
John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
1 

 
 
 
 
 

A METHOD OF DETERMINING  
 

THE QUADRATURES OF FIGURES  
 

WITH RIGHT AND CURVED LINES 
 
 
 
 
 
 
 
 

Author John Craig. 

 
 
 
 
 
 
 

LONDON: 
 
Sold by Moses Pitt, at the sign of the Angel in the cemetery of St. Paul’s, MDCLXXXV. 
 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
2 

 
 

 

THIS TREATISE IS DEDICATED AND  
 

CONSECRATED  
 
 

Therefore, 
 
 
 

TO THE HONORABLE 
 
 
 

MASTER 
 

ROBERT DAWES, 
 

ENGLISH BARONET,  
 

 

for his Benevolence and Observance. 
 

 JOHN CRAIG. 
 
 
 
 
 
 
 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
3 

 

Method of Figures, &c. 
 

Recently the best geometers have observed there are certain figures capable of 
indefinite quadrature: which are quadrable, both with respect to the whole as well as to 
individual parts of figures [i.e. integrable or squarable for any part thereof] ; Truly there 
are others which do not permit an indefinite quadrature of this kind, yet some have a 
quadrable part, and indeed sometimes others with the whole figure able to be squared, 
when any part of it cannot be squared. Yet it is possible that an error [in judgment] may 
have arisen from another source, for those who had considered the quadrature of the 
circle, hyperbola, and certain other figures to be impossible to be evaluated [by 
geometrical means]: because they had not considered this class of figures. [For at this 
time curves were either algebraic, represented by finite equations in two variables up to 
some power, such as 2, 3, 4, etc., following Descartes, while other curves, such as the 
cycloid, were geometric or mechanical in nature and could not be squared, at least 
according to Descartes.] For by using the methods which supposed figures to be 
indefinitely quadrable, since they might have been assumed largely to be quadrable, but 
with which methods [employed at the time] of squaring rejected, at once they were 
believed to be impossible of undergoing that squaring; thence accordingly the squaring 
could not be completed, as the methods used were imperfect, and did not extend to all 
figures.  

But when my method is put in place, errors of these other kinds shall not discovered, 
apart from a few that I have considered to have explained; Here I will treat a method (not 
deduced from arithmetical but from geometrical principles) which will determine the 
quadratures of all kinds of figures. Geometrical quadratures of the first kind will be 
shown, truly algebraic quadratures of the latter kind will be shown by infinite series. And 
because which special methods may determine the quadrature of such figures, not 
hitherto published by anyone, we may hope that the outstanding German [i.e. E. W. 
Tschirnhaus] (who has promised publicly, and generally it may be asserted to be in his 
power, in a publication of the Acta Eruditorum Lipsae ) will shortly be publishing his 
ideas. 

 
Theorem 1. 

 
VH shall be a certain curve, (the axis of which is 

VD, the applied line HD perpendicular to VD) 
likewise VZS shall be such a line, that if from a point 
of the curve VH freely assumed, for example E, the 
right line EP may be drawn to the curve, & EAZ 
perpendicular to the axes, the right line AZ shall be 
equal to the intercept AP, the area 

2DHq DH
2 2VDS      

. 

[Note: If we let the vertical axis be the x-axis, while 
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the right-hand curve VZS is f(x) while the left-hand curve GEFGH is g(x), for 
appropriately defined functions, then treating the horizontal lines as separated by the 
differentials dx, then e.g. from triangle EAP we have 

21
2 and  VDSdg fAP

dx g g gdg fdx g fdx area        .] 

Demonstration : 
 

HDO shall be a semi-right angle, and VD shall be cut equally at the indefinite points 
A, B, C through which may be drawn EAZ, FBZ, GCZ parallel to HDl, and crossing the 
curve at E, F, G from which EIY, FKY, GLY, shall be drawn parallel to VD, and indeed 
the right lines EP, FP, GP, HP shall be perpendicular to the curve VH . The triangle HLG 
is similar to the triangle PDH (for on account of the indefinite section the curvelet is able 
to take GH as a right line) whereby there is, following Barrow's notation :   

HL PD
LG DHHL LG ::  PD DH Note the manner of writing HL : LG ::  PD : DH or      , 

and thus , that is, HL DH LG PD   HL HO DC DS  

KY BA BZ

, and by a similar discussion it 
will be shown, because triangle GMF shall be similar to triangle PCG, there becomes 

 and similarly LK LY CB CZ   KI  

HO LK LY KI

, and likewise [finally] there will 
be ; from which it is agreed the triangle HDO (because it differs 
minimally from these rectangles 

ID IY AV AZ  
HL KY ID IY       ) is equal to the 

area VDS (because likewise it differs minimally from the rectangles :  

DC DS CB CZ BA BZ AV AZ       ), that is: DHq
2

VDS  . Q. E. D. 

[Thus, the sum of all the infinitesimal strips making up the area of the triangle HOD is 
equal to the area bounded by the curve VZS and the lines VD and DS.] 
 

 This noble theorem is due to the most celebrated Dr. Barrow, who has innumerable 
sublime theorems about the properties of curved lines : nor by me to have seen any 
( of which the writing have been published) who touched on the subject with so much 
judgment ( nor indeed I think to have been touched on by others), and with such a great 
success, to have treated and promoted this more abstruse and less cultivated part of 
geometry. 
[J. M. Child has some illuminating comments to make on this theorem by Barrow, though 
he seems to be unaware of Craig's work, as indeed Leibniz appears to be of Barrow at 
this stage ; see notes on p.24-25 of The Early Manuscripts of Leibniz.] 
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PROBLEM I. 
 

From a given relation between PM (which designates the distance between the 
perpendicular of the curve PC and the applied ordinate MC [i.e. the sub-normal]) and the 
abscissa AM (which designates the distance between the applied line and the vertex A) to 
find the nature of  the equation defining curved line AC. 
 

So that I may deal with all curves under one general rule, I designate on any curved 

line AC to be always , on account of the right angle PCT. Whereby I 
multiply the individual terms specifying PM by the term AM ( the former multiplied by 

2PM MT CM 

diverse unknown numbers) and I put the product equal to the square of the applied line 
CM.  
[Note: The sub-normal CM is the geometric mean of PM and MT. This particular way of 
finding the tangent at a point on a curve was investigated by Van Heuraet and Hudde. See 
e.g., A History of Mathematics, V.J. Katz, Ch. 12]  
An account of this rule can be gathered from the method of finding tangents published by 
the most illustrious de Sluse in the Transactions of the Royal Society of England (1672.)  

I illustrate the rule by examples. 
Ex.1: Fig. 2. Given [the sub-normal] 1

2
PM r , and calling AM y, CM x; a, b, c, i, &c. 

denote known and determined quantities, likewise l, m, n, 
h, k &c. denote unknown numbers. 
Now I multiply 1

2
 r  by ny by the nearby rule, & the 

product 2
2

nry x ,which is the equation for a parabola.  

[Note that here the dependent and independent variables 
are x and y respectively; here n is a constant yet to be 
determined.] 
 

Ex. 2: Fig.2. There shall be 1
2

PM y  r , and the equation determining that curve 

shall be sought : proceeding I multiply 1
2

r y  by ny, my following the rule, and I put the 

product 2
2

nry my  equal to the square from x, truly  2
2

nry my x2  , which is the equation 

for the curve sought. 

Ex. 3. Let there be 
2

PM y
a a   and the curve AC is 

sought, in which there shall be  
2

PM y
a

a  . I multiply 
2y

a
a  by ny, my, and the product will be 

3 2.ny
a

may x   

 

Ex.4. There shall be 
4 3 2

PM ,y y y
aaa aa a

y     and the 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
6 

equation shall be sought defining the nature of this curve, following the rule I multiply  
4 3 2y y y

aaa aa a
y    by ny, my, ly, hy, and there will be 

5 4 3

3 2
2ny my ly

aa a
hy x    2 , which is the equation sought.  

 

Finally there shall be the case 
3

2PM a
y

 , I multiply 
3

2
a
y

 per ny, and the product will be  

3 2na
y

x , or  3 2.na yx

but because n, m, l, h; &c. hitherto shall be unknown, I show a way of determining those. 
 

PROBLEM II. 
 

To determine the quantities l, m, n, &c. used in the preceding problem. 
 

I find [the sub-normal] PM through the equation found (by proceeding along some 
common method of finding tangents) and compare its value with the value given, clearly 
a single one of those which a comparison will determine from the individual terms l, m, 
n, &c.  

As in the first example 2

2

nry
x CM 2    , I find 3

4
PM nr ,  hence I compare the 

value with the value given, thus 1 1
2 4

r n r from which after reduction, , whereby 

with this value substituted for (n) in the equation 

2n 

2

2

nxy
x  it becomes .  2ry x

[For the gradient is 4 4 2.nr nrPM PM r
x CM x PM n      2 ] 

Thus in the second example, 2nry
a my x2   I find 

4
PM to be nx my  , now I compare 

these terms each with the corresponding values of the terms given, thus 

4 2
 from which 2,  secondly , from which 1nr r n my y   m   ; if these values may be 

substituted the equation sought will be fully 

determined ry  2 2.y x 

Similarly in example 3 : 
3

2ny
may x

a
   I have 

found 
33

PM
2 2

ny ma

a
  , therefore with a comparison 

made thus:  

 

2 2
2
3

3
 there will be ,

2

& from ,  there will be 2
2

ny y
n

a
ma

a m

 

 
, 
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and with these values substituted there will be 
3

22
2 .

3

y
ay x   

And in ex. 4 there will be  
4 3 2

3 2

5 2 2
PM .

22

ny my ly
by

a a
     

 
and from a comparison made of these terms with the given terms, there will be :  
 

4 4 3 3
2 1
5 23 3 2

2 2
2
3

5 2
,  thence ,  from  there will be ,  

22

3
and from  there will be  ,

2

ny y my y
n m

aa a a

ly y
l

a a

  

 





 

and from   there will be  l.hy y h  And by substituting these values, the equation will 
be  

5 4 3
3

3 2

2 2
.

35 2

ny y y
y x

a a
     

 

Finally in Ex.5. there will be 
3 3

2 2
PM  from which 2

2

ny a
n

y y
  

2

, [Fig. 3] 

and thus , which has the form of a hyperbola DCE. 32a yx
I have pursued these two problems in more detail (or rather the two parts of the one 
problem), because hitherto they shall not have been treated there by anyone, at any rate 
the pages of which have come to hand; then especially, because with the aid of these I 
may be able to begin determining the quadratures of figures. 

 
 

PROBLEM III. 
 

To determine the quadrature of the parabola. 
 
 Let VCS be the parabola whose latus rectum [Fig. 4] 
shall be r. VM may be called y, MC z. 

from which the nature of the parabola MCry z  , then 

by the first problem the curve VH may be found, such that 

PM ry   (by PG here and in the following it is required to 

understand the perpendicular of the curve sought) but by the 
method now treated I have found the curve sought to be 

defined by this equation  (by x I designate the applied lines GM, HD of the 

curve sought) and on determining n by Prob. 2, you find 

3nry x 4

16
9

n   from which 3 416
9

ry x , 
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and therefore 
2 234

9 2 2
x GMry VMC   , so that it may agree with the theorem now 

presented. 
 

PROBLEM IV. 
 

To determine the quadrature of the Cubic Parabola. 
 

VCS shall be a cubic parabola [Fig. 4], VD the axis and the latus rectum r, and 
, VM y

from which the nature of the curve itself will be 3rry z  and thus 3 rry z , therefore 

for the determination of the area of the curve VMC it is required to find the curve (by 

Prob. 1.) VH such that always there shall be [the sub-normal] 3PM rry , & proceeding 

following the rule proposed there I find the curve VH to be defined by this equation 

 and by determining n (by Prob. 2.) finding 2 4 6nr y x 27
8

n  , and therefore the equation 

sought to be 2 4 627
8

r y x  from which  
2 22 43 GM

2
VMC.r y 

6

3
4 2

x   And in this way the 

quadratures of an infinitude of parabolas which are defined by 

 &c. 3 4r y z r4 5 5;  ,  ,y z r y z  
 
 

PROBLEM V. 
 

To find the Quadrature of the Semi-cubic Parabola. 
 

 VCS shall be a semi cubic parabola, of which this is a property from which 2 3,ry z
2 13 ,ry z  therefore it is required to find the curve  VH in 

which 23PM MCry  ; and by the first problem I find 

that to be defined by this equation 3nry x6 ; and so that n 
may be determined I proceed in this manner by  Prob. 2. I 

find PM from the equation found 5ny r x6  and I find 
4

2 2 103

5
PM

216 

nry

n r y
  and with a comparison made with the 

given value it will become 
4

3

2 2 10

nry

n r y
 2

3

5

216
ry

 
, from which there comes about 

216
125n   after due reduction, and thus the curve VH may be defined by 

5216 6
125

ry x , from 

which there will be 
2 2GM

2
VM533

5 2
C.xry    And in the same manner the quadratures 
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of an infinitude of parabolic forms can be found, which are defined by 

&c. 3 4 4 5 5 6;  ,  ,ry z ry z ry z  
 
 

PROBLEM VI. 
 

For the Hyperbola OCN the quadrature shall be the 
indeterminate Area OCMVL. 

 

Let the power of the hyperbola 2a , so that 
2a
y

z , 

therefore a curve VH is required to be found such that 

always there shall be 
2

PM a
y

  but we see that at once 

no treatment of this kind can be used [Fig. 5]: for just as the rule requires 
2a
y

 to be 

multiplied by ny, and the product cannot be put equal to 2na 2x , the determined square 
cannot be put equal to the indeterminate square, and hence it is required to be concluded 
the unbounded area is not squarable : for if its quadrature may be given, also a certain 
curve VH shall be given in which always there shall be PM CM . 

 
PROBLEM VII. 

 

Hyperbolas of the form OCN of which this shall be the property 2 3yz a . 
To determine the indeterminate area  OCMVL. 

 
Because, from the nature of the curve 

3

MC
a

z
y
    

[Fig.5] the curve VH is required to be found in 

which there shall be always, 
3

PM
a

y
  , and by 

Prob. 1, I find the curve VH to be defined by 
3n a y x 2

2

and on determining n by Prob. 2. You 

will find , and thus from which the unbounded area  4n  34a y x
3OCMVL 2 .a y  
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[For,
3 3

3; 2
a a

z zdy dy a y a y
y y

       32   ; while the integrated function  is 

the curve 

; while the integrated function  is 

the curve 3 2 3 or na y x x na y  for which the gradient is 
1
231

2
dx
dy

na y
 , which must 

be the original function 
32 3  or a
y

yz a z   
1 3
231

2
4.dx a

dy y
na y n

    

4

 There are 

mistakes in the original.] 
  

 
 

PROBLEM VIII. 
 

The nature of the hyperbola shall be defined by this equation 3yz a , and the 
quadrature shall be the unbounded area OCMVL. 

 

From the nature of the curve 3
4a

z
y
 , and the curve VH may be found in which  

3
4

PM
a

y
  to be defined by 

2 24 2 6 4 233
2 2 2

27 ,  from which OCMVL.x GMa y x a y     

And thus the quadrature of an infinity of hyperbolic forms defined by 

can be performed.  4 5 5 6 6 7,  ,  ,&c.yz x yz x yz x  

[
4 4

3 4 2 43 33 3; 3
a a

z zdy dy a y a y
y y

        227 .

3

 ] 

 
PROBLEM IX. 

 

In the Hyperbolic form OCK of which this shall be the property 2y z a , the quadrature 
shall be of the unbounded area OCMVL. 

 
From the kind of this curve it is evident that  

3

2 MCa
y

z    whereby some curve is required to be 

found, so that the perpendicular distance of this and of  

the applied line shall be equal to 
3

2
a
y

, and by the 

commonly used method I find the curve sought to be defined by 2 3yx na  and by 
determining (n) by the second problem there will be 2n   and thus the equation is 

, which likewise is the equation for the hyperbolic forms (but of other kinds) 
SGH ; and because of that the perpendicular GP, falls between the vertex and the applied 

32a yx 2
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line, and thus rises towards 
3 2

2
KCMDa x

y
  . And the area OCMVL to be from a 

number of those which the geometers call more than infinite, now considered by our  
most distinguished David Gregory in his most attractive treatise de Dimensione 
Figurarum. 
 
 
 

PROBLEM X. 
 

ACD shall be a curve such that with MC drawn to the normal AD, any power of AD shall 
be to a similar power of the part AM, so that the power of any part DM shall be to the 
similar power of the applied line MC, and the quadrature of the area AMC shall be 
required to be determined. 
 

 Let AD = b, Fig. 7, and the exponent of the power 2, AM 
may be called y from which the exponent of its power also is 
2, in addition 2 shall be the exponent of the power of the line  
DM or , (1) and thus the exponent of the applied line  
MC or z is 1, then from the nature of the line the curve  

 b y

2

2
2 2 :: b   . . b yb

zy
b y y z i e     

from which 
2 3

2
by y

b
z  , 

Therefore the curve AH is sought in which there shall be 
2 3

2PM by y

b

 , and it is found by Prob. 1. & 2. that to be 

defined by 
3 4 23 4 2 22

3 3 4
1 ,  from which AMC.y y x

b bb
by y b x    

2
 And this is the same 

curve which Descartes is discussing in Book 3 of his Letters, page 219 that he preferred 
to think of the curve, as the French call it, (on account of the ease of construction) la 
Galande. 
 

PROBLEM XI. 
 

The quadrature of the area AMC shall be required to be determined, and the nature of 

the curve may be defined by 5 4 2 3 3 2 4 .y ay a y a y a a z      
 
 

The curve is required to be found VH, Fig. 4, such that 
on that there shall be always :  

5 4 3 2

4 3 2PM MC .y y y y
aa a a

z a        

From Prob. 1. it may be defined by : 
 

6 5 2 4 3 3 3 4 ny may la y ka y ha y a x     2  
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and on determining n, m, l, k, h (by Prob. 2.) there will be   

1 2 1 2
3 5 2 3,  ,  ,  ,  2 ;n m l k h       and thus the equation sought is  

6 5 2 4 3 3 3 41 2 1 2
3 5 2 3
 2 2,y ay a y a y a y a x      and thus :  

 
6 5 4 3 2 2

4 3 2 3 2 26 5 4
 AMC.y y y y x GM

aa a a
ay        

 
And up to the present I have treated only these figures which are indefinite quadrable, 
and with a little labor, the quadratures of these may be determined by this method, I leave 
the rest to be judged by others: Now I move on to these which reject quadrature of this 
kind : and I warn expressly quadratures which are going to be shown by infinite series, 
not to be found from geometry, but from algebra or arithmetic.  
 

PROBLEM XII. 
 

To determine the Quadrature of the Circle. 
 

I shall make a beginning from a circle, which is the 
simplest of all the curved lines, if the simplicity of 
the curve may be judged not from an equation but 
from the simple description (as indeed must be the 
case). 
And thus the quadrant of the circle shall be ASD in 
which AM may be called y, and the ordinate MC z, 
and the radius , then from the nature of the 

circle there will be  , and therefore 

AL r

z2 2 –r y 2 2 2 –z r y  hence I resolve the value 

into a series following the method of the celebrated Isaac Newton, and I find  
2 4

2
y y
rz r   

6

3 58 16
etc.y

r r
 , therefore the curve AGH is found in which  

2 4 6

3 52 8 16
PM .....etc.y y y

r r r
r      

and may be found by the first Problem. 
The curve sought is defined by this equation:  

3 5 7

3 5
2

2 8 16
;my ly ky

r r r
nry x    and by determining the quantities n, m, l, k, according to 

Prob.2  there will be found : 2
72,  3,  ,n m  and on substituting the values in this, 

the equation will be  

l  
3 5 7

3 5
2

3 20 56
2 .  From which,  y y y

r r r
ry x   

3 5 7 2 2

3 5
GM

6 2 240 112
AMCS.y y y x

r r r
ry        
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Or if the quadrature of the whole quadrant may be sought, there will be  
2 1 1 1

6 40 112
ASD ...etc.r rr rr rr      From which  

2 22 1 1
3 8 284 ... whole circle.rr rr r r      And if this series may be expressed by 

numbers, on putting 1
2

r   the 1 1 1
4 32 112area of the circle will be : 1 etc.    ad infinitum 

I observe it is worth noting it is possible hence to elicit the dimension of a zone of the 
circle, which  was found by the most celebrated geometer Isaac 
Newton , which the most illustrious  David Gregory referred 
to in his memorable discussion. Let ABCD be a zone of 
which the latitude VL y , and the radius of the circle r  ; 
by the preceding quadrature :  
 

3 5 7

3 56 40 112
VBCL .....y y y

r r r
ry     and thus  

3 5 7

3 53 20 56
2VBCL ABCD 2 .y y y

r r r
ry      

 
 
 

PROBLEM XIII. 
 

To determine the Quadrature of the Hyperbola. 
 
 

 LSC shall be the Hyperbola the asymptotes of which are VD, VP, and in which 
,and , the abscissa AM y, and the 

applied ordinate z, but from the nature of the 

Hyperbola , that is 

VE EL a 

VE

VA c

EL VM  MC 2a yz cz  ; 

and thus there is 
2a

c y
z   , and with the division done, 

following the received method, there will be  
2 2 22 a ya

c c c
z   2 3 etc.a y    

Therefore the curve AGH is sought,  in which there 

shall be
2 2 22

2 3PM etc.a y a ya
c c c

    , and from the first Problem, that will be found to be 

defined by this equation 
2 2 2 2 3

2 3
2na y ma y la y

c c c
x    and on determining  n, m, l, by Prob. 2. 

there will be 2
32,  1,  n m , and hence the equation sought is  l  

2 2 2 2 3

2 3
2 2 2

3

a y a y a y
c c c

x    from which 
2 2 2 2 3 2

2 3
GM

2 22 3
ASCMa y a y a y x

c c c
    

2
. This is the 

same quadrature of the Hyperbola that the most celebrated Nicolas Mercator  had shown 
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in his Logarithmo-technia, although by the method I have used clearly to be different 
from his. 

By considering another property of the Hyperbola ; we will discover also another 
property of the quadrature. Therefore in the opposite figure SCL shall be an equilateral 
Hyperbola whose centre is A and the transverse axis RS, putting  
AM KC,  MC z,  AR ASy r    

rr yy zz 

, so that the nature of this Hyperbola will be 

, and thus z rr yy  , 

by extracting the square root from 
 there will be rr yy

2 4 6

3 52
z r 

8 16

y y y
r r r
   etc.   

Therefore the curve AH is sought in 
which there shall be  

2 4

2
 etc.y y y

r r r
z r     

6

3 58 16
PM  

and by proceeding according to the first Problem that will be found to be defined by this 

equation 
3 5 7

3 5
2

2 8 16

my ly ky
r r r

nry x    , and on determining  n, m, l, k, by the second 

Problem 2 2
3 52,  ,  ,  ,n m l k    2

7  there will be this equation fully determined for the 

curve sought, with these values substituted : 
3 5 7

3 5
2

3 20 56
2 y y y

r r r
ry x    , and thus there 

will be  
3 5 7 2 2

3 56 2 240 112
2 .y y y x GM

r r r
ry ASCM       

 
It is easy to determine the quadrature of the zones from the quadrature of this Hyperbola.  
EDA and GCB shall be opposite sides of the Hyperbola, of which the centre is K and the 
vertices A and B, with the zone ABCD  the latitude of 
which KL = y, the transverse semi-axis AK, or KB r , 
from which by the preceding quadrature :  

3 5 7

36 40 112
KLCB y y y

r r
ry    5r

 and hence there will be  

3 5 7

3 53 20 56
ABCD 2 etc.y y y

r r r
ry      
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PROB. XIV. 

 
To determine the Quadrature of the Ellipse. 

 
In the semi-ellipse LSCD the semi transverse axis shall be AS b  and the conjugate 

semi axis , and the abscissa may be put AL a AM y , 
the applied ordinate , from which 
the nature of the ellipse is : 

MC z

2 2b
a

z a y  , therefore so that the area  

AMCS may be determined, in the first 

place 2b
a

a y 2  is required to be 

resolved into a series by extracting the 

root from 2 2a y , from which there 

will be found :  
2 4 6

616
etc.by

a
 2 42 8

by by

a a
z b     Therefore some curve AH is required to be found in which 

there shall be always 
2 4 6

2 4 62 8 16
PM b etc.by by by

a a a
      

and that may be defined by Problem 1 to be defined by this equation 
3 5 7

2 4 62 8 16

mby lby kby

a a a
nby x     and by determining the quantities, n, m, l, k. by Problem 2, 

there will be 2 2
3 5 2,  ,  , ,n m l k    2

7 and thus 
3 5 7

2 4 6
2

3 20 56
2 mby lby kby

a a a
by x     from 

which  
3 5 7 2 2

2 4 6
GM

2 26 40 112
AMSC.mby lby by x

a a a
by       

Thence the dimension of an elliptic zone is elicited easily, as if the latitude of the zone 
shall be AM y , with everything put in place as before, the zone will be : 

3 5 7

2 4 63 20 56
2AMCS 2by  etc.mby lby by

a a a
    
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
)

 
 

PROBLEM XV. 
 

AD d shall be given in position and magnitude, and of such a curve SCD that with 

some right line drawn (MC z  to the perpendicular AD there shall be , of 
which the area AMCS shall be required to be determined. 

3 3d z y  3

 
Because the nature of this curve shall be 

33z d y  3

3

; the cube root is to be extracted from  

, and it will be found to become :  3d y
3 6

2 53 9
etc.y y

d d
z d     

 
The curved line is required to be found AGH in which 

3 6

2 53 9
PM etc.y y

d d
d    , and the sought curve AH will be found from this equation 

4 7

2 5
2

3 9

my ly

d d
ndy x   , and on determining n, m, l, by the second problem there will be  

1
22, ,  n m l   2

7 , and thus  
4 7

2 5
2 2

6 63
2 ,y y

d d
dy x   from which  

4 7 2

2 5

2
GM

212 63
AMCS.

2
y y

d d

x
dy       

And thus the quadrature of an infinitude of cyclic shapes which are defined by  

 may be found. 4 4 4 5 5 5,  etc.d y z d y z    
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
)

 
PROBLEM XVI. 

 
Let  be a right line with position and magnitude given, and  SCD shall be a 

curved line such  that for any right line

AD d
(MC z drawn normal to AD,  the cube from AD 

with the cube from  shall be equal to the cube from MC thus: 3 3d y z3   and the 
quadrature of the area AMC shall be required to be determined. [Fig.13.] 

Because 33z d y  3  is resolved by extracting the cube root of 3 33 d y in a series, 

and there may be found 
3 6

2 53 9
etc.y y

d d
z d      The curve AH is required to be found in 

which always there shall be 
3 6

2 53 9
PM etc.y y

d d
d     , and by Problems 1. & 2. the 

equation for the curve sought will be 
4 7

2 5
2 2

6 63
2 y y

d d
dy x       from which 

4 7

2 5

2

12 126
AMCS.

2
y y

d d

x
dy      

And thus the quadratures can be found of an infinitude of hyperbolic forms which are 
defined by  

4 4 4 5 5 5,  ,  etc.d y z d y z     
 

PROBLEM XVII. 
 

Let , and the curve shall be SCD [Fig.13.] such that with some,  AD a AS b  ( )MC z   

drawn perpendicular to AD there shall be , and the area  AMCS shall 
be required to be determined. 

3 3 3 3 3. ::z a y b a .

 

Because from the nature of the curve 3 33b
a

z a y  , with the root being extracted 

from   , there will be found 3a y 3 3 6

3 63 9
etc.by by

a b
z b    The curve AH is sought on 

which 
3 6

3 63 9
PM MC ,etc.by by

a b
b     and by Problems 1 & 2, the curve sought is defined 

by this equation : 
4 7

3 6
2 2

6 63
2 by by

a a
by x   . Therefore  

4 7 2 2

3 6
2 GM

2 212 126
AMCS.by by x

a a
by       

And thus the quadrature may be found for an infinitude of elliptical forms, which are 
defined by the equations :  
  

4 4 5 554 ,  , etc.b b
a aa y z a y z     
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

3

 
PROBLEM XVIII. 

 
AD d


2 2d z y z

is a right line put in place [Fig.13.] and with 

the magnitude given, and SCD a curve such that with 
any MC [ ] drawn normal to AD there shall be 

, and the quadrature shall be the area 
AMCS. 

z

r

 

Because
3

2 2
r

d y
z


  ; with the division made, and 

there may be found : 
3 2 3 43

2 4 6 ;r y r yr
d d d

z    and there becomes :  
3 3 3 3 5

2 4 6
2 2 2 2

3 5

r y r y r y

d d d
x   , 

the equation for the curve AH in which 
3 2 3 43

2 4 6 PM r y r yr
d d d

    , from which 

3 3 3 3 5 2 2

2 4 6
GM

2 23 5
AMCS.r y r y r y x

d d d
      

 
PROBLEM XIX. 

 
To find an Infinitude of Quadratures of any Figure. 

 
ACE shall be a certain curve (whose axis is AB, base BE and which we will call y(x)),  

YXZ and BRF shall be two curves [     and f x g y ] related 

thus,  with AB the common x-axis, such that from any point C 
on the curve ACE the tangent CT may be drawn, and CP may 
be drawn parallel to EB, & CR parallel to AB, so that there 

shall become  TP DR
PC PX

TP , then 

the areas will be  [For 

 on choosing appropriate 

limits of integration.] 

.PC :: DR.PX . . gdx
dy f

i e    
ABZY BEF,  and APXY DBR. 

nce ,gdy fdx   and hegdy fdx

This excellent Theorem also is due to the most celebrated Dr. 
Barrow. [Fig. 201 in Barrow's Lectiones Geometricae.] 

 
There may be sought, for example, the indefinite quadrature of the cubic paraboloid 

BRF. Any curve may be assumed by choice for ACE, for example the common parabola 
whose parameter shall be r (which likewise shall be the case for the parameter of the 
paraboloid) and putting AP ,  PX ,y z   [adopting the author's choice of co-ordinates] 

and there will be TP 2 ,  PCy ry   [ 2PC 2 dPC
dyry PC r   ] and from the nature of 

the paraboloid, 6DR , and thus the proportionality will be  ry
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6262 . :: .  . . 
ryy
zry

y ry ry z i e   
from which 

8

2
6

64
r
y

z   which is the equation for the 

curve YXZ, the quadrature of which may be found by the method discussed above, thus  
8 463

4
APYZ DBR.r y    Which is different from the quadrature of the paraboloid that I 

gave in Prob. 4. And more and more quadratures can be found in the same manner and 
with a different curve ACE. And thus all the other curves can be treated, whatever the 
paraboloid treated here. 

Hence also it is evident the figures can be suppressed and with the quadrature made 
simpler and easier, for in figure ABZY with the curve YXZ defined by this equation 

8

2
6

64
r
y

z  , it is more composite than the curve BRF. And thus anyone may advance 

geometry  considerably,  who may give the method reduced to the simplest figures. 
 

 
PROBLEM XX. 

 
To find the curve the area of which may be assigned 

by some given equation. 
 

The area may be designated by this 

equation 3 VMCr y   (by considering VCS to be the 

curve sought.) Then from what has been shown above,  

it is apparent that
23

2
xr y   is the equation for some 

other curve VGH in which  (which is the ordinate of the curve sought) ; 
therefore the value of the line PM may be sought, and it will be found that 

PM MC

3 2 3r
4

PM  or 4r
y

z z y  , which is the equation for the curve sought VCS, of which 

the area 3r y . Because here as before it is required to note that y denotes the abscissa 

VM, z the ordinate MC, and x the ordinate GM. 

[As before, we have 21
2area ;hence  and dx MP

dy xVMC zdy x zdy    ; in this case 

3 32 31 1
2 2

r r
y yzdy x r y z     4 .] 
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PROBLEM XXI. 
 

To find an Infinitude of Curves the Area of which may be designated by a given Equation. 
 

The solution of this problem depends on the two preceding problems ; on curve may be 
found of which the area may be expressed by the given equation (by Problem 20) and 
thus an infinitude may be found by Problem 19. 
 

PROBLEM XXII. 
 
For any given curve AHD to find another curve AFB 
whose area AGF is equal to the rectangle contained 
under the ordinate GH and the abscissa AG of the 

given curve. 
 
For the curve AHD there shall be AG ,  GHy x  , 
and the nature of this may be expressed by this 

equation , from which 22ay yy x  2ay yy x   

and thus 3 42 AHay y xy   . Therefore the area of 

the figure AGF may be found, from which the curve AFB is defined easily by Problem 

20. Thus : 
2 29 122

2
a y ay

a y
z  


34 y

 

  

   
   

3 4 3 4

2 4 5 6 2 2 3

3 4

1 1 13 4 2 3 2 32 6 4
2 2 2

9 6 4 9 6 42
22

[ . . 

.]

D ay y ay y ay y
ay y ay y

a y ay y a y ay y

a yay y

i e z

z

   
 

   



     

 

3 2
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PROBLEM XXIII. 
 
With some curve AHD given, to find another curve AFB whose area AGF shall be equal 
to the rectangle contained under the ordinate GH of the curve AHD, [Fig. 20.] and to 
some given right line (a) 
 

The curve AHD may be defined as before as 2ay yy x   from which  

3 2 22 Aa y a y ax   GF; , 

therefore the nature of the curve AFB may be had 
according to Problem 20. Thus : 
 

4 2 2 2

2
22

2

a a y a y

ay y
z  




4

 

 
here and in the preceding,  z indicates the ordinate of the 
curve sought AFB. 

And indeed it is possible to find a curve of this area 
by infinitely many other ways (besides the two now treated), with the aid of another 
given curve which shall be able to be squared, by Problem 20. Which the praise-worthy 
German asserts can be done, but he has not shown in what manner it shall be done. 

 
Another solution of the preceding problem. 

 
 ACB shall be the given curve, CT the tangent at some point C, with the ordinate CF; 

and there becomes : TF
FC FZTF.FC :: .FZ . . aa i e   , 

hence the curve AZZ arises such that  
; as has been shown by the most 

illustrious Dr.Barrow. 
FC AFZa  

Nor now does the method that I used for 
determining the squares of figures lack anything 
and can be extended to all figures (with those 
excepted which are defined by transcending curves, 
which no one hitherto has dealt with by the 
common method) except that I may remove two 
difficulties ; which can appertain to certain cases ; 
the first of which occurs when a certain figure 
cannot be squared, and the root cannot be extracted from the equation produced (and with 
the squares rising above), in which case a single remedy has occurred to me: the root of 
this equation shall be resolved in an infinite series (the method of the most enlightened 
Isaac Newton, not only the most outstanding of the Geometers but also of the Analysists), 
that we hear has been put together for the printing press by the most distinguished Wallis, 
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and that the worthy Newton has communicated to me in manuscripts by his great 
kindness : For the General Method of determining the Roots of Equations analytically  (in 
Actis Eruditorum Lipzig publish. in the year 1683, in the month of May produced by that 
outstanding German) [The only article to be found in this issue, by D.T., i.e. E. W. von 

Tschirnhaus, with the title translated : A method for removing all intermediate terms 
from a given equation, from the Acta Eruditorum, May 1683, pp 204 – 207] serves little 
or no purpose in this matter; so that I say nothing about the insurmountable trouble in that 
calculation. But nevertheless among the issues particular examples of the analytical art 
are worthy of merit and require to be enumerated. 

The second difficulty is with the value of the applied ordinate agreed on with 
asymmetric terms, for the result shall be an equation of immense labor to free the 
equation from asymmetry, if more than four terms shall be affected with root signs, as 
skilled analysts have got to know well. But an optimum remedy for this difficulty has 
been supplied by the outstanding Geometer W. G. Leibniz in his New Method of finding 
Tangents published in the Actis Eruditorum of the earlier year, where indeed the bright 
fellow has shown a way set out of finding the tangents, whenever the equation expressing 
the nature of a curve shall be especially involved with irrational terms, without removing 
the irrationalities. I will show by an example how this method shall be applied to the 
present circumstances. 

 
Let VCS be the quadrant of a circle whose diameter 

shall be (r) and VM may be called y, likewise the 
ordinate MC is z [Fig. 4 : not to scale], then from the 

nature of the circle 2z ry y  and by resolving 
2ry y  in series by extracting the root, there will be 

found  
2 3 5

2 3
1 1
2 4 4 16

1 etc.y y y y
r rr r

z ry ry          
. 

So that the quadrature of the area VMC may be 
determined, the curve VH is required to be found, in 

which 
3 5

34 16
PM ,y y

r r
ry   and by Problem 1 the equation for the curve VH sought 

will be 
5 7

3
3

4 16
;my ly

r r
nry x   2  and by removing the fractional quantities (which still 

is not absolutely necessary, but here it shall be on account of greater facility) on 

multiplying by 316r  : there will be  
4 3 2 5 7 2 316 4 16 ;nr y mr y ly x r    

and by determining  n, m, l, (by Problem 2) which alone is difficult and I proceed thus : in 

order to shorten the calculations, I put 4 3 2 5 716 ,  4 ,  ;p nr y q mr y s ly   and there will 
be  
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2 316 ;p q s x r    

but by the calculation [to be] explained here, there will be found :  

4 4
,  ,  ,dp dq ds

p q
p q s  

4s
 and 2 3 316 2 16x r x r d x  

[ 2 3 3
4 4 4

. . ,  ,  ,  . 16 2 16 . ;dp dq ds
p q s

i e d p d q d s d x r x r dx    ] 

 

and with these values substituted there will be : 3
4 4 4

2 16dp dq ds
p q s

,x r dx     

but in the same manner, the calculation may become   
4 2 2 4 648 ,  20  and finally ;  7 ,dp nr y dy dq mr y dy ds ly dy    

and with these values substituted, with the values of the quantities 4 ,  4 ,  4 ,p q s the 

equation becomes :  
 

4 2 2 4 6

4 3 2 5 7

48 20 7 316
64 16 4

2 ,nr y dy mr y dy ly dy
x r dx

nr y mr y ly
    

 
Which the most illustrious Author calls a differential equation : and this equation  

resolved into proportions gives :  

4 2 2 4 6

4 3 2 5 7

48 20 73. :: 64 .PM
64 16 4

. :nr y mr y ly
dy dx x r x

nr y mr y ly

 
  

 
,:  

 
364

4 2 2 4 6 PM48 20 7

4 3 2 5 764 16 4

[ . . ]
dy x r x
dx nr y mr y ly

nr y mr y ly

i e
 

   

 
as is evident from the same calculation, and thus there will be  
 

4 2 2 4 6

7 3 5 5 3 7

48 20 7
PM etc

4096 1024 256
.nr y mr y ly

nr y mr y lr y
    

 
From a comparison made of these terms with the terms denoted by the previous PM, 

[i.e. 
3 5

34 16
etc.y y

r r
z ry    ] you read of the known comparison nearby thus :  

4 2

7 3

48

4096

nr y

nr y
ry , thence 16

9
n   ; similarly 16 16

25 49
 ;& m l  ; with which substituted 

there will be  
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5 7
2

3

16 16 2
9 100 496

ry y y
r r

x GM    , , 

and thus and thus 
  

5 7 2 2

3

4 16
VMC9 200 2 2392

.
ry y y x CM

r r
      

 
And thus in this manner the square of the circle also may be had. [This series converges 
very slowly.] And it will not be difficult to use a similar argument in other problems,  for 
any in this versatile kind of singular calculation, thus so 
that  I have considered it superfluous to illustrate the use 
of this outstanding method by more examples. Yet there 
is one which I consider to be worthy of note here, to be 
able to show briefly the truth of the rule I gave for the 
solution of the first problem by this method of tangents. 

In as much as :  TM
MC

. :: TM.MC . . dy
dx

dy dx i e    (as is 

evident from that method) but 
MCTM

MC PMTM.MC :: MC.PM . . ,i e   on account of the right angle TMC. Therefore  

MC ordinate
PM sub-normal

. :: MC.PM . . dy
dx

dy dx i e  

  (or with x substituted for MC) there will be 

PM
. :: .PM . . dy x

dx
dy dx x i e 


 . From which PM dy xdx 

2.y x 

, and by substituting y and x for 

the differences of these dy, dx there will be PM  Q.E.D. 
 

I conclude now by saying that, if there shall not be curve, in which the distance 
between the perpendicular of that and the ordinate [i.e. the subnormal PM]  shall be equal 
to the corresponding ordinate in the figure of the curve taken (with a right line or with 
right lines), that figure is not to be squarable indefinitely [i.e. the indefinite integral will 
not exist, as for a finite algebraic form]; for if the indefinite quadrature of that may be 
given, a curve of this kind may also be given, as it is apparent from Problem 20. And it is 
easy to show that there is no such curve for a circle or hyperbola [i.e. not an algebraic 
curve with a finite number of terms, but only transcendental curves, involving an infinite 
series expansion ; recall that the function concept did not yet exist as such], but I omit the 
demonstration here on account of the excessive extent of the calculation. 
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Concerning the Rectification of Curves. 

 
Pray who was the first amongst many some time ago to find a right line equal to a 

curve ? There was a dispute between the English and the Dutch ; and anyone who would 
wish to satisfy themselves further about this matter, can see the whole dispute in the little 
book on cycloids published by the most enlightened Wallis, pages 91, 92, 93, &c. ; and 
likewise, in the Horologio Oscillatorio of the most illustrious Huygens, page 72, 73, and 
finally, in a letter of Wallis published in the Transactions of the Royal Soc., Number 98 ; 
for the matter may be seen not of so great as to be worth further dispute, especially by me 
who is neither English nor Dutch. Yet I will note briefly that which can well be 
considered about the matter on both sides: 
1. Because William Neil, the son of an English knight, was the first of all who discovered 
the equation of a right line equal to the length of a curve [the semi-cubical parabola] ;  
2. Because not only had he shown that a curve could be rectified but also had shown the 
ability to rectify a curve.  
3.  Because Christopher Wren, the most worthy and most skilled Geometer, was the first 
to determined the right line equal to an oblate curve (i.e. equal to the Cycloid).  
4. Because Hendrik van Heuraet first showed how to rectify any given curve, from the 
supposition of the quadrature of an associated figure. And in van Heuraet's method it is 
quite evident how at once what that figure shall be whose curvature may give the 
rectification of the curve ; And thus since now I have set out the general method of the 
quadratures of figures to be determined ; it will be easy to change some curve into a right 
line; And from the right line, that either by a finite equation (when surely the figure is 
indefinitely squarable) or may be expressed by an infinite series. For Heuraet lacked such 
a method, was not able to extend his method of rectification of curves to all these curves, 
of which the rectification depends on the quadratures from definite figures; and 
furthermore, and less since the ability to be quadratures depend so much on special 
figures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
26 
 
 
 

THEOREM 2. 
 
There shall be two curves ACE and GIL, 
[Fig.14.], and the right line AF of that kind so 
that (drawn from the point M selected freely 
with the perpendicular MI cutting the curves at 
C and I, and so that CP shall be perpendicular 
to the curve ACE) there shall be 

MC R
CP MIMC.CP :: R.MI    ( here R is any 

given or assumed right line) there will be 
 The demonstration of 

this theorem may be found in the letter of van 
Heuraet to Schooten. [The modern reader can 
find this theorem explained in modern terms in the excellent work by Victor Katz, The 
History of Mathematics, Harper Collins, 1993; p.454 onwards. Basically the length of the 
first curve, can be found from the integral, between appropriate limits :  

AGILEF R ACE. 

 22 2 1 / cosdy
dxds dx dy dx dx         , where x is the independent variable y 

is the ordinate of the curve, and tan dy
dx

  ; van Heuraet’s ratio  MC R
CP MI

  or 

R
MI( ) cosdy

ds z   , on taking y as the independent variable, and applied to the 

characteristic elemental triangle with sides dx, dy, and ds, (which is not shown in the 

diagram), gives ; the latter integral represents the area under the curve with 

the ordinate z with the same limits as the first curve, R being a line of constant length that 
gives the curves in the same fixed ratio.] 

ds R zdy 

 
PROBLEM I. 

 
To Determine the Length of the Parabola ACE. 

 
The vertex of the parabola shall be A, its axis AG and the parameter (a);  AM may 

be called x, and MC may be called y [Fig. 14.]; from which 2x ay  from the nature of 
the parabola ; the tangents are required to be found by some common method, there will 

be agreed to become 
3

2
2PM x
a

 [for 
2 3

2
22PM dy x x

dx a a
y   x

a
 ], and thus 

6

4
2 4PM x

a
 , 

from which 
6 4

4
4PC 2

x x
a a

  because now CM
CP MICM.CP :: .MI . .  by Th. 2.aa i e   ; or in 
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analytical terms, 
2

2 6 4

4 2 6 44
4 2

4. :: .  . . 
x
a

x x

a a

.x x x a
a a a

a z i e


z

 
   
  

(clearly on putting MI z ) from 

which 2 4z a x  2  , which is the equation for a Hyperbola; and thus, for the 
determination of the length of the parabolic line ACE, the quadrature is the hyperbolic 
area AGILEF (as in Prob.13 .) and there will be,  

 
3 5 7

3 5
2 2 4
3 3 3

AGILEF etc.x x x
a a a

ax      

From which 
3 5 7

3 5
2 2 4
3 3 3

ACE etc.x x x
a a a

ax ax      by Th. 2. 

And thus 
3 5 7

2 4 6
2 2 4
3 5 7

ACE etc.x x x
a a a

x      

 
 

PROBLEM II. 
 

To show the right line equal to the periphery of a circle. 
 

 ACF shall be the quadrant of a circle of 
which the radius shall be d and PM may be 
called y, MC x; and MI z, [Fig. 15.] and  
GIL shall be such a curve so that with some 
normal CMI drawn to the right line PF there 
shall be 

 that is  MC.PC :: . with the right line freely assumed .MI.d

2 2
2 2 . :: . . 

d y d
d z

d y d d z
 

  
 

, from which dd
dd yy

z


  which is the equation for the 

curve GIL and thus 
3 5

3
3

6PM ddy  
40

etc.y y

d
  But by Theorem 2 there becomes  

3 5 7

3 5
3 5

6 40 112
AC etc.y y y

d d d
dx dy     Therefore 

3 5 7

4 etc.y

d2 4
3 5

6 40 112
AC y y

d d
y .     

 
 
 
 
 
 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
28 

2

 
PROBLEM III. 

 
To show the Right Line equal to a Hyperbola. 

 
 ACE shall be [the branch of an] 

equilateral hyperbola of which the   
semi axis  and the centre B ; 
and BM may be called y, AC x, so 
that from the nature of the 

hyperbolae ; PC is put 
perpendicular to the Hyperbola at C 
[Fig. 16.] ; there will be found:  

 [For 

BA a

2 2a y x

PM y ydxPM
x dy x  ] and thus  

2PC 2a y  2 MC.CP :: .MIa; if there may be made  that is, 
2 2

2 22

a y

a y

a

z



 ; there will be 

4 2 2

2 2

2
 

a a y

a y
z




 , which is the equation for the curve GIL. 

 

But 
4

2
4 2 2 2 2

2
2 ey

a
a a y a y      tc.  

And  
2 4

3
52 2

2 8
etc.y y

a a
a y a      

From which 
3 5

3
5

6 40
BELG etc.y y

a a
ay     

And 
3 5

2 4
5

6 40
ACE etc.y y

a a
y     

 
 
 

On the Measurement of Curved Surfaces. 
 

Just as the lengths of curved lines, thus also of the surfaces, which may be generated 
by the rotation of these,  the measurement will depend on the quadratures of certain 
figures, as may be agreed on from the following theorem. 
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THEOREM  3. 

 
MP shall be the perpendicular to a certain curve  

AMB and the line KZL such that (with MFZ drawn 
normal to the axis AD) MP shall be equal to the 
corresponding FZ ; the surface produced by the rotating 
of the curve AMB about the axis AD will be, to the 
area ADLK, as the circumference of the circle to its 
radius.  

[i.e. , in modern terms : curved surface formed on rotating about axis
area ADLK

2 ; we note that   had 

not been so defined at this time.] 
This theorem too is from the innumerable and outstanding theorems if the most 

celebrated of men, Isaac Barrow. 
 

PROBLEM I. 
 

To determine the Surface of a Sphere. 
 

 AMB shall be a semicircle, from the rotation of which a given sphere is produced : 
and r shall designate the radius and c the 
circumference of any circle ; and thus AB (the 
diameter of the semicircle AMB) 2d  now because 
all the lines MP perpendicular to the curve of the 
circle arrive at the centre of the circle P; therefore 
AKZLB shall be a rectangular parallelogram of 
which the length shall be the diameter AB and the 
height AK , the radius of the semicircle AMB 
[i.e. the function defining the area is a constant equal 

to the radius of the circle]; from which  

d

2AL 2d
(I designate the surface of the curve everywhere by the letter s) ; therefore by the third 

theorem :  from which 2.2 :: . .s d c r
22d c

r
s   or by putting r d  there will be  

 ; and therefore the surface of the sphere is equal to the rectangle 

whose length is the circumference and the width the diameter of the great circle in the 
sphere. 

22  4 r   s dc

It is worth noting, I consider,  hence this theorem following all the theorems, and to be 
by far the most noble, and by which the Prince of Geometers Archimedes himself had 
acquired eternal fame ; Because it is evident the surface of a sphere shall be equal to four 
of the great circles in that. For there shall be Q  the greatest area in a circle in the sphere  

; but which 
2

Q dc  as had been shown by Archimedes ; Therefore  

; but now it has been found that : 2Q ,  and 4Q 2dc dc  c2s d  ; Therefore .  4Q s
Q.E.D. 
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PROBLEM II. 
 

To determine the Surface of a Parabolic Conoid. 
 

The latus rectum of the parabola AMB shall be r , 
by the rotation of which the conoid is produced, the 
axis shall be AD, the vertex A and there may be called 
AF, y ; FM x; [i.e. the equation of the parabola is 

2x ry ] by some method of tangents there may be 

found : 2 21
4

PM ;r ry   
22

2 4
4dx FP r r

dy x x
MP     ry ,or by putting FZ z , because there is supposed 

, or PM FZ  2 21 1
4 4

r ry r r y z       which is the equation for a parabola the axis of 

which is the same as the axis of the given parabola AMB ; the vertex of which is C, with 
there being 1

4
AC r ; and latus rectum of this also is r, there will be found 

34 1
9 12

2rv r AKLD  , with there being CD v ;  

[In modern terms, the area AKLD is given by :  

     
3 33
2 22

4
2 2 2 31 2 1 2 2 1 4

4 3 4 3 3 4 9
0

. .

rv

r r rr ry dy r ry rv r rv r


 
       

  21
12  ] 

 

but  
3 24 1

9 12

3 24 1
9 12. :: .  . . s c

rrv r
s rv r c r i e



 
  

  
 by Theorem 3. 

Therefore 
2 34 1

9 12 .c v
rs r  c  

In this manner not only the surfaces of hyperbolic conoids and spheroids can be 
determined, but any other curved surface which is generated by the rotation of the curve, 
and these two examples show well enough how in some manner the same method shall 
be applied to all other curved surfaces. 
 

An observation in the method of measuring figures, produced by a certain most 
enlightened German gentleman, and published in the Actis Eruditorum of Leipzig. 

[The final of 3 papers of interest by D.T.  is reproduced below, in an early English 
translation.] 
The most learned author of this paper [D.T. : E.W.Tschirnhaus, a friend of Leibniz in 
Paris and equally devoted to the advancement of the calculus] had proposed the method 
in the month of October for the year 1683, as thus he believed it to be complete; so that 
either the quadrature of a figure, or of its impossibility, could be determined ; and from 
that he concluded the geometrical quadrature of the circle and of the hyperbola to be 
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impossible. Truly later the most dist. man saw that the proof provided was not completed 
to perfection, so that thence it would be possible to approve the impossibility of the 
quadrature of the circle, hyperbola or other figures, as he admits himself freely in the 
Acta of the following year, where he has said he has been forced by his love of the truth 
to give this single warning. From which he considers there are certain figures which are 
not capable of indefinite quadratures and he gives an example of a figure in which he 
says a particular quadrature can succeed without the general one doing so : yet here the 
most dist. man is nevertheless talking nonsense, because by his method he concludes the 
indefinite quadrature to be rejected ; before he had pointed out that his method extended 
to all indefinitely quadrable figures ; which is impossible from the demonstration, since 
one from thousands does not make sense ; as will be apparent later. For an infinitude of 
figures may be given to be indefinitely squarable, which in no manner are squarable by 
that same method ; and I will put in place an example of which later ; And so that not 
only will I find the error but the source of the error, also it is considered to add a brief 
summary of that method. 
     It makes use of the general equations of curves, of which each and every one of all the 
curves of the same order may be considered to be expressed: And just as the general 
quadrature may be sought of such general curves considered;  it compares an equation of 
the specific quadrature with some expressing the nature of the general quadrature ; from 
which there may be deduced the specific quadrature to be in agreement with the specific 
general quadrature ; the matter will become evident 
from an example. 

ABC shall be the figure contained by the right lines 
AC, CB and by the curve AB, and there shall be 

, A , and the same may be 
considered everywhere, hence some curve AHD will 
emerge, that may be called the quadrature, because 
with its help the area ABC is squared, now an equation 
is assumed for the general quadrature, AHD, and from 
that the general quadrature ABC may be deduced: so 
that if the abscissas AG, AC may be denoted by x, and the ordinates of the quadrature 
CD, GH by y, and finally the ordinates for the general quadratic curve by z, and the 
equation may be put for the general squaring curve for which x is the ordinate : of two 
dimensions to be of this kind, 

ACDE ABC GF AGHL

2 2

2

    0

              

by cay ea

dxy fax

gx

 


  


 

, 

from which the equation is deduced for the general quadrature, in which the ordinate z is 
also of two dimensions, 
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2 2 2 2 2

2 2
42 2

4 4 4

2 2 2 2

     2 2 0

             4 2

d e c g f b cdf beg a x

bea bfax bgx
bz caz ea

dxz fax

gx ca cdax d x

    

 
   
  


    


 

 
[Tschirnhaus' s rule, resembling that of de Sluse to some 
extent, can be expressed in more modern terms :  for some 
function of the two variables x and y, and depending on a 
constant a , written in the form  , ,F x y a , for which the 

length of the sub tangent can be expressed by a

x

aF
F

t x  ; 

see e.g. Naissance du Calculi….. p. 84, note 7] 
And similarly it is required to investigate the general quadratures for the remaining. Now 
some particular square figure may be put in place ABC, and the nature of the curve AFB 

is expressed by this equation 
22 9 12 4

2
a x axx x

a xz  


3
; this equation may be compared with 

the equation of general squaring now in place, (because the ordinate z in the particular 
squaring curve rises only to the two dimensions) clearly the individual terms of this with 
the individual terms of that (where x obtains the same composition everywhere) and from 
this comparison there will be ,  ,  0c d e  , and  1 1

2 2
,  1 and ;b f g     and he has 

substituted these values into the equation placed above for the square in which the 
ordinate x is of two dimensions, (because here the ordinate z also rises to two dimensions)  

there will be 
2 2

2 2
0y xax    or 2 2 2y ax x  , the property of the special quadrature 

AHD in which and thus the quadrature of the proposed figure will be had. AGF AGH L
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2

Yet in that the defect of the reasoning and of the method lies hidden in the reasoning, 
because he compares all the curves in which  z rises to two dimensions (nor beyond)  
with one and the same general squaring [formula], in which z does not ascent beyond two 
dimensions; and because he concludes the figure 
is not indefinitely squarable if this comparable 
quadratic may not be determined. For the general 
squarable curves are infinite in  number (also 
deducible from the same method) in which z 
does not ascend beyond two dimensions, and at 
some time the equation of the proposed curve 
may be compared with first, second, third, etc. A 
quadratic will not be had, and yet a comparison 
with a thousand quadratics will be able to be 
determined. For if from the third equation (as he 
has put for the general quadratic in which x shall 
be of three dimensions the first of the terms may 

be removed , it can be deduced from the squarable remaining, in which z does 
not rise beyond two dimensions, and by which the quadratic may be determined, as that 
general one put in place does not succeed : And thus from equation four, five, etc. (which 
one may put for quadratics of higher order) with these terms taken away in which in 
which y rises beyond two dimensions, the equation of the general squarable may be had 
from the remainder, which will determine the quadratic, as neither of this being 
squarable, nor that which I have said it can be determined to be deduced from the third 
equation, thus so that we do not come upon the required art in the required general 
quadrature. But because I have said these equations to be deduced for general squaring 
are deducible from this method ; I wish here to show with a few examples, how here the 
most distinguished gentleman has found the general equations for quadrature, or perhaps 
he was able to find these easily. 

3by dxy

It is agreed from Problem 22, how from a given equation for some curve [Fig. 20] 
AHD, another curve AFB shall be required to be found of which the area AGF is equal to 
the rectangle taken from the below the ordinate GA and with the  abscissa AG; that is 
how from a given quadratic, the quadrature shall be found ; and thus with the assumed 
equation for the general quadratic (such as I have here from the beginning) 
the equation will arise according to the general quadrature. And now here I will consider 
an example, or another of a figure, in which the quadrature following this method is 
impossible, and still may be determined by another method. The natural equation of the 

curve expressing AFB : 
2 2 4

2
2

m x x
z

p


   

[This equation is very indistinct in the two original copies I have seen, and I have 
assumed the formula shown to agree with the integration set out below as a note.]  
in which x may denote the abscissas AC, AG, and  z the ordinates BC, GF, m and p are 
given determinate quantities ; now if the area AGF shall be required to be squarable, this 
equation is required to be compared with the equation for the general quadrature now 
discussed, because in this proposed equation z rises to two dimensions; but it is evident 
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2
the comparison cannot succeed (as that itself may be reasoned elsewhere) if only the 

numerator of the fraction present may be compared everywhere, for  must 

coincide with 

2m x
2 2 4d e ag bf cdf beg a      2  :  an indeterminate with a determinate, 

which cannot happen, and thus the figure cannot be squared in this manner, and yet this 
figure itself is indefinitely squarable, evidently  

   

     

332 2 2 2 2
6 4 2 2 4 6

1
2 2 2 2 21 2

2
2

3 3
9 9 3

2 2 23 1
2 3

AGF

. 2

m x m x
m m x m x x

pp pp p

m x x m x x

p p p
D AGF m x x z

 
  

 

  

        .

2

 

 
And not only one but an infinity of such squarable figures are able to be found, the 
quadratures of which are impossible to be found in this manner by Prob. 23. [Fig. 20]. 

AHD may be defined by this equation 9 7x a y , and by Prob. 23 the curve AFB may be 
found of which the area AGF is equal to the rectangle contained under the ordinate GH 
and with some given right line considered (a), and AFB will be defined by this equation 

7

3
2 81

4
x
a

z  ; 

 [
9 7

72 2

7 7
2 2

9 7 2 29
2 4

length of side of square &   &  ;dy
7

81x x
dx a

a a

x a y y z z      x

2

Note here that 

x and y are the abscissa and ordinate as in modern usage.] 
and now, if the area AGF shall be squarable following this method, this equation is to be 
compared with the equation according to the general squaring now treated, because in the 
proposed equation z cannot rise beyond two dimensions ; but a comparison is impossible, 
because in the proposed curve x rises to the seventh power; and in the equation of that for 
general squaring cannot rise beyond the fourth power ; but the term in which x is of the 
seventh, is unable to be compared with a term in which x is of the fourth power ; for 
following the rule itself, a comparison is thus required to be put in place so that x may 
have the same composition on both sides ;  and thus the square cannot be had in this 

manner, and yet AHD has a square defined by this equation 9 7x a y , in which 

; that is GH AGFa 
9

5 AGFx
a

 . From which it is agreed abundantly that method does 

not include all the indefinitely squarable figures ; and infinitely many can be found of 
which the area cannot be squared according to that method ; for any equation may be 
assumed in which z is not beyond two, and x may not be found below four dimensions ; 
and an equation may be had expressing the nature of the curve by that method which are 

not squarable: as in these examples  
9 11

7 9
2 2,  ,  x x

a a
z z 

13

11
2 ,  etc.x

a
z  , which are the 

equations defining the natures of curves of which the areas may be determined easily and 
yet in no manner can they be found by that method. But I do not want to digress further 
into this matter here, hoping I may have given the most distinguished of men some good 
advice; because the particular reason which impelled me so that I might write this, might 
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not be written by another, which in order that (by showing its errors) I might stimulate 
him to publish that, by which geometry would be able to assert itself and to move 
forwards an immense distance beyond the limits put in place by Viet and Descartes. 
 

FINIS. 
 
 

ADDENDA 
A new Method of determining expeditiously the Tangents of Curve 

Lines. 
 

By D. T. From the Acta Eruditorum Lips. An. 1682. p.391. 
 

Translated from the LATIN. 
 
How great the use of tangents is, is plain to such, as are appraised, that while the tangents 
of curves are determined, by that very thing the quadratures of curvilinear spaces may 
also be exhibited ; Wherefore, general methods of determining the tangents have been 
invented by the most excellent mathematicians. But as for the most part they require a 
very prolix calculus, such promote geometry in the best manner, who supply us with 
some easy method in a thing of so great use; and this Slusius in particular has done by a 
general and very simple rule. 

Whence having hit on a rule, which determines the tangents much more generally and 
with greater simplicity than any hitherto given, I thought I should not begrudge to 
communicate it to the skillful in these matters. 

    Let BDE be any geometrical curve [Fig. 1], as Descartes calls them, let the abscissa 
BC be x , the ordinate CD y ; and let the line determining the tangent AB be let 

oreover the nature of this curve be given, which for instance, let be such  
 

 

 t , 
m

3 3 3 :y x xxy xyy a aay aax axx ayy         
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These things thus supposed, let the terms of this equation be ordered in such manner, that 
the greatest power of the ordinate CD or y be on one side of the equation: Hence now y3 
will be 

3 3 3 ;y x xxy xyy a aay aax axx ayy          
 
but if the greatest power of the quantity y be entirely wanting, let all the terms be put 0 . 
Let there be made a fraction and its numerator in this manner; namely let all the terms, 
wherein the known quantity is a, be taken with all their signs ; and if the known quantity 
a shall be of one dimension, let unity be prefixed to that term, if of two dimensions, 2, if 
of three, &c. 3, etc. And in the  present example the numerator will be  

33 2 2a aay aax axx ayy     .  
Let the denominator be made in this manner, assuming the terms wherein the abscissa 

x occurs and retaining the signs, if the quantity x be of one dimension, prefix unity as 

above, but if of two dimensions, 2, and it will be 33 2 2x xxy xyy aax axx    
3 2

. But 
diminishing each of these by x, the denominator will be 2xx xy yy aa ax     . 

I say that this fraction is equal to the quantity AB; and therefore in the present case t is 
  

33 2 2

3 2 2

a aay aax axx ayy

xx xy yy aa ax

    


    
. 

 
And thus in an easy and general way the tangents of all geometrical curves are exhibited. 
But I shall further show, that the tangents of infinite mechanical curves [Fig. 3 Plate IV.] 
may be determined by the same method; for, let there be any curve BDE, and let any 
portion thereof BD be put  x ; but let DF be y; and let any curve BF be formed, for 
instance, according to the former equation 

3 3 3 .y x xxy xyy a aay aax axx ayy         
 To determine, therefore, the tangent AF of the curve BFG, I proceed thus, let a fraction 
be assumed as was done above, and to it add the quantity x, and this will be equal to AD, 
a portion of the tangent of the curve BDE : And therefore, in the present case if AD be 
drawn touching the curve BDE in D, and it be assumed equal to  
 

33 2 2

3 2 2

a aay aax axx ayy
x

xx xy yy aa ax

    
 

    
, 

 
the right line AF being drawn, will touch the curve BFG in the point F. By the 
same method the tangents of the cycloid and of infinite mechanical curves are very 
expeditiously determined, and in so general a way, that where hitherto, by any analytical 
method, the tangent of one curve only is exhibited, here always at one and the same time 
the tangents of infinite curves may be determined; for, instead of the curve BDE we may 
suppose infinite curves that the tangent t may be always determined by 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
37 

33 2 2
AD

3 2 2

a aay aax axx ayy
x

xx xy yy aa ax

    
 

    
, 

 
supposing the nature of the curve BFG to be such, that  
 

3 3 3y x xxy xyy a aay aax axx ayy        , 
 
and the curve BD x , the right line DF y . 
I shall give the demonstration of all these things in their proper place, which yet anyone 
but little conversant in analytics may easily draw from the methods hitherto exhibited by 
Descartes, Fermat, de Sluse, &c. 
[Tschirnhaus' s rule, resembling that of de Sluse to some extent, can be expressed in more 
modern terms :  for some function of the two variables x and y, and depending on a 
constant a , written in the form  , ,F x y a , for which the length of the sub tangent can be 

expressed by a

x

aF
F

t x  ; see e.g. Naissance du Calculi….. p. 84, note 7] 

 
 

A New Method of determining the Maxima and Minima. 
 

By D. T. From the Acta Eruditorum Lips. An. 1683. p. 122. 
 

As some of my friends, upon seeing my method of tangents*, published in the Acta 
Erudit. for the month of December p. 391. seq. anno 1682. have greatly desired to know, 
by what method I might hence determine the maxima and minima, and whether this might 
not probably be done by the same method; so I have resolved to communicate some 
things here in order to satisfy their desire. 
 

 
We are,  therefore, to observe in the first place, that the determination of the maxima and 
minima is nothing other than the determination of a special  case about the tangents of 
curves ; and to understand this more easily, I shall illustrate it by an example. Let any 
indeterminate quantity BC be x , which is to determine some maximum; let a denote 

some given line BH, and let the maximum to be determined be 3 42 .aax ax x5   
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Let this maximum be represented by the line FG, which put y ; , will 

therefore be , which equation expresses the nature of any curve by means of two 
indeterminate quantities: But now to find this maximum, nothing other is required than 
that the greatest ordinate of this curve BDFH be determined ; but as this ordinate is the 
line FG, where the line EF, parallel to the axis BH, is the tangent of this curve, there 

3 42aax ax x  5

5y

is nothing other necessary than to find the tangent of this curve BDFH in any point 
generally, and then all the special cases will be likewise determined, and consequently 
this case too, where the line EF, or the tangent, is parallel to the axis; in the present case 
therefore, let AB be ; According to the rule I have given for tangents it will be t

3 4

2 3

2 2

3 8 5

aax ax
t

aax ax x




4 
. 

 
We are to observe in the second place, as it is very evident, that if the tangent EF be 
parallel to the axis, the denominator of this fraction is 0 :Whence we shall have 

, an equation, by means of which the quantity x, and consequently the 
maximum, is determined. 
3 8 5aa ax xx   0

We are to remark in the third place, that in order to determine the same quantity BG, if 
any maximum be given, yet still another equation may always be found by seeking the 
tangent on the other side of this curve : But as thus two equations may be had including 
the same unknown quantity, it will be no difficulty for the skillful in these matters to 
determine what is sought: Thus putting LH z , the maximum will be 

. And hence according to my rule of tangents HM will be 3 3 4 53 3a zz aaz az z y    5

3 3 4

2 3

3 6 3

2 9 12 5

a zz aaz az

az aaz az z

 


   4

0

: Whence now according to the second remark, the 

denominator of this fraction 2 312az 42 9 5az aaz z    ; in which equation, if instead 

of z you substitute , which is equal thereto, you will have a x 3 3
5

3 5 ,  or = aaxx x x  , the 

second equation, by means of which the length B G is found.  
And thus I have disclosed a principle, from which is derived as expeditious a method 

of determining the maxima and minima, as I have hitherto seen ; and it is as follows. 
Let BH any given quantity be a , in respect of which any maximum or minimum is 

sought; put BG ,and GHx z  :  
Now 1. it will be  .  z a x 
2. Let the maximum be formed by means of the quantity z, so that x does not enter into 

this expression ; and let, for instance, that maximum  be , in which 
quantity let 2 be prefixed to the term where z has 2 dimensions, 3, where 3, but 4, where 
4, &c. and thus let the exponent of the power of z be always prefixed to the same 

3 5 6 73 3a z aaz az 

term; but let the whole aggregate thus produced be 0 : It will therefore 

be in the present example 3 3 5 7 95 18 21 8a z aaz az z 0   
0.

, or 

 3 33 18 21 8a aaz azz z  
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 3. In this last equation let be restored ; and a very simple equation will be found 
for the quantity x, which determines the required maximum or minimum, as in the present 

z a x 

instance, if in the equation, viz. 3 33 18 21 8 0,a aaz azz z z a x       be restored, x will 

be found 3
8
a , by means of which the maximum required is determined. 

 
A method of determining either the Quadrature, or the impossibility 

thereof, in a given figure, terminated by right lines and a geometrical curve. By D. T. 
From the Acta Eruditorum Lips. An.1683. p. 433. 

 
 
Translated from the LATIN.  
 
THAT, I may briefly, and at the same time with 
perspicuity, disclose: these things to the skilful in 
these matters, it is to be noted. 
 
1. Let the space ACB be terminated by the geometrical 
curve AFB, by the axis AC, and by the ordinate BC:  
Let now the space ACB be understood to be equal to 
the rectangle AEDC, as also the space AGF to be 
equal to the rectangle AGHG : If now the same thing 
be everywhere supposed, there will hence arise a 
curve or some line AHD; but this will be either a 
geometrical or mechanical curve : If the former, the space ACB will both in the whole, as 
in all its parts, be geometrically squarable, and therefore I call such a quadrature possible: 
But if it be any mechanical curve, the space ACB, both as to the whole and all its parts, 
will be mechanically squarable, or its quadrature cannot be found geometrically; and, 
therefore, I call such a space impossible  
 
 
 
 
 
 
II. Now, let the following equations be formed: 
 

3 2 2 2
2 2

2

2 2
2

3

     
0.        0.  0.

                   
               

                            

by cay ea y ha
by cay ea

by ca dxy faxy iax
dxy fax

dx gx y kax
gx

lx

  
 
  

        
  

 


  

and so on as far as you please. 
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3

But we are to observe of these equations, that they exhibit all geometrical curves AHD 
and all their possible relations to a right line ; that x represents all the abscissa's AC, but y 
all the ordinates CD; b, c, d, e, f, g, &c. design the known quantities, prefixed to these 
terms, with what signs so ever they are affected ; but the quantity a is instead of unit, in 
order to make the dimensions equal in all the terms of these equations. But that without a 
prolix. calculus I may explain the following theorems which demonstrate the quadrature 
of a given geometrical curve, or the impossibility thereof, let it moreover be 
 

2 2 2

3 2 2 3 3 2 2

                                2

     also      2 3 4

,      3 4 5 6 .

c ca dx i ca dx

d ea fax gx k ea fax gxx

c ha ia x kax lx l ba ia x kbax lx

   

     

       

 

 
III. Farther let all the abscissas AC of the geometrical curves AFB be x ; but their 
ordinates BC z ; then let it be put  
1.    and the first theorem will be B bz i  B 0 . 

2. 
B 2

the second theorem will be BB 0.
C  

bz i
d BCc CCb

cz k

  
     

  

 

3.  

3 2 2 2 3 2 2 3 3

2 2

2 2 2

B 3

C  2 the the third theorem will be

D  d

B

                        2 3 2 0.

                         

bz i

cz k

z l

e B Cde BC ce C be C Dbd CD bc D b

B Dce BCDbe BD bd

B Dd BCDcd BD c

  
   
   

     
   


   



 

 
These things I shall further enlarge on in their proper place, which now 
I am obliged to omit, in order to avoid prolixness. 
 
IV. Now the use of these theorems is twofold. In the first place, we hence very 
expeditiously determine all the possible quadratures of geometrical curves; for, assuming 
any geometrical curve AHD, we immediately find, by means of the theorems just now 
exhibited, the quadrature of the space ACB, terminated by the geometrical curve: And as 
the equations in Remark II exhibit all the curves and all their possible relations to a 
right line, even by these theorems all the possible spaces, terminated by a geometrical 
curve, are squared; which let it suffice to illustrate by one example :  Let the curve AHD 
be a circle, whose nature is expressed by this equation 

; now in the equation, which is of the same degree in 
Remark II. 

2 2 2 22  or  2 0y ax x y ax x    
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2

2

      1

, , , 0
      0,  it will be    

      2
                     1.

b
by cay eaa

c d e
dxy fax

f
gx g

         
   

 

 
Whence in the second theorem BB 0d BCc CCb    (which is to be chosen, 
because the assumed equation is of two dimensions) it will be 
 

2

0                                0                  B 2

2                  6      C 6 4 .

c i

d ax x k ax xx ax xx

  

        

x
 

 

All which if restored there is obtained  
22 9 12 4

2
a x axx x

a xz  


3
, explaining the nature of the 

curve AFB; all whose spaces are squared by means of the circle, in regard the space AGF 
is always equal to the rectangle AIHG. In the same manner a different geometrical curve 
AHD being assumed, a different geometrical curve is found, and quadrable: Hence thus it 
appears, in what manner these theorems include all possible quadratures. 
 
V. The other use of these theorems is no less considerable, which is, that a geometrical 
curve being given, not the quadrature of any other may be found, as was just now 
explained, but either the quadrature of the given or proposed curve itself be exhibited, or 
its impossibility demonstrated; which we shall illustrate by two examples; for, in the first 
place let the nature of the given curve AFB be expressed by this equation 
 

39 12 4
2

aax axx x
a xzz  
  

 
Now the question is, whether its quadrature may be given or no ? And, indeed, it is plain 
from Remark IV that it is given : But suppose that this now is unknown, and observe the 
process in determining what is sought. 
1. Because the ordinate z rises to two dimensions, the third theorem is to be chose (had it 
had three dimensions, the third theorem was to have been assumed, and so on) but that 
theorem is as follows 

BB 0d BCc CCb   . 
 
2. In this theorem let the quantities B and C, as also b, c and d, be restored, and it will be 
 

2 2 2 2 2

2 2
42 2

4 4 4

2 2 2 2

     2 2 0

             4 2

d e c g f b cdf beg a x

bea bfax bgx
bz caz ea

dxz fax

gx ca cdax d x

    

 
   
  


    


. 

3· Now let all the terms of this theorem be compared with all those 
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(where x in each case has the same dimension) of the equation which explains 
the nature of the given curve ; and hence there will arise some new equations, by help of 
which the quantities b, c, d, e, f, &c. will be found: 
And here b is found 1

2
,  , , 0,  1  c d e f g    1

2
 ; all which as they involve no 

absurdity, the quadrature of the given curve is given; had they included any impossibility, 
or were they all equal to nothing, the quadrature would be impossible. 
4. If now from the equations of the second remark that of two dimensions be assumed, 
such as is 

2

2

    0

               

by cay eaa

dxy fax

gx

 


  


 

 

 
 (because the quantity z of the given curve also rises to two dimensions) and in this let the 

quantities b, c, d, e,  f, just now found, be restored, it will be 
2 2

0yy xxax   , or 

,  the property of the curve AHD, by help of which the given curve is 
squared; consequently, it is now determined, that the proposed curve admits of 
quadrature, and to what known space it is equal.  

2yy ax xx 

Q.E.F. 
For a second example, let the given geometrical curve AFB be a circle, whose property is 

; now the question is, whether its quadrature be possible or no? To discover 
this, as the quantity z rises to two dimensions, we must here use the same theorem, as in 
the preceding example. And if now all the terms of the given equation (which expresses 

2zz ax xx 

the nature of the given curve) be compared with all the terms of that theorem, 
b, c, d, e, f  will be found ; and consequently, there is given no geometrical curve A H 
D, by means of which the circle may be squared ; and therefore, the quadrature of the 
circle, in the sense it is commonly sought for by Mathematicians, is impossible. If the 
hyperbola be assumed to be squared, the same thing entirely will be found, namely that 
its quadrature is impossible : But from these things it will abundantly appear, in 

0

what manner by help of the like theorems, some of which I have given in Remark IV. 
either the quadrature of a given figure, terminated by a geometrical curve, may be 
exhibited,· or its impossibility demonstrated ( as the same process may be performed in 
all geometrical curves in the manner I have explained in these examples) which was my 
design at this time to disclose. But we are to observe 
 
VI. That what I have just now shown is in no manner contrary to the quadrature of the 
circle and hyperbola, which Leibnitz has exhibited in the Acta Eruditorum, An. 1682 ; for, 
while the geometrical quadrature of any space is not given, in that case the last resource 
is to express it by a series of numbers decreasing in infinitum: And 1 am persuaded, that 
there can be found no arithmetical expression of the quadrature of the circle or 
hyperbola mere simple, than that which the illustrious Leibnitz has published. But as to 
mechanical curves AHD, and which seem to be very simple in their nature, that by means 
thereof the circle and hyperbola, nay all curves, that admit not of a geometrical 
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quadrature, may be mechanically squared, I shall exhibit on a proper occasion the method 
of  determining them, when it shall appear, how great an affinity they have with 
geometrical  curves, as their spaces are always equal to the space terminated by 
a geometrical curve.  
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V 
 
 

Methodus Figurarum, &c. 
 

Optime nuper observarunt Geometrae quasdam esse Figuras indefinitae Quadraturae 
capaces, quae tum quoad totas, tum quoad singulas partes sunt Quadrabiles; Alias vero 
esse, quae, licet hujusmodi Quadraturam indefinitam non admittant, aliquam tamen 
habent portionem quadrabilem, imo tota figura nonnunquam Quadrari potest, cum 
quaelibet ejus pars non potest. Nec credibile est ex alio fonte eorum errorem ortum esse, 
qui Circuli, Hyperbolae, & aliarum quarundam figurarum Quadraturas impossibiles 
existimarunt, quam quia hanc figurarum distinctionem non considerarunt. Methodis enim 
utentes quae supponunt figuras esse indefinite Quadrabiles, cum aliquam Quadrandam 
assumerent, quae eorum Methodos recusabat, statim illius Quadraturam impossibilem 
esse crediderunt; cum exinde amplius non esset concludendum, quam  Methodos quibus 
usi sunt esse inperfectas, & ad omnes figuras non extendere. Sed cum institutum meum 
non sit aliorum errores detegere, ast quid in hac materia excogitavi paucis exponere; 
Methodum hic tradam (non ex Arithmeticis sed Geometricis principiis deductam) quae 
figurarum utriusque generis quadraturas determinabit. Prioris generis Geometricas, 
posterioris vero Algebraicas quadraturas per series infinitas exhibebit. Et quia Methodus 
quae speciales talium figurarum quadraturas determinet, a nemine hactenus vulgata est, 
speramus praeclarum illum Germanum (qui publice eam promisit, & omnino in potestate 
sua esse asseruit, in Actis Eruditorum Lipsae publicatis ) suam brevi in lucem emissurum. 
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Theorema 1. 

 
Sit Curva quaevis VH. (cujus axis VD, applicata HD ad VD perpendicularis) item linea 

VZS talis, ut si a curvae puncto libere sumpto puta E ducatur recta EP ad Curvam, & 
EAZ ad axem perpendicularis, sit recta AZ, interceptae AP aequalis, erit spatium 

DHq
2

VDS  . 

 
Demonstratio : 

 
Sit angulus HDO semi-rectus, & aequi secetur UD, 

indefinite punctis A, B, C per quae ducantur, EAZ, 
FBZ, GCZ ad HD parallellae, & Curvae occurrentes in 
E, F, G a quibus ducantur EIY, FKY, GLY, ad UD 
parallelae, quin & rectae EP, FP, GP, HP sint Curvae 
VH perpendiculares. Est Triangulum HLG simile 
triangulo PDH (nam ob indefinitam sectionem Curvula 
GH pro recta haberi potest) quare est 

, adeoque HLHL LG ::  PD DH  DH LG PD   , hoc est, HL HO DC DS   , & 
simili discursu monstrabitur, quoniam Triangulum GMF triangulo PCG assimilatur, fore 

 & similiter erit KILK LY CB CZ   KY BA BZ   , itidem erit ID  IY AV  AZ
; unde constat triangulum HDO (quod a rectangulis istis 

minime a differt) aequari Spatio VDS (quod 
itidem a rectangulis minime differt) hoc est: 
HL HO LK LY KI KY ID IY      

DC DS CB CZ   BA BZ AV AZ  
DHq

2
VDS  . 

Quod erat Demonstrandum. 
 
 Nobile hoc Theorema debetur viro Celeberrimo. D. Doctori Barrow, qui innumera habet, 
& sublimia Theoremata circa linearum Curvarum proprietates : nec mihi quenquam 
( quorum Scripta edita sunt) vidisse contigit ( imo nec aliis contigisse puto) qui tanto 
judicio, & Successu tanto, abstrusiorem hanc & minus cultam Geometriae partem, 
tractavit & promovit. 
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PROB. I. 

 
Data relatione inter PM (quae distantiam inter Curvae perpendicularem PC & ordinatim 
applicatam MC designat) & abscissam AM (quae distantiam inter applicatam & verticem 
A designat) aequationem invenire Curvae lineae AC naturam definientem. 
 

Ut omnes Curvas sub una Regula generali comprehendam adnoto in quacunque linea 
Curva AC fore semper  propter angulum rectum PCT. Quare multiplico 
singulos terminos PM denotantes per terminum AM ( prius in 

PM MT CMq 

diversos numeros incognitos multiplicatum) & produtum pono aequale Quadrato 
applicatae CM. Ratio 
hujus regulae colligi potest, ex Methodo inveniendi 
Tangentes a Clarissimo Slusio edita. in Actis 
Philosophicis Reg. Societatis Anglicanae. Exemplis 
rem illustrabo. 

Exemp.1. Fig. 2. Detur 1
2

PM r , & vocetur AM y, 

CM x, a, b, c, i, &c. denotent quantitates cognitas & 
determinatas, item l, m, n, h. k &c. numeros incogitos. 
Jam juxta regulam multiplico 1

2
 r  per ny, & productum 

ny 2
2

x . quae est aequatio ad parabolam. 

Exemp. 2. Fig.2.Sit 1
2

PM y  r & quaerenda sit aequatio illam curvam determinans: 

procedens secundum regulam multiplico 1
2

r y  per ny, my & productum 2
2

nry my  

pono aequale quadrato ab x, nempe 2
2

nry my x2   quae est aequatio ab curvam 

quaesitam. 

Exemp. 3. Esto 
2

PM y
a

a   & quaeratur curva AC, in qua Sit 
2

PM y
a

a   multiplico 
2y

a a  per ny, my, eritque productum 
3 2.ny

a may x   

Exemp.4. Sit 
4 3 2

PM ,y y y
aaa aa a

y     & querenda sit aequatio istius curvae naturam 

definiens, secundum regulam multiplico  
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4 3 2y y y
aaa aa a

y    per ny, my, ly, hy, eritque 
5 4 3

3 2
2ny my ly

aa a
hy x    2 qua est aequatio quaestita.  

 

Denique sit 
2

2PM a
y

  , multiplicato 
3

2
a
y

 per ny, erit 

productum 
3 2na

y
x , vel  3 2.na yx

sed quia n, m, l, h; &c. adhuc sint incognita, modum 
ostendam ea determinandi. 
 

PROB. II. 
 

Quantitates l, m, n. &c. in praecedenti Problemate usurpatas determinare. 
 

Per aequationem inventam investigo PM (procedendo secundum vulgarem aliquam 
methodum inveniendi Tangentes) & ejus valorem compare cum valore dato, nempe 
singulos hujus cum singulis illius terminis quae comparatio determinabit,  
l, m, n, &c.  

Ut in exemplo primo 2

2

nry
x , invenio 3

4
PM nr , hunc valorem comparo cum valore 

dato sc. 1 1
2 4

r n r unde post reductionem 2n  , quare substituto hoc valore pro (n) in 

aequatione 2

2

nxy
x erit . 2ry x

Sic in example secundo 2nry
a

my x  2  invenio fore 
4

PM nx my  , jam comparo 

utrosque hos terminos cum correspondentibus terminis valoris dati sc. 

4 2
 unde 2,  deni  unde 1.nr r n my y m     si 

substituantur hi valores prodibit aequatio quaesita & 

plene determinata  2 2.ry y x 

Similiter in exemplo 3 : 
3

2ny
may x

a
   inveni 

33
PM

2 2

ny ma

a
  , facta igitur debita comparatione sc. 

2 2
2
3

3
 erit ,& ex ,  erit 2

2 2

ny y ma
n a

a
   m  ,& 

substitutis his valoribus erit 
3

22
2 .

3

y
ay x   

 Et in exemplo 4. erit 
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4 3 2

3 2

5 2 2
PM .

22

ny my ly
by

a a
     

 
& facta comparatione horum terminorum cum terminis dati erit  
 

4 4 3 3 2 2
2 1
5 23 3 2

5 2 3
,  inde ,& ex  erit ,  ex  erit ,

2 22

ny y my y ly y
n m

a a aa a a
     2

3
l 



 

& ex   erit  l.hy y h Et substituendo hos Valores, erit equatio 
 

5 4 3
3

3 2

2 2
.

35 2

ny y y
y x

a a
     

 

Denique in Exemp. 5. Est 
3 3

2 2
PM  unde 2

2

ny a
n

y y
  

2

unde n = 2, [Fig. 3] 

adeoque 2 , quae est ad Hyperboliformem DCE. 3a yx
Haec duo Problemata ( vel potius duas partes unius Problematis) fusius sum profecutus, 
eo quod a nemine adhuc tractata sint, saltem quorum scripta ad manus meas pervenerunt; 
tum maxime, quod horum ope Figurarum Quadraturas sim determinaturus. 
 

 
 

PROB. III. 
 

Parabolae Quadraturam determinare. 
 
 Esto  parabola VCS cujus latus rectum  
Ftg. 4 sit r. VM vocetur, y, MC, z. 

unde ex natura parabolae MCry z  tum per 

problema primum inveniatur curva VH, talis ut sit 

PM ry  (per PG hic & in sequentibus intelligenda 

est Curvae quaestiae perpendicularis) sed per 
methodum jam traditam invenio Curvam quaesitam 

definire per hanc equationem nr 3y x4  (per x designo 
applicatas GM, HD Curvae quaesitae) & determinando 

n per Prob. 2, invenies 16
9n   unde 316

9
ry x4 , ac proinde 

234
9 2 2

x GMry q VMC   , 

ut constat ex Theoremate jam praemisso. 
 
 
 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
50 

 
 

PROB. IV. 
 

Paraboloidis Cubicalis Quadraturam determinare. 
 

Esto VCS parabolois Cubicalis, VD axis & latus rectum r, & VM y , 

unde eae natura Curvae istius erit 3rry z  adeoque 3 rry z , propterea pro 

determinatione Quadraturae areae VMC invenienda est Curva (per Prob. 1.) 

VH talis ut sit semper 3PM rry , & procedens secundum regulam ibi propositam 

invenio Curvam VH definiri per hanc aequationem 2 4 6nr y x  &. determinando 

n (per Prob. 2.) inveniens 27
8n  , adeoque aequationem quaesitam esse 2 4 627

8
r y x  

unde 
22 433 GM

4 2 2
VMC.xr y q    Et in hunc modum Quadrantur infinitae paraboloides 

quae definiuntur per &c. 3 4 4 5 5;  ,  ,r y z r y z r y z   6

 
PROB. V. 

 
Paraboloidis Semicubicalis Quadraturam invenire. 

 

Sit VCS parabolois semicubicalis, cujus haec est proprietas unde 2 3,ry z
2 13 ,ry z invenienda igitur est Curva VH in qua 

23PM MCry  ; & per problema primum 

invenio illam definiri per hanc aequationem 3 6nry x ; 
& ut determinetur n procedo in hunc modum per Prob. 

2. quaero PM ex aequatione inventa 5 6ny r x  

& invenio 
4

2 2 103

5
PM

216 

nry

n r y
  & facta comparatione 

cum dato Valore erit 
4

23

2 2 103

5

216 

nry
ry

n r y
 , unde 

provenit 216
125

n   post debitam reductionem, adeoque Curva VH definitur per 
5216 6

125
ry x , 

unde erit 
2533 GM

5 2 2
VMC.xry q   Et eodem modo Quadrari possunt paraboliformes 

infinitae, quae definiuntur per &c. 3 4 4 5 5 6;  ,  ,ry z ry z ry z  
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PROB. VI. 

 
In Hyperbola OCN quadranda sit Area interminata OCMVL. 

 

Esto Hyperbolae potentia , unde 2a
2a
y

z , inquirenda igitur est Curva VH talis ut 

in ea sit semper 
2

PM a
y

  at nullam esse hujusmodi Methodus jam tradita statim 

deprehendit : nam juxta regulam multiplicanda est 
2a
y

 per ny, & productum non 

potest poni aequale 

2na

2x , Quadratum determinatum nequit aequari Quadrato indeterminato, 
ac proinde concludendum est Spatium interminatum non esse Quadrabile : nam si daretur 
illius Quadratura, darentur etiam Curva quaedam VH in qua esset semper . PM  MC

 
 

PROB. VII. 
 

Hyperboliformis OCN cujus haec sit proprietas 2 3yz a . 
Quadraturam determinare Areae Interminatae OCMVL. 

 

Quoniam ex natura Curva 
3

MC
a

z
y
    

Fig.5 . quaerenda est curva VH in qua semper 

sit 
3

PM
a

y
  , atque per Prob. 1, invenio Curvam 

VH definiri per & determinando 3na y x 4

4

n per Prob. 2. Invenies , adeoque 16n 
316a y x unde Spatium interminatum 

3OCMVL 2 .a y  

 
 
 
 
 
 
 
 
 
 
 



John Craig : A method of determining the quadratures ...(1686);  
Transl. with notes by Ian Bruce, 2014; 

To which are added three translated papers by E.W.Tschirnhaus.                                                 
52 

4

 
PROB. VIII. 

 

Sit natura Hyperboliformis difinita hac aequatione 3yz a , & Quadranda sit Area 
interminata OCMVL. 

 

Ex natura curvae 3
4a

z
y
 , & invenietur curva VH in qua 3

4

PM
a

y
  definiri per 

24 2 6 4 233
2 2 2

27 ,  Unde OCMVL.x GMa y x a y q     Et sic quadrantur 

Hyperboliformes infinitae definitae per ,  4 5 5 6 6 7,  ,  ,&c.yz x yz x yz x  
 
 

PROB. IX. 
 

In Hyperboliformi OCK cujus haec sit proprietas 2y z a3 Quadranda sit aerae 
interminata OCMVL. 

 
Ex hujus curvae natura manifestum est 

3

2 MCa
y

z    quare Quaerenda est 

curva aliqua, ut distantia inter ejus perpendicularem 

& applicatam sit aequalis 
3

2
a
y

& procedendo secundum 

usitatam Methodum invenio Curvam quaesitam definire per  & determinando 

(n) per Prob. Secundum erit  adeoque aequatio est , quae itidem est 
aequatio ad Hyberboliformem (sed alterius naturae) SGH ) & quoniam illius 
perpendicularis GP, inter verticem & applicatam cadit, vel sursum tendit ideo 

2yx na
3 2a yx

3

2 n  2

3 2

2
 KCMDa x

y
  . Et Aream OCMVL esse earum numero quas Geometrae vocant 

plusquam infinitas, jam monuit clarissimus Nostras D.David Gregorius in pulcherrimo 
suo Tractatu, de Dimensione Figurarum. 
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PROB. X. 

 
Sit ACD curva talis ut ducta ut cunque MC ad AD normali, sit potestas quaevis ipsius AD 
ad similem potestatem partis AM, ut potestas quaevis partis DM ad similem potestatem 
applicatae MC, & determinanda sit Quadratura Areae AMC. 
 

 Esto AD = b, Fig. 7, & exponens illius potestatis 2, AM 
vocetur y unde etiam exponens illius potestatis est, 2 esto 
praeterea exponens potestatis lineae DM seu  b y , (1) 
adeoque exponens applicatae MC seu z est 1, tum ex naturae 

lineae curva. unde 2 2 ::b y b y z 
2 3

2
by y

b
z   , Quaeratur ergo 

curva AH in qua sit 
2 3

2PM by y

b

 , invenieturque 

per Prob. 1. & 2. illam definiri per 
3 4 23 4 2 22

3 3 4
1 ,  unde AMC.y y x

b bb
by y b x    

2
 Atque haec eadem est curva de qua 

loquitur D. Cartesius in tom.3. Epist. pag. 219. quam praeferendam putat (ob 
constructionis facilicatem) curvae quam Galli vocant la Galande. 
 

PROB. XI. 
 

Determinanda sit Quadratura Areae AMC, & definiatur natura Curvae per 

 5 4 2 3 3 2 4 .y ay a y a y a a z    
 
 

Quaerenda est Curva VH, Fig. 4, talis ut in ea sit 
semper  

5 4 3 2

4 3 2PM=MC .y y y y
aa a a

z a       

 Et per Prob. 1. definietur per 
 

6 5 2 4 3 3 3 4 ny may la y ka y ha y a x     2  
 
& determinando n, m, l, k, h (per Prob. 2.) erit  

1 2 1 2
3 5 2 3,  ,  ,  ,  2 ;n m l k h       adeoque aequatio 

 quasita est 6 5 2 4 3 3 3 41 2 1 2
3 5 2 3
 2 ,y ay a y a y a y a x     2  adeoque  

 
6 5 4 3 2

4 3 2 3 2 26 5 4
 AMC.y y y y GMqx

aa a a
ay        
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2

Atque hactenus solas illas figuras tractavi quae sunt indefinite Quadrabiles, & quantillo 
labore earum Quadraturae, per hanc Methodum determinentur, aliis judicandum relinquo 
: Ad illas jam progredior quae hujusmodi Quadraturam respuunt : & expresse moneo 
me Quadraturas quas hic exhibiturus sum per series infinitas, non pro Geometris sed 
Algebraicis vel Arithmeticis habere.  
 
 

PROB. XII. 
 

Circuli Quadraturam determinare. 
 

A Circulo initium faciam, qui omnium linearum curvarum simplicissima est, si curvae 
simplicitas non ex aequationis, sed descriptionis (ut re vera debet) simplicitate aestimetur. 
 Sit itaque Circuli Quadrans ASD in quo AM vocetur y, & ordinata MC z, & radius 

AL r , tum ex Circuli natura erit  , 2 2 –z r y

ac proinde 2 2 –z r y  hunc valorem resolvo in 

seriem secundum Methodum celeberrimi D. Isaaci 

Newtoni, & invenio 
2 4 6

3 52 8 16
etc.y y y

r r r
z r      

quaerenda igitur Curva AGH in qua 
2 4 6

3 52 8 16
PM .....etc.y y y

r r r
r      

& invenietur per Prob. primum 
Curvam quaesitam definiri per hanc aequationem. 

3 5 7

3 5
2

2 8 16
;my ly ky

r r r
nry x    & determinando Quantitates, n, m, l, k, per Prob. secundum 

invenietur 2
72,  3,  ,n m l    & substituendo hoc valores, aequatio erit 

3 5 7

3 5
2

3 20 56
2 .y y y

r r r
ry x     Unde 

3 5 7 2

3 5
GMq

6 2 240 112
AMCS.y y y x

r r r
ry        

Vel si quaereretur Quadratura totius Quadrantis , erit 
2 1 1 1

6 40 112
ASD ...etc.r rr rr rr      Unde 

2 22 1 1
3 8 28

4 ... toto Circulo.rr rr r r      Et si haec 

series per numeros exprimatur, ponendo 1
2

r   erit 
1 1 1
4 32 112area Circuli 1 etc.    in infinitum Notatu 

dignum arbitror hinc elici posse dimensionem Zonae 
Circularis, quam a celeberrimo Geometra D. Isaaco 
Newtono inventam refert clariss. David Gregorius in 
memorato tractatu. Esto ABCD Zona cujus latitud. 

, & Circuli radius   per praecedentem 
Quadraturam ….. 
VL y r
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3 5 7

3 56 40 112
VBCL .....y y y

r r r
ry     Adeoque  Adeoque  

3 5 7

3 53 20 56
2VBCL ABCD 2 .y y y

r r r
ry      

 
 

PROB. XIII. 
 

Hyperbola Quadraturum determinare. 
 
 

SIT LSC Hyperbola cujus Asymptoti VD, VP, & in qua VE EL a  , 
atque VA , Vocetur abscissa. AMy, & ordinatim 
applicata z, sed ex natura Hyperbola 

, id est 

c

EL VMVE VM MCx x  2a yz cz  ; 

adeoque est 
2a

c y
z   , & facta divisione, secundum jam 

receptam Methodum, erit 
2 2 2

2 3
a y a y

c c
 

2
etc.a

c
z     

Quaerenda igitur est Curva AGH, in qua sit 
2 2 22

2 3PM etc.a y a ya
c c c

     

per Prob. primum invenietur illam definiri hac aequatione 
2 2 2 2 3

2 3
2na y ma y la y

c c c
x    & 

determinando, n, m, l, per Prob. 2. erit 2
32,  1,  n m l   , ac proinde aequatio quaesita 

est 
2 2 2 2 3

2 3
2 2 2

3

a y a y a y
c c c

x    unde 
2 2 2 2 3

2 32 3
ASCa y a y a y

c c c
  

2 GMq
2 2

M x  . Haec 

eadem est Hyperbolae Quadratura quam exhibuit celebris vir Nicolaus Mercator in sua 
Logarithmo-technia, quamvis methodo usus sum ab illius plane diversa. 
Considerando aliam Hyperbolae proprietatem; aliam  etiam illius Quadraturam 
inveniemus. Sit ergo in apposito schemate SCL Hyperbola aequilatera cujus centrum A & 
latus transversum RS, ponatur AM KC,  MC z,  AR ASy r     , unde eae natura 

Hyperbolae rr , adeoque yy zz  z rr yy  , extrahendo radicem Quadraticam ex 

 erit rr yy
2 4 6

etc. 3 52 8 16

y y y
r r r

z r     

Quaerenda ergo est Curva AH in qua sit 
2 4 6

3 52 8 16
PM  etc.y y y

r r r
z r       & procedendo 

per Prob. primum invenietur illam 

definiri hac aequatione 
3 5 7

3 5
2

2 8 16

my ly ky
r r r

nry x    , 

& determinando, n, m, l, k, per Prob. secundum 
2 2
3 52,  ,  ,  ,n m l k    2

7  erit, substitutis his 
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valoribus erit aequatio ad Curvam quaesitam plene determinata. 
3 5 7

3 5
2

3 20 56
2 my y y

r r r
ry x    , adeoque erit  

3 5 7 2

3 56 2 240 112
2 .y y y GMqx

r r r
ry ASCM       

 
Ex hac Hyperbolae Quadratura facile est Zonae 
Hyperbolicae Quadraturam determinare. Sint EDA, 
GCB Hyperbolae oppositae, quarum centrum K & 
Vertices A, B, Zona ABCD  
cujus latitudo KL = y, semiaxis transversus AK, vel 

, unde per praecedentem Quadraturam KB r
3 5 7

36 40 112 5
y y y
r r r

ry   KLCB  ac proinde erit 

3 5 7

3 53 20 56
ABCD 2 etc.y y y

r r r
ry      

 
 
 
 

PROB. XIV. 
 

Ellipseos Quadraturam determinare. 
 

In semi-ellipsi LSCD sit semiaxis transversus AS b  & semiaxis conjugatus 
AL a , & ponatur abscissa AM y , 
ordinatim applicata MC , unde eae 

natura Ellipseos 

z
2 2b

a
z a y  , ut ergo 

determinetur Area AMCS, primo 

resolvenda est 2b
a

a y 2  , in seriem 

extrahendo radicem ex 2 2a y , unde 

invenietur 
2 4 6

2 4 62 8 16
etc.by by by

a a a
z b     . 

Quaerenda igitur est Curva aliquae AH in 

qua semper 
2 4 6

2 4 62 8 16
PM etc.by by by

a a a
b      

& invenietur per Prob.1 illam definiri hac aequatione 
3 5 7

2 4 62 8 16

mby lby kby

a a a
nby x     & 

determinando quantitates, n, m, l, k. per Prob. 2. erit 2 2
3 52,  ,  , ,n m l k 2

7    adeoque 
3 5 7

2 4 6
2

3 20 56
2 mby lby kby

a a a
by x     unde 

3 5 7 2

2 4 6
GMq

2 26 40 112
AMSC.mby lby by x

a a a
by       
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Inde facile eruitur Zonae Ellipticae dimensio, ut si latitudo Zonae sit AM y , caeteris 

positis ut prius erit Zona. 
3 5 7

2 4 63 20 56
2AMCS 2 etc.mby lby by

a a a
by      

 
 

PROB. XV. 
 

Sit  positione & magnitudine data, & Curvae SCD talis ut ea ducta utcunque 

recta 

AD d

(


)MC  z  ad AD perpendicularis sit 3 3d z y3  determinanda sit Areae AMCS 

Quadratura. 
 

Quoniam eae natura curvae 33z d y  3

3

; extrahenda 

est radix Cubica ex , & invenietur fore 3d y
3 6

2 53 9
etc.  y y

d d
z d     

 
Quaerenda est linea Curva AGH in qua 

3 6

2 53 9
PM etc.y y

d d
d      

definietur Curva quasita AH hac aequatione 
4 7

2 5
2

3 9

my ly

d d
ndy x   & determinando 

n, m, l, per problema secundum erit 1
22, ,  n m l 2

7   , adeoquae 
4 7

2 5
2 2

6 63
2 ,y y

d d
dy x    

unde 
4 7

2 5

2
GMq

212 63
AMCS.

2
y y

d d

x
dy       

Et sic Quadrantur Cycliformes infinitae quae definiuntur per  
4 4 4 5 5 5,  etc.d y z d y z      

 
PROB. XVI. 

 
Esto  linea recta positione & magnitudine data, & SCD linea Curva talis ut 

ducta utcunque 

AD d 
)(MC z ad AD normali sit Cubus ex AD cum Cubo ex 

( )AM y aequales Cubo ex MC sc. 3 3d y z3   & determinanda sit Quadratum Areae 
AMC. [Fig.13.] 

Quoniam 33z d y  3  resolvenda est 3 33 d y in seriem radicem cubicam 

extrahendo, & inventetur 
3 6

2 53 9
etc.y y

d d
z d      Quaerende est : Curva AH in qua sit 
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semper 
3 6

2 53 9
PM etc.y y

d d
d      & per Prob. 1. & 2. erit aequatio ad Curvam 

quaesitam 
4 7

2 5
2 2

6 63
2 y y

d d
dy x        unde 

4 7

2 5

2

12 63
AMCS.

2
y y

d d

x
dy      

Et sic Quadrari possunt Hyperboliformes infinitae quae definiuntur per  
 

4 4 4 5 5 5,  ,  etc.d y z d y z     
 

PROB. XVII. 
 

Sit , & sit Curva SCD [Fig.13.] talis ut ducta a quavis ,  AD a AS b  )(MC z  ad AD 

perpendiculari sit , & determinanda sit Area AMCS. 3 3 3 3 3. ::z a y b a .
 

Quoniam ex natura Curvae 3 33b
a

z a y  extrahenda est radix ex 3a y3  invenieturque 
3 6

3 63 9
etc.by by

a b
z b     Quaerenda est Curva AH in qua 

3 6

3 63 9
PM MC byb   , etc.by

a b
  & 

per Prob. 1 & 2. invenietur Curvam quaesitam definiri hac aequatione 
4 7

3 6
2 2

6 63
2 ,by by

a a
by x    Propterea 

4 7 2

3 6
2 GMq

2 212 126
AMCS.by by x

a a
    by  

Et sic quadraentur Ellipsiformes infinitae, quae definiuntur aequationibus 
  

4 4 5 554 ,  , etc.b b
a a

a y z a y z     

 
PROB. XVIII. 

 
Esto  linea recta positione [Fig.13.] & magnitudine data & SCD Curva talis ut 

ducta utcunque MC ad AD normali sit 

AD d 
32 2d z y z r  , & Quadranda sit Area AMCS. 

 

Quoniam 
3

2 2
r

d y
z


  ; fiat divisio, &, invenietur 

3 2 3 43

2 4 6 ;r y r yr
d d d

z    eritque 

3 3 3 3 5

2 4 6
2 2 2 2

3 5

r y r y r y

d d d
x    aequatio ad Curvam AH in qua 

3 2 3 43

2 4 6 PM r y r yr
d d d

    unde  

3 3 3 3 5 2

2 4 6
GMq

2 23 5
AMCS.r y r y r y x

d d d
      
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PROB. XIX. 
 

Cujusvis Figurae Quadraturas infinitas invenire. 
 
Sint duae qaelibet Curvae ACE, BRF, & a quovis puncto C in curva ACE ducatur 
tangens CT, & CP ad EP, & CR ad AB parallela, si fiat TP , erit 

Eximium hoc Theorema debetur etiam viro celeberrimo D. 
Doctori Barrow. 

.P C :: DR.PX
ABZY BEF,  APXY DBR. 

Quaerenda sint, exempli gratia, Quadratura infinitae Paraboloidis Cubicalis BRF. 
Assumatur pro arbitrio quaelibet Curva ACE puta parabola communis cujus parameter sit 
r ( quod idem sit cum parametro paraboloidis) & ponatur AP ,  PX ,y z   

eritque TP 2 ,  PCy  ry  & ex natura paraboloidis 6DR  adeoque Analogia erit ry

62 . :: .y ry ry z unde 
8

2
6

64
r
y

z   qaea est aequatio ad Curvam YXZ, cujus Quadratura 

invenietur per methodum jam traditam sc. 8 461
4

APYZ DBR.r y    Quae est Quadratura 

Paraboloidis diversa ab illa quam dedi in Prob. 4. Et eodem modo inveniri potest  alia 
atque alia Quadratura, assumendo aliam atque aliam Curvam ACE. Et sic tracturi possunt 
omnes aliae Curvae, quemadmodum parabolidem hic tractavi. 

Exhinc etiam manifestum est Figuras deprimi posse ad simpliciores & Quadratu 

faciliores, nam in figura ABZY Curva YXZ definita hac aequatione 
8

2
6

64
r
y

z    

magis est composita quam Curva BRF. Adeoque non parum Geometriam promoveret, qui 
methodum daret figuras ad simplicissimas reducendi. 
 

PROB. XX. 
 

Curvam invenire cujus Area per datam quamlibet aequationem 
designetur. 

 

Designetur Area hac aequatione 3 VMCr y   (concipiendo VCS esse Curvam 

quaesitam.) Tum ex ostensis patet 
23

2
xr y   esse aequationem ad Curvam aliam VGH 

in qua  (quae est ordinata Curva quaesitae) investigetur ergo valor PM MC

lineae PM, & invenietur 
3 2

4
PM  seu 4r

y
z z y   3r , quae est aequatio ad Curvam 

quaesitam VCS cujus area 3r y . Notandum quod hic (ut prius) y denotat abscissas 

VM, z ordinatas MC, & x ordinatas GM. 
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PROB. XXI. 

 
Curvas infinitas invenire quarum Areae per unam datam aequationem designentur. 
 

Solutio hujus problematis a duobus praecedentibus pendet; inveniatur una Curva cujus 
Area per datam aequationem exprimatur (per problema 20) & sic infinitae inveniri 
possunt per Prob. 19. 
 

PROB. XXII. 
 

Data qualibet Curva AHD Curvam aliam AFB invenire cujus area AGF aequetur 
rectangulo contento sub ordinata GH & abscissa AG Curvae datae. 

 
In Curva AHD sit AG ,  GHy x  , & exprimatur illius natura hac aequatione 

, unde 22ay yy x  2ay yy x   

adeoque 3 42 AHyay xy   . Habetur ergo 

Area figurae AGF, unde facile Curvae AFB 
definitur per problema 20. sc. 
  

2 29 12 42
2

a y ay y
a y

z  


3

 

 
 
 
 

PROB. XXIII. 
 
Data qualibet Curva AHD, aliam Curvam AFB invenire cujus area AGF aequatur 
rectangulo contento sub ordinata GH Curvae AHD, [Fig. 20.] & constanti aliqua data 
recta (a) 
 

Definiatur Curva AHD ut prius 2ay yy x   unde 3 2 22 Aa y a y ax   GF , 

habetur ergo natura Curvae AFB per Prob. 20. sc. 
 

4 2 2 2

2
22

2

a a y a y

ay y
z  




2

 

 
hic & in precedenti z denotat ordinatas Curvae quaesitae AFB. 

Et quidem aliis modis infinitis (praeter duos jam traditos) inveniri potest  curva cujus 
area, ope alterius curvae datae sit quadrabilis, per Prob.20. Quod fieri posse asseruit jam 
laudatus Germanus, sed quo modo faciendum sit nequaquam ostendit. 
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Alia solutio problematis praecedentis. 

 
 Sit Curva data ACB, CT tangens in puncto quolibet C, ordinata CF; fiatq; 
TF.FC :: .FZa

FC AFZa  
, orietur hinc Curva AZZ talis ut 
; ut demonstratum est ab 

illustrissimo D. Doctori Barrow. 
Nec quidquam jam deest ut Methodus quam 

tradidi Figurarum Quadraturas determinandi, ad 
omnes figuras extendatur (exceptis iis quae a 
Curvis transcendentibus terminantur, quas nulla 
hactenus vulgata Methodus comprehendit) nisi ut 
difficultates duas amoveam ; quae in quibusdam 
casibus contingere possunt; 
quarum prior accidit cum figuram aliquam 
Quadrando nec esse sit & Radicem ex aequatione 
effecta (& supra Quadraticas ascendente) 
extrahere, in quo casu unicum remedium mihi 
cognitum est: radicem istius aequationis in seriem infinitam (jucta Methodum clarissimi 
viri D. Isaaci Newtoni Geometrae non minus quam Analystae praestantissimi) resolvere, 
quam praelo commissam esse a clariss. Wallisio audimus, quamque insignis ipse D. 
Newtonus mihi in manuscriptis pro summa sua humanitate communicavit : Nam 
Methodus Generalis aequationum radices Analytice determinandi (in Actis Eruditorum 
Lipsiae publicaxis Ao 1683, Mense Maio a praeclaro ilia Germano edita) huic negotio 
parum vel nihil inservit; ut de insuperabili in ea calculi molestia nihil dicam. Sed 
nihilominus inventum est inter praecipua Artis Analyticae merito numerandum. 

Secunda difficultas est cum valor ordinatim applicatae constat terminis asymmetris, 
nam res esset immensi laboris aequationem ab asymmetria liberare, si plures sint quam 
quatuor termini signis radicalibus affecti, ut satis norunt Analyseos periti. Sed huic 
difficultati remediun optimum suppeditavit insignis Geometra G. G. Leebnitius in nova 
sua Methodo Tangentes inveniendi in Actis Eruditorum Anni superioris publicata, ibi 
enim praeclarus vir viam expeditam ostendit, Tangentes inveniendi, quamvis aequatio 
curvae naturam exprimens terminis irrationalibus quam maxime sit implicita, non ablatis 
irrationalibus. Quomodo ista methodums ad praesens negotium sit applicanda 
exemplo ostendam. 

Esto VCS circuli Quadrans cujus Diameter sit (r) & 
VM vocetur y, item ordinata MC [Fig. 4.], tum ex 

natura circuli 2z ry y  & resolvendo 
2ry y  in seriem per extractionem radicis, invenietur 

2 3 5

2 3
1 1
2 8 4 4

1 etc.y y y y
r rr r

z ry ry          
. 

Ut determinetur Quadratura areae VMC, invenienda 
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est curva VH, in qua 
3 5

34 4
PM ,y y

r r
ry   eritq; per Prob. 1. aequatio ad curvam 

quasitam 
5 7

3
3 2

4 4
VH ;my ly

r r
nry x     & auferendo 

quantitates fractas (quod tamen absolute necesse non est, sed hic sit ob majorem 

facilitatem) multiplicando per 34r  : erit 4 3 2 5 7 2 34 4nr y mr y ly x r   ;

;

 

& determinando n, m, l, (per Prob. 2) quae sola est difficultas fic procedo: compendii 

causa pono 4 3 2 5 74 ,  ,  p nr y q mr y s ly   eritq; 2 34 ;p q s x r    

sed per calculum ibi explicatum invenietur 
4 4

,  ,  ,dp dq ds
p q

p q s  
4s

 

atque 2 3 34 2 4x r x r d x , & substitutis his valoribus erit 3
4 4 4

2 4dp dq ds
p q s

,x r dx    

sed per eundem, calculum erit & 

substituendo hos valores cum valoribus quantitatum 

4 2 2 4 612 ,  5 & deniq;  7 ,dp nr y dy dq mr y dy ds ly dy  

,  ,  ,p q s aequatio erit  

 
4 2 2 4 6

4 3 2 5 7

12 5 7 32 4
16 4 4

,nr y dy mr y dy ly dy
x r dx

nr y mr y ly
    

 
Quam clarissimus Author aequationem differentialem appellat : & haec aequatio in 

Analogiam resoluta dat 

4 2 2 4 6

4 3 2 5 7

12 5 73. :: 16 .PM
16 4 4

. :nr y mr y ly
dy dx r x

nr y mr y ly

 
  

 
: ,  

 
ut ex eodem calculo est manifestum, adeoq; erit 
 

4 2 2 4 6

7 3 5 5 3 7

12 5 7
PM etc

256 64 64
.nr y mr y ly

nr y mr y lr y
    

 
Et facta comparatione horum terminorum cum terminis prioribus PM denotantibus, 

juxta cognitas comparationis leges sc. 
4 2

7 3

48

4096

nr y

nr y
ry , inde 16

9n   ; similiter 

16 16
25 49

 ;& m l  ; quibus substitutis erit 

 
5 7

3

16 16 2
9 100 496

ry y y
GMq

r r
x    , 

adeoque  
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5 7 2

3

4 16
VMC

9 400 2 2196
.

ry y y CMqx
r r

      

 
Adeoq; etiam hoc modo habetur circuli Quadratura. Et similem discursum in aliis 
adhibere non erit difficile, cuivis in singulari hoc calculi genere versato, ita ut superfluum 
duae duxi praestantissimae hujus Methodi usum pluribus exemplis illustrare. Unum 
tamen est quod hic obiter notandum puto, posse ex hac Tangentium methodo breviter 
demonstrari veritatem Regulae quam dedi pro solutione problematis primi. 
Namq; (ut ex ista Methodo est manifestum) sed TM ob 
angulum rectum TMP. Ergo  (vel posito x pro MC) erit . 

Unde 

. :: TM.MCdy dx

PM

.MC :: MC.PM.
. :: .PMdy dx x. :: MC.PMdy dx

xdy xdx , & substituendo y & x pro earum differentiis dy, dx erit 2.PMxy  x  
Quod demonstrandum erat. 

Jamq; concludo, si nulla sit Curva. in qua distantia inter illius perpendicularem & 
ordinatam sit aequalis correspondenti ordinatae in Curva Figuram (cum recta. vel rectis) 
comprehendentem, illam Figuram non esse indefinite Quadrabilem ; nam si daretur illius 
quadratura indefinita, daretur etiam hujusmodi Curva ut patet ex Prob. 20. Et nullam esse 
talem Curvam pro Circulo & Hyperbola, facile possum demonstrare, sed demonstationem 
ob nimiam prolixitatem hic omitto. 
 

De Linearum Curvarum Rectificatione. 
 
Quisnam fuerit qui primo Curvae rectam aequalem invenit diu multumq; Anglos inter & 
Batavos disputatum fuit ; & qui plenius de ea re sibi satisfieri volunt, totam 
disputationem videre possunt, in eximio libello de Cycloide a Clariss. Wallisio Edito 
pag. 91, 92, 93, &c. itemq; in Horologio Oscillatorio illustrissimi Hugenii pag. 72, 73, & 
deniq; in Epistola Wallisii in Actis Philosophicis Reg.Societ. publicata Num. 98 res enim 
tanti non est ut ulteriori disquisitione digna videatur, mihi praesertim qui nec 
Anglus sum nec Batavus. Ea tamen, quae, re bene perpensa, utrinq; manifesta videntur, 
breviter annotabo: 
1. Quod Guliel. Nelius Equitis Angli Filius omnium primus rectam Curvae aequalem 
invenerit. 
2. Quod non datam Curvam rectificaverit sed Curvam rectificationis capacem exhibuerit. 
3. Quod dignissimus & Geometra peritissimus D. Christoph. Wren primo oblatae Curvae 
(sc. Cycloidi) rectam aequalem determinaverit.  
4. Quod Heuratius primo ostenderit quamlibet datam Curvam rectificare, suppositis 
Figurarum Quadraturis. Et in eo Heuratii Methodi non parum est conspicua quod statim 
indicat quaenam illa Figura sit cujus Quadratura Curvam datam rectificaret; Adeoq; cum 
jam Methodum generalem praemisi Figurarum Quadraturas determinandi ; facile erit 
Curvam aliquam in rectam transmutare; Et recta, illa vel per aequationem finitam (cum 
nempe Figura est indefinite Quadrabilis) vel per seriem infinitam exprimetur. Heuratius 
enim tali methodo destitutus, non potuit methodum suam Curvas rectificandi, ad omnes 
illas Curvas extendere, Quarum recticationes a figuris indefinite Quadribilibus dependent; 
multoq; minus cum a figura specialis tantum Quadraturae capaci dependerent.  
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THEOREM 2. 

 
[Fig.14.] Sint duae lineae Curvae ACE, GIL, & recta AF ejus naturae ut ( ducta ex puncto 
M libere sumpto perpendiculari MI secante Curvas in C & I, uti & CP perpendiculari ad 
Curvam ACE) sit .... MC.CP:: R.MI (R hic est quaelibet linea recta data vel assumpta) 
erit AG Demonstratio hujus Theorematis habetur ILEF R ACE.x
in Epistola Heuratii ad Schotenium.  
 

PROB. I. 
 
Determinare Longitudinem Parabolae. ACE.  
 
Sit parabolae vertex A, ipsius axis AG & 
parameter (a) AM vocetur x & MC vocetur 

y [Fig. 14.]; unde ex natura parabolae 2x ay ; 
per methodum, aliquam vulgarem Tangentes 

inveniendi, constabit fore 
3

2
2PM x
a

 , adeoq; 

6

4
4PMq x
a

 , unde 
6 4

4
4PC x x

aa
  jam quia CM ; vel in terminis Analytricis .CP :: .MIa

4 6 4

4
4. :x x x

a aa
a z : . (posito nimirum MI z ) unde 2 4z a x  2  quae est aequatio ad 

Hyperbolam ; adeoq; pro determinatione longitudinis lineae paraboliae ACE, Quadranda 
est Area Hyperbolica AGILEF (ut in Prob.13 .) eritque,  

3 5 7

3 5
2 2 4
3 3 3

AGILEF etc.x x x
a a a

ax      

Unde 
3 5 7

3 5
2 2 4
3 3 3

ACE etc.x x x
a a a

ax ax      per Theor. 2. 

Adeoq. 
3 5 7

2 4 6
2 2 4
3 5 7

ACE etc.x x x
a a a

x      
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PROB. II. 
 

Circuli Peripheriae rectam aequalem exhibere. 
 
Sit ACF circuli Quadrans cujus radius sit d 
& vocerur PM y, MC x; & MI z, [Fig. 15.] 
sitq; GIL talis curva ut ducta utcunq; 
normali CMI 
ad rectam PF sit 

  id est  MC.PC :: . recta libere sumpta .MI.d

. :: . .dd yy d d z , unde dd
dd yy

z


  quae 

est aequatio ad curvam GIL ; adeoq; 
3 5

3
3

6 40
PM etc.y y

d d
dy    Sed per Theor. 2 

est  
3 5 7

3 5
3 5

6 40 112
AC etc.y y y

d d d
dx dy     Ergo 

3 5 7

2 4 4
3 5

6 40 112
AC etc.y y y

d d d
y     . 

 
 
 

PROB. III. 
Hyperbolae rectam aequalem exhibere. 

 
Sit ACE Hyperbola aequilatera cujus semiaxis BA a  & centrum B ; & BM vocetur y, 
AC x, unde ex natura Hyperbolae 

; ponatur PC 
Hyperbolae in C perpendicularis 
[Fig. 16.] ; invenietur P

2 2a y x  2

M y  adeoq; 

2PC 2a  2y si fiat MC  

id est, 

.CP :: .Ma

2 2 2 2. 2y  :: . a za y a ; 

erit 
4 2 2

2 2

2
z

 ,  
a a y

a y

quae est aequatio ad Curvam GIL. 
 

Sed 
4

2
4 2 2 2 2

2
2 etc. y

a
a a y a y       

Et  
2 4

3
52 2

2 8
etc.y y

a a
a y a      
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Unde 
3 5

3
5

6 40
BELG etc.y y

a a
ay     

Atq; 
3 5

2 4
5

6 40
ACE etc.y y

a a
y     

 
De Curvarum superficierum dimensione. 

 
Quemadmodum linearum Curvarum longitudines, sic etiam superficierum, quae ab 

illarum rotatione generantur, dimensio ex quarundam Figurarum Quadraturis dependet, ut 
ex sequenti Theoremate constat. 

 
 

THEOREMA 3. 
 

Sit MP Curvae AMB perpendicularis & linea KZL talis ut (ducta MFZ ad axem 
AD normali) sit MP correspondenti FZ aequalis ; erit 
superficies producta a rotatione Curvae AMB circa 
axem AD, ad spatium ADLK, ut Circumferentia 
Circuli ad suum radium.  

Hoc etiam unum est ex innumeris & praeclaris 
Theorematis viri celeberrimi D. Isaaci Barrow. 

 
 
 
 

 
 

PROB. I. 
 

Superficiem Sphaerae determinare. 
 
Sit AMB Semicirculus a cujus rotatione data sphaera producitur: & designet r radium & c 
circumferentiam cujuslibet circuli ; & sic AB (diameter 
Semicirculi AMB)  jam quoniam omnes lineae 
Circulo perpendiculares MP perveniunt ad Circuli 
centrum P; ideo erit KZL parallelogramium 
rectangulum cuius longitudo diameter AB & altitudo 

 radius Semicirculi AMB; unde (per 
literam s ubiq; designo superficiem Curvam;) ideo per 

Theorem tertium  unde 

2d

2.2 ::s d

AK d 2AL 2d

. .c r
2d c

r
2s   vel 

ponendo  erit  ; ac proptera Superficies. 
Sphaerae aequatur rectangulo cujus longitudo est 
Circumferentia & Latitudo Diameter Circuli in Sphaera maximi. 

r d 2s  dc
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Notatu dignum arbitror hinc consequi omnium Theorematum longe nobilissimum quo 
aeternam sibi famam acquisivit Geometrarum Princeps Archimedes; Quod scilicet 
superficies Sphaerae sit aequalis quatuor maximis in ea Circlis. Sit enim Q maximo in 

Sphaera Circulo ; at qui 



2
Q dc  ut ab Archimede demonstratum est ; Ergo 

; sed jam inventum est: 2Q ,  &  4Q 2dc dc  2s dc  ; Ergo 4Q s .Quod erat 
demonstrandum. 

 
 

PROB. II. 
 

Superficiem Conoidis Parabolici determinare. 
 
Esto r latus rectum Parabolae AMB a cujus rotatione conoides producitur, sit axis AD, 
vertex A & vocetur AF, y ; FM x; per methodum aliquam tangentium invenietur 

21
4

PMq ;r ry   vel ponendo FZ z , quia supponitur PM FZ , aut 2 21
4

r ry Z   

quae est aequatio ad parabolam cujus axis idem est cum axe parabolae datae AMB ; cujus 

vertex est C, existente 2r1
4

AC  ; & latus illius rectum etiam r, invenietur 

34 1
9 12

AKLD rv r  2  existente CD v ; sed: 3 24 1
9 12

. v r :: .s r c r . per Theorema 3. 

Ergo 
2 34 1

9 12 .c v
rs r  c  

In hunc modum mensurantur non modo superficies Conoidis Hyperbolici , & 
Sphaeroidis, sed Quaevis alia Curva superficies quae generatur a rotatione lineae Curvae 
& haec duo exempla satis ostendunt quomodo eadem Methodus ad omnos alias 
superficies Curvas sit Applicanda. 
 

ANIMADVERSIO 
 

In Methodum Figuras dimetiendi, 
 

A clarissimo Quodam Germano editam in Actis Eruditorum Lipsiae publicatis. 
 
METHODUM hanc proposuerat Doctissimus illius Author Anno 1683, Mense 
Octob. quam adeo perfectam credebat ; ut vel Quadraturam Figurae, vel ejusdem 
Quadraturae impossibilitatem determinaret ; & ex ea Circuli & Hyperbolae Quadraturam 
Geometricam impossibilem esse concluserat. Postea vero perspexit clarissimus vir 
tanta perfectione praeditam non esse, ut exinde Circuli, Hyperbolae aut alterius Figurae 
Quadraturae impossibilitas probari possit, ut ingenue ipse fatetur in iisdem actis Anni 
sequentis, ubi ait fe amore veritatis coactum hoc unum monere. Unde existimat 
quasdam esse Figuras quae indefinitae Quadraturae non sunt capaces & exemplum 
Figuraea scribit in qua succedere ait Quadraturam specialem sine generali: in hoc tamen 
hallucinatus est claris. vir quod ex sua Methodo Figuram aliquam, Quadraturam 
indefinitam recusare conclusit ; priusquam demonstrasset Methodum suam ad omnes 
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figuras indefinite quadrabiles extendere ; quod demonstratu est impossibile, cum unam e 
millesimis non comprehendat ; ut postea patebit. Dantur enim infinitae figurae indefinitae 
quadrabiles, quae nullo modo per istam Methodum sunt Quadribiles ; & quarum exempla 
postea apponam; Et ut non modo errorem sed erroris fontem detegam, nec esse videtur 
breve illius Methodi compendium adjungere. 

Adhibet aequationes Curvarum Generales, quarum unaquaeque omnes Curvas ejusdem 
gradus exprimere existimat : Et talis Curvae generalis consideratae tanquam Quadratricis 
quaerit Quadrandam Generalem. Et oblatae Quadrandae specialis aequationem 
comparat cum aliqua ex formulis generalibus Quadrandaram naturam exprimentibus ; 
unde deducit Quadratricem specialem Quadrandae speciali, convenientem ; exemplo res 
erit manifesta. 

Sit ABC figura, rectis AC, CB & Curva AB comprehensa, sitq; , 
, &. idem concipiatur ubique, proveniet hinc Curva aliqua AHD, quam 

Quadratricem appellat, quia illus ope Quadratur area ABC, jam aequationem assumit ad 
Quadratricem generalem, AHD, & ex ea deducit Quadrandam generalem ABC : ut si 
notentur abscissae AG, AC per x, & ordinatae Quadratricis CD, GH per y, & deniq; 
ordinatae in Quadranda per z, ponitq; aequationem ad Quadratricem generalem in qua 
ordinata x est: duarum dimensionum hujusmodi, 

ACDE ABC
AGF AGHL

2 2

    0

             

by cay ea

xy fax

gx

 


  
 

, 

ex qua deducit aequationem ad Quadrandam generalem, in qua ordinata z est etiam 
duarum dimensionum, 

2 2 2 2 2

2 2
42 2

4 4 4

2 2 2

     2 2 0

             4 2

d e c g f b cdf beg a x

bea bfax bgx
bz caz ea

dxz fax

gx ca cdax dx

    

 
   
  


    


 

 
Et similiter pro reliquis Quadratricibus generalibus Quadrandas generales investigat. 
Proponatur jam Figura aliqua Quadranda specialis ABC, & exprimatur natura Curvae 

AFB hac aequatione 
22 9 12 4

2
a x axx x

a x
z  


3

; hanc aequationem comparat cum aequatione 

generalis Quadrandae jam positae, (quia ordinata z in Quadranda speciali ad duas tantum 
dimensiones ascendit) nempe singulos hujus cum singulis illius terminis (ubi x eandem 
utrobiq; compositronem obtinet) eritque ex hac comparatione ,  ,  0c d e  , 

& 1
2

,  1  ;b f ac g    1
2

 & hos valores substituit in aequatione ad Quadratricem supra 

positam in qua ordinate x est duarum dimensionum, (quia hic ordinata z ad duas quoque 

dimensiones ascendit) eritque 
2 2

2 2
0y xax    seu 2 2y ax x2  , proprietas Quadratricis 

specialis AHD in qua adeoq; habeur Figurae propositae Quadratura. AGF AGHL
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2

In eo tamen latet ratiocinationis & ipsius Methodi defectus, quod omnes Curvas in 
quibus z ad duas dimensiones (nec ultra) ascendit comparet cum una & eadem Quadranda 
generali, in quibus z non ultra duas dimensiones ascendit; & quod concludat Figuram 
non esse indefinite Quadrabilem si haec comparatio Quadratricem non determinet. 
Infinitae enim sunt Quadrandae generales (ex ipsius etiam Methodo deducibiles) 
in quibus z non ultra duas dimensiones ascendit, & non nunquam aequatio Curvae 
propositae, cum prima, secunda, tertia, &c. comparata. Quadraticem non habebit, & 
tamen comparatio cum Millesima quadratricem determinabit. Si enim ab aequatione 
tertia (quam posuit pro Quadratrice generali in qua x esset trium dimensionum primum 

terminum auferat, ex reliquo Quadrandam generalem deducere potest, in qua z 
non ultra duas dimensions ascendit, & quae Quadratricem determinet, cum illa quam ille 

3by dxy

statuit generalem non succedit: Et sic ex aequatione quarta, quinta (quas ille poneret pro 
Quadratricibus altiorum graduum) &c. ablatis 
iis terminis in quibus y ultra duas dimensiones 
ascendit, ex reliquo habere potest Quadrandae 
generalis aequatio, quae Quadratricem 
determinabit, cum nec ejus Quadranda, nec illa 
quam dixi esse deducibilem ex aequatione 
tertia, deteminare potest, ita ut casu non arte 
incidimus in Quadrandam Generalem 
requisitam. Sed quia dixi istas aequationes ad 
Quadrandas generales ex ipsius 
Methodo esse deductibiles ; volo hic paucis 
ostendere, Quomodo clariss. hic vir aequationes 
ad Quadrandas generales invenerit, vel saltem 
facile invenire potuisset. 

Ex Prob. 22. constat, quomodo data aequatione [Fig. 20] ad Curvam aliquam AHD, 
alia curva AFB sit invenienda cujus area AGF aequatur rectangulo comprehenso sub 
ordinata GA & abscissa AG; id est Quomodo data Quadratrice, invenienda sit 
Quadranda; adeoq; assumpta aequatione ad Quadratricem 
generalem (qualem hic sub initio ascripsi) proveniet aequatio ad Quadrandam generalem. 
Jamq; exemplum unum aut alterum Figurae hic ascribam, in qua Quadratriae secundum 
hanc Methodum est impossibilis, & tamen alio modo determinabilis. Sit aequatio naturam 

curvae AFB exprimens 
2 2

2
2

m x x
z

p

 
  

in qua x denotat abscissas AC, AG, & 
z ordinatas BC, GF, m & p quantitates datas & determinatas ; jam si Quadranda sit Area 
AGF, comparanda est haec aequatio cum aequatione ad Quadrandam generalem jam 
tradita, quia in hac proposita aequatione z ad duas dimensiones ascendit; sed manifestum 
est comparationem non suceedere (ut ipse alibi argumentatur) si vel solus numerator 

fractionis utrobique existens comparetur, deberet enim 2m x2  coincidere cum 
2 2 4d e ag bf cdf beg a      2  indeterminatum cum determinato, quod fieri nequit, 

itaq; figura hoc modo Quadratricem non habet, & tamen ipsa haec figura est indefinite 
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quadrabilis, scil. 
6 4 2 2 4 63 3

9
AGF a a x a x x

pp
   . Et non una tantum sed infinitae possunt 

inveniri Figurae indefinite Quadrabiles, quarum Quadratrices hoc modo sunt impossibiles 

per Prob. 23. [Fig. 20] Definiatur AHD hac aequatione 7 7 7x a y , & per Prob. 23. 
inveniatur curva AFB cujus Area AGF aequetur rectangulo contento sub ordinata 

GH & data qualibet recta puta (a), & definietur AFB hac aequatione 
7

3
2 81

4
x
a

z  ; jamq; si 

Quadranda sit area AGF secundum hanc Methodum, comparanda est haec aequatio cum 
aequatione ad Quadrandam generalem Jam tradita, quia in proposita aequatione z 
non ultra duas dimensiones ascendit ; sed comparatio est impossibilis, quia in proposita 
Curva x ad septimam potestatem ascendit; & in ejus aequatione ad Quadrandam 
generalem ultra quartam ascenderc non potest ; sed terminus in quo x est septimae, non 
potest comparari cum termino in quo x est quartae potestatis; nam secundum ipsius 
Regulam, comparatio est sic instituenda ut x utrobiq; eandem obtineat compositionem; 
adeoq; Quadratrix hoc modo haberi non potest, & tamen Quadratricem habet AHD 

definita hac aequatione 9 7 2x a y , in qua. GH Aa GF  ; id est 
9

7 AGFx
a

 . Unde 

abunde constat hanc Methodum omnes Figuras indefinite Quadrabiles non 
comprehendere ; & infinitas posse inveniri quarun Areae hoc modo non sunt quadrabiles 
; assumatur enim quaelibet aequatio in qua z non ultra duas, & x non infra quatuor 
dimensiones reperitur; & habetur aequatio naturam Curvae exprimens cujus area per hanc 

Methodum non sunt quadrabiles; ut in his exemplis 
9 11 13

7 9 11
2 2 2,  ,  ,  etc.x x x

a a a
z z z    quae 

sunt aequationes Curvarum naturas definientes quarum Areae facile determinantur & 
tamen nullo modo per hanc Methodum possunt inveniri. Sed nolo in hac materia ulterius 
digredi sperans clariss. virum boni consulturum quicquid dixerim; quia praecipua ratio 
quae me impulit ut haec scriberem, non alia esset, quam ut (errores ejus ostendendo) 
illum extimulem ad publicanda illa, quibus Geometriam in immensum ultra terminos 
a Vieta & Cartesio positos se promovere posse asseruit. 
 

FINIS. 
 


