HOMOGENEOUS VARIETIES UNDER SPLIT SOLVABLE ALGEBRAIC GROUPS

MICHEL BRION

Abstract

We present a modern proof of a theorem of Rosenlicht, asserting that every variety as in the title is isomorphic to a product of affine lines and punctured affine lines.

1. Introduction

Throughout this note, we consider algebraic groups and varieties over a field k. An algebraic group G is split solvable if it admits a chain of closed subgroups

$$
\{e\}=G_{0} \subset G_{1} \subset \cdots \subset G_{n}=G
$$

such that each G_{i} is normal in G_{i+1} and G_{i+1} / G_{i} is isomorphic to the additive group \mathbb{G}_{a} or the multiplicative group \mathbb{G}_{m}. This class features prominently in a series of articles by Rosenlicht on the structure of algebraic groups, see Ro56, Ro57, Ro63. The final result of this series may be stated as follows (see [Ro63, Thm. 5]):

Theorem 1. Let X be a homogeneous variety under a split solvable algebraic group G. Then there is an isomorphism of varieties $X \simeq \mathbb{A}^{m} \times\left(\mathbb{A}^{\times}\right)^{n}$ for unique nonnegative integers m, n.

Here $\mathbb{A}^{m} \simeq\left(\mathbb{A}^{1}\right)^{m}$ denotes the affine m-space, and $\mathbb{A}^{\times}=\mathbb{A}^{1} \backslash\{0\}$ the punctured affine line.

Rosenlicht's articles use the terminology and methods of algebraic geometry à la Weil, and therefore have become hard to read. In view of their fundamental interest, many of their results have been rewritten in more modern language, e.g. in the book DG70] by Demazure \& Gabriel and in the second editions of the books on linear algebraic groups by Borel and Springer, which incorporate developments on "questions of rationality" (see [Bo91, Sp98]). The above theorem is a notable exception: the case of the group G acting on itself by multiplication is handled in [DG70, Cor. IV.4.3.8] (see also [Sp98, Cor. 14.2.7]), but the general case is substantially more complicated. ${ }^{1}$

[^0]The aim of this note is to fill this gap by providing a proof of Theorem 1 in the language of modern algebraic geometry. As it turns out, this theorem is self-improving: combined with Rosenlicht's theorem on rational quotients (see [Ro56, Thm. 2], and BGR17, Sec. 2] for a modern proof) and some "spreading out" arguments, it yields the following stronger version:

Theorem 2. Let X be a variety equipped with an action of a split solvable algebraic group G. Then there exist a dense open G-stable subvariety $X_{0} \subset X$ and an isomorphism of varieties $X_{0} \simeq \mathbb{A}^{m} \times\left(\mathbb{A}^{\times}\right)^{n} \times Y$ (where m, n are uniquely determined nonnegative integers and Y is a variety, unique up to birational isomorphism) such that the resulting projection $f: X_{0} \rightarrow Y$ is the rational quotient by G.

By this, we mean that f yields an isomorphism $k(Y) \xrightarrow{\sim} k(X)^{G}$, where the left-hand side denotes the function field of Y and the right-hand side stands for the field of G-invariant rational functions on X; in addition, the fibers of f are exactly the G-orbits.

As a direct but noteworthy application of Theorem 2, we obtain:
Corollary 3. Let X be a variety equipped with an action of a split solvable algebraic group G. Then $k(X)$ is a purely transcendental extension of $k(X)^{G}$.

When k is algebraically closed, this gives back the main result of [Po16]; see CZ17] for applications to the rationality of certain homogeneous spaces.

The proof of Theorem 2 also yields a version of [Sp98, Prop. 14.2.2]:
Corollary 4. Let X be a variety equipped with a nontrivial action of \mathbb{G}_{a}. Then there exist a variety Y, an open immersion $\varphi: \mathbb{A}^{1} \times Y \rightarrow X$ and a monic additive polynomial $P \in \mathcal{O}(Y)[t]$ such that

$$
g \cdot \varphi(x, y)=\varphi(x+P(y, g), y)
$$

for all $g \in \mathbb{G}_{a}, x \in \mathbb{A}^{1}$ and $y \in Y$.
Here P is said to be additive if it satisfies $P(y, t+u)=P(y, t)+P(y, u)$ identically; then \mathbb{G}_{a} acts on $\mathbb{A}^{1} \times Y$ via $g \cdot(x, y)=(x+P(y, g), y)$, and φ is equivariant for this action. If $\operatorname{char}(k)=0$, then we have $P=t$ and hence \mathbb{G}_{a} acts on $\mathbb{A}^{1} \times Y$ by translation on \mathbb{A}^{1}. So Corollary 4 just means that every nontrivial \mathbb{G}_{a}-action becomes a trivial \mathbb{G}_{a}-torsor on some dense open invariant subset. On the other hand, if $\operatorname{char}(k)=p>0$, then P is a p-polynomial, i.e.,

$$
P=a_{0} t+a_{1} t^{p}+\cdots+a_{n} t^{p^{n}}
$$

for some integer $n \geq 1$ and $a_{0}, \ldots, a_{n} \in \mathcal{O}(Y)$. Thus, the map

$$
(P, \mathrm{id}): \mathbb{G}_{a} \times Y \longrightarrow \mathbb{G}_{a} \times Y, \quad(g, y) \longmapsto(P(y, g), y)
$$

is an endomorphism of the Y-group scheme $\mathbb{G}_{a, Y}=\operatorname{pr}_{Y}: \mathbb{G}_{a} \times Y \rightarrow Y$; conversely, every such endomorphism arises from an additive polynomial P,
see DG70, II.3.4.4]. Thus, Corollary 4 asserts that for any nontrivial $\mathbb{G}_{a^{-}}$ action, there is a dense open invariant subset on which \mathbb{G}_{a} acts by a trivial torsor twisted by such an endomorphism. These twists occur implicitly in the original proof of Theorem 1, see [Ro63, Lem. 3]. ${ }^{2}$

This note is organized as follows. In Section 2, we gather background results on split solvable algebraic groups. Section 3 presents further preliminary material, on the quotient of a homogeneous space G / H by the left action of a normal subgroup scheme $N \triangleleft G$; here G is a connected algebraic group, and $H \subset G$ a subgroup scheme. In particular, we show that such a quotient is a torsor under a finite quotient of N, if either $N \simeq \mathbb{G}_{m}$ or $N \simeq \mathbb{G}_{a}$ and $\operatorname{char}(k)=0$ (Lemma 3.4). The more involved case where $N \simeq \mathbb{G}_{a}$ and $\operatorname{char}(k)>0$ is handled in Section 4. we then show that the quotient is a "torsor twisted by an endomorphism" as above (Lemma 4.3). The proofs of our main results are presented in Section 5.

Notation and conventions. We consider schemes over a field k of characteristic $p \geq 0$ unless otherwise mentioned. Morphisms and products of schemes are understood to be over k as well. A variety is an integral separated scheme of finite type.

An algebraic group G is a group scheme of finite type. By a subgroup $H \subset G$, we mean a (closed) subgroup scheme. A G-variety is a variety X equipped with a G-action

$$
\alpha: G \times X \longrightarrow X, \quad(g, x) \longmapsto g \cdot x .
$$

We say that X is G-homogeneous if G is smooth, X is geometrically reduced, and the morphism

$$
\text { (id, } \alpha): G \times X \longrightarrow X \times X, \quad(g, x) \longmapsto(x, g \cdot x)
$$

is surjective. If in addition X is equipped with a k-rational point x, then the pair (X, x) is a G-homogeneous space. Then $(X, x) \simeq\left(G / \operatorname{Stab}_{G}(x), x_{0}\right)$, where $\operatorname{Stab}_{G}(x) \subset G$ denotes the stabilizer, and x_{0} the image of the neutral element $e \in G(k)$ under the quotient morphism $G \rightarrow G / \operatorname{Stab}_{G}\left(x_{0}\right)$.

Given a field extension K / k and a k-scheme X, we denote by X_{K} the K scheme $X \times_{\text {Spec }(k)} \operatorname{Spec}(K)$.

We will freely use results from the theory of faithfully flat descent, for which a convenient reference is [GW10, Chap. 14, App. C].

[^1]
2. Split solvable groups

We first recall some basic properties of these groups, taken from DG70, IV.4.3] where they are called "groupes k-résolubles" (see also [Mi17, §16.g]). Every split solvable group is smooth, connected, affine and solvable. Conversely, every smooth connected affine solvable algebraic group over an algebraically closed field is split solvable (see [DG70, IV.4.3.4]).

Clearly, every extension of split solvable groups is split solvable. Also, recall that every nontrivial quotient group of \mathbb{G}_{m} is isomorphic to \mathbb{G}_{m}, and likewise for \mathbb{G}_{a} (see [DG70, IV.2.1.1]). As a consequence, every quotient group of a split solvable group is split solvable as well.

We now obtain a key preliminary result (a version of [Ro63, Lem. 1], see also Sp98, Cor. 14.3.9]):

Lemma 2.1. Let G be a split solvable group. Then there exists a chain of subgroups

$$
G_{0}=\{e\} \subset G_{1} \subset \cdots G_{m} \subset \cdots \subset G_{m+n}=G
$$

where $G_{i} \triangleleft G$ for $i=0, \ldots, m+n$ and

$$
G_{i+1} / G_{i} \simeq \begin{cases}\mathbb{G}_{a} & \text { if } i=0, \ldots, m-1 \\ \mathbb{G}_{m} & \text { if } i=m, \ldots, m+n-1\end{cases}
$$

Proof. Arguing by induction on $\operatorname{dim}(G)$, it suffices to show that either G is a split torus, or it admits a normal subgroup N isomorphic to \mathbb{G}_{a}.

By [DG70, IV.4.3.4], G admits a normal unipotent subgroup U such that G / U is diagonalizable; moreover, U is split solvable. Since G is smooth and connected, G / U is a split torus T. Also, since every subgroup and every quotient group of a unipotent group are unipotent, U admits a chain of subgroups

$$
\{e\}=U_{0} \subset U_{1} \subset \cdots \subset U_{m}=U
$$

such that $U_{i} \triangleleft U_{i+1}$ and $U_{i+1} / U_{i} \simeq \mathbb{G}_{a}$ for any $i=0, \ldots, m-1$. By [DG70, IV.4.3.14], it follows that either U is trivial or it admits a central characteristic subgroup V isomorphic to \mathbb{G}_{a}^{n} for some integer $n>0$. In the former case, $G=T$ is a split torus. In the latter case, $V \triangleleft G$ and the conjugation action of G on V factors through an action of T. By [Co15, Thm. 4.3], there is a T-equivariant isomorphism of algebraic groups $V \simeq V_{0} \times V^{\prime}$, where V_{0} is fixed pointwise by T and V^{\prime} is a vector group on which T acts linearly. If V^{\prime} is nontrivial, then it contains a T-stable subgroup $N \simeq \mathbb{G}_{a}$; then $N \triangleleft G$. On the other hand, if V^{\prime} is trivial then V is central in G; thus, every copy of \mathbb{G}_{a} in V yields the desired subgroup N.

3. Quotients of homogeneous spaces by normal subgroups

Let G be an algebraic group, $H \subset G$ a subgroup, and $N \triangleleft G$ a smooth normal subgroup. Then H acts on N by conjugation. The semi-direct product $N \rtimes H$ defined by this action (as in [Mi17, Sec. 2.f]) is equipped with a homomorphism to G, with schematic image the subgroup $N H \subset G$. Recall that $H \triangleleft N H \subset G$ and $N H / H \simeq N / N \cap H$. Denote by

$$
q: G \longrightarrow G / H, \quad r: G \longrightarrow G / N H
$$

the quotient morphisms. Then q is an H-torsor, and hence a categorical quotient by H. Since r is invariant under the H-action on G by right multiplication, there exists a unique morphism $f: G / H \longrightarrow G / N H$ such that the triangle

commutes.
We will also need the following observation (see [Mi17, Prop. 7.15]):
Lemma 3.1. With the above notation, the square

is cartesian, where a denotes the restriction of the action $G \times G / H \rightarrow G / H$ and pr_{G} denotes the projection.
Proof. Since r is an $N H$-torsor, we have a cartesian square

where m denotes the restriction of the multiplication $G \times G \rightarrow G$. Also, the square

is commutative, and hence cartesian since the vertical arrows are H-torsors. As q is faithfully flat, this yields the assertion by descent.

For simplicity, we set $X=G / H$ and $Y=G / N H$. These homogeneous spaces come with base points x_{0}, y_{0} such that $f\left(x_{0}\right)=y_{0}$.

Lemma 3.2. (i) With the above notation, f is G-equivariant and N invariant, where G (and hence N) acts on X, Y by left multiplication.
(ii) f is smooth, surjective, and its fibers are exactly the N-orbits.
(iii) The morphism

$$
\gamma: N \times X \longrightarrow X \times_{Y} X, \quad(n, x) \longmapsto(x, n \cdot x)
$$

is faithfully flat.
(iv) The map $f^{\#}: \mathcal{O}_{Y} \rightarrow f_{*}\left(\mathcal{O}_{X}\right)$ yields an isomorphism $\mathcal{O}_{Y} \xrightarrow{\sim} f_{*}\left(\mathcal{O}_{X}\right)^{N}$, where the right-hand side denotes the subsheaf of N-invariants.
(v) If $N \cap H$ is central in G, then f is a $N / N \cap H$-torsor.

Proof. (i) Let R be an algebra, $g \in G(R)$ and $x \in X(R)$. As q is faithfully flat, there exist a faithfully flat R-algebra R^{\prime} and $g^{\prime} \in G\left(R^{\prime}\right)$ such that $x=g^{\prime} \cdot x_{0}$. Then $f(g \cdot x)=f\left(g g^{\prime} \cdot x_{0}\right)=g g^{\prime} \cdot y_{0}=g \cdot\left(g^{\prime} \cdot y_{0}\right)=g \cdot f(x)$ in $Y\left(R^{\prime}\right)$, and hence in $Y(R)$. This yields the G-equivariance of f.

If $g \in N(R)$ then $g g^{\prime}=g^{\prime} n$ for some $n \in N\left(R^{\prime}\right)$. Thus, $f\left(g g^{\prime} \cdot x_{0}\right)=f\left(g^{\prime} \cdot x_{0}\right)$, i.e., $f(g \cdot x)=f(x)$, proving the N-invariance.
(ii) Observe that $N H / H$ is homogeneous under the smooth algebraic group N, and hence is smooth. Thus, $\operatorname{pr}_{G}: G \times N H / H \rightarrow G$ is smooth as well. It follows that f is smooth by using Lemma 3.1 and the faithful flatness of r. Also, f is surjective since so are pr_{G} and r.

Let K / k be a field extension, $x \in X(K)$, and $y=f(x)$. There exist a field extension L / K and $g \in G(L)$ such that $x=g \cdot x_{0}$. Thus, $y=g \cdot y_{0}$ and the fiber X_{y} satisfies $\left(X_{y}\right)_{L}=g\left(X_{y_{0}}\right)_{L}$. Also, $X_{y_{0}}=N \cdot x_{0}$ in view of Lemma 3.1 together with the isomorphisms $N \cdot x_{0} \simeq N / N \cap H \simeq N H / H$. Thus, $\left(X_{y}\right)_{L}=g \cdot\left(N x_{0}\right)_{L}=\left(N g \cdot x_{0}\right)_{L}=(N \cdot x)_{L}$, and therefore $X_{y}=N_{K} \cdot x$ by descent.
(iii) Consider the commutative triangle

Clearly, the morphism pr_{X} is faithfully flat. Also, pr_{1} is faithfully flat, since it is obtained from f by base change. Moreover, for any field extension K / k and any $x \in X(K)$, the restriction $\gamma_{x}: N \times x=N_{K} \rightarrow X_{x}$ is the orbit map $n \mapsto n \cdot x$, and hence is faithfully flat by (ii). So the assertion follows from the fiberwise flatness criterion (see [EGA, IV.11.3.11]).
(iv) We have

$$
\mathcal{O}_{Y}=r_{*}\left(\mathcal{O}_{G}\right)^{N H}=f_{*} q_{*}\left(\mathcal{O}_{G}\right)^{N H}=f_{*}\left(q_{*}\left(\mathcal{O}_{G}\right)^{H}\right)^{N}=f_{*}\left(\mathcal{O}_{X}\right)^{N}
$$

since q (resp. r) is a torsor under H (resp. $N H$).
(v) The subgroup $N \cap H \subset G$ fixes x_{0} and is central in G. By a lifting argument as in (i), it follows that $N \cap H$ fixes $X=G \cdot x_{0}$ pointwise. Thus, the N-action on X factors uniquely through an action of $N / N \cap H$. Since the square

is cartesian (Lemma 3.1) and r is faithfully flat, this yields the assertion.
In view of the assertions (i), (ii), (iii) and (iv), f is a geometric quotient by N in the sense of [MFK94, Def. 0.7].

Next, denote by $\operatorname{Stab}_{N} \subset N \times X$ the stabilizer, i.e., the pullback of the diagonal in $X \times_{Y} X$ under γ. Then Stab_{N} is a closed subgroup scheme of the X-group scheme $N_{X}=\left(\operatorname{pr}_{X}: N \times X \rightarrow X\right)$, stable under the G-action on $N \times X$ via $g \cdot(n, x)=\left(g n g^{-1}, g \cdot x\right)$.

Lemma 3.3. (i) The projection $\operatorname{pr}_{X}: \operatorname{Stab}_{N} \rightarrow X$ is faithfully flat and G-equivariant. Its fiber at x_{0} is H-equivariantly isomorphic to $N \cap H$ on which H acts by conjugation.
(ii) pr_{X} is finite if and only if $N \cap H$ is finite.

Proof. (i) Clearly, pr_{X} is equivariant and its fiber $\operatorname{Stab}_{N}\left(x_{0}\right)$ is as asserted. Form the cartesian square

Then Z is equipped with a G-action such that π is equivariant, with fiber at e being $N \cap H$. As a consequence, the morphism

$$
G \times N \cap H \longrightarrow Z, \quad(g, z) \longmapsto g \cdot z
$$

is an isomorphism with inverse being $z \mapsto\left(\pi(z), \pi(z)^{-1} \cdot z\right)$. Via this isomorphism, π is identified with the projection $G \times N \cap H \rightarrow G$. Thus, π is faithfully flat, and hence so is pr_{X}.
(ii) This also follows from the above cartesian square, since π is finite if and only if $N \cap H$ is finite.

Lemma 3.4. Assume that $N \not \subset H$.
(i) If $N \simeq \mathbb{G}_{m}$ and G is connected, then f is an $N / N \cap H$-torsor. Moreover, $N / N \cap H \simeq \mathbb{G}_{m}$.
(ii) If $N \simeq \mathbb{G}_{a}$ and $p=0$, then f is an N-torsor.

Proof. (i) In view of the rigidity of tori (see [SGA3, Exp. IX, Cor. 5.5] or [Mi17, Cor. 12.37]), N is central in G. Also, $N \cap H$ is a finite subgroup of N, and hence $N / N \cap H \simeq \mathbb{G}_{m}$. So we conclude by Lemma 3.2 (v).
(ii) Likewise, $N \cap H$ is a finite subgroup of \mathbb{G}_{a}, and hence is trivial since $p=0$. So we conclude by Lemma 3.2 (v) again.

4. Quotients by the additive group

We first record two preliminary results, certainly well-known but for which we could locate no appropriate reference.

Lemma 4.1. Let X be a locally noetherian scheme. Let $Z \subset \mathbb{A}^{1} \times X$ be a closed subscheme such that the projection $\operatorname{pr}_{X}: Z \rightarrow X$ is finite and flat. Then Z is the zero subscheme of a unique monic polynomial $P \in \mathcal{O}(X)[t]$.

Proof. First consider the case where $X=\operatorname{Spec}(A)$, where A is a local algebra with maximal ideal \mathfrak{m} and residue field K. Denoting by x the closed point of X, the fiber Z_{x} is a finite subscheme of \mathbb{A}_{K}^{1}. Thus, $Z_{x}=V(P)$ for a unique monic polynomial $P \in K[t]$. So the images of $1, t, \ldots, t^{n-1}$ in $\mathcal{O}\left(Z_{x}\right)$ form a basis of this K-vector space, where $n=\operatorname{deg}(P)$. Also, $\mathcal{O}(Z)$ is a finite flat A-module, hence free. By Nakayama's lemma, the images of $1, t, \ldots, t^{n-1}$ in $\mathcal{O}(Z)$ form a basis of this A-module. So we have $t^{n}+a_{1} t^{n-1}+\cdots+a_{n}=0$ in $\mathcal{O}(Z)$ for unique $a_{1}, \ldots, a_{n} \in A$. Thus, the natural map $A[t] /\left(t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) \rightarrow \mathcal{O}(Z)$ is an isomorphism, since it sends a basis to a basis. This proves the assertion in this case.

For an arbitrary scheme X, the assertion holds in a neighborhood of every point by the local case. In view of the uniqueness of P, this completes the proof.

Lemma 4.2. Let X be a locally noetherian scheme, and $H \subset \mathbb{G}_{a, X}$ a finite flat subgroup scheme. Then $H=\operatorname{Ker}(P, i d)$ for a unique monic additive polynomial $P \in \mathcal{O}(X)[t]$, where (P, id) denotes the endomorphism

$$
\mathbb{G}_{a, X} \longrightarrow \mathbb{G}_{a, X}, \quad(g, x) \longmapsto(P(x, g), x) .
$$

Proof. We may assume that X is affine by the uniqueness property. Let $X=$ $\operatorname{Spec}(A)$, then $H=V(P)$ for a unique monic polynomial $P \in A[t]$ (Lemma 4.1). We now adapt an argument from [DG70, IV.2.1.1] to show that P is an additive polynomial.

Denote by $m: \mathbb{G}_{a, X} \times{ }_{X} \mathbb{G}_{a, X} \rightarrow \mathbb{G}_{a, X}$ the group law. Since H is a subgroup scheme, we have $H \times_{X} H \subset m^{-1}(H)$. Considering the ideals of these closed subschemes of $\mathbb{G}_{a, X} \times{ }_{X} \mathbb{G}_{a, X} \simeq \mathbb{G}_{a} \times \mathbb{G}_{a} \times X=\operatorname{Spec}(A[t, u])$ yields that $P(t+u) \in(P(t), P(u))$ in $A[t, u]$. So there exist $Q, R \in A[t, u]$ such that

$$
P(t+u)-P(t)-P(u)=Q(t, u) P(t)+R(t, u) P(u) .
$$

Since P is monic, there exist unique $Q_{1}, Q_{2} \in A[t, u]$ such that

$$
Q(t, u)=Q_{1}(t, u) P(u)+Q_{2}(t, u), \quad \operatorname{deg}_{u}\left(Q_{2}\right)<\operatorname{deg}(P)=n .
$$

Thus, we have

$$
P(t+u)-P(t)-P(u)-Q_{2}(t, u) P(t)=\left(Q_{1}(t, u) P(t)+R(t, u)\right) P(u) .
$$

As the left-hand side has degree in u at most $n-1$, it follows that $Q_{1}(t, u) P(t)+$ $R(t, u)=0$ and $P(t+u)-P(t)-P(u)=Q_{2}(t, u) P(t)$. Considering the degree in t, we obtain $Q_{2}=0$ and $P(t+u)=P(t)+P(u)$ identically.

Next, we return to the setting of Section 3: G is an algebraic group, $H \subset G$ a subgroup, $N \triangleleft G$ a smooth normal subgroup, and $f: X=G / H \rightarrow G / N H=Y$ the natural morphism. Since f is N-invariant (Lemma 3.2 (i)), we may view X as an Y-scheme equipped with an action of the Y-group scheme N_{Y}.

Lemma 4.3. Assume in addition that $N \simeq \mathbb{G}_{a}$ and $N \not \subset H$. Then there exist a faithfully flat morphism of Y-group schemes $\varphi: N_{Y} \rightarrow \mathbb{G}_{a, Y}$ and a $\mathbb{G}_{a, Y^{-}}$-action on X such that f is a $\mathbb{G}_{a, Y}$-torsor.

Proof. By Lemma 3.3, the stabilizer Stab_{N} is finite and flat over Y. Thus, $\operatorname{Stab}_{N}=\operatorname{Ker}(P, \mathrm{id})$ for a unique monic p-polynomial $P \in \mathcal{O}(X)[t]$ (Lemma 4.2). Also, $\mathrm{Stab}_{N} \subset N \times X$ is stable under the action of the abstract group $N(k)$ via $g \cdot(n, x)=(n, g \cdot x)$; as a consequence, we have $P(g \cdot x, t)=P(x, t)$ identically on X, for any $g \in N(k)$. This still holds after base change by a field extension K / k, since the formation of Stab_{N} commutes with such base change and hence P is invariant under any such extension. Since $N(K)$ is dense in N_{K} for any infinite field K, it follows that P is N-invariant. As $\mathcal{O}(X)^{N}=\mathcal{O}(Y)($ Lemma 3.2 (iv) $)$, we see that $P \in \mathcal{O}(Y)[t]$.

Choose an isomorphism $\mathbb{G}_{a} \xrightarrow{\sim} N$ and consider the morphism

$$
\varphi=(P, \mathrm{id}): \mathbb{G}_{a, Y} \longrightarrow \mathbb{G}_{a, Y}, \quad(t, y) \longmapsto(P(y, t), y) .
$$

Then φ is an endomorphism of the Y-group scheme $\mathbb{G}_{a, Y}$. Moreover, φ is faithfully flat, as follows from the fiberwise flatness criterion (see [EGA, IV.11.3.11]), since $\mathbb{G}_{a, Y}$ is faithfully flat over Y and for any $y \in Y$, the morphism $\varphi_{y}: t \mapsto P(y, t)$ is faithfully flat. Denote by K the kernel of φ. Then we have $K \times_{Y} X=\mathrm{Stab}_{N}$; thus, K is finite and flat over Y, by Lemma 3.3 and descent. Moreover, the square

is cartesian, where m denotes the group law, and pr the projection (indeed, $P(t, y)=P(u, y)$ if and only if $(u-t, y) \in K)$. So φ is a K-torsor. The action

$$
\alpha: \mathbb{G}_{a, Y} \times{ }_{Y} X=\mathbb{G}_{a} \times X \longrightarrow X, \quad(t, x) \longmapsto t \cdot x
$$

is a K-invariant morphism. By descent again, it follows that there is a unique morphism $\beta: \mathbb{G}_{a} \times X \rightarrow X$ such that the triangle

commutes. Thus, $\beta(t, x)=\alpha(P(f(x), t), x)$ identically on $\mathbb{G}_{a} \times X$. In particular, $\beta(0, x)=\alpha(0, x)=x$ identically on X. Also, β satisfies the associativity property of an action, since so does α and φ is faithfully flat. So β is an action of $\mathbb{G}_{a, Y}$ on X. Consider the associated morphism

$$
\delta: \mathbb{G}_{a} \times X \longrightarrow X \times_{Y} X, \quad(t, x) \longmapsto(\beta(t, x), x)
$$

as a morphism of X-schemes. For any field extension K / k and any $x \in X(K)$, we get a morphism $\delta_{x}: \mathbb{G}_{a, K} \rightarrow X_{x}$ such that $\delta_{x} \circ P_{x}=\alpha_{x}$. Thus, δ_{x} is an isomorphism by the construction of P. In view of the fiberwise isomorphism criterion (see [EGA, IV.17.9.5]), it follows that δ is an isomorphism. So f is a $\mathbb{G}_{a, Y}$-torsor relative to this action β.

5. Proofs of the main results

5.1. Proof of Theorem 1. We first consider the case where X is equipped with a k-rational point x_{0}. Then $X=G / H$ for some subgroup $H \subset G$. If G is a torus, then G / H has the structure of a split torus, and hence is isomorphic to $\left(\mathbb{A}^{\times}\right)^{n}$ for some integer $n \geq 0$. Otherwise, G admits a normal subgroup $N \simeq \mathbb{G}_{a}$ by Lemma 2.1. If $N \subset H$ then $X \simeq(G / N) /(H / N)$ and we conclude by induction on $\operatorname{dim}(G)$. So we may assume that $N \not \subset H$. Then we have a morphism

$$
f: X=G / H \longrightarrow G / N H \simeq(G / N) /(N H / N) .
$$

Moreover, f is a \mathbb{G}_{a}-torsor by Lemma 3.2 (if $p=0$) and Lemma 4.3 (if $p>0$). By induction on $\operatorname{dim}(G)$ again, we may assume that $Y \simeq \mathbb{A}^{m} \times\left(\mathbb{A}^{x}\right)^{n}$ as a variety. In particular, Y is affine, and hence the \mathbb{G}_{a}-torsor f is trivial. So $X \simeq \mathbb{A}^{1} \times Y \simeq \mathbb{A}^{m+1} \times\left(\mathbb{A}^{\times}\right)^{n}$ as a variety.

To complete the proof, it suffices to show that every homogeneous G-variety has a k-rational point. This follows from a result of Rosenlicht (see Ro56, Thm. 10]) and is reproved in [Bo91, Thm. 15.11], [Sp98, Thm. 14.3.13]. For completeness, we present a proof based on the following lemma, also due to Rosenlicht (see [Ro56, Lem., p. 425]):

Lemma 5.1. Let X be a homogeneous variety under $G=\mathbb{G}_{a}$ or \mathbb{G}_{m}. Then X has a k-rational point. ${ }^{3}$

Proof. Since X is a smooth curve, it admits a unique regular completion \bar{X}, i.e., \bar{X} is a regular projective curve equipped with an open immersion $X \rightarrow \bar{X}$. Moreover, \bar{X} is geometrically integral since so is X. We identify X with its image in \bar{X}, and denote by $Z=\bar{X} \backslash X$ the closed complement, equipped with its reduced subscheme structure. Then $Z=\coprod_{i=1}^{n} \operatorname{Spec}\left(K_{i}\right)$, where the K_{i} / k are finite extensions of fields.

By the smoothness of X again, we may choose a finite separable extension K / k such that X has a K-rational point x_{0}. Then (X_{K}, x_{0}) is a homogeneous space under G_{K}, and hence is isomorphic to G_{K} as a variety. Also, \bar{X}_{K} is the regular completion of X_{K}; moreover, Z_{K} is reduced and $\bar{X}_{K} \backslash X_{K}=Z_{K}$. Since $X_{K} \simeq \mathbb{A}_{K}^{1}$ or \mathbb{A}_{K}^{\times}, it follows that $\bar{X}_{K} \simeq \mathbb{P}_{K}^{1}$; in particular, \bar{X} is a smooth projective curve of genus 0 . This identifies Z_{K} with $\operatorname{Spec}(K)$ (the point at infinity) if $G=\mathbb{G}_{a}$, resp. with $\operatorname{Spec}(K) \coprod \operatorname{Spec}(K)=\{0, \infty\}$ if $G=\mathbb{G}_{m}$.

In the former case, we have $Z=\operatorname{Spec}(k)$ and hence \bar{X} has a k-rational point. Thus, $\bar{X} \simeq \mathbb{P}^{1}$, so that X has a k-rational point as well.

In the latter case, let $L=k(X)$; then L / k is separable and X_{L} has an L-rational point. Thus, we see as above that $\bar{X}_{L} \simeq \mathbb{P}_{L}^{1}$ and this identifies Z_{L} with $\{0, \infty\}$. In particular, $Z(L)=Z(K)$. Since K and L are linearly disjoint over k, it follows that $Z(k)$ consists of two k-rational points; we then conclude as above.

Returning to a homogeneous variety X under a split solvable group G, we may choose $N \triangleleft G$ such that $N \simeq \mathbb{G}_{a}$ or \mathbb{G}_{m} (Lemma 2.1). Also, we may choose a finite Galois extension K / k such that X has a K-rational point x_{0}. Let $H=\operatorname{Stab}_{G_{K}}\left(x_{0}\right)$; then $\left(X_{K}, x_{0}\right)$ is the homogeneous space G_{K} / H, and hence there is a geometric quotient

$$
f: X_{K}=G_{K} / H \longrightarrow G_{K} / N_{K} H
$$

(Lemma 3.2). Then f is a categorical quotient, and hence is unique up to unique isomorphism. By Galois descent (which applies, since all considered varieties are affine), we obtain a G-equivariant morphism $\varphi: X \rightarrow Y$ such that $\varphi_{K}=f$. In particular, Y is a homogeneous variety under G / N. Arguing by induction on $\operatorname{dim}(G)$, we may assume that Y has a k-rational point y. Then the fiber X_{y} is a homogeneous N-variety, and hence has a k-rational point.

[^2]5.2. Proof of Theorem 2. We may freely replace X with any dense open G-stable subvariety. In view of Rosenlicht's theorem on rational quotients mentioned in the introduction, we may thus assume that there exist a variety Y and a G-invariant morphism
$$
f: X \longrightarrow Y
$$
such that $k(Y) \xrightarrow{\sim} k(X)^{G}$ and the fiber of f at every $y \in Y$ is a homogeneous variety under $G_{\kappa(y)}$, where $\kappa(y)$ denotes the residue field at y. By generic flatness, we may further assume that f is flat.

Denoting by η the generic point of Y, the fiber X_{η} is a homogeneous variety under $G_{\eta}=G_{k(Y)}$. By Theorem 1, this yields an isomorphism

$$
\begin{equation*}
Z_{\eta} \xrightarrow{\sim} X_{\eta}, \tag{5.1}
\end{equation*}
$$

where $Z=\mathbb{A}^{m} \times\left(\mathbb{A}^{\times}\right)^{n}$ for unique integers $m, n \geq 0$. This yields in turn a birational map

$$
\varphi: Z \times Y \xrightarrow{ }
$$

such that $f \circ \varphi=\operatorname{pr}_{Y}$ as rational maps.
It suffices to show that there exists a dense open subvariety $Y_{0} \subset Y$ such that φ is defined on $Z \times Y_{0}$ and yields an open immersion $Z \times Y_{0} \rightarrow X$ with G-stable image. For this, we start with some reductions.

We may assume that Y is affine (by replacing X with the preimage of a dense open affine subvariety) and also that X is normal (since its normal locus is a dense open G-stable subvariety). In view of a result of Sumihiro (see [Su75, Thm. 3.9]), we may further assume that X is a locally closed G stable subvariety of the projectivization $\mathbb{P}(V)$, where V is a finite-dimensional G-module. The closure \bar{X} of X in $\mathbb{P}(V)$ and its boundary $\bar{X} \backslash X$ are G-stable. By a version of Borel's fixed point theorem (see [DG70, IV.4.3.2]), there exist a positive integer N and a nonzero $s \in H^{0}(\bar{X}, \mathcal{O}(N))$ which vanishes identically on $\bar{X} \backslash X$ and is a G-eigenvector. Then the dense open subvariety \bar{X}_{s} is affine, G-stable and contained in X; thus, we may further assume that X is affine. This replaces Y with a dense open subset Y_{0} (as f is flat and hence open). As Y is affine, we may choose a nonzero $t \in \mathcal{O}(Y)$ which vanishes identically on $Y \backslash Y_{0}$. Replacing X with X_{t} and Y with Y_{t}, we may finally assume that X, Y are affine and X is normal.

Choose a closed immersion of Y-varieties $X \rightarrow \mathbb{A}^{N} \times Y$; then φ yields a rational map

$$
\left(\varphi_{1}, \ldots, \varphi_{N}, \operatorname{pr}_{Y}\right): Z \times Y \rightarrow \mathbb{A}^{N} \times Y
$$

such that the pull-back $Z_{\eta} \rightarrow \mathbb{A}_{\eta}^{N}$ is a closed immersion. In particular, $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{O}\left(Z_{\eta}\right)=\mathcal{O}(Z) \otimes_{k} k(Y)$. Replacing again Y with a dense open affine subvariety, we may thus assume that $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{O}(Z) \otimes_{k} \mathcal{O}(Y)=$ $\mathcal{O}(Z \times Y)$. As a consequence, φ is a morphism.

Denote by $\operatorname{Isol}(\varphi)$ the set of points of $Z \times Y$ which are isolated in their fiber; then $\operatorname{Isol}(\varphi)$ contains the points of Z_{η}. By Zariski's Main Theorem (see [EGA, III.4.4.3]), $\operatorname{Isol}(\varphi)$ is open in $Z \times Y$ and the restriction of φ to $\operatorname{Isol}(\varphi)$ factors as

$$
\operatorname{Isol}(\varphi) \xrightarrow{\psi} X^{\prime} \xrightarrow{\gamma} X,
$$

where ψ is an open immersion and γ is finite. Replacing X^{\prime} with the schematic image of ψ, we may assume that ψ is schematically dominant; then X^{\prime} is a variety. Since φ is birational, so is γ; as X is normal, it follows that γ is an isomorphism. Thus, φ restricts to an open immersion $\operatorname{Isol}(\varphi) \rightarrow X$.

Consider the closed complement $F=(Z \times Y) \backslash \operatorname{Isol}(\varphi)$. Then F_{η} is empty, and hence the ideal $I(F) \subset \mathcal{O}(Z \times Y)$ satisfies $1 \in I(F) \otimes_{\mathcal{O}(Y)} k(Y)$. Replacing Y with a principal open subvariety, we may thus assume that $1 \in I(F)$, i.e., F is empty and $\operatorname{Isol}(\varphi)=Z \times Y$. Equivalently, $\varphi: Z \times Y \rightarrow X$ is an open immersion.

It remains to show that the image of φ is G-stable. The isomorphism (5.1) is equivariant relative to some action $\alpha: G_{\eta} \times_{\eta} Z_{\eta} \rightarrow Z_{\eta}$. We may view α as a morphism $G \times Z \times \eta \rightarrow Z$, i.e., a family $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$, where $x_{1}, \ldots, x_{m} \in \mathcal{O}(G \times Z \times \eta)$ and $y_{1}, \ldots, y_{n} \in \mathcal{O}(G \times Z \times \eta)^{\times}$(the group of invertible elements). Shrinking Y again, we may assume that $x_{1}, \ldots, x_{m} \in$ $\mathcal{O}(G \times Z \times Y)$ and $y_{1}, \ldots, y_{n} \in \mathcal{O}(G \times Z \times Y)^{\times}$. Then α is given by a morphism $G \times Z \times Y \rightarrow Z$, i.e., an action of G_{Y} on $Z \times Y$. Moreover, φ is G_{Y}-equivariant, since so is φ_{η}. This completes the proof of Theorem 2 .

The proof of Corollary 4 is completely similar; the point is that the generic fiber X_{η} is a nontrivial $\mathbb{G}_{a, \eta}$-homogeneous variety, and hence is isomorphic to \mathbb{A}_{η}^{1} on which $\mathbb{G}_{a, \eta}$ acts via a monic additive polynomial $P \in k(Y)[t]$ (Lemma 5.1). We leave the details to the reader.

Remark 5.2. (i) Theorem 1 may be reformulated as follows: every homogeneous variety X under a split solvable algebraic group G is affine and satisfies

$$
\mathcal{O}(X) \simeq k\left[x_{1}, \ldots, x_{m}, y_{1}, y_{1}^{-1}, \ldots, y_{n}, y_{n}^{-1}\right]
$$

where $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ are algebraically independent. So the invertible elements of the algebra $\mathcal{O}(X)$ are exactly the Laurent monomials $c y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}$, where $c \in k^{\times}$and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$. As a consequence, the projection

$$
f: X \longrightarrow\left(\mathbb{A}^{\times}\right)^{n}
$$

is uniquely determined (but the projection $X \rightarrow \mathbb{A}^{m}$ is not: as an example, $k\left[x, y, y^{-1}\right] \simeq k\left[x+P(y), y, y^{-1}\right]$ for any $\left.P \in k[t]\right)$. In fact, f is the quotient by the unipotent part U of G, as follows fom the proof of Theorem 1 .
(ii) Likewise, in the setting of Theorem 2, the projection $X_{0} \rightarrow\left(\mathbb{A}^{\times}\right)^{n} \times Y$ is the rational quotient by U. This theorem is known, in a more precise formulation, for a variety X equipped with an action of a connected reductive
algebraic group G over an algebraically closed field of characteristic 0 . Then one considers the action of a Borel subgroup of G, and uses the "local structure theorem" as in Kn90, Satz 2.3]. The dimension of Y is the complexity of the G-action on X, and n is its rank; both are important numerical invariants of the action (see e.g. [Ti11, Chap. 2]).

These invariants still make sense in positive characteristics, and the local structure theorem still holds in a weaker form (see [Kn93, Satz 1.2]). Theorem 2 gives additional information in this setting.
(iii) Corollary 4 also holds for a variety X equipped with a nontrivial action of the multiplicative group: there exist a variety Y, a nonzero integer n and an open immersion $\varphi: \mathbb{A}^{\times} \times Y \rightarrow X$ such that $g \cdot \varphi(x, y)=\varphi\left(g^{n} x, y\right)$ identically. This follows from the fact that every nontrivial $\mathbb{G}_{m, \eta}$-homogeneous variety is isomorphic to $\mathbb{A}_{\eta}^{\times}$on which $\mathbb{G}_{m, \eta}$ acts by the nth power map for some $n \neq 0$.

This extends to the action of a split torus T : using [Su75, Cor. 3.11], one reduces to the case where X is affine and T acts via a free action of a quotient torus T^{\prime}. Then the quotient $X \rightarrow Y$ exists and is a T^{\prime}-torsor, see [SGA3, Exp. IX, Thm. 5.1] for a much more general result.

References

[BGR17] J. P. Bell, D. Ghioca, Z. Reichstein, On a dynamical version of a theorem of Rosenlicht, Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 1, 187-204.
[Bo91] A. Borel, Linear algebraic groups. Second enlarged edition, Grad. Texts in Math. 126, Springer, New York, 1991.
[CZ17] C. Chin, D-Q. Zhang, Rationality of homogeneous varieties, Trans. Amer. Math. Soc. 369 (2017), 2651-2673.
[Co15] B. Conrad, The structure of solvable algebraic groups over general fields, pp. 159-192 in: Panor. Synth. 46, Soc. Math. France, 2015.
[DG70] M. Demazure, P. Gabriel, Groupes algébriques, Masson, Paris, 1970.
[EGA] A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de J. Dieudonné), Pub. Math. I.H.É.S. 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967).
[GW10] U. Görtz, T. Wedhorn, Algebraic Geometry I, Vieweg, Wiesbaden, 2010.
[Kn90] F. Knop, Weylgruppe und Momentabbildung, Invent. math. 293 (1993), 333-363.
[Kn93] F. Knop, Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann. 293 (1993), 333-363.
[Mi17] J. S. Milne, Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Stud. Adv. Math. 170, Cambridge University Press, 2017.
[MFK94] D. Mumford, J. Fogarty, F. Kirwan: Geometric invariant theory. Third enlarged edition, Ergeb. Math. Grenzgeb. 34, Springer, 1994.
[Po16] V. L. Popov, Birational splitting and algebraic group actions, European J. Math. 2 (2016), 283-290.
[Ro56] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443.
[Ro57] M. Rosenlicht, Questions of rationality for algebraic groups, Ann. Mat. Pura Appl. 78 (1957), 25-50.
[Ro63] M. Rosenlicht, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. 62 (1963), 97-120.
[Ru70] P. Russell, Forms of the affine line and its additive group, Pacific J. Math. 32 (1970), 527-539.
[SGA3] M. Demazure, A. Grothendieck, Séminaire de Géométrie Algébrique du Bois Marie, 1962-64, Schémas en groupes (SGA3), Tome I. Propriétés générales des schémas en groupes, Doc. Math. 7, Soc. Math. France, Paris, 2011.
[Sp98] T. A. Springer, Linear algebraic groups. Second edition, Prog. Math. 9, Birkhäuser, Basel, 1998.
[Su75] H. Sumihiro, Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573-605.
[Ti11] D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci. 238, Springer, 2011.

Université Grenoble Alpes, Institut Fourier, CS 40700, 38058 Grenoble Cedex 9, France

[^0]: ${ }^{1}$ The case where k is algebraically closed and $X=G / H$ for some smooth connected subgroup $H \subset G$ is proposed as an exercise in [Sp98, §14.2].

[^1]: ${ }^{2}$ Rosenlicht was very well aware of the limitations of classical methods. He wrote in the introduction of Ro63: "The methods of proof we use here are refinements of those of our previous Annali paper Ro57 and cry for improvement; there are unnatural complexities and it seems that something new that is quite general, and possibly quite subtle, must be brought to light before appreciable progress can be made."

[^2]: ${ }^{3}$ This lemma is reproved in Bo91, Prop. 15.6], but the argument there is unclear to me. In modern language, it is asserted that every smooth, geometrically rational curve is an open subvariety of a smooth complete curve of genus 0 . Yet this fails for nontrivial forms of the affine line, see [Ru70, Lem. 1.1]. Also, it is asserted that the G-action on X extends to an action on its regular completion; this requires a proof.

