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Abstract

We present an overview of the main techniques for production and processing of graphene and
related materials (GRMs), as well as the key characterization procedures. We adopt a ‘hands-on’
approach, providing practical details and procedures as derived from literature as well as from the
authors’ experience, in order to enable the reader to reproduce the results.
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Section [ is devoted to ‘bottom up’ approaches, whereby individual constituents are pieced
together into more complex structures. We consider graphene nanoribbons (GNRs) produced
either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon
nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes
is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour.

Section IT covers ‘top down’ techniques. These rely on breaking down of a layered precursor, in the
graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly
oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is
on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation
(LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters
such as time or temperature are crucial. A definite choice of parameters and conditions yields a
particular material with specific properties that makes it more suitable for a targeted application. We
cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material
for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers’ and
modified Hummers’ methods are used to make GO that subsequently can be reduced to obtain
reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare
three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The
assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a
highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the
whole surface area, as relevant for a number of applications, such as energy storage. The main recipes
to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors
for covalent functionalization of graphene, but can also be used for the synthesis of uncharged
graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high
temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and
exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode
can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either
negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss
the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach.

The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral
size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation
of GRMs produced by solution processing. The establishment of procedures to control the
morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one
of the key needs. Section I1I deals with the processing of flakes. (Ultra)centrifugation techniques
have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing,
ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks
formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen
printing. Each technique has specific rheological requirements, as well as geometrical constraints.
The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing
on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies.
Chemical modifications of such substrates is also a key step.

Sections [V—VII are devoted to the growth of GRMs on various substrates and their processing after
growth to place them on the surface of choice for specific applications. The substrate for graphene
growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between
graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO,, typically
results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields
highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the
requirements for electronic applications, with well-defined graphene-substrate interface, low trapped
impurities and no need for transfer. It also allows graphene structures and devices to be measured directly
on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples
on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface
engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production
of nanostructures with the desired shape, with no need for patterning.

Section V deals with chemical vapour deposition (CVD) onto various transition metals and on
insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these
films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon

3
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precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas,
owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing
characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates,
resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on
Cu. Cuis available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other
materials and powders, making it attractive for industrial production of large area graphene films.
The push to use CVD graphene in applications has also triggered a research line for the direct growth
on insulators. The quality of the resulting films is lower than possible to date on metals, but enough,
in terms of transmittance and resistivity, for many applications as described in section V.

Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up
molecular approaches require SLG to be transferred to the final target substrates. To have technological
impact, the advances in production of high-quality large-area CVD graphene must be commensurate
with those on transfer and placement on the final substrates. This is a prerequisite for most applications,
such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies
have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS
foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically
iron chloride,ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-
consuming, with damage to graphene and production of metal and etchant residues. Electrochemical
delamination in alow-concentration aqueous solution is an alternative. In this case metallic substrates
can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer.

There is a large range of layered materials (LMs) beyond graphite. Only few of them have been
already exfoliated and fully characterized. Section VII deals with the growth of some of these
materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount
importance. The growth of h-BN is at present considered essential for the development of graphene
in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting
optical and electronic properties of TMDs also require the development of scalable methods for
their production. Large scale growth using chemical/physical vapour deposition or thermal assisted
conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures
could also be directly grown.

Section VIII discusses advances in GRM functionalization. A broad range of organic molecules
can be anchored to the sp? basal plane by reductive functionalization. Negatively charged graphene
can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react
with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups
of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular
with polycyclic aromatic hydrocarbons that assemble on the sp? carbon network by — stacking.

In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve
noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene.
Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address
defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This
enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects
can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with
metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic
effects between NPs and graphene. Decoration can be either achieved chemically or in the gas

phase. All LMs, can be functionalized and we summarize emerging approaches to covalently and
noncovalently functionalize MoS, both in the liquid and on substrate.

Section IX describes some of the most popular characterization techniques, ranging from optical
detection to the measurement of the electronic structure. Microscopies play an important role,
although macroscopic techniques are also used for the measurement of the properties of these
materials and their devices. Raman spectroscopy is paramount for GRMs, while PL is more adequate
for non-graphene LMs (see section IX.2). Liquid based methods result in flakes with different
thicknesses and dimensions. The qualification of size and thickness can be achieved using imaging
techniques, like scanning probe microscopy (SPM) or transmission electron microscopy (TEM) or
spectroscopic techniques. Optical microscopy enables the detection of flakes on suitable surfaces as
well as the measurement of optical properties. Characterization of exfoliated materials is essential
to improve the GRM metrology for applications and quality control. For grown GRMs, SPM can

4
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be used to probe morphological properties, as well as to study growth mechanisms and quality of
transfer. More generally, SPM combined with smart measurement protocols in various modes allows
one to get obtain information on mechanical properties, surface potential, work functions, electrical
properties, or effectiveness of functionalization. Some of the techniques described are suitable for

‘in situ’ characterization, and can be hosted within the growth chambers. If the diagnosis is made

‘ex situ’, consideration should be given to the preparation of the samples to avoid contamination.
Occasionally cleaning methods have to be used prior to measurement.
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I. Bottom-up

I.1. Graphene nanoribbons

GNRs are an interesting family of materials
combining aspect ratios allowing to bridge the range
of (sub-) nanometer dimensions with ultimate
structure-properties relationship (GNR width, below
5nm) and mesoscopic dimensions (GNR length up to
500nm). This makes GNRs accessible to established
top-down contacting strategies and thus allows their
device integration. For GNRs with armchair edges
(AGNRs), theory predicts the opening of sizable
bandgaps as soon as their widths falls below ~2nm
[1-5]. This is due to quantum confinement and edge
effects and can qualitatively be understood by slicing
the graphene Dirac cone along k-lines in the reciprocal
space that are compatible with the hard-wall boundary
conditions set by the finite AGNR width. The further
these cuts of allowed electronic states are away from
the K point of the Brillouin zone of graphene, the
larger is their bandgap [6]. AGRNs were predicted to
show metallic to semiconducting behavior, depending
on their width [2, 7-9]. Generally, AGRNSs exhibiting
widths smaller than 10 nm behave as semiconductors
with non-zero bandgaps that increase as the they
become narrower [5, 7-11]. E.g., AGNRs as narrow
as 2-3nm are expected to havea bandgap ~0.7¢V,
which is comparable to that of Ge [5]. In contrast,
early theoretical studies indicated that zigzag GNRs,
ZGNRs, have metallic properties with zero bandgap
irrespective of the width, showing strongly localized
edge states at the zigzag sites [7], with ferromagnetic
coupling along and antiferromagnetic coupling across
the edges [12]. Spin-polarized density functional
theory DFT calculations have found that AGNRs
are always semiconductors and that the ground state
of ZGNRs has an antiferromagnetic configuration,
where electronic states with opposite spins are highly
localized at the two ZGNR edges and are responsible
for the opening of a gap [1712, 1713]. Thus, small
differences in width and edge configuration lead to
large variations in GNR properties [5, 10, 11], making
it imperative to control the GNR structure on the
atomic level to achieve the desired (opto)electronic
and magnetic properties with high accuracy and
reproducibility. While this is beyond the level of what
can be currently controlled by top-down structuring
methods, such as lithographic patterning [13-16]
or cutting of CNTs[17-20], advances in bottom-up
fabrication have shown that GNRs with specific edge
structure and width are accessible [21]. Not only
purely A or ZGNRs can be synthesized. Other types
in between named chevron- or necklace-type can be
designed and prepared as well [1724].

L1.1. Solution synthesis of GNRs

The concept of solution based bottom-up synthesis
relies on the preparation of large polycyclic
aromatic hydrocarbons (PAHs), often referred to as

CBackesetal

nanographenes [22, 23] The reaction is based on the
intramolecular oxidative cyclodehydrogenation of
corresponding oligophenylene precursors and was
extended from defined molecules to polymers, i.e.
from PAHs to GNRs [23]. Since then, the synthesis of
GNRs through intramolecular cyclodehydrogenation
of polyphenylene polymers was achieved, through
AA-, AB- and A2B2-type polymerizations as
summarized in Refs. [24-27].

The most critical issue in the solution-synthesis
is to achieve high (>600000g mol~! on average by
Diels Alder (DA) polymerization) molecular weight
of the precursor polymer. While the width of GNRs is
determined by the monomer dimensions, the molec-
ular weight is directly proportional to the number of
repeating units, therefore proportional to the length
of the resulting GNR after the cyclodehydrogenation
-graphitization- step. E.g. DA polymerization pro-
vides a molecular weight >600 000, on average corre-
sponding to alength of 600 nm [23].

Figure I.1 provides an overview of the polymeriza-
tion routes explained in what follows along with the
relevant references.

I.1.2. Preparation of polymer precursors by A2B2-
polymerization
A2B2-Polymerization requires two monomers
with complementary functional groups A and
B (see figure 1.1). These can be A=Cl, Br, I, Otf
(Trifluoromethanesulfonate) in combination with B
being a boronic acid or boronic acid ester. In this case,
the underlying carbon-carbon bond formation is based
on the Suzuki-reaction. In contrast, if A is a diene and B
a dienophile, it belongs to the reaction class of a Diels-
Alder reaction. The most prominent combination for a
Diels-Alder reaction to form PAHs is the combination
of a cyclopentadienone and a substituted acetylene
[28, 29]. The benefit of this inverse electron demand-
Diels-Alder reaction is the tandem cycloaddition and
carbon-monoxide-extrusion reaction. Therefore, both
reaction classes require different protocols. In all cases,
the polymerization follows a step-growth mechanism
and is defined by Carother’s equation [30]. In this case,
the functionalized monomers first reactinto monomers,
dimers, trimer, oligomers and finally high molecular
weight polymers. The stoichiometry of both monomers
is of fundamental importance to achieve a high
degree of polymerization and thus molecular weight.
From our experience, a small deviation imbalance in
stoichiometry or impurity of at least one monomer of
even 2% will not allow high molecular weight polymer
formation. To ensure exact stoichiometry, the purity of
monomers as well as dryness is a critical issue. A balance
used to weight the monomers must require an accuracy
of 0.1 mg. In a theoretical example, an impurity of 2% at
a degree of polymerization of 98%, will cut molecular
weight to half [30].

A Suzuki reaction is a palladium catalyzed reaction.
The active catalyst is a Pd(0) species which is oxygen
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Type Polymerization Method Catalyst Polymer

AA Yamamoto
(3. Am. Chem. Soc. 2016, 138, 10136-10139)

Ni(COD)2

AB  Diels-Alder
(Nat. Chem. 2014, 6, 126-132)

= =0 heat

Suzuki
(Chem. Eur.J. 2016, 22, 9116-9120)

Br{ ) Bgt

-O O—

Pd(PtBus)2

A2B2 Diels-Alder
(3. Am. Chem. Soc. 2008, 130, 4216-4217)

Suzuki
(3. Am. Chem. Soc. 2008, 130, 4216-4217)

R R R RR

employed in solution synthesis of GNRs.

Figurel.1. Overview individual types (AA, AB and A2B2) of polymerization the reactive parts are colored according to the protocol
of reactions. References to examples are given on top of the monomer or monomer combination of main polymerization methods

Scholl Reaction GNR

FeCly
DCM/MeNO,

FeCly
DCM/MeNO,

DDQ,
TfOH/DCM

FeCly
DCM/MeNO,

FeCly'
DCM/MeNO,

sensitive. This protocol requires the preparation of the
reaction under inert condition. To exclude oxygen from
the reaction, both monomers and a base (potassium
carbonate) are usually evacuated in a Schlenk-type
glassware. Afterwards, the solvents (a combination of
toluene, ethanol and water, typically 3:1:1), is bubbled
with Ar for at least 20 min when a total volume of sol-
vent is in the range of 100-200ml. It is reccommended
to apply high (~1200rpm) stirring during bubbling
to ensure a complete saturation of the solvent mixture
with Ar. After the reaction apparatus is in contact with
the preheated oil bath, the catalyst (Pd(PPh;)4) isadded
under Ar. During the reaction, no oxygen should enter
the reaction chamber. In addition, it is recommended
to cover the reaction chamber with Al foil to protect it
from light. To track the reaction, samples can be taken
in different intervals of 15min to several hours, always
under Ar protection. These (0.1 ml) can be quenched
by adding a drop of water and extracted with an organic
solvent such as dichloromethane or chloroform and
are required for tracking the molecular weight increase
by mass spectrometry [31]. Matrix-assisted laser des-
orption/ionization-time of flight (MALDI-TOF) [31]
using tetracyanoquinodimethane (TCNQ) as matrix is
suitable for GNRs.

With prolonged reaction time in the order of
hours to days, the molecular weight of the resulting
polymer will increase. However, the solubility of the
formed polymer will decrease. Before the polymer
precipitates out of the solution, the residual terminal
functional groups (halogen or boronic acid) must be
‘end-capped’, to avoid undesired atoms at the termi-
nal positions of the GNR. The ‘end-capping’ must
be performed before precipitation of the polymer to
ensure conversion of unreacted functional groups.
This is achieved by adding a suitable end-capper, e.g.
bromo-benzene followed by adding an excess of phe-
nylboronic acid in the respective solvent. The reaction
is continued for several hours (at least one) to ensure
the full conversion of the terminal functional groups.
Afterwards, the reaction is quenched by the addition
of water. After extraction and precipitation into typi-
cally methanol, the crude polymer can be character-
ized by mass spectrometry (MS) and analytical site
exclusion chromatography (SEC) using polystrene or
Poly(p-phenylene) as internal standard, although the
molecular weight values derived from SEC analyses
are only rough estimations and the absolute molecu-
lar weights may be obtained by laser light scattering
experiments [32].
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Nevertheless, the SEC data are useful for qualita-
tive comparison of the molecular weights of different
polymer samples and a crucial indicator for the result-
ing GNR’s length. At this stage, it is recommended to
narrow the broad molecular weight distribution by gel
permeation chromatography or centrifugation into
fractions of a lower polydispersity index (<1.5). UV—
vis absorption spectroscopy can also provide a qualita-
tive analysis of the polymer length since the wavelength
of maximum absorption will red-shift with extension
of conjugation length.

In contrast to the Suzuki and Yamamoto reaction,
the Diels Alder reaction does not require a metal cata-
lyst and can be performed only by the thermal treat-
ment of both monomers [32].This is typically con-
ducted in in either in diphenylether as solvent (reflux,
20-28) or in the pure melt of monomerat T ~ 260 °C—
270 °C during 5h. However, the constant solubility of
the propagating chain must be ensured similar to the
Suzuki polymerization.

L.1.3. Preparation of precursor polymers by AA-type
polymerization

AA-type Yamamoto polymerization (see figure 1.1)
is unrestricted by the stoichiometry problem and is
thus easier to handle than A2B2-type polymerization
methods [33, 34]. Furthermore, it is a highly efficient
even in sterically demanding systems [35, 36]
which can improve the molecular weights (My =
52000g mol ™!, M,, = 44000g mol ") of the resulting
polyphenylene precursors over the ones obtained by
the Suzuki reaction.

The catalytic Ni(0) is not as stable as the Pd(0)
derivative. Therefore, for the preparation of the
reaction mixture (Ni(COD),, COD, bipy in THF),
precaution in avoiding both oxygen and light must
be taken. As a general rule the active catalyst system is
deep purple. We observe that it will quickly turn dark
in contact with traces of oxygen.

L.1.4. Preparation of precursor polymers by AB-type
polymerization

Another effective way to overcome the issues of
A2B2-type polymerisations and the labile Ni(0)
catalysts is to take advantage of AB-type reactions. AB-
polymerizations for the solution synthesis of GNRs are
established for Diels-Alder and Suzuki protocols (see
figure 1.1). Theyovercome the issue of stoichiometry
and result in precursor polymers with high molecular
weight.

L.1.5. Cyclodehydrogenation of precursor polymer into
GNRs

The cyclodehydrogenation of precursor polymers
usually follows a similar protocol. The Scholl-reaction,
an oxidative cyclodehydrogenation using Iron(III)
chloride as both oxidant and Lewis acid is the most
used. The handling of the reaction is similar for a broad
variety of GNRs (see figure I.1).

CBackesetal

In a typical procedure, the precursor polymer is
dissolved in unstabilized dichloromethane (DCM),
which is saturated with Ar by bubbling for 15 min. It is
recommended to apply a continuous DCM saturated
Ar stream through the reaction chamber. As a starting
point for novel systems, usually six FeCl; per hydrogen
to be removed are recommended as oxidant. The FeCls
oxidant is added as suspension (~100mg per ml) in
nitromethane.

Samples can be taken in sequential time frames of
15min to days and analyzed after quenching of metha-
nol. Due to the decreased solubility of the planarized
GNR compared to precursor polymers, it is recom-
mended to use MALDI-TOF MS, as well as absorption
and Fourier transform infrared spectroscopy (FTIR)
for both qualitative and quantitative verification of
the degree of cyclodehydrogenation. One of the most
dominant side reactions is the formation of chlorin-
ated species. The amount of chlorination can be con-
trolled by the amount of FeCl; equivalents (6-12), as
well as the reaction time, from minutes to days. We
conduct the reaction generally at RT.

L.1.6. On-surface synthesis of GRNs

On-surface bottom-up use of specifically designed
molecular precursor monomers that carry the full
structural information of the final GNR together with
leaving groups that can be activated on the surface, so
that the target structure is built by establishing covalent
bonds between activated sites of adjacent precursor
monomers. By this approach, selective growth of
a single type of GNR is possible [21], and depends
solely on the choice of the precursor monomer and an
activation protocol that triggers the surface-assisted
reaction steps under optimized conditions. Advances
in GNR fabrication and characterization are described
in Ref. [37].

L.1.7. Synthesis

The bottom-up synthesis of GNRs on surfaces
critically depends on the atomic perfection of the
used precursor monomers as well as control over the
surface-assisted synthesis steps [21]. In the case of 1d
target structures (such as for the case of GNRs) this
is even more pronounced, since any defect changes
the electronic properties or may act as a growth
stopper. It is therefore crucial to start with ultrapure
precursor monomer samples so that undesired
coupling configurations arising from contaminations
are minimized. We find that purity judged from
nuclear magnetic resonance (NMR) spectroscopy is
not sufficient in order to guarantee the lowest defect
density and maximum GNR length, so that precursor
monomer samples need to be further purified with up
to eight recrystallization steps. Similarly important is
the preparation of ‘clean’ growth substrates: Au(111)
single crystals were used or Au thin films on mica
[1725]. The subsequent surface-assisted synthesis
steps are schematically depicted in figure I.2.
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cyclodehydrogenation at T.

FigureI.2. GNR bottom-up synthesis concept. GNR synthesis is achieved by deposition of halogen-substituted precursor
monomers at a substrate temperature Tp, followed by their activation (halogen cleavage) at T}, polymerization at T5,and

All steps are accomplished at a pressure below
2 - 10~Y mbar while heating the sample to a specific T.
In the first step, precursor monomers are deposited on
a clean substrate held at Tj. Quartz crucibles that are
resistively heated up to the Tneeded are used for main-
taining a precursor monomer flux of 0.1 nm per min-
ute at the sample position, as determined with a quartz
microbalance. The sample temperature is then raised
to T for the halogen cleavage (activation) and to T} for
the polymerization of the activated precursors. Finally,
GNRs are formed by triggering cyclodehydrogenation
of the polymers by heating the growth substrate to Ts
[37]. While each of these steps is crucial for GNR syn-
thesis, not all of the intermediate products are easily
accessible for structural characterization. E.g. mono-
mer activation at T; ideally leads to doubly activated
precursor monomers (biradicals) that coexist with the
cleaved halogens at the surface. Practically, however,
this phase is often not accessible because the activated
species frequently undergo polymerization directly at
these T'[21].

This implies that the activation barrier related to
diffusion and covalent bond formation between the
biradical species is smaller or equal to the energy bar-
rier for halogen bond cleavage [38]. Deposition, activa-
tion, and polymerization steps can be combined into a
single step by depositing precursor monomers directly
at the polymerization temperature T, = 450K. The
time for this combined step is the deposition time
(1-10 min, depending on target GNR coverage) plus
15min holding time [37]. This step is followed by
the cyclodehydrogenation step, which is triggered by
increasing the temperature to 75 = 630K and holding
it for 15min. It is crucial not to exceed this T in order
to avoid further activation of the formed GNRs. For
higher T5 ~ 660K covalent crosslinking of GNRs was

found [39], as well as the formation of GNRs of mul-
tiple widths related to partial edge dehydrogenation of
GNRs, which triggers GNR fusion (cross-dehydrogen-
ative coupling) to form seamless higher-order GNRs
[39]. After cyclodehydrogenation, the sample is cooled
to RT and either transferred to a connected scanning
tunneling microscope for in situ characterization (see
section IX.1) or directly taken out of the UHV cham-
ber for characterization and/or further processing
under ambient conditions.

The above mentioned parameters are valid for the
growth of GNRs on Au(111), for which the highest
quality is achieved for all reported GNR types [1726].
GNR synthesis under less stringent conditions was
also reported [40]. Using a CVD setup, the synthesis of
Chevron GNRs [41] and 9-AGNRs [42] were achieved.

An overview on published GNR structures is given
in figure 1.3. The most frequently used halogen atom
is Br. The two main reasons for using Br is its better
synthetic accessibility for most of the precursor mono-
mers (as compared to I) and lower reactivity with the
growth substrates (as compared to Cl [43]).

Depending on the choice of the precursor mono-
mer, the selective synthesis of AGNRs with differ-
ent width and bandgap was achieved [21, 44, 48, 49].
On-surface synthesis of ZGNRs was demonstrated
for 6-ZGNRs using a methyl-based monomer design
[57]. Chiral GNRs with a controlled sequence of arm-
chair and zigzag segments along the GNR edge were
made based on halogen-substitution of bianthryl [58].
GNRs with a controlled width-modulation along the
axis, the so-called Chevron GNRs, were synthesized
based on dibromo-substituted 1,2,3,4-tetraphenyltri-
phenylene [21]. This monomer design in particular, is
well accessible for substitutional doping [54, 55, 1727].
Since chemical doping is achieved at the level of mon-
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(4,1)-ChGNR.

Figurel.3. Overview of bottom-up synthesized GNRs. X marks the leaving group, which is typically a halogen atom (X = Br,],
Cl). References are: 5-AGNR [44—47],7-AGNR: [21],9-AGNR: [48], 13-AGNR: [49],S-13-AGNR: [50], B,-7-AGNR: [51,52],
Chevron: [21],N,-Chevron: [53, 54], Ny-Chevron: [55], NH-Chevron: [56],6-ZGNR: [57],6-ZGNR + : [57],(3,1)-ChGNR: [58],

omer synthesis, a fully controlled level of doping and
periodic arrangement of the doping sites is reached in
the final GNR. Chevron GNRs were fabricated with a
number of nitrogen-substitution patterns [54-56]. For
7-AGNRs, substitutional boron-doping was achieved
allowing to controllably modify the electronic proper-
ties [51, 52]. The combination of different precursors
during the polymerization step gives access to different
GNR heterostructures with additional opportunities,
making specific electronic properties at the interfaces
of dissimilar GNR segments available [48, 59-62].
Width-modulated GNRs were prepared, allowing to
achieve distinct topological quantum phases [63,64].

L.1.8. GNR characterization

The main method applied for developing new bottom-
up synthesized GNR structures is in situ scanning
tunneling microscopy (STM, see section IX.1). It
allows accessing the growth at the surface-related
synthesis steps by interrupting the growth protocol

(figure 1.2) after a specific step and, subsequently,
transferring the substrate to a connected STM
chamber. Beside coverage determination, STM was
used for the determination of polymer length after the
polymerization step as well as for the determination
of possible undesired coupling motifs that can occur
by either not entirely purified precursor monomer
batches or a not fully selective monomer design, which
potentially allows for covalent coupling configurations
that are not compatible with the envisaged final
GNR structure. With the exception of 5-AGNRs,
polymerization of the activated precursor monomers
yields structures where not all molecular subunits are
planar with respect to the substrate surface [21, 48].
The related apparent height imaged by STM is for all
monomers above 0.25nm, higher than the apparent
height of the final GNR structure (~0.19nm).
Using this sensitivity, STM allows for a direct access
to the onset T of the cyclodehydrogenation step
by identifying polymer segments, where lowered
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for AGNRs [65].

Figurel.4. Characterization of 7-AGNRs on their growth substrate and after substrate transfer. (a) Large-scale STM topography
image (bias: —0.5V; current: 5 pA; T: 4.5K; scale bar: 30 nm) showing high coverage 7-AGNRs on Au(1 1 1). Inset: small-scale STM
image (bias: 0.1 V; current: 30 pA; scale bar: 3nm). The apparent height of individual 7-AGNRs is 0.19 nm. (b) Constant-height
nc-AFM frequency shift image (bias: 2 mV; oscillation amplitude: 0.3 A; T: 4.5 K; scale bar: 1 nm) taken with a CO-functionalized
tip. (¢) Raman spectra of 7-AGNR on Au(1 1 1) recorded under ambient conditions after synthesis (green curve) with indicated peak
positions of the main modes, and after transfer to Si/SiO, (black curve; laser 532 nm, power of 2 mW, three scans of 20s). (d) RBLM
peak position for 5-AGNRs, 7-AGNRs and 9-AGNRs (red markers), together with predicted width-dependent RBLM wavenumbers

apparent height indicates the related planarization of
the polymer to the final GNR. For the investigation
of individual GNRs, T below ~25K are needed to
suppress their mobility on the surface (figure .4).

An even higher resolution is achieved by using
non-contact atomic force microscopy (nc-AFM)
where the tip apex can be decorated with specific
molecules or atoms to yield unprecedented insight
into the chemical structure of the synthesized carbon
nanostructures [66]. Tungsten tips attached to a tun-
ing fork sensor [67] have been used in a low-T STM
(ScientaOmicron) functionalized with CO molecules
by dosing CO onto the surface and a controlled pick-
up procedure [68]. By recording the frequency shift
image at constant height (figure 1.4(b)), the