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Rittersdorf Assignment 5

All mass values taken from Krane unless otherwise noted.

P5.1, 20% Krane, Problem 9.3, p. 332.

Find Q for β−, β+, and ε for 196Au.

196Au → 196Hg + β− + ν

For β−-decay:

Qβ− = [m(AX)− Zme]− [m(AX ′)− (Z + 1)me]−me +
Z∑

i=1

Bi −
Z+1∑
i=1

Bi

We see the masses of the electrons cancels out. We neglect the difference in electron binding
energies because this value is very small, thus

Qβ− = [m(AX)−m(AX ′)]c2

For β+-decay:

Qβ+ = [m(AX)−m(AX ′)− 2me]c
2

And for electron capture:

Qε = [m(AX)−m(AX ′)]c2 −Bn

Where Bn is the binding energy of the n-shell captured electron. We use the following
approximation for all Bn calculations:

Bn = 13.6eV · Z2

Some important values:

m(196Au) = 195.966544 u

= 182543.228 MeV / c2

m(196Hg) = 195.965807 u

= 182542.541 MeV / c2
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From this we calculate Qβ− , Qβ+ , Qε for 196Au.

Qβ− = [182543.228− 182542.541] MeV

Qβ− = 686.517 keV

Qβ+ = [195.966544− 195.965807− 2(5.485803× 10−4)] MeV

Qβ+ = 485.163 keV

Qε = [195.966544− 195.964926] u ∗ 931.502 MeV/u− 13.6× 10−6 · 792 MeV

Qε = 1422.292 keV
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P5.2, 20% Krane, Problem 9.9, p. 333.

Recall the inverse β-decay equations:

ν + p = n + e+

ν + n = p + e−

Using those relations, and the β-decay equations, we can supply the missing components to
the equations in the text.

(a) ν + 3He → 3H + e+

(b) 6He → 6Li + e− + ν
(c) e− + 8B → 8Be + ν
(d) ν + 12C → 12N + e−

(e) 40K → ν + e+ + 40Ar
(f) 40K → ν + e− + 40Ca
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P5.3, 20% Krane, Problem 9.10, p. 333.

Some important values:

mp = 938.280 MeV / c2

me = 0.511003 MeV / c2

(a) What is the kinetic energy give to the proton in the decay of the neutron when the
electron has negligibly small kinetic energy?

We know that the neutron decay is

n → p + e− + ν

We also realize that

Q = Tp + Tν

Where

Q = (mn −mp −me −mν)c
2

In the text, Krane calculates this value for us as Q = 0.782.

We realize that the proton will not be moving at any significant fraction of the speed of light,
and thus we can treat it nonrelativistically. Thus,

Tp =
1

2
mpv

2
p

Tν = mνc
2(γ − 1)

Since the momentum of the electron is negligible, the momentum of the proton must be
opposite and equal to that of the neutrino. Thus,

pp = pν

mpvp =
Eν

c

Using these equations, we can solve for the kinetic energy of the proton.
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We say

Q = Tp + Tν

=
1

2
mpv

2
p + Eν

Where Eν is the kinetic energy of the ν. Substituting in momentum

Q =
1

2
mpv

2
p + pνc

Substitute in the momentum of pp for pν because we know their momenta to be equal. Also,

Q =
1

2
mpv

2
p + ppc

This can be rewritten as a quadratic

0 =
1

2
mpv

2
p + mpvpc−Q

Using a computer, we can substitute the following converted values into this equation and
solve for vp.

mp = 1.672649059× 10−27 kg

c = 2.99792458× 108 m/s

Q = 1.252911798× 10−13 J

I used maple and solved for a velocity of vp = 2.497549469 × 105 m/s. Plugging this into
Tp = 1

2
mpv

2
p, we get 5.216786135 × 10−17 J. Converting this back to eV gives

Tp = 325.604 eV
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P5.3, 20% Krane, Problem 9.10, p. 333.

Some important values:

mp = 938.280 MeV / c2

me = 0.511003 MeV / c2

(b) What is the kinetic energy give to the proton in the decay of the neutron when the
neutrino has negligibly small kinetic energy?

We know that the neutron decay is

n → p + e− + ν

We also realize that

Q = Tp + Te−

Where

Q = (mn −mp −me −mν)c
2

In the text, Krane calculates this value for us as Q = 0.782.

We realize that the proton will not be moving at any significant fraction of the speed of light,
and thus we can treat it nonrelativistically. Thus,

Tp =
1

2
mpv

2
p

Te− = mec
2(γ − 1)

Since the momentum of the neutrino is negligible, the momentum of the proton must be
opposite and equal to that of the electron. Thus,

pp = pe−

mpvp = mecβγ

Using these equations, we can solve for the kinetic energy of the proton.
We say
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Q = Tp + Te−

=
1

2
mpv

2
p + mec

2(γ − 1)

Substituting in momentum

Q =
1

2

p2
p

mp

+ mec
2(γ − 1)

Substitute in the momentum of pe− for pp because we know their momenta to be equal.
Thus,

Q =
1

2

p2
e−

mp

+ mec
2(γ − 1)

This can be rewritten as a quadratic

0 =
1

2

p2
e−

mp

+ mec
2(γ − 1)−Q

We know that

γ =
1√

1− β2

β =
v2

c2

Using a computer, we can substitute values for γ and solve the following equation for β.

0 =
1

2

(mecβ)2

1−β2

mp

+ mec
2(

1√
1− β2

− 1)−Q

Where

mp = 1.672649059× 10−27 kg

me = 9.109537944× 10−31 kg

c = 2.99792458× 108 m/s

Q = 1.252911798× 10−13 J

Solving for β gives β = 0.9185c, meaning that our electron is travelling at 0.9185 times
the speed of light. Plugging this β into the momentum equation allows us to calculate a
value of vp = 3.792379474 × 105 m/s. Plugging that into Tp yields 1.202813820 × 10−16 J.
Converting this into eV gives
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Tp = 750.732 eV
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P5.4, 20% Krane, Problem 9.11, p. 333.

The decay that we are looking at is

7Be + e− → 7Li + ν

We know that

Q = TLi + Tν

The Q-value of this reaction is equal to the kinetic energy of the 7Li and the KE (or just
energy because we assume that the neutrino mass is negligible).

Also,

Qε = [m(AX)−m(AX ′)]c2 −Bn

We assume that

Bn = [13.6 · Z2] eV

For Be:

Bn = 13.6 · 42

= 217 eV

Other important values:

m(7Be) = 7.016928 u

= 6536.282466 MeV / c2

m(7Li) = 7.016003 u

= 6535.420827 MeV / c2

Thus,

Qε = 0.861422 MeV

We treat the proton as a classical particle because it will not be moving at any significant
fraction of the speed of light. We ignore initial momentum of the electron in our conservation
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equations. We do this because we view the capture in the zero-momentum frame of the Be
nucleus. The moment that the electron is captured, the nucleus is travelling the same speed
as the electron in that frame. Thus, the net momentum there is zero. So we say

pLi = pν

mLivLi =
Eν

c

and

Q = Tp + Tν

=
1

2
mLiv

2
Li + Eν

Substituting in momentum

Q =
1

2

p2
Li

mp

+ pνc

Substituting pLi for pν gives

Q =
1

2

p2
ν

mp

+ pνc

We can substitute in the value for momentum and then write this in the quadratic form

0 =
1

2
mLiv

2 + mLivc + Q

and then solve. I used maple using the following values.

mLi = 1.165207206× 10−26 kg

c = 2.99792458× 108 m/s

Q = 1.380160853× 10−13 J

Thus,

v = 39507.28860 m/s

Therefore the kinetic energy of the Li nucleus is
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TLi =
1

2
mLiv

2

= 9.093427655× 10−18 J

= 56.7563 eV

And then

Eν = mLivc

= 1.380069919× 10−13

= 0.861365 MeV

Thus,

TLi = 56.7563 eV

Eν = 0.861365 MeV
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1 P5.5, 20% Krane, Problem 9.14, p. 333.

Classify the following decays according to degree of forbiddenness:

(a)89Sr(5
2

+
) → 89Y(1

2

−
)

∆I =
5

2
− 1

2
= 2

∆π = yes

This transition is a first-forbidden transition .

(b)36Cl(2+) → 36Ar(0+)

∆I = 2− 0

= 2

∆π = no

This transition is a second-forbidden transition .

(c)26Al(5+) → 26Mg*(2+)

∆I = 5− 2

= 3

∆π = no

This transition is a second-forbidden transition .

(d)26Si(0+) → 26Al*(0+) → 26Mg(0+)

∆I = 0− 0
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= 2

∆π = no

These transitions are both allowed transitions .

(c)97Zr(1
2

+
) → 97Nb*(1

2

−
)

∆I =
1

2
− 1

2
= 0

∆π = yes

This transition is a first-forbidden transition .
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2 P5.6, 20% Krane, Problem 9.20, p. 334.

From the data given in the problem, here is the decay scheme that I constructed.

As you can see from the figure, the mass difference between the two ground states is

1.456 MeV

Or, if you prefer the mass in amu,

1.563066961 × 10−3 u
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