the dimension of an intersection.

A4- Groups of type A Let G be an admissible simply connected group of type

A . As is well known [6|, G can be identified with the group ?J of units of some

cyclic algebra [31 $ := (Κ, σ, a), a € k* modN{K*). We will assume that G = SL{p), with

Τ the diagonal matrices, β the upper triangular matrices. We have E^ i = Ez + 1 ;. + , and

Εσ . = ζ. .Ε- . . , where the indices are reduced mod δ and ζ. . € Κ*.
1,1 s i , 7 <• +1,1 + 1' r 1 . )

Lemma, (a) ®fe = Κ + uK + · · · + up~ lK, where up = a e k* mod/V(K*) and \u =

u\° γλ e κ.
(b) We may assume that

El2 = Ew, . . . , £p—2,p—ι = t-p—ι,ρ, £p—ι,ρ = ο,ΕΡι1, ΕρΛ= a £i, 2 ,

i.e. that ξ = ξ = · · . = ζ - \ A ,,
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A5· The set iAj. According to <?A2, the system Σ decomposes into a union of sub-

systems of type Λ Γ

It turns out that in Σ we can choose only one system of simple roots Δ α = \αχ ,

• · · , α j i such that τα. = α . + χ γι' < p - 2, τα χ = - Σ?~ *α . and Δα, among all sys-

tems possessing the first property, contains the largest number of positive roots. If this is

done, then to each subsystem Σ α we can uniquely assign (by V A4) a normed residue

λ £ k* mod/V(K*) and an algebra ?) = (Κ, σ, βα), a f f 6 λα· We say that G represents

the set !λ i with respect to the torus T.

We say that the &-torus T' is associated with the admissible torus 7' via Σ α if

T' C Ga- Τ and rk f eG
a = 0.

A6. Interpretation of association.

Proposition. Suppose the conditions of §t$A3 and A4 are satisfied. Let T' be a

torus associated with Τ via Σ a, and \X \ and \X' \ sets represented by G with respect

to Τ and T'. Then \'a = ι)α·β\ · λα, where v £ NrdSo k and {α, β\ is a number de-

pending only on Σ and Σο· For any ν 6 Nrd %*, , the sets | λ α ! and \v ^ · \,,\ are

associated via Σ ο.

Proof, a) Suppose T' C G/i • Τ, Τβ = G^ f| Τ a " d Τ'β = G f i f] T'. Take h £ G8,:

hTh~l= T'. Then hT J)~l = T'a . Since Τ and T' are defined over k, then haT^!Γσ --

Τ'β , i.e. /)~ ^ σ 6 ^τβ^β^Κ = ^' ^ s € ;Nl'· instead of the element h we may consider

hs, which will possess all of the same properties as h. We want to show that, replacing

h by hs, we can find an element g € G^ such that gTg~l = T' and g ~ ' · £ σ 6 Τ,,.

We formulate this problem for substitution groups. Let ω £ S (S is the group of

permutations of p symbols) represent the element h~lha £/V. If s 6 N, then

s ~ έ~ Ασ5σ represents r ^ W r ^ " 1 (here, of course, r represents 5). The condition

(h-'h0) • (tr°h-°) ... yraP~lh) = 1
takes the form

ω · (σωσ"-1) • ( Λ σ " ! ) . . . (σΡ - 1ωσ) = 1,

which, after rearrangement of parentheses, becomes (ωσ)ρ = 1. We consider two cases:

•οσ 4 1 and ωσ = 1. If ωσ /- 1, then ωσ = τ{στ- 1 ( s i n c e all elements of order p in the

τ~1()στσ~1iroup S are conjugate) and hence τ~1(,)στχσ~1 = 1, i.e. our assert ion is true (there iare conjugate) and hence τ(,)στχ is

an s g Ν such that (/&s) ^hs)17 6 Γ). If ojff ~ 1, then ω = σρ ' and we analyze this

case separately. So as not to have to draw very large matrices, we analyze only the

case p = 3-

We have

/ , - _ / „ ο ν Λσ - Ι σ α ,.σ
/t — ι u a ρ 2 is Ι > ' ' — Ι αγι αι ρχ

\«3 β3 Τ3/ Ι ^ σ .; ο σ
\ u ι ο α... ι jo
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We assume that

/ 0 λ 0\

m^h-'h" = ( 0 0 μ .

Χλ-'μ"1 Ο 0/

From the equation h<T = km we obtain

ο α = λ " 1 α " 1 α 3

σ , α 2 = λ " 1 α,σ, α 3 = λ " 1 α 3

σ .

Substututing these equations into one another, we see that α = λ~ 1 λ~ σ λ~ σ α " 1

i.e. a € N(K*), a contradiction. Thus h~ ihCT 6 To and therefore

Using again that ha = h · m, we have

T3» α 2 = λ α γ ^ α3 = λ α γ 2 ,
η — 1 — 1 (Τ Λ — Ο — 1 σ 2 η — 1 Ο Λ — σ ~ 1

β! = μ β α3 = λ μ γ2 , β3 = μ α° = λ σ μ <
η — 1 Ο *. — Ό — 1 Ο2

ρ3 = μ α2 = λ μ αγχ .

Consequently
f\ —ι σ Λ — σ —ι α2

λ γ3 λ μ γ2

d e U = 1.

Put
σ σ2

Τ 3 Ts Τι

σ

αγ2

Then h' Ε%β k and detA = λ~ 1A~a/i~ ! deth' = 1. But we know that detti = ν €

NrdS)!, , ; hence

Conversely, if we are given i/, then, choosing λ and μ suitably (for example, λ = 1, μ -

ι>~ l), we can find a matrix h for which b~ · hF = m.

b) We now look at how the set {λαί transforms. First of all, we take t e Τ a K, t =

diag(A - 1, λ, 1), and replace h by ht. We then have h ~ lha = diag(l, 77, n-"1). Our con-

dition λλ°μ 6 Nrd"5* fe now means that π~ l €. Nrd?)^ k. Our proposition now clearly

follows from the same arguments as in §7b and from §A5 (the canonical choice of the

system of simple roots in Σ Λ



SEMISIMPLE ALGEBRAIC GROUPS 71

A7. The nontriviality of the index of anisotropic admissible groups for p = 3· Using

§A6, we can partially simplify and make more conceptual the proof of the nontriviality

of the index of anisotropic admissible groups for p = 3 (see [ 1O1 ).

Theorem. Suppose L is an extension of the field k of degree m, (3, m) = 1 . If G

is an admissible group, p = 3 and rk^G = 0, then rk^ G = 0.

Lemma. Suppose L is an extension of the field k, G an admissible group, p = 3,

rk,G = 0, and Τ an admissible k-torus in G. Then there exists an admissible L-torus

T' in G associated with Τ such that G represents a set \λ' \ with respect to Τ in

which X = 1 for some y β Σ.

From this assertion and the lemma of §17 the theorem is deduced by the same rea-

soning as in the proof of the theorem of §17. The lemma is actually proved in §§3.6,

4.2, 5.2 and 7.4 of [10].

19. Concluding remarks. The study of association was of fundamental importance

in this paper. In this connection, we remark that the result of §9 extends (after the

appropriate changes in terminology) to the groups which are isotropic (but, perhaps, not

split) over a given quadratic extension K.

We also note the connection between the passage to associated tori and the method

employed in [4] (y58.1); for unitary groups both of these methods coincide.

In conculsion, I would like to express my sincere thanks to Ε. Β. Vinberg and D.

Kaz'dan for their interest in this article and their useful comments.
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