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Preface 

The rapid growth of the Web has led to the proliferation of information 
sources and content accessible via the Internet. While improvements in 
hardware capabilities continue to help the speed and the flow of information 
across networked computers, there remains a major problem for the human 
user to keep up with the rapid expansion of the Web information space. 
Although there is plenty of room for computers to help humans to discover, 
navigate, and integrate information in this vast information space, the way 
the information is currently represented and structured through the Web is 
not easily readable to computers. To address this issue, the Semantic Web 
has emerged. It envisions a new information infrastructure that enables 
computers to better address the information needs of human users. 

To realize the Semantic Web vision, a number of standard technologies 
have been developed. These include the Uniform Resource Identifiers (URI) 
for identifying objects in the Web space as well as Resource Description 
Framework (RDF) and Web Ontology Language (OWL) for encoding 
knowledge in the form of standard machine-readable ontologies. The goal is 
to migrate from the syntactic Web of documents to the semantic Web of 
ontologies. The leading organization for facilitating, developing, and 
promoting these Web-based standards is the World Wide Web Consortium 
(W3C) (http://www.w3.org). Since 1994, W3C has published more than 
ninety such standards, called "W3C Recommendations", which are 
specifications or sets of guidelines that, after extensive consensus-building 
(e.g., through working drafts), have received the endorsement of W3C. As 
these standard SW technologies are becoming mature and robust, it is 
important to provide test-beds for these technologies. Many believe that the 
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life science domain can serve as a rich test-bed for Semantic Web 
technologies. This belief is substantiated by the following developments. 

Publicity. The "Semantic-Web-for-life-science" theme has been brought 
up and emphasized through keynotes, workshops and special sessions at 
major international Semantic Web conferences (e.g., ISWC, WWW, and 
Semantic Technology conferences) and bioinformatics conferences (e.g., 
Bio-IT World and PSB 2005). The Semantic Web wave also reaches Asia, 
the first Asian Semantic Web Conference (ASWC) will be held in Beijing, 
China in September of 2006. 

Community Support. The W3C Semantic Web for Health Care and Life 
Science Interest Group (SW HCLSIG; http://www.w3.org/2001/sw/hcls) 
was inaugurated in September of 2005, and is chartered to develop and 
support the use of Semantic Web technologies to improve collaboration, 
research and development, and innovation adoption in the Health Care and 
Life Science domains. In addition, the e-Science initiative in UK and other 
major Semantic Web communities including REWERSE 
(http://rewerse.net/) and AKT (http://www.aktors.org/akt/) have launched 
projects involving life science applications of the Semantic Web. These 
communities include both academic and industrial participants across 
different nations. 

Publications. There are a growing number of papers describing Semantic 
Web use cases for the life sciences, which were published in prestigious 
journals (e.g., Science and Nature) and conference proceedings (e.g., ISMB 
and ISWC). A special issue on "Semantic Web for the Life Sciences" was 
published in the Journal of Web Semantics this year. 
(http://www.elsevier.com/wps/find/joumaldescription.cws_home/671322/de 
scription). 

Tools. A significant number of Semantic-Web-aware tools have been 
developed over the past several years. While some of them are proprietary 
tools developed by commercial vendors, others were developed by academic 
institutions as open source software. These tools (more tools will be needed) 
are critical in bringing Semantic Web to bear on behalf on the life scientist. 

This book was conceived at the juncture of these exciting developments, 
in step with the growing awareness and interest of the Semantic Web in the 
Life Sciences. It encompasses a collection of representative topics written by 
leading experts who have contributed their technical expertise, experience, 
and knowledge. This selection of topics and experts is by no means 
exhaustive and represents the tip of the iceberg. Continued exploration and 
investigation are required before the potential of the Semantic Web can be 
fully realized in the life sciences. This book documents encouraging and 
important first steps. 
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Introduction 

Life science is a knowledge-based discipline and success in the life 
sciences is based on access to knowledge. Scientists typically need to 
integrate a spectrum of information to successfully complete a task, be it the 
creation of a new hypothesis, identification of an unknown entity or 
classification of those already known. Frequently a single repository of 
supporting information is insufficient on its own to meet these needs. 
Accordingly access to knowledge structured in such a way that multiple 
users (machine or human) can get what they need when they need it is a 
fundamental concern of all scientists. 

Structured knowledge is often stored in fragments, specialized units 
which can be distributed across the globe and the Internet. Access is 
dependant on our ability to identify, navigate, integrate and query knowledge 
resources. Our tools for this purpose continue to be the limiting factor in our 
ability to gain access to knowledge. Most significantly the Internet has 
revolutionized our existence and the Web has revolutionized the way 
information is organized and accessed via the Internet. The technical 
achievements of the Web have evolved far beyond its original 
conceptualization. Along with the success of this paradigm we are acutely 
aware of its limitations. Generic Web search engines allow us to find 
documents but do not link us directly to the structure and content of 
databases or provide us conclusive support for decisions we wish to make. 

Consequently the emergence of the Semantic Web vision as an extension 
to the Internet is timely and necessary. Transparent search, request, 
manipulation, integration and delivery of information to the user by an 
interconnected set of services are the promised fruits of this vision. The 
Semantic Web now has its own set of standards governing knowledge 
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representation, a series of candidate query tools and a devoted 'early adopter' 
community of experts developing applications that take advantage of 
semantic declarations about represented knowledge. The Semantic Web is 
now a research discipline in its own right and commercial interest in 
applications of Semantic Web technologies is strong. The advantages of the 
Semantic Web lie in its ability to present and provide access to complex 
knowledge in a standardized form making interoperability between 
databases and middleware achievable. 

Scientists have much to gain from the emergence of the Semantic Web 
since their work is strongly knowledge-based. Unambiguous, semantically-
rich, structured declarations of information have long been a fundamental 
cornerstone of scientific discourse. To have such information available in 
machine readable form makes a whole new generation of scientific software 
possible. What is currently lacking is an appreciation of the value that the 
Semantic Web offers in the life sciences. A pedagogical oasis is required for 
interested scientists and bioinformatics professionals, where they can learn 
about and draw inspiration from the Semantic Web and its component 
technologies. It is in this climate that this book seeks to offer students, 
researchers, and professionals a glimpse of the technology, its capabilities 
and the reach of its current implementation in the Life Sciences. 

The book is divided into six parts, described below, that cover the topics 
of: knowledge integration, knowledge representation, knowledge 
visualization, utilization of formal knowledge representations, and access to 
distributed knowledge. The final part considers the viability of the semantic 
web in life science and the legal challenges that will impact on its 
establishment. The book may be approached from technical, scientific or 
application specific perspectives. Component technologies of the Semantic 
Web (including RDF databases, ontologies, ontological languages, agent 
systems and web services) are described throughout the book. They are the 
basic building blocks for creating the Semantic Web infrastructure. Other 
technologies, such as natural language processing and text mining, which are 
becoming increasingly important to the Semantic Web, are discussed. 
Scientists reading the book will see that the complex needs of biology and 
medicine are being addressed. Moreover, that pioneering Life Scientists have 
joined forces with Semantic Web developers to build valuable 'semantic' 
resources for the scientific community. Different areas of computer science 
(e.g., artificial intelligence, database integration, and visualization) have also 
been recruited to advance the vision of the Semantic Web and the ongoing 
synergy between the life sciences and computer science is expected to 
deliver new discovery tools and capabilities. Readers are given examples in 
Part IV and throughout the book illustrating the range of life science tasks 
that are benefiting from the use of Semantic Web infrastructure. These 
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application scenarios and examples demonstrate the great potential of the 
Semantic Web in the life sciences and represent finitful collaborations 
between the Semantic Web and life science communities. 

Parti 

The first chapter of this book reviews the challenges that life scientists 
are faced with when integrating diverse but related types of life science 
databases, focusing on the pressing need for standardization of the syntactic 
and semantic data representations. The authors discuss how to address this 
need using the emerging Semantic Web technologies based on the Resource 
Description Framework (RDF) standard embodied by the YeastHub and 
LinkHub, prototype data warehouses that facilitate integration of 
genomic/proteomic data and identifiers. Whereas data warehouses are single 
location data repositories which endure the requirement of regular 
maintenance and update to ensure data are concurrent an alternative 
federated model also exists. This federated approach offers direct access to 
multiple, online, semantically legible, data resources serving up data on 
demand. Key to this paradigm are integrated bioinformatics applications 
designed to allow users to directly query the contents of XML-based 
documents and databases. Chapter 2 outlines the core features and 
limitations of three such lightweight approaches, demonstrated through the 
ProteinBrowser case study in which an ontology browser coordinates the 
retrieval of distributed protein information. Traditional XML and two novel 
rule-based approaches, respectively XQuery, Xcerpt and Prova, are 
contrasted. Given the number of major Bioinformatic databases now 
publishing in XML, an elementary knowledge representation format, there is 
clearly a trend towards targeted querying of remote data. 

In addition to acquiring the technical know-how to approach new 
database integration challenges, we also benefit from reflecting on the 
capabilities of incumbent technologies, in particular from identifying the 
avenues where Semantic Web technologies can make a difference to existing 
information systems. Chapter 3 focuses on knowledge acquisition fi*om the 
biomedical literature and on the current infrastructures needed to access, 
extract and integrate this information. The biomedical literature is the 
ultimate repository of biomedical knowledge and serves as the source for 
annotations that populate biological databases. The chapter authors review 
the role of text mining in providing semantic indices into the literature, as 
well as the importance of interactive tools to augment the power of the 
human expert to extract information from the literature. These tools are 
critical in supporting expert curation, finding relationships among biological 
entities, and creating content for databases and the Semantic Web. 
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Part II 

Making content available for the Semantic Web requires well structured, 
explicit representations of knowledge. The primary knowledge 
representation vehicles of the Semantic Web are called 'Ontologies'. Their 
coverage of biological content emerges primarily from pioneering efforts of 
biologists to provide controlled vocabularies of scientific terminology to 
assist in annotation of experimental data. Only recently have efforts to 
formalize biological knowledge according to standard knowledge 
representation formats materialized. Chapter 4 discusses Biological 
Ontologies providing a state of the art overview of their emergence, current 
scope and usage along with best practice principles for their development. 
Chapter 5 describes the challenge of representing the spectrum of knowledge 
that constitutes human biology and considers the content and properties of 
existing clinical ontologies, which can serve to integrate clinical phenotypes 
and genomic data. While the development and use of ontologies has started 
earlier in medical settings than in the biological research environment, recent 
advances in ontological research benefit both the medical and biological 
worlds. The creation of new ontologies is however, not a trivial endeavor. 
Many existing ontologies would be differently designed by ontology 
engineers had they had the experience that they gained during the process of 
ontology development. There is a clear 'life cycle' in ontology development 
that includes distinct roles for ontology engineers, experts in the domain of 
the ontology content, end users. To build good ontologies we must learn 
from the mistakes of the pioneers who have gone before us. In Chapter 6 the 
authors introduce the basic units of ontologies, fundamental ontology 
engineering principles and discuss distinct approaches to ontology design 
using a critical evaluation of a ground-breaking yet outdated ontology. Given 
their manifold uses ontologies designed for a given purpose are often 
criticized by experts from distinctly different disciplines such as philosophy 
or applied biology. Conflicting visions of reality are commonplace in science 
and the establishment of formal representations of knowledge often serves to 
reignite older passions. Nevertheless, the role of bio-ontology quality control 
is highly significant and contemporary given the importance of the 
applications that ontologies are employed in. Wrong hypotheses or bad 
clinical decisions can be traced back to errors in formal knowledge 
representations. 

Chapter 7 addresses this need for quality control, specifically the need for 
the evaluation of ontologies from a wide range of perspectives and presents a 
series of recommendations for ontology developers and the bio-ontology 
community at large to consider. The authors discuss the need for a sound and 
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systematic methodology for ontology evaluation highlighting the relative 
importance of various criteria and the merits of existing evaluation 
approaches. Additionally we are reminded that ontologies do not exist in 
isolation moreover they are integral to information systems and the 
discipline of information engineering as a whole. In summary the authors 
point out that currently the best marker of success is when ontologies are 
adopted by others. Indeed uptake of any given ontology by a user 
community can be swift when the ontology is published in a recognized 
standard ontology format. The field of ontology engineering is sufficiently 
mature to have two standard ontology languages endorsed by the W3C, 
namely RDF (Resource Description Framework) and the OWL (Web 
Ontology Language). Learning these knowledge representation languages 
and understanding their merits can be a daunting exercise for the life 
scientist. Chapter 8 introduces, using examples, the basic notions of OWL 
from a formal logic-based perspective, presenting the abstract syntax and 
semantics of the language. The reader is also advised as to what 
circumstances OWL is suitable and how to leverage its advanced knowledge 
representation capabilities. The chapter also directs the reader to 
introductory resources and showcases languages designed for use in the 
query of formal ontologies using the description logic (DL) paradigm. 

Part III 

In light of the fact that ontology users and engineers, irrespective of their 
research domain, are also very concerned with the visualization of 
knowledge represented in ontologies, two chapters discuss the importance of 
visualization within the ontology development and usage lifecycles. Chapter 
9 divides visualization methods into two categories; firstly ontology 
visualization techniques (OVT), where the focus is on presenting the best 
visual structure, for the sake of explorative analysis and comprehension, and 
secondly visual ontology language (VOL) where the focus is on defining the 
unambiguous, pictorial representation of ontological concepts. A VOL, 
named DLG^, which specifically targets the RDF-based ontology formalism, 
is illustrated using a portion of the Gene Ontology. In contrast Chapter 10 
specifically addresses the visualization of OWL ontologies and proposes a 
visualization model for OWL-DL that is optimized for simplicity and 
completeness and based around the underlying DL semantics of OWL 
ontologies. The implementation and use of this model, namely the GrOWL 
graphical browser and editor, is discussed in the context of the Ecosystem 
Services Database. 
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Part IV 

The vision of the Semantic Web is obviously more that the sum of its 
underlying technologies and its wide adoption depends much on the 
assembly of its components and their capabilities into useful knowledge 
infrastructures. To demonstrate that Semantic Web technologies have found 
valuable roles in Life Sciences informatics a series of chapters outline 
application scenarios. Using a case study Chapter 11 examines how 
Semantic Web technology, specifically DL based reasoning over OWL-DL 
ontologies, can be effectively applied to automate tedious classification tasks 
typically involved in analyzing genomic data. The case study introduces the 
use of an ontology of the phosphatase protein family for the automated 
classification of all phosphatases from a newly sequenced genome into the 
appropriate sub-families. The authors also provide an authoritative and 
comprehensive description of the capabilities of DL reasoners and the 
inference tasks they perform. 

Beyond the use of Semantic Web technology for specific Life Science 
tasks we are now seeing a migration to implementations encompassing much 
broader challenges. Chapter 12 explores the applicability of Semantic Web 
technologies to the area of Translational Medicine, which aims to improve 
communication between the core and clinical sciences. In a use case 
illustrating the requirements of medical doctors during the diagnosis of 
disease symptoms the utility of expressive data and knowledge 
representation models and query languages is demonstrated. The role played 
by declarative specifications such as rules, description logics axioms and 
inferences based on these specifications is highlighted in the context of the 
use case. 

In a further example, Chapter 13, the authors describe how ontologies 
can be used to resolve problems of semantic disconnectedness throughout 
the various resources and components required in text mining platforms, 
typically used in biomedical knowledge acquisition. Using the application 
scenario of text mining the protein engineering literature for mutation related 
knowledge, a digest of the design requirements for an ontology supporting 
NLP tasks is accompanied by a detailed illustration of the technical aspects 
of ontology deployment in a biomedical text mining framework. 
Furthermore the value of the resulting ontologies, instantiated with specific 
segments of raw text from protein engineering documents, that are query 
accessible with DL-based reasoning tools is demonstrated. 
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PartV 

While ontologies serve as central components of the Semantic Web's 
knowledge representation infrastructure much knowledge remains 
distributed. In order to gain access to the content of distributed databases or 
data processing services 'intelligent' software technology is a crucial 
component of a knowledge-based architecture. Already, direct query of 
XML databases using custom query tools provides some fiinctionality in this 
regard. In addition Web services and Multi Agent systems can also provide 
the required functionalities, albeit at different levels of abstraction. Indeed 
the existence of such tools makes it possible to coordinate workflows of 
tasks advertised over the Internet, provided that the user can locate suitable 
services. The MyGrid architecture fiirther facilitates such workflows and the 
reuse of associated metadata. Subsequent chapters 13, 14 and 15 discuss 
these issues in detail. 

With the goal of providing 'semantic' access to Web Services Chapter 14 
describes SemBrowser, a registry of Biological Web services, where services 
can be registered by providers and queried by users to find services 
appropriate to their need. The services are annotated with terms from a 
domain specific ontology allowing them be queried based on the semantics 
of their data inputs, data outputs and the task they perform. A use case 
describing how services can be registered and queried is provided from the 
glycoproteomics domain. Frequently the capabilities of Web services and 
agent systems are contrasted, to examine the advantages of these seemingly 
competing technologies. To assist the reader in understanding these 
differences Chapter 15 describes what software 'agents' are, what the agent 
technology offers and provides a state of the art overview of the contribution 
of Multi Agent software to life sciences and the Semantic Web. Self-
organized agent systems are positioned to become navigators of Web content 
and coordinators of tasks into bioinformatic workflows. Workflows and in 
silico research pipelines are now becoming the norm within large-scale 
discovery initiatives. Increasingly a life scientist needs tools that can support 
collaborative in silico life science experimentation, discovering and making 
use of resources that have been developed over time by different teams for 
different purposes and in different forms. The ""̂ Grid project. Chapter 16, 
has developed a set of software components and a workbench, Tavema, for 
building, running and sharing workflows that can link third party 
bioinformatics services, such as databases, analytic tools and applications. 
Using recycled metadata the Tavema workbench is able to intelligently 
discover pre-existing services, workflows or data. The arrangement of Web 
Services into workflows is often considered a logical interface between the 
Semantic Web and the life scientist. Indeed Tavema has been used to 
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support a variety of life science research projects including identification of 
a mutation associated with the Graves' Disease and mapping of the region of 
Chromosome 7 involved in Williams-Beuren Syndrome (WBS). The full 
range of functionality offered by the ""̂ Grid initiative is discussed in the 
chapter 16. 

Part VI 

Having examined the reach and scope of the Semantic Web in its current 
state with respect to life sciences, it is appropriate to reflect on the likely 
impact and future of this new paradigm. The establishment and proliferation 
of any new technology or infrastructure certainly depends on multiple 
criteria being satisfied at the same time, both with respect to its suitability to 
the user community and the capabilities of the tool set. The exact footprint 
that the Semantic Web will establish is not yet clear but it will impact upon 
the way scientists interact with data, computational tools, and each other. 
The correct interpretation of biologist's needs by Semantic Web architects is 
critical. Chapter 17 discusses the typical obstacles to the emergence and 
longevity of new computational technologies and addresses these in the 
context of the Semantic Web for the life sciences. 

One such obstacle is standardization. Life science has a glut of 
unresolved but important standardization issues; likewise standardization of 
the Semantic Web's core technologies is a dimension crucial to its adoption. 
The W3C has an established process for reviewing candidate technologies 
for official recommendation which strongly reflects the maturity of the 
Semantic Web. Yet at the intersection of the Semantic Web and life science 
there await significant challenges in the declaration of property rights over 
standards, biological ontologies and the derivative information systems upon 
which we will in future rely heavily. Chapter 18 examines the competing 
interests in industry, government and academia at the interface of intellectual 
property and standard setting. Will the 'gold rush' mentality emerge once 
more to claim property over these new cutting edge technologies? Semantic 
Web standards could well be the new frontier. Whatever our scientific 
training we can all appreciate that the Semantic Web has the power to 
change our daily activities, as did the introduction of the Web, and we do 
ourselves no harm by reviewing the precedents in the legal paradigm that we 
must eventually navigate. 
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SEMANTIC WEB APPROACH TO DATABASE 
INTEGRATION IN THE LIFE SCIENCES 

Kei-Hoi Cheunĝ '̂ '̂  ̂  Andrew K. Smith^ Kevin Y.L. Yip^ Christopher J.O. 
Baker̂ '̂  and Mark B. Gerstein '̂̂  
^Yale Center for Medical Informatics, ^Anesthesiology, ^Genetics, "^Computer Science, ^ 
^Molecular Biophysics and Biochemistry, Yale University, USA, ^Computer Science and 
Software Engineering, Concordia University, Canada, ^Institute for Infocomm Research, 
Singapore. 

Abstract: This chapter describes the challenges involved in the integration of databases 
storing diverse but related types of life sciences data. A major challenge in this 
regard is the syntactic and semantic heterogeneity of life sciences databases. 
There is a strong need for standardizing the syntactic and semantic data 
representations. We discuss how to address this by using the emerging 
Semantic Web technologies based on the Resource Description Framework 
(RDF) standard. This chapter presents two use cases, namely YeastHub and 
LinkHub, which demonstrate how to use the latest RDF database technology 
to build data warehouses that facilitate integration of genomic/proteomic data 
and identifiers. 

Key words: RDF database, integration. Semantic Web, molecular biology. 

INTRODUCTION 

The success of the Human Genome Project (HGP) [1] together with the 
popularity of the Web (or World Wide Web) [2] has made a large quantity of 
biological data available to the scientific community through the Internet. 
Since the inception of HGP, a multitude of Web accessible biological 
databases have emerged. These databases differ in the types of biological 
data they provide, ranging from sequence databases (e.g., NCBI's GenBank 
[3]), microarray gene expression databases (e.g., SMD [4] and GEO [5]), 
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pathway databases (e.g., BIND [6], HPRD [7], and Reactome [8]), and 
proteomic databases (e.g., UPD [9] and PeptideAtlas [10]). While some of 
these databases are organism-specific (e.g., SGD [11] and MGD [12]), 
others like (e.g.. Gene Ontology [13] and UniProt [14]) are relevant, 
irrespective of taxonomic origin. In addition to data diversity, databases vary 
in scale ranging from large global databases (e.g., UniProt [14]), medium 
boutique databases (e.g., Pfam [15]) to small local databases (e.g., PhenoDB 
[16]). Some of these databases (especially the local databases) may be 
network-inaccessible and may involve proprietary data formats. 
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Figure 1-1. Number of databases published in the NAR Database Issues between 1999 and 2006. 

Figure 1-1 indicates the rate of growth in the number of Web-accessible 
molecular biology databases, which were published in the annual Database 
Issue of Nucleic Acids Research (NAR) between 1999 and 2006. These 
databases only represent a small portion of all biological databases in 
existence today. With the sustained increase in the number of biological 
databases, the desire for integrating and querying combined databases grows. 
Information needed for analysis and interpretation of experimental results is 
frequently scattered over multiple databases. For example, some microarray 
gene expression studies may require integrating different databases to 
biologically validate or interpret gene clusters generated by cluster analysis 
[17]. 

For validation, the gene identifiers within a cluster may be used to 
retrieve sequence information (e.g., fi*om GenBank) and functional 
information (e.g., from Gene Ontology) to determine whether the clustered 
genes share the same motif patterns or biological fiinctions. For 
interpretation, such gene expression data may be integrated with pathway 
data provided by different pathway databases to elucidate relationships 
between gene expression and pathway control or regulation. 
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Database integration is of the key problems that Semantic Web aims to 
address. As stated in the introduction of World Wide Web Consortium's 
Semantic Web page (http://www.w3.org/2001/sw/): ''The Semantic Web is 
about two things. It is about common formats for interchange of data, where 
on the original Web we only had interchange of documents. Also it is about 
language for recording how the data relates to real world objects. That 
allows a person, or a machine, to start off in one database, and then move 
through an unending set of databases which are connected not by wires but 
by being about the same thing. " 

Below we review the challenges faced when integrating information from 
multiple databases. 
• Locating Resources. Automated identification of Websites that contain 

relevant and interoperable data poses a challenge. There is a lack of 
widely-accepted standards for describing Websites and their contents. 
Although the HTML meta tag 
(http://www.htmlhelp.com/reference/html40/head/meta.html) can be 
used to annotate a Web page through the use of keywords, such tags are 
problematic in terms of sensitivity and specificity. Furthermore, these 
approaches are neither supported nor used widely by existing Web 
search engines. Most Web search engines rely on using their own 
algorithms to index individual Websites based on their contents. 

• Data Formats. Different Web resources provide their data in 
heterogeneous formats. For example, while some data are represented in 
the HTML format, interpretable by the Web browser, other data formats 
including the text format (e.g., delimited text files) and binary format 
(e.g., images) are commonplace. Such heterogeneity in data formats 
makes universal interoperability difficult if not impossible. 

• Synonyms. There are many synonyms for the same underlying 
biological entity as a consequence of researchers independently naming 
entities for use in their own datasets or because of legacy common 
names (such as the famous "sonic hedgehog" gene name) arbitrarily 
given to biological entities before large-scale databases were created. 
Some such names have managed to remain in common use by 
researchers. An example of this problem is the many synonymous 
protein identifiers, assigned by laboratories to match their own lab-
specific protein identifiers. There can also be lexical variants of the same 
underlying identifier (e.g., GO:0008150 vs. GO0008150 vs. GO-8150). 

• Ambiguity. Besides synonyms, the same term (e.g., insulin) can be used 
to represent different concepts (e.g., gene, protein, drug, etc). This 
problem can also occur at the level of data modeling. For example, the 
concept 'experiment' in one microarray database (e.g., SMD [4]) may 
refer to a series of samples (corresponding to different experimental 
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conditions) hybridized to different arrays. In another microarray 
database (e.g., RAD [18]), an experiment may refer to a single 
hybridization. 

• Relations. There are many kinds of relationships between database 
entries including one-to-one and one-to-many relationships. For 
example, a single Gene Ontology identifier can be related with many 
UniProt identifiers (i.e. they all share the same functional annotation). 
An important structuring principle for genes and proteins, which leads to 
one-to-many relationships, is the notion of families based on 
evolutionary origin. A given protein or gene can be composed of one or 
more family specific units, called domains. For example, a UniProt 
entity may be composed of two different Pfam domains. In general a 
given Pfam domain [15] will be related to many UniProt proteins by this 
family association, and the UniProt proteins can in turn be related to 
other entities through various kinds of relationships (and similarly for 
GO). A transitive closure in such a relationship graph, even a few levels 
deep, can identify relationships with a great number of other entities. It 
is important to note, however, that there are certain relationship types for 
which following them in the wrong way can lead to incorrect inferences, 
with the family relationship being a key one. 

• Granularity. Different biological databases may provide information at 
different levels of granularity. For example, information about the 
human brain can be modeled at different granular levels. In one 
database, the human brain may be divided into different anatomical 
regions (e.g., hippocampus and neocortex), another database may store 
information about the different types of neurons (e.g., Purkinje cells) at 
different brain regions (e.g., ventral paraflocculus). For an even finer 
level of granularity, some neuroscience databases store information 
about the membrane properties at different compartments of the neuron. 

2. APPROACHES TO DATABASE INTEGRATION 

There are two general approaches to database integration, namely, the 
data warehouse approach and the federated database approach. The data 
warehouse approach emphasizes data translation, whereas the federated 
approach emphasizes query translation [19]. The warehouse approach 
involves translating data from different sources into a local data warehouse, 
and executing all queries on the warehouse rather than on the distributed 
sources of that data. This approach eliminates various problems including 
network bottlenecks, slow response times, and the occasional unavailability 
of sources. In addition, creating a warehouse allows for an improved query 
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efficiency or optimization since it can be performed locally [20]. Another 
benefit in this approach is that it allows values (e.g., filtering, validation, 
correction, and annotation) to be added to the data collected from individual 
sources. This is a desirable feature in the domain of biosciences. The 
approach, however, suffers from the maintenance problem in light of 
evolution of the source database (both in structure and content). The 
warehouse needs to be periodically updated to reflect the modifications of 
the source databases. Some representative examples of biological data 
warehouse include Bio Warehouse [21], Biozon [22], and DataFoundry [23]. 

The federated database approach concentrates on query translation [24]. 
It involves a mediator, which is a middleware responsible for translating, at 
runtime, a query composed by a user on a single federated schema into 
queries on the local schemas of the underlying data sources. A mapping is 
required between the federated schema and the source schemas to allow 
query translation between the federated schema and the source schemas. 
While the federated database approach ensures data is concurrent / 
synchronized and is easier to maintain (when new databases are added), it 
generally has a poorer query performance than the warehouse integration 
approach. Some representative examples of the federated database include 
BioKleisli [25], Discoverylink [26], and QIS [27]. 

2,1 Semantic Web Approach to Data Integration 

Traditional approaches (including the data warehouse and federated 
database) to data integration involve mapping the component data models 
(e.g., relational data model) to a common data model (e.g., object-oriented 
data model). To go beyond a data model, the Semantic Web approach [28] 
relies on using a standard ontology to integrate different databases. Unlike 
data models, the fundamental asset of ontologies is their relative 
independence of particular applications. That is, an ontology consists of 
relatively generic knowledge that can be reused by different kinds of 
applications. In the Semantic Web, several ontological languages 
(implemented based on the extensible Markup Language or XML) have 
been proposed to encode ontologies. 

2.1.1 RDF vs. XML 

While the HyperText Markup Language (HTML) is used for providing a 
human-friendly data display, it is not machine-friendly. In other words, 
computer applications do not know the meaning of the data when parsing the 
HTML tags, since they only indicate how data should be displayed. To 
address this problem, the extensible Markup Language (XML) was 
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introduced, to associate meaningful tags with data values. In addition, a 
hierarchical (element/sub-element) structure can be created using these tags. 
With such descriptive and hierarchically-structured labels, computer 
applications are given better semantic information to parse data in a 
meaningful way. 

Despite its machine readability, as indicated by Wang et al. [29], the 
nature of XML is syntactic and document-centric. This limits its ability to 
achieve the level of semantic interoperability required by the highly dynamic 
and integrated bioinformatics applications. In addition, there is a problem 
with both the proliferation and redundancy of XML formats in the life 
science domain. Overlapping XML formats (e.g., SBML [30] and PSI MI 
[31]) have been developed to represent the same type of biological data (e.g., 
pathway data). 

The introduction of the Semantic Web [28] has taken the usage of XML 
to a new level of ontology-based standardization. In the Semantic Web 
realm, XML is used as an ontological language to implement machine-
readable ontologies built upon standard knowledge representation 
techniques. The Resource Description Framework (RDF) 
(http://www.w3.org/RDF/) is an important first step in this direction. It 
offers a simple but useful semantic model based on the directed acyclic 
graph structure. In essence, RDF is a modeling language for defining 
statements about resources and relationships among them. Such resources 
and relationships are identified using the system of Uniform Resource 
Identifiers (URIs). Each RDF statement is a triplet with a subject, property 
(or predicate), and property value (or object). For example, 
< "http://en. wikipedia. org/wiki/Protein# '\ ''http://en. wikipedia. org/wiki/Nam 
e#'\ "http://en.wikipedia.Org/wiki/P53#"> is a triple statement expressing 
that the subject Protein has P53 as the value of its Name property. The 
objects appearing in triples may comprehend pointers to other objects in 
such a way as to create a nested structure. RDF also provides a means of 
defining classes of resources and properties. These classes are used to build 
statements that assert facts about resources. RDF uses its own syntax (RDF 
Schema or RDFS) for writing a schema for a resource. RDFS is more 
expressive than RDF and it includes subclass/superclass relationships as well 
as the option to impose constraints on the statements that can be made in a 
document conforming to the schema. 

Some biomedical datasets such as the Gene Ontology [13], UniProt 
(http://expasy3.isb-sib.ch/-ejain//rdf/), and the NCI thesaurus [32] have been 
made available in RDF format. In addition, applications that demonstrate 
how to make use of such datasets have been developed (e.g.,[33, 34]). 
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2.1.2 OWL vs. RDF 

While RDF and RDFS are commonly-used Semantic Web standards, 
neither is expressive enough to support formal knowledge representation that 
is intended for processing by computers. Such a representation consists of 
expUcit objects (e.g., the class of all proteins, or P53 a certain individual), 
and of assertions or claims about them (e.g., "EGFR is an enzyme", or "all 
enzymes are proteins"). Representing knowledge in such explicit form 
enables computers to draw conclusions from knowledge already encoded in 
the machine-readable form. More sophisticated XML-based knowledge 
representation languages such as the Web Ontology Language [35] have 
been developed. OWL is based on description logics (DL) [36], which are a 
family of class-based (concept-based) knowledge representation 
formalisms [36]. They are characterized by the use of various constructors 
to build complex classes from simpler ones, an emphasis on the decid
ability of key reasoning problems, and by the provision of sound, complete 
and (empirically) tractable reasoning services. Description Logics, and 
insights from DL research, had a strong influence on the design of OWL, 
particularly on the formalization of the semantics, the choice of language 
constructors, and the integration of data types and data values. For an in-
depth overview of OWL, the reader can refer to the chapter entitled: "OWL 
for the Novice: A Logical Perspective". 

In the life science domain, the pathway exchange standard called 
BioPAX (http://www.biopax.org/) has been deployed in OWL to standardize 
the ontological representation of pathway data [37]. Increasingly, pathway 
databases including HumanCyc [38] and Reactome [8] have exported data 
in the OWL-based BioPAX format. As another example, the FungalWeb 
Project [39] has integrated a variety of distributed resources in the domain of 
fungal enzymology into a single OWL DL ontology which serves as an 
instantiated knowledgebase allowing complex domain specific A-box 
queries using DL based reasoning tools. In contrast [40] have translated a 
single large scale taxonomy of human anatomy from a frame-based format 
into OWL which supports reasoning tasks. 

3. USE CASES 

This section presents two use cases, namely YeastHub [33] and 
LinkHub (http://hub.gersteinlab.org/), which demonstrate how to use the 
RDF approach to integrate heterogeneous genomic data. Both of these use 
cases involve using a native RDF database system called Sesame 
(http://www.openrdf.org) to implement a warehouse or hub for integrating or 
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interlinking diverse types of genomic/proteomic data. Sesame allows a RDF 
repository to be created on top of main memory, relational database (e.g., 
MySQL and Oracle), and native RDF files. For small or moderate size 
datasets, the main memory approach provides the fastest query speed. For 
large amounts of data. Sesame utilizes the efficient data storage and indexing 
facilities provided by the relational database engine (e.g., MySQL and 
Oracle). Finally, the native file-based approach eliminates the need of using 
a database and its associated overhead at the cost of performance if the data 
files involved are large. 

3.1 YeastHub 

YeastHub features the construction of a RDF-based data warehouse 
(implemented using Sesame) for integrating a variety of yeast genome data. 
This allows yeast researchers to seamlessly access and query multiple related 
data sources to perform integrative data analysis in a much broader context. 
The system consists of the following components: registration, data 
conversion, and data integration. 

3.1.1 Registration 

This component allows the user to register a Web-accessible dataset so 
that it can be used by YeastHub. During the registration process, the user 
needs to enter information (metadata) describing the dataset (e.g., location 
(URL), owner, and data type). Such description is structured based on the 
Dublin Core metadata standard (http://dublincore.org/). To encode the 
metadata in a standard format, the Rich Site Summary (RSS) format was 
used. RSS is an appropriate lightweight application of RDF, since the 
amount of metadata involved is typically small or moderate. The RSS-
encoded description of an individual dataset is called an "RSS feed". Many 
RSS-aware tools (e.g., RSS readers and aggregators) are available in the 
public domain, which allow automatic processing of RSS feeds. Among the 
different versions of RSS, RSS 1.0 was chosen because it supports RDF 
Schema. This allows ontologies to be incorporated into the modeling and 
representation of metadata. Another advantage of using RSS 1.0 is it that 
allows reuse of standard/existing modules as well as the creation of new 
custom modules. The custom modules can be used to expand the RSS 
metadata structure and contents to meet specific user needs. 
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3.1.2 Data conversion 

Registered datasets often originate from different resources in different 
formats, making it necessary to convert these formats into the RDF format. 
A variety of technologies can be used to perform this data conversion. For 
example, we can use XSLT to convert XML datasets into the RDF format. 
For data stored in relational datasets, we can use D2RQ 
(http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/), for example, to map the 
source relational structure and the target RDF structure. In addition, 
YeastHub provides a converter for translating tabular datasets into the RDF 
format. The translation operates on the assumption that each dataset belongs 
to a particular data type or class (e.g., gene, protein, or pathway). One of the 
data columns/fields is chosen by the user to be the unique identifier. Each 
identifier identifies an RDF subject. The rest of the data columns or fields 
represent RDF properties of the subject. The user can choose to use the 
default column/field names as the property names or enter his/her own 
property names. Each data value in the data table corresponds to a property 
value. The system allows some basic filtering or transformation of string 
values (e.g., string substitution) when generating the property values. Once a 
dataset is converted into the RDF format, it can be loaded into the RDF 
repository for storage and queries. Additionally it can be accessed by other 
applications through API. 

3.1.3 Data integration 

Once multiple datasets have been registered and loaded into YeastHub's 
RDF repository, integrated RDF queries can be composed to retrieve related 
data across multiple datasets. YeastHub offers two kinds of query interface, 
allowing command line or form based query. 
1. Ad hoc queries. Users are permitted to compose RDF-based query 

statements and issue them directly to the data repository. Currently the 
user can build queries in the following query languages: RQL, SeRQL, 
and RDQL. The user must be familiar with at least one of these query 
syntaxes as well as the structure of the RDF datasets to be queried. SQL 
users typically find it easy to learn RDF query languages. 

2. Form-based queries. While ad hoc RDF queries are flexible, users who 
do not know RDF query languages often prefer to use supervised 
method to pose queries YeastHub allows users to query the repository 
through Web query forms (although they are not as flexible as the ad hoc 
query approach). To create a query form, YeastHub provides a query 
template generator. First of all, the user selects the datasets and the 
properties of interest. Secondly, the user needs to indicate which 
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properties are to be used for the query output (select clause), search 
Boolean criteria (where clause), and join criteria (property values that 
can be linked between datasets). In addition, the user is given the option 
to create a text field, pull down menu, or select list (in which multiple 
items can be selected) for each search property. Once all the information 
has been entered, the user can go ahead to generate the query form by 
saving it with a name. The user can then use the generated query form to 
perform Boolean queries on the datasets associated with the form. 

3.1.3.1 Example query to correlate essentiality with connectivity 

SELECT DISTINCT n s O o r f , n s O c o n n e c t I v i t y , n s 4 a c c e » s i o n , ns4n««ne , n s 5 g i : o w t h _ c o n d i t l o n , 
n s S c l o n e _ i c i , n s 5 e x p i : e s s i o n _ l e v e l 
FROM 
{ 3 o u r c e 5 8 6 4 0 } n s l : o r f { n s l o r f } , 
{ s o u r c e 5 8 6 3 9 } n s 2 : o c f < n s 2 o r £ > , 
{ s o u r c e 5 8 6 3 8 ) n33 ; DB_Ot) j e c t _ S y n o n y r n { n33I>B_OtoJecc_3ynonyni> , 
{ s o u i : c e 5 8 6 3 8 } n s 3 : G O _ I D { n s 3 G O _ I D ) , 
{ s o u r c ; e 5 8 6 3 6) n s 4 : name { n s l n a w e ) , 
{ s o u r c e 5 8 6 3 6 } n s 4 : a c c e s s i o n ( n s 4 a c c e s s i o n > , 
{ s o u r c e 5 5 3 9 6 } n s 5 : o r f { n s S o r f } , 
{ 30u» : ceS5396} n s S t g r o T J t h _ c o n c l i c l o n { n s S g r o w t h L _ c o n d i c i o n ) , 
{ 3 0 u j : c e 5 5 3 9 6 } n s 5 : e x p r e s s i o n _ i e v e i { n s 5 e x p i : e s 3 i o n _ l e v e i > , 
< s o u r c e 5 5 3 9 6 ) n » 5 : c l o n e _ i c i < n » 5 c l o n e _ i c l ) , 
{ s o u i : c e 5 8 6 4 2 } nsO : c o n n e c t i v i t y < n s O c o n n e c t i v i t y ) , 
{ 3 0 u r c e 5 8 6 1 2 ) n s O i o r f { n s O o r f } 
WHERE 
n s 0 c o n n e c t i v i t y = " 8 0 " 
AND n 3 5 e x p r e 3 s i o n _ l e v e l " " l " ' ^ ' ^ < l i t t p : / / w w w . w3 . o r g / 2 0 0 1 / X M L S c h e m a # l o n g l n t e g e r > 
AND n s 5 c i o n e _ i c i - " V i e 2 B 1 0 " ^ ' ' < h . t t p : / / w w w . w3 . o r o / 2 0 0 1 / X M L S c h e m a # s t i : i n o > 
AND n 3 5 g r o w c h _ c o n d i t l o n ~ " v e g e t a t l v e " ' ^ ' ^ < h t t p : / / w w w . w3 . o r g / 2 0 0 1 / X M L 3 c h e n » a # 3 t r i n g > 
AND n s O o r f - n s l o r f 
AND n s l o r f " n s 2 o r f 
AND n s 2 o r l ! " n 3 3 D B _ O b J e c t _ S y n o n y T n 
AND n s 3 D B _ O t o j e c t _ 3 y n o n y i M - n 3 S o r f 
AND n s 3 G O _ I D - n s 4 a c c e s s i o n 
USING NAMESPACE 
n s 2 " < h t t p : / / m c d b 7 5 0 .rrted. y a l e . e d u / y e a s t h v i t o / s c h e m a / 3 c h e m a 5 8 63 9 . r d f > , 
n s 3 - < h t t p : / /mcd}D750 . rned . y a l e . e d u / y e a s t h u t o / s c h e i n a / s c h e m a 5 8 6 3 8 . r d £ > , 
n s l " < h t t p : / / m c d b 7 S 0 . lined, y a l e . e d u / y e a s th t ; i f c> / schema/schema58 640 . r d f > , 
n s O - < I i t t p : //rticdfc»7S0 . w e d . y a i e . e d u / y e a s t h u b / s c h . e m a / s c h e K i a 5 8 6 4 2 . r d £ > , 
n 3 5 « < h t t p : / / i n c d t o 7 5 0 . n i e d . y a l e . e d u / y e a s t h u b / s c h e m a / s c h e i n a _ t r i p ! e s . r d f #> , 
n 3 4 - ' < h t t p : / / 1 3 9 . 9 1 . 1 8 3 . 3 0 : 9 0 9 0 / R D F / V R P / E x a m p l e s / 3 c h e m a _ g o . r d f > 
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Figure 1-2. SeRQL query statement correlating between gene essentiality and connectivity. 

Figure 1-2 shows a RDF query statement written in SeRQL (Sesame 
implementation of RQL), which simultaneously queries the following yeast 
resources: a) essential gene list obtained from MIPS, b) essential gene list 
obtained from YGDP, c) protein-protein interaction data (Yu et al. 2004), d) 
gene and GO ID association obtained from SOD, e) GO annotation and, f) 
gene expression data obtained from TRIPLES [41]. Datasets (a)- (d) are 
distributed in tab-delimited format. They were converted into our RDF 
format. The GO dataset is in an RDF-like XML format (we made some 
slight modification to it to make it RDF-compliant). TRIPLES is an Oracle 
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database. We used D2RQ to dynamically map a subset of the gene 
expression data stored in TRIPLES to RDF format. 

The example query demonstrates how to correlate between gene 
essentiality and connectivity, based on the interaction data. The hypothesis is 
that the higher its connectivity, the more likely that the gene is essential. The 
example query includes the following Boolean condition: connectivity = 80, 
expressionjevel = 1, growthjoondition = vegetative, and clonejd = 
V182B10. Such Boolean query joins across six resources based on common 
gene names and GO IDs. Figure 1-2 (at the bottom) shows the query output, 
which indicates that the essential gene (YBL092W) has a connectivity equal 
to 80. This gene is found in both the MIPS and YGDP essential gene lists. 
This confirms the gene's essentiality as the two resources might have used 
different methods and sources to identify their essential genes. The query 
output displays the corresponding GO annotation (molecular function, 
biological process, and cellular component) and TRIPLES gene expression 
data. 

3.2 LinkHub 

LinkHub can be seen as a hybrid approach between a data warehouse and 
a federated database. Individual LinkHub instantiations are a kind of mini, 
local data warehouse of commonly grouped data, which can be connected to 
larger major hubs in a federated fashion. Such a connection is established 
through the semantic relationship among biological identifiers provided by 
different databases. 

A key abstraction in representing biological data is the notion of unique 
identifiers for biological entities and relationships (and relationship types) 
among them. For example, each protein sequence in the UniProt database is 
given a unique accession by the UniProt curators (e.g., Q60996). This 
accession uniquely identifies its associated protein sequence and can be used 
as a key to access its sequence record in UniProt. UniProt sequence records 
contain cross-references to related information in other genomics databases. 
For example, Q60996 is cross-linked in UniProt to Gene Ontology identifier 
GO:0005634 and Pfam identifier PF01603, although the kinds of 
relationships, which would here be "functional annotation" and "family 
membership" respectively, are not specified in UniProt. Two identifiers such 
as Q60996 and GO:0005634 and the cross-reference between them can be 
viewed as a single edge between two nodes in a graph, and conceptually then 
an important, large part of biological knowledge can be viewed as a massive 
graph whose nodes are biological entities such as proteins, genes, etc. 
represented by identifiers and the links in the graph are typed and are the 
specific relationships among the biological entities. The problem is that this 
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graph of biological knowledge does not explicitly exist. Parts of it are in 
existence piecemeal (e.g., UniProt's cross references to other databases), 
while other parts do not exist, i.e. the connections between structural 
genomics targets and UniProt identifiers. Figure 1-3 is a conceptual 
illustration of the graph of relationships among biological identifiers, with 
the boxes representing biological identifiers (originating database names 
given inside) and different edge types representing different kinds of 
relationships. For reasons of efficiency, we have implemented this 
relationship graph using MySQL. However, we have converted this 
relational database into its RDF counterpart for exploring the RDF modeling 
and querying capabilities. 
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Figure 1-3. An example relationship graph among biological identifiers. 

3.2.1 LinkHub Web interface 

The primary interactive interface to the MySQL LinkHub database 
(MySQL) is a Web-based interface (implemented using the so-called AJAX 
technologies [13], i.e. DHTML, JavaScript, DOM, CSS, etc.) which presents 
subsets of the graph of relationships in a dynamic expandable / collapsible 
list view. This interface allows viewing and exploring of the transitive 
closure of the relationships stemming from a given identifier interactively 
one layer at a time: direct edges from the given identifier are initially shown 
and the user may then selectively expand fringe nodes an additional layer at 
a time to explore fiirther relationships (computing the full transitive closure 
is prohibitive, and could also cause the user to "drown" in the data, and we 
thus limit it initially, and in each subsequent expansion, to anything one edge 
away, with the user then guiding further extensions based on the 
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relationships chosen for further exploration). Figure 1-4 is a screenshot of 
the interface and provides more detail. It also allows users to query and view 
particular types of path in the graph. 
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Figure 1-4. LinkHub Web Interface 

For example, one might want to view all proteins in some database sharing 
the same Pfam family as a given protein. In LinkHub, Pfam relationships are 
stored for UniProt proteins, so one could view the sibling family members of 
the given protein by specifying to view all proteins, which can be reached by 
following a path of types like the following: 

Given protein in database -> equivalent UniProt protein -^ Pfam family -^ 
UniProt proteins -> other equivalent proteins in database. 

An important use of this "paths query" interface is as a secondary, 
orthogonal interface to other biological databases in order to provide 
different views of their underlying data. For example, the molecular motions 
database MolMovDB [14] provides movie clips of likely 3D motions of 
proteins, and one can access it by PDB [15] identifiers. However, an useful 
alternative would be a "family view" interface where the user queries with a 
PDB identifier and requests to see all available motions for proteins that are 
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in the same family as the query PDB identifier. LinkHub provides this 
interface for MolMovDB (we also provide a similar "family view" interface 
to structural genomics data, e.g. see the NESG's SPINE [16, 17] target pages 
such as http://spine.nesg.org/target.pl?id=WR4 for the "NESG Family 
Viewer" links). 

3.2.2 RDF queries through integration of LinkHub into YeastHub 

To demonstrate the data interaction and exploration capabilities made 
possible by the RDF version of LinkHub, we have loaded the RDF-
formatted LinkHub dataset into YeastHub. We give a demonstration query 
written in SeRQL to show how one can effectively do the kinds of 
interesting exploratory scientific investigation and 'hypothesis testing' 
commonly done at the beginning of research. The query makes use of 
information present in both YeastHub and LinkHub (and thus would be 
impossible without joining the two systems). LinkHub is used as the 'glue' 
to provide both direct and indirect connections between different genomics 
identifiers. 

3.2.2.1 Example query to find "interolog" 

The example query here is to find Worm "Interolog" of Yeast protein 
interactions. With this query we want to consider all the protein interactions 
in yeast (S. cervisiae) and see how many and which of them are possibly 
present between their homologs in worm (C. elegans), i.e. as interologs [20] 
in worm. We thus start with a dataset containing known and predicted yeast 
protein interactions which is already loaded into YeastHub [21]; here the 
interactions are expressed between yeast gene names. For each Yeast gene 
name in the matched interaction set, we can use LinkHub's data as 'glue' to 
determine its homologs (via Pfam) in worm by traversing paths in the 
LinkHub relationship graph of type: 

Yeast gene name -> UniProt Accession -> Pfam accession -^ UniProt 
Accession -> WormBase ID . 

Then, for each pair in the yeast protein interaction dataset, we determine 
if both of its yeast gene names lead to WormBase IDs [22] in this way and 
identify those WormBase IDs as possible protein interactions. The SeRQL 
query statement together with a portion of its corresponding output is shown 
in Figures 1-5 (a) and (b). 



Semantic Web Approach to Database Integration in the Life Sciences 25 

SELECT DISTINCT Yeast_ProteJn_1, Yeast_Piotein_2, Worm_Protein_1, Woim_Protein_2 
FROM 
{ppi} it:Protein1 {Yeast_Protein_1}, 
{IhYOI} Ihiidanlifieisjcl {Yeast_Protein_1}, 
{IhYOI} lh:identlflers_fyp© {IhYOType}, 
{IhYOI} lh:inappings_type_$ynonym {IhUPIa}. 
{IhUPIa} Ih:ldentifier6_type {IhUPType}. 
{IhUPIa) lh:mapplngs_type_Family_Mapping {IhPFAMI}. 
{IhPFAMI} lh:identifiers_type {IhPFType), 
{IhPFAMI} lh:mappings_type_Famlly_Mapping {IhUPIb). 

WHERE 
Yeast_Protein_1 = "YAL005C" AND 
Yeast_Proteln_2 = "YLR310C" AND 
YEAST_ORF = "YEAST_ORF" AND 
(UNIPROT_KB = "UniProtKB/SwIss-Prot Ace" OR 
UNIPROT_KB • "UniProtKB/TrEMBL Ace") AND 
PFAM_ACC ="PFAM_ACC"AND 
WORMBASE = "WORMBASE" 
USING NAMESPACE 
it=<http://yeasthub2.gersteinlab.org/yeasthub/schema/thd_platlnum_6tandard_for_ppl20060224234451_schema.rdf>, 
lhx<http://yeasthub2.gerstelnlab.org/yeasthub/datasets/manual_upload/linkhub_schema.rdf#> 
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Figure 1-5. (a) SeRQL query statement for retrieving Worm "Interolog" of Yeast protein interactions, (b) 
Ouerv output. 

4. CONCLUSION AND FUTURE DIRECTIONS 

Semantic Web (RDF) database technologies have been maturing over the 
past several years. The two use cases (LinkHub and YeastHub) presented in 
this chapter show that RDF data warehouses can be built to serve some 
practical data integration needs in the life science domain. While the 
relational database is the predominant form of database in use in life 
sciences today, it has the following limitations that can be addressed by the 
RDF database technology. 
• While a relational schema can be exposed to local applications, it is not 

directly visible to Web agents. RDF or RDF schema can act as a 
gateway to allow relational databases to expose their data semantics to 
the World Wide Web. 

• In relational databases, data links are implemented as primary-foreign 
key relationship. The meaning of this link relationship is implicit, and 
the semantics of the relationship cannot be specified as in RDF. 
Furthermore the primary-foreign key relationship cannot be applied to 
linking data items between separate relational databases. In RDF 
databases, link semantics are captured explicitly (through named RDF 
properties). These property-based links can be used to link data 
components between separate RDF graphs. 
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• The relational data model is not the natural approach to modeling 
hierarchical data that is hierarchical in nature. Such a parent-child 
relationship is usually captured in a relational table by adding a parent id 
column. Navigating or retrieving data based on such a hierarchical 
structure is typically done using self-join in a relational query statement 
(SQL). The main limitation of such an approach is that we need one self-
join for every level in the hierarchy, and performance will degrade with 
each level added as the joining grows in complexity. RDF schema 
supports the subclass/superclass relationship and RDF databases are 
more optimized to support this type of parent-child data inference. 

As the number of databases continues to grow, it is also important to 
explore how to build a federated database system based on Semantic Web 
technologies, which allows queries to be mediated across multiple Semantic 
Web databases. Such efforts have begun in the Computer Science research 
community (e.g., [42]). In the life science domain, Stephens et al. have 
demonstrated how to build a federated database using Cerebra 
(http://www.cerebra.com/) for integrating drug safety data [43]. Cerebra 
makes it possible to mediate queries against multiple RDF databases. In 
addition to supporting RDF query, it operates with OWL ontologies and 
OWL-based inferencing rules. However, it does not support standard OWL 
query languages (e.g., OWL-QL). Instead it uses XQuery to process the 
OWL ontologies and their associated data. XQuery is a standard query 
language for XML-structured data, yet it does not take advantage of the rich 
expressiveness provided by OWL. 

To explore the full potential of the Semantic Web in data integration, we 
need to address the following areas. 
• Conversion. There is a wealth of biological data that exists in other 

structured formats (e.g., relational format and XML format). We need to 
provide methods to convert these formats into a Semantic Web format 
(e.g., RDF or OWL). Such a conversion can be divided into syntactic 
and semantic parts. While both are important, semantic conversion 
usually takes a longer time to accomplish, since more effort is required 
to decide on the proper ontological conceptualization. This may be 
overcome in part by the ongoing development and improvement of bio-
ontologies carried out by the biomedical ontology community including 
the National Center for Biomedical Ontology[x]. From a practical 
viewpoint, it might be easier to do the syntactic conversion first and 
followed by a gradual semantic conversion process. Based on the 
common syntax, data integration and semantic conversion can proceed 
in parallel. In addition to converting structured data into Semantic Web 
format, efforts are underway to extract data from the biomedical 
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literature (unstructured text) and structure the extracted results into 
Semantic Web formats. 

• Standard identifiers. The problem with URL's is that they always point 
to a particular Web server (which may not always be in service) and 
worse, that the contents referred to by a URL may change. For 
researchers, the requirement to be able to exactly reproduce any 
observations and experiments based on a data object means that it is 
essential that data be uniquely named and available from many cached 
sources. The Life Science IDentifier or LSID (http://lsid.sourceforge.net) 
is designed to fulfill this requirement. An LSID names and refers to one 
unchanging data object (version numbers can be attached to handle 
updates). Every LSID consists of up to five parts: the Network Identifier 
[44]; the root DNS name of the issuing authority; the namespace chosen 
by the issuing authority; the object id unique in that namespace; and 
finally an optional revision id for storing versioning information. Each 
part is separated by a colon to make LSIDs easy to parse. For example, 
"um:lsid:ncbi.nlm.nig.gov:GenBank:T48601:2" is an LSID with 
"um:lsid" being the NID, "ncbi.nlm.nig.gov" the issuing authority's DNS 
name, "GenBank" the database namespace, "T48601" the object id, and 
"2" the revision id. Unlike URLs, LSIDs are location independent. This 
means that a program or a user can be certain that what they are dealing 
with is exactly the same data if the LSID of any object is the same as the 
LSID of another copy of the object obtained elsewhere. As an example 
of LSID usage, the Entrez LSID Web service 
(http://lsid.biopathways.org/entrez/) uses NCBI's Entrez search interface 
to locate LSIDs within the biological databases hosted by the NCBL The 
LSID system is in essence similar to the role of the Domain Name 
Service (DNS) for converting named Internet locations to IP numbers. 

• Standardization of RDF/OWL Query Languages. One of the reasons 
for the wide acceptance of relational database technology is that it comes 
with a standard and expressive database query language - SQL. Current 
RDF databases provide their own versions of RDF query languages 
(e.g., SeRQL for Sesame, iTQL for Kowari, and Oracle RDF query 
language). These query language variants provide different features. To 
integrate/consolidate these features, SPARQL is an emerging standard 
RDF query language (http://www.w3.org/TR/2004/WD-rdf-sparql-
query-20041012). Even though it is a moving target, SPARQL-
compliant query engines such as ARQ (http://jena.sourceforge.net/ARQ) 
have recently been implemented. For OWL ontologies, more expressive 
query languages are required. OWL-aware query languages (e.g., RDQL 
and nRQL [45]) are supported by specific OWL reasoners including 
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Pellet and Racer [45]. OWL-QL is a candidate standard query language 
for OWL. 

• Support of OWL reasoning. Current RDF databases do not support 
OWL, although they can act as OWL data repositories. It would be 
useful to extend these RDF databases to support OWL querying and 
reasoning. One way of doing this is to create a reasoning layer on top of 
the RDF database. To this end, reasoner plugins such as OWLIM 
(http://www.ontotext.com/owlim/) have recently been made available for 
some RDF databases such as Sesame. Also, more direct and native 
support of OWL by RDF databases is desirable. 
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Abstract: Semantic web technologies promise to ease the pain of data and system 
integration in the life sciences. The semantic web consists of standards such as 
XML for mark-up of contents, RDF for representation of triplets, and OWL to 
define ontologies. We discuss three approaches for querying semantic web 
contents and building integrated bioinformatics applications, which allows 
bioinformaticians to make an informed choice for their data integration needs. 
Besides already established approach such as XQuery, we compare two novel 
rule-based approaches, namely Xcerpt - a versatile XML and RDF query 
language, and Prova - a language for rule-based Java scripting. We 
demonstrate the core features and limitations of these three approaches 
through a case study, which comprises an ontology browser, which supports 
retrieval of protein structure and sequence information for proteins annotated 
with terms fi*om the ontology. 

Key words: Bioinformatics, Semantic Web, UniProt, Protein Data Bank, PubMed, Gene 
Ontology, Prova, Prolog, Java, Xcerpt, logic programming, declarative 
programming, Web, query languages, XML, RDF, rules, semi-structured data, 
query patterns, simulation unification, XQuery, XPath, Relational Databases. 

1. INTRODUCTION 

Bioinformatics is a rapidly growing field in which innovation and 
discoveries often arise by the correlative analysis of massive amounts of data 
from widely different sources. The Semantic Web and its promises of 
intelligent integration of services and of information through 'semantics' can 
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only be realized in the life sciences and beyond if its technologies satisfy a 
minimum set of pragmatic requirements, namely: 
• Ease of use - A language must be as simple as possible. Users will go for 

a less powerful but comfortable solution instead of a very rich language 
that is too complicated to use. 

• Platform independence - Operating system idiosyncrasies are 
increasingly becoming a nuisance, the internet is universal, and so must 
be a language for the semantic web. 

• Tool support - It is no longer enough just to provide language 
specifications and the corresponding compilers and/or interpreters. 
Programmers require proper support tools like code-aware editors, 
debuggers, query builders and validation tools. 

• Scalability - The volume of information being manipulated in 
bioinformatics is increasing exponentially, the runtime machinery of a 
language for integrating such data must be able to scale and cope with the 
processing needs of today and tomorrow. 

• Modularity - Modularity is a fundamental idea in software engineering 
and should be part of any modem programming language. 

• Extensibility - Languages should be as user extensible as possible to 
accommodate unforeseen but useful extensions that users might need and 
be able to implement. 

• Declarativeness - The language should be high-level and support the 
specification of what needs to be computed rather than how. 

2. DATA INTEGRATION IN BIOINFORMATICS 

The amount of available data in the life sciences increases rapidly and so 
does the variety of data formats used. Bioinformatics has a tradition for 
legacy text-based dataformats and databases such as UniProt [2] for protein 
sequences, PDB [3] for 3D structures of proteins, or PubMed [4] for 
scientific literature. 
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UniProt, PDB, PubMed 
Today, many databases, including the above are available in Extensible 

Markup Language (www.w3.org/XML/). 
Due to its hierarchical structure, XML is a flexible data format. It is a 

text-based format, is human-readable, and its support for Unicode ensures 
portability throughout systems. Together with XML a whole family of 
languages (www.w3.org/TR) support querying and transformation (XPath, 
XQuery, and XSLT). Additionally APIs such as JDOM (www.jdom.org), an 
implementation of the Document Object Model (DOM), and the Simple API 
for XML (www.saxproject.org) were developed in support of XML. 

Beside the need of technologies for data handling, a major task in 
bioinformatics is the one of data integration. The required mapping between 
entities from different data sources can be managed through the use of an 
ontology. 

Ontologies in Bioinformatics 
Currently there is no agreed vocabulary used in molecular biology. For 

example, gene names are not used in a consistent way. EntrezGene [4] 
addresses this problem by providing aliases. EntrezGene lists for example 
eight aliases for a gene that is responsible for breast cancer (BRCAI; BRCCl; 
IRIS; PSCP; RNF53; breast cancer 1, early onset; breast and ovarian cancer 
susceptibility protein 1\ and breast and ovarian cancer susceptibility protein 
variant). 

At the time of writing, searching PubMed for PSCP returns 2417 relevant 
articles. Searching for 'papillary serous carcinoma of the peritoneum', 
returns 89 articles. However, searching for both terms returns only 19 hits. In 
general, there is a pressing need in molecular biology to use common 
vocabularies. This need has been addressed through the ongoing 
development of biomedical ontologies. Starting with the GeneOntology 
(www.geneontology.org) [1], the Open Biomedical Ontologies effort 
(obo.sourceforge.net) currently hosts 59 biomedical ontologies ranging from 
anatomy over chemical compounds to organism specific ontologies. 

Gene Ontology (GO) 
A core ontology is the Gene Ontology [1], which contains over 20000 

terms describing biological processes, molecular functions, and cellular 
components for gene products. The biological process ontology deals with 
biological objectives to which the gene or gene product contributes. A 
process is accomplished via one or more ordered assemblies of molecular 
functions. The molecular function ontology deals with the biochemical 
activities of a gene product. It describes what is done without specifying 
where or when the event takes place. The cellular component ontology 
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describes the places where a gene product can be active. The GO ontologies 
have become a de facto standard and are used by many databases as 
annotation vocabulary and are available in various formats: flat files, the 
Extensible Mark-up Language (XML), the resource description format 
(RDF), and as a MySQL database. 

3. CASE STUDY: PROTEINBROWSER 

Biological databases are growing rapidly. Currently there is much effort 
spent on annotating these databases with terms from controlled, hierarchical 
vocabularies such as the Gene Ontology. It is often useful to be able to 
retrieve all entries from a database, which are annotated with a given term 
from the ontology. The ProteinBrowser use-case shows how one typically 
needs to join data from different sources. The starting point is the Gene 
Ontology (GO), from which a hierarchy of terms is obtained. Using the Gene 
Ontology Annotation (GOA) database, the user can link GO terms to the 
UniProt identifiers of proteins that have been annotated with biological 
processes, molecular functions, and cellular components. After choosing a 
specific protein, the user can, remotely, query additional information from 
the UniProt database, for example the sequence of the protein. In turn, the 
PDB database can be remotely queried for still additional information. 
Finally, using the PubMed identifier of the publication in which the structure 
of the protein was published, one can query PubMed and obtain the title and 
abstract of the publication. 
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As shown in Figure 2-1, the ProteinBrowser example is specified by the 
following workflow: 
• A term is chosen from the Gene Ontology tree. The Gene Ontology exists 

in various formats: MySql database, XML, RDF. 
• All relevant proteins associated through the GOA 

(http://www.ebi.ac.uk/GOA/) database are listed. 
• A protein is chosen from the list. 
• UniProt is queried for information about this protein. The protein's name, 

its sequence length, mass, sequence, and corresponding PDB identifier 
can be retrieved by querying the XML file linked by the following 
parameterized URL: http://www.ebi.uniprot.org/entry/<UniprotId>? 
format=xml&ascii 

• PDB is queried for additional information. The three lengths width, 
height and depth and the PubMed identifier of the publication in which 
the structure was described, can be obtained by querying the XML file 
linked by the following parameterize 
URL: 

http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId 
=<PDBid> 

• Retrieve PubMed abstract title and text where the structure was 
published. This uses the Pubmed ID (if available) and queries the website 
of NCBI with the PubMed Id at this address: 
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retm 
ode=xml &rettype=full&id=<PubMedId> 

As shown in Figure 2-2, this workflow involves accessing local and 
remote databases, in the form of files, possibly in XML format and of 
'pragmatic' web-services in the form of parametrized URLs linking to XML 
files (also known as REST-style Web Services). 

We will compare three approaches to implement this workflow. The first 
is based on a novel hybrid object-oriented and declarative programing 
language, Prova. The second is based on standard XML technologies such as 
XQuery and XPath. The third is based on a novel declarative query language 
for XML documents: Xcerpt. 

• Prova http://www.prova.ws 
• XQuery/XPath http://www.w3.org 
• Xcerpt http://www.xcerpt.org 



36 Revolutionizing Knowledge Discovery in the Life Sciences 

UniProt 

POB 

Internet 

Figure 2-2. ProteinBrowser: integrates data from GO, UniProt, PDB and PubMed. 

3.1 Prova 

Prova [5] is a rule-based Java scripting language. The use of rules allows 
the declarative specification of integration needs at a high-level, separately 
from implementation details. The transparent integration of Java caters for 
easy access and integration of database access, web services, and many other 
Java services. This way Prova combines the advantages of rule-based 
programming and object-oriented programming. Prova satisfies the 
following design goals: 
• Combine the benefits of declarative and object-oriented programming; 
• Merge the syntaxes and semantics of Prolog, as rule-based language, and 

Java as object-oriented languages; 
• Expose logic as rules; 
• Access data sources via wrappers written in Java or command-line shells 

like Perl; 
• Make all Java API from available packages directly accessible from 

rules; 
• Run within the Java runtime environment; 
• Be compatible with web- and agent-based software architectures; 
• Provide functionality necessary for rapid application prototyping and low 

cost maintenance. 

Workflow solved with Prova 
The Prova code closely resembles a declarative logic program. Rules are 

written down in the form c o n c l u s i o n : - premise where : - is read 
'if. Instead of relying on an internal knowledge base, which needs to be 
loaded entirely into memory, Prova can access external knowledge wrapped 
as predicates. Thus there is a clean separation between the details needed to 
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access the external data and the way this data is joined in the workflow. 
Prova applies so-called backward-chaining to evaluate queries. 

Wrapping the Gene Ontology and the Gene Ontology Annotation 
For the Prova implementation of the ProteinBrowser we use the Gene 

Ontology and the protein annotations in their relational database format. As 
shown on Figure 2-3 accessing databases from Prova is very simple. 

% Imports some utility functions 
:-eval(consult("utils.prova")). 
% Define database location 
location(dated3ase,"GO","jdbc:mysql://server","guest","guest") 
% T2 is~a Tl if in the term2term table of the dataJsase 
isaDB(T2,Tl) :-

dbopen("GO",DB), 
concat ([" terml_id=" , Tl, " and relationship_type__id=2 " ] , 
WhereClause), 
sql_select(DB,term2term,[term2_id,T2],[where, WhereClause]). 
% A term T is-a T 
isa(T,T). 
% Recursive definition of is~a: 
% A term T2 is a Tl if T3 is a Tl and T2 is a T3 
isa(T2,Tl) :-

isaDB(T3,Tl), 
isa(T2,T3). 

Figure 2-3. Wrapping the Gene Ontology database and the isa relationship. 

After importing some utility predicates for connecting to databases, the 
l o c a t i o n predicate is used to define a database location, the dbopen 
predicate is used to open a connection to the database, and the 
s q l _ s e l e c t predicate provides a nice and practical declarative wrapping 
of the select statement of relational databases. In order to obtain all sub-
terms of a given term, we simply compute the transitive closure of the sub-
term relationship defined by the recursive predicate i s a . 

Finally, in order to retrieve the UniProt identifiers corresponding to a 
given gene ontology term, we need the n a m e 2 u n i P r o t I d predicate (see 
Figure. 2-4). 

name2UniProtId(Term,UniProtId) :-
dbopen("GO",DB), 
concat(["uni.GOid = ", Term],Where), 
concat(["go.term as term, goa.goa human as uni"],From), 

sql_select (DB, From, [' uni . DB__0bjectJTD' ,UniProtId] , 
[where,Where]). 

Figure 2-4. Wrapping the Gene Ontology Annotation database. 

Wrapping UniProt, PDB and Medline 
The three databases UniProt, PDB and Medline can be remotely accessed 

through a very simple web interface: a parameterized URL links to an XML 
file containing the relevant information for a given identifier. 
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As shown in Figure 2-5 The three predicates que ryUn iP ro t , 
queryPDB, queryPubMed, wrap the downloading and parsing of the 
XML files in a few lines: 

urlUniProtPrefix("http://www.ebi.uniprot.org/entry/") 
urlUniProtPostfix("?fonnat=xml&ascii") 
urlPDB("http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&struc 
tureld=") 
urlPvibMed ("http: //eutils . ncbi . nlm. nih. gov/entrez/eutils/ef etch. f cgi 
?db=pubmed&retmode=xml&rettype=full&id=") 
% Query UniProt by giving a UniProt Id and getting the length, 
mass, sequence, and PDB id 
queryUniProt(UniProtId,Neune,Length,Mass,Sequence,PDBId):-
urlUniProtPrefix(URLpre), 
urlUniProtPostfix(URLpost), 
concat([URLpre,UniProtId,URLpost],URLString), 
retrieveXML(URLString,Root), 
children(Root,"entry",EntryNode), 
children(EntryNode,"protein",ProteinNode), 
descendantValue(ProteinNode,"name",Neune),!, 
descendant(EntryNode,"sequence",SequenceNode) , 
nodeAttributeByNeune(SequenceNode,"length", Length), 
nodeAttributeByNcune (SequenceNode, "mass" , Mass) , 
nodevalue(SequenceNode,Sequence). 

% Query PDB by giving a PDB Id and getting three lengths a,b,c and 
a PubMed id of a publication 
queryPDB(PDBId,LA,LB,LC,PMID):-
urlPDB(URL), 
concat([URL,PDBId],URLString), 
retrieveXML(URLString,Root), 
descendantValue(Root,"PDBx:length a",LA),! 
descendantValue(Root,"PDBx:lengthHD",LB),I 
descendantValue(Root,"PDBx:length c",LC),! 
descendantValue(Root,"PDBx:pdbx datedDase id_PubMed", PMID). 

% Query pubMed by giving a PubMed Id and* getting the text of the 
abstract 
queryPubMed(PMID,AbstractTitie, AbstractText):-
urlPubMed(URL), 
concat([URL,PDBId],URLString), 
retrieveXML(URLString,Root), 
descendantValue(Root,"ArticleTitie",AbstractTitie),!, 
descendantValue(Root,"AbstractText",AbstractText),!. 

Figure 2-5. Wrapping UniProt, PDB and Medline. 

The previous predicates use the following utility predicates, as shown in 
Figure 2.6: 

retrieveXML(URLString,Root):-
URL = java.net.URL(URLString), 
Streauxi = URL.openStrecun() , 
ISR = j a v a . i o . InputstreaznReader(Stream) , 
XMLResult = XML(ISR), 
Root = XMLResult .getDocumentElementO . 

Figure 2-6. XML retrieval. 

The re t r ieveXML predicate downloads an XML file from a specified 
URL, and returns the root DOM (Document Object Model) tree 
representation of the XML file. 

In Figure 2-7, a set of predicates provide functionality to query nodes and 
values from the DOM tree: 
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% Simulates an XPath traversal. 
descendantsValue(Current,Name,Value):-

descendants(Current,Name,Node), 
nodeValue(Node,Value),!. 

% Descendant (any depth), similar XPath: //* 
descendants(Node,Node). 
descendants(Element,S2):-

children(Element,SI) , 
descendants(SI,S2). 

% Descendant with given neune, similar XPath: //Name 
descendants(Node,Name,Descendant):-

descendants(Node,Descendant), 
nodeName(Descendant,Neune) . 

% Definition for a direct child, similar XPath: /* 
children(Element,Child):-

Childs = Element.getChildNodes0, 
Childs.nodes(Child). 

% Child with a given neune, similar XPath: /Name 
children(Node,Name,ChiId):-

children(Node,Child), 
nodeNcune(Child,Neune) . 

nodeNeune (Node, Neune) : -
Name = Node. getNodeName () . 

nodeValue (Node, Value) : -
Data = N o d e . g e t F i r s t C h i l d O , 
Raw = D a t a . g e t N o d e V a l u e ( ) , 
Value = R a w . t r i m 0 . 

Figure 2-7. XML Querying. 

Assembling the Workflow 
Now that we have wrapped the GO and GOA databases, as well as the 

remote XML ressources for UniProt, PDB and PubMed. We can proceed 
with the assembly of the ProteinBrowser workflow, as shown in Figure 2-8. 

workflowStepl (6oTermName,UniProtId) : -
neUxie2term(6oTermNcuae,GoTerm) , 
isa(6oTerm,Descendant), 
ncune2UniProtId (Descendant, UniProtId) , 
j ava.lang.System.out.println(UniProtId). 

workflowStep2(UniProtId):-
queryUniProt (UniProtId,Name, Length,Mass, Sequence, PDBId) , 
j ava . lang. System. out. pr intln (Ncunae) , 
Java.lang.System.out.println(Length), 
Java.lang.System.out.println(Mass), 
Java.lang.System.out.println(Sequence), 
queryPDB(PDBId,LA,LB,LC,PMID), 
Java.lang.System.out.println(LA), 
Java.lang.System.out.println(LB), 
Java.lang.System.out.println(LC), 
queryPubMed(PMID,AbstractTitie, AbstractText) , 
Java.lang.System.out.println(AbstractTitle), 
Java.lang.System.out.println(AbstractText). 
% Given the name N, get the term id T 

name2term(N,T) :-
dbopen("GO",DB), 
concat ([ "neune like " ,N] ,WhereClause) , 
sql select(DB,term,[id,T],[where, WhereClause]). 

Figure 2-8. Workflow. 

The first step is simply to enumerate all UniProt identifiers UniProtId 
annotated with terms and subterms of a given Gene Ontology term 
GoTermName, The second step uses the chosen protein UniProt identifier 
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and starts a cascade of three remote queries to the UniProt, PDB and 
PubMed web sites. All relevant information collected is printed out. 

3.2 XQuery and XPath 

XPath is an expression language that allows the user to address certain 
parts of an XML document. It is used in XQuery, which is a declarative 
query- and transformation language for semi-structured data. Xpath is 
widely used to formulate queries on RDF and XML documents. These 
documents can be provided as XML files, as XML views onto a XML 
database or created by a middleware. XQuery 1.0 is a W3C Candidate 
Recommendation and is already supported by many software vendors (e.g. 
IBM DB2, Oracle lOg Release 2, Tamino XML Server). 

The Workflow Solved with XQuery 
An XQuery implementation of the workflow works on XML data only 

and can be realized with all program logic specified as XQuery. We note that 
XQuery as described in the language standard is expressive enough to 
aggregate data from different data sources, locally or remotely. 

Recursive traversal of the Gene Ontology 
With XQuery the recursive traversal of the GO has to be programmed 

explicitely. In Figure 2-9 the fiinctions l o c a l r g e t D e s c e n d a n t s and 
l o c a l : g e t C h i l d r e n show how this simple recursion can be specified 
with XQuery. The locally available GO OWL file is loaded using the doc () 
function, which also works for remote resources of plain XML content. By 
using XQuery from within Java it is possible to preserve the DOM tree, so 
that it only has to be loaded once. 

declare function local :getChilclren( $tenn , $context) 
{ 
for $my_term in $context//go:term 
where §my_term/go:is_a/@rdf: resource = $terni/@rdf :eJDOut 
return 

$my term 
}; 
declare function local:getDescendants( $term, $context) 
{ 
for $my_term in local:getChiIdren($term, $context) 
return 
<descendants> 
{ 

local: getDescendants ($my__term , $ context) , $my__term 
</descendants> 

}; 

Figure 2-9. Recursive XQuery to create the transitive closure over the sub-class relations. 
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Assembling the Workflow 
Figure 2-10 shows the complete workflow as a batch process. Given a 

GO accession number like "GOiOOOOOOl" an XML document is created 
which contains all proteins associated with the specified term or any of its 
child terms. For all these proteins additional information is retrieved from 
UniProt. Further, database references to structural data in PDB are used, if 
found in UniProt. For the interactive browser these parts are separated and 
the functions are called once the GO term or protein is selected in the GUI. 

xquery version "1.0"; 
declarenamespace go = "http://www.geneontology.org/dtds/go.dtd#"; 
declare namespace rdf = "http://www.w3.Org/1999/02/22-rdf-syntax-ns#'" 
declare neunespace fn = "http://www.w3.org/2005/xpath-functions"; 
declare neunespace uniprot = "http://uniprot.org/uniprot"; 
declare neunespace PDBx = "http://deposit.pdb.org/pdbML/pdbx.xsd"; 
declare neunespace xsi="http://www.w3.org/2001/XMLSchema-instance"; 
declare variable $G0 as xs:string external; 
(: function from www.w3c.org :) 
declare function local:distinct-nodes-steU3le ($arg as node()*) as 
node()* 
{ 

for $a at $apos in $arg 
let $before__a := fn:subsequence($arg^ 1, $apos - 1) 
where every $ba in $before_a satisfies not($ba is $a) 
return $a 

}; 
declare function local:getChildren( $term , $context) { ... }; 
declare function local:getDescendants( $term, $context) { ... }; 
declare function local:queryUniprot($uniprotID) { ... }; 
declare function local:queryPDB($pdbID) { ... }; 
(: Construct a result set for one GO term :) 
<terms> 

let $root :=doc("/data/go_200605-assocdb.rdf-xml") 
for $term in $root//go:term 
where $term/go:accession/text() = $GO 
return 

<result query__term_acc="{$term/go: accession/text () }"> 

let $terms := ($term, local:getDescendants($term,$root)) 
for $d__term in $ terms 
return 

for $dbxref in $d term//go:dbxref 
where $dbxref/go :3atabase__syrobol/text () ="UniProt" 
return 

for $uniprot__id in local:distinct-nodes-
stable ($dbxref/go:reference) 

return 
local:queryUniprot($uniprot id/text()) 

) 
</result> 

</terms> 

Figure 2-10. Recursive XQuery to aggregate proteins associated with a GO term or any of its children. 
The result gets enriched with Uniprot and PDB data. 

Retrieval of additional information for proteins 
For all proteins identified, the UniProt database is queried selecting data 

sets for a specific UniProt identifier (see Figure 2-11). Additional 
information from the PDB is retrieved as shown in Figure 2-12. 
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declare function local:queryUniprot($uniprotID) 

let $url := concat(concat("http://www.ebi.uniprot.org/entry/", 
$uniprotID) , "?fonnat=xml&2unp;ascii") 

for $entry in doc($url)//uniprot:entry 
let $ sequence:= $ entry/uniprot:sequence 
return 

<protein uniprot id="{$uniprotID}"> 
{ 
for $name in $entry/uniprot:protein//uniprot:name 
return 

<n£une>{$neune/text() ></neune> 
} 

<sequence__length>{$ sequence/@length)</sequence_length> 
<sequence mass>{$sequence/@mass}</sequence_mass> 
<sequence^{ $sequence/text() }</sequence> 

{ 
For $pdbID in 

$entry//uniprot:dbReference[@type="PDB"]/0id 
return 

local:queryPDB($pdbID) 

</protein> 
}; 

Figure 2-11. Querying the Uniprot database with XQuery for information on the names, sequence, 
sequence length, sequence mass and structures of a protein 

declare function local:queryPDB($pdbID) 

let $url := concat("http://www.rcsb.org/pdb/downloadFile.do? 
f ileFormat=xml&amp; compression=NO&eunp; structureld=" , $pdbID) 
for $item in 
doc($url) /PDBx:dat8J:>lock/PDBx:cellCategory/PDBx:cell 
return 

<pdb structure pdb id="{$pdbID}"> 
^length a>{$item/PDBx:length a/text()}</length a> 
<length~b>{ $item/PDBx: length~b/text () }</length"~b> 
<length c>{$item/PDBx:length_c/text()></length~c> 

</pdb struc'Eure> 
} ; 

Figure 2-12. Querying the PDB database with XQuery. 

3.3 Xcerpt 

Xcerpt [7] is a declarative rule based query- and transformation language 
for semi-structured data in general and for RDF and XML in particular. 
Xcerpt does not natively query relational data bases, but relies on the XML, 
RDF or OWL serializations of the Gene Ontology and the Protein Data 
Bank. These serializations are in general graph structured and highly 
heterogeneous, yet Xcerpt provides a comfortable way to query possibly 
incomplete subpattems of the data. 

Xcerpt builds upon simulation unification and rule chaining for program 
evaluation. Xcerpt uses three kinds of terms to carry out its computations: 
data terms, query terms and construct terms. Data terms are semi-structured 
data serving as an abstraction from various tree- and graph shaped data-
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formats such as RDF and XML. Dataterms can be used to represent any kind 
of semi-structured data, while still taking care of XML specificities such as 
attributes, namespaces and references. 

Query terms are data terms augmented by logical variables and enriched 
by constructs that allow the specification of various forms of 
incompleteness, which are used to match highly heterogeneous data. 
Incompleteness specifications include incompleteness in depth (the 
descendant construct and arbitrary length traversal path expressions), 
incompleteness in breadth (there may be more subterms in the queried data 
than which are specified by the query term) and optional subterms. Query 
terms are matched with data terms via simulation unification to produce 
\emph{substitution sets} (sets of sets of variable bindings). Substitution sets 
are then applied to construct terms by filling in the bindings for variable 
occurrences. 

The Workflow solved with Xcerpt 
In order to select all proteins produced by a certain term referenced in the 

Gene Ontology, the following Xcerpt rules could be used. Since we are not 
only interested in the proteins produced by exactly the term provided by the 
user, but also in those proteins which are produced by processes which are 
subterms of the given term, and in additional information obtained from 
UniProt, PDB and PubMed, the task is split into several parts: 

Extracting subterm relationships from the Gene Ontology Database 
In a first step (realized by Figure 2-13), the direct subterm relationships 

are extracted from the database. They are retrieved from the i s a elements 
given in the Gene Ontology. In the special a t t r ibu tes -e l emen t the form 
of the r d f : resource-attribute of the is_a-element is specified, 
demanding that it ends with a GO-Term identifier. Note that since Xcerpt 
programs are evaluated in a backward chaining manner, the binding of the 
logical variable Term2 is passed on fi-om the second and third rule below. 
Curly braces in the query term indicate that the order in which the siblings 
occur within the data is not important. This concept is called Incompleteness 
with respect to order. 

Double curly braces are used to allow also further siblings in the data 
besides those explicitly specified - this concept is known as incompleteness 
in breadth in Xcerpt. Xcerpt's d e s c construct matches with descendants of 
the enclosing term that exhibit the specified pattern {incompleteness in 
depth). Since there is no enclosing element for the go: t e rm element in the 
query term, it matches with all data nodes that have at least a 
go: a c c e s s i o n and a go : i s _ a sub-element (of the specified form). 
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CONSTRUCT 
siibterm { var Terml, var Term2 } 

FROM 
i n { 

resource { 
"http://archive.godatabase.org/full/2006-05-01/ 

go__200605-assocdb.rdf-xml.gz" }, 
desc go:term {{ 
go:accession { var Terml ) , 
go:is a{{ 
attrTbutes{{ 

rdf:resource { 
"http://www.geneontology.org/go#"++var Term2 

} 
END 

}} 
}} 

> 

Figure 2-13. Extracting subterm relationships from the Gene Ontology. 

Computing the transitive closure of the subterm relationship 
In a second rule (given in Figure 2-14), the transitive closure of the 

subterm relationship is computed. Since all direct subterms are considered as 
transitive subterms, the second disjunct of the body of this second rule 
matches with the head of the first rule. 

CONSTRUCT 
transitive subterm { var Terml, var Term3 } 

FROM ~ 
or { 
and { 

subterm { var Terml, var Term2 } , 
transitive subterm { var Term2, var Term3 > 

} 
END 

) , 
subterm { var Terml, var Term3 } 

Figure 2-14. Computing the transitive closure of the subterm-relationship with an Xcerpt rule. 

Finding all the proteins associated with a term of the Gene Ontology 
In the third rule (see Figure 2-15) for each of the subterms of the given 

term Term, the associated proteins are looked up in the GOA database and 
rendered as a list of links to their Uniprot entries in an HTML file. The 
binding for the variable Term is provided by the user as a command line 
parameter (e.g. x c e r p t -D Term=GO: 0051260, where GO: 0051260 
is the identifier of protein homooligomerization). 

The first conjunct of the body of this rule matches with the second rule 
above and passes the Term-variable on to the head of the second rule. In this 
way, all of its subterms are bound to the variable SubTerm. 

The second conjunct of the rule looks up all associated proteins for the 
subterm, which have a Gene Ontology database symbol of type UNIPROT. 
Each of these proteins is bound to the variable PROTEIN. 
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Note that also the second conjunct of the query term may match multiple 
times with the database for a single binding of the variable SubTerm, thus 
producing a set of pairs of variable bindings in which SubTerm is always 
bound to the same variable given in the query, and P r o t e i n is bound once 
for each protein produced by the given concept. 

In the construct part of the rule (framed by the keywords GOAL and 
FROM) the proteins are grouped by the subterms which they are associated 
with in the Gene Ontology. This is achieved by the grouping construct a l l . 
The string-concatenation function "++'" is used to construct the URL 
pointmg at the Uniprot entry. The construct term is a template of the HTML 
page rendered by the browser to form part of the user-interface. 

GOAL 
html [ 
head [ title [ "Proteins produced by" ++ var Term ] ], 
body [ 

all span [ 
h3 [ "Proteins produced by the sub term " ++ var SubTeorm ] , 
ul [ 

all li [ 
attributes{ href { 

"http://www.ebi.uniprot.org/entry/" ++ var Protein ++ 
"?format=xml&ascii" } }, 
var Protein ] 

] 
] 

] ] 
FROM 

and { 
transitive subterm { var SubTerm, var Term }, 
in { 
resource { 

"http://archive.godatabase.org/full/2006-05-01/ 
go_200605-assocdb.rdf-xml.gz" }, 

desc go:term({ 
go:accession{ var SubTerm ) , 
go:association{{ 

go: gene_jproduct {{ 
desc go: database__symbol { "UNIPROT" }, 
desc go:reference{ var Protein } 

}} 
}> 

}} 
} 

} 
END 

Figure 2-15. Constructing an HTML list of proteins for a GO term. 

Extracting relevant information about Proteins from the UniProt and 
PDB Files 

Xcerpt's patterns are well-suited to extract the name, length, mass and the 
sequence of amino acids for a given protein from the UniProt database and 
to reassemble them within an HTML fragment as specified in Figure 2-15. 
The second conjunct of the same rule is used to additionally extract 
information from the PDB database about the physical dimensions of the 
crystals of the Protein and PubMed identifiers of research papers dealing 
with the given protein. This data is to be combined with the information 



46 Revolutionizing Knowledge Discovery in the Life Sciences 

from UniProt. Note that the PDB_ID is extracted from the UniProt database, 
which means that the first conjunct is evaluated beft)re the second one. The 
rule could be called via a system call from within a CGI script. Many of the 
PDB files about proteins additionally supply PubMed identifiers of research 
articles about the protein, but this is not mandatory. Xcerpt's o p t i o n a l -
construct allows one to select optional data that does not have to be present 
for the query to succeed. Since their may be multiple references to PubMed 
identifiers, these references are wrapped into an unordered HTML list using 
the grouping construct a l l . These references could be easily encoded as 
hyperlinks in a similar way as in Figure 2-16, which has been omitted for 
brevity. 

CONSTRUCT 
div [ 
h3 [ ' Information adDout protein' , span [ var Protein ] ] , 
p [ "Nsrnie: " ++ var Neune ] , 
p [ "Length: " ++ var Length ] , 
p [ "Mass: " ++ var Mass ], 
p [ "Sequence: " ++ var Sequence ], 
p [ "length a: " ++ var LengthA ], 
p [ "lengthHD: " ++ var LengthB ], 
p [ "length c: " ++ var LengthC ], 
optional p T ' PiobMed References' , ul [ all li [ var PubMedID 
] ] ] 

] 
FROM 

and { 
in { 
resource { 

"http://www.ebi.uniprot.org/entry/" ++ var SubTerm ++ 
"?format=xxnl&ascii" }, 
entry {{ 

protein {{ neune {{ var Name } > } } , 
sequence {{ 
attributes {{ length { var Length ) , mass { var Mass > }}, 
var Sequence 

}} 
dbReference { attributes {{ 

type { "pdb accesion" }, 
value { var PDB ID } 

}} } 
}} 

in { 
resource ( 

"http://www.rcsb.org/pdb/downloadFile.do?fileFormat=xml& 
compression=NO&structureId=" ++ var PDB ID }, 

PDBx:datablock {{ "" 
desc PDBx:cell {{ 

PDBx:length a{{ var LengthA }}, 
PDBx:length^{{ var LengthB >}, 
PDBx:length c{{ var LengthC }> 

)), 
optional PDBx:pdbx database id PubMed { var PvibMedID } 

} _ _ _ 
} 

END 

Figure 2-16. Combining information from the PDB and the UniProt database for the same Protein. 
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Retrieving the PubMed Abstract and Title 
The final step in the workflow of the Protein Browser consists of 

retrieving the PubMed abstract and title for a given PubMed identifier 
retrieved by the rule in Figure 2-16. The PubMed identifiers may either be 
queried directly fi'om the PDB file of a given protein or they may originate 
from the results of the previous rule. In Figure 2-17 the second alternative is 
presented. 

CONSTRUCT 
html [ head [ title [ 'Articles for Protein' ++ var Protein ] ], 
body [ 

all p [ h3 [ var Title ] , div [ var Abstract ] ] 
] 
] 

FROM 
and ( 
div [[ h3 [[ span [ var Protein ] ]], 
p [[ ul [[ li [ var PubMedId ] ]] ]] 
]], 
in { 

resource{ 
' http: //eutils. ncbi . nlm. nih. gov/entrez/eutils/ef etch. f cgi?db=pubmed&r 
etmode=xml&rettYpe=full&id=' ++ var PubMedId }, 

PubMedArticle {{ 
desc AbstractText { var Abstract }, 
desc ArticleTitle { var Title } 

}} 
} 

END 

Figure 2-17. Retrieval of Abstract and Titles of PubMed entries. 

The given rule finds all PubMed identifiers from the previously created 
HTML fragment, retrieves the PubMed documents for these articles and 
assembles a new HTML page containing a list of article titles and abstracts. 

4. COMPARISON 

In the following, we compare the three approaches according to several 
criteria. Some criteria are subjective, for example how easy or difficult it is 
to learn and use the approach. Other criteria are of a pragmatic nature and 
relate to the availability of supporting tools like editors and debuggers. From 
a technical point of view, it is also important to evaluate the scalability, 
modularity, and extensibility of an approach. 

Learning curve 
Prova requires basic understanding of both Prolog and Java. This might 

make it more complicated to understand than Java or Prolog separately. The 
Prova syntax integrates aspects from both paradigms in a very elegant way. 
If one assumes basic knowledge in both Java and Prolog, Prova is then a 
good way to profit from both worlds. 
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XQuery adapts standard programming paradigms like FOR loops or IF-
THEN-ELSE statements and uses XPath to address nodes in the Document 
Object Model (DOM) tree. Nevertheless the syntax and especially the usage 
of functions requires some time to learn. 

Xcerpt can be used to query and transform any XML application, thus 
also XML serializations of RDF and Topic Maps. Therefore it is very well-
suited for data integration. Being a very declarative pattern- and rule-based 
language, potential errors are kept to a minimum and authoring queries in 
Xcerpt is straightforward. Xcerpt is especially easy to learn for users with 
experience in logic programming or with pattern based query languages such 
as Query By Example or to a certain extent XPath. 

Platform independence 
Prova is Java-based and as such is platform-independent. 
XQuery and XPath standard implementations are available as libraries 

written in Java (http://saxon.sourceforge.net/) and can be used from any 
platform which supports Java. Additionally many database systems come 
with XPath or XQuery build in. Xcerpt is currently implemented in Haskell 
and compiled with the Glasgow Haskell Compiler, which is available for 
Linux, Solaris, Windows, FreeBSD and MacOS X. Thus Xcerpt can be used 
on any of these platforms. Future versions of Xcerpt will be written in Java 
to further increase platform independence. 

Availability 
Prova is a GNU Lesser General Public License (LGPL) open source 

project and thus can be used in any context, it can be freely downloaded 
from www.prova.ws. 

XQuery, XPath and RQL are available within commercial products or for 
free under the Berkeley Software Distribution (BSD) license. 

Xcerpt is current at a prototype stage of development and is 
available at www. x c e r p t . o r g under the terms of the GNU General 

Public License. 

Tool support 
Prova, because of its relative youth, has almost no support for editing or 

debugging tools. 
XPath is simple enough to be written with a plain text editor. However it 

is strongly recommended to use specialized editors for XQuery. There exist 
mature tools for several software platforms which come with editing support, 
validation and debugging functionalities. 

Xcerpt is accompanied by a visual query authoring and execution tool 
called v i s X c e r p t . It features a web-based graphical interface, running on 
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top of a web server such as the Apache HTTP server 
(http://www.apache.org/) and allows one to dynamically browse both XML 
data and the Xcerpt rules. Support for debugging and code completion in 
Xcerpt is not available yet. 

Scalability 
Prova is arguably at most as scalable as Java and its libraries. Java is 

itself a very mature language in terms of performance. Starting with version 
1.3, the Java Virtual Machine has been based on HotSpot, a technology that 
allows dynamic compilation of performance bottlenecks at execution time. 
For this reason Java itself cannot be thought of as an interpreted language. 
So even though the rule engine behind Prova is essentially interpreted, all the 
heavy duty work can be delegated to Java classes and one can thus expect 
near-compiled performance. 

On a machine powered by a hitel Xeon 3GHz, Saxon's XQuery engine 
needs approximately 50 seconds to prepare the 300 MB large Gene Ontology 
RDF file for XQuery execution. 

Xcerpt programs are currently being evaluated in memory. Thus it is not 
yet possible to process large amounts of XML data. With 512 megabytes of 
random access memory, an XML file of maxium size, 40 megabytes, can be 
effectively processed. Research geared toward more efficient 
implementations is being carried out. 

Modularity 
Prova inherits the modularity of Java. XQuery allows for user-defined 

functions that can be used to modularize the code and improve its 
maintainability. Xcerpt is being developed with a module system. 

Extensibility 
Prova is based on Java and can construct Java objects and call any of 

their methods. Xcerpt being available under an open source license, it can be 
easily extended and adapted to ones own needs. 

5. DISCUSSION 

In this article we have shown how the combination and integration of 
biological data from different resources on the Web may be realized with 
different technologies. XML is a suitable way for sharing and exchanging 
data across different systems interconnected over the Internet. XML query 
languages are an accepted means for extracting relevant information and for 
processing and transforming XML data. 
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XML and best practices 
Biological data is often stored in relational database engines and must be 

serialized before it can be processed by XML query languages. Additionally, 
huge amounts of biological data are already available and transferring entire 
databases over the network takes a significant amount of time. As a result, 
XML queries should be processed close to the data they operate on as far as 
possible, taking advantage of relational database indexes. Several 
commercial database products already support the local execution of XQuery 
programs. To minimize transfer and processing time, only the results of 
locally executed queries should be transferred over the network as XML. In 
many cases, however, queries cannot be executed locally in their entirety, 
because joins over entries located at different sites are necessary. 

As can be seen in the example workflow described previously, several 
transformations of XML data may be stringed together to achieve complex 
restructuring tasks. In such cases it is advisable to minimize intermediate 
serializations of XML data independently of the query language being used. 
In other words embedding several Xcerpt, XQuery or XSLT programs taking 
XML as input and producing XML as output in a host language is inefficient 
when compared to joining these programs to a single one, because 
processing time is lost for parsing and serializing XML data. 

The advantages of using XML query languages for data integration 
versus the direct usage of relational databases increase with the amount of 
different data sources that must be integrated and with the degree of 
heterogeneity of the encountered data. The more heterogeneous the data, the 
harder it is to fit it into a relational database schema. Moreover, XML query 
languages (especially Xcerpt) provide a rich set of language constructs to 
deal with various kinds of heterogeneity of the data, which means that 
several SQL queries operating on a relational database can be combined to 
form a single Xcerpt query on XML data. 

In picking the right XML technology for a bioinformatics project, 
maturity of the language is an important issue. Xcerpt being a research 
prototype, is currently not recommended for use in large projects. On the 
other hand XQuery is a W3C recommendation and several robust 
implementations are already available. 

Beyond XML? 
It is not yet clear if XML will eventually become the universal format for 

data exchange. Relational databases, flat files, and other idiosyncratic 
formats might subsist and limit, in practice, the applicability of pure XML 
query languages. We have shown how practical Prova is for assembling 
workflows involving heterogeneous sources of data. Prova is also able to 
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delegate XML processing tasks to XQuery which has itself a Java 
implementation based on the Saxon library (http://saxon.sourceforge.net/). 
Xcerpt will also be eventually reimplemented in Java, and thus it will also be 
possible in the future to run Xcerpt queries from a Prova program. It can be 
argued that the need for a generic and possibly declarative programming 
language will remain. Simply because from a pragmatic point of view, there 
will always be some tasks that will be simply too cumbersome to deal with 
any specialized languages. A user should always be able to fall-back to a 
standard programming approach. 

6. CONCLUSION 

In all cases, it is clear that independently of the technologies used, the 
trend is toward remote querying of data. Maintaining and synchronizing 
local databases is cumbersome and should not be necessary. As we have 
seen, several databases like UniProt, PDB and PubMed offer their data 
through URL links in XML format. Prova, Xquery/Xpath and Xcerpt are 
ready to process them. 
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Abstract: This article focuses on knowledge acquisition from the biomedical literature, 
and on the infrastructure, specifically text mining, needed to access, extract 
and integrate the information. The biomedical literature is the major repository 
of biomedical knowledge. It serves as the source for structured information 
that populates biological databases, via the process of expert distillation (or 
curation) of the literature. Today, the literature has grown to the point where 
an individual scientist cannot read all the relevant literature, and curators of the 
major biological databases have trouble keeping up to date with newly 
published articles. Furthermore, important biomedical applications, such as 
drug discovery and analysis of high-throughput data sets, are dependent on 
integration of all available information from both biological databases and the 
literature. The article reviews these applications, focusing on the role of text 
mining in providing semantic indices into the literature, as well as the 
importance of interactive tools to augment the power of the human expert to 
extract information from the literature. These tools are critical in supporting 
expert curation, finding relationships among biological entities, and creating 
content for a Semantic Web. 

Keywords: text mining, natural language processing, information extraction, indexing, 
document retrieval, entity tagging, entity identification, adaptation, drug 
discovery, high-throughput experiments, curation, annotation. 

1. INTRODUCTION 

The biomedical literature (the "bibliome") represents the ultimate 
repository of biomedical knowledge. Although increasing quantities of 
valuable structured information can be found in curated biological databases 
(e.g., model organism databases, protein databases), these entries are derived 
from the literature, through the process of expert distillation (or curation) of 
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the cited articles. The published literature provides the experimental 
evidence, the procedures, and the biological reasoning that support the 
findings—all of which are critical to understanding the provenance of the 
information in the database and to assessing its validity. The Semantic Web 
can provide critical support to scientists in navigating these resources, by 
providing a computable semantic framework, making it possible to create 
semantic indices to concepts and to assemble complex biological pipelines. 
However, the content of the Semantic Web ultimately derives from the 
biomedical literature and must be traceable back to the literature. Without 
this linkage back to the literature, there is no way to integrate multiple 
sources of evidence, to determine whether the findings are current, or to 
frame queries for information in databases. 

The literature is a rich and rapidly expanding resource. Together with 
biological databases, these resources contain massive amounts of 
information that make it possible to explore fimdamental questions, such as 
identifying the genetic basis of disease [1]. However, scientists need support 
in navigating the literature. The literature is growing so rapidly that it is 
virtually impossible for a scientist to read all the relevant articles in his/her 
field. The problem is made more acute by the increasing need to integrate 
information across multiple fields where the scientist may not be expert, e.g., 
genomics, molecular biology, pharmacology, pharmacogenomics. Keeping 
up with the literature is problematic for individual scientists, but it is also 
problematic for the expert curators creating biological databases - they too 
cannot keep up with the exploding rate of publication, thus virtually ensuring 
that expert curated databases are always out of date. 

Therefore, biomedical scientists are increasingly dependent on tools to 
locate and integrate the information that they need in both curated databases 
and the available literature. The tools may be simple text analytics tools to 
identify terminology or semantic concepts via sets of key words or phrases, 
making it possible to locate information about a specific gene or condition; 
or the tools may be interactive relation extraction tools that identify specific 
semantic relations in the literature. From a practical stand point, these tools 
are still immature - existing tools are hard to use, new tools are constantly 
appearing, and most are not (yet) well integrated into the everyday workflow 
of biomedical scientists. However, these tools, when coupled with Semantic 
Web-enabled capabilities including terminologies and ontologies, will be 
key to future knowledge acquisition and integration fiinctions for 
biomedicine. 

In this article, we examine how biomedical scientists rely on knowledge 
acquisition from the biomedical literature to support important applications. 
We begin by discussing the task of knowledge acquisition - the type and 
purpose of acquisition as well as the longevity, quality and cost of the 
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collected information using the available tools. The following sections then 
provide examples of knowledge acquisition challenges. The first examples 
focus on biological databases, including protein functional annotation and 
the curation pipeline for model organism databases. For these databases, it is 
critical to maintain information about experimental context and provenance 
of the annotations, to ensure that inferences made on the basis of homology 
do not lead to propagation of errors. Text mining tools can add value to the 
task of curation, but only if they save time for the human experts. The next 
example focuses on drug discovery and shows how commercial text mining 
tools can be used to extract critical information (at a reduced cost) from the 
literature for discovery of gene-pathway-disease-drug relations. The final 
example is taken from interpretation of high-throughput data. The challenge 
is how to find and integrate the available information to assign a biological 
interpretation to groups of overexpressed (or underexpressed) genes. One 
bottleneck here is that much of the critical information has not yet made it 
from the literature into structured, semantically indexed biomedical 
databases that are amenable to further bioinformatics-based processing. A 
second problem is that there may be genuinely new discoveries for which 
there is no information. The final section summarizes conclusions and 
lessons learned from examining the interaction of the bibliome, the Semantic 
Web and text mining. 

2. DIMENSIONS OF KNOWLEDGE ACQUISITION 

Acquiring knowledge can be broken up into two aspects. The first aspect 
is collecting information; the second aspect is codifying it and storing it in an 
accessible manner. We can further distinguish different kinds of information 
collection activities: document collection, information collection and fact 
collection. These activities differ in how the retrieved information (the 
"answer") is used and in the life-span of collected information. 

Open-ended questions are often used in the exploratory phase of a project 
to assemble a collection of documents relevant to a topic; the material 
collected can then be passed on for further analysis. This is often done at the 
beginning of a project, to understand the range of available information or 
build a general-purpose database. For example, the question "Find all of the 
experimental information for the Raf protein fi-om the literature" would yield 
a collection of documents containing the desired information. These queries 
rely on search technology, but can be enhanced by more sophisticated 
indexing and document retrieval techniques provided by text mining. Text 
mining can also provide semi-automated assistance in the codification and 
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storage of the "answer set" both for large-scale curation projects and also for 
one-off questions. 

Closed-form questions are used for information collection, where the goal 
is to collect tuples of information about a class of objects, for example "Find 
all the protein interactions involving Raf." This information can then be 
further tabulated, curated and linked to other data resources. Information 
collection for these questions can be significantly enhanced through 
automated text analytics coupled tightly with curator support for approving 
and codifying the results in an information base, mediated by shared 
semantic representations, such as those enabled by Semantic Web 
technology. 

Finally, the specific question looks for particular/ac^5, often in order to 
validate a particular hypothesis, e.g. "Do Raf and MEK kinases interact 
directly?" The answer to such a question can often be found in the literature 
through a Boolean search, or eventually, using question answering 
technology. Text mining can provide support to codify the resulting 
information into an ontological fi-amework for deposit into an information 
base, to capture these nuggets of information. 

Currency of information is an important consideration, depending on the 
intended use and life-span of the "answer set". Because the knowledge 
repository is constantly growing, the answer set collected in response to a 
query is time-dependent. Where information is shared or used over a longer 
period of time, the collection must be time-stamped and routinely updated to 
ensure that it stays current with the state of knowledge as found in the 
literature. Maintaining currency of information is also another area where 
Semantic Web technology could provide a solution. 

The quality of the information collected is another parameter to be 
considered during the act of acquiring knowledge. In many academic 
research database projects, data quality is considered paramount. For large-
scale knowledge acquisition efforts in drug development, where millions of 
compounds are being screened for hundreds of drug targets, quantity and 
quality are traded off against each other for the specific needs of the 
analysis. Available resources and the needs of the information consumers 
are balanced in these various tasks. 

Cost is a critical dimension of knowledge acquisition. Labor costs 
dominate in manual acquisition. The use of text mining tools can reduce the 
labor costs, but must be balanced against the cost of the tools, including the 
cost of labor to tailor the tools to the specific application. In drug research 
and development, most of the information required for developing drugs is 
found in unstructured text. Almost all of the information for developing 
drugs is derived from sources of information external to the corporate entity. 
In 2003, the US spent $94.3 billion dollars on R&D [2], 43% of it ft-om 
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public sources, the rest from approximately 1500 pharmaceutical and biotech 
companies doing business in the US. The only way to develop drugs with 
any financial efficiency is to take maximal advantage of available 
knowledge in external sources of information. Other information intensive 
industries (e.g. financial) and research communities share a similar situation 
with regard to requirements for external information. Semantic Web 
technologies, including grid technologies, will be critical for resource 
discovery and information integration in all of these fields. 

Information professionals^ across various industries (financial, 
healthcare, pharmaceutical, etc) spend approximately 20% of their time 
searching and analyzing the literature [3]. In the process of acquiring 
knowledge for their various endeavors, information professionals are well 
served by technologies that assist in the collection and organization of 
information. If a company has 1000 information professionals, this results in 
$30 million dollars per year spent on searching and analyzing literature and 
information resources. Even small gains in efficiency can have a significant 
impact on budget. Companies spend a significant portion of their resources 
on knowledge acquisition - one-fifth of a work week on average per 
information professional - highlighting the importance of this task. 

The end-users of information derived from text mining or data integration 
tools are focused on answering a question. Especially in corporate settings, 
there is usually a deadline or a manpower constraint (often both) limiting 
how much can be done. Increasing the scope of information/data that can be 
collected and analyzed with fewer resources is a constant driver. 

In the following sections we examine the application of text mining to 
specific biomedical situations. These applications have different 
requirements for knowledge acquisition, depending on the expected life-span 
of the collection, its intended use, and the need for high quality, manually 
curated information vs. the need to explore a large space quickly and 
cheaply. The combination of Semantic Web technology and text mining 
tools has great potential to facilitate knowledge acquisition from the 
literature. However, to realize this potential, these tools must support the 
human expert in mapping between sets of semantics categories, extracting 
interesting relationships among biological entities, and facilitating 
integration of information across different resources. Such tools could also 
improve the quality of curation by resolving ambiguities, such as resolving 
to correctly referenced organisms for protein names common across species, 
or providing built in quality control checks for protein interactions that 

' An information professional is defined here as anyone who produces, analyses, collects 
information for a variety of purposes in a company, examples of such are: research 
scientists, engineers, market analysts, business development analysts and data analysts. 
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reference proteins associated with different organisms. Many of these tools 
will be enabled by Semantic Web technologies and are discussed in this 
volume, including agent-based systems (Chapter 15), Semantic Web services 
and workflow tools (see Chapters 14 and 16), semantic data representation 
formats (Chapter 8), ontologies and terminologies (Chapters 4 and 5), and 
tools for creating, querying and using semantic representations (Chapters 10 
and 13). 

3. AUTOMATIC PIPELINES IN THE ANNOTATION 
OF PUBLIC SEQUENCE DATABASES 

One of the most obvious scenarios in which information extraction plays 
an essential role is the automatic annotation of genes, proteins and genomes. 
This common bioinformatics task predicts function for newly identified 
genes and proteins by transferring information on protein functions from 
similar proteins stored in the various biological databases. This transference 
requires the correct identification of the corresponding sequence relations 
(homology) and the extraction of the relevant set of annotations. 

The early systems for automatic genome annotation were developed in 
the early 90's. Genequiz [4, 5] was one of the first of such systems. It 
performed the sequence searches for homologous genes and executed a set 
of rules for transferring the functional annotations extracted from the Swiss-
Prot database [6] and produced consensus functional annotations based on 
the annotations of similar sequences [7]; this basic function was later 
incorporated into other annotation systems. 

Later, many other annotation pipelines implemented very similar 
concepts in their own frameworks. Figure 3-1 shows such a pipeline as 
described in [8, 9] (see also [10] for a review), including the large systems 
for the annotation of the human genome [11-15] using modern web services, 
i.e., Moby [16, 17] and DAS [17] standards. The panel on the right side of 
the figure shows the implementation of the annotation pipeline in the Moby 
standard using the Tavema workbench [18]. It is important to realize that the 
annotations in core databases, such as the TrEMBL reference database, are 
derived using very similar logic [19-22], with the difference that their 
annotations are later used as sources of annotation by the other systems. 

3.1 Limitations of Database Annotation Pipelines 

The annotation pipelines suffer from a number of technical limitations 
including difficulties in 1) propagating changes from contributing/source 
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databases, 2) incorporating information derived at the domain level, 3) 
taking into account the complete protein family organization (see the most 
promising recent development in [23], 4) identifying the correct orthologous 
sequences, and 5) using the available protein structure information. 
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Figure 3-1. Schematic representation of the annotation pipeline, including sequence searches, 
clustering of the protein families, and annotation using database information. The right side 
panel represents the implementation of the annotation pipeline in the Moby standard using the 
Tavema workbench. 
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Additional limitations are related to the relatively narrow scope of the 
annotations, which do not normally include dynamic aspects with temporal 
or spatial dependencies such post-translational modifications, binding site 
localization, and interactions with other molecules. 

3.2 Origin of the Information used for the Annotations 

It is important to realize that current annotations are derived from a small 
set of proteins (perhaps less than 5% of the total number of known protein 
sequences) for which direct information has been obtained experimentally. 
The main expert curated multi-species protein databases, i.e., GOA [24, 25] 
and Swiss-Prot [6], contain only a small number of entries obtained directly 
from experimental observations, whereas most of their annotations are 
derived automatically. Indeed the details of the experimental procedures 
associated to the functional information, i.e. how the information was 
experimentally obtained in the first place, are not incorporated in any of the 
annotation pipelines and/or databases as far as we know. 

Furthermore, even the best curated databases do not include a sufficiently 
detailed description of the origin of their annotations, and it is usually 
difficult to reproduce the chain of reasoning that led the domain experts to 
assign a function to a given sequence. The lack of well-established relations 
between facts recorded in databases and the underlying experimental 
observations stored in the literature remains as a key difficulty for the 
assessment of annotation reliability and consistency. A considerable body of 
literature has been dedicated to the evaluation of the potential level of errors 
introduced in database annotations [26-29], and a number of efforts are 
being made to retrieve the representative quotations from the literature that 
supplied the facts recorded in databases, using text mining technology (for a 
review see [30]). 

A few examples can illustrate the difficulty of finding the source of the 
functional information quoted in current databases. A few years ago [31], it 
was possible to find the literature source for less than 30% of the interactions 
registered in the DIP database [32], partly due to the limitations in the text 
analyzed (PubMed abstracts rather than full text), but also because the 
references provided by the database required high-level human 
interpretation, or because in many cases, the information was simply 
unavailable in the references provided. More recently, the analysis of the 
well documented KEGG [33] and EcoCyc [34] metabolic pathway databases 
shows that the relation between consecutive enzymes in a pathway were 
identified in text for less than 50% of the reactions, and less than 20% of the 
complete pathways can be reconstructed solely from evidence in the 
literature sources [35]. 
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The recent assessment of the systems for retrieving functional 
information from text, carried out in the context of the BioCreAtlvE (Critical 
Assessment of Information Extraction for Biology) challenge, revealed that 
the best systems were only able to retrieve 22% of correct assignments 
between GO function and pieces of text for a comprehensive set of proteins 
[36]. The methods may be expected to improve substantially in forthcoming 
editions of the BioCreAtlvE challenge, as a result of training with the 
annotations produced in the first edition. 

3,3 What can be improved by text mining? 

Information throughput will increase by removing bottlenecks in the 
standard genome annotation pipelines where information can be semi-
automatically extracted from text. For the foreseeable future, the information 
extracted from text will be useful for facilitating the work of human experts 
rather than replacing them. Even so, the performance gains can be quite 
significant. 

3.3.1 Text mining to support annotation efforts 

The task of annotating databases is obviously difficult and expensive and 
a number of tools are being developed to facilitate the interaction of human 
experts with the literature sources (see section 4 below on model organism 
database curation). This infrastructure includes tools that suggest relevant 
text passages to the annotators but also, importantly, tools for the annotators 
to enter their observations derived from text directly into the databases, i.e. 
highlighting, extracting and maintaining information. 

It is obviously desirable to extend the use of these systems beyond the 
specialized databases and make them generally accessible to biologists 
working on specific problems. The participation of IntAct [37] and MINT 
[38] protein interaction databases in BioCreAtlvE II 
(http://biocreative.sourceforge.net) is prompted by the possibility of 
incorporating better information extraction technologies into their annotation 
pipelines. 

More general strategies could support human experts in linking 
annotations both to the corresponding database entities (i.e., protein, genes, 
chemical compounds) and to the supporting textual evidence. These links 
preserve information on the origin and internal coherence of the information; 
they could be distributed on the web for access using visualization and 
browsing tools, as an extension to the current genome annotation viewers, 
such as the DAS-based genomebrowser [39] and Ensembl [40]. 
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3.3.2 Text mining to capture information on experimental 
conditions 

Biological observations are directly linked to the experimental conditions 
in which they were obtained, and in many cases, cannot be interpreted in the 
absence of the contextual information. Examples include the cell lines used 
for an experiment, or the pH of the buffer in which the experiment was 
conducted. Human experts tend to go back and forth to this information, 
depending of the level of detail required for their investigation, and it is 
obviously impossible for databases to store all this information beforehand. 

We expect that improved information extraction and knowledge 
management techniques will be used to facilitate the access to these data and 
the successive iterations of information extraction, organization and storage. 
A possible future application might be the annotation of protein interactions: 
knowing that two proteins interact is only significant in biological terms if 
the conditions are specified, including the type of tissue, species, cell line, 
cell state (e.g. yeast in exponential growing phase), experimental techniques 
used to detect the interaction, dependencies of interaction (e.g. proteins bind 
only if protein X is phosphorylated) and state of proteins (fiill proteins, 
domains, modifications such as phosphorylation, etc). This information is 
either not currently captured by protein interaction databases or, if captured, 
is represented at differing levels of granularity. For example, the 
classification of the experimental techniques used to detect protein 
interactions is complex and a large effort is now underway to create this 
classification as part of the Protein Standards Initiative (see 
http://psidev.sourceforge.net/mi/xml/doc/user). Additional tools will be 
required not only to maintain the links between the database annotations and 
the text sources, but also to allow the users to access additional information, 
e.g., the exact details of the experimental conditions for the general 
experimental techniques. 

In this future scenario, current popular systems such as iHOP [41, 42] 
will provide not only direct textual information regarding potentially 
interacting protein pairs, but also additional navigation capabilities that will 
allow the user to access the text regarding the experiments supporting each 
one of the observations. It would be beneficial if these future systems could 
organize the experimental information using suitable ontologies, which 
would enable more sophisticated - and more general - queries over that 
information. See Chapter 6, this volume, for a discussion of an ontology for 
the capture of experimental information. 

The upcoming BioCreAtlvE II protein-protein interaction task 
(http://biocreative.sourceforge.net) will include a subtask on extraction of 
experimental information used to curate protein interactions. This will 
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provide an opportunity to assess the state of the art for automated extraction 
of experimental information. 

3.3.3 Extraction of additional functional features 

We have mentioned above the limitations of the current databases 
regarding the storage of information on additional functional features such as 
post-translational modifications, binding site residues, binding constants, 
catalytic data, etc. Indeed the kinds of experimental results that can be of 
interest in biology are large and complex. 

A number of specialized databases are dedicated to the collection of 
some of this information, e.g. transcription factors [43] or information on 
chromosomal translocations and associated diseases caused by genomic 
rearrangements [44]. Some text mining and information extraction efforts 
have been specifically dedicated to these tasks. One example is the work on 
detection of transcription factors and transcription regulation reactions [45]; 
a second is the work on the automatic extraction of information on 
translocations and the genes associated with the rearrangements [46]. These 
systems require a detailed specific knowledge of the problem and the 
creation of specific tools for accessing the information, organizing and 
ranking the relevant literature, extracting the desired data, analyzing 
performance, and keeping the extracted links and relations. 

It is also possible to imagine a new generation of text mining tools that 
could be easily reconfigured depending of the specific problem, perhaps 
using "Agile NLP" techniques discussed below in section 5. Such tools 
would be a valuable contribution to the creation those specialized resources. 
A "Semantic Web" environment with shared ontologies would make it far 
easier to link and connect the bits of information on specialized biological 
questions, facilitating the navigation between them, and enhancing their 
individual value. 

4. THE MODEL ORGANISM DATABASE 
CURATION PIPELINE 

As genome sequencing has become ever cheaper and faster, model 
organism genome databases have proliferated. The GMOD (Generic Model 
Organism Database) Project (http://www.gmod.org/) now exists to provide 
open source software to support the creation and maintenance of new model 
organism databases. This progress has been closely linked to research in 
comparative genomics. The success of some of the early model organism 
databases led to creation of the Gene Ontology Consortium [47], which now 
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provides ontological categories to support comparative genomics, and 
specifically, annotation of genes in many of the model organism databases. 
Because of the coverage and high quality of these databases, they are among 
the first places that researchers go to do bioinformatics tasks requiring large 
amounts of computationally accessible data. 

Curation of knowledge fi^om the published literature is a key source of 
the information for the model organism databases. The curation activity is 
managed in a curation pipeline consisting of three stages: 
1. Management of the curation queue: this involves selection of the 

literature to be curated, according to some agreed upon set of criteria and 
priorities; 

2. Listing of "curatable" entities (genes, gene products) in a given paper, 
linked to their unique MOD identifier; 

3. Curation of the list of entities in 2) above, including annotation of genes 
in terms of Gene Ontology categories. This stage also involves 
assignment of evidence codes to capture information about the source of 
experimental evidence that the assignment of GO code is based on. 

These three stages involve different kinds of knowledge acquisition ft*om 
the literature. The different stages have also provided good target problems 
for development and assessment of text mining tools, since each stage 
requires a different mix of information retrieval, information extraction and 
ontology mapping technologies. 

4.1 Managing the Curation Queue 

The first phase of the pipeline is to select and prioritize papers for 
curation according to the curation criteria of the particular model organism 
database. We can think of this as a document retrieval task or a text 
classification task, where the task is to find all papers that have experimental 
data about one or more genes or gene products fi-om a particular species 
(e.g., articles about rat genes). For most MODs, maintaining the curation 
queue takes significant effort - it is time consuming to identify the relevant 
articles and to determine what information is contained in each article. It is a 
task that would clearly benefit from better indexing and search tools. 

To date, there have been two large scale evaluations organized around 
this task. The first was the KDD Challenge Cup Task [48], which used the 
FlyBase (http://www.flybase.org/) curation pipeline as the basis for an early 
evaluation of text mining techniques applied to biology. The specific task 
was to automatically identify or prioritize papers that met the FlyBase 
criteria for curation for gene expression, namely that they contained 
experimental evidence for gene expression products. The best performing 
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system achieved a balanced F-measure^ of 0.78 on the task of deciding 
whether or not to curate a given paper. However, this kind of measurement 
does not give us insight into the really important measure, which is whether 
such a system would save time for the curators. This has not yet been 
measured in any systematic way. 

This same step in the curation pipeline was used as the model for a task 
in the TREC Genomics track [49], which drew on the Mouse Genome 
Informatics curation "triage" process for data. The results here were also 
quite inconclusive, since the best performing systems did not do significantly 
better in selecting papers for curation than a baseline system that simply 
selected papers based on the presence of the keywords "mouse", 'mus' or 
'murine'. 

A number of curation groups are now beginning to adopt Semantic Web-
enabled workflow and search tools to manage this process, such as Tavema 
[18] and QUOSA (http://www.quosa.com/academic.html), an integrated 
search tool which links PubMed abstracts to full text documents. 

4.2 Listing Entities for Curation 

The second phase is to list gene or gene products for curation. Once a 
paper is selected for curation, the paper is then curated for all "interesting" 
genes and gene products in the paper - this is an entity identification task, 
where the critical activity is to map the mention of each gene or gene 
product in the text to a unique identifier used by a particular MOD. Entity 
identification is a non-trivial task, because of the many name variants for a 
given gene or gene product and the ambiguity of gene names due to 
extensive use of abbreviations and acronyms [50]. Since entity identification 
is a key to indexing of the literature, this task has also served as a model for 
an evaluation effort, as part of the first BioCreAtlvE. Task 1 involved (a) 
extracting mentions of gene names in biomedical abstracts and (b) listing the 
corresponding unique gene identifiers from a structured database [51, 52]. 
The data used for entity identification (i.e., gene name, unique id, and 
abstract) came from gene lists for curated articles in genome databases for 
three widely-studied species: Yeast, Fly, and Mouse. The best system for 
Task la (gene mention extraction) performed at 0.83 F-measure. For Task lb 
(mapping of gene mention to unique identifier in the corresponding MOD), 
systems performed at 0.8-0.9 F-measure, depending on the specific 
organism. 

^ F-measure is the harmonic mean of precision P and recall R, computed as 2*P*R/(P+R). 
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4.3 Functional Annotation 

The third phase of a typical MOD pipeline is to curate genes in the 
database using structural knowledge codes such as GO for molecular 
function, biological process, and sub-cellular localization. There are several 
ways in which automated tools can help in this process, including finding the 
passage(s) in an article that provide evidence for a GO code assignment to a 
gene, and the actual assignment of the code. As noted in the previous 
section on the protein annotation pipeline, the ability to link a specific 
passage to a particular annotation would be very useful in reconstructing the 
evidence for the annotation. 

There are a number of tools under development to associate mentions of 
genes or gene products with occurrences of GO terms in abstracts or articles. 
One of the most successful tools is Textpresso [53], which has been used for 
curation and querying of the Worm and Yeast databases. Textpresso 
incorporates GO terms into its own internal ontology/terminology, and uses 
regular expression matching to map occurrences in the text to GO terms as 
well as other classes, such as allele, phenotype and life stage. Textpresso is 
part of the GMOD software distribution package. 

The first BioCreAtlvE assessed automated GO annotation capabilities 
[36] in collaboration with the GO A (GO Annotation) team from EBI [54]. 
The first subtask was to find evidence in fiiU-text articles that would allow a 
protein to be assigned a particular classification in the GO. Systems were 
given instances of a protein name, its GO code and the fiiU-text paper that 
provided the evidence for that GO code; the goal was to retrieve a relevant 
passage from the paper that contained the evidence for this assignment. 
These passages were judged for correctness by GOA curators. The best 
systems had roughly 30% accuracy. This is a difficult task because of the 
amount of expert knowledge and inference required. For example, the 
passage "The p21waf/cipl protein is a universal inhibitor ofcyclin kinases 
and plays an important role in inhibiting cell proliferation'' provides 
evidence for the GO molecular fimction annotation "negative regulation of 
cell proliferation" (GO code: 0008285), which requires a system to make the 
inference that inhibitor is equivalent to negative regulation. 

In a second sub-task, the systems were given instances of a protein 
name and the fiill-text paper that provided the evidence; the systems were 
required to retrieve the relevant evidence-containing passages and the GO 
code for that protein. This task was motivated by the need for tools to help 
curators assign a GO code to a protein. The task was significantly harder and 
performance dropped by a factor of two compared to the first task [36]. 
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4.4 Model Organism Database Tools: lessons learned 

The lessons learned from examination of the model organism database 
curation pipeline are the following: 
• Tools for managing the curation queue would be useful, but as curation 

criteria become more stringent (e.g., the article must have experimental 
evidence for a particular gene or protein), more human intervention is 
needed. Workflow and Semantic Web search technologies will be helpful 
here. 

• Tools to keep data collections current would be useful. Such tools could 
provide an alert each time a new article is published that has information 
relevant to a particular data collection. Even more useful would be the 
ability to flag new information that does not exist in the current 
information base. Agent based technologies could fill this need. 

• Tools to locate relevant candidate passages within a full text article 
would be useful to curators, especially if these tools could be readily 
coupled to the ontology or terminology used for annotation. There is one 
such tool in use (Textpresso) that supports interactive curation and query, 
for specific model organism databases; there are also commercial tools 
coming into use for applications such as drug discovery (see below, 
section 5). However, automated curation remains a difficult challenge as 
revealed by the BioCreAtlvE results, and more research is needed. 

5. TEXT MINING FOR DRUG DISCOVERY 

Drug development is an information intensive effort that relies heavily 
upon the ability to expeditiously sift through large quantities of external and 
internal information sources. As such, it provides one of the most 
compelling opportunities for the use of text mining tools and Semantic Web 
technology for large-scale knowledge acquisition from the literature. In 
fact, several examples of text mining for database development and 
application to knowledge mining already exist. Two use cases of text 
mining for drug development have been published [55, 56] describing 
Nuclear Hormone Receptor(NHR)/Cofactor relations, chemical compounds 
associated with proteins, and chemical compounds extracted from the 
literature for intellectual property analyses. 

There is a significant difference between commercial drug discovery and 
the kinds of basic biomedical research outlined in previous sections. Basic 
research is exploratory and open-ended (see Section 3.2). Developing drugs 
is focused on repairing or shutting down disease processes, and is therefore 
more focused on closed-form questions. Collecting all available relevant 
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information about a disease process supports a directed cost-effective 
approach to its repair or shut down. After building an understanding of the 
disease process and the pathways involved, it is possible to then target a 
drug-able aspect that will cure or at least ameliorate the disease process. 

There are a wide variety of entities and their relationships (see Figure 3-
2) involved in drug development (see also Chapters 5 and 6, this volume). 
Current natural language processing (NLP) and statistical text analysis 
technologies can be effective in answering usefiil questions in this context. 
The semantic typing that is performed as part of the entity extraction and text 
mining process yields relationships that can be integrated, using Semantic 
Web technology, to build knowledge bases supporting drug development 
(see also Chapter 13, this volume). 

Genetic 
Disorder 

Figure 3-2. Example biomedical entities and their relationships for drug discovery and 
development. MOA=mechanism of action. 

Many questions regarding drug development are best answered by 
querying a focused database for information such as: 
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• What proteins interact with my target protein? 
• What compounds inhibit proteins in this pathway? 
• What biomarkers are associated with this protein/pathway? 

If this information does not exist in database form but does exist in the 
Uterature, then text mining can be used to extract it for further expert 
curation into a database. Often the information requested is quite focused, 
e.g. only extract compounds that inhibit or activate protein kinases 
associated with estrogen-sensitive breast cancer. Statistically based text 
analytics, such as term co-occurrence based on sentence, paragraph or 
document semantics units, can be used to provide content for curation into 
these small databases, but they tend to be lower precision and are therefore 
less well-suited to knowledge acquisition for the Semantic Web. 

Natural Language Processing (NLP) is best suited to knowledge 
acquisition for the Semantic Web. There are two flavors of NLP available. 
Standard NLP captures high-value information that can be utilized across 
multiple applications. Agile NLP can be used for "exploratory" queries, in a 
more interactive mode that allows the user to iteratively fine tune the query. 
Both Standard and Agile NLP use entity extraction technology, often linked 
to ontologies or terminologies, to identify the biomedical objects of interest 
(see Chapter 13 for discussion of linkage of ontologies and text mining). 

TEMIS [57] is an example of Standard NLP, where domain experts have 
identified dozens to hundreds of highly specific extraction patterns that 
capture how authors write about protein-protein interactions in the literature. 
These patterns are then turned into special purpose rules to extract 
occurrences of the patterns from the literature. Linguamatics I2E [56] 
provides a good example of Agile NLP; it uses search technology to query 
over user-defined combinations of entity classes and syntactic relations. 
Using Agile NLP, one can search for entities classes in a syntactic context, 
such as: 'proteins (entity class) followed by a prepositional phrase (syntactic 
query operator) containing tissue' in order to collect tissues associated with 
all proteins in a corpus. Standard NLP can provide better precision and 
recall than Agile NLP but with the disadvantage that it may take a number of 
Full-Time-Equivalent (FTE) weeks to years of expert time to tailor the entity 
taggers and extraction patterns for a new application. Therefore, Standard 
NLP is more suitable to building databases fi*om the literature for large-
scale, high-value "reusable" questions like protein-protein binding or 
interaction. Agile NLP is more useful in pharmaceutical and biotech 
companies, since most large-scale database development from the literature 
(using Standard NLP) is outsourced. Agile NLP is more appropriate for 
smaller, special purpose, and highly contextualized queries/databases. 
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Figure 2-3. Integration of many kinds of information in a drug discovery pipeline (Figure 
courtesy of Inforsense, Ltd.) 

Every text mining project is based on a workflow of collecting text 
(data), filtering, re-formatting, analyzing and then presenting the results. As 
seen in Figure 3-3, text mining needs to be thoroughly integrated into high-
throughput transcriptomics and metabonomics analyses. The text mining 
aspect of the workflow is used to correlate metabolic products with 
differentially expressed genes based on co-occurrence in the literature. This 
workflow obviously requires manual intervention or curation, because of the 
high false positive rates, but this semi-automated approach is significantly 
more efficient than any other to associate genes with downstream metabolic 
products. 

Two examples of text mining are presented below, on nuclear hormone 
receptor/cofactor interactions from the Medline abstract database and the 
extraction of biomarkers for lupus. Nuclear hormone receptors (NHR's) are 
ligand-dependent transcription factors that bind to protein complexes called 
cofactors to enhance or repress transcription of specific genes. They help to 
regulate gene expression in a coordinated manner and are of interest as drug 
targets. Given the lack of available databases of NHR/cofactor binding, a 
project was initiated to develop a database [56]. The two NHR's initially 
curated were Androgen Receptor (AR) and Liver X Receptors a and P (LXR 
alpha and LXR beta). At the time of the project, there were 7748 abstracts 
mentioning AR from Medline and Embase and approximately 250 abstracts 
mentioning LXR alpha and beta. A manual extraction effort was initiated 
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for approximately 300 of the AR abstracts and all of the LXR abstracts. 
From this manual extraction effort, it was determined that non-professional 
curators without any curation automation could curate approximately 100 
abstracts per day. 

Agile NLP (Linguamatics I2E using Biowisdom's Protein Ontology 
organized by molecular function [56]) was also used to extract the 
NHR/cofactor interactions. The text mining effort used a search pattern 
involving each NHR followed by a verb phrase indicative of a protein 
relationship followed by another protein name. Developing the pattern and 
reviewing the table of interaction results with full abstract context required 
approximately four hours for the 7748 abstracts and less than an hour for the 
LXR abstracts. 

The point of the curation exercise was to determine the interacting 
proteins from the literature for the particular context of transcription 
initiation. Both approaches, manual and using Agile NLP, produced similar 
recall values of 90% (the Agile NLP technology was tuned interactively to 
provide that level of recall by trading off some precision). The AR set of 
interactions included a database of interactions compiled by Dr. Lenore 
Beitel [58] since it was not feasible to manually review all 7748 abstracts for 
AR (which would have required an estimated 77 full-time equivalent (FTE) 
days). The Agile NLP search pattern identified 564 abstracts that contained 
potential protein interactions. This illustrates how text analytics was able to 
significantly reduce curation resources required, avoiding the need to 
sacrifice coverage due to resource constraints when building databases. 

Given this context, it is interesting to revisit the concept of recall. Recall 
is the number of facts found divided by the total number of facts in the 
corpus. Recall errors result when a person (or system) fails to recognize a 
fact in a document under examination; or it can occur because of resource 
limitation: a person can only look at 100 documents, but a system can look at 
10,000 documents. Therefore, if a person looks at 100 documents containing 
10 facts, with a 90% recall, that person will have found 9 facts. However, if 
a system looks at 10,000 documents containing 1000 facts at 30% recall, the 
system will find 300 facts (compared to the 9 found by the person) - a much 
higher "effective" recall for a given time (or cost). 

A second study focused on lupus, a chronic autoimmune disease in which 
the immune system attacks normal tissue. In this study [59], the goal was to 
extract potential biomarkers from the literature to build a database for 
follow-on analyses. Agile NLP (Linguamatics I2E) was used to extract all 
sentences containing the semantic classes 'Human Protein' AND 'Lupus 
disease indicators'. The time to manually scan an entire abstract for 
relevance was ~2 minutes. The time to scan extracted and highlighted 
results produced using Agile NLP with associated sentence context was 
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under 20 seconds (a 6-fold reduction in time per abstract). The time it took 
to manually extract the details for the biomarker database was ~3 minutes 
per abstract. By contrast, it took 0-20 seconds to extract these details using 
Agile NLP parsed results that were pre-filtered for relevance (a 9-fold speed 
up), although there was occasional clean up required for some entries. 

Several iterations of the search for Lupus biomarkers were implemented. 
The first iteration had a precision of 90% with an unknown but very low 
recall, in order to provide a quick list of hits. It is then easy to pivot the 
resulting table and generate a list of frequency counts for each biomarker. 
Following iterations increased recall to more completely capture more 
potential biomarkers from the literature. 

The text mining results used in a drug discovery pipeline still require 
curation, but text mining can provide impressive gains in efficiency for 
literature extraction and even more impressively, increase the 'effective' 
recall of literature extraction efforts. For drug development, text mining is 
invaluable for the performance gains and the ability to more 
comprehensively extract information from the literature. Ad hoc, manual 
efforts are not sufficient for today's information-based, performance-driven 
drug development companies. 

6. TEXT MINING TO INTERPRET HIGH 
THROUGHPUT DATA 

A typical result from a high-throughput experiment is a list of genes or 
proteins that are differentially regulated under certain conditions. 
Researchers' ability to run such experiments and collect the raw data has 
now greatly exceeded their ability to analyze the results in a timely fashion. 
The challenge is to interpret this list of genes in terms of possible 
mechanisms that can, for example, explain which sets of genes are co-
regulated or are interconnected in pathways. This requires providing 
sufficient information about the function of individual genes or gene 
products and their connections in pathways, to develop an idea of the 
underlying biological processes involved. 

This is a typical bioinformatics problem, and also a Semantic Web 
challenge: it requires the integration of many heterogeneous data resources, 
such as model organism databases, pathway databases, protein function 
databases, and (at least ideally) information contained in the literature. These 
are coupled into a complex workflow using available bioinformatics tools -
a process which is time-consuming and requires significant maintenance to 
obtain reproducible results. 
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There are now standards for the deposition of high-throughput data 
sets, such as MAGE^ as well as meta-data standards (MIAME or Minimal 
Information about Microarray Experiments). The goal of these standards is 
to permit the capture and sharing of the raw datasets with no error inducing 
reformatting. These repositories enable "reannotation," making it possible to 
use new information and new tools that become available over time. In one 
such reannotation exercise [60], a set of raw microarray data [61] was 
identified and downloaded. The goal of the original experiment was to gain 
insight into virulence mechanisms and immune response by comparing mice 
infected with different strains of influenza virus; the experiment had been 
performed in 2002, prior to extensive expansion of the Gene Ontology. The 
hypothesis of the reannotation experiment was that use of updated GO codes 
would provide significant new meta-data to assist in interpretation of the 
experimental results. 

After re-extraction of the sets of differentially regulated genes, the next 
step was to find information in biological databases, including MGI and the 
various pathway databases, to support annotation of the genes. Most of the 
time in this exercise was spent mapping from one representation or 
terminology into a different terminology, in order to access a different set of 
biological resources (e.g., Genbank ID to EntrezGene to MGI identifier). 

The results illustrate why access to the literature is critical. Of the 
6544 sequences on the microarray, 64% (4229) could be associated with 
MGI identifiers and 35% had GO annotations (2316). However, 76% (4936) 
of the genes had PubMed references in MGI, although this number includes 
largely uninformative citations from large scale sequencing experiments. 
This suggests that even for a well-annotated organism such as mouse, much 
of the information is either unknown or not yet captured in the associated 
model organism database. Furthermore, any attempt to enrich the annotation 
set by "inheriting" annotation from homologous genes/proteins is likely to 
suffer from the same problems that beset the protein annotation pipelines 
(see section 3.1 above). 

A number of systems have approached the problem of providing 
annotations for groups of genes associated by their expression data [62], 
including initial work in the Valencia laboratory on combining experimental 
information obtained from expression arrays with information directly 
extracted from text [63, 64]. However, even if the annotation problem were 
solved so that the information about each one of the genes were linked to the 
relevant databases, to the correct GO classes and to the main evidence 
passages in the literature, the main question would remain open: what 
evidence explams the gene co-regulation? 

^ Micro-array and Gene Expression: http://www.mged.orgAVorkgroups/MAGE/mage.html. 
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It is interesting to realize that the question is not different from the one 
commonly posed by other type of experiments. For example, a large pull
down proteomics experiment will deliver a few hundred protein complexes, 
for which the common function will be unknown. The challenge in this case 
will be to find the common function for that set of proteins that are detected 
to physically form part of a protein complex. 

A number of characteristics of the problem make it particularly difficult 
to solve. In the first place, it is very unlikely - but not impossible - that there 
is a common function that has been already experimentally verified for all 
the genes in the set. Indeed, if all the genes are already annotated with a 
common function, the new result will be primarily a confirmation of 
previous knowledge, and the biologist will not be very interested. This 
means it is important to find out whether this is the case as quickly as 
possible. On the other hand, it is possible that the protein complex, or the 
group of genes with a similar expression profile, constitute a discovery of a 
new relation between previously known entities. If this is the case, then we 
would expect that there is nothing in our previous knowledge that these 
proteins have in common. This case will be very interesting for the biologist, 
but very difficult to validate precisely because it represents a new discovery 
which has not yet been described in the literature. The third and most 
frequent possibility is that there is partial information about a common 
function for some of genes in the set, and this information is dispersed 
among various databases, described using different terminology, and 
included in very different context and experimental environments. We 
cannot know a priori to which of the three cases a given problem belongs. 
This adds a major complication that necessitates the development of 
carefully crafted significance estimates. 

The problem of finding what is significantly enriched in a set of genes is 
not only a very important biological problem but also a key challenge in 
knowledge management that will benefit from the emerging Semantic Web 
technology. The connection of dispersed, heterogeneous and incomplete 
information requires the use of a reference background to judge the 
significance of potential relationships. This reference background could be 
provided by using ontologies in annotating databases, assuming that the 
annotation preserves the linkage to the underlying text. An example of the 
practical difficulties in creating such ontologies can found in [65]. 
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7. CONCLUSIONS 

We can distinguish between intrinsic limitations of current text mining 
and knowledge management approaches, and extrinsic limitations of 
ontologies and interoperability issues. For existing text mining tools, there 
are a number of intrinsic, technical limitations: 
• Entity tagging and identification. Entity tagging can be used effectively 

to index large collections, if a certain level of "noise" (misses and false 
alarms) can be tolerated (as in the drug discovery pipeline), or if the 
results can be manually curated. The accuracy of entity identification 
tools is improving and the tools work well for organisms with highly 
regular nomenclature (e.g.. Worm, Yeast), but are not yet good enough to 
run in stand-alone mode in most cases. Better ontologies and 
terminologies will be helpful if they provide improved linkage to 
mentions of these entities in the literature (Chapters 4 and 5). 

• Rapid adaptation to new tasks. The problems described in the preceding 
sections illustrate that each problem is distinct and requires special 
tailoring - which adds to the cost of an application. Text mining must 
overcome the cost/performance barrier by creating modular tools that are 
easy to adapt to new requirements and new vocabularies through 
feedback mechanisms that support rapid tailoring and incremental 
learning. 

• Curation tools. Better tools are needed to assist human experts in locating 
relevant information in articles and in mapping this information into the 
appropriate ontological classes or terminologies. An important goal is to 
use tools to speed up and improve the quality of manual curation. 
Semantic Web technology will be critical here to provide better linkage 
between ontologies and text mining (see Chapter 13), as well as 
improved support for ontology development and human curation, via 
visualization and ontology navigation interfaces (see Chapters 9-10). 

• Ontology mapping and maintenance. Text mining tools are becoming 
useful in extracting information from free text and associating that 
information with the correct concepts in the ontology ("ontology 
population". Chapter 13). Furthermore, text mining tools could support 
iterative improvements to ontologies by testing and highlighting new 
concepts as they are used for in applications [66, 67]. 

• Access to full text data. Difficulty in accessing fiiU text articles remains a 
stumbling block for indexing and text mining. As a result, indexing and 
search are often limited to PubMed abstracts. While this is starting to 
improve, it is still inhibits large-scale text mining activities. 

Competitions and challenge evaluations will be an important means to 
address these intrinsic, technical limitations. They serve to bring together 
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developers with the end users, e.g., biologists, annotators, and biomedical 
database developers. In particular, BioCreAtlvE, TREC Genomics, and the 
other challenge evaluations in the field have fostered the development and 
spread of tools for handling text data, including access to full text articles, 
comparative representation of results, and, most importantly, assessment of 
results by both automated means and by human experts. 

There are also extrinsic limitations related to ontologies and semantic 
interoperability. Ontologies are critical to organizing biological information; 
these ontologies and terminologies provide the "target structure" for text 
mining systems. Where there is no suitable ontology or terminology, it 
becomes necessary to create one at additional cost Fortunately, Semantic 
Web technology is making rapid advances in this area, with open source 
ontologies available via OBO (Open Biomedical Ontologies; 
http://obo.sourceforge.net/), supported by a rich environment for building 
and exchanging ontologies (see Chapters 4, 5, 6 and 8). 

Connectivity among different resources remains a significant challenge. 
Typical bioinformatics pipelines require integrating information from 
multiple sources, but there can be significant effort involved in simply 
mapping from one set of database identifiers (e.g., Genbank id) to other sets 
(EntrezGene, KEGG, MGI, etc.). Semantic Web technology can greatly 
facilitate this kind of terminology mapping, through the use of semantic web 
services [16, 17]. 

Ontology maintenance or ontology versioning is an additional problem 
that affects data capture and text mining. If a new concept appears, or an 
existing concept is refined, these changes must be reflected in any tools that 
map into these concepts, especially for ontology population. Workflow tools 
applied to ontology mapping can help in this critical area. Similarly, 
tracking the provenance of data remains a critical issue - in complex 
bioinformatics pipelines, if the underlying software or datasets change, this 
can affect the computed results. Again, workflow tools emerging from 
Semantic Web technology can provide critical assistance in capturing these 
dependencies (Chapter 16). 

Maintaining currency of different collections is an ongoing challenge. 
Many automated pipelines now routinely recompute all automatically 
assembled information on a regular basis. However, text mining coupled 
with agent-based technologies can provide a mechanism to flag the 
appearance of new information (Chapter 15) and integrate it into an existing 
framework [68]. 

In conclusion, we believe that text mining is critical for knowledge 
acquisition across the Semantic Web. It is needed to navigate the literature 
(document retrieval) and to provide indices into the semantic space (entity 
tagging and identification). To support this knowledge acquisition, the next 
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generation of text mining tools must be rapidly adaptable to new tasks and 
ontologies, and tightly integrated with other standard sources of 
bioinformatics data through the use of Web services and semantic exchange 
languages. 

Data integration via shared semantic standards is critical to the entire 
undertaking of bioinformatics and biomedical research. Text mining relies 
on this shared semantics to organize and access the growing body of 
resources. The Semantic Web will facilitate this by providing a more 
uniform interface to multiple types of data, including both resources 
(nomenclatures, ontologies) and content (e.g., pathway information or 
functional annotations). It will facilitate the integration of public data 
resources with specialized (private) resources focused on a specific project. 
Text mining, in turn, can offer support to the Semantic Web for the creation 
and refinement of ontologies and terminologies through rapid iterative 
search and formation of topic-specific vocabularies. Coupled together, text 
mining and Semantic Web technologies hold the promise of enabling 
efficient, cost effective knowledge acquisition from the biomedical 
literature. 
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Abstract: Biological ontologies define the basic terms and relations in biological 
domains and are being used among others, as community reference, as the 
basis for interoperability between systems, and for search, integration and 
exchange of biological data. In this chapter we present examples of biological 
ontologies and ontology-based knowledge, show how biological ontologies are 
used and discuss some important issues in ontology engineering. 
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1. I N T R O D U C T I O N 

Intuitively" ,̂ ontologies can be seen as defining the basic terms and 
relations of a domain of interest, as well as the rules for combining these 
terms and relations [24]. Many ontologies have already been developed and 
are used in several areas, including bioinformatics and systems biology 
[27,15,17]. They are considered to be an important technology for the 
Semantic Web (e.g. [18,30,23]). They are used for communication between 
people and organizations by providing a common terminology over a 
domain. They provide the basis for interoperability between systems. They 
can be used for making the content in information sources explicit and serve 
as an index to a repository of information. Further, they can be used as a 
basis for integration of information sources and as a query model for 

^ For discussions of different definitions of ontologies we refer to [10,9]. 
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information sources. They also support clearly separating domain knowledge 
from application-based knowledge as well as validation of data sources. The 
benefits of using ontologies include reuse, sharing and portability of 
knowledge across platforms, and improved maintainability, documentation, 
maintenance, and reliability (e.g. [36]). Overall, ontologies lead to a better 
understanding of a field and to more effective and efficient handling of 
information in that field. As an example, in Figure 4-1 we see two small 
pieces from two ontologies, Adult Mouse Anatomy (MA) and Medical 
Subject Headings (MeSH), representing knowledge about the nose. The / 
symbols in MA denote is-a relationships while the p symbols denote part-of 
relationships. The - symbols in MeSH can denote is-a and part-of 
relationships. The terms in bold face in MA and MeSH, respectively, that are 
connected with a dashed line denote equivalent terms. 

nose 

p - nasal cavity 

p -nasal caviiy epilheliuni 

/" — itasai cavifv otfaciifty cpithi'tiiiw 
i - nasal cavity respiratory epithelium 

nose-MA 

nose 

- nasal bone 
- nasal caviiy 
- nasal mucosa 

— olf'ctctory mucosa 

nosc-McSH 

Figure 4-1. Example ontologies. 

Although ontologies have been around for a while, it is only during the 
last decade that the creation and use of biological ontologies have emerged 
as important topics. The work on biological ontologies is now recognized as 
essential in some of the grand challenges of genomics research [6] and there 
is much international research cooperation for the development of biological 
ontologies (e.g. Open Biomedical Ontologies (OBO)) and the use of 
biological ontologies for the Semantic Web (e.g. the EU Network of 
Excellence REWERSE). The number of researchers working on methods 
and tools for supporting ontology engineering is constantly growing and 
more and more researchers and companies use ontologies in their daily 
work. 

The use of biological ontologies has grown drastically since database 
builders concerned with developing systems for different (model) organisms 
joined to create the Gene Ontology (GO) Consortium in 1998 [7]. The goal 
of GO was and still is to produce a structured, precisely defined, common 
and dynamic controlled vocabulary that describes the roles of genes and 
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proteins in all organisms. Another milestone was the start of Open 
Biomedical Ontologies as an umbrella Web address for ontologies for use 
within the genomics and proteomics domains [25]. The member ontologies 
are required to be open, to be written in a common syntax, to be orthogonal 
to each other, to share a unique identifier space and to include textual 
definitions. Many biological ontologies are already available via OBO. The 
field has also matured enough to start talking about standards. An example 
of this is the organization of the first conference on Standards and 
Ontologies for Functional Genomics (SOFG) in 2002 and the development 
of the SOFG resource on ontologies [35]. Further, in systems biology 
ontologies are used more and more, for instance, in the definition of 
standards for representation and exchange of molecular interaction data. 

In this chapter we give an overview of the area of biological ontologies. 
First, as a background, we introduce a characterization of ontologies based 
on the kind of information they can represent (section 2). In section 3 we 
present OBO as well as some types of biological ontologies. We show how 
biological ontologies are used (section 4) and discuss some important issues 
in ontology engineering (section 5). In addition to the biological ontologies 
other ontology-related knowledge is available and can be used for search, 
integration and analysis of data. Section 7 presents this knowledge. 

2. CHARACTERIZATION OF ONTOLOGIES 

Ontologies differ regarding the kind of information they can represent. 
From a knowledge representation point of view ontologies can have the 
following components (e.g. [36,17]). Concepts represent sets or classes of 
entities in a domain. For instance, in Figure 4-1 nasal cavity represents all 
the things that are nasal cavities. The concepts may be organized in 
taxonomies, often based on the is-a relation or the part-of relation. Instances 
represent the actual entities. They are, however, often not represented in 
ontologies. Further, there are many types of relations. For instance, one type 
is the group of taxonomic relations such as the specialization relationships 
(e.g. nasal cavity olfactory epithelium is-a nasal cavity epithelium) and the 
partitive relationships (e.g. nasal cavity part-of nose). Finally, axioms 
represent facts that are always true in the topic area of the ontology. These 
can be such things as domain restrictions (e.g. the origin of a protein is 
always of the type gene coding origin type), cardinality restrictions (e.g. each 
protein has at least one source), or disjointness restrictions (e.g. a helix can 
never be a sheet and vice versa). 

Ontologies can be classified according to the components and the 
information regarding the components they contain. A simple type of 
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ontology is the controlled vocabulary. These are essentially lists of concepts. 
When these concepts are organized in an is-a hierarchy, we obtain a 
taxonomy. A slightly more complex kind of ontology is the thesaurus. In this 
case the concepts are organized in a graph. The arcs in the graph represent a 
fixed set of relations, such as synonym, narrower term, broader term, similar 
term. The data models allow for defining a hierarchy of classes (concepts), 
attributes (properties of the entities belonging to the classes, functional 
relations), relations and a limited form of axioms. The knowledge bases are 
often based on a logic. They can contain all types of components and 
provide reasoning services such as checking the consistency of the ontology. 

An ontology and its components can be represented in a spectrum of 
representation formalisms ranging from very informal to strictly formal [15]. 
In general, the more formal the used representation language, the less 
ambiguity there is in the ontology. Formal languages are also more likely to 
implement correct functionality. Furthermore, the chance for interoperation 
is higher. In the informal languages the ontology content is hard-wired in the 
application. This is not the case for the formal languages as they have a well-
defined semantics. However, building ontologies using formal languages is 
not an easy task. 

In practice, biological ontologies have often started out as controlled 
vocabularies. This allowed the ontology builders, which were domain 
experts, but not necessarily experts in knowledge representation, to focus on 
the gathering of knowledge and the agreeing upon definitions. More 
advanced representation and fiinctionality was a secondary requirement and 
was left as future work. However, some of the biological ontologies have 
reached a high level of maturity and stability regarding the ontology 
engineering process and their developers have now started investigating how 
the usefulness of the ontologies can be augmented using more advanced 
representation formalisms and added fiinctionality. Moreover, some recent 
efforts, such as Fungal Web Ontology [1], have started out immediately as 
knowledge bases. 

3. EXAMPLES OF BIOLOGICAL ONTOLOGIES 

There are many biological ontologies. They differ in the type of 
biological knowledge they describe, their intended use, the level of 
abstraction and the knowledge representation language. There are ontologies 
focusing on things such as protein fimctions, organism development, 
anatomy and pathways. Most biological ontologies are controlled 
vocabularies, taxonomies or thesauri, but there are also ontologies that are 
knowledge bases and use OWL (Web Ontology Language, a language 
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building on the Resource Description Framework (RDF) and RDF Schema) 
as their representation language. With respect to the abstraction level the 
ontologies may range from high level ontologies that define general 
biological knowledge to ontologies that describe selected aspects. For 
instance, some general biological knowledge is covered in the TAMBIS 
ontology [8] (e.g. protein and nucleic acid are biomolecules, and motif is-
component-of protein). The GO molecular function ontology defines the 
whole space of possible biological functions (e.g. signal transducer activity 
and the more specific function receptor activity). 

In this section we describe one of the important efforts in the area, OBO, 
and present a selection of ontologies that appear often in current research. 

3.1 Open Biomedical Ontologies 

Many biological ontologies are available via OBO, an umbrella web 
address that provides ontologies for shared use across different biomedical 
domains. In June 2006, 58 ontologies were available via the website. Some 
were under development and a few were deprecated and replaced by newer 
ontologies. Many of the OBO ontologies are stored in the SourceForge CVS 
(Concurrent Versions System) repository, which allows the ontologies to be 
updated daily while keeping a record of all changes. 

[Term] 
id: MA:0000281 
name: nose 
is_€i: MA:0000017 ! sensory organ 
is^a: MA:0000581 \ head organ 
relationship: part^of MA 
relationship: part^of MA 
relationship: part^of HA 

0000327 
0002445 
0002473 

respiratory system 
olfactory system 
face 

Figure 4'2. Example entry from Aduh Mouse Anatomy (OBO). 

The allowed representation formats for ontologies in OBO are the OBO 
syntax, extensions of this or OWL. The OBO flat file format is the most 
common file format in the OBO collection and aims to achieve human 
readability, ease of parsing, extensibility and minimal redundancy in the 
ontology files. Figure 4-2 shows an entry in OBO syntax. It represents the 
term nose (name) and has as identifier MA:0000281 (id). The nose is a 
sensory organ (which has identifier MA.OOOOOIT) and a head organ (which 
has identifier MA:0000581). Further, the nose is part of the respiratory 
system {MA:0000321\ the olfactory system {MA:0002445\ and the face 
(MA:0002473). Other information, such as definition, synonyms, and 
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comments may also be described. The same information in OWL is 
presented in Figure 4-3. For a complete description of the OBO syntax, we 
refer to http://geneontology.0rg/GO.format.shtml#oboflat, and for a 
description of OWL we refer to http://www.w3.org/2004/OWL/ and another 
chapter in this book. 

<owl:Class rdf:ID-"MA:0000281"> 
<rdf .s : label xml: lajig~"en">nose</rdf s: label> 
<rdfs :siibCla,ssOf rdf :resource*"#HA:0000017'7> 
<rdfs rsubClassOf rdf:resource»"#HA:0000581"/> 
<rdf J3 :.gubGlassOf > <owl: Re s t r i c t ion> 

<owl:onPropertjo <owl:ObjectProperty rdf:about*"#part_of"/> 
</owl:onProperty> 
<owl:someValuesFrom rdf :resourc#««"#MA:0000:327'7> 

</owl:Eestriction> </rdfs:subClassOf> 
<rdfs:subClassOf> <owl:Restriction> 

<owl:onProperty> <owl;ObJectProperty rdf :abo\it«"#part_of "/> 
</owl:onProperty> 
<owl: some Value sFrom rdf : re source-* "#MA: 0002445"/> 

</owl:Restriction> </rdfs:subClassOf> 
<rdfs :6ubCla.ssOf > <owl :Restriction> 

<owl:onProperty> <owl:ObjectProperty rdf : about-'•#part_of"/> 
</owl:onProperty> 
<owl: some Value sFrom rdf : resource*«"# HA: 0002473"/> 

</owl:Restrlction> </rdfs:subClassOf> 
</owl:Clas8> 

Figure 4-3. Example OWL entry. 

Editing of OBO flat files is often performed using the OBO-Edit tool 
(previously called DAG-Edit). The Ontology Lookup Service [5] provides a 
user-friendly single entry point for (June 2006, circa 40) ontologies in the 
OBO format. There are some ontology development tools, such as Protege, 
that support OWL-based ontologies. 

3.2 Frequently Used Ontologies 

The GO Consortium is a joint project with the goal to produce a 
structured, precisely defined, common and dynamic controlled vocabulary 
that describes the roles of genes and proteins in all organisms. Currently, 
there are three independent ontologies publicly available: biological process 
(ca 11000 terms), molecular function (ca 8000 terms) and cellular 
component (ca 1800 terms) (June 2006). The GO ontologies are a de facto 
standard and many biological data sources are today annotated with GO 
terms. The terms in GO are arranged as nodes in a directed acyclic graph. 



Biological Ontologies 91 

where multiple inheritance is allowed. The GO ontologies are available via 
OBO. They are still being further developed and efforts are made to improve 
the quality of the ontologies (e.g. [16]). 

Medical Subject Headings (MeSH) [22] is a controlled vocabulary 
produced by the American National Library of Medicine and used for 
indexing, cataloging, and searching for biomedical and health-related 
information and documents. It organizes terms in a hierarchical structure and 
it includes different categories, including anatomy, organisms, and diseases, 
most of which are available via OBO. The version available via the 
Ontology Lookup Service contains circa 15000 terms (version December 
2005). MeSH uses 'is-a' to represent both the is-a relation and the part-of 
relation. 

An area where many ontologies have been developed is anatomy, OBO 
lists 18 different anatomy ontologies (June 2006) and MeSH which has an 
anatomy category. The ontologies cover different organisms (C elegans, 
Drosophila, Medaka fish, Zebrafish, Human, Mosquito, Mouse, Fungi, 
Dictyostelium discoideum, Arabidopsis, Cereal, Maize and Plant), cell types 
and enzyme sources. Some of the plant related ontologies are deprecated 
(e.g. Arabidopsis anatomy and Cereal anatomy) and have been replaced by 
the Plant anatomy ontology. SOFG has focused on integration of human and 
mouse anatomy ontologies and several are available via their web site. The 
number of terms in these ontologies differs a lot. For instance. Fungal 
anatomy and Dictyostelium anatomy contain less than 100 terms, while 
Mouse anatomy and development contains over 13000 terms. The anatomy 
ontologies are often taxonomies. 

In systems biology ontologies are currently being developed in 
conjunction with the development of standards for the representation of 
molecular interaction data. These standards (see e.g. overviews in 
[39,37,38]) aim to provide the ability to supply information on molecular 
pathways in a format that supports efficient exchange and integration. This is 
seen as an important prerequisite for advances in the area. For instance, the 
Systems Biology Ontology, connected to the Systems Biology Markup 
Language (SBML) [32,12], defines terms used in quantitative biochemistry 
in four controlled vocabularies: roles of reaction participants, quantitative 
parameters, rate laws, and simulation fi-ameworks. The Protein-protein 
interaction ontology, connected to the Proteomics Standards Initiative -
Molecular Interaction [11,28], defines terms related to protein-protein 
interactions such as interaction detection methods, experimental roles and 
biological roles. The Systems Biology Ontology and the Protein-protein 
interaction ontology are available via OBO. The Biological Pathway 
Exchange (BioPAX) [3] standard aims to provide an OWL-based data 
exchange format for pathway data and is developed as an ontology. 
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4. USE OF BIOLOGICAL ONTOLOGIES 

We have already mentioned advantages of using ontologies in the 
introduction. Regarding biological ontologies the main focus has been on 
data source annotation, ontology-based search, data integration, data 
exchange and the use of ontologies as a community reference (e.g. 
[36,33,31]).^ 

Many biological data sources use ontologies for annotation of their data 
entries and many tools exist to support annotating data sources or to predict 
annotations for data entries (e.g. BLAST2G0, GOFigure, GOtcha). The 
annotations are used in several ways. Search engines can take advantage of 
the annotations as they give extra information. Further, several kinds of 
systems use GO annotations to compute a semantic similarity measure 
between entries in data sources (e.g. FuSSiMeG). Entries annotated with 
similar sets of GO terms are considered likely to be similar themselves [21]. 
Such a similarity measure can be used for data integration and grouping of 
data entries [14]. There are also many tools that use GO annotations to 
interpret gene expression analysis on multiple genes (e.g. EASE, FatiGO, 
FuncAssociate, GOstat, Onto-Compare). For instance, given a list of genes 
from a microarray experiment, systems calculate over- or under-
representation statistics for each GO term related to the genes in the 
experiment. This provides a description of significant features of the genes 
in the list. Ontologies and annotations are also used in text mining. For 
instance, Genes2Diseases uses occurrence counts of GO and MeSH terms in 
research literature as well as data sources to connect genes to genetically 
inherited diseases. 

Ontologies are also used in different steps in ontology-based search. An 
ontology can be used as an index to the information in the information 
sources. A user can browse the ontology and use the terms in the ontology as 
query terms. For instance, TAIR Keyword Browser (Fly), GOFish (Yeast, 
Fly, Mouse, Worm) and MGI GO Browser (Mouse) use GO to browse 
databases. MeSH is used to index PubMed, an archive for biomedical and 
life sciences journal literature, and GOPubMed connects GO to PubMed. A 
module of Whatizit marks all GO terms in a document and links them to 
their entries in GO. An ontology may also be used for query refining and 
expansion by moving up and down in the hierarchy of concepts. For 
instance, when a user searches in a database for 'immune response' and gets 

^ In this section we exemplify the uses of biological ontologies using a number of systems and 
tools. The list of systems and tools is not intended to be complete. For the sake of brevity, 
we also do not provide references to each of the tools, but the tools without reference are 
available from the GO Web page under 'Tools'. 
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only very few results, the user may decide to query with a more general term 
to find more answers. The ontology can be used to find these more general 
terms, in this case, for instance 'defense response'. 

5. ISSUES IN ONTOLOGY ENGINEERING 

The ontology engineering process contains different phases such as 
development and maintenance. Although there exist many tools that support 
these phases, such as ontology development tools, ontology integration tools, 
ontology evaluation tools, ontology-based annotation tools, ontology 
learning tools and ontology storage and querying tools [27], not all phases 
are well understood yet and several issues need further investigation. In this 
section we briefly discuss such issues that currently receive attention. 

5.1 Ontology Development Best Practice Principles 

Although OBO ontologies are required to be open, to use a common 
syntax, to be orthogonal to each other, to share a unique identifier space and 
to include textual definitions, there are still a number of problems regarding 
interoperability between the ontologies and the quality and formal rigor in 
the ontologies. For instance, not all OBO ontologies use the is-a and part-of 
relations in the same way. For this reason the OBO Foundry was created 
[26]. Ontology developers joining the OBO Foundry commit to a set of best 
practice principles for ontology development (Figure 4-4). Most of the OBO 
criteria are included in the OBO Foundry best practice principles.^ 

The criteria are connected to the main goals and intended uses of 
ontologies. For instance, criterion 1 requires that the ontologies are open and 
available, criterion 9 that there are many users, and criterion 10 that the 
ontologies are developed collaboratively. These are basic requirements if the 
ontologies are to become community references. Further, by not allowing 
changes without changing names (criterion 1), using unique identifiers 
(criterion 3), using textual definitions to reduce potential ambiguity 
(criterion 6) and using relations fi'om the OBO Relation Ontology [34] 
(criterion 7), clear and unambiguous definitions of the terms in the 
ontologies are promoted. This leads to improved understanding and 
usefulness of the ontologies as well as improved interoperability between the 
applications using these ontologies. Interoperability and integration are also 
supported by criterion 2 (use of common formal languages) and criterion 5 

^ OBO Foundry criteria 1, 2, 3, 6 are also OBO criteria. In addition, OBO requires that the 
ontologies in OBO are orthogonal to each other. 
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(terms outside the scope of the ontologies should not be defined within the 
ontology, but the ontology should rather refer to their definitions in other 
ontologies). Criteria 2 and 7 also support reasoning. Criterion 4 (versioning) 
addresses an important, and currently not so well supported, aspect of 
ontology engineering. Finally, criteria 6 and 8 (documenting the content, use 
and development process of the ontologies) are particularly important for 
human users. 

1, T\\(i ontology is oj)en and availal)le to be UBed l>y all without any con-
Btraint otli(>r t.han (1) itn origin munt l)e acknowledged and (2) it is not 
to he altered and snhHcciuently redlBtributed under the original name or 
vviili the name i(leiitifi(»rs. 
2. Tiie ontology in in, <.)i* can be expressed in, a common formal lan
guage. A i)rovision-al list of iangxiages supported l)y OBO is prov îded fit; 
littp://ol)o.sf.net/. 
^. The ontology i:)ossess(»8 n nniqnc iderititler space within OBO. 
4, The ontology provich'r has procediires for identifying distinct succes-
siv(̂  v('rsions. 
G. The ontology has a clearly specified and clearly dehneated content. 
C, The ontology iriclndc^s textual definitions Ibr all terms. 
7. Th(» ontology uses relations which fire una.ml)iguonsly detined follow
ing th(̂  pattern of definitions laid down hi the OBO Relation Ontology. 
8. 1li(^ ontology is W(.'ll-docnmented. 
1). Tlie oiitok)gy lias n pInraJity of in(le])endeiit users. 
10. Th(̂  otit(>logi<»s in tlie OIK) Kotnidry will l)e developed in a. collabo
rative effort. 

Figure 4-4. OBO Foundry criteria (from [26]). 

5.2 Ontology Instantiation 

Vast amounts of biological data, e.g. research articles, are available on 
the Web. However, the knowledge in these Web documents is not readily 
available for analysis and use in applications. Therefore, in ontology 
instantiation (also called ontology population) specific knowledge is 
extracted from these documents based on the knowledge available in 
ontologies. The ontologies define the kind of information that is extracted. 
The instantiated ontology becomes a knowledge base. Manually instantiating 
ontologies is a time-consuming and error-prone task. Research has started on 
developing tools to support (semi-)automatic instantiation, but, currently, 
few tools exist. The most promising approaches use information extraction 
techniques [2,4] for retrieving the knowledge, (see also Chapter 13). Another 
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step is then required to detect redundancy and check consistency of the 
knowledge base. 

5.3 Ontology Alignment 

Many of the currently developed ontologies, such as the OBO and SOFG 
anatomy ontologies, contain overlapping information. As an example, in 
Figure 5-1 the terms in bold face in MA and MeSH, respectively, denote 
equivalent terms. Often we would want to be able to use multiple ontologies. 
For instance, companies may want to use community standard ontologies 
and use them together with company-specific ontologies. Applications may 
need to use ontologies from different areas or from different views on one 
area. Ontology builders may want to use already existing ontologies as the 
basis for the creation of new ontologies by extending the existing ontologies 
or by combining knowledge from different smaller ontologies. In each of 
these cases it is important to know the relationships between the terms in the 
different ontologies. Furthermore, different data sources in the same domain 
may have annotated their data with different but similar ontologies. 
Knowledge of the inter-ontology relationships would lead to improvements 
in search, integration and analysis of biomedical data. We say that we align 
two ontologies when we define the relations between terms in the different 
ontologies. We merge two ontologies when we, based on the alignment 
relations between the ontologies, create a new ontology containing the 
knowledge included in the source ontologies. It has been realized that this is 
a major issue and some organizations have started to deal with it. For 
instance, SOFG developed the SOFG Anatomy Entry List which defines 
cross species anatomical terms relevant to functional genomics and which 
can be used as an entry point to anatomical ontologies. 

There exist a number of ontology alignment systems that support the user 
to find inter-ontology relationships. Some of these systems are also ontology 
merge systems. These systems implement strategies based on linguistic 
matching, structure-based strategies, constraint-based approaches, instance-
based strategies, strategies that use auxiliary information (such as thesauri or 
domain knowledge) or a combination of these. Some systems are automatic, 
but most systems are semi-automatic, requiring a human expert to validate 
the results of the system. For an overview of ontology alignment systems we 
refer to [19,20] and http://www.ontologymatching.org/. 
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6. ONTOLOGICAL KNOWLEDGE 

In addition to the ontologies there is also other publicly available 
ontological knowledge that can be used for data search, integration and 
analysis [13,14]. This knowledge includes ontology alignments (i.e. inter-
ontology relationships), ontological annotations of data sources, and 
mappings between data values and ontological terms. 

Ontology alignments. As mentioned before, knowing inter-ontology 
relationships is a major issue and some organizations have started to address 
it. As a result of these efforts, a number of alignments have been generated. 
We already mentioned the SOFG Anatomy Entry List. Further, there are 
alignments between GO and other ontologies such as the Enzyme 
Nomenclature and MetaCyc. These are available from the GO Consortium 
web pages. Also the Unified Medical Language System (UMLS) [40] may 
be seen as a collection of alignments. In the near future we expect an 
increase of such knowledge as many ontology alignment tools are currently 
being developed to support the identification of such alignments. 

Annotations. Many data sources annotate their data entries with 
ontological terms. For instance, terms from the GO molecular function 
ontology are used to describe gene and protein functions. Annotations can be 
stored as separate mapping rules, included in an ontology or stored in a data 
source entry. For instance, different data source annotations by GO terms 
can be found on the GO Consortium web pages. 

Mappings between data values and ontological terms. In a similar way as 
whole data entries in data sources are related to ontological terms, the 
allowed values for certain data properties can be indexed based on ontology 
terms. For instance, keywords describing data entries in UniProt, a data 
source of protein sequences and related data, are mapped to terms in GO 
ontologies. 

7. SUMIMARY 

In this chapter we presented important efforts and issues related to 
biological ontologies. We presented OBO as well as ontologies that are often 
used in current research. We found that many of these biological ontologies 
are controlled vocabularies, taxonomies or thesauri. Additionally, we 
discussed the use of biological ontologies in data source annotation and 
search. We also discussed some important issues in ontology development, 
ontology instantiation and ontology alignment. Finally, we drew attention to 
publicly available ontological knowledge that can be used for data search, 
integration and analysis. 
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Abstract: The recent achievements in the Human Genome Project have made possible a 
high-throughput "systems approach" for accelerating bioinformatics research. 
In addition, the NIH Whole Genome Association Studies will soon supply 
abundant clinical data annotated to clinical ontologies for mining. The 
elucidation of the molecular underpinnings of human diseases will require the 
use of genomic and ontology-anchored clinical databases. The objective of this 
chapter is to provide the background required to conduct biological discovery 
research with clinical ontologies. We first provide a description of the 
complexity of clinical information and the main characteristics of various 
clinical ontologies. The second section illustrates several methods used to 
integrate clinical ontologies and therefore databases annotated with 
heterogeneous standards. Finally the third section reviews a few genome-wide 
studies that leverage clinical ontologies. We conclude with the future 
opportunities and challenges offered by the Semantic Web and clinical 
ontologies for clinical data integration and mining. Discovery research faces 
the challenge of generating novel tools to help collect, access, integrate, 
organize and manage clinical information and enable genome wide analyses to 
associate phenotypic information with genomic data at different scales of 
biology. Collaborations between bioinformaticians and clinical informaticians 
are poised to leverage the Semantic Web. 

Keywords: Clinical Terminology, Clinical Ontology, Clinical Phenotypes, Discovery, 
Phenomics. 
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1. INTRODUCTION 

Achievements in the Human Genome Project have made possible for a 
high-throughput "systems approach" to understand, prevent and treat human 
diseases. While the platform of molecular networks, especially gene 
profiling under homeostatic or disease conditions has been intensively 
explored as a gateway to "systems medicine," this approach to analyzing 
genomic data is often complicated by genetic heterogeneity and the lack of 
cellular, tissue, organ, anatomical or environmental context to accurately 
interpret the gene functions which are highly context-dependent. Further, as 
mutations in different genes may yield identical or related phenotypes, a 
molecular characterization solely based on genes may neglect important 
relationships between molecularly distinct diseases at the level of phenotype. 
While altered phenotypes are among the most reliable manifestations of 
altered gene functions that can be observed, described, and quantified, 
research using systematic analysis of phenotype relationships to study 
human biology is still in its infancy [1]. In addition, the advent of large scale 
genetic databases together with the NIH Whole Genome Association Studies 
have intensified the need for high-throughput discovery technologies to 
efficiently manage, access, integrate, and reuse the wealth of phenotypic and 
genomic data. 

As we will describe in this chapter. Clinical Ontologies and related tools 
offer a unique opportunity to organize and access well-networked and 
integrated clinical phenotypes from otherwise heterogeneous information 
sources. 

1.1 Complexity of Representation of Clinical 
Information 

The issue of complexity of phenotypic information and knowledge 
representation includes (i) definition, (ii) composition, (iii) scale, and (iv) 
context. Clinical phenotypes are sometimes ambiguously defined. Maimer 
has found at least five different definitions of phenotypes in the literature 
[2]. Clinical Ontologies represent clinical phenotypes, diseases, syndromes 
and many other clinical elements such as medications and personal habits 
(e.g. smoking), which are considered "environmental conditions" in 
biological communities. 

1.1.1 Ontologies and Terminologies 

Ontologies and their associated systems [3-7] are robust architectures 
designed for knowledge representation of concepts and the relations among 



Clinical Ontologies for Discovery Applications 103 

them in a formal language (often frames or description logics). They have 
been widely used in biology and medicine [8-11]. However, few phenotypic 
terminologies satisfy these criteria [12]. Obstacles in modeling phenotypic 
knowledge in a formal ontology involve the difficulties and costs of (i) 
achieving consensus regarding the definition of phenotypic entities, and (ii) 
enumerating the context features and the background knowledge required to 
ascribe meaning to a specific phenotypic entity[13-15]. In this chapter, we 
adhere to a looser definition of Clinical Ontology, which also includes well-
organized-but not always formally represented-clinical classifications, 
nomenclatures and terminologies. 

1.1.2 Compositional Clinical Phenotypes 

First we will provide examples of the compositional nature of clinical 
phenotypes, followed by the ambiguity that can arise from different 
information models representing these phenotypes. Clinical phenotypes are 
highly compositional in nature [14, 16-19], one can refine a phenotypic 
description with additional modifiers. For example, the concept right tibial 
dysplasia can be represented by associating the following components: 
{Regional Anatomy: Laterality: "right"} and {Systemic Anatomy: Bone: 
"tibia"}, characterizing an anatomical entity, which can be fiirther modified 
by {Abnormal Anatomical Structure: Morphology: "dysplasia"}. 

Information models help delineate which representation styles are used to 
store and query clinical phenotypes. When components of a composite 
phenotypic concept are implemented in a database schema, implicit 
knowledge about the composite clinical phenotype is buried in the 
information model. For example, "right tibial dysplasia" can be coded as a 
single field in a broad accident database, using a pre-coordinated term. In 
contrast, in order to support detailed queries with respect to anatomy and 
morphology, the same concept can be decomposed into several fields 
(possibly located in different tables) in the clinical information system of an 
orthopedic surgery department. While the information stored may be 
equivalent in both cases, the split terminological components of the overall 
concept can only be construed as equivalent to the whole by post-
coordinating (i.e., reassembling) the overall concept using metadata often 
implicitly buried in the local information model [20]. 

1.1.3 Context of Clinical Phenotype Usage 

The context in which a clinical phenotype is stated is very important to 
its pertinent reuse. The meaning of a term varies with context in normal 
language, but context must be represented explicitly if one is to 
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meaningfully organize related phenotypic data, collected under diverse 
conditions or from distinct databases. For example, the views of different 
professions using a specific term may carry some implicit knowledge since 
the nature of the source database may not be associated with the concept. For 
example, the term "mole" found in a dermatology database does not carry 
the same meaning as in a gynecology database. While in dermatology, 
"mole" refers to a skin lesion, the "mole" phenotype in gynecology describes 
an intrauterine tumor [21], Similarly, the context of the experimental 
conditions, the organism under study, and its stage of development may also 
significantly modify the meaning of a phenotype. 
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Figure 5-1. Quantitative Comparison of the Content of Clinical Ontologies 

1.2 Clinical Ontologies, Terminologies, Classifications 
and Nomenclatures 

This section will summarize the properties of clinical ontologies that are 
well known and used by different clinical communities to annotate datasets. 
Figure 5-1 provides an overview of the number of concepts and relationships 
in each ontology. The linear relationships between the axes of Figure 5-1 
imply that relationships "7?" in clinical ontologies are increasing as a power 
function of the number of concepts " C (e.g. /?=C), where "n" can be 
calculated from the figure. Table 5-1 provides the details on the clinical 
entities covered by these ontologies. 
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Table 5-1. Content coverage of distinct ontologies according to the scale of 
biology and scientific field. Legend: • = biological scale covered, o= 
biological scale partially covered, "empty box"= biological scale not covered 
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1.2.1 Properties of Clinical Ontologies 

Some ontologies are more convenient to compute with, due to superior 
design. Table 5-2 summarizes the different properties of each clinical 
terminology. Cimino proposed the following Ust of properties used in Table 
5-2 to summarize the computability of clinical ontologies [22, 23]: 
o Concept-Oriented: the preferable unit of symbolic processing is the 

concept. 
o Formal semantic definition', the semantic definition of concepts in an 

ontology as defined in Section 5-1.1.1. 
o Concept permanence: the meaning of a concept should not change over 

time and obsolete concepts are retired, not deleted. 
o Nonredundancy: the definition of a concept should be unique. 
o Nonambiguity: distinct concepts should not share the same terminology 

or code. 
o Relationships between concepts differentiate expressiveness of 

ontologies: 
• Monohierarchy (Tree): each concept has only one parent. 
• Polyhierarchy : Concepts may have more than one parent. 
• Directed Acyclic Graph (DAG): no cycles are allowed in the graph. 
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Table 5-2. Properties of Biomedical Ontologies 
legend: • = property provided, o= property partially provided, 
box"= property not provided 
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1.2.2 The Systematized Nomenclature of Medicine (SNOMED CT) 

As shown in Figure 5-1, SNOMED CT is the most comprehensive set of 
clinical concepts. It is organized as a Directed Acyclic Graph (DAG) that 
builds on a model of well-formed concepts based on description logics. In 
addition to the partonomy and type relationships, it contains relationships 
that relate morphologies and anatomies with diseases. It is owned and 
approved by the College of American Pathologists and is available for free 
perpetual use in the USA through a license by the National Library of 
Medicine. 

1.2.3 International Statistical Classification of Diseases (ICD-9, 
ICD9-CM, ICD-10) 

ICD-9 and ICD-10 are detailed classifications of known diseases and 
injuries. ICD-10 is used world-wide for morbidity and mortality statistics, 
reimbursement systems and automated decision support in medicine. ICD-9 
and ICD-10 are owned by the World Health Organization. The use of ICD-
10 is subject to a licensing agreement with the WHO, though the terms are 
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generally free for research. ICD-9-CM is a clinical modification of the ICD-
9 chiefly used for clinical billing in the USA. 

1.2.4 Medical Subject Headings (MeSH) 

MeSH is a terminology developed by the National Library of Medicine 
for the purpose of indexing journal articles and books in the life sciences 
[24]. It is used to index the MEDLINE/PubMed® article database. MeSH 
comprises about 23,000 descriptors and 150,000 supplementary concepts. 
MeSH is available electronically at no charge. 

1.2.5 International Classification of Primary Care, Second Edition 
(ICPC-2) 

ICPC-2 is a classification of about 1,000 terms of patient data and 
clinical activity in the domains of primary care. It has a biaxial structure 
consisting of (i) 17 clinical systems (chapters) and (ii) of 7 types of data (e.g. 
symptoms, diagnostic, screening and preventive procedures medication, 
treatment, test results, etc.). 

1.2.6 Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) 

DSM-IV has been developed though a stringent experimental 
methodology to normalize the meanings of mental health disorder terms. It is 
published by the American Psychiatric Association. Its codes are defined to 
be compatible with ICD-9. 

1.2.7 Logical Observation Identifiers Names and Codes (LOINC) 

LOINC is a standard for identifying laboratory and clinical observations. 
It is approved by the American Clinical Laboratory Association and the 
College of American Pathologist. LOINC is not exactly an ontology. Rather, 
it supports the development of formal, distinct, and unique names 
corresponding to the description of the observation entities along six axes. 

1.2.8 PaTO 

To provide a unified framework for phenotypic representation, the Gene 
Ontology consortium has initiated the development of the Phenotype 
Attribute Ontology (PAtO) to reduce the structural barriers that limit the 
reuse of phenotypic databases. It consists of an ontology of phenotypic 
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attributes and an information model to communicate phenotypes across 
different communities as illustrated in Figure 5-2. 
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Figure 5-2. Simplified Phenotype Attribute Ontology Information Model 

1.2.9 Unified Medical Language System® (UMLS®) 

The UMLS of the National Library of Medicine is a semi-automated 
integration effort covering over one hundred terminologies [25-27]. It has 
been designed as a network (not a Directed Acyclic Graph) to honor 
relationships that it aggregates from source terminologies. The UMLS 
models the actual relationships among disparate concepts taken from 
information sources, achieving coordinated linkage of alternate encoding of 
data without the difficulty of pairwise integration. It also provides extensive 
semantic and lexical information about the terms associated with these 
concepts. It is one of the most comprehensive harmonized cross-mapping 
fi-ameworks for biomedical terminologies currently available. 

L2.10 National Cancer Institute (NCI) Metathesaurus 

The NCI Metathesaurus is another massive undertaking in the integration 
of terminologies. It has been developed by National Cancer Institute and 
contains 850,000 concepts mapped to 1,500,000 terms by over 4,500,000 
relationships [28] and includes parts of the UMLS Metathesaurus. 
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2. INTEGRATION OF CLINICAL ONTOLOGIES 

Phenotypes are poorly integrated across model organism database 
systems, the literature and human disease databases. Representation of 
phenotypic information is more complicated compared to biological data and 
consequently there are few data standards and data models for phenotypic 
information across species and within human repositories. In addition, the 
granularity of phenotypic data varies from database to database. Further, 
current methods for accessing phenotypic information across databases are 
inefficient. 

The problem of integrating phenotypes across heterogeneous sources is 
compounded by a number of issues rooted in the complexity of phenotypic 
information and knowledge representation (ref Section 5-1.1, Complexity of 
Representation of Clinical Phenotypes). These issues are due to differences 
in (i) definitions [2, 29, 30] and standards, (ii) compositionality and 
granularity [17-19, 31] (iii) biological scale [32], and (iv) context [14, 21, 
33-35]. Moreover, the biomedical community has yet to reach a consensus 
on whether diseases, syndromes and behaviors are phenotypes, and the 
distinction between traits and phenotypes. 

2,1 Integration of Ontologies' Concepts with the UMLS 
and Related Tools 

The UMLS also has a number of related tools such as MetaMap (MMTx) 
for mapping terms to concepts in the UMLS Metathesaurus [36] and 
Metamorphosys for customizing the UMLS Metathesaurus (tailoring a 
subset of terminologies and their network of relationships by filtering the 
UMLS). 

Mapping of various medical terminologies to the UMLS and other 
biomedical terminologies has been explored extensively [31, 37-48] and the 
utilization of semantics to interoperate terminologies was first proposed over 
a decade ago [49]. However, the attempted methods have had limited 
success. On average, they are only able to map 13 - 60% of the terms. These 
classes can be unified to create an integrated schema for the sources. Blake 
et al. have demonstrated that clustering techniques allow for the evaluation 
of candidate classes in different sources of terminologies. Hill et al. have 
manually integrated the Gene Ontology with external vocabularies [50]. 
While the use of description logics allow for automated evaluation of 
semantic relationships in the thesaurus, clustering techniques permit the 
evaluation of candidate classes in different sources that maybe unified in the 
global schema. 
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There are at least two problems associated with pre-coordination of 
terminologies for biomedical science: (i) slow or rate-limiting updates of the 
cross-index due to the resource intensive knowledge engineering, and 2) 
computational ambiguity of the reuse of a concept increases with the size of 
its terminology unless it is implemented with computable information about 
the context(s) of its usage. Further, part of the complexity lies in the variety 
of ways that a single biological concept may be represented [51]. As 
disparate systems often use the same information resources, it is imperative 
that redundancy be kept to a minimum in pre-coordinated systems. However, 
the issues of context and complexity make the pre-coordinated approach 
increasingly expensive and/or challenged for timeliness in the face of the 
escalating needs of biologists whose terminologies are undergoing 
accelerated updates. Additionally, different terminologies may represent the 
same concept in a very different way. 

2.2 Integration via Information Models 

There are few data model standards for combining phenotypic data across 
distinct databases. As shown in section 5-1, clinical phenotypes are usually 
specified in distinct sub-languages specific to scientific and professional 
subspecialties leading to restricted opportunities for relevant conceptual 
mappings across organisms or across disease databases. This is also 
compounded by the fact that clinical ontologies are generally developed 
independently of one another. Even when the sub-languages are similar and 
share the same structural representation, the granularity (detail) of their 
representation may still differ across databases. Indeed, ICD-9 comprises 
only about 25,000 clinical conditions while SNOMED CT describes over 
100.000 clinical conditions. We briefly present two information models that 
may be used with clinical information: the broad HL7 and PAtO, specific to 
phenotypes. 

2.2.1 HL7 

Health Level Seven (HL7), is a volunteer-based and not-for-profit 
organization involved in the development of common data models for 
sharing clinical information. While version 2 of HL7 did not provide 
formalism for vocabulary support, version 3 now provides such structure. 
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2.2.2 PAtO Information Model 

The PAtO information model presented in Figure 5-2 was originally 
intended to share phenotypic information across model organism databases 
and provides some insight on how to map clinical information with model 
organisms' phenotypes. 

2.3 Integration of Clinical and Genomic Databases 

Gene-Phenotype analyses are currently driven by quantitative trait loci 
studies requiring carefully curated pedigrees of patients of functional 
genomic studies. One of the limiting factors hindering the progress of 
clinical genomics discovery research is the lack of accurate and timely 
access to comprehensive gene-phenotypes networks associated with 
knowledge about biology and diseases due to the lack of integration across 
clinical and genomic databases. However, with the advent of the NIH 
Whole Genome Association studies, large volumes of well-organized 
clinical information are about to become available for high-throughput 
research. 

Currently, while many genomic databases of model organisms contain 
some phenotypic information, phenotypes are often coded at different levels 
of granularity, in different formats, and with different aims [52]. Some 
efforts have been made in the integration and standardization of this data for 
sharing purposes. For example, the PhenomicDB [53] database provides a 
single portal for heterogeneous phenotypic information from a number of 
different model organisms and humans. It contains over 15,000 distinct 
phenotypic terms and 120,000 genotypes for the mouse and human species. 
Similarly, Gene2Disease was constructed over the Online Mendelian 
Inheritance in Men (OMIM) using text mining methods coupled with 
analysis of the chromosomal locations of diseases [54]. However, these 
systems make limited usage, if any, of clinical ontologies. In these two 
systems, the integration of phenotypes relies on the juxtaposition of the 
original lexical string of text in the same field across species. Thus a textual 
search for a concept may miss synonyms, as well as related or subsumed 
concepts. In contrast, the Mammalian Phenotype Ontology [55] is used by 
the Mouse Genome Database [56] to normalize representation across model 
organism databases (mouse and rat), via curation of annotations and a shared 
standard. 
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2.4 Integration with Natural Language Processing and 
Computational Terminologies 

Among all natural language processing (NLP) technologies, MedLEE, 
developed by Friedman, has performed consistently and effectively in 
extracting clinical information, as evidenced by results of numerous 
independent evaluations [57-62]. BioMedLEE, is a NLP system derived 
from MedLEE and focused on parsing and coding gene-phenotype 
associations [63, 64]. In addition, lexico-semantic mapping of various 
medical terminologies to the UMLS and other biomedical terminologies has 
been explored extensively [31, 36, 38-44, 47, 49, 50, 65]. Previous NLP 
technologies would generally parse clinical data, but not encode them in 
clinical ontologies. New NLP systems for mining clinical narratives and 
coding in clinical ontologies are being developed. For example, the NIH 
National Center for Biomedical Computing "Informatics for Integrating 
Biology & the Bedside" (I2B2), headed by Isaac Kohane, is developing and 
distributing such a system as open source software [66]. 

3. DISCOVERY AND CLINICAL ONTOLOGIES 

In the new millennium, the inception of the Gene Ontology (GO) 
precipitated a flurry of discovery methods and studies anchored on GO. 
Indeed, about one thousand scientific articles cite GO in their keywords. In 
comparison, about four thousand scientific articles cite ICD-9 and one 
thousand cite the UMLS or SNOMED. However, a dozen studies cite both 
GO and a clinical ontology, showing the tremendous opportunity for 
discoveries with ontology-anchored methods joining the biological and 
clinical scales. 

3,1 Text Mining and Discovery 

To overcome the limitations of manual annotation to create clinical 
phenotypic datasets, many informaticians have conducted high-throughput 
phenotype-genotype analyses by mining text on phenotype-genotype 
relationships from the scientific literature [67-75]. Recently, we have 
extended these approaches with semantic models of phenotypes to associate 
phenotypes with Gene Ontology Annotations in high-throughput [63], thus 
creating expressive and distinctive ternary relationships between genes, 
molecular classes and phenotypes. 
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3.2 UMLS and Discovery Systems 

We and others have pioneered the integration of genomic databases with 
ontology-anchored clinical databases. Since clinical decision support 
systems like Quick Medical Reference (QMR) [76] contain densely coded 
descriptions of diseases, we hypothesized that they can be used as a proxy 
for clinical databases in genetic studies. To unveil systems biology 
properties of phenotypes via conducting genome-scale clustering analysis of 
phenotypes associated with diseases, we conducted two studies with QMR. 
In the first study, we applied terminological mapping and semantic 
techniques. Briefly, trait-disease-gene relationships buried in three 
databases (QMR, OMIM and SNOMED) were successfully integrated [77]. 
We also performed a clustering of OMIM's genes against QMR's traits of 
diseases and demonstrated a classification of diseases according to genes 
[77] comparable to the hierarchies found in ICD-9 or SNOMED. This study 
was followed up with the GenesTrace method, a large scale integrative study 
of ontology-anchored phenotypes from the UMLS and their statistical and 
semantic relationships to GO and model organism databases [78]. We were 
able to predict about three million phenotype-gene associations relationships 
between 22,040 phenotypic concepts in the UMLS and 16,894 gene products 
annotated using GO and its associated databases [78]. We validated our 
computed correlations by using OMIM's known gene-disease relationships 
as a gold standard. 30% of the predictions were found in OMIM, and 
similarly 9% of OMIM's relationships were found in GenesTrace [78]. Our 
methods provided direct links between genomic databases and clinically 
significant diseases through established clinical ontologies. 

Recently, Butte and Kohane [79] conducted a study based on mapping 
results between phenotypically-related concepts in UMLS [80] and the 
microarray gene expression data from the NCBI's Gene Expression 
Omnibus (GEO) [81] using a term presence/absence method. Significantly 
expressed genes above a threshold were correlated with UMLS phenotypic 
concepts using a re-sampling-based multiple testing simulation generating 
64,003 relations between 281 biomedical concepts and 7,466 genes. More 
importantly, their predictions were experimentally validated with microarray 
studies. 

4. FUTURE CHALLENGES AND CONCLUSIONS 

In this chapter, we highlighted the feasibility of computational 
approaches to conducting large-scale integrative studies anchored on clinical 
and biological ontologies and presented some realizations. Among various 
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strategies that could facilitate computational genomics studies, clinical 
ontologies are increasingly proving to be effective in integrating and 
organizing large amounts of phenotypic concepts. The success of the UMLS 
integration and reuse also attests the importance of ontologies in clinical 
research. Additionally, text mining techniques are increasingly relying on 
coded output in ontologies. The emerging field of high-throughput 
phenomics is likely to require the use of both clinical and biological 
ontologies as demonstrated in a few studies. Resources such as the UMLS, 
the NCI Metathesaurus, along with modem computational terminology tools 
will likely play an important role in the Semantic Web for Health Care and 
Life Sciences, encouraging the sharing and reuse of datasets. The Semantic 
Web offers a unique opportunity to commoditize access to these ontologies 
via OWL-based ontology servers and to provide tools automating the 
integration of databases coded in heterogeneous standards. Future interaction 
between the Semantic Web and clinical ontology is likely to proceed from 
the clinical concepts that have crisp definitions and require relatively simpler 
translational tables between distinct terminological standards, such as basic 
anatomical terms, simple lists of phenotypes, diseases and medications. 
Providing translation services via the Semantic Web is plausible in a near 
future. 

DEFINITIONS 

Terminologies: An ensemble of technical terms used in a specific domain. 
Classification: A terminology with a systematic categorical arrangement. 
Nomenclature: A comprehensive terminology enumerating extensively the 

terms used in a specific domain. 
Ontologies: In this chapter, this term is used in its inclusive meaning in 

biology, which pertains to well-organized terminologies. 
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Abstract: Ontology engineering is one of the basic components of Semantic Web 
technology. Ontology engineering provides semantic clarity, explicitness, and 
facilitates the reusability of represented information and knowledge. We 
explain the major components of typical ontologies, and the principles behind 
and different approaches to ontology design. We also discuss the common 
problems encountered by ontology developers. As a demonstrative example 
we analyze the MGED (Microarray Gene Expression Data) ontology for 
describing microarray experiments. The MGED Ontology (MO) is a 
pioneering attempt to formalize the description of microarray experiments in 
biology. It has had a significant practical impact on the organization and 
execution of microarray experiments, as well as on the storage and sharing of 
microarray experiment results. However, analysis of MO reveals design 
problems that are common for other ontologies in biology. A generic ontology 
of experiments as a possible solution is discussed. 

Key words: ontology, ontology evaluation, annotation, experiment, AI, biosciences. 

1. ONTOLOGY ENGINEERING AND BIOLOGY 

Semantic Web technologies use semantic metadata. Rich semantic 
representations can improve knowledge formalization and information 
retrieval. The formalization of scientific knowledge is becoming a 
technological necessity. In all areas of science there is ever more information 
to assimilate and, in some fields, such as biology, this increase in 
information due to high-throughput lab techniques, electronic publishing 
technology, etc., has become a deluge. The result is that science increasingly 
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depends on computers to store, access, integrate, and analyze data. The full 
power of the Semantic Web applications can only be efficiently exploited 
when the knowledge they work with is formalized. 

The first step in formalizing knowledge is to define an explicit ontology. 
The exact definition of what an ontology is varies between disciplines. We 
follow Schulze-Kremer's definition: "a concise and unambiguous 
description of what principle entities are relevant to an application domain 
and the relationships between them" [11]. Whereas data models and formats 
created in XML have a deterministic, formal syntax, most of the semantic 
information contained in XML schema structure is implicit. This makes 
Semantic Web technology particular suited to ontology construction. 
An ontology consists of four main components: classes, a hierarchical 
structure {is-a relations), relations (other than is-a relations), and axioms 
(axioms are used to express logical statements about classes, their attributes 
and the relations that bind them). Ontology engineering aims to provide a 
methodology for ontology development and maintenance. Riichiro 
Mizoguchi, one of the leading experts of ontology engineering, lists the 
following fundamental tenets of ontological classes, instances, and is-a 
relations [7]: 
1. Intrinsic property. The intrinsic property of a thing X is a property which 

is essential to the thing X such that it loses its identity when the property 
changes. 

2. The ontological definition of a class. X is a class if and only if (iff) each 
element x of X satisfies the intrinsic properties of X. If and only if (iff) 
this definition holds, then the relation <x instance-ofX> is true. 

3. Is-a relation. <class A is-a class B> relation holds between classes if and 
only if (iff) every instance of the class A is also an instance of the class 
B. 

Ontology engineering is still a relatively new research field. Therefore, 
many of the steps in designing an ontology remain unformalized and it can 
be considered an "art" [10]. The two major approaches to developing an 
ontology are bottom-up and top-down [6]. In the bottom-up approach, 
developers usually start with an existing problem, and a list of domain 
concepts or a controlled vocabulary. The concepts are then organized into 
ontological classes and individuals with the addition of relations between 
classes, and axioms. The advantages of this approach are that it has a 
practical focus on producing a working ontology and involves close 
connection with domain experts at the development, verification and 
maintenance stages. In the life sciences this approach has, until now, 
dominated. This has been justified by the argument that biologists urgently 
needed working ontologies. However, with the strict requirement to link core 
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and domain ontologies to open biomedical ontologies [25], and with the 
formation by NIH of the National Centre of Biomedical Ontology, there is a 
current shift in biology towards using more standardized and ontologically 
well-founded approaches to ontology development. Biomedical ontologies 
are increasingly intended for computer applications (text mining, knowledge 
discovery, etc.), this requirement is forcing researchers to construct 
ontologies based more on formal logic. 

In the top-down approach to ontology development ontology designers 
also start with the problem, but use an appropriate upper ontology to guide 
the developing ontology. There are number of upper ontologies available: 
SUMO (The Suggested Merged Upper Ontology) [26], OpenCyc (from 
"encyclopedia") [25], DOLCE (a Descriptive Ontology for Linguistic and 
Cognitive Engineering) [21], BFO (The Basic Formal Ontology) [19]. 
SUMO and OpenCYC come from general AI, whereas BFO is a top-level 
ontology for biomedical ontologies; BFO provides basic ontological 
elements and relations that are required for biomedical domains [1]. None of 
these upper ontologies is an ideal representation of the world - and perhaps 
we will never have a perfect one. Therefore, an ontology engineer has to 
compromise between imperfection of the representation, and practical needs. 
The advantages of an upper ontology as a reference model for designing 
domain ontology include: 

• A template structure of entities and relations, along with preferred entity 
labels, concise, non-circular definitions, and axioms; 

• A shared view of upper level entities; 
• Compliance with other ontologies enabling cross ontology use and 

inference. 
Figure 6-1 shows the relative positions of upper, generic and domain 

level ontologies, and the ways these interact. BFO is an example of an upper 
ontology. Such ontologies as Bibliographic Data Ontology [20], EXPO [14] 
and Time Ontology [4] are generic domain independent ontologies. MO for 
microarray experiments [23], FuGO for functional genomics experiments 
[22] and so on are specific domain context ontologies. Selection of the most 
appropriate upper ontology can significantly contribute to the quality of the 
final domain ontology, ease the design process, and guarantee its wide 
reusability. Any possible imperfections in an upper ontology are usually less 
damaging for the domain ontology's structure than the absence of any upper 
ontology. 

It is also important to recognize that data models designed to provide a 
formal structure for particular types of life science data can greatly profit 
from making use of and referring to entities and relations, but they are not 
ontologies, and ontologies are not data models. Ontologies are also not 
lexicons, although no ontology is of much practical use without links to the 
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relevant lexical terms for the domain covered by the ontology. Lexical 
resources such as controlled vocabularies and meta-thesauri must by their 
nature include implicit and explicit semantic structure. Unfortunately, these 
two facts lead many to see the two types of knowledge resource as 
inseparable - and sometimes identical. Lexical resources do not coincide 
with the design principles that guide ontology development. 

Below we expand the motivation for using an upper ontology analyzing 
the example of design of the MGED (Microarray Gene Expression Data) 
Ontology (MO). 

/ BFO^ 

Upper 1e\*el 

Bibliographic ^^^-S^z/' 
Data Ontology ^^: )%=3^ 

Generic le\'et 

Domain le\*e! 

P l a n t ^ 
ontology/' FuGO MSI 

ChEBI 

Figure 6-1. A position of upper, generic and domain level ontologies with example ontologies 
such as MO for the domain of microarray experiments, MSI for the domain of metabolomics 
experiments, etc. 

2. MO ANALYSIS 

The MGED ontology (MO) is a pioneering attempt to formalize the 
description of microarray experiments [23]. As MO was built under the 
pressure of practical needs it was perhaps unavoidable that compromises 
between quality and fast production were made. Since this is typical of 
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ontology development in biology, we will use MO as an illustrative example 
of ontology development in biology. 

The large amount of support and criticism our Commentary about MO 
analyses received reflects the growing importance of ontologies in 
biomedical domains, and we would like to thank the Nature Biotechnology 
editors for providing a forum for discussion of issues of ontology 
development [13]. The main points of the discussion were: (1) a need to be 
compliant with biomedical domain upper ontologies; (2) the importance of 
automated ontology evaluation techniques; (3) certain design principles, 
such as 'multiple inheritance', require further investigation to determine 
their value in automated reasoning applications. 

We accept that the problems we highlighted with MO may not exist in 
every biomedical ontology. However, we analyzed common problems, and 
the most important of these problems is the lack of a standard for ontology 
design. Given the powerful need for ontology design standard practices, we 
believe it is helpfiil to review and embellish our initial analysis [13] to 
support the development of the required standards. 

MO was designed using the bottom-up development approach (described 
above), and was heavily driven by practitioner needs. The urgent design 
requirement was to provide descriptors for MAGE v.l (MicroArray and 
Gene Expression) documents. It was intended to be the basis of the MIAME 
(Minimum Information About a Microarray Experiment) standard for 
capturing core information about microarray experiments, and to provide a 
conceptual structure for microarray experiments description and annotation. 
The absence of a sophisticated upper ontology as a reference model to guide 
the ontology structure, terms, and designing principles has lead to serious 
problems. 

2.1 Design of the MO Ontology 

In this section we investigate design errors found in MO v. 1.2. Use of an 
upper ontology would help to avoid many of the MO structural errors which 
are discussed below: 

1. Abstract and physical entities. In MO there is no clear distinction 
between abstract and physical objects, objects and processes (or endurants 
and occurents as described in BFO [1]). 
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ProtocolPackaqe 

Hardware" / \ ^Software 
Is-a is-a 

/ \ 
Protocol Parameter 

Figure 6-2. A fragment of MO is-a hierarchy. 

In the example shown in Figure 6-2, the class <Hardware> is obviously a 
physical object and the class <Parameter> is presumably an abstract object, 
but they are both modeled as subclasses of the class <ProtocolPackage>. 
What is the physical nature of this class? What intrinsic property enables the 
combination of so different objects into one class? Every extant upper 
ontology clearly distinguishes abstract and physical objects, therefore it 
would be difficult to reuse MO classes for other ontologies that follow upper 
ontology standards. 

In another example, the classes <Nutrients> ("The food provided to the 
organism (e.g., chow, fertilizer, DEMM 10%FBS, etc.")) and <Water> 
("Water consumed by or enveloping the organism that the biosource is 
derived from") are physical objects, but they are defined as subclasses of 
what appears to be an abstract object <GrowthCondition> ("A description of 
the conditions used to grow organisms or parts of the organism. This 
includes isolated environments such as cultures and open environments such 
as field studies."). Moreover, according to its definition, this abstract class 
denotes not conditions themselves, but a description of the conditions. So 
logically it can be inferred that 'water is a description of....'. A possible 
solution is to define classes <NutrientCondition> and <WaterCondition> as 
it was done for <AtmosphericCondition>, and put the classes <Nutrients> 
and <Water> as subclasses of <PhysicalObject> or <Material> or whatever 
class might be more suitable. 

Let us analyze the fragment of MO shown in Figure 6-3. The top class 
<BioMaterialCharacteristics> seems likely to be a property or attribute of 
<BioMaterial>. However, <Organism> and <OrganismPart> are not 
biomaterial characteristics. <OrganismPart> can not exist by itself, only as a 
part of <Organism>, and it is logically necessary to define it as such. Even 
the name 'organism part' reflects that. <BioSourceProvider> is a role that 
can be played by a person or organization (see below more discussion about 
roles). 
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BioMaterialCharacteristics 

ObservatiO'n -' \ BioSourceProvider 

/ \ 
Organism OrganismPart 

Figure 6-3. A fragment of MO structure. 

2. Roles. Usage of the notion of a 'role' is a powerful way for modeling 
context depending situations [21]. The MO class 
<AuditAndSecurityPackage> has the sub-class <Roles> (see Figure 6-4), but 
this class is not fully exploited in MO. For example <Submitter> is defined 
as a role, but <User> is not. The MO class <BioSourceProvider> is a 
subclass of <BioMaterialCharacteristics> which has no other parent class 
(see Figure 6-3). In MO the <FamilyRelationship> ("A type of relationship 
applicable to mammals to describe the genetic relatedness of the individual 
under study. E.g. brother or mother.") is-a <BioMaterialPackage> 
("Description of the source of the nucleic acid used to generate labelled 
material for the microarray experiment"). Therefore, mother or brother is a 
description of source! The same person can be a brother, a provider, a user, 
or a submitter. One good solution for representing such situations is to define 
all these classes as roles and consider a person as a role holder [7]. 
Additionally in the fragment in Figure 6-4 below, <Organization> and 
<Person> should not be sub-classes of the class <Contact>, but of 
<OrganizationContactInformation> and <PersonContactInformation>. 

AuditAndSecurityPackaae 
ts-a ts-a 

Contact Roles 

Organization Person Submitter 

Figure 6-4. A place of the class <Roles> in MO. 

3. Representations. Many of MO definitions start with the word 
'description'. This illustrates the importance of having a way to describe 
various sorts of representations: "Description of the source of the nucleic 
acid used to generate labeled material for the microarray experiment." 
(<BioMaterialPackage>), "Description of the processing state of the 
biomaterial for use in the microarray hybridization." (<BioMaterial>), 
"Description of the material placed on a feature (spot)." (<Reporter>), etc. 
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MO has the class <DescriptionPackage> and it includes the class 
<BibliographicReference>, but other classes used for various descriptions 
are not grouped into this package. Our suggestion is to define a top class 
<Representation>, each element of which has content (what is represented) 
and representation form (how it is represented and in what format) [6], and 
place there representations and descriptions as subclasses. 

4. Overlapping classes. Overlapping classes (the classes that have non 
empty intersection) lead to multiple inheritances. In a number of situations 
an ontology has overlapping classes not because of design solutions, but 
because its ambiguities in the definitions. For example, compare the 
definitions of the classes <Database> "Identifiable resource containing data 
or external ontologies or controlled vocabularies which has uniquely 
identifiable records" and <OntologyEntry> "External (to the MGED 
ontology) controlled vocabulary or ontology that can be referred to, such as 
ICD-9 or Gene Ontology"). Both definitions allow for including entities 
from an external ontology when creating an instance of the corresponding 
class. A user could therefore legitimately be confused where to place 
particular instances. The problem is easily avoidable by clearly defining the 
class <Database> for instances of external databases and the class 
<OntologyEntry> - for external ontologies. 

We have previously outlined additional structural idiosyncrasies in the 
underlying semantic graph of MO leading to ambiguities and unwarranted 
complexity when constructing instances [13]. Unfortunately, in the new MO 
1.2 version, none of these have been fixed (see below): 

5. Concepts and procedures. MO confuses concepts and procedures. To 
connect with other ontologies the class <OntologyEntry> is used. However, 
it is really not a class, but a procedure for connecting to other ontologies. 
Note that standard languages for formally encoding ontologies (e.g., OWL) 
often include a means to access classes from external ontologies. 

6. Classes and individuals. MO does not properly distinguish between a 
class and an individual. For example, why are <absolute>, <ORF>, <RNA> 
considered individuals and not classes? Some concepts such as 
<Atmosphere> are considered to be both a class and an individual. Note: it is 
not a good idea to consider <Atmosphere> and <atmosphere> as different 
terms, since many computer applications ignore such differences. 

7. Is-a and part-of relations. In MO there is an unclear distinction 
between the use oiis-a and par^o/relations [2,18]. For example, the classes 
<Test> and <TestResult> are subclasses of <BioMaterialCharacteristics> 
(see Figure 6-5). But one would naturally expect that <Test> has a 
<TestResult>, thus <TestResult> is/>ar/-o/<Test>. 
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Test 

an assay performed 
on a for the 

biomaterial for the 
purpose of... 

BioMaterialCharacteristics 

\ 

TestResult 

description of the test 
performed 

TestType 

recorded value 
of the test 
outcome 

Figure 6-5. An example of poorly-designed structure. 

In addition, <Test> is not a biomaterial characteristic. <TestType> is not 
a value, and <TestResult> is not a description of the test. It would have been 
better to give class names that correspond to their definitions. Below in 
Figure 6-6, we would like to propose a different structure for the fragment in 
Figure 6-5. Each instance in the class <Test> has an outcome and each test 
result has some value. Thus <Test> has outcome <TestResult> has value 
<TestValue> (see Figure 6-6). Subclass relations are used for defining 
specific types of tests Tl, T2, T3, ... (instead of the class <TestType>). 

Test 

TestTI 

TestT2 

TestTS 

Is-a / 

• TestResult 
p/o (has outcome) 

ji/o (has value) 
TestValue 

Figure 6-6. The suggested revised structure for the example. 

8. Multiple inheritances. Multiple inheritance causes problems with 
mismatches of basic is-a relations in an ontology and should be avoided if 
possible [12]. MO allows multiple parent classes for the child classes. For 
example, the individual <chromosome> is a member of two parent classes: 
<TheoreticalBioSequenceType> and <PhysicalBioSequenceType>, or an 
"abstraction used for annotation" and at the same time a "biological 
sequence that can be physically placed on an array". However, with abstract 
chromosomes it is possible to duplicate them at will and reason about 
infinite sets of them (e.g. for phylogenetic reasoning), the same is not true 
for physical chromosomes [13]. Individuals and classes inherit all properties 
of upper classes. In the case of an individual chromosome, it inherits the 
properties of physical objects existing in space and time; and simultaneously 
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- properties of abstract objects as "something which has no independent 
existence; a thing which exists only in idea" [17]. Satisfaction of all these 
conditions is difficult to imagine for such an individual object as a 
chromosome. 

The current trend in ontology development for life science applications is 
towards using single inheritance in ontologies, e.g. FMA (Foundational 
Model of Anatomy), FuGO (The Functional Genomics Investigation 
Ontology). One of the main reasons for this is that a simpler structure makes 
it easier to detect logical errors. Also note that the use of multiple inheritance 
in object-oriented programming does not map to formal methods of ontology 
construction. 

2.2 Restriction of the Ontology Domain 

Another advantage of using an upper ontology as a prototype is that it 
provides a better understanding of the developing ontology's domain, and its 
relations with other ontologies. As proposed in [3,8,14], the separation of 
knowledge into corresponding levels of abstraction is a key point for 
knowledge consistency, reusability and maintenance. MO has a distinctive 
domain - microarray experiments, but still there are problems with the 
domain restriction. 

1. Internal and external classes. MO's domain is microarray 
experiments, but classes from different domains are necessary for the 
description of experiments, i.e. measurement units, time points, 
bibliographic references, etc. The extended MGED ontology aimed to add 
fiirther associations to MAGE v.l., but it seems that there is no clear strategy 
about what to place in the core ontology, and what to place in the extended 
one. For example, the class <ProtocolVariation> is "the effects of different 
protocols or changes in protocols on experimental results are studied" is 
from the extended ontology; and the class <MethodologicalFactorCategory>, 
"the effects on results of changing protocols, hardware, software, or people 
performing the experiments are studied", is from the core ontology. Yet 
according to their definitions: the first class is a subclass of the second one. 
It is also unclear why <BioAssayData>, "files including images generated 
from one or more BioAssays", belongs in the extended ontology, while 
<Measurement>, "measured values and units", and <MaterialType>, 
"examples are population of an organism, organism, organism part, cell, 
etc.", along with definitions of what is a protein, a cell, a virus, and a whole 
organism, are placed in the core ontology. 

The MGED core ontology stores domain-independent information about 
dimensions (Armstrong, liter, Kelvin, mole, etc.), formats (GIF, JPEG, TIFF, 
etc.), types of publication (a book, a journal article, on-line resources, etc.), 
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data types describing "primitive data types" such as float, Boolean, etc found 
in programming languages. This knowledge does not strictly belong to the 
domain of microarray experiments. Instead, it is common for any type of 
experiment, and more generally to other domains outside of science. 
Therefore, these should be kept separately in a higher level ontology. 

2. External links. There are a number of ontologies already available 
and MO provides a way to reference them (albeit not the best approach, see 
above). However, some MO classes do not have reference to external 
sources. For example class <Cell> should probably have a link to OBO Cell 
ontology [24], and <InitialTimePoint>, should link to the Time ontology [4] 
(or something similar), etc. 

3. Domain context. Names of many MO classes are too general. For 
instance <Observation> in MO is "Observation will record the macroscopic 
examination of the biomaterial." (Note: it is generally better to use the 
present tense in a definition). <InitialTimePoint> is "The point from which 
measurements of age were taken." But observations or time points might 
have other meanings in different experiments. It is important to reflect in an 
ontology the domain context, and simultaneously to be consistent with 
common meaning, so that other domains can easily reuse classes. 

2.3 Conventions for Preferred Names and Definitions 

In addition to providing construction principles an upper ontology gives 
to domain ontologies naming and defining conventions. Developers are fi'ee 
to change it, but in a consistent and explicit manner. Analysis of MO 
revealed the following problems with the names of classes and definitions. 

1. Name duplication. It is confusing for humans, and a serious error for 
computer applications, to use the same name at different levels of 
ontological abstraction (homographic homonyms). The class <Individual> 
defined as: "identifier or name of the individual organism from which the 
biomaterial was derived", is a subclass of <BioMaterialCharacteristics>. 
This is confusing as "individual" is a type of meta level object of the MO 
ontology. 

2. Incorrect names. A class in an ontology represents some generic 
concept - you can think of a class as a type of something. This is why the 
word 'type' is not suitable for ontological names. MO has numerous pairs 
like: <NodeValue> and <NodeValueType>, <Hardware> and 
<HardwareType>, <Protocol> and <ProtocolType>, <Cell> and 
<CellType>, etc. Each of these pairs often corresponds to only one 
ontological class. The definition of the class <CellType> "the target cell type 
is the cell of primary interest..." shows that the developers of MO do not 
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distinguish between <X> and <X-Type>. Even if such names and definitions 
make sense for a biologist they should be avoided, as an ontology serves not 
only humans but computers as well. 

We would like to give examples of how to change classes with the name 
<X-Type>. Let us consider the class <BioSampleType> ("used to tell when 
the BioSample is an extract or not"). We would define an attribute (or a 
property) <BioSampleSource> of the class <BioSample> with values: 
extracted, not extracted. Let us consider the class <BioSourceType>, 
according to the definition it is a form (fi-ozen, fresh, etc.) of biological 
source. We would change the class name correspondingly to 
<BioSourceForm>; or we would define an attribute <BioSourceState> with 
values: frozen, fresh. 

3. Plural name form. Names of ontology classes and individuals are 
usually in singular form (like in SUMO, GO). But in MO you can find both 
singular and plural forms. Examples include: <Roles>, <Nutrients> and 
<TestResult>, <Protocol>. 

4. Wrong definitions. Ontological definitions are different from 
dictionary definitions. A good definition should show a connection to a 
parent class, explain what the difference with sibling classes is, and ideally 
give an intrinsic property of the class. It is not always easy to follow the best 
practice of Aristotelian definitions [9], but it still important that the class 
name corresponds to its definition. For example, given the name of the class 
<FactorValueSet>, you would expect that it is a set of factor values with an 
explanation how they are formed, but its definition is actually: "BioMaterial 
applied to a BioAssay, typically separating things on the basis of channels or 
the concepts of measured and reference samples e.g. 10% glucose, 1 hour 
AND 10mm NaCl, 2 hours in channel 1." Another example is 
<Atmosphere> - "atmospheric conditions used to culture or grow on 
organism". <Atmosphere> and <AtmosphericConditions> are different 
ontological classes. In addition, <Atmosphere> is outside of the MO domain. 

MO defines <DeprecationReason> as "class to hold instances used as the 
filler for the property has_reason_for_deprecation"; <Result> as "class to 
hold instances used as the filler for the property hasresult". So this class is 
the class to hold instances of a property. Here we see a technical reason for 
defining such a class, but not a proper ontological definition. 

5. No definition. For instance MO class <Image> has no definition or 
reference to an external source. 

6. Negation in a definition. <EnvironmentalHistory> is "A description 
of the conditions the organism has been exposed to that are not one of the 
variables under study." Negation easily leads to inference errors and should 
be avoided. For example, there are an infinitive number of variables that 
may be "not under study". 
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7. Definition in a future form. For example, the definition for the class 
<Observation> (see the definition above). 

3. ONTOLOGY OF SCIENTIFIC EXPERIMENTS AS 
A REFERENCE MODEL 

The Functional Genomics Investigation Ontology (FuGO) is developing 
an integrated ontology to provide both a set of "universal" terms, i.e. terms 
applicable across functional genomics, and domain-specific extensions to 
terms [2, 22]. The intention is for FuGO to serve as an upper ontology for a 
number of biomedical ontologies including MO. MO version 1.3 has now 
being restructured to fit FuGO requirements. The use of FuGO should 
resolve many of the problems discussed in this chapter. It will provide a 
naming and defining conventions, restrict the ontology domain, and improve 
the structure of MO. 

However, FuGO is only a partial solution. Much experimental 
knowledge, such as experiment design principles, the organizing and 
execution of experiments, results representation and annotation, etc., belong 
not only to functional genomics, or even biomedical domains, but are found 
in all the sciences. Despite their different subject matter, all the sciences 
organize, execute, and analyze experiments in similar ways; they use related 
instruments and materials; they describe experiment results in identical 
formats, dimensional units, etc. From a knowledge management and 
ontology engineering point of view, this knowledge should be stored in only 
one place, a generic ontology of experiments, to ensure knowledge 
consistency and easy update [14]. 

We have therefore proposed a general ontology of scientific experiments 
(EXPO) [13,14]. EXPO defines general classes including 
<ScientificExperiment> ("a research method which permits the investigation 
of cause-effect relations between known and unknown (target) variables of 
the field of study (domain). An experiment result cannot be known with 
certainty in advance"), <ExperimentGoal> ("the state that a plan is intended 
to achieve and that (when achieved) terminates behaviour intended to 
achieve it" [27]), <ExperimentTechnology> ("the total knowledge (theory, 
methods, and practices), and machinery available to any object of an 
experiment" (based on [16]), <ExperimentResult> ("the set of facts and 
conclusions, obtained as a result of the interpretation of the experiment 
observations, which increase/decrease the probability of a research 
hypothesis of the experiment"), etc. (see an EXPO fragment on Figure 6-7). 
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Figure 6-7. EXPO class <ScientificExperiment>, where p/o is a has-part relation, a/o is an 
attribute-of relation. 

The EXPO domain is a generic formalized representation of scientific 
experiments. EXPO is able to describe computational and physical 
experiments, experiments with explicit and implicit hypotheses. Experiments 
are classified according to the library classification 
<DeweyDecimalClassification>, <LibraryOfCongressClassification>, and 
<ResearchCouncilsUKClassification>. 

EXPO follows the SUMO naming convention, e.g. NameOfClass. 
Definitions are based on desiderates that date back as far as Aristotle. This is 
consistent with FMA [9]. EXPO used SUMO as a prototype ontology and 
has such top classes as <Abstract> and <Physical> entity, <Proposition>, 
<Attribute>, <Role>, <Representation>, <Object>, <Process> (see Figure 6-
8). Such an upper hierarchy allows easy and flexible structuring of the 
classes for the description of experiments. 
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Figure 6-8. EXPO top classes. 

The class <Abstract> combines such subclasses as <Proposition> for 
formalizing experiment goals, tasks, hypotheses, methods, etc; <Role> for 
description of actor-related roles (a submitter, a user, a performer of an 
experiment), functional roles for description of functionality of experiment 
equipment, etc. The class <Physical> describes objects (materials, groups, 
artifacts) and processes (experiment actions, scientific activities as 
experiment designing, result interpreting, etc.). The class <Representation> 
combines various representations: representation of experiment model 
(logical, mathematical), representation of experiment observations and 
results. 

EXPO was developed in the Hozo Ontology Editor [5] and then 
automatically translated into standard OWL format. EXPO is publicly 
available at: http://sourceforge.net/projects/expo. 

4. CONCLUSIONS 

MO has many problems that are a result of its rushed bottom-up 
development. The MO developers have now recognized the benefits of using 
an upper ontology as a reference model, and currently MO is being 
restructured according to the FuGO hierarchy and design principles. 
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However, we argue that FuGO is only a partial solution. The integration of 
functional genomics with general science requires the development of a 
generic ontology of scientific experiments, such as our proposal EXPO [14]. 
The use of such a generic ontology guaranties full compliance between 
domain ontologies, and easy reuse of formalized knowledge. EXPO can 
serve as a foundation for domain ontologies of experiments, and provides 
formalized semantic metadata of experiment related information and 
machine readable description of scientific experiments. The use of 
formalized semantic representation also facilitates natural language 
processing for intelligent information analyses and retrieval. Therefore use 
of an ontology based knowledge representation opens exciting new prospects 
for text mining techniques and logical inference, which could lead to a 
profound transformation in the way scientific research data translates into 
understanding. 
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Abstract: Recent years have seen rapid progress in the development of ontologies as 
semantic models intended to capture and represent aspects of the real world. 
There is, however, great variation in the quality of ontologies. If ontologies are 
to become progressively better in the future, more rigorously developed, and 
more appropriately compared, then a systematic discipline of ontology 
evaluation must be created to ensure quality of content and methodology. 
Systematic methods for ontology evaluation will take into account 
representation of individual ontologies, performance (in terms of accuracy, 
domain coverage and the efficiency and quality of automated reasoning using 
the ontologies) on tasks for which the ontology is designed and used, degree of 
alignment with other ontologies and their compatibility with automated 
reasoning. A sound and systematic approach to ontology evaluation is required 
to transform ontology engineering into a true scientific and engineering 
discipline. This chapter discusses issues and problems in ontology evaluation, 
describes some current strategies, and suggests some approaches that might be 
useful in the future. 

Key words: ontology, evaluation, alignment, semantic interoperability, semantic similarity, 
validation, certification. 

1. INTRODUCTION 

Recent years have seen rapid progress in the development of ontologies 
intended to capture and represent aspects of the real world. Because 
ontologies explicitly represent domains - constituted by the entities, 
properties, and relationships that exist in the real world - they can be used to 
provide heterogeneously structured databases and multiple systems with 
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comparable semantics. Ontologies thus support semantic interoperability and 
integration in organizations in many domains, with notable successes thus 
far in the life sciences. 

There is, however, great variation in the quality of ontologies. 
Prospective users of these ontologies typically have no insight as to their 
coverage, their intelligibility to human users and curators, their validity and 
soundness, their consistency, the sort of inferences for which they can be 
used, or their ability to be adapted and reused for wider purposes. 

In addition, there are systems such as controlled vocabularies, thesauri 
and terminologies that in the best case exhibit some ontological features or 
that are developed using ontology tools, but that are not ontologies in their 
own right. The pervasive use of the term 'ontology' for such resources is 
unfortunate. 

Users are unsure whether particular ontologies can help them solve their 
particular data, application, or service problems. Enterprises and 
communities are not confident that large ontologies formed from the 
merging or mapping together of smaller ontologies will enable wider 
semantic operability for their aggregated data and complex applications, or 
merely result in greater conceptual confusion. 

If ontologies are to become progressively better in the ftiture, more 
rigorously developed, and more appropriately compared, then a systematic 
discipline of ontology evaluation must be created to ensure quality of content 
and methodology. Ideally it will ensure also that an evolutionary path 
towards improvement in ontologies is created, analogous to the paths to 
improvement with which we are familiar in the traditional domains of 
science and engineering. 

2. ISSUES IN ONTOLOGY EVALUATION 

An ontology can be evaluated against many criteria: its coverage of a 
particular domain and the richness, complexity and granularity of that 
coverage; the specific use cases, scenarios, requirements, applications, and 
data sources it was developed to address; and formal properties such as the 
consistency and completeness of the ontology and the representation 
language in which it is modeled. Ontologies can also be evaluated per 
questions such as the following: Is the ontology mappable to some specific 
upper ontology, so that its evaluation will be at least partially dependent on 
the evaluation of the latter also? What is the ontology's underlying 
philosophical theory about reality? Theory perspectives include idealist: 
reality is dependent on mind or is ultimately mental in nature, realist: 
universals or invariant patterns really exist independently of minds (and thus 
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of observers), conceptualist: universals are neither independently existing 
nor just names but exist only in human and possibly other animal minds as 
abstractions from particulars, nominalist: only particulars exist and 
universals do not exist in reality or in our minds but only as general terms; 3-
dimensionalist: space and time exist independently and material objects are 
extended in space and endure through time, 4'dimensionalist: only a 
combined spacetime exists; etc. [for realist perspective in life sciences, see 
14]? Finally, what kinds of reasoning methods can be invoked on the 
ontology, i.e., by the inference engine that uses it? The latter question 
highlights the importance also of the evaluation of ontology tools, though 
this chapter will not directly address that topic. 

Ontology evaluation includes aspects of ontology validation and 
verification relating to structural, fiinctional, and usability issues. [28, 29] 
develop a theoretical framework and a formal model for evaluating 
ontologies, including a meta-ontology of semiotics (the study of signs and 
signification, i.e., the bearing of meaning by those signs, a generalization of 
linguistics to other sign systems beyond natural language) called O^ and an 
ontology of ontology evaluation and validation called oQual [29, p. 2]. 
oQual uses the evaluation matrix of [36] to answer general evaluation 
questions on the goals, fiinctions, use cases, stage of development, 
methodology employed in the ontology development process, and usability 
of the ontology. 

One issue in evaluating ontologies is whether to perform glass box 
(component-based) vs. black box (task-based) evaluation, the latter usually 
applied to ontologies that are tightly integrated with an application 
performing specific tasks [36]. An example of such an application might be a 
semantic search engine that uses a domain specific ontology to search over a 
collection of documents. 

2.1 Knowledge Representation 

Of importance in evaluating an ontology is the expressivity of the 
knowledge representation (KR) language the ontology is represented in, in 
light of the trade-off between the value of high expressivity and the cost of 
computation. Emphasis on high expressivity is manifested by First-Order 
Logic (FOL)-based languages such as Common Logic (CL) [18], the 
Interoperable Knowledge Representation for Intelligence Support (IKRIS) 
language [38], and the Web Ontology Language's (OWL) most expressive 
dialect OWL Full [1, 19]. Emphasis on minimizing the cost of computation 
is currently manifested by OWL-Lite, OWL-DL (description logic) and 
other description logics. 
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Two ontologies, both covering the same domain, one expressed in OWL-
Lite and one expressed in CL, necessarily will be evaluated differently, say, 
for a given domain application that requires fine model precision, e.g., fully 
automated selling and purchasing as envisioned for a range of semantic Web 
services. For a less precise task, say, for classifying documents in a loose 
topic hierarchy, either one may be sufficient. 

The BCR language defines the syntax and the semantics for the ontology 
models expressed in that KR language. Figure 7-1 [54] displays the three 
levels that are involved: the meta-language, i.e., the KR language, the 
ontology concept or type level, and the instance level. The lowest level 
instantiates the generic properties described by the middle level. 

Level 
Knowledge 
Representation (KR) 
Language (Ontology 
Language) Level: 

Meta Level to the 
Ontology Concept 
Level 

Ontology 
Concept/Type (OC) 
Level: 

Object Level to the KR 
Language Level, 
Meta Level to the 
Instance Level 

Instance (01) Level: 
Object Level to the 
Ontology Concept 
Level 

Example Constructs 
Class, Relation, Instance, 
Function, Attribute, 
Property, Constraint, Axiom, 
Rule 

Person, Location, Event, Frog, 
non-
SaccharomycesFungusPolarize 
dGrowth, etc. 

Harry X.Landsford III, 
Person560234, Frog23, non-
SaccharomycesFungusPolarize 
dGrowth822, 

Language 

Ontology 
(General) 

Knowledge 
Base 

(Particular) 

Figure 7-1. Ontology Representation Levels 

Constructs defined in the KR language can be arbitrarily different. For 
example, description logics such as OWL are quite different from FOL 
languages such as CL. Some first-order languages such as IKRIS have non
standard extensions, e.g., quotations and contexts. OWL-FuU allows classes 
to also be individuals (instances). Finally, OWL also has been extended with 
the Semantic Web Rule Language SWRL, which combines description logic 
constructs with a Horn rule-like capability as found in logic programming (a 
generalized Modus Ponens proof form syntactically restricted to permit 
efficient automated inference). 

Any evaluation of an ontology has to account for the expressivity of the 
KR language in which it is modeled. One way to level the playing field for 
evaluation therefore is to translate the ontology to be evaluated to a 
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canonical KR language, typically a very expressive language such as CL, 
which can be problematic insofar as there will likely not be a fully 
automated translation from the less expressive to the more expressive 
language. 

The ontology to be evaluated may also be mapped to an upper ontology 
that defines constructs that are not in the KR language. For example, an 
upper ontology may define class, relation, property, attribute, facet, quality, 
or trope. More commonly, an upper ontology will define notions of space 
and time (3-D), or spacetime (4-D) [63], and endurants, perdurants, or both 
[34], and parts, wholes which lower ontologies use [65, 75]. The given 
ontology thereby can use these object-level assertions. Thus, ontology 
evaluation must also consider the mapping to an upper ontology. 

Finally, the formal properties of the KR language will be significant for 
evaluating ontologies and reasoning methods on those ontologies. Formal 
properties include soundness (any expression that can be derived fi*om the 
knowledge base (KB) of the ontology and its instances is logically implied 
by that KB), completeness (any expression that is logically implied by the 
KB can be derived), and decidability (being both sound and complete). All 
of these will correlate with the formal complexity (time of execution, space 
of memory needed to compute an answer). One can consider undecidability 
as meaning that a query may never terminate, since an inference engine will 
be searching an infinite space. A very expressive language such as FOL is 
semi'decidable: it is decidable in that if a theorem is logically entailed by a 
FOL theory, a proof will eventually be found, but undecidable in that if a 
theorem is not logically entailed, a proof of that may never be found. 
Decidability of a language or logic does not mean tractability of the 
automated reasoning on that language, but there is a relationship. 
Expressivity and complexity are typically inversely proportional to the 
tractability of reasoning. 

A related property having to do with the ontology represented in the KR 
language is consistency (if contradictions can be proven from a given 
proposition, then the theory is inconsistent). Inconsistent theories have no 
formal models (interpretations of those theories, the semantics). 
Inconsistency may manifest itself by circularity, disjoint partition errors, and 
other semantic inconsistencies, e.g., incorrect classifications. Similarly, there 
are other ontology-level correlates of the formal properties. Ontology 
incompleteness is indicated by imprecisely defined or missing concepts, 
partially defined disjointness properties, redundancy of class, instance, or 
relation [61]. 
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2.2 Use Cases and Domain Requirements of Ontologies 

In early ontology engineering, methodological considerations were 
introduced that remain significant today. One is the use of competency 
questions to drive out requirements [33]. Competency questions are those an 
ontologist frames prior to the development of the ontology. These consist of 
bottom-up questions one would like answered concerning the data sources 
the ontology would encompass and also top-down questions one would like 
answered considering the nature of the domain. Such questions tend to push 
the ontologist to construct specific use cases and modeling requirements -
sound software engineering practices - to drive and constrain the ontology 
development. Once an inference engine can give reasonably complete and 
coherent answers (consider them queries or theorems) to the competency 
questions, as gauged by a domain expert, the development effort is 
completed. These competency questions thus also act as a test suite, 
providing value during both analysis and validation. 

The domain requirements driven out by competency questions and use 
cases are ontology evaluation criteria. The requirements can focus on aspects 
such as physical vs. functional properties (the latter is more important for 
human artifacts), which will vary for the same entities depending on the 
intent of the model. Consider, for example, a supply chain ontology of 
chemicals. Raw manufacturers may focus on physical chemical properties 
such as valency, Ph factor, volatility, human toxicity, purity level, etc., while 
down-stream supply chain vendors such as paint manufacturers may focus 
on properties such as drying time, light reflectability, heat resistance , etc. 

2.3 Semantic Agreement and Consensus Building 

Measurement of human agreement on classification tasks has been well-
studied. Similar measurement can be applied to the problem of classifying 
instances in terms of an ontology or mapping a concept to candidate classes 
in one or more ontologies. Researchers developing linguistic classification 
schemes for annotating corpora have measured inter-annotator agreement 
using the Kappa statistic [64, 9], defined as 

K = ( P ( A ) - P ( E ) ) / 1 - P ( E ) 

where "P(A) is the proportion of times that the coders agree and P(E) is the 
proportion of times that we would expect them to agree by chance." [9] 

Such measurements have played a crucial role in the evolution of such 
annotation schemes, some of which have resulted in successful solutions to 
problems in computational linguistics. Such metrics are appropriate when 
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the categories involved are already defined and where annotators are 
required to choose between possible categories. 

Inter-annotator agreement studies have been carried out in the course of 
Gene Ontology annotation of terms in documents [7], in the context of the 
BioCreative information extraction task. It was found here that expert 
annotators (EBI GO A project curators) [23] were generally correct in their 
annotations, but missed a few, and that the specificity of the annotation 
varied depending on their biological knowledge. 

Semantic agreement is highly influenced by the degree to which humans 
are trained in a set of guidelines for how to label examples in terms of 
categories, and the richness of these guidelines. For certain problems, 
guidelines may have to be refined to arrive at more agreement; where there 
is eventual disagreement, adjudication may have to be used. The process of 
arriving at the right categories involves a variety of factors that include 
aspects of group collaboration. Delphi methods [50] have a role here, but 
have been relatively underexplored for use in ontology evaluation. 

2.4 Semantic Similarity and Semantic Distance 

The majority of ontologies exist, or can be represented in, a graph-based 
form. Semantic distance and semantic similarity are two measures used in 
graph representations to capture to what extent two nodes in a graph are 
related. Whereas semantic distance measures how closely two nodes are 
topologically related in a graph, semantic similarity captures to what extent 
two nodes might represent the same entity in reality. Obviously, the two 
notions are closely related, but there are some important differences. In a 
fracture ontology, for example, a node representing a "fractured arm" should 
have a very short semantic distance from one referring to an "arm fracture"; 
yet the semantic similarity would still be low: a fracture cannot be an arm. It 
is now a measure of a high-quality ontology that it should be possible to 
compute the semantic distance of post-coordinated terms such as "patient-
WITH-arm fracture" and "patient-WITH-fractured arm" as being minimal, 
and the semantic similarity as being maximal. 

Various approaches to the calculation of these values have been 
proposed. They tend to fall into two categories. Edge-based methods exploit 
mainly the idea of path-length in a network (with or without additional 
weights according to the type of link traversed). Node-based methods also 
take into account contextual factors, such as the degree to which cognate 
terms are to be found in a large corpus [58], the idea being that the 
information content associated with nodes related to terms that occur often in 
a corpus is lower than of nodes that occur rarely, and that information-low 
nodes tend to appear higher in an ontology hierarchy. Still more 
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sophisticated edge-based methods are described in [80] which is based 
entirely on the hierarchical /.s-a-relationship, and in [74], where this idea is 
expanded to take account also of other sorts of relationships between nodes. 

2.5 Alignment with Other Ontologies 

Ontology alignment (mapping, articulation) attempts to compare two 
ontologies, where one ontology is the 'reference' ontology against which a 
candidate ontology should be compared. Arriving at a suitable reference 
ontology can be challenging; preferably, it should be one that was created 
under similar conditions, with similar goals, to the candidate ontology. This 
issue is less a problem when, say, comparing different versions of the same 
ontology. 

Ontology alignment can provide some information about the relative 
quality of the ontologies aligned. It falls short of providing full evaluation 
metrics, however, since we do not as yet have gold standard reference 
ontologies. In [15] an attempt is made to base such a metric on using reality 
as the gold standard. 

Alignment is usually described as an activity that, given two arbitrary 
ontologies 01 and 02, aims to find for each 'concept' in ontology Ol a 
corresponding 'concept' in ontology 02 that has the same intended meaning 
[43, 22, 40]. To say that two concepts have similar semantics, on this 
account, means roughly that they occupy similar places in their lattices. A 
problem with the above is, however, clear: ontology alignment is defined in 
terms of the correspondence (equivalence, sameness, similarity) of concepts. 
But how, precisely, do we gain access to concepts in order to determine 
whether they stand in a relation of correspondence? 

One option is via definitions, but then these definitions themselves, 
supplied by the ontologies to be matched, will likely employ different terms 
(or 'concepts'), so that the problem of matching has merely been shifted to 
another place. Another option, as suggested in [22], is to establish 
correspondence by looking at the positions of given concepts in their 
surrounding concept lattices. But how, unless we have already matched 
some single concepts, can we compare 'places' in distinct lattices (these 
'lattices' may have very different mathematical forms)? This leaves only 
some statistically-based algorithms involving lexical term-matching, the 
results of whose application have thus far proved uneven, to say the least. 

When [24] surveyed ontology alignment methods, they found that the 
majority are based on analyzing either the vocabulary used to label concepts 
or the structure in terms of which the latter are organized. Term-based 
comparison is, as mentioned above, problematic because of term synonymy 
(multiple terms may have very similar meanings) and term ambiguity, i.e.. 
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polysemy (a given term may refer to multiple distinct referents). In addition, 
term comparisons require a degree of morphological normalization, and 
complex multi-word terms need to be handled. The use of structure-based 
comparison is, however, applicable in the restricted case where the 
ontologies being aligned are very similar, as in version comparison [20]. 

One can use coarse-grained methods for comparing ontologies in terms 
of distance, while paying lip-service to the term-matching problem. Research 
on ontology induction for biology has followed such an approach in 
comparing system-generated ontologies with human ones. For example, [52] 
limited the terms to those in the reference ontology, comparing relations 
closed among those terms in each of the ontologies. Their relation precision 
measures the proportion of relations a distance Dl apart in one ontology that 
are at most a distance D2 apart in the other, subject to a variety of constraints 
(e.g., the direction and type of the links being the same, similar, different, 
etc.) The disadvantage of such distance-based measures is their over-
sensitivity to small changes in node ordering; also, the 'conceptual' salience 
of particular nodes is not taken into account. In related work, [41] measures 
the percentage of times terms in a parent-child relationship appear in an 
immediate or transitive parent-child relationship in the other. 

3. ONTOLOGIES FOR THE LIFE SCIENCES: 
EVALUATION TECHNIQUES 

In the life sciences, widely-used ontologies such as the Gene Ontology, 
UMLS, BioPAX, etc. are being used primarily to perform 'associative' 
query expansion during search or to reconcile annotations, rather than for 
deep reasoning. A number of ontologies used in biology have been 
developed or enhanced with description logic representations to permit 
richer inferential use, including the Gene Ontology Next Generation Project 
(GONG) [77], SNOMED-Clinical Terms [73], the Unified Medical 
Language System (UMLS) [57, 42, 17], the Generalised Architecture for 
Languages, Encyclopaedias and Nomenclatures in Medicine (GALEN) [59], 
the Foundational Model of Anatomy (FMA) [79], and the National Cancer 
Institute (NCI) Thesaurus [30]. The use of description logics here provides a 
degree of evaluation in terms of error-checking of the terminological 
structure. 

The deeper reasoning tasks that ontologies have been used for include: 
classification, e.g., finding the most specific protein family for an entity in a 
protein database [76], answering queries related to process models of a 
vaccinia virus life cycle [37], and reasoning about part-whole models of 
anatomy [35]. However, there are a number of problems with such 
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ontologies, of the sorts described in [10, 11] which demonstrate that the 
error-checking mechanisms provided by description logic tools do not 
suffice to find all errors. 

Many techniques are being used for ontology evaluation in the life 
sciences and more generally. For fairly exhaustive summaries of current 
practice, see [4, 5]. In this section, we look at a number of the techniques: 
evaluation with respect to the use of an ontology in an application, with 
respect to domain data sources, assessment by humans against a set of 
criteria, natural language evaluation techniques, and the use of reality itself 
as a benchmark. The section concludes with a discussion of prospects for the 
future: accrediting and certifying ontologies that have passed some 
evaluation criteria, and the notion of an ontology maturity model. 

3.1 Evaluate Use of Ontology in an Application 

Task-based evaluations offer a useful framework for measuring practical 
aspects of ontology deployment, such as the human ability to formulate 
queries using the query language provided by the ontology, the accuracy of 
responses provided by the system's inferential component, the degree of 
explanation capability offered by the system, the coverage of the ontology in 
terms of the degree of reuse across domains, the scalability of the knowledge 
base, and the ease of use of the query component. Such task-based 
evaluations can leverage use-cases or scenarios to characterize the target 
knowledge requirements. In the DARPA High-Performance Knowledge 
Bases project [16], the evaluation included a crisis management scenario, 
where evaluators formulated parameterized test questions and answer keys, 
and subjectively graded question formulation, answers, and system 
explanations regarding inferential steps. In the case of the qualitative 
assessment of CYC [48] for use by the Internal Revenue Service [60], the 
use-cases were drawn from FAQs and topics at the IRS web site. The 
questions could include statements, and were selected to be complex enough 
to require ontology-based inference. Another assessment of CYC [51] was 
focused on its use for word-sense disambiguation and coreference in natural 
language processing. Here the queries chosen were taxonomic queries as 
well as queries that examined distances between pairs of concepts. 

Another task-based evaluation scheme involves using textbooks and 
other found material to guide task-specific knowledge capture requirements. 
In the Rapid Knowledge Formation (RKF) project [37], subject-matter 
experts added knowledge about DNA transcription to two ontological 
systems, Cycorp's CYC and SRI's SHAKEN, based on ten pages from a 
standard textbook. Independent judges carried out subjective grading of the 
accuracy of the answers obtained to test questions as well as the degree of 
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reuse (old vs. new axioms used). Further, comparisons of performance of 
subject-matter experts were carried out against knowledge engineers from 
the developer institutions. A particularly interesting feature of RKF was the 
use of challenging 'explanation' questions, e.g., 'Can transcription be 
performed on either strand of a given DNA gene segment with equivalent 
effects? Explain.' A similar approach was taken in the HALO pilot project 
[27], which used a chemistry domain and involved CYC, SHAKEN, and 
Ontoprise's Ontonova. In HALO, both the test questions and the assessment 
were modeled on Advanced Placement chemistry tests. 

Task-based evaluations, however, can be expensive to carry out and the 
results cannot be used to test systems whenever the need arises. Further, 
measurements of reuse face the problem of counting concepts or axioms, 
which depends on what sorts of concepts are reified in a particular ontology. 

3.2 Comparison of Ontology Against a Source of 
Domain Data 

Coverage of the ontology can be evaluated with respect to other 
ontologies and databases representing a particular domain. For example, the 
Gene Ontology has been automatically mapped to a number of other 
classifications as well as to databases. However, such coverage estimates are 
subject to noise in the mapping, of the sort discussed earlier for term-
matching methods. In addition, entity normalization (mapping from attested 
names to database ids) is non-trivial in biological domains, as shown in [2], 
where increased length of the names and ambiguity in the vocabulary was 
tied to substantially poorer performance for mouse genes compared to yeast 
genes. 

Ontologies can also be mapped automatically to a corpus of documents 
representative of a particular domain, and this mapping can be used to assess 
or compare ontologies. The approach of [6] compares ontologies by 
examining only the concepts which are common to the ontology and the 
corpus. Each ontology is represented by a feature vector, and the distance 
between the ontologies is represented by the distance between the vectors. 
The approach also provides a method for estimating the probability of the 
ontology given the corpus. The approach ignores relationships between 
concepts, and is subject to the standard problems with term-matching. 
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3.3 Assessment by Humans Against a Set of Criteria 

Assessment by humans against a set of criteria had been used extensively 
by Ceusters and Smith in a series of studies of ontologies and terminologies 
in biomedicine: 
• The Gene Ontology [69,72,68] 
• Systematized Nomenclature of Medicine (SNOMED) Clinical Terms 

(CT)[31,10, 11,3] 
• The National Cancer Institute Thesaurus [13, 46] 
• The Unified Medical Language System [71, 45] 
• ICF (International Classification of Functioning, Disability and Health) 

[49] 
• HL7-RIM [67] and ISO terminology and data integration standards [66, 

70]. 
The principles in question are derived largely from common sense: 

provide clear documentation, use terms in a consistent (and consistently non-
ambiguous) way, provide updating and versioning procedures, and 
procedures for users to propose corrections and additions to the ontology. 
Some are derived from basic (philosophical) logic, including the theory of 
definitions - for example: avoid circular definitions; do not give a new 
meaning to a term with an already established use in the domain in which the 
ontology is intended to be used; define the principal relations in the ontology 
(for example is_a mid partof) and used them in consistent ways. Yet others 
are derived from the tradition of philosophical realism: see section [Using 
Reality as Benchmark] below. For a general overview see [12, 44], which 
describe also how the application of some of these principles to the 
evaluation of ontologies can be implemented in automated reasoning 
systems. 

3.4 Natural Language Evaluation Techniques 

Natural language processing tasks such as information extraction, 
question-answering, and abstracting are knowledge-hungry tasks. It is 
therefore natural to consider evaluation of ontologies in terms of their impact 
on these tasks. Information extraction in biomedical text has made heavy use 
of the Gene Ontology; it is possible to subtract out or substitute other 
ontologies such as UMLS to see the impact on performance. Further, in the 
BioCreative evaluation [76], one of the tasks was to find evidence in a paper 
for the GO code provided for a given protein. The best systems for this task 
had around 30% accuracy, in part because of the difficulty of the inference 
involved. For example, the text passage "The p21waf/cipl protein is a 
universal inhibitor of cyclin kinases and plays an important role in inhibiting 
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cell proliferation." is evidence for the GO annotation of that protein as 
having a molecular function of "negative regulation of cell proliferation (GO 
code: 0008285)", which requires a system to make the difficult inference 
that inhibition is equivalent to negative regulation. The impact of ontologies 
on such an 'entailment' task could be measured. 

Question-answering is another technology where ontologies can play a 
useful role in bridging the gap between a natural language question and a 
candidate passage in a document. Current systems use WordNet along with 
ad-hoc taxonomies rather than full-fledged ontologies. Accuracy on 
question-answering tasks can provide a task-based measure of the impact of 
an ontological resource and its components. Such applications also present 
challenging requirements in terms of performance efficiency. Question-
answering systems for the life sciences are still in their infancy, however. 

3.5 Using Reality as Benchmark 

The authors of [14] propose a technique for ontology evaluation based on 
determining the semantic correspondences between nodes in two ontologies 
identified during ontology matching and subsequent mapping or merging, 
and in particular by the examination of the changes made in subsequent 
versions of an ontology by its curators. They build a metric resting on a 
distinction between three levels which have a role to play where ontologies 
are used as artifacts for annotation and automated reasoning as for example 
in the field of biomedicine: (1) the reality on the side of the patient; (2): the 
cognitive representations of this reality embodied in observations and 
interpretations on the part of clinicians and others, and (3) the publicly 
accessible concretizations in representational artifacts of various sorts, of 
which ontologies are examples. To establish the metric it is necessary first of 
all to specify the features by which an eventual gold standard must be 
marked. Each node in such an ontology would need to designate (1) a single 
portion of reality (POR) (denoting instances, universals, and the simple and 
complex combinations these form through interrelationships of various types 
[14]), which is (2) relevant to the purposes of the ontology, and such that (3) 
the authors of the ontology intended to use this node to designate this POR. 
Moreover, (4) no PORs objectively relevant to these purposes would be 
missed by the ontology. We can now obtain a measure of the quality of an 
ontology (and of the work, and competence, of its developers) by 
determining the degree to which successive versions of the ontology 
approximate ever more closely to this ideal, something which can be 
quantified by documenting the different kinds of changes in an ontology, 
reflecting for example (1) changes in the underlying reality (does the 
appearance or disappearance of an entry in a new version of an ontology 
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relate to the appearance or disappearance of entities or of relationships 
among entities in reality?); (2) changes in our scientific understanding; (3) 
reassessments of what is relevant for inclusion in an ontology, or (4) 
encoding errors introduced during ontology curation (for example through 
erroneous introduction of duplicate entries reflecting lack of attention to 
differences in spelling). We can measure the degree of improvement along 
each of these dimensions in each successive version of the ontology by 
tracking the history of revisions. The metric can be used also with measures 
of the performance of an ontology in applications; a divergence between the 
two is once again a sign that the ontology does not line up with the reality it 
is supposed to represent. 

3.6 Ontology Accreditation, Certification, Maturity 
Model 

Once validation, verification, and evaluation of ontologies become 
standard practice, a further evolution toward more rigor is to issue 
accreditation or certification (to a given ontology or to a team of ontology 
developers or an organization) based on a set of recognized evaluation 
criteria by an accrediting body (top-down) or an accrediting process 
(bottom-up) similar to the trustworthiness, reputation, and feedback 
mechanisms of online services and communities such as E-Bay and Amazon 
[21]. This kind of "Good Ontology-keeping" seal of approval would 
compute and assign a quality rating of the ontology [55, 53]. An alternative 
approach might include ontology repositories that have some entrance 
requirements, e.g., an open-rating system extended with topic-specific trust 
[49, 56]. The emerging Extended Metadata Repositories (XMDR) project 
[78], based on the ISO/IEC 11179 Metadata Registries standard [39], 
represents another repository paradigm that includes ontology registration, 
mapping services, and prospectively certification. 

As discussed throughout this paper, additional measures associated with 
an ontology accreditation score could be domain, breadth of application or 
coverage within that domain, average taxonomic depth and relational density 
of nodes, completeness of axiomatic specification, adherence to principled 
methodologies such as Methontology [25, 26] and OntoClean [34]. 

Creation of an ontology maturity model may also be useful [55], like the 
Software Engineering Institute's Capability Maturity Model Integration [8]: 
a process of subprocesses in a full ontology lifecycle model, with gradations 
and decision procedures for maturity of ontologies by which organizations 
and ontologies could be gauged in terms of rigor of the ontology engineering 
process. Levels of maturity in the model could be defined by many of the 
properties discussed in this chapter, including degree of logical 
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formalization, axiomatizability and satisfiability measures; strictness and 
properties of the ontology development process; quality of ontology; linkage 
to reference, utility, middle, and upper ontologies; domain of application 
usage; and tool support, including KR language, development, and reasoning 
assistance. 

4. NEXT STEPS AND RECOMMENDATIONS 

The ultimate evaluation of an ontology is in terms of its adoption and 
successful use, rather than its consistency or coverage. The Gene Ontology, 
while clearly impoverished in many representational aspects, is a 
fundamental success story. 

In the long run, rigorous ontology evaluation must evolve in support of a 
broader engineering discipline of semantics and ontologies, which itself 
would be part of an information engineering discipline. A rigorous 
engineering discipline in semantics and ontologies must therefore include 
certain attributes in common with other engineering disciplines: 
• A formal, verifiable science base 
• Tested theories that allow prediction 
• Defined units of measure 
• Well-defined engineering practices 

If as a society we hope to reliably build complex information systems 
incorporating ontologies, these foundational elements must be available to 
engineering practitioners. This will not be an easy undertaking. A 
measurable science of semantics or ontologies requires some fundamental 
questions to be answered, such as what are meaningful, theoretically 
grounded units of measure in this new science. Beyond the early work 
performed by [62] on information entropy as a measure for uncertainty in a 
message, little progress has been made. And yet, intuitively we deal with 
notions such as 'semantic proximity' in our daily lives. In other words, we 
satisfy ourselves, usually through dialogue, that our own conceptualization 
of some notion is 'close enough' to that of another to allow meaningful 
discourse. Just how to characterize the dimension in which 'close enough' is 
evaluated, much less what the unit of measure is, remains an unsolved 
problem. 

Therefore, as a community we need to approach ontology evaluation as 
part of a larger endeavor to systematize the construction of information 
systems. In this way, we can realistically hope to succeed in building ever 
more complex systems without drowning in complexity. 
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Abstract: In order to implement the Semantic Web vision, the W3C has produced a 
standard ontology language OWL (Web Ontology Language), which is largely 
based on Description Logics. OWL facilitates greater machine interpretability of 
Web content than that supported by XML, RDF, and RDF Schema (RDFS) by 
providing additional vocabulary along with a formal semantics. In this chapter, 
we aim at introducing some basic notions of OWL from a logical perspective. 
After presenting OWL in the context of the Semantic Web, this chapter will 
introduce the reader to the syntax and semantics of OWL and summarize the 
relations between RDF and OWL, in terms of syntax and semantics. 
Furthermore, it discusses the following questions that new users of OWL often 
ask: (i) What can OWL ontologies be used for? (ii) Are there any recent 
extensions of OWL? (iii) Are there any standard query languages that we can 
use to query OWL ontologies? 

Key words: OWL, Description Logics, Ontology, extensions of OWL, query language. 

1. HEADING FOR THE SEMANTIC WEB 

In Realizing the Full Potential of the Web [5], Tim Bemers-Lee identifies 
two major objectives that the Web should fiilfiU. The first goal is to enable 
people to work together by allowing them to share knowledge. The second 
goal is to incorporate tools that can help people analyze and manage the 
information they share in a meaningful way. 

The Web's provision to allow people to write online content for other 
people is an appeal that has changed the computer world. This same feature 
that is responsible for fostering the first goal of the Web, however, hinders 
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the second objective. Much of the content on the existing Web, the so-called 
syntactic Web, is human but not machine readable. Furthermore, there is 
great variance in the quality, timeliness and relevance [5] of Web resources 
(i.e., Web pages as well as a wide range of Web accessible data and services) 
that makes it difficult for programs to evaluate the worth of a resource. 

The vision of the Semantic Web (SW) is to augment the syntactic Web so 
that resources are more easily interpreted by programs (or 'intelligent 
agents'). The enhancements will be achieved through the semantic markups 
which are machine-understandable annotations associated with Web 
resources. 

Encoding semantic markups will necessitate the Semantic Web adopting 
an annotation language. To this end, the W3C (World Wide Web 
Consortium) community has developed a recommendation called syntax and 
semantics of OWL Resource Description Framework (RDF) [31]. The 
development of RDF is an attempt to support effective creation, exchange 
and use of annotations on the Web. 

littp://exaniple.orj:f/GaiieshJitml 

homepageOf 

C^ 

Grass 

Figure 8-1. RDF annotations in a directed labeled graph 

Example (Annotating Web resources in RDF) 
As shown in Figure 8-1, we can associate RDF annotation to 
http://example.org/Ganesh.html and state that it is the homepage of the 
resource Ganesh, which is an elephant and eats grasses. We invite the reader 
to note that the above RDF annotations are different from HTML [50] mark
ups in that they describe the contents of Web resources, instead of the 
presentations of Web pages. 
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Annotations alone do not establish semantics of what is being marked-up. 
For example, the annotations presented in Figure 8-1 do not explain what 
elephants mean. In response to this need for more explicit meaning, 
ontologies [15,65] have been proposed to provide shared and precisely 
defined terms and constraints to describe the meaning of resources through 
annotations ~ such annotations are called machine-understandable 
annotations. 

An ontology typically consists of a hierarchical description of important 
concepts in a domain, along with descriptions of the properties of each 
concept, and constraints about these concepts and properties. Here is an 
example ontology. 

Example (An elephant ontology) 
An elephant ontology might contain concepts, such as animals, plants, 
elephants, adult elephants (elephants with their ages greater than 20) and 
herbivores (animals that eat only plants or parts of plants), as well as 
constraints that elephants are a kind of animal, and that adult elephants eat 
only plants. These constraints allow the concept 'adult elephants' to be 
unambiguously interpreted, or understood, as a specialization of the concept 
'herbivores' by, e.g., an animal feeding agent. 

The advent of RDF Schema (RDFS) [7] represented an early attempt at a 
SW ontology language based on RDF. As the constructors that RDFS 
provides for constructing ontologies are very primitive, more expressive SW 
ontology languages have subsequently been developed, such as OIL [21], 
DAML+OIL [23] and OWL [6], which are all based on Description Logics. 

Description Logics (DLs) [2] are a class of knowledge representation 
languages to represent and reason about ontologies. They were first 
developed to provide formal, declarative meaning to semantic networks [49] 
and frames [34], and to show how such structured representations can be 
equipped with efficient reasoning tools. The basic notions of Description 
Logics are classes, i.e., unary predicates that are interpreted as sets of 
objects, and properties, i.e., binary predicates that are interpreted as sets of 
pairs. 

Description Logics have distinguished logical properties. They emphasize 
on the decidability of key reasoning problems, such as class satisfiability and 
knowledge base satisfiability. They provide decidable reasoning services 
[10], such as tableaux algorithms, that deduce implicit knowledge fi-om the 
explicitly represented knowledge. Highly optimized DL reasoners (such as 
FaCT [20], Racer [16], Pellet [45] and FaCT++ [61]) have showed that 
tableaux algorithms for expressive DLs lead to a good practical performance 
of the system even on (some) large knowledge bases. 
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High quality ontologies are pivotal for the Semantic Web. Their 
construction, integration, and evolution crucially depend on the availability 
of a well-defined semantics and powerful reasoning. Description Logics 
address both of these ontology needs; therefore, they are ideal logical 
underpinnings for SW ontology languages [3]. Unsurprisingly, the SW 
ontology languages OIL, DAML+OIL and OWL use DL-style model-
theoretic semantics. This has been recognized as an essential feature in these 
languages, since it allows ontologies, and annotations using vocabulary and 
constraints defined by ontologies, to be shared and exchanged without 
disputes as to their precise meaning. 

DLs and insights from DL research had a strong influence on the design 
of these Web ontology languages. The influence is not only on the 
formalizations of the semantics, but also on the choice of language 
constructors, and the integration of datatypes and data values. OIL, 
DAML+OIL and OWL thus can be viewed as expressive DLs with Web 
syntax. Among these SW ontology languages, OWL is particularly important 
because OWL has been adopted as the standard (W3C recommendation) for 
expressing ontologies in the Semantic Web. For this reason, OWL is the 
main subject of this chapter. 

2. SYNTAX AND SEMANTICS OF OWL 

As mentioned in the previous section, the OWL language facilitates 
greater machine understandability of Web resources than that supported by 
RDFS by providing more expressive vocabulary (classes and properties) and 
constraints (axioms) along with a formal semantics. In this section, we 
introduce the syntax and semantics of OWL. 

The class and property descriptions and axioms of OWL are very similar 
to those of DAML+OIL, which is equivalent to the SH0IQ(O^) DL (where 
D"̂  stands for datatypes with inequality predicates). In fact, the charter of the 
Web Ontology Working Group (the W3C working group that proposed 
OWL) explicitly states that the design of OWL should be based on 
DAML+OIL. 

OWL has three increasingly expressive sub-languages: OWL Lite, OWL 
DL and OWL Full. OWL Lite and OWL DL are, like DAML+OIL, basically 
very expressive description logics; they are equivalent to the SHIF(0^) and 
SHOIN{D^) DLs. Therefore, they can exploit existing DL research, e.g., to 
have well-defined semanfics and well studied formal properties, in particular 
the decidability and complexity of key reasoning services: OWL Lite and 
OWL DL are both decidable, and the complexity of the ontology entailment 
problems of OWL Lite and OWL DL is ExPTlME-complete and NEXPTIME-
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complete, respectively [24]/ OWL Full is clearly undecidable, thanks to its 
metamodeling and its lack of restrictions on the use of transitive properties, 
but presents an attempt at complete integration with RX)F(S). Based on the 
above observations, we will mainly focus on OWL DL. 

In this section, we will first introduce the syntax and semantics of OWL 
DL (and therefore OWL Lite), and then briefly describe the relations 
between RDF and OWL, in terms of both syntax and semantics. 

2.1 Syntax 

OWL DL provides an abstract syntax and an RDF/XML syntax, as well 
as a mapping from the abstract syntax to the RDF/XML syntax [46]. In this 
sub-section, we will introduce the abstract syntax of OWL DL, which is 
heavily influenced by frames in general and by the design of OIL in 
particular. The abstract syntax is important because the model-theoretic 
semantics of OWL DL to be introduced in the next sub-section is based on it. 
It is important to note that not all valid RDF/XML statements are valid OWL 
statements - only those which can be mapped from OWL statements in 
abstract syntax are valid OWL statements in RDF/XML syntax. 

Here we use an animal ontology to illustrate the abstract syntax of OWL 
DL. A simple animal ontology may consist of three distinct parts. The first 
part is a set of important concepts and properties, which may include: 

• Primitive classes such as Animal, Plant, Cow, Sheep and Elephant. 
Class(Animal) 
Class(Plant) 
Class(Cow) 
Class(Sheep) 
Class(Elephant) 
Class(Habitat) 
Class(Camivore) 

• Properties such as eat, partOf, liveln , age, and weight. 
ObjectProperty(eat) 
ObjectProperty(partOf) 
Obj ectProperty (liveln) 
DatatypeProperty(age) 
DatatypeProperty(weight) 

^ The complexity class EXPTIME (NEXPTIME) is the set of all decision problems solvable by a 
(non)deterministic Turing machine in 0(2''̂ "^) time, where p{n) is a polynomial function of 



164 Revolutionizing Knowledge Discovery in the Life Sciences 

Note that there are two distinguished types of properties: (i) object 
properties, which are binary relations between instances of two classes; (ii) 
datatype properties, which are binary relations between instances of a class 
and a datatype. 

• A defined class Herbivore, whose members are exactly those Animals 
such that everything they eat is either a Plant or is a partOf a Plant: 

Class(Herbivore complete 
intersectionOf (Animal 

restriction(eat allValuesFrom( 
unionOf(Plant restriction(partOf some ValuesFrom(Plant)))))) 

Here we use a class description (a complex class) to define (indicated by the 
'complete' key-word) the named class Herbivore. A class description is 
constructed by connecting named classes and properties with some 
constructors, such as intersectionOf, unionOf and restrictions. In a 
restriction, one can further constrain the range of a property in specific 
contexts in a variety of ways. The allValuesFrom and someValuesFrom are 
local to their containing class definition. Indeed, allValuesFrom specifies a 
local range (i.e. everything a herbivore eat is either a Plant or is a partOf a 
Plant), while someValuesFrom specifies that any instance of the restriction 
should relate to at least one instance of the specified class (such as Plant in 
the above example) with the given property (such as part of in the above 
example). 

The second part of the elephant ontology is composed of background 
assumptions of the domain and may include: 

• Cow, Sheep and Elephant are Animals. 
Class(Cow partial Animal) 
Class(Sheep partial Animal) 
Class(Elephant partial Animal) 

The key-word 'partial' indicates the sub-class of relation between the two 
classes. 

• Cows are Herbivores. 
Class(Cow partial Herbivore) 

• Elephants liveln some Habitat 
Class(Elephant partial restriction(liveIn someValuesFrom(Habitat))) 
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• No individual can be both a Herbivore and a Carnivore. 
DisjointClasses(Herbivore Carnivore) 

DisjointClasses axioms can be used to represent negations in OWL. For 
example, Herbivore is disjoint with Carnivore means Herbivore is a sub
class of the negation of Carnivore (so that the extensions of the two classes 
do not overlap). 

• The property partOf is transitive. 
ObjectProperty(partOf Transitive) 

The third part of the animal ontology is about instances and their inter
relationships, which are called facts or individual axioms. 

• Ganesh is an Elephant. 
Individual(Ganesh type(Elephant)) 

Abstract Syntax 
Cla.ss(A) 
CIass(owl:Thing) 
Class(owl:Nothing) 
JnlerseclionOf(C'], C2, •. •) 
unionOf(a,C2,...) 
complenientO {{(J) 
oneOr(oi, 02,...) 
restriction(/iL si)ineValuesF!X)tii(C>)) 
i"estriction(/?. allValuesFroni iC)) 
restriciion(/?. hasValue(o)) 
re St deli on (/?. m n Ca rdi na I ily (//1)) 
restricti()n(i? niaxCardinality(7/1)) 
restriclion(T s<)nieValiiesl̂ Tom(w)) 
restnction(T all ValuesFix)m(u)) 
re St ricti on (T ha s Val iie(w;)) 
re St ricti on (T mi nCa aii rial i I y (r/i.)) 
restriction(T niaxCaixlinality(/n)) 
ObjectPm|ieity(5) 
0bjectPn>|ie rty(5" inve rseOf(5)) 
pataty|x^Pix)I)erty(T) 

DL Syntax 
A 
T 
± 

Ci n C2 
Cx u Co 

- C 
{0i}U{02} 

3i?.C 
v/?.c; 

3/t{o} 
^ mil 
^ mil 

vr.u 

^ mT 
^ mT 

S 
5 " 
T 

Semantics 
A^ C ^ 

1 ^ = 0 

(CiUC2f = C f UCf 

({Ol}U{02})^-={0l^02^} 
{3R,CY ^ {x 1 ^y.{x,v) € R"^ Ay € C'} 
(^R.Cf = {x 1 Shj.(^, y) e i?^ -^ ^ 6 C^l 
(3R.{o}f ^{x\(x,o^)eR'} 
(> mRf = {x 1 Uy.{x,y) e i?.^} > m} 
K mRf = {x 1 W?;.(;r,?7) € R^} < m] 
{IT.uf' = {x 1 3t^{x,t) eT"- Me w*̂ } 
(VT.uf = {x 1 3t.{x, t}€T^ -^te tP} 
{ir,{w}f ^{x \{x,ii}^)eT^} 
{^mTf^{x\Ut\{^^.t)eT'}>m} 
« mT)^ = {a; 1 it{M (^NO € r ^ } < m} 
5^ CA^ X A^ 
{x,y}e{S^f\fr{y,x)e 5^ 

Figure 8-2. OWL class and property descriptions 
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The key-word 'type' specifies the class that the individual being an instance 
of. 

• South Sahara is a Habitat. 
Individual(South-Saharatype(Habitat)) 

• Ganesh the Elephant liveln South Sahara. 
Individual(Ganesh value(liveln South-Sahara)) 

The key-word 'value' indicates that the individual (e.g., Ganesh) related to 
another individual (e.g. South-Sahara) with a given property (e.g. liveln). 

In general, an OWL ontology consists of a TBox (a set of class and 
property axioms) and an ABox (a set of individual axioms). The reader is 
referred to [46] for the complete definition of the abstract syntax of OWL 
DL. 

Alxstruct Syniax 
Cliiss(A itirtial (h ... Cn) 
ClassM complete C'l . . . C'n) 
linumcmtedClass(A oi ... d) 
.SuhC:iass()r(C'i,C2) 
liquivalenlClasses(f'i . . . On) 
I)isjointClasses(C'i ... €•») 

SuW>ropeityO(U?i,/?i!) 
l̂ quivaIenlPn)|X;itie /̂?i ... ffn) 
()bjeciPmjx»rty(ft .suiKut/^i) ... sii|Teit/i*«) 

donwin(C'i) ... domain(Cit) 
iiinge(Ct) ... RHigeCC/i) 
1 Symmetric) 
|Iaincti(>na!| 
(Invc rsel'unctional | 
(Tnuisitivel) 

DatatyiTeProjiertyCr .siijierCiV) .?iUi>er(Jrt) 
dotmin(Ct )...dc>niiun(Cii-) 
range(r/i)...range(</^,) 
llamctionall) 

AnnotalionPw) [x^ rly( li) 
IndivkluaKo tyjxKCi) ...ly|xHC«) 

\'ii)ue(/i*i, oi) .,.value(/^i v o») 
SamelndividualCoj . . . o,,) 
l>iflerKiUlndividiials<Qi . . . o,;) 

DI. Syntax 
AcCi n...nc„ 
A ™ Ct n . . . n Cn 

A s {oi} U ...U {o„} 
Ci E C, 

Ol H . . . ™ On 

c, c <:j, 
(I <« < i < ») 

m c ih 
lii^ -..^ Hn 

il E Hi 
^ l/f C Ci 
T C V/?.Ci 

a H / r 
Func(/0 

Func(7r ) 
Trans(R) 
TQTi 

^ \T C Ci 
T C VTA. 
Func(r) 

0 : Ci, 1 < i < n 
(o,o,) : /^ol <"*<n 

0\ r:^ .. . r:^- 0„ 
Oi 7<̂  o f, 1 < i < .;' < a 

Semantics 
Â  cCf n...nC;^ 
Â  =: Of n,..n C/J 
A^=:{Ol^ . . . ,o ' ;^} 

cf c cj 
Cf = ...=:C/;̂  
Cf n c J - 0 , 
(1 < i < j < n) 
ttt C Ffi 
1^ ^...^^ lit 
if e /?f 
/ f C c f X A'̂  
/?^ c A"̂  X r,f 
/?^ - {R-f 
{{;ir,t/)|]|fe.(;ir,^)€/?^}< 1} 
{{3:,^)!t|ft/.{:»r,i/)€{/?"f }< 
if :^(lfY 
r^cif 
T^ C Cf X A D 
T^ C A^ X (iP 
\?1P€ A^J{ / | (a r , f )eT^}< 1 

ô  € C-̂ f, 1 < « < n 
{o^,of)€/?f,l < i < n 

of #Oi>^ < ^ < i < ^̂̂  

1} 

Figure 8-3. OWL axioms 
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2.2 Semantics 

This sub-section would be a bit technical. Readers who find it hard can 
directly jump to Section 2.3. 

Like other Description Logics, OWL DL has a model theoretic 
semantics, which is defined in terms of interpretations. An interpretation I is 
a tuple <ODom, DDom, •*>, where the object domain ODom is an non
empty set of objects, the datatype domain DDom is an non-empty set of data 
values, and the interpretation function maps each individual name a to an 
object â  e ODom, each class name A to a subset of ODom Â  e ODom, 
each object property R to a binary relation R̂  c ODom x ODom, and each 
datatype property T to a binary relation T̂  e ODom x DDom. 

The interpretation function -̂  can be extended to provide semantics for 
OWL DL class and property descriptions shown in Figure 8-2, where A is a 
class name, C, Ci, ..., Cn are class descriptions, S is an object property, R is 
an object property description, o, Oi,02 are individual names, u is a datatype 
range, T is a datatype property, and # denotes cardinality. An OWL datatype 
range is of one of the following forms: (i) a datatype name, (ii) an 
enumerated datatype oneOf(yi, ..., yn), where yi, ..., yn are typed literals, 
(iii) rdf:Literal (which represent the datatype top). A typed literal is of the 
form "s"^^u, where s (a Unicode string) is the lexical form of the typed 
literal and u is a datatype name. Figure 8-3 presents the abstract syntax, DL 
syntax and semantics of OWL axioms. 

Example (Interpretation of OWL complex classes) 
Let I be an interpretation, where ODom = { Ganesh, Bokhara, Balavan, 
grass 1, stonel}, DDom is the union of the value spaces of strings and 
integers, and the interpretation function is defined as follows: 

(Plant)^= {grass 1} 
(eaty = {< Ganesh,grassl>, < Bokhara,stonel>} 
(part of)̂  = 0. 

According to Figure 8-2, we have: 
• (restriction(partOf some ValuesFrom(Plant)y = 0. 
• (unionOf(Plant restriction(partOf some ValuesFrom(Plant))y = {grass 1}. 
• (restriction(eat allValuesFrom( unionOf(Plant restriction(part of 
someValuesFrom(Plant)))y = { Ganesh, Balavan, grass 1, stonel}. 

Note that Balavan, grass 1 and stonel do not relate to anything via the 
property eat, according to the semantics of the value restriction (see Figure 
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8-3), all of them are instances of restriction(eat 
allValuesFrom(unionOf(Plant restriction(part of someValuesFrom(Plant))). 

An OWL DL reasoner not only stores axioms, but also offers services 
that reason about them. Typically, reasoning with an OWL DL ontology is a 
process of discovering implicit knowledge entailed by the ontology. 
Reasoning services can be roughly categorized as basic services, which 
involve the checking of the truth value for a statement, and complex 
services, which are built upon basic ones. Let O be an ontology, C, D OWL 
DL classes, o an individual name, principal basic reasoning services include: 
• Ontology consistency is the problem of checking whether there exists an 

interpretation I of O. 
• Concept Satisfiability is the problem of checking whether there exists an 

interpretation I of O in which Ĉ  -^ 0 . 
• Subsumption is the problem of checking whether in each interpretation I 

of Owe have Ĉ  e D \ 
• Instance checking is the problem of checking whether in each 

interpretation I of O we have ô  G C^ 

The most common complex services include classification and retrieval. 
Classification is a problem of putting a new class in the proper place in a 
taxonomic hierarchy of class names; this can be done by subsumption 
checking between each named class in the hierarchy and the new class. The 
location of the new class, let us call it C, in the hierarchy will be between the 
most specific named concepts that subsume C and the most general named 
classes that C subsumes. Retrieval (or query answering) is a problem of 
determining the set of individuals that instantiate a given class; this can be 
done by instance checking between each named individual and the given 
class. 

2.3 RDF and OWL DL 

Let us conclude this section by briefly comparing the two Semantic Web 
standards lO^F and OWL DL. 

Resource Description Framework (RDF) [31] is a W3C recommendation 
provides a standard to create, exchange and use annotations in the Semantic 
Web. An RDF statement is of the form 

[subject property object.] 

RDF-annotated resources (subjects) are usually named by Uniformed 
Resource Identifier References (URIrefs) [64]. Values of named properties 
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(i.e. objects) can be URIrefs of Web resources or literals, viz. representations 
of data values (such as integers or strings). 

These two standards have different semantics and provide overlapped 
expressive power, and none of the two is strictly more expressive than the 
other one. From the ontological point of view, OWL DL is more expressive 
as it provides constructors to build complex classes, which is not supported 
in RDF. Complex classes are useful to provide definitions as well as 
background assumptions of named classes. On the other hand, RDF is more 
expressive as it supports meta-classes in its one-layer metamodeling 
architecture. This is an issue for the Semantic Web as people need two 
different kinds of inference engines to reason with RDF and OWL 
ontologies. A more detailed discussion can be found in [41]. 

There are three ways to relate RDF to OWL DL. 
1. OWL Full: This can be regarded as a super-language of both RDF and 

OWL DL. OWL Full inherits the semantics of RDF and extends it to 
support the new constructors and axioms that OWL DL provides. Due to 
its metamodeling architecture and the lack of restrictions on syntax, 
OWL Full is undecidable. OWL DL is decidable, although it does not 
support metamodeling and it enforces stricter syntax. 

2. FA semantics: Pan and Horrocks [39, 40] propose the Fix layered 
Architecture semantic for RDF, which is compatible with the model-
theoretic semantics of OWL DL. Under this semantics, RDF has a UML-
like metamodeling architecture (rather than its original one-layered 
metamodeling architecture). More importantly, under the FA semantics, 
it is possible to identify an OWL DL subset of RDF, which can be called 
e.g. RDF DL; furthermore, it is possible to extend OWL DL to OWL FA 
[43], which is decidable and supports UML-like metamodeling. The 
essential benefit is that it is now possible to have one single inference 
engine to reason with RDF DL, RDF FA,' OWL DL and OWL FA. 

3. RDFS-pD*: ter Horst [60] defines a decidable extension of RDF that 
involves datatypes and a subset of the OWL vocabulary that includes the 
property-related vocabulary (e.g. FunctionalProperty), the comparisons 
(e.g. sameAs and differentFrom) and the restrictions (e.g. 
allValuesFrom). 
Under the FA semantics, there is a bidirectional mapping (Figure 8-4) 
between RDF statements and OWL axioms. 

' RDF FA is also called RDFS(FA). 
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1 OWX Axioms (Abstract Syntax) 
$ubClassOf(Ci Di) 

SubPropeitvOffpi qi) 
SiibPfopert>'Of(ri si) 

ObjectPiopeiTy(pi domain(Di)) 
Datat>i>eProperry(ri domain(Di)) 

ObjectProperty(;>i laiige(Di)) 
DatatypeProperty(ri rangeCf/)) 

Iiidividual(a t>pe(C.i)) 
Individual(a value(/)j^ b)) 

Individiial(a value(r | ''t''*^*u)) 
Individual(a) 

Class(Ci) 
Obj ectPropem-'O ̂  i) 

1 DatatvpePropei1>'(r i) 

OWL Axioms (RDF Syntax) 
Ci rdfs:si.ibClassOf Di .] 
pi rdfe:subProperiyOf qi .] 
vi idfetsiibF^ropertyOf .^i .] 
pi rclfsidomaiii Di .] 
t'i rdfs:domain Di .] 
Pi rdfe:range Di ,] 
Vi rdfe: range u \ 
a rdf : lype C^ .] 

a rdf : lype r<lfs:R.esonr€<^.] 
Ci rdf:typ<,^ owl: C-lass .] 
Pi rdf:typ<3 owl:OI>jectI*r€>porty .] 
Vi rdf : type owl:IDatatypeProperty .] 

Figure 8-4. Bi-directional mapping between RDF and OWL under the FA semantics 

3. WHAT CAN OWL ONTOLOGIES BE USED FOR 

Many new users of OWL often ask are why they need ontologies and 
how to make use of OWL ontologies in their applications. This section will 
briefly discuss these two issues, although a detailed discussion deserves a 
full paper. 

To better answer these questions, we shall have a closer look at what 
ontologies are. An ontology is an explicit representation of conceptualization 
of a specific domain. It captures the intended meaning of important 
vocabulary (such as classes, properties and individuals) in domain model, 
such as taxonomies, conceptual schemas in databases and UML class 
diagrams [63] in software engineering. In fact, the discussions in this section 
apply not only to OWL ontologies, but in general to DL-based ontologies. 

3.1 Taxonomies 

Taxonomies can be seen as simple forms of ontologies, in which one is 
mainly interested in class vocabulary and in organizing named classes in a 
hierarchy. On the other hand, ontologies can provide the definitions and 
background assumptions of the named classes in taxonomies. By making use 
of the classification reasoning service, one can get the class hierarchy 
implied by an ontology. 

In general, from the aspect of taxonomies, example usages of ontologies 
are briefly discussed as follows. 
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• Ontologies can be used to provide justification of taxonomies. Given the 
set of named classes in a taxonomy, one can describe the intended 
meaning of these classes in a target ontology. The taxonomy is therefore 
the output of the classification reasoning service over the target ontology. 

• Ontologies can be used to provide justifications of instance 
classifications of taxonomies. Similar to the above point, given the 
definitions of the defined classes of a taxonomy and a set of class 
assertions that specify instances of some primitive classes in the 
taxonomy, the instance retrieval reasoning service can be used to classify 
individuals into the defined classes. 

• Ontologies can be used to help domain experts to negotiate their 
taxonomies. Taxonomies themselves do not justify the class subsumption 
relations they provide. With the help of ontologies, domain experts are 
able to learn the intended meaning of the named classes from each other. 

3.2 Conceptual Schemas in Databases 

Database conceptual schemas, such as Extended Entity-Relation (EER) 
diagrams [62], can be seen as ontologies as they capture the important 
entities and relationships in an application domain and specify constraints on 
the entities and relationships. In relational databases, conceptual schemas are 
further mapped to relational schemas to populate data and support query 
answering. It is important to note that constraints in conceptual schemas are 
usually captured by stored procedures and triggers in a database system. 

In general, from the aspect of databases, example usages of ontologies 
are briefly discussed as follows. 
• Ontologies can be used to detect inconsistent database queries. Database 

systems take the constraints in the conceptual schema into account during 
data updating but not during data querying. However, for some costly 
queries, it would be useful to detect inconsistent queries based on the 
constraints in the conceptual schema, so as to avoid wasting time to 
execute them. One can make use of ontology reasoning services to detect 
inconsistent queries. 

• Ontologies can be used to check query containment [22]. This is similar 
to the above point. Due to the constraints in the conceptual schemas, 
query containment should be checked semantically, not only 
syntactically. 

• Ontologies can be used as global schemas to query against multiple 
related data sources. In the distributed setting, we no longer have the 
assumption that a local data source contains complete information on all 
entities and relationships in the global schema. Therefore, standard 
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database querying answering is not enough in this setting - one needs to 
consider query answering over ontologies. 

3.3 UML Class Diagrams in Software Engineering 

Similarly, UML class diagrams can be seen as special forms of 
ontologies as they capture important classes, relationships and attributes in 
the application domain. They are special because of the following 
characteristics from object-oriented languages: (i) Each object has one class 
as its type. Ontologies provide a more general setting - each object can have 
multiple classes as its types, (ii) Attributes are defined locally to a class. 
Although ontologies do not have this assumption, locality can be captured by 
class axioms in ontologies. 

From the aspect of software and system models in software engineering, 
example usages of ontologies are briefly discussed as follows. 
• Inconsistency checking. An obvious benefit is to use ontology reasoning 

service to check the consistency of UML class diagrams [4]. 
• Dynamic object model. The object model is not hard-coded in 

programming languages but represented by ontologies. Code generators, 
such as Jastor [26] and JSave [27], can be used to create interfaces and 
implementation classes, based on the ontologies. The main benefit here is 
flexibility: when we need to change the object model, we only need to 
change the ontologies, and the interfaces and implementation classes can 
be modified accordingly. See our W3C note for more details on this: 
http://www.w3 .org/2001/sw/BestPractices/SE/ODSD/. 

Let us conclude the section by pointing out that the W3C Semantic Web 
Best Practice and Deployment Working Group (http://www.w3.org/2001/sw/ 
BestPractices/) maintains a list of notes to provide hands-on support for 
developers of Semantic Web applications. This Working Group has started a 
Software Engineering Task Force (SETF) to investigate potential benefits. 
Another recent related international standardisation activity is OMG's 
Ontology Definition Metamodel (ODM) [37]. 

4. SOME EXTENSIONS OF OWL DL 

Although the OWL DL ontology language is already quite expressive, 
users always want more expressive power for their applications. In Section 
2, we have mentioned a metamodeling extension of OWL DL. In this 
section, we will briefly discuss some other language extensions related to 
OWLDL. 
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4.1 Datatypes 

As discussed in Section 2, OWL has a very serious limitation on 
datatypes; i.e., it does not support customised datatypes. It has been pointed 
out that many potential users will not adopt OWL unless this limitation is 
overcome, and the W3C Semantic Web Best Practices and Development 
Working Group has set up a task force to address this issue. 

To solve the problem. Pan and Horrocks [42] proposed OWL-Eu, a small 
but necessary extension to OWL DL. OWL-Eu supports customised 
datatypes through unary datatype expressions (or simply datatype 
expressions) based on unary datatype groups. OWL-Eu extends OWL DL by 
extending datatype expressions with OWL data ranges.^ Let G be a unary 
datatype group. The set of G-datatype expressions, Dexp(G), is inductively 
defined in abstract syntax as follows [42]: 
• atomic expressions: if u is a datatype name, then u G Dexp(G); 
• relativised negated expressions', if u is a datatype name, then not(u) G 

Dexp(G); 
• enumerated expressions', if yi, ..., yn are typed literals, then oneOf(yi, ..., 

yn)G Dexp(G); 
• conjunctive expressions', if { Ei, ..., En } c Dexp(G), then and(Ei, ..., 

En) G Dexp(G); 
• disjunctive expressions', if { Ei, ..., En } e Dexp(G), then or(Ei, ..., En) 

G Dexp(G). 

Example (Unary datatype expressions) 
The following XML Schema user-defined union simple type has two sub
types. The value space of the first sub-type is a subset of the value space of 
integers, containing integers from 0 to 100000, The value space of the 
second sub-type is a subset of the value space of strings, containing three 
strings iow', 'medium' and 'expensive'. 

<simpleType name = "cameraPrice"> 
<union> 

<simpleType> 
<restriction base ^ "xsd:nonNegativeInteger"> 

<maxExclusive value = "100000"/> 
</restriction> 

</simpleType> 
<simpleType> 

<restriction base = "xsd:string"> 

^ This is the only extension OWL-Eu brings to OWL DL. 
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<enumeration value = "low"/> 
<enumeration value = "medium'V> 
<enumeration value = "expensive"/> 

</restriction> 
</simpleType> 

</union> 
<simpleType> 

This XML user-defined datatype can be represented by the following unary 
datatype expressions: 

or( 
and(xsd:nonNegativeInteger, xsdx:integerLessThan 100000) 
oneOf("low"""xsd:string,"medium"""xsd:string, "expensive"""xsd:string) 

). 

The underpinning DL of OWL-Eu is SHOIN{G\), which has been proved 
decidable if the combined unary datatype group is conforming; conformance 
of a unary datatype group precisely specifies the conditions on the set of 
supported datatypes [42]. Roughly speaking, a unary datatype group is 
conforming if the satisfiability problem of its datatype conjunctions is 
decidable. 

4.2 Rules 

Another popular extension of OWL is the rule extension. W3C has 
recently set up the Rule Interchange Format (RIF) Working Group to tackle 
related issues. In fact, adding rules to Description Logic based knowledge 
representation languages is far from being a new idea. In particular, the 
CARIN system integrated rules with a Description Logic in such a way that 
sound and complete reasoning was still possible [32]. 

Recently, SWRL [25] is proposed by the Joint US/EU ad hoc Agent 
Markup Language Committee. It extends OWL DL by introducing rule 
axioms, or simply rules, which have the form: 

consequent <r- antecedent 

where both antecedent and consequent are conjunctions of atoms written ai 
A ... A an. Atoms in rules can be of the form C(x), R(x,y), Q(x,z), 
sameAs(x,y), differentFrom(x,y) or builtln(pred, Zi, ..., Zn), P(yi, ..., yn) 
where C is an OWL DL description, R is an OWL DL individual-valued 
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property, Q is an OWL DL data-valued property, pred is a datatype 
predicate, P is a non-DL predicate, x, y, yi, ..., yn are either individual-
valued variables or OWL individuals, and z, Zi, ..., Zn are either data-valued 
variables or OWL typed literals. For example, the following rule asserts that 
one's parents' brothers are one's uncles: 

uncle(?x,?u) <- parent(?x,?p) A brother( ?p,?u). 

Although SWRL is not decidable, SWRL with so called Datalog and 
weak safeness restrictions (on the rule axioms) is still decidable [52]. The 
Datalog safeness restriction requires that every variable occurring in a rule 
must appear in at least one of the positive atoms in antecedent. The weak 
safeness restriction requires that every variable in consequent must appear 
in at least one of the non-DL atoms P(yi, ..., yn). The weak safeness 
restriction is a general form of other kinds of existing safeness restrictions 
[11, 12,35,51]. 

4.3 Fuzziness 

Even though the combination of OWL and Horn rules results in the 
creation of a highly expressive language, there are still many occasions 
where this language fails to accurately represent knowledge of our world. In 
particular these languages fail at representing vague and imprecise 
knowledge and information [30]. Such information is very useful in many 
applications like multimedia processing and retrieval [53, 6], information 
fusion [33], and many more. Experience has shown that in many cases 
dealing with this type of information would yield more efficient and realistic 
applications [1, 69]. Furthermore, in many applications, like ontology 
alignment̂ ^ and modularization, the interconnection of disparate and 
distributed ontologies and modules is hardly ever a true or false situation, but 
rather a matter of a confidence or relatedness degree. 

In order to capture imprecision in rule-extended ontologies. Pan et al. 
[44] propose a fuzzy extension of SWRL, called f-SWRL. In f-SWRL, fuzzy 
individual axioms can include a specification of the 'degree' (a truth value 
between 0 and 1) of confidence with which one can assert that an individual 
(resp. pair of individuals) is an instance of a given class (resp. property); and 
atoms in f-SWRL rules can include a 'weight' (a truth value between 0 and 
1) that represents the 'importance' of the atom in a rule. For example, the 
following fuzzy rule asserts that being healthy is more important than being 
rich to determine if one is happy: 

'̂  Ontology alignment is the process of determining correspondences between concepts. 
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Happy(?p) ^ Rich(?p) * 0.5 A Healthy(?p) * 0.9, 

where Rich, Healthy and Happy are classes, and 0.5 and 0.9 are the weights 
for the atoms Rich(?p) and Healthy(?p), respectively. Additionally, observe 
that the classes Rich, Healthy and Happy are best represented by fuzzy 
classes, since the degree to which someone is Rich is both subjective and 
non-crisp. f-SWRL provides a framework to accommodate different 
operations (such as fuzzy intersection, union, negation, implication as well 
as weight operations) as long as they conform to the key constraints of f-
S WRL, such as that the degree of fuzzy implication should be no less than 
the weight of the head, and that fuzzy assertions are special forms of fuzzy 
rule axioms, which requires allowing the consequent to be a constant. 

Whether f-SWRL with Datalog and weak safeness restrictions is 
decidable is still an open problem, although it has been shown that many 
fiizzy extensions of Description Logics are decidable, including i-ALC 
(together with general class axioms) [56, 55] and f-SHIN [57, 54], and there 
also exist tableaux algorithms. 

5. QUERYING LANGUAGES FOR OWL 
ONTOLOGIES 

Let us conclude the chapter by briefly introducing two query languages 
for OWL DL ontologies. Other well known query languages for ontologies 
include RQL [29], nRQL[17] and SeRQL [8]. 

5.1 SPARQL 

SPARQL [48] is a query language (W3C candidate recommendation) for 
getting information from such RDF statements. It introduces a notion of E-
entailment regime, which is a binary relation between subsets of RDF 
graphs. The default SPARQL setting is simple entailment [18]; examples of 
other E-entailment regime are RDF entailment [18], RDFS entailment [18] 
and OWL entailment [46]. The SPARQL syntax of the conjunctive query 
(CQ) q(?n; ?m) <- name(?x; ?n), mbox(?x; ?m) is as follows: 

SELECT ?n,?m 
WHERE { ?x name ?n . 

?xmbox?m.} 



OWL for the Novice: A Logical Perspective 177 

SPARQL supports optional matchings, which allow more optional 
information included in solutions. For example, the following SPARQL 
query 

SELECT ?n,?m,?h 
WHERE { ?x name ?n . 

?x mbox ?m. 
OPTIONAL {?x homepage ?h .}} 
ORDER BY DESC(?h) 

returns exactly the same set of names and mboxes of people as the previous 
query; if some of these people have homepages, homepages are returned too. 
The 'ORDER BY' clause takes a solution sequence and applies ordering 
conditions. The 'DESC condition in the above query ensures the solutions 
with non-empty homepages are returned before those with empty ones. More 
details of the syntax and semantics of SPARQL can be found in [48], 

5.2 OWL-QL 

The OWL-QL [13] specification, proposed by the Joint US/EU ad hoc 
Agent Markup Language Committee, is a language and protocol for query-
answering dialogues using knowledge represented in the Ontology Web 
Language (OWL). The OWL-QL syntax of the CQ q(?n; ?m) <- name(?x; 
?n), mbox(?x; ?m) is as follows: 

queryPatten: {(name !x ?n),(mbox !x ?m)} 

where ?n and ?m are distinguished (or must-bind) variables and !x is a non-
distinguished (or don't-bind) variable. OWL-QL also supports so called 
may-bind variables (~x): by default they are treated as don't-bind but can be 
turned into must-bind if query servers can find some binding. Although the 
may-bind variables look similar to the optional matching in SPARQL, they 
are different. Let us revisit the above homepage examples with may-bind 
variables. 

queryPatten: {(name !x ?n), (mbox !x ?m), (homepage !x, »h)} 

In all solutions of the above query, a person should have a homepage, 
whether the homepage is known or not, which is not required by the 
corresponding SPARQL query. In OWL-QL, one can specify which 
ontology a query is over by using the answer KB pattern. Furthermore, 
OWL-QL provides a protocol for query-answering dialogues between a 
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client and an OWL-QL server. More details of OWL-QL can be found in 
[13]. 

It should be noted that OWL-QL is not yet a standard. Like DAML+OIL, 
the predecessor of OWL, OWL-QL is from the Joint US/EU ad hoc Agent 
Markup Language Committee. A partial support of OWL-QL through nRQL 
is discussed in [14]. 

6. CONCLUSION 

In this chapter, we have introduced some basic notion of the W3C Web 
Ontology Language OWL DL language from a logical perspective. OWL 
ontologies are useful in the Semantic Web (among other applications of 
ontologies) because they can provide formal and hence machine-
understandable semantics for vocabulary used in annotations. In this chapter, 
we have focused on the abstract syntax rather than the RDF/XML syntax of 
OWL DL: the former one is the formal syntax of OWL DL, and only those 
which can be mapped from OWL statements in abstract syntax are valid 
OWL statements in RDF/XML syntax. Furthermore, the model-theoretic 
semantics of OWL DL is defined based on the abstract syntax. It is well 
known that RDF and OWL DL have different model-theoretic semantics, 
and hence applications of then would require two different kinds of inference 
engines for reasoning support. This chapter has briefly explained three 
approaches to relate RDF and OWL DL in a meaningful way. 

Most importantly, the chapter has briefly discussed some aspects that 
many new users of OWL would be interested in. Firstly, it discusses how to 
make use of OWL ontologies in the Semantic Web, and more generally, in 
ontology applications. As OWL has yet to provided all the expressive 
powers that many users need, it further presents some popular extensions 
OWL researchers have been working on lately. Moreover, this chapter has 
briefly introduced two most well known query languages for OWL 
ontologies. 

Last but not least, one of the best ways to understanding the logical 
aspects of OWL is to start building an OWL ontology. There are many 
ontology editors available, such as Protege [47, 19] or SWOOP [59, 28]. A 
well known Advanced Bio Ontology Tutorial from the University of 
Manchester is available online (http://www.code.org/resources/tutorials/bio). 
Other useful readings on building ontologies include [36] and [66]. If the 
reader does not want to start from sketch, some existing ontology search 
engines, such as OntoSearch [38, 68] and SWOOGLE [58, 904], can help. 
For those who want to build a Semantic Web application in 
biology/biomedicine, [67] is worth reading. More information on building 



O WL for the Novice: A Logical Perspective 179 

Semantic Web applications can be found in the "Where to go from here" 
section of the W3C note from the Software Engineering Task Force 

(http://www.w3 .org/2001 /sw/BestPractices/SE/ODSD/20060117/#links). 
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Abstract: Ontology engineering demands clear communication between humans and 
machines. This process is often impeded by the orientation chasm between 
their respective language formalisms. This article discusses how to bridge this 
disconnect by using visual techniques to augment the human comprehension 
of ontology, which is typically encoded in a machine friendly formalism. 
Support for ontology visualization comes from research in two interrelated but 
distinct areas. In ontology visualization techniques (OVT), the focus is on 
presenting the best visual structure, often interactively, of a targeted ontology 
for the sake of explorative analysis and comprehension. In visual ontology 
language (VOL), the focus is on defining the unambiguous, pictorial 
representation of ontological concepts. Graphs, instead of texts, can then be 
used in ontology development for the purpose of design, discussion and 
documentation. There is much contemporary research in the area of OVT, yet 
the focus directed toward VOL is minimal. By using a fragment of the gene 
ontology as an example use case, this article surveys the field of OVT by 
illustrating the different visual effects of various OVT applications. The same 
gene ontology example is then used to introduce the design and application of 
a VOL named DLG^, specifically targeted at the RDF-based ontology 
formalism. The different approach and emphasis between the two types of 
visual techniques is contrasted. 

Key words: ontology, ontology engineering, visualization, visual language, Semantic Web. 
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\. INTRODUCTION 

A typical ontology used in information science can serve both as an 
engineer artifact [1] and as a social agreement [2]. This dual role makes it 
essential that the ontology's representation is both humanly understandable 
and machine processible. Whereas a human is efficient at conceptual 
analysis, a machine is good at numerical computation, and this difference 
leads to their distinct language formalism. People communicate through 
experience; natural language is, therefore, based on a psychologically 
inspired model that favors a semi-polymorphic lexical system where words 
can be creatively used. In contrast, the machine operates on data; its 
language is based on mathematical models that prefer a single, yet rigid, 
sequential structure so that symbols can be unambiguously interpreted. The 
inability to meaningfully connect these two models often creates an 
orientation gap between human and machine language [3]. The design of 
semantic web technologies, for the most part, focuses exclusively on the 
needs of the machine and, in turn, asks people "to make some extra effort, in 
repayment for which they get major new fiinctionality..." [4]. We believe 
techniques for ontology visualization will play an important role to augment 
human comprehension about ontology. 

Psychologists have long shown that it takes only less than a second for a 
person to generate the gist of visual information [5,6] and a few more to 
register it into long term memory [7-9]. Furthermore, compared to the 
boundless expressive power of a linguistic system, a graph can limit the 
extent of abstraction so as to aid cognition [10]. Take the fragment of the 
gene ontology shown in Figure 9-1 as an example. The intent of the message 
is very clear just with a glance at the diagram (Figure 9-la) even without a 
prior knowledge of the employed visualization language. The same, 
however, can not be said with the textual representation of the same 
information. Given the text shown in Figure 9-lb, even an experienced 
RDF/XML developer would need some time to go through the vexing 
syntactic details to obtain the intent. Indeed, a picture is worth a thousand 
words. Judicious use of pictorial representation can be far more effective for 
humans than syntax-laden textual descriptions. 
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< ! — This is a partial description of the above example outlined 
with thick borders. The full content can be found at: 
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2. <owl:Class rdf:ID="GO_0031410"> 
3. <rdfs:label>cytoplasmic vesicle</rdfs:label> 
4. <rdfs:subClassOf rdf:resource="#GO__0031982"/> 
5. <rdfs:subClassOf rdf;resource-"#GO_0043229"/> 
6. <rdf s: sxibClassOf > 
7. <owl:Res triction> 
8 . <owl: onProperty rdf: resource="#part__of "/> 
9. <owl: someValuesProm rdf :resource="#GO__0005737"/> 
10. </owl:Re8triction> 
11. </rdfs:subClassOf> 
12. </owl:Class> 
13. <owl:Class rdf:ID="GO_0031982"> 
14. <rdf s: ladDel>vesicle</rdf s: label> 
15. </owl:Class> 
16. <owl:Class rdf:ID-"GO_0043226"> 
17. <rdfs:label>organelle</rdfs:label> 
18. </owl:Class> 
19. <owl:Class rdf:ID="GO_0005737"> 
20. <rdfs:le±>el>cytoplasm</rdfs:label> 
21. </owl:Class> 
22. </rdf:RDF> 

Figure 9-1. A fragment of the gene ontology represented graphically in DLG^ (a) and 

textually in RDF/XML (b). Note, the text in (b) corresponds only to the sub-graph of (a) 

drawn in a thicker outline. The text corresponding to the entire (a) graph is placed at 

' 'http: //www. charlestoncore. org/ontology/example/go/". 
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Research in the domain of ontology visualization can be roughly divided 
into two broad areas: ontology visualization techniques (OVT) and visual 
ontology language (VOL). The focus of OVT is on ontology presentation. 
The design and implementation of an OVT based system, therefore, must 
focus on choosing layout algorithms and navigation techniques so to offer 
users the most informative visual structure and interactive experience. In 
contrast, the focus of VOL, sometimes also referred to as ontology 
visualization scheme[ll], is on ontology representation. The design of a 
VOL concerns the formal semiotics, i.e., syntax and semantics, of individual 
graphical symbols so that ontological concepts can be explicitly depicted 
with minimal cognitive effort from the ontology creators and consumers. 
Since the main objective of OVT is to facilitate ontology's comprehension 
through explorative analysis, graphs in OVT are often automatically 
generated by software programs and can be readily changed upon user's 
request. Such a dynamic nature contrasts that of the graphs in VOL. The 
major use of VOL takes place in the process of ontology development, in 
which graphs are often handmade for the purpose of design, discussion, and 
documentation. It is worth noting that the distinction between OVT and 
VOL does not make them two competing techniques. In fact, as we will 
discuss it later, their combined use in a single application can considerably 
strengthen the usefulness of the application. 

The remainder of the paper consists of a further illustration of OVT and 
VOL. In section 2, we provide an overview of the problem domain of OVT; 
in section 3, we discuss the design of a VOL that we have developed for 
depicting RDF-based ontology. To facilitate comparative analysis, the gene 
ontology fragment shown in Figure 9-1 is used throughout the entire article. 
To simplify long URIs, the following namespace prefixes are used (Table 9-
1). 

Table 9-1. Namespace prefixes 
Namespace prefix Namespace URI 
rdf: http://www,w3.org/1999/02/22-rdf-syntax-ns# 
rdfs: http://www.w3.Org/2000/01/rdf-schema# 
owl: http://www.w3.Org/2002/07/owl# 
xsd: http://www.w3 .org/200 l/XMLSchema# 
go: http://www.geneontology.0rg/owl# 

2. ONTOLOGY VISUALIZATION TECHNIQUES 

Ontology visualization techniques address two primary concerns: (1) how 
to present an ontology in an easily comprehensible visual structure and (2) 
how to navigate around the presented structure. Since there is neither a 
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single visual structure nor a navigation technique that is simply superior to 
others, it is, therefore, important to understand the inherent difference 
between various types of similar techniques. The ensuing sections provide an 
overview of these two types of techniques. However, due to limited space, 
our focus is mainly on the visualization techniques that are derived from the 
study on the 2D graph drawing. Other useful visualization methods, such as 
the table/form based model that is typically supported by the ontology 
editors or web-based applications [12], and 3D structures used in 
OntoSphere [13,14], are omitted here to meet the space constraint. 

2.1 Viewing Structure 

Graph drawing techniques study the general constraints of geometrical 
representation of nodes and edges. Given a set of nodes and edges, a graph 
drawing program must compute the position of nodes and edges, satisfying a 
set of physical (e.g., display resolution) and psychological (e.g., the aesthetic 
rules) conditions [15-17]. Because the RDF model is, itself, based on a graph 
model, graph drawing techniques are the logical choice for ontology's 
visualization. 

Of all visual structures, the single-rooted tree is perhaps the easiest to 
comprehend. Most OVT applications support the conventional indent-based 
tree structure (Figure 9-2a); some also support an alternative tree layout, 
named treemap (Figure 9-2b). Compared to the conventional tree, treemap 
uses shape inclusion to depict parent-child relationships, freeing the edges to 
depict other dimensions of information. Both tree-based structures, however, 
are limited in their ability to concisely display multiple inheritances. Because 
by definition a tree-node can not have more than one parent-node, to show 
multiple inheritances with a tree-based structure, a single entity must be 
given multiple representations. In both Figure 9-2a and 9-2b, for instance, 
GO_0031410 appears twice in the graphs. 

The majority of OVT software, therefore, chooses to display the ontology 
as a directed labeled graph (DLG). Two different approaches are often used. 
In the first approach, ontologies are presented statically as a layered 
hierarchical graph, using algorithms derived fi'om the seminal work of 
Sugiyama et al [18]. In brief, the algorithm first assigns all vertices into 
different layers with the objective to minimize edge dilation and feedback. In 
the second step, the algorithm arranges all nodes within the layers to reduce 
the number of edge crossings. The visual effect of such a layout is that all 
edges among the nodes between various layers will point toward the same 
direction (Figure 9-2c, d), giving the DLG graph a hierarchical appeal that 
may help to improve graph reading. 
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Figure 9-2. Typical viewing structures of OVT software, (a) Simple rooted tree used by 
Protege [19] editor, (b) Tree-map layout used in Jambalaya [20]. (c) Hierarchical directed 
graph generated by COE [21] tool with all edges pointing downwards, (d) Hierarchical 
presentation generated by IsaViz [22] with all edges pointing to the right, (e) Network 
structure generated by TGViz [23]. All graphical displays shown in this figure are base on the 
same RDF model shown in Figure 9-1. 

In the second approach, ontologies are presented dynamically as a 
network of stable neighborhoods. The primary emphasis of this approach is 
the psychological effect of a recurring stable image on human memory [24]. 
To maintain the stability of the neighborhood graph, the layout is 
dynamically updated via the spring algorithm [25]. The spring algorithm is 
so named because it simulates the graph edges as springs, which attract 
vertices when stretched but repel them when compressed. Figure 9-2e 
presents a snap shot of the neighborhood graph generated by TGVis [23]. 
However, the distinct visual effect of a stable neighborhood is best perceived 
in action, and readers are encouraged to try either TGVis or GrOWL [26]. 

2.2 Navigation Techniques 

Within any given screen, the number of symbols that can be 
meaningfully presented is limited. This "screen bottleneck" can be further 
complicated by the fact that a full blown RDF graph can be potentially 
loaded with too many trivial details to be easily comprehensible (see Figure 
9-2d). Hence, in addition to the layout design, an OVT application should 
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also implement various navigation techniques so as to make the program 
useful. 

The simplest navigation technique is geometric zooming, in which a 
portion of the image is simply enlarged or shrunk (Figure 9-3a, b). An 
alternative zooming technique is fisheye zooming, in which the enlargement-
shrinkage ratio is distorted by a concave function with regard to the distance 
of a region to the focus point. Compared to the simple zooming technique 
that often clips out part of the graph, the fisheye zooming keeps the graph 
intact (Figure 9-3a, c). 

a. c. 

b. 

w 

GO_0031410 
(Class) 

Things which 
(SomeValuesFromRestr) 

part_of 
can be 

GO 0005737 
(Class) 

I GO_0031410 I 

part_of 
can be 

I GO_0006737 J 

Figure 9-3. Navigation techniques, (a) A default treemap layout generated in Jambalaya. (b) 
A portion of the Figure 9-3a is enlarged after simple geometric zooming, (c) The graph of 
Figure 9-3a after fisheye zooming, (d, e) Graph drawn by COE before (d) and after (e) 
clustering. 

Filtering is another commonly used navigation technique. It reduces the 
graph complexity through the selective display of information. OWL Viz 
[27] and Onto Viz [28], for instance, filter out all but the hierarchical class 
relationship. Other programs, such as Jambalaya, TGViz, COE, GrOWL, 
and RDF- Gravity [29] etc, leave the filtering options to users. Normally, 
two types of filtering options are offered. In type filtering, a user can choose 
to show or hide certain aspects of the ontology according to the nature of the 
resource. In depth filtering, a user can choose to display ontology within a 
radius of the entity of interest. Some applications, such as RDF-Gravity, also 
allow users to filter the display by the direction of the edge and selectively 
hide individual nodes. 

The third type of navigation technique is clustering, which attempts to 
reduce the graph complexity through abstraction (Figure 9-3d, e). Most OVT 
applications have, but perhaps inadvertently, used the clustering technique. 
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For instance, property restriction, i.e., the combined use of rdfs:subClasOf, 
owl:Restriction with owIionProperty etc., has often been abstracted into a 
single node (Figure 9-2b, c, e). Unfortunately, the clustering details in most 
existing OVT programs are hard-coded into the applications. The only 
exception is the COE, which offers users a simple option to turn the feature 
on or off 

3. DLG^ " A VISUAL LANGAUGE FOR RDF 

In contrast to OVT that approaches the human-machine barrier through 
carefiil arrangement of nodes and edges within a given space, a VOL 
achieves this through formal pictorial representation of the language 
constructs. However, just as it is difficult to clearly define what a natural 
language is, it is also difficult to define precisely what makes a VOL. For 
instance, although a layout algorithm cares not about what kind of shape 
should be used to represent a given node or edge, an OVT application using 
the algorithm must, nevertheless, engage certain conventions so to draw a 
graph. In a broad sense, all these conventions can be considered as languages 
because they all have accomplished the purpose of a language - a means to 
communicate. But, on the other hand, the majority of these conventions are 
application dependent, making their graphical symbols proprietary terms that 
ultimately prevent their graphs being communicated to a larger audience. 
What is needed, therefore, is a common language framework that can be 
shared by all OVT applications. In the followmg section we present the 
design of such a language named DLG '̂*. 

3.1 Rationale 

Visual languages have been widely used for the purpose of conceptual 
representation in several computer science areas [30-32], and there have 
been several proposed attempts to adopt these languages into the field of 
ontology engineering [3, 21, 33-38]. However, all visual languages are 
inherently domain specific since the more intuitive a pictorial symbol to the 
targeted system, the less pedagogical impediment it carries and, therefore, 
the better the human comprehension. The reason that we did not follow the 
above referred approaches, but instead created an entirely new language, is 

The name of the discussed language is DLG^ with the "2" being superscripted. The 
language is so named because its graph is in essence a DLG, but its expression is not 
necessarily in DLG. 
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due to the fundamental difference between these borrowed systems and 
semantic web. 
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Figure 9-4. Open world vs. closed world semantics, (a) A simple RDF model in DLG^. (b) 
Additional RDF descriptions in Notation-3. (c) An UML model and equivalent code in Java, 
(d) Hypothetical Java code. 

Semantic web technology is built upon an open-world assumption that is 
very different from the close world approach taken by most existing 
technologies, such as the object oriented (00) technologies, relational 
database, and XML [39], In an open world, any new information is 
admissible to an existing model as long as it does not inflict any conflicts. 
For instance, the example GO model shown in Figure 9-4a, which states that 
GO_0031410 can be go:part_of GO_0005737, does not rule out the 
possibility that a specific GO_0031410 can also participate in GO_0016192 
(Figure 9-4b). Such a treatment of admissible interpretation is very different 
from the one used by, for instance, the 0 0 paradigm. 0 0 assumes closed-
world semantics that treats unknown as false. If, for example, GO_0031410 
is modeled as a Java class shown in Figure 9-4c, statements made in Figure 
9-4d will lead to a compile error. With a closed world approach like 0 0 , a 
class can assume the complete knowledge of its properties so that the object 
property is often considered as secondary to the object class. Thus, when 
displayed in OO-based visual language, such as the Unified Modeling 
Language (UML), properties are conventionally specified within a sub-
compartment of the class (Figure 9-4c). But, in an open world like the 
semantic web, "two objects may be stored apart from any other information 



194 Revolutionizing Knowledge Discovery in the Life Sciences 

about the two objects," [40] demanding an independent storage and, 
therefore, an independent graphical notation for representing property. 

However, the above argument does not suggest that the system of UML 
is closed. On the contrary, the Meta-Object Facility (MOF) [41] 
recommended by the Object Management Group (OMG) effectively makes 
UML an open ended system that can be used to model any engineering 
process. Most proposed UML profiles [34, 35, 37], for instance, are able to 
circumvent the above problem by depicting an rdfiProperty as a UML 
association class. Nevertheless, a language's increased generality is often 
associated with a reduced expressiveness and easiness of use [42, 43]. 
Developing a UML profile is quite an involved process, in which there is 
more focus on model translation than graph simplification. Additionally the 
wide range of modeling semantics that the UML intends to cover makes it 
difficult, if not impossible, to clearly define its semantic domain [44]. 

Furthermore, one fundamental tenet of the web is to approach system 
interoperability through shared orthogonal specifications [45]. To implement 
these specifications coherently in a larger context, each proposed engineer 
artifact must contain sufficient authoritative metadata [46] so that the 
preferred interpretation of the artifact can be found. Visual languages 
designed prior to the wide popularity of the web do not have any mechanism 
to place the authoritative metadata in their respective diagrams. Without the 
metadata, however, a graph loses its autonomy over its semantics. Take 
Figure 9-4c for example; just from the graph alone, it is unclear if 
GO_0041310 should be treated as an 0 0 - or an OWL-class, or in the latter 
case, which UML profiles, e.g., [34] or [35], should be followed, because the 
contextual information, i.e., the employed UML profile, exists external to the 
graph at an undocumented location. As we will show in the latter sections 
how DLG^ solves the issue by grounding every language artifacts into the 
web. 

Please note, however, that DLG^ is not designed to replace UML. Nor is 
it to replace the Ontology Definition Metamodel [35] recommended by the 
OMG, which covers other logic formalisms in addition to RDF/OWL. DLG^ 
is specifically tailored for RDF-based ontology formalism. Its focuses are on 
the simplicity, reversibility and self-descriptiveness of the graphical syntax 
with an ultimate goal of roundtrip conversion to and fi-om textual based RDF 
models. 

3.2 Design 

For any graphic language, tension exists between each symbol's 
sentential and alphabetical nature. As a sentence, a graph symbol demands a 
semantic constraint; as an alphabet, it begs for physical simplicity. While the 
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need for symbols carrying specific meanings is potentially unbounded, the 
number of easily-drawn graphical notations is limited. This creates a 
conundrum of how to use a small pool of symbols to represent a large 
number of concepts without sacrificing any semantic clarity. The design of 
DLG^ resolves the conflicts by defining as small a set of primitive symbols 
as possible and, in turn, uses the technique of graph substitution to compose 
new symbols from existing pieces. As shown in Figure 9-5, the core of the 
DLG^ language consists of only seven symbols from two independent 
packages. The symbols in the DLG package are used to draw basic RDF 
graphs, and the symbols in the transformation package are used to construct 
new graphical notations. 

DLG Package Transformation Package 

a. 
literal value 

c'subjecr;> URI 

'••••..•̂ .•••* 
< object > 

^ ^ , , „ , , , , Default Namespace 

•Namespace prefix 

•Extension Package URIs 

e. 

g-

^ 

»«^-» Definition URI 

• Substitution Sentence 

'Dependency URIs 

Figure 9-5. Core symbols of DLG^. (a) Resource (b) Literal (c) Property (d) Package (e) 
Substitution Definition (f) Text Pad (g) Graph Pad. 

3.2.1 DLG Package 

The DLG package contains four symbols. Three of them, the elUpse, the 
rectangle, and the arrow headed line are defined, respectively, to represent 
an instance of rdfs:Resource, rdfs:Literal, and rdftProperty (Figure 9-5a-c, 
respectively). Because an RDF model is essentially composed of a set of 
RDF triples of the following structure: subject-property-object, the three 
primitive symbols of the DLG package should be sufficient to depict any 
RDF models. For instance, to represent the RDF statements made in the line 
2-3 of the Figure 9-lb would lead a DLG^ graph shown in Figure 9-6a. 

But, as shown in Figure 9-6a, the long URIs easily makes a graph 
difficult to draw and read. To reduce the URI incurred complexity, a forth 
notation-package notation-is introduced (Figure 9-5d). The top 
compartment of the package notation is used to denote the default 
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namespace so that the local name can be used in place of the full URI (see 
GO_0031410 of Figure 9-6b). The middle compartment of the package 
notation is used to define namespace prefix so that the URI can be expressed 
in the form of a QName [47]. Namespace prefixes rdf, rdfs, owl, and xsd 
(see Table 9-1) are predefined in DLG^; they are not required to be entered 
in the prefix compartment (see Figure 9-6b). There is a third optional bottom 
compartment for package notation that is used to enter the URIs of the 
employed notation definition. Its usage will be discussed in section 3.2.4. 

http://www.w3.Org/1999/02/22-rdf-syntax-ns#type 

_ I 

http://www.geneontology.Org/owl/#GO_0031410 

http://www.w3.Org/2000/01/rdf-schema#label 

1 

http://www.geneontology.0rg/owl/# 

"cytoplasmic vesicle" 

Figure 9-6. Example DLG graphs drawn only with notations defined in the DLG package. 

3.2.2 Transformation package 

Although the symbols in the DLG package alone are sufficient to denote 
any RDF model, the produced graph would, nevertheless, be complex. For 
instance, to express Figure 9-la only with symbols defined in the DLG 
package would lead to a graph similar to Figure 9-2d. To make the language 
more useful, DLG^ has defined notations that will enable users to substitute 
simpler graphs for complex ones. These notations are placed under the 
transformation package. 

The first symbol in the transformation package is a substitution definition 
symbol "=", which is always used in a substitution sentence (SS) of the 
following format: 

Left hand graph = Right hand graph 

Each SS must be assigned a URI and placed inside a graph pad (Figure 
9-5g). The top compartment of the graph pad is used to indicate the URI of 
the enclosed SS, and the bottom compartment is used to indicate the URIs of 
dependent substitution sentences. 
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Figure 9-7. Example substitution sentences and the usage of graph pad. 

For instance, the graph pad shown in Figure 9-7a has defined a notation 
for representing an owhClass. This particular SS employs a notation that is 
defined at "http://www.charlestoncore.Org/dlg2/rdf/#rdfg 1". Following the 
URI will lead to another graph pad shown in Figure 9-7b, in which the 
notation for representing "rdf:type" is defined. 

With the above graph substitutions, the DLG^ graph shown in Figure 9-
6b can be further reduced to the graph shown in Figure 9-8a. Further 
applying the SS of "http://www.charlestoncore.Org/dlg2/rdf/#rdfg_13" to 
Figure 9-8a, for instance, will lead to an even simpler graph shown in Figure 
9-8b. 
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Figure 9-8. Further simplification of Figure 9-6b. 

The third notation in the transformation package is a text pad (Figure 9-
5f). The text pad is designed to take advantage of the simplicity of using text 
under certain circumstances. But, due to space constraints, its discussion is 
omitted here and deferred to its online documentation [48]. 

3.2.3 Semantics of DLG^ graph 

The core packages define the graphical syntax of a DLG^ graph, the 
semantics of which is constrained by the following two principles of 
equivalence (POE). 
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First POE: A simple DLG^ graph is semantically equivalent to an RDF 
graph as defined in [49]. 

Second POE: Two substitutable DLG^ graphs are semantically 
equivalent. 

Here, a simple DLG^ graph is defined to be the graph that is composed 
only with notations defined in the DLG package. The substitutable graphs 
refer to the two graphs that appear on the opposing side of a substitution 
definition symbol (=). 

Whereas the purpose of the first POE is to ground the semantics of a 
DLG^ graph onto the semantics of an RDF graph, the second POE was 
aimed at providing the language with unlimited extensibility. It should be 
emphasized that the formal semantics of a DLG^ graph is not defined by its 
surface representation but, instead, by its equivalent simple DLG^ graph. By 
recursively following all URIs involved in the substitution sentences, any 
arbitrary DLG^ graph can be transformed into an equivalent simple DLG^ 
graph, from which the formal semantics of the graph can be interpreted 
according to the specification defined in [49]. 

3.2.4 Extending DLG^ 

Substitution sentences can be further grouped into an extension package 
and collectively referred to by the URI of the package. If a DLG^ graph 
employs a notation that is not defined by the two core DLG^ packages, either 
the URI of the SS that defines the notation or the URI of the extension 
package that encompasses the definition SS is required to be noted in the 
bottom compartment of the package notation. 

The only exceptions to the above rule are the two default extension 
packages that are formally defined by DLG^. The first such package is 
named RDF-G ("http://www.charlestoncore.org/dlg2/rdf/"). It contains 
notations for the concepts specified in the RDF vocabulary and the RDF 
schema vocabulary (RDFS). The second default extension package is named 
OWL-G (http://www.charlestoncore.org/dlg2/owl/). It is built on top of 
RDF-G and contains notations for the concepts specified in the Ontology 
Web Language (OWL). The DLG^ graphs shown in Figure 9-la, 9-8a, and 
9-8b have, in fact, all employed notations defined by the default extension 
packages. This also explains why no extension URI has been noted in their 
respective package notations. 

To illustrate how to use user-defined extensions, a GO extension package 
(http://www.charlestoncore.org/dlg2/go/) has been developed to abstract the 
combined use of "go:part_of' and owl:someValuesFrom that has been 
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frequently used in the gene ontology. Using this extension, Figure 9-la can 
be further transformed into Figure 9-9. 

GO_0005575 
(cellular_component) 

GO_0043226 
(organelle) 

GO_0031982 
(vesicle) 

T 

http://www.geneontology.0rg/owl/# 

http://www.charlestoncore.org/cllg2/go/ 

GO_0005623 
(cell) 

GO_0043229 
(intracellular organelle) 

J 

1 
GO_0005622 
(intracellular) 

GO_0031410 
(cytoplasmic vesicle) 

I 
GO_0005737 
(cytoplasm) 

Figure 9-9. Using a domain specific extension to denote the GO fragment shown in Figure 9-
1. Please note the difference between the package notations used in this figure and Figure 9-1. 

Demanding a URI for each SS and extension package and requiring them 
to be explicitly noted in the package notation effectively grounds the 
language constructs of DLG^ into the web. Such a design allows DLG^ to 
take advantage of the loosely coupled nature of the web. In DLG^, a graph's 
presentation is visually separated from its definition but explicitly connected 
by URIs. Such a separation allows both the experts to conveniently use the 
domain specific DLG^ conventions without actually reflecting the involved 
definitions and the novices to learn via explicit instruction by following the 
necessary URIs. 

Furthermore, by noting the definition URIs, a DLG^ graph becomes self-
descriptive. The semantics of a DLG^ graph is, in fact, neither dependent on 
a particular application nor a particular DLG^ extension. Both Figure 9-la 
and 9-9, for instance, can be reversely engineered back to its original RDF 
model deployed at "http://www.charlestoncore.org/ontology/example/go/". 
None of the graphs shown in Figure 9-2, however, can make such a claim. 
The only exception would be Figure 9-2d, which is essentially a simple 
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DLG^ graph. But comparing it to Figure 9-la and 9-9, Figure 9-2d is a much 
inferior representation by the "minimum complexity criterion"[11]. 

4. SUMMARY AND FUTURE DIRECTION 

This article introduced two kinds of visual support that can help to 
augment human's comprehension about an ontology in SW. Due to limited 
space, however, each area is presented with a different focus. For OVT, the 
focus is on giving an overview of the problem domain but not the 
applications. Such a choice is made because we think it is more important 
for a reader to understand the cognitive effects of various visual structures 
than the detailed usage of applications. The applications mentioned in this 
article are, therefore, mostly chosen for the purpose of discussion, and there 
could be some, and possibly important, omissions. For VOL, on the other 
hand, our focus is on introducing the design and usage of one particular 
VOL named DLG .̂ Such a narrow choice is made because VOL's design 
varies greatly from a straightforward formal definition as in SWVL̂ ^̂ ^ to a 
complex multi-layered architecture as in UML, and it is impossible to 
discuss all of them meaningfully within the given space. DLG^ is chosen 
since it is the only VOL that is specifically tailored for the web. Thus, while 
discussing what it takes to build a visual language framework like DLG^, we 
can also bring readers' attention to a few fundamental principles of the 
semantic web, such as open world assumption, orthogonal specifications and 
authoritative metadata. A thorough comprehension of these principles is not 
only the key to understand the difference between semantic web 
technologies and other existing information technologies but also the key to 
build robust and scalable applications that can be seamlessly integrated into 
the web. 

In general, domain experts will benefit more from the functionalities 
provided by the OVT whereas computer scientists more from VOL. Most 
biologists, for instance, would not care much about the precise semantics of 
"go:part_of' because most of the time they are only interested in //there is a 
relationship between two entities. Hence, using graph layout to obtain clues 
and navigation techniques to interact with a graph would offer them the most 
help to their task. For ontology designers and software engineers, however, 
the attention will be paid differently. Because whether the "go:part_of' is 
restricted by "owl:someValuesFrom" or not would greatly affect the 
behavior of a gene ontology-based application, the semantic clarity of the 
graph becomes a top priority. VOL, with its formal syntax and semantics, 
would, therefore, offer the most help for the ontology/software engineers to 
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meaningfully discuss the ontology and curators to formally document the 
ontology during the engineer process. 

Nevertheless, the distinction between OVT and VOL resides only in their 
difference in the targeted problem domains but not targeted applications. The 
fact that their problem domains are orthogonal to each other suggests that 
they would complement each other when conjunctively applied to a single 
application. For instance, most existing OVT applications do not have 
adequate support for graph clustering, an area that could be considerably 
strengthened if the formal techniques of VOL-for instance, the substitution 
sentence of DLG^ or perhaps a UML profile-were incorporated in OVT 
applications. In fact, it is entirely possible to formally define all graphical 
conventions employed by the existing OVT applications as DLG^ 
extensions. Adopting DLG^ demands little change to the existing user 
interface of an OVT application - a package notation is perhaps all it needs -
but could potentially offer many benefits in return. First, all DLG^ graphs are 
self-descriptive. Hence, adopting DLG^ would improve the clarity of 
communication across multiple user communities even in the absence of a 
shared convention. Second, all DLG^ graphs with the same semantics are 
interchangeable, so that their semantic equivalence can be conveniently 
formulated in a graph pad. By adopting DLG^, the automated graph 
conversion across multiple applications becomes possible. One interesting 
approach is to express the language constructs of DLG^ in Scalable Vector 
Graph (SVG) [50]. Establishing the link between DLG^ and SVG will allow 
a system to encode the graph pads as a set of XSLT stylesheets. In this way, 
not only will the inter-conversion of graphical conventions become possible 
but also the inter-conversion between DLG^ graphs and RDF/XML. 
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Chapter 10 

ON VISUALIZATION OF OWL ONTOLOGIES 

Serguei Krivov '̂̂ , Ferdinando Villa '̂̂ , Richard Williams^ and Xindong Wu ^ 
Department of Computer Science, ^The Botany Department, ^Gund Institute for Ecological 

Economics, The University of Vermont, USA; '^Rocky Mountain Biological Laborator, USA 

Abstract: Ontology visualization tools serve the expanding needs of knowledge 
engineering communities. A number of visualization frameworks for the 
standard ontology language OWL have already been developed. Considering 
information visualization in general, we propose the criteria of simplicity and 
completeness with which to gauge ontology visualization models. After 
analyzing existing OWL visualization frameworks we propose a simple 
visualization model for OWL-DL that is optimized according to our criteria. 
This visualization model is based around the underlying DL semantics of 
OWL ontologies; it circumvents the perplexities of RDF syntax. It has been 
implemented in GrOWL- graphical browser and editor for OWL ontologies. 
We discuss the usage of GrOWL in Ecosystem Services Database. 

Key words: OWL, GrOWL, ontology visualization, ontology editing, semantic networks. 

1. INTRODUCTION 

Ontologies [1] are specifications of conceptualization that facilitate the 
sharing of information between different agents. In many Semantic Web 
(SW) projects, ontologies are also set to play the role of an interface between 
the user and the data. This increasing use of ontologies in the role of an 
interface makes the problem of ontology visualization highly relevant. Well 
designed visualization schemes and efficient visualization techniques are 
important for designing convenient user interfaces that provide means for 
browsing, editing and querying large ontologies. This chapter discusses the 
problem of ontology visualization, focusing on the standard ontology 
language OWL [2]. 
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Ontology languages are primarily designed to represent information 
about categories of objects and how categories are interrelated. This is the 
sort of information that ontologies store. Ontology languages can also 
represent information about the objects themselves—this sort of information 
is often thought of as data. An ontology language must have a well-defined 
syntax, well-defined semantics, efficient reasoning support, sufficient 
expressive power, and convenience of expression. These requirements 
directed the evolution of a sequence of W3C recommendations and 
standards for ontology languages: RDF, then DAML+OIL [3], and now 
OWL [2]. 

OWL is a product of long evolution in Knowledge Representation 
techniques. The history and the evolution of ideas that led to the design of 
OWL are described in Horrocks [4]. There are three versions, or species, of 
OWL. In the order of increasing expressiveness, OWL Lite was designed to 
support classification hierarchies and simple constraints. OWL DL is backed 
by a description logic formalism and so maximizes expressiveness while 
maintaining computational completeness and decidability of reasoning 
systems. Finally, OWL Full offers much greater expressive freedom at the 
expense of giving up the computational guarantees of OWL DL [2]. 

Various tools for visualization of OWL ontologies have been developed. 
In an effort to optimize visualization and editing of OWL ontologies we 
have developed a visual language for OWL-DL and implemented it in 
GrOWL, a visual editor and browser for OWL ontologies [5,6]. The visual 
language referred to here as the GrOWL visualization model attempts to 
accurately visualize the underlying DL semantics of OWL ontologies, 
without exposing the complex OWL syntax. We intentionally limited our 
focus to OWL-DL, the most expressive species of OWL that is supported by 
reasoners. GrOWL has been implemented both as a stand alone application 
and as an applet. The applet version has been used in publicly available, 
semantically aware databases such as the Ecosystem Services Database, 
Figure 10-1, [7,8]. 
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F/gwre 10-1. GrOWL applet running in the Ecosystem Services Database, a web-based 
application, showing simple biome ontology for browsing and query. 

In this chapter, we discuss primarily the GrOWL visualization model, 
leaving aside related visualization techniques. In section 2, we define our 
performance criteria for OWL visualization models and tools, provide a brief 
review existing models and tools, and describe the design choices that led us 
to GrOWL. In section 3, we introduce the visualization model for OWL. In 
section 4 we describe the current implementation of GrOWL and its 
applications. The conclusion contams a summary of the results and a 
discussion of future work. 

THE ANALYSIS OF VISUALIZATION MODELS 

Numerous examples of ontology visualization have been presented in the 
literature^. However the visualization of ontologies has not yet been 
considered from a theoretical perspective. This is not surprising, as 
information visualization is still emerging as a new field within Computer 
Science. A variety of visualization designs for both structured and 
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unstructured data have been proposed [10], which can be useful in ontology 
visualization. Ontology visualization tools can also take advantage of well 
designed software libraries, such as Prefiise [11], that reflect a decade of 
experience in information visualization. 

Chen [10] argues that information visualization is in need of a generic 
theory that can help designers to evaluate and compare the visualization 
techniques. An interesting effort made in this direction is the work on 
semiotic morphism by Goguen [10,12], who suggested a rule of thumb that 
allows the evaluation of the quality of a visualization. The quality could be 
measured by what is preserved and how it is preserved; it is more important 
to preserve structure than content when a trade-off is forced. We refer to this 
rule as Goguen's criterion. Our discussion of visualization frameworks also 
adopts a minimum complexity criterion as an informal rule of thumb. Based 
on these criteria, we consider acceptably efficient a visualization model that 
can provide a readable rendering of ail or almost all elements of Roger L. 
Costello's camera ontology [13] and other similar-sized ontologies on a 640-
by-800 pixel canvas. 

2.1 OWL Semantics 

Before reviewing OWL visualization framework we briefly describe the 
underlying semantic structure that has to be visualized. The OWL formalism 
was designed to harness the power of sound, complete and decidable 
Description Logic (DL) systems. OWL-DL and OWL-Lite are two major 
species of OWL that have a clean DL semantics. 
OWL-DL knowledge base (KB) DL languages are built up of two kinds of 
primitive symbols, concepts interpreted as unary predicate symbols and 
roles, interpreted as binary predicate symbols; the latter are used to express 
relationships between concepts. The concepts are of two kinds - atomic 
concepts and concept expressions. Concept expressions are formed using 
boolean operations on concepts and role restrictions. There are several types 
of role restrictions. For example, a concept written 3hasChildMale 
denotes all the individuals having at least one male child. The concept 
\/hasChild,Male denotes the set of individuals whose children are all 
male. The concept MaleU BhasChildParent may serve as a definition of the 
concept grandfather because it denotes the set of all male individuals who 
have at least one child who is also a parent. The concept 
> 6hasChild.Person denotes a set of individuals who have at least 6 
children and may serve as a definition of the concept prodigious parent. The 
fundamental axiom between concepts is the subsumption relation (subclass-
of relation) denoted by symbol E, e.g. HumanEAnimal. The fundamental 
relation between an individual and a class is the instance-ofxQXdXion usually 
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denoted by colon, e.g. John : Person. Concept expressions are built from 
concepts using several kinds of constructors such as: intersection n , union 
U, complement -̂ , "all values from" restriction V7?.C , "exist value " 
restriction 37?.C , cardinality restrictions < nR and > nR and qualified 
cardinality restrictions < nR,C and > nR,C. A DL knowledge base could 
be represented as a set of statements of the form: C^ D {C is subclass of 
Z) ), a \ C {a is an instance of C ) , (a^b): R ( role assertion 
stating that Z? is a value of property R for individual a ); here C , D 
are concepts definitions and a , b individual names. The statements of 
the form C E Z) are called terminological. The statements of the form 
a : C and (a, b): R are called assertional. All terminological 
statements form Tbox of the knowledge base, while assertional statements 
form the Abox. Expressive description logics support role subsumption, or 
role hierarchies axioms R ^ S { R is subrole of S ). Different systems of 
DL are formed by selecting different sets of class constructors and axiom 
types. 

OWL-DL is reducible to logic SHOIN(D) [14] that allows boolean 
operations on concept expression, existential and universal role restrictions, 
cardinality restrictions, role hierarchies, transitively closed roles, inverse and 
functional role axioms and concrete domains. To maintain compatibility 
with earlier SW standards, OWL is encoded within the Resource Definition 
Framework (RDF) syntax. In the case of OWL-DL, the path from the RDF-
based syntax of OWL to its DL semantics is very hard and thorny (see 
Horrocks [4]). To hide the complexity of RDF syntax and to simplify the 
presentation of OWL-DL ontologies and make them readable to human, 
OWL Abstract Syntax was created. This syntax closely follows the DL 
semantics of OWL. 

There are many possible avenues for visualizing an OWL knowledge 
base. Oftentimes, the hierarchy of named classes serves as a base of 
visualization. However, since there is multiple inheritance, the translation of 
the class hierarchy into a tree is not straightforward. In addition, focusing on 
named classes doesn't address the representation of boolean operations and 
property restrictions. They represent essential structures of OWL ontology 
and therefore according to Goguen's criterion it is essential to represent them 
in the graph as well. Moreover, it is essential to provide visualization 
methods for both the TBox and the ABox. We suggest that OWL 
visualization tools should support at least separate views of class definitions, 
the named class hierarchy, and the whole ontology. The following 
subsection analyzes existing approaches to visualization. It appears that most 
of them realize the essential goals of visualization only partially. 
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2.2 OWL Visualization Models 

There are several implemented and designed visualization frameworks 
that are used or could be potentially used with OWL. To simplify our 
analysis we divided them into 5 categories. 

1. Tree-based visualization models Some visualization frameworks 
were designed mainly for navigating an ontology's class hierarchy. Protege 
[15] plug-in OWLViz [16] is an example that belongs to this category. 
Several tools of this kind were described in Geroimenko [9]. Although such 
tools are useful, they do not represent visually all the elements of ontology's 
meaning and would not get high score according to Goguen's criterion. 

2. Table-based visualization models Some visualization frameworks 
have been inspired by UML modeling of object oriented languages. The 
ezOWL [17] tool is a visualization and editing tool that provides a table 
based rendering of OWL ontologies, where classes are described as tables of 
properties. The OntoTrack tool [18] also belongs to this category. OntoTrack 
uses sophisticated layout and navigation techniques to optimize browsing 
and editing large ontologies, however at the moment it supports only a 
subset of OWL-Lite. The main issue with the table based frameworks is the 
redundancy in representation of properties, since they are listed for a class 
and all it's subclasses and as a result the visualization process requires a lot 
of space on the canvas. This wasted canvas space is especially problematic 
when visualizing large ontologies. Nevertheless, tables of properties are very 
useful, since they clearly describe what properties a class must have or can 
have. We decided that it is more appropriate to use them as a secondary 
visualization aid, and so in GrOWL, the tables of properties are presented in 
special window only for the currently selected class. We consider this to be a 
better use of table based visualization. 

3. RDF-based visualization models Since OWL is expressed in 
XML/RDF syntax, the frameworks for RDF visualization theoretically may 
be used for OWL ontologies. There are several frameworks that are based 
around visualization of RDF graphs. One example of such a framework is 
IsaViz [19]. Its strong point is support for graph stylesheets that allow the 
user to modify the way the graph is presented. This tool uses AT&T 
graphviz/dot program for making the layout and it is unlikely that it can 
compete with tools that use modem graph layout libraries. Perhaps the most 
interesting RDF visualization framework is RDF-Gravify [20]. Tliis tool has 
an advanced filter mechanism. Filters allow a user to hide or view specific 
edges based on type or to hide or view specific particular instances of nodes 
or edges. RDF-Gravity has a query backend and allows the generation of 
views from queries. 
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Both IsaViz and RDF-Gravity render literally the RDF structure of the 
file without honoring the OWL specific constructs. They inherit the 
verbosity of RDF and as a consequence OWL ontologies are difficult to read 
in these tools. Although developers could learn a lot from RDF visualization 
tools such as RDF-Gravity, these tools are not particularly suitable for the 
rendering of OWL ontologies. 

4. UML-based visualization models VisioOWL [21] is an MS Visio 
based visualization tool for OWL. There are efforts to build standard UML 
based presentation for OWL. A metamodel for the purpose of defining 
ontologies, called Ontology Definition Metamodel (ODM), has recently 
been requested by the Object Management Group [22], with specific focus 
on the OWL-DL language. To answer this request several proposals were 
submitted. Although some of these metamodels have special symbols for 
OWL elements and unlike RDF visualizers provide a readable presentation 
of OWL ontologies, they are still not optimized compared to the metamodel 
presented in Brockmans [23] that comes very close to the graphic mapping 
presented here. 

The intention behind UML based OWL visualizers is to reuse the power 
of already developed advanced UML editors, such as Visio. Although this 
works well for the users who already have UML editors, it may be not so 
attractive for those who don't. Good UML editors are often very expensive, 
they have features that may be not usefiil for OWL visualization and do not 
support the ones that are needed. For example, experimenting with GrOWL 
we found that it is often convenient to use the visual representation along 
with traditional navigation methods, such as the class hierarchy tree. Adding 
such features to a UML editor may not be easy. There are some important 
elements of ontology management which are not easy to incorporate into 
commercial UML editors. These include the connection to a DL reasoner or 
a database backend, and query support. Although UML editors have 
advanced layout engines, none of them seems to support dynamic layout that 
allows recentering the graph on the fly, showing only a specific locality of a 
selected node (e.g. a class definition). 

5. DL-based visualization frameworks An OWL visualization can try 
to accurately visualize the XML/RDFS syntax of OWL ontology as 
VisioOWL does. However, it is also possible to center the visualization 
around the OWL Abstract Syntax or DL semantics of OWL. The difference 
in clarity of these two types of visualization is analogous to the difference 
between XML/RDFS syntax of OWL and OWL Abstract Syntax. Since the 
first one is extremely verbose and the later was designed specifically for 
presentation, centering visualization around OWL Abstract Syntax has clear 
advantages and has far better performance according to the minimum 
complexity criterion. The advantage comes at the price of generality; DL 
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based visualization frameworks can only support the DL based semantics of 
OWL-Lite and OWL-DL. Although exclusion of OWL-Full may be 
somewhat regrettable, it can be justified since applications of OWL-Full are 
not common. 

There is an intimate connection between semantic networks and DLs. In 
fact DLs were invented in an effort to provide precise semantics for semantic 
networks [24]. There is an earlier proposal for visual notations based around 
DL CLASSIC [25]. Although DLs have been used in Semantic Web 
languages, there are surprisingly few tools that belong to this category, and 
apparently GrOWL is the only one. Out of the UML based models only 
Brockmans [23] is likely to belong here, however it has not been yet 
materialized in any implementation. 

3. A VISUALIZATION MODEL FOR OWL 

The OWL visualization model presented here targets all essential 
components of an OWL knowledge base. Both the TBox and ABox parts are 
represented in graphical form. The TBox model represents properties, 
property restrictions and boolean operations. 

Graphical Coding From Conceptual Graphs [26, 27] we learned to use 
shapes to clearly differentiate between logical categories. The first principle 
behind GrOWL visualization model is the use of the color, shading and 
shape of nodes to encode properties of the basic language constructs. Table 
10-1 describes the graphical coding scheme of GrOWL visualization model. 

Table 10-1. Graphical Coding Scheme of GrOWL visualization model 

Node shape 
Rectangular with 
shaded background 
Rectangular with 
white background 
Oval with 
shaded background 
Oval with 

1 white background 

Color 1 (Blue) 
Classes 

Individuals 

Properties and 
Property Restrictions 
Property Value, pairs. 
Value Restrictions 

Color 2 (Brown) 1 
Data types 

Data values 

Data Properties and 
Data Property Restrictions 
Data Property Value Pairs, 
Data Value Restrictions 

ABox Mapping We assume that the reader is familiar with DL semantics 
and Abstract Syntax of OWL̂ *̂ . For immediate consultation, see Chapter 8. 
Consider the following ABox: 
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lndividual(JohnSmith 
type(academicStaffMember) 
value(teaches Java) 
value(teaches Artificiallntelligence) 
value(age "32"'^'^xsd:integer)) 

The graphical mapping of this ABox is shown in Figure 10-2. 

associ3t& Professor 
Artificiallntelligence 

C age |johnSmith| '--^^^^ Java 

Figure 10-2. Graphic idioms for assertions about individuals. 

The following two diagrams (Figures 10-3 and 10-4) provide simple 
examples that illustrate idioms for axioms Samelndividual and 
Differentlndividuals. 

Al --/-v. ^ Artificiallntelligence 

Figure J 0-3. Representation of axiom SameIndividual(AI Artificiallntelligence) 

JohnSmith f-̂ - '•<^y- JohnWSmith 

Figure J0-4. Representation of axiom DifferentIndividuals(JohnWSmith JohnSmith) 

TBox Mapping The TBox mapping in GrOWL visualization model was 
inspired by the domain maps introduced in Ludaescher [29]. The mapping is 
defined by two mutually recursive functions. The first function is the 
structural mapping G that maps every definition of class C from the OWL 
knowledge base into a graph G(C) . Only one node of the graph G(C) 
represents the mapped class C. Thus, the second function is the base node 
mapping BN that draws correspondence between a class definition and the 
single node BN(C) of graph G(C) . The node BN{C) (base node of 
C ) represents class C in that sense that every arrow representing 
subclass-of and equal-to relations of a class is attached to the base node of 
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this class. Thus, for any pair of either named or anonymous classes C\ and 
C2 the following holds: 

G maps C7^C2 (CI is subclass of C2 ) to the diagram in Figure 10-
5. 

BNCC1) ^ BN(C2) 

Figure 10-5. Graph G(C1 ^ C2) 

G maps C1 = C2 (which is equivalent to C7^C2 and C2eC7) to 
the diagram in Figure 10-6. 

BNCC1) -* *- BN(C2) 

Figure 10-6. Graph G(C1 = C2) 

G maps ABox expression a \ C\ {a is instance of CI ) to the 
diagram in Figure 10-7. 

[7] ^ BN(C1) 

Figure 10-7. Graph G(a : CI) 

In the Figures 10-7 and in Table 10-2, the node labeled as BN{CX) is a 
base node of class CI and the node labeled BN(C2) is a base node of 
class C2 . They do not have to be shaded squares, but may be of any shape 
permissible for base nodes shown in the third column in the Table 10-2. 
Table 10-2 describes the recursive mapping of OWL class constructors into a 
graph that constitutes the core of GrOWL visualization model. This mapping 
is created by functions G and BN described in second and the third 
column of the table respectively. Data properties and data property 
restrictions are not shown in the table since their mapping is identical to the 
mapping of respective relations pertaining to individuals, and the difference 
is only in color. 
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Table 10-2: Recursive mapping of DL class constructors. 

215 

Definition of class C 

Named Class C 

Intersection Ci n C2 

Union C i U Q 

Complement ~i Ci 

Enumeration {01/12} 

Exist Restriction BR.Ci 

For all Restriction VR.Ci 

Number Restriction '^- iiR 

Number Restriction €. n R 

Value Restriction R.:o 

The cUagram G(C) 

c 

BN(C1) 0̂'̂  0KC2) 

BN(C1) ^ y BHJ.C2) 

> ) BNfCI) 

0 0 
3 , 0 •». Fl'Jf^1^ 

•rf D »^ B N ^ n i 

Eg. ^s^" 

i7:R 

Eg-

cx>—-HI] 

Base node 
BN(C) 

c 
(Qi 

cQ) 

0 

© 
3:R • 

V:R 

>5:R 

<7:R 

^CE::> 

Figure 10-6 describes the mapping of subclass of axiom; the mapping of 
the remaining OWL class axioms is described in the Figure 10-8. 

*ji: 

BNCC1) BN(C2) BN(C3) BN(C1) 
BNCC2) 

BNCC3) 

Figure 10-8. Mapping of OWL class axioms EquivalentClasses(C 1 C2 C3) and 
DisjointClasses(Cl C2 C3) 

Structural mapping follows the recursive definitions of the OWL 
semantic constructs, and therefore every TBox construct receives a graphic 
representation. Structural mapping is one-to-one. Although the rendering of 
the arrows representing subclass-of and instance-of axiom is identical, one 
cannot be mistaken for another since subclass-of arrow always connect two 
classes. 
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Most of the GrOWL visualization model idioms could be obtained from 
the structural mapping of a representation of an OWL file as a DL 
knowledge base. Property declarations constitute an exception. The DL 
semantics of property declarations is complex and therefore we have 
introduced special idioms for this case (see Figure 10-9). The introduction of 
special symbols as a substitute for complex graphs that express the DL 
semantics of property declarations does not break the unambiguous character 
of the GrOWL visualization model mapping. 

A property is a binary relation. Figure 10-9 shows a graphic idiom for a 
simple specification of an object property: The global restrictions on 
properties, such as specifications that a property is symmetric, functional, 
transitive, or any allowed combinations of these, are provided on a separate 
property pane. The relations of properties to other properties such as 
subproperty and inverseOf relations are depicted graphically in a separate 
RBox view that displays the property hierarchy. For example, consider the 
following property specification: 

ObjectProperty( teaches super(involvedln) 
domain(academicStaffMember) 
range(course) 
inverseOf(isTaughtBy)) 

This specification of an object property will generate two separate 
diagrams as shown in Figure 10-9. 

course -* teaches — academicStaffMember 

isTaughtBy '^ '""•' teaches »•' involvedin 

Figure 10-9. The separate diagrams generated by the object property specification. 

The second diagram in Figure 10-9 appears in the RBox view only. The 
separation of TBox, ABox and RBox views is especially convenient for 
viewing large ontologies. Note that the subproperty relation could be 
specified with a subproperty axiom separately from the property declaration. 
For example, the relation between teaches and involvedin could be specified 
with the subproperty axiom SubVroperty{teaches^ involvedin) . The 
idiom for datatype properties is analogous to idiom for object properties, 
except that it is rendered in a different color. 
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4. CURRENT IMPLEMENTATIONS AND 
APPLICATIONS OF GROWL 

The current prototype of GrOWL is based on the Prefuse library [11], 
which supports a wide variety of layout algorithms, most of which are used 
in the GrOWL implementation. GrOWL is open source and is available at 
the download page of the UVM Ecoinformatics Collaboratory 
(http://ecoinformatics.uvm.edu). GrOWL's visualization algorithms include 
animated force directed layout, interactive locality restricted viewing and 
selective filtering to simplify the display of large ontologies by selectively 
reducing detail. The filters provide a mechanism for restricting the view to 
only class definition, the subclasses, the superclasses, or all instances 
associated with a selected node. The current GrOWL prototype easily 
handles large ontologies such as the 1620 KB Fungal Web Ontology: the 
only visible problem in such cases is a rather long load time. Use of a 
database backend for storage of the graph will further improve performance 
and resolve the problem with the load time. Future development plans 
include this improvement, akeady supported by the Prefuse library. 

At present, GrOWL is being used for two main purposes. The first is to 
allow non-technical users to browse the structure of the knowledge stored in 
web-accessible, semantically aware database applications. Used as an applet 
enriched with a JavaScript communication layer, GrOWL also allows 
performing assisted queries using a graphical interface. Specifically, 
GrOWL has been used in the Ecosystem Services Database (ESD) [7,8] a 
data and analysis portal to assist the informed estimation of the economic 
values of ecosystem services [30]. ESD extensively uses OWL format for 
the description of dynamic models as well as composite datasets with 
extensive metadata. Users of the ESD can use GrOWL to locate a concept of 
interest, following relationships and with intuitive access to annotation 
properties. The right-click menu in the applet gives access to a set of queries 
that will locate instances of the selected concept or use the concept to restrict 
queries being defined. The representation of instances offered by GrOWL is 
also used in the ESD to document the objects retrieved by a user query. 

The second important application of GrOWL is to enable collaborative 
development of ontologies in a workshop context, where not all participants 
are versed in the concepts and methods of knowledge representation. We 
have found that the graphical paradigm enabled by GrOWL often resonates 
better with a non-technical audience than tree-based display such as the ones 
offered by common ontology development environments. In addition to 
using GrOWL regularly in classes and presentations, the GrOWL prototype 
is being evaluated in the context of the SEEK project [31] to provide 
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ontology visualization and editing in large-scale, semantically annotated 
scientific workflow environments. 

5. CONCLUSION 

In this article we have discussed visualization model for OWL, focusing 
on GrOWL visualization model. We have used the following tentative 
criteria for the performance of OWL visualization frameworks: 

1. Sufficient completeness and simplicity to provide a readable rendering 
of all or almost all elements of Roger L. Costello's camera ontology [13] and 
other similar-sized ontologies on a 640 by 800 canvas. 

2. Support for separate views of the class definitions, the named class 
hierarchy, and the whole ontology 

Unlike the other visualization frameworks we tested, the GrOWL 
implementation performs well according to both criteria. The good 
performance of GrOWL on the first criterion is a result of the visualization 
model's affinity with DL semantics. 

We argue that focusing the visualization around the DL semantics of 
OWL has clear advantages of simplicity and clarity over other approaches to 
OWL visualization. The structural mapping G that constitutes the core of our 
visualization model naturally follows the recursive definition of DL concept 
expressions. We have carefully considered the possible alternatives and we 
have not found another more simple and elegant mapping of this sort. 

An important objective for GrOWL was to make ontology browsing and 
editing more intuitive for non-technical users, limiting exposure to the 
complexities of DL and forcing good design practices through the workflow 
supported by the interface. This objective was only partially realized. 
Although the visualization model in GrOWL is relatively simple, some 
knowledge of DL is a prerequisite on the part of the user. In order to read 
ontologies in GrOWL, the user at least has to be familiar with boolean 
operators and quantors. As a result, GrOWL has been most appealing to the 
users with some background in DLs. A more verbose model perhaps would 
give some advantages to users who are not familiar with DLs, but such 
advantages would be short lived. As soon as the user becomes familiar with 
OWL and the visualization model, the simplicity becomes much more 
valuable especially during the visualization and editing of large ontologies. 
Approaches to improve the appeal to less technical users while maintaining 
minimum complexity criteria are still being evaluated, and will evolve as 
GrOWL is exposed to more users and problem areas. 

GrOWL is a key component of a larger strategy being pursued at the 
UVM Ecoinformatics Collaboratory to bring collaborative knowledge 
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modelling to mixed, delocalized audiences including entirely non-technical 
members. This project was started as an answer to the needs of several 
communities in the ecological and agricultural field, in need of more 
intuitive and efficient ways to collaboratively develop ontologies to annotate 
and mediate independently developed data and models. In particular, the 
ThinkCap knowledge portal infi-astructure 
(http://ecoinformatics.uvm.edu/technologies/thinkcap.html), a web 
application that provides user interfaces over a remote, multi-ontology 
knowledge base, is being developed to allow remote users of diverse 
disciplines and technical levels to develop shared conceptualization that are 
automatically formalized into OWL or RDFS ontologies. In ThinkCap, users 
will be able to choose the mode of interaction that best suits their expertise. 
The entry level will be a Google-like search for concepts, using a 
sophisticated text search that indexes concept descriptions as well as related 
web resources or documents. Concepts that are found can be explored in 
several ways, including GrOWL-enabled graphical concept maps. Concepts 
that are not found can be submitted for inclusion, in more or less formal 
ways according to the technical level of the user, with the asyncronous 
involvement of a knowledge engineer. GrOWL will be instrumental in 
defining and implementing the ThinkCap browsing and editing paradigm for 
intermediate, advanced, and administrator users. 
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Abstract: The core part of the Web Ontology Language (OWL) is based on Description 
Logic (DL) theory, which has been investigated for more than 25 years. OWL 
reasoning systems offer various DL-based inference services such as (i) 
checking class descriptions for consistency and automatically organizing them 
into classification hierarchies, (ii) checking descriptions about individuals for 
consistency and recognizing individuals as instances of class descriptions. 
These services can therefore be utilized in a variety of application domains 
concerned with representation of and reasoning about knowledge, for example, 
in biological sciences. Classification is an integral part of all biological 
sciences, including the new discipline of genomics. Biologists not only wish to 
build complex descriptions of the categories of biological molecules, but also 
to classify instances of new molecules against these class level descriptions. In 
this chapter we introduce to the non-expert reader the basics of OWL DL and 
its related reasoning patterns such as classification. We use a case study of 
building an ontology of a protein family and then classifying all members of 
that family from a genome using DL technology. We show how a technically 
straight-forward use of these technologies can have far-reaching effects in 
genomic science. 

Keywords: protein classification, OWL DL, reasoning, reasoning patterns, protein 
phosphatases. 

1. INTRODUCTION 

In this Chapter, we look at an example where the strict semantics of 
OWL-DL, when used to define the classes of a protein family, can be used to 
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great effect in biological data analysis. Conceptually, this is a straight
forward example of knowledge of a domain being used in computational 
form. We first give the biological context, problem and motivation for this 
work. We then look at the analysis technique and in the second half of the 
chapter move from the biological aspects to the description logic aspects of 
this work. One simple message is that OWL-DL has been used to make 
biological discoveries. We also show that a great deal can be done with only 
using a subset of OWL-DL's expressivity. 

1.1 Background 

Bioinformatics encompasses computational and mathematical techniques 
for analysing, managing and storing biological data. It is a relatively new 
discipline in science which has grown as a direct result of advances in 
technologies and techniques in biochemistry, molecular biology and genetics 
[1]. The development of new techniques in DNA and protein sequencing, for 
example, has lead to an exponential growth in the production of biological 
sequence data. In order to make use of this data, however, it needed to be 
analysed, categorised and recorded in a systematic way. 

The majority of bioinformatics data was, and continues to be, published 
in public repositories, which are distributed throughout the world. These 
resources provide a rich source of research material for the bioinformatician. 
Algorithms for searching, predicting, or classifying data in these repositories 
have been developed to help with the task of extracting and integrating the 
biological information between them. The data repositories and analysis 
tools together provide a 'toolkit' for the bioinformatician. 

Producing algorithms to analyze sequence data is only a fraction of the 
problem faced by bioinformaticians. Managing data and annotating it with 
the knowledge previously derived from experiments in laboratories or in 
silico are also important considerations [2]. For example, PubMed [3], the 
digital archive of life sciences journal literature, contains in excess of 15 
million citations. Each citation represents the collection of one or more 
fragments of biological knowledge. Associating knowledge from this 
resource with the genes and proteins relating to it in biological sequence 
resources is an enormous task [4], [5]. The scale of the problem, the 
complexity of the data, and the inevitable and constant revision of 
knowledge over time makes this a grand challenge in bioinformatics. 

Molecular biology aims to help better understand the functions and 
processes that occur in living systems by starting from the basic building 
blocks of life. DNA encodes the genetic information of life, which means 
DNA contains all the information, in the form of genes, a cell needs to 
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replicate and function. Genes are described as the basic unit of heredity and 
almost always produce a functional product, a protein. Proteins are complex 
molecules that carry out the majority of biological functions within a cell. 
Understanding what genes and proteins are present helps scientists 
understand how living organisms work. 

In bioinformatics, genes and proteins are generally represented as 
sequences. DNA is made up of a series of nucleic acid molecules, adenine 
(a), guanine (g), cytosine (c) and thymine (t). The order of these four 
molecules encodes the sequence of the resulting protein products. Proteins 
are made up of amino acid molecules. There are twenty different amino 
acids used within cells. 

A collection of three nucleic acids, encodes an amino acid. Some amino 
acids have more than one nucleic acid code (known as a codon), some have 
only one. Figure 11-1 shows the relationships between nucleic acids and 
amino acids. 

DNA Code 

DNA Codons 

GAGTCGCAATGG 

GAG TCG CAA TGG 

Amino Acid 

0 

H^N- < 

OH H O -

1 

Figure ll-l. The relationship between DNA and protein sequences. Each three letter DNA 
codon encodes an amino acid. Sequences of amino acids form proteins. 

As can be seen in Figure 11-1, amino acids are complex molecules. Each 
has a different shape and set of physical properties. For example, some have 
a positive or negative charge and some are hydrophobic (e.g. leucine). The 
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sequence of amino acids in a protein therefore helps determine its final 
three-dimensional structure. This structure in turn helps determine the 
chemical and physical interactions of this protein within the cell. These facts 
mean that analysing the sequences of proteins and genes can tell the scientist 
a lot about the functions of the gene products in vivo. If the function of a 
protein is conserved through evolution, this means that sequence features can 
also be conserved. Consequently, comparing protein and gene sequences 
across different species allows inferences to be made about the functions of 
unknown or uncharacterised proteins and genes by similarity measures to 
better characterised and experimentally verified protein and gene fiinctions. 
This is true at the level of individual sequences and also at the level of the 
whole genome, the entire collection of genes. By organising and classifying 
genes and proteins into functional groups (families), one can compare typical 
functional properties across different species. 

This process of classification is important, but knowledge-intensive. 
There are many tools and resources available to help scientists assess the 
similarity between biological sequences, but the tools themselves do not 
perform the classification step. The results obtained from similarity search 
tools must be analysed by scientists, and this is the rate-limiting step. The 
pace at which data is produced far outstrips the pace at which it is analysed 
and classified. 

In this chapter we discuss a method for automated classification that 
could reduce this bottleneck. We use an ontology to capture the knowledge 
that a human uses to recognize types of proteins from a particular protein 
family. By combining this knowledge with existing tools for detecting 
sequence features we are able to perform a thorough, systematic analysis of a 
protein family and how it differs between organisms, illustrating the utility 
of such a method in comparative genomics. This methodology does not 
develop or test new bioinformatics algorithms for detecting sequence 
features. Instead, it provides a novel method for interpreting the results of 
these techniques and algorithms to perform automatic protein classification. 

1.2 Analysing Protein Domains 

Approaches to analysing the large data sets produced in genome 
seqtiencing projects have ranged from human expert analysis, which is 
considered to be the 'gold-standard,' to the simple automation of tools such 
as BLAST [6] and Interpro [7]. 

Analysis of proteins by experts enables classification to be driven by 
expert knowledge, which draws on the collective knowledge in the 
community. Experts can interpret the information from the biological 
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literature and apply it to the observed results. This is, however, a time-
consuming process and many academic institutions cannot support large 
teams of bioinformaticians required for such activities. The alternative 
choice is automated classification. This tends to be quicker, but the level of 
detail is often reduced, which means proteins are often only classified into 
broad functional classes. 

For example, taking the top BLAST hit as a basis for classification of an 
unknown protem can infer relationships between the unknown protein and 
previously characterized proteins, allowing the new sequences to be 
annotated as 'similar to' a characterized protein. This has value, but it also 
has intrinsic problems. One of the largest problems is that the databases of 
characterized sequences contain sequences with differing degrees of 
annotation. Some sequences were experimentally characterized in laboratory 
experiments and annotated by human experts, whilst others were already 
classified using similar automated methods, and so are annotated as 'similar 
to' another protein already [8]. Annotating new sequences against these 
proteins has great potential for propagating errors if the original assignment 
is incorrect. Also, the annotations do not provide information regarding the 
experimental details of the similarity assignment, i.e. which version of 
BLAST was used, with what parameters, and what was the resulting 
similarity score. Without this data provenance, the annotation should not be 
re-used for ftirther comparisons. 

Another problem with similarity methods is that both fiill length and 
truncated sequences can be contained within the same BLAST indexed 
database. If the unknown sequence shows high similarity to a characterized, 
truncated sequence, there is no method for determining if the unknown 
sequence is also truncated, or if the unknown sequence simply shows high 
similarity with the known sequence for part of its length. 

Like similarity measures, using automated classification methods on 
protein motif and domain matching techniques (discussed further in section 
1.3) can also be a valuable 'first pass' for large scale annotation, but it too 
can be limited at a detailed level. These methods report the presence of 
functional domains, but it is the unique combinations of these domains that 
determine the protein function. Human experts are still required to interpret 
these combinations of functional domains in order to provide fiinctional 
annotation. 

In both automated similarity assignment and protein motif detection, 
there is a danger of under or over annotation. Proteins can either be 
classified at a level that is too general to provide useful inferences from 
related proteins, or proteins can be classified beyond the evidence that can be 
derived from sequence data, inferring properties and relationships that are 
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incorrect. Both cases propagate errors, demonstrating the limitations of 
current automated methods. 

1.3 Classifying Proteins into Families 

Many proteins are assemblies of sequence motifs and domains. Each 
domain or motif might have a separate function within the protein, such as 
catalysis or regulation, but it is the overall composition that gives each 
protein its specific function. Recognition of domain and motif composition is 
a powerful bioinformatics technique which can be employed in the 
classification of proteins. 

There are many tools dedicated to discovering protein features and 
functional domains and motifs (hereafter referred to as p-domains). 
Examples include PROSITE [9] and Pfam [10]. These tools each employ 
different methods of analysis to detect sequence features and p-domains, for 
example, PROSITE uses simple pattern-matching to single motifs, whereas 
Pfam uses hidden markov models (HMMs). Researchers routinely use many 
different p-domain detection tools together to build up a consensus of 
results. To facilitate this process, InterPro encapsulates many of these tools, 
and allows scientists to perform analyses over all of them with one query 
submission to the tool InterproScan. 

Interpro currently enables the querying of sixteen different algorithms 
and tools and in this work, we define p-domains as any sequence features 
identified by tools within the Interpro Collective. 

InterproScan provides a mechanism for the automation of p-domain 
analysis, but not for the interpretation of that analysis. It reports the presence 
of p-domains, but not the consequences for family or subfamily membership. 
In certain cases, the presence of a p-domain is diagnostic for membership of 
a particular protein family; for example, the G-protein coupled receptor like 
domain in G-protein receptors. However, further classification into 
subfamilies is not usually possible without further interpretation over the 
results of p-domain analyses. Previously, this has not been attempted. In this 
method we have replaced this human intervention step with further 
automation which uses knowledge captured in an ontology. 

Ontologies provide a technology for capturing and using human 
understanding of a domain within computer applications [11]. The use of 
ontologies to capture human knowledge in biology and annotate data 
accordingly is becoming well established. For example, the Gene Ontology 
describes all gene products common to eukaryotic genomes. Individual 
proteins are annotated with terms from this ontology to promote a common 
understanding across the community about their function(s) [12]. 
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Other uses of ontologies, however, are more unusual in biology. For 
example, the use of reasoning over formal ontologies and their instances, 
enabling data interpretation has not been explored. In this study, we present 
a new method which uses ontological reasoning for data interpretation and 
illustrates the advantages of such an approach. This method allows the 
combination of advantages gained from human expert analysis with the 
benefits of the increased speed in automated annotation methods. We use a 
protein family-specific ontology, defined in the OWL language [13], to 
capture the human understanding of a protein family together with p-domain 
analyses, using InterproScan, to automate the analysis of each protein in that 
family. 
In this chapter, we use the protein phosphatase family as a case study. The 
method we have developed enables the analysis of all protein phosphatases 
in a genome. We find that in classifying proteins, our system can perform at 
least as well as a human expert. In this context, the biology of protein 
phosphatases is not important. They provide a useful case study for the use 
of ontology technology to provide automated recognition over identified 
protein sequence features. The provision of this extra step and the 
consequent biological findings are important; the fact we used protein 
phosphatases is not so important. 

1.4 The Protein Phosphatase Family 

Phosphorylation and dephosphorylation reactions form important 
mechanisms of control and communication in almost all cellular processes 
including, metabolism, homeostasis, cell signaling, transport, muscle 
contraction and cell growth. These reactions allow the cell to respond to 
external stimuli, such as hormones and growth factors [14], as well as 
responding to cellular stress and cytokines [15]. 

The enzymes primarily involved in catalyzing phosphorylation events 
can be divided into two families, protein kinases and protein phosphatases. 
Kinases are involved in the phosphorylation of the amino acids serine, 
threonine and tyrosine [16] and phosphatases are involved in the removal of 
phosphates from these residues. It is the careful balance between these two 
opposing reactions that controls the phosphorylation state of a multitude of 
biological molecules and ultimately controls almost all biological processes 
[17]. 

Protein phosphatases all perform the same chemical reaction in the cell, 
the removal of a phosphate group, but the phosphatases are diverse in 
biological function and catalytic activity. They can be broadly divided into 
two subfamilies, the serine/threonine phosphatases and the tyrosine 
phosphatases. Recent reviews on the protein phosphatase family ([18], [19] 
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and [20]) focus on either one or the other. There have been extensive studies 
into the characterisation of each in the human genome. Whilst the distinction 
between the broad classes of serine/threonine and tyrosine subfamilies is 
often easy to determine, some closely related proteins have little difference 
between them. The difficulty of fine-grained classification is therefore 
increased with the subtlety of the differences between closely related 
proteins, which can perform different biological functions. In Figure 11-2 we 
show the differences in domain architecture of one subfamily of 
phosphatases, the receptor tyrosine phosphatases. 

Protein phosphatases are popular targets for medical and pharmaceutical 
research as they have been associated with a number of serious human 
diseases, such as cancers, neurodegenerative conditions and, most recently, 
diabetes [21], [22], [23] and [24]. 

Figure 11-2. The differences in domain architecture of the receptor tyrosine phosphatase 
subfamily. Rhombus = phosphatase catalytic domain. Black vertical bar = transmemebrane 
region, hexagon = immunoglobulin domain, black oval = fibronectin domain, rectangle = 
MAM domain, white oval = carbonic anhydrase domain, grey square = adhesion recognition 
site, triangle = glycosylation and white square = cadherin-like domain 
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2. OWL DL REASONING PRINCIPLES 

The case study presented here uses OWL DL reasoning to solve a 
problem in analyzing protein sequence data. We can computationally find 
the sequence features in a given protein sequence. The problem is that we 
need to computationally recognize the consequences of the presence of a 
particular set of protein features. This is bioinformatics knowledge and 
exactly the kind of knowledge that can be captured in an OWL ontology. 
Before presenting the results of using this ontology, we provide an abstract 
view on the underlying algorithmic principles and computational tools 
employed. The goal is to enable computational biologists to transfer the 
applied techniques to their domain of interest and apply them to their 
problem solving needs. In the following we assume some familiarity with 
the ideas of OWL DL but we present a short review of the main notions of 
OWL DL in order to keep this chapter self-contained. 
The core part of OWL, called OWL DL and its subset OWL Lite, is based on 
Description Logic (DL) theory [25], which has been investigated for more 
than 25 years. Description logics can be viewed as a family of knowledge 
representation languages, primarily intended to specify knowledge of any 
kind in a formal way. This formal specification provides the basis for OWL 
DL reasoning tools that process OWL DL knowledge bases (KBs), or 
ontologies, and offer various inference services. An OWL DL reasoner can 
be considered as a domain-independent problem solving engine that can be 
utilized in arbitrary application domains provided the domain knowledge is 
specified (or encoded) in OWL DL. However, OWL DL reasoners are not 
general problem solvers in the sense of "Do What I Mean". Their inference 
services are grounded on the formal properties of knowledge representation 
languages such as OWL DL. So, how can one make a meaningful use of 
such reasoning services? To do so we have to map the domain-specific 
problem solving process to an inference service supported by an OWL DL 
reasoner. In the following we explain this process by discussing OWL DL 
and the reasoning services provided by OWL DL reasoners. 

2.1 Basic Reasoning Services 

First, we briefly review the language elements of OWL DL (OWL 
Specification 2004). They mainly consist of anonymous (unnamed) or 
named classes, properties, and their restrictions and individuals. Classes can 
be considered as descriptions of common characteristics of sets of 
individuals. Class descriptions can be either complete, i.e., they specify 
sufficient conditions for class membership, or partial i.e., they specify only 
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necessary conditions for class membership. Properties are divided into object 
and data type properties. Object properties can be used to express binary 
relationships between sets of individuals, while data type properties can be 
viewed as binary mappings from individuals to data values. Individuals are 
members (otherwise known as instances) of classes and can be used to form 
enumerated classes. Using these elements one can compose class 
descriptions consisting of all language elements combined by set-based 
operators such as intersection-of, union-of, and complement-of. Properties 
are used in class descriptions by listing restrictions on the values of those 
properties such as type, specific value, and cardinality (number of values). 
These restrictions characterize instances of classes more precisely. 
Statements about domain knowledge can be formed by combining these 
elements and are expressed as axioms describing (i) that the set of instances 
in two classes are subsets of one another, equivalent, or disjoint, (ii) 
characteristics of properties such as transitivity or that the values of one 
property are a subset of another one, (iii) class membership and property 
values of individuals, and (iv) similarity and difference between individuals. 

Given these language elements the following types of reasoning services 
are typically supported by OWL DL reasoners. Classes can be checked for 
consistency, (also sometimes called satisfiability) i.e., is a class description 
meaningful at all and can it have at least one instance. Another service 
consists of computing inferred subset or subclass relationships, also known 
as subsumption relationships, i.e., all individuals that are instances of a 
subclass must be also instances of its superclasses. It is important to note that 
a subsumption relationship is only induced by the corresponding sub- and 
superclass descriptions. Based on class subsumption all named classes of a 
KB can be automatically organized in a taxonomy or subsumption hierarchy. 
This process is also often referred to as the classification of a KB. Analogous 
to subsumption, equivalence or disjointness between classes can be inferred 
too. The class satisfiability checking and classification process usually 
provides important feedback to designers of KBs because they might learn 
about unsatisfiable class descriptions, which are usually considered as design 
errors, or inferred and possibly unexpected subsumption relationships, which 
might match or violate principles of the application domain. Again, the latter 
case would correspond to a design error in the KB, where some class 
descriptions incorrectly or imprecisely model the application domain. 

The second class of supported inference services is concerned with 
individual descriptions. Descriptions of individuals can be checked for 
consistency, i.e., whether they comply with the class and property statements 
declared in a KB. The case that individual descriptions are recognized as 
inconsistent corresponds either to an application domain modeling error or 
indicates a violation of the domain principles encoded in the KB. The 
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individual descriptions consistency check is a prerequisite for the following 
other individual inference services. The most basic one is a test for class 
membership, i.e., is a given individual an instance of one or more classes 
declared in a KB. The services can be even more refined because the 
reasoner can automatically determine the most specific classes that 
instantiate a given individual. It is important to note that class membership 
for individuals can usually only automatically be recognized if the class 
description is complete. The membership of an individual in the superclasses 
of a given class is immediately implied due to the transitivity of the 
subsumption relationship. If this service, to determine the most specific 
classes of an individual, is applied to all individuals declared in a KB, it is 
traditionally referred to as realization of a KB. 

1.2 Reasoning Paradigms 

Individual descriptions in a KB usually rely heavily on the classes and 
properties declared in a KB, although OWL also allows users to introduce 
names that have not been declared yet. The structure of OWL DL statements 
about individuals and their relationships with other individuals or values can 
be compared with relational data descriptions known from relational 
databases (DBs). The information about individuals resembles, to some 
extent, a simple database schema, where a one-column table exists for each 
named class, containing all individual names that are instances of this class, 
and a two-column table for each property, containing pairs of individuals 
(object property) or values associated with individuals (datatype property) 
known to be related by the property. Occurrence in a table is based on either 
explicit assertions or implicit OWL DL reasoning results. In contrast to 
standard DBs it is assumed that the information in these tables is incomplete. 
This principle is called an open-world assumption in contrast to a closed-
world assumption from DBs, where the non-occurrence of information is 
interpreted as "this information does not hold". The open-world assumption 
is also closely related to another basic reasoning principle for OWL DL, the 
monotonicity of reasoning. This means that knowledge derived by inferences 
can only extend the already known knowledge. It cannot contradict known 
knowledge and it cannot cause the retraction of known knowledge. These 
principles could be either considered as advantageous or disadvantageous. In 
the context of the WWW it makes sense to consider information as 
incomplete. However, the information about the state of a domain is usually 
also evolving in a non-monotonic way because previously known facts 
might not hold anymore. It is important to note that the monotonicity of 
reasoning holds for a given version of a KB but different versions of KBs 
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might evolve in a non-monotonic way. However, reasoning about such a 
change between versions is beyond the state of the art of current OWL DL 
reasoners. 

2.3 Querying Individual Descriptions 

The open-world assumption also affects how queries about individual 
descriptions are answered. Besides the basic inference services for individual 
descriptions some OWL DL reasoners also support query answering with 
functionality similar to DBs. Again, query answering about OWL DL 
individual descriptions might involve reasoning in contrast to standard DBs, 
where query answering mostly involves table look-ups. One of the currently 
most advanced query languages [26], called nRQL (New RacerPro Query 
Language), is implemented in the OWL DL reasoner Racer [27] and its 
successor RacerPro (Racer Systems 2006). The nRQL language supports 
query answering about OWL DL individual descriptions. The supported 
query language elements allow one to retrieve all individuals that are 
instances of a class, all individual pairs that are elements of object 
properties, and all individual-value pairs that are elements of data type 
properties and optionally satisfy specified constraints. All these elements can 
be combined to form complex queries with query operators such as 
intersection, union, complement, and projection. These operators are similar 
to standard relational DB operators. The DB join operator is implicitly 
available in nRQL through the use of query variables and the intersection 
operator. Moreover, nRQL supports closed-world reasoning over named 
individuals (sometimes also called negation as failure), which is especially 
useful for measuring the degree of completeness of modeling the domain of 
discourse in a KB. The nRQL query language is oriented towards computer 
scientists and uses a Lisp-like syntax. In order to facilitate the use of nRQL 
by scientists from other domains the OntoIQ tool has been developed [28]. It 
offers users a graphical and easy-to-use user interface to compose, execute, 
and store nRQL queries. Queries can be also composed with the help of 
predefined query patterns. nRQL and OntoIQ^^ have been successfully used 
in the context of a fungal enzyme project [29], [30]. 

'̂  OntoIQ download page: http://www.cs.concordia.ca/FungalWeb/Downloads.html 
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3. POTENTIAL APPLICATIONS OF REASONING 
PATTERNS 

In the previous section we reviewed main OWL DL language elements 
and discussed OWL DL reasoning principles and services. In this section we 
come back to the question "how can one make a meaningful use of such 
reasoning services?" In general, there exist two possible approaches. The 
first one is applicable if the above-mentioned reasoning services can be 
directly used to solve the domain-specific application problems. This is 
usually possible if the necessary domain knowledge can be directly encoded 
into OWL DL. For instance, this is the case with the study presented in this 
chapter. The second and more difficult approach requires the translation of 
the knowledge about the problem domain into OWL DL in such a way as to 
use the reasoning services as general problem solver. For instance, one might 
encode the structure of a labyrinth into an OWL DL KB and then use queries 
to find a path from a certain point within the labyrinth to its exit. 

3.1 Classification Pattern 

The classification pattern makes a direct use of the classification 
mechanisms implemented in OWL DL reasoners. In order to apply this 
pattern the domain knowledge needs to be encoded as mostly complete class 
descriptions specifying meaningful sets of entities in the application domain. 
The solution to an application problem would consist of the inferred class 
taxonomy, i.e., a problem is solved if selected classes are subsumed by other 
classes or, in other words, the subsumers of classes describe the problem 
solution. A biological example of this would be that all protein phosphatases 
should be subsumed by the class enzyme, and all enzymes should be 
subsumed by the class protein. 

3.2 Realization Pattern 

This pattern builds on top of the classification pattern. Besides the class 
taxonomy useful knowledge is also encoded in individual descriptions. The 
problem solution results from computing for selected individuals their most 
specific instantiators, i.e., the most specific (complete) classes that 
instantiate these individuals. This pattern usually also requires that the 
envisioned instantiators have complete descriptions. This is the pattern that 
was successfully employed in the case study reported in this chapter. Protein 
phosphatase class descriptions were constructed from the types and numbers 
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of p-domains they contained. By analyzing the p-domains in the individuals, 
and comparing them to the class descriptions, the most specific class 
instantiating an individual could be identified. 

3.3 Query Pattern 

The query pattern can be used independently of the previous patterns or 
in addition to the realization pattern. This pattern partially views individual 
descriptions as stored in a deductive DB and query results are interpreted as 
solutions for the application problem. A typical use of the query pattern 
would be to add functionality to the realization pattern by allowing more 
complex query conditions that can be utilized to encode problem solutions. 
For instance, arbitrary queries allow one to query (possibly cyclic) individual 
graph structures where the edges of a graph consist of properties holding 
between pairs of individuals. The realization pattern can be often considered 
as queries enforcing individual tree structures only. Both query pattern 
variants might collapse into one pattern if a query involves enumerated 
classes. The successful use of the query pattern is reported elsewhere 
[29],[30]. 

4. USING OWL DL IN BIOLOGICAL 
CLASSIFICATION 

The previous section introduced OWL DL, the notion of reasoning, and 
some common reasoning patterns. This section details the practical 
application of these technologies to the biological case study, and goes on to 
discuss the implications of this for the biological community. 

4.1 The Ontology Classification Method 

This study combined automated reasoning techniques with traditional 
bioinformatics sequence analysis techniques to automatically extract and 
classify the set of protein phosphatases from an organism. Figure 11-3 shows 
the components in our protein classification experiment. 
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Figure US. The Architecture of the ontology classification method 

The method includes the following stages: 
1. An OWL class-level ontology describes the protein phosphatase family 

and the different domain architectures for members of different 
subfamilies. This ontology is pre-loaded into the Instance Store. 

2. Protein instance data is extracted from the protein set of a genome by 
first screening for diagnostic phosphatase domains and then analyzing the 
p-domain composition of each using InterproScan. 

3. The p-domain compositions are then translated into OWL descriptions 
and compared to the OWL definitions for protein family classes using the 
Instance Store which, in turn, uses a Description Logic reasoner. Racer, 
to classify each instance. For every protein sequence, it returns the most 
specific classes from the ontology that this protein could be found to be 
an instance of 

4.2 The Ontology 

All the data used for developing the phosphatase family ontology was 
extracted from peer-reviewed literature from protein phosphatase experts. 
The human protein phosphatases have been well characterized 
experimentally, and detailed reviews of the classification and family 
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composition are available [18],[19]. These reviews represent the current 
community knowledge of the relevant biology. If, in the future, new 
subfamilies are discovered, the ontology can easily be changed to reflect 
these changes in knowledge. 

The differences between phosphatase subfamilies can be expressed by 
the differences of their p-domain compositions. These p-domain 
architectures represent 'rules' for protein subfamily membership, and these 
rules can be expressed as class definitions in an OWL-DL ontology. The use 
of an ontology to capture the understanding of p-domain composition 
enables the automation of the final analysis and classification step which had 
previously required human intervention, thus allowing for full automation of 
the complete process. 

More precisely, for each class of phosphatase, the ontology contains a 
(necessary and sufficient) definition. For this family of proteins, the 
definition is, in most cases, a conjunction of p-domain compositions. For 
example. Figures 11-4 and 11-5 show two classes from the phosphatase 
ontology. Figure 11-4 shows a tyrosine receptor phosphatase, instances of 
which have at least one tyrosine phosphatase catalytic domain and at least 
one transmembrane domain. The former gives the enzyme its catalytic 
activity and the latter anchors the protein to a cell membrane. A specific kind 
of receptor tyrosine phosphatase would have other domains and these are 
specified in subclasses of this class. These two domains are, however, 
sufficient to recognize any particular protein sequence to be a member of 
this class. The ability of OWL to model incomplete knowledge, through its 
open world assumption, is very useful at this point. 

Class ReceptorTyrosinePhosphatase Complete 
(Protein and 

(hasDomain sometytDsinePhosphataseCatalyticDomain) and 
(hasdomain some TransmembraneDomain)) 

Figure 11-4. The complete OWL class description for a receptor tyrosine phosphatase. Note 
the possibility that other domains may be added. 

Figure 11-5 shows an R5 phosphatase. This has many more p-domains. 
They are necessary for R5 phosphatase activity and the presence of all is 
sufficient to recognize any sequence as a member of the class. Note that 
there is a closure axiom stating that these are the only kinds of domain that 
can be present. This is to ensure that a sequence that has the p-domain 
architecture shown in Figure 11-5 plus additional p-domains will not be 
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recognized as an R5 phosphatase. For example, the LAR protein (leukocyte 
antigen related protein, accession number PI0586) contains two tyrosine 
phosphatase catalytic p-domains, one transmembrane p-domain, nine 
fibronectin p-domains and three immunoglobulin p-domains. The tyrosine 
phosphatase catalytic p-domains and the transmembrane p-domain are 
sufficient for the protein to belong to the receptor tyrosine phosphatase class, 
but the extra immunoglobulin p-domains and the lack of a carbonic 
anhydrase p-domain means that it cannot belong to the R5 phosphatase class. 
This protein is another type of receptor tyrosine phosphatase. From Figure 
11-2 we can deduce it is an R2B. 

Class RSPhosphatase Complete 
(Protein and 

(hasDomain two tyrosinePhosphataseCatalyticDomain) and 
(has domain some TransmembraneDomain) and 
(hasDomain some fibronectinDomain) and 

(hasDoman some carbonicAnhydraseDomain) and 
hasDomain only 

(TyrosinePhosphataseCatalyticDomain and 
TransmebraneDomainand fibrcnectinDomain and 
carb oni cA nhy dia seD o main)) 

Figure 11-5. A complete description of an R5 phosphatase. Note the closure axiom restricting 
the kinds of domain that might appear in instances of this class. 

4.3 The Instance Store 

We use the Instance Store application in this study [31]. The Instance 
Store combines a Description Logic reasoner with a relational database. The 
reasoner in this case performs the task of classification; that is, from the 
OWL instance descriptions given, it determines the appropriate ontology 
class for an instance description. The relational database provides the 
stability, scalability and persistence necessary for this work 

4.4 The Data Sets 

This study focuses on protein phosphatases from two organisms, human 
and a pathogenic fungus, Aspergillus fumigatus. The human phosphatases 
have already been identified and extensively described in previous studies 
[18]. They have been carefully hand-classified by domain experts and form a 
control group to assess the performance of the automated classification 
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method. The Aspergillus proteins have been less well characterized and the 
protein phosphatases in this organism required identification and extraction 
from the genome before classification could proceed. 

Previous classification of human phosphatases by domain experts 
provides a substantial test-set for the ontology. If the ontology can classify 
the proteins as well as the human experts have, studies on new, unknown 
genomes can be undertaken with greater confidence. The Aspergillus 
fumigatus genome offers a unique insight into the comparison between the 
automated method and the manual. The A, fumigatus genome has been 
sequenced and annotation is currently underway by a team of human experts 
[32]. 

5. RESULTS 

The purposes of performing the studies with the human and A. fumigatus 
sequence data differed. The human study was a proof of concept to 
demonstrate the automated ontology classification method could be 
effective, and the A. fumigatus study was focused on biological discovery. 

For the human phosphatases, the classification of proteins obtained by 
the automated ontology method was compared with the human expert 
classification. For each subclass of protein phosphatases, the numbers of 
individual proteins in the human classification were compared to the number 
obtained from the automated method. The results were the same number of 
individuals for each class. 

The comparison between the classifications clearly demonstrated that the 
performance of the automated ontology classification system was equal to 
that of the human annotated original and produced the same results. The 
ontology class definitions were sufficient to identify the differences between 
protein subfamilies and demonstrate the usability of the system on 
uncharacterized genomes. 

An interesting result from the analysis was that, using the ontology, we 
were able to identify additional functional domains in two dual specificity 
phosphatases, presenting the opportunity to refine the classification of the 
subfamily into further subtypes. 

Alonso et al [18], describe the 'atypical' dual specificity phosphatases as 
being divided into seven subtypes. The largest of these have the same p-
domain architecture; they contain tyrosine phosphatase and dual specificity 
catalytic p-domains alone. However, several proteins have additional 
functional domains that have been shown to confer functional specificity 
[33]. Classifying the proteins using the ontology highlighted more of these 
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'extra' p-domains. For example, the dual specificity phosphatase 10 protein 
(DUSIO, UniProt accession: Q9Y6W6) contains a disintegrin domain. The 
UniProt record reflects this, but the domain does not appear in any 
phosphatase characterization/classification studies. The domain architecture 
of DUSIO is conserved in other species (Figure 11-6), which suggests a 
specific function for the domain, but current experimental evidence does not 
explain what this might be. 

Mouse (Uniprot: Q9ESS0) 

# # # 

Human (Uniprot: Q9Y6W6) 

Rattus Norveglcus Ensembl ENSRNOP00000005400 

Xenopus Tropicafis 104951 

Rhodanese-like IPR001763 

Dual specificity ^ 
phosphatase IPR000340 

Disintegrin IPR001762 ( 

MAP kinase phosphatase IPR008343 

_—-_,. Tyrosine and Dual 
") Specificity Phosphatase 

- —- • ' " IPR000387 

Figure 11-6. The domain architecture of the dual specificity phosphatase 10 protein across 
different organisms 

The results of the classification of phosphatases for the A. fumigatus 
genome were more interesting from a biological perspective. 

The A. fumigatus genome has been partially annotated. It has been 
sequenced, and is being annotated by human experts. Therefore, the protein 
data currently consists of both predicted and known proteins. The predicted 
proteins may contain descriptions based upon automated similarity searches, 
producing entries termed 'hypothetical' or 'putative', but their annotation is 
limited. 

Using the ontology system to classify the phosphatases allowed a 
comparison between the proteins already annotated and those with partial 
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annotation from similarity searching. The classification also enabled a 
comparison between the protein phosphatases in the human and A. fumigatus 
genomes. Figure 11-7 shows the differences in protein family composition. 

Figure 11-7. The number of protein phosphatases the in human and A.fumigatus genomes. 
Human proteins are shown in pale grey, A.fumigatus in dark grey. These numbers represent 
the higher level classes of phosphatase. For example, the R5 phosphatase from Figure 11-4 is 
a subclass of receptor tyrosine phosphatase, and so is a child of the R-PTP class. 

In the case of the A.fumigatus proteins, the most interesting results were 
proteins that did not fit into any of the defined subfamily classes. These 
proteins represented differences between the human and A.fumigatus protein 
families and therefore potential differences in metabolic pathways. Since A. 
fumigatus is pathogenic to humans, these differences are important avenues 
of investigation for potential drug targets. The most interesting discovery in 
the A.fumigatus data set was the identification of a novel type of calcineurin 
phosphatase. Calcineurin is well conserved throughout evolution and 
performs the same function in all organisms. However, in A.fumigatus, it 
contains an extra functional domain. The ontology classification method 
highlighted this difference by failing to classify the protein into any of the 
defined subfamily classes. Further bioinformatics analyses revealed that this 
extra domain also occurs in other pathogenic fungus species, but in no other 
organisms, suggesting a specific functional role for this extra p-domain. 
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6. DISCUSSION 

This study demonstrates the use of the reasoning capabilities of 
description logic ontologies to perform protein classifications. By harnessing 
this technology, classifications that had previously relied on human 
interpretation steps could be derived from definitions of ontological classes 
and simple sequence analysis data alone. 

Bioinformaticians perform protein classification by analyzing sequences 
using a series of bioinformatics tools and interpreting their results based on 
prior knowledge. Automating the use of the tools can be a trivial problem 
compared with automating the interpretation step. Users may require local 
implementations of tools and databases or data files for analysis, or they may 
perform these analyses using middleware services and workflows. However, 
the process of inserting and collecting data is a mechanical one and can be 
scripted. 

Automating the biological interpretation of bioinformatics results is 
where the difficulty lies. An analysis of the functional domains in a given 
protein, using InterProScan for example, produces a list of domains. The 
number of each domain and, potentially, the order could also be captured, 
but it is the bioinformatician that infers that the presence of domains x, y and 
z, for example, indicates membership of a particular family. Capturing the 
knowledge used to perform these inferences, using defined classes in an 
ontology allows this final step to also be automated, increasing the speed at 
which proteins from a particular family can be extracted from a genome and 
classified. The most useful application for this technology is the analysis of 
protein families from genomes as and when they are sequenced, enabling 
fast comparisons between what is known to be present in other species. In 
the pharmaceutical industry in particular, this has implications for the 
discovery of new drug targets. Bioinformatics has been increasingly used to 
quicken the pace of target identification [34]. Performing in silico 
experiments on publicly available data is faster and much less expensive 
than many laboratory experiments. The automated classification technique 
enables whole protein families from many species, perhaps pathogenic and 
non-pathogenic to be analyzed in unison, identifying differences that could 
be easily exploited when targeting pharmaceuticals. 

The automated classification technique has proven to produce 
biologically significant results in the protein phosphatase domain and work 
is continuing to analyze protein phosphatases in other species, currently, the 
trypanosomes. The work has also been expanded to analyze different protein 
families, the potassium ion channels and the ADAMTS proteins. 

In the future, there are plans to increase the expressivity of the protein 
class descriptions. As work on other protein families continues, new 
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considerations are emerging. For example, for the protein phosphatases, the 
order of p-domains was not important, simply counting the number of each 
was sufficient to distinguish between proteins from different subfamilies. 
However, extending this work to other protein families would require 
ontology class descriptions to specify the order of p-domains. 

The automated classification method presented here focuses on protein 
family classification using protein domain architectures; however, it is not 
confined to such relationships. Any analysis which uses sequence data alone 
can potentially use the ontology-driven method. For example, substrate 
recognition or protein-protein binding interactions. 

The biological significance of the results obtained from the small proof 
of principle study in this work demonstrates that it is a powerful application 
of ontology reasoning, and since classification and data annotation are now 
slower than data production, it could have far-reaching implications on 
bioinformatics data analysis. 

Ontology use in the bioinformatics community has grown steadily over 
recent years. As data and information sources reached sizes that could not be 
realistically managed manually, and as the need for large-scale integration 
and interoperation between these resources increased, computational 
methods were sought to help address these issues. In this work, the 
application of ontologies to classifying protein family information has been 
presented. The resources produced have demonstrated the utility of such 
technologies and the distinct advantages gained by their use. It is hoped that 
this system can be employed and exploited in future work for drug target 
identification and new genome annotation. 
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Chapter 12 

CAN SEMANTIC WEB TECHNOLOGIES 
ENABLE TRANSLATIONAL MEDICINE ? 

Vipul Kashyap and Tonya Hongsermeier 
Clinical Informatics R&D, Partners HealthCare System 

Abstract: The success of new innovations and technologies are very often disruptive in 
nature. At the same time, they enable novel next generation infrastructures and 
solutions. These solutions often give rise to creation of new commercial 
markets and/or introduce great efficiencies in the form of efficient processes 
and the ability to create, organize, share and manage knowledge effectively. 
This benefits both researchers and practitioners in a given field of activity. In 
this chapter, we explore the area of Translational Medicine which aims to 
improve communication between the basic and clinical sciences so that more 
therapeutic insights may be derived from new scientific ideas - and vice versa. 
Translation research goes from bench to bedside, where theories emerging 
from preclinical experimentation are tested on disease-affected human 
subjects, and from bedside to bench, where information obtained from 
preliminary human experimentation can be used to refine our understanding of 
the biological principles underpinning the heterogeneity of human disease and 
polymorphism(s). Informatics in general and semantic web technologies in 
particular, has a big role to play in making this a reality. We present a clinical 
use case and identify critical requirements, viz., data integration, clinical 
decision support and knowledge maintenance and provenance, which should 
be supported to enable translational medicine. Solutions based on semantic 
web technologies for these requirements are also presented. Finally, we 
discuss research issues motivated by the gaps in the current state of the art in 
semantic web technologies: (a) The impact of expressive data and knowledge 
models and query languages; (b) The role played by declarative specifications 
such as rules, description logics axioms and the associated querying and 
inference mechanisms based on these specifications; (c) Architectures for data 
integration, clinical decision support and knowledge management in the 
context of the application use case. 

Key words: Semantic Web technologies, Translational Medicine, Data Integration, Clinical 
Decision Support, Knowledge Maintenance and Provenance, Resource 
Description Framework (RDF), Web Ontology Language (OWL), Molecular 
Diagnostic Tests, Genetic Variants, Hypertrophic Cardiomyopathy, Family 



250 Revolutionizing Knowledge Discovery in the Life Sciences 

History, Business Object Models, Business Rules Management Server, OWL 
reasoners. Ontologies, Query Processing, Semantic Inference, Knowledge, 
Data and Process Models. 

1. INTRODUCTION 

The success of new innovations and technologies are very often 
disruptive in nature. At the same time, they enable novel next generation 
infrastructures and solutions. These solutions often give rise to creation of 
new markets and/or introduce great efficiencies. For example, the 
standardization and deployment of IP networks resulted in introducing novel 
applications that were not possible in older telecom networks. The Web 
itself has revolutionized the way people look for information and 
corporations do business. Web based solutions have dramatically driven 
down operational costs both within and across enterprises. The Semantic 
Web is being proposed as the next generation infrastructure, which builds on 
the current web and attempts to give information on the web a well defined 
meaning [5]. This may well be viewed as the next wave of innovation being 
witnessed in the information technology sector. 

On the other hand, the healthcare and life sciences sector is playing host 
to a battery of innovations triggered by the sequencing of the Human 
Genome. Significant innovative activity is being witnessed in the area of 
Translational Medicine which aims to improve the communication between 
basic and clinical science so that more therapeutic insights may be derived 
from new scientific ideas - and vice versa. Translation research [6] goes 
from bench to bedside, where theories emerging from preclinical 
experimentation are tested on disease-affected human subjects, and from 
bedside to bench, where information obtained from preliminary human 
experimentation can be used to refine our understanding of the biological 
principles underpinning the heterogeneity of human disease and 
polymorphism(s). The products of translational research, such as molecular 
diagnostic tests are likely to be the first enablers of personalized medicine 
(see an interesting characterization of activity in the healthcare and life 
sciences area in [7]). We will refer to this activity as Translational Medicine 
in the context of this chapter. 

We are witnessing a confluence of two waves of innovation, semantic 
web activity on one hand, and translational medicine activity on the other. 
Informatics and semantic web technologies will play a big role in realizing 
the vision of Translational Medicine. The organization of this chapter is as 
follows. We begin (Section 2) with a clinical use case presented in [1] that 
illustrates the use of molecular diagnostic tests in a clinical setting. We 
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believe that initially translational medicine will manifest itself in clinical 
practice in this manner. This is followed in Section 3, with an analysis of 
various stakeholders in the fields of healthcare and life sciences, along with 
their respective needs and requirements. In Section 4, we discuss conceptual 
architectures for Translational Medicine followed by identification of key 
functional requirements that need to be supported, viz. data integration, 
clinical decision support and knowledge maintenance and provenance. This 
is followed by a discussion of solutions to these requirements based on 
semantic web technologies and the advantages of the same. In Section 5, we 
present an implementation of data integration across the clinical and 
genomic contexts; that use semantic web specifications such as the Resource 
Description Framework (RDF) [3] and the Web Ontology Language (OWL) 
[4]. In Section 6, an implementation of clinical decision support that uses the 
OWL specification and a Business Rules Engine is presented. Section 7 
presents an implementation of Knowledge Maintenance and Provenance 
using the OWL specification. Finally, in Section 8, we discuss research 
issues motivated by the implementations presented in Sections 5-7, followed 
by a discussion of the Conclusions and Future work in Section 9. 

2. TRANSLATIONAL MEDICINE: USE CASE 

We anticipate that one of the earliest manifestations of translational 
research will be the introduction and hopefully accelerated adoption of 
therapies and tests gleaned fi-om genomics and clinical research into 
everyday clinical practice. The weak link in this chain is obviously the 
clinical practitioner. The worlds of genomic research and clinical practice 
have been separate until now, though there are efforts underway that seek 
utilize results of genomic discovery in the context of clinical practice. We 
now present a clinical use case that illustrates the use of molecular 
diagnostics in the context of clinical care. 

Consider a patient who presents with shortness of breath and fatigue in a 
doctor's clinic. Subsequent examination of the patient reveals the following 
information: 
• A clinical examination of the patient reveals abnormal heart sounds 

which could be represented in a structured physical exam. 
• Further discussion of the family history of the patient reveals that his 

father had a sudden death at the age of 40, but his two brothers were 
normal. This information needs to be represented in a structured family 
history record. 
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• Based on the finding of abnormal heart sounds, the doctor may decide (or 
an information system may recommend) to order an ultrasound for the 
patient. The results of this ultrasound can be represented as structured 
annotations on an image file. 

The finding of the ultrasound may reveal cardiomyopathy, based on which 
the doctor can decide (or the information system may recommend) to order 
the following molecular diagnostic tests to screen the following genes for 
genetic variations: 
1. beta-cardiac Myosin Heavy Chain (MYH7) 
2. cardiac Myosin-Binding Protein C (MYBPC3) 
3. cardiac Troponin T (TNNT2) 
4. cardiac Troponin I (TNNI3) 
5. alpha-Tropomyosin(TPMl) 
6. cardiac alpha-Actin (ACTC) 
7. cardiac Regulatory Myosin Light Chain (MYL2) 
8. cardiac Essential Myosin Light Chain (MYL3) 
If the patient tests positive for pathogenic variants in any of the above genes, 
the doctor may want to recommend that first and second degree relatives of 
the patient consider testing. The doctor in charge can then select treatment 
based on all data. He can stratify for treatment by clinical presentation, 
imaging and non-invasive physiological measures in the genomic era, for 
e.g., non-invasive serum proteomics. 

The introduction of genetic tests introduces further stratification of the 
patient population for treatment. For instance, a patient is considered at high 
risk for sudden death, if the following hold (based on recommendations by 
the American College of Cardiologists [2]): 
1. Previous history of cardiac arrest 
2. Mass hypertrophy (indicated by a septal measurement of 3.0 or higher) 
3. Significant family history 
4. Serious arrhythmias (documented) 
5. Recurrent Syncope 
6. Adverse blood pressure response on stress test 
Whenever a patient is determined to be at a high risk for sudden death, they 
are put under therapeutic protocols based on drugs such as Amiadorone or 
Implantable Cardioverter Defibrillator (ICD). It may be noted that the 
therapy is determined purely on the basis of phenotypic conditions which in 
the case of some patients may not have held to be true. In this case where 
molecular diagnostic tests may indicate a risk for cardiomyopathy, 
phenotypic monitoring protocol may be indicated. 
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3. INFORMATION NEEDS AND REQUIREMENTS 

We presented a clinical use case for translational medicine in the 
previous section. In this section, we present an analysis of the clinical use 
case, by specifying an information flow (illustrated in Figure 12-1 below) 
and identifying the various stakeholders and their information needs and 
requirements in the context of the information flow. 

Figure 12-1. Translational Medicine Information Flows 

A canonical information flow that could be triggered off by a patient 
encounter is presented in Figure 12-1 above. The information needs in the 
context of clinical diagnosis and therapeutic intervention is presented. The 
aggregation of data for identifying patients for clinical trials and tissue 
banks; and leading to knowledge acquisition especially in the context 
creating knowledge bases for decision support, mappings between genotypic 
and phenotypic traits; is also presented. An enumeration of the information 
requirements is presented below in Table 12-1. 

4. ARCHITECTURE FOR TRANSLATIONAL 
MEDICINE 

In the previous section, we presented an analysis of some information 
requirements for translational medicine. The information items have multiple 
stakeholders and are required or generated by different application and 
software components. In this section, we build upon this analysis and present 
architectural components required to support a cycle of learning from and 
translation of innovation into the clinical care environment. 
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Table 12-1. Information Requirements 
Step 
Number 
1 

2 

3 

4 

5 

6 

7 

Information Requirement 

Description of Genetic 
Tests, Patient Information, 
Decision Support KB 
Test Results, Decision 
Support KB 

Database with Genotypic-
Phenotypic associations 

Test Orders, Test Results 

Tissue and Specimen 
Information, Test Results 
Tissue and Specimen 
Information, Test Results, 
Database with Genotypic -
Phenotypic associations 
Database with Genotypic -
Phenotypic associations 

Application 

Decision Support, 
Electronic Medical Record 

Decision Support, 
Database with Genotypic-
Phenotypic associations 
Knowledge Acquisition, 
Decision Support, Clinical 
Guidelines Design 

Clinical Trials 
Management Software 
LIMS 

Lead Generation, Target 
Discovery and Validation, 
Clinical Guidelines Design 

Clinical Trials Design 

Stakeholder(s) 

Clinician, Patient 

Clinician, Patient, 
Healthcare 
Institution 
Knowledge 
Engineer, Clinical 
Researcher, 
Clinician 
Clinical Trials 
Designer 
Clinician, Life 
Science Researcher 
Life Science 
Researcher, 
Clinical Researcher 

Clinical Trials 
Designer 

The components of the conceptual architecture are illustrated in Figure 12-2 
and described below. 

Portals: Workflow portals and personalized user interfaces for different 
stakeholders such clinical researchers, lab personnel, clinical trials, and 
clinical care providers are provided through the user interface layer of the 
architecture. 
Applications: The Electronic Health Record and Laboratory Information 
Systems are two main applications which provide a slew of services to 
healthcare and life science researchers and practitioners. We anticipate the 
emergence of novel applications that integrate applications and data across 
the healthcare and life sciences. 
Data Repositories and Services: These services will enable integration of 
genotypic and phenotypic patient data, and reference information data. This 
integrated data could be used for enabling clinical care transactions, 
knowledge acquisition of clinical guidelines and decision support rules, and 
for hypothesis discovery for identifying promising drug targets. 
Decision Support Services: Knowledge-based Clinical and Genetic 
decision support services provide recommendations and inferences at the 
point of care; and form an important component of the architecture. These 
services consume aggregated information and data created by data 
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repositories and services and utilize domain specific knowledge bases and 
ontologies, created by the knowledge acquisition and discovery services. 
Decision support functionality may be implemented using inference engines 
such as business rules engines [8,9] and OWL reasoners [10,11,12]. 
Knowledge Asset Management: A Knowledge Authoring environment 
coupled with a Knowledge Management (KM) platform for creation and 
maintenance of various knowledge bases such as those that inform decision 
support, clinical guidelines and associations between the genotype and the 
phenotype. The platform may invoke vocabulary/terminology engines 
[13,14], OWL reasoners and business rule engines to implement knowledge 
dependency and propagation. This will be crucial for and updating various 
knowledge bases in response to continuous, ongoing discovery of new 
knowledge in the healthcare and life sciences. 
Knowledge Acquisition and Discovery Services: Knowledge discovery 
services provide functionality for creation and/or derivation, validation, and 
publication of knowledge-bases for decision support systems used in genetic 
and clinical decision support. The new knowledge discovered could provide 
the basis for new hypotheses which could be further validated. This 
functionality may be supported by implementing appropriate data mining 
and machine learning algorithms. 

APPLICATIONS 

DATA REPOSITORIES 
AND SERVICES 

Semantic Inferencing 
KNOWLEDGE ( And Agent-based 
ACQUISITION x ^ ^ Discovery Sen/ices 
AND DISCOVERY ^ 
SERVICES ^ ^ * A , . J 

" ^ Data Analysts and 
Collaborative Knowledge 

Engineers 

/ t o Metathesaurus. UMLS, 
f SNOMED CT. DxPlain. ETC 
\otherKnowledge Sources^ 

Figure 12-2. Translational Medicine Architecture 

Of the various architectural components discussed above, we now discuss 
three components which are crucial for enabling the vision of translational 
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medicine. These components also correspond to key functional requirements 
discussed earlier in this chapter. 
Data Integration: This is a key functionality supported by the information 
integration platform. It provides the ability to integrate data across different 
types of clinical and biological data repositories. In the context of the clinical 
use case discussed in Section 2, there is a need for integration and 
correlation of clinical and phenotypic data about a patient obtained from the 
Electronic Medical Record (EMR) with molecular diagnostic test results 
obtained from the Laboratory Information Management System (LIMS). 
Furthermore, the integrated information product will need to be used in 
different contexts in different ways as identified in the information 
requirements enumerated in Table 12-1. 
Decision Support: This is a key functionality supported by decision support 
services. In the context of the clinical use case discussed in Section 2, there 
is need for providing guidance to a clinician for ordering the right molecular 
diagnostic tests in the context of phenotypic observations about a patient and 
for ordering appropriate therapies in response to molecular diagnostic test 
results. Structured, integrated genotypic and phenotypic descriptions of the 
patient state are crucial for the delivery of relevant and exhaustive 
recommendations to the clinician. 
Knowledge Maintenance and Provenance: This is a key ftinctionality 
provided by the knowledge authoring and maintenance platform. Both data 
integration and decision support critically depend on domain specific 
knowledge that could be represented as ontologies, rule bases, semantic 
mappings (between data and ontological concepts), and bridge ontology 
mappings (between concepts in different ontologies). The healthcare and life 
sciences domains are experiencing a rapid rate of new knowledge discovery 
and change. A knowledge change "event" has the potential of introducing 
inconsistencies and changes in the current knowledge bases that inform 
semantic data integration and decision support functions. There is a critical 
need to keep knowledge-bases current with the latest knowledge discovery 
and changes in the healthcare and life sciences domains. 

In the following sections, we present a discussion of our implementation of 
the key functional requirements listed above. We will illustrate with the help 
of examples, the use of semantic web specifications, tools and technologies 
in our implementation approach and discuss the comparative advantages of 
the same. 
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5. DATA INTEGRATION 

257 

We now describe with the help of an example, our implementation 
approach for data integration based on semantic web specifications such as 
RDF [3] and OWL [4], to bridge clinical data obtained from an EMR and 
genomic data obtained from a LIMS. The data integration approach consists 
of the following steps: 
1. Creation of a domain ontology identifying key concepts across the 

clinical and genomic domains. 
2. Design and creation of wrappers that exposes the data in a given data 

repository in a RDF view. 
3. Specification of mapping rules that provide linkages across data retrieved 

from different data repositories. 
4. A user interface for: (a) specifications of data linkage mappings; and (b) 

Visualization of the integrated information. 
We begin with a discussion of semantic data integration architecture 
underlying the implementation. This is followed by a discussion of the 
various steps enumerated above. 

5.1 Semantic Data Integration Architecture 

The semantic data integration architecture is a federation of data repositories 
as illustrated in Figure 12-3 below and has the following components. 

User Interface 
for Results Viewing 
and Visualization 

Mediation Layer 

Merged RDF Graph 

RDF Graph 1 RDF Graph 2 

RDF Wrapper 

User Interface 
for Specifying 
Mappings, Wrapper 
Configurations and 
Ontologies 

RDF Wrapper 

EMR 

Domain Ontologies 
for Translational Medicine 

LIMS 

Figure 12-3. Semantic Data Integration Architecture 



258 Revolutionizing Knowledge Discovery in the Life Sciences 

Data Repositories: Data repositories that participate in the federation offer 
access to all or some portion of the data. In the translational medicine 
context, these repositories could contain clinical data stored in the EMR 
system or genomic data stored in the LIMS. Data remains in their native 
repositories in a native format and is not moved to a centralized location, as 
would be the case in data warehouse based approach. 
Domain Ontologies: Ontologies contain a collection of concepts and 
relationships that characterize the knowledge in the clinical and genomic 
domains. They provide a common reference point that supports the semantic 
integration and interoperation of data. 
RDF Wrappers: Wrappers are data repository specific software modules 
that map internal database tables or other data structures to concepts and 
relationships in the domain ontologies. Data in a repository is now exposed 
as RDF Graphs for use by the other components in the system. 
Mediation Layer: The mediation layer takes as input mapping rules that 
may be specified between various RDF graphs and computes the merged 
RDF graphs based on those mapping rules. 
User Interfaces: User interfaces support: (a) Visualization of integration 
results; (b) design and creation of domain ontologies; (c) configuration of 
RDF wrappers; and (d) specification of mapping rules to merge RDF graphs. 

The main advantage of the approach is that one or more data sources can 
be added in an incremental manner. According to the current state of the 
practice, data integration is implemented via one-off programs or scripts 
where the semantics of the data is hard coded. Adding more data sources 
typically involves rewriting these programs and scripts. In our approach, the 
semantics are made explicit in RDF graphs and the integration is 
implemented via declarative specification of mappings and rules. These can 
be configured to incorporate new data sources via appropriate configurations 
of mappings, rules and RDF wrappers, leading to a cost and time-effective 
solution. 

5.2 A Domain Ontology for Translational Medicine 

A key first step in semantic data integration is the definition of a domain 
ontology spanning both the clinical and genomic domains. There are 
multiple collaborative efforts in developing ontologies in this area being 
undertaken in the context of the W3C Interest group on the Semantic Web 
for the Healthcare and the Life Sciences [32]. A domain ontology portion is 
illustrated in Figure 12-4 and contains the following key concepts and 
relationships. 
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Patient: This is a core concept that characterizes patient state information, 
such as value of various patient state parameters, the results of diagnostic 
tests and his/her family and lineage information. A subclass relationship 
between the concept Patient and Person is also represented. Information 
about a patient's relatives is represented using the is_related relationship 
and the Relative concept. 

- ^ subclass 

— relationship 

Structured Image Report Person 

Structured Test Result 

Clinical 

Genomic 

has>rai!v history associatedjelative 

Molecular Diagnostic Test Result 

Relative 

Family History 

Figure 122'4. A Domain Ontology for Translational Medicine 

Family History: This concept captures information about family members 
that may have had the disease for which the patient is being evaluated, and is 
related to the Patient concept via the has_family_history relationship. 
Structured Test Result: This concept captures results of laboratory tests 
and is related to the Patient concept via the hasstructuredtestresult 
relationship. Similarly radiological reports and observations are represented 
using the Structured Image Report concept and the 
hasstructuredimagereport relationship, respectively. The Molecular 
Diagnostic Test Result concept represents the results of a molecular 
diagnostic test result, a type of structured test result (represented using the 
subclass relationship). Molecular diagnostics identify mutations (represented 
using the identifies_mutation relationship) and indicates diseases 
(represented using the indicates_disease relationship) in a patient. 
Gene: This concept represents information about genes. Information about 
the genes expressed in a patient are represented using the has_genome 
relationship. Genetic variants or mutation of a given gene are represented 
using the Mutation concept and the has_mutation relationship. Information 
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in a patient are represented using the about the mutations expressed 
showsmutation relationship. 
Disease: This concept characterizes the disease states which can be 
diagnosed about a patient, and is related to the patient concept via the 
suffers_from relationship and to the molecular diagnostic test results 
concept via the indicates_disease relationship. 

5.3 Use of RDF to Represent Genomic and Clinical Data 

As discussed in Section 5.1, RX)F wrappers perform the function of 
transforming information as stored in internal data structures in LIMS and 
EMR systems into RDF-based graph representations. We illustrate with 
examples (Figure 12-5), the RDF representation of clinical and genomic data 
in our implementation. 
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Figure 12-5. RDF Representation of Clinical and Genomic Data 

Clinical data related to a patient with a family history oi Sudden Death is 
illustrated. Nodes (boxes) corresponding Patient ID and Person ID are 
connected by an edge labeled relatedjo modeling the relationship between a 
patient and his father. The name of the patient ("Mr. X") is modeled as 
another node, and is linked to the patient node via an edge labeled name. 
Properties of the relationship between the patient ID and person ID nodes are 
represented by reification^^ (represented as a big box) of the edge labeled 
relatedjo and attaching labeled edges for properties such as the type of 
relationship {paternal) and the degree of the relationship (7). 

^̂  Reification is a process by which one can view statements (edges) in RDF as nodes and 
assign properties and values to them. 
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Genomic data related to a patient evaluated for a given mutation {MYH7 
missense Ser532Pro) is illustrated. Nodes (boxes) corresponding to Patient 
ID and Molecular Diagnostic Test Result ID are connected by an edge 
labeled has_structured_test_result modeling the relationship between a 
patient and his molecular diagnostic test result. Nodes are created for the 
genetic mutation MYH7 missense Ser532Pro and the disease Dialated 
Cardiomyopathy. The relationship of the test result to the genetic mutation 
and disease is modeled using the labeled edges identifiesjnutation and 
indicatesjdisease respectively. The degree of evidence for the dialated 
cardiomyopathy is represented by reification (represented as boxes and 
ovals) of the indicates_disease relationship and attaching labeled edges 
evidence! and evidence! to reified edge. Multiple confidence values 
expressed by different experts can be represented by reifying the edge 
multiple times. 

5.4 The Integration Process 

The data integration process is an interactive one and involves a human end 
user, who in our case may be a clinical or genomic researcher, RDF graphs 
from different data sources are displayed. The steps in the process that lead 
to the final integrated result (Figure 12-6) are enumerated below. 
1. RDF graphs are displayed in an intuitive and understandable manner to 

the end user in a graphical user interface. 
2. The end user previews them and specifies a set of rules for linking nodes 

across different RDF models. Some examples of simple rules that are 
implemented in our system are: 

• Merge nodes that have the same IDs or URIs 
• Merge nodes that have matching IDs, per a lookup on the Enterprise 

Master Patient Index (EMPI) 
• If there are three nodes in the merged graph. Model, Node2 and Node3 

such that Model and Model are linked with an edge labeled 
hasjstructuredJest_results; and Mode2 and Mode3 are linked with an 
edge labeled indicates_disease\ then introduce a new edge labeled 
may_sufferJrom that links Model and Mode3. 

3. Merged RDF graphs that are generated based on these rules are displayed 
to the user, who may then decide to activate or de-activate some of the 
rules displayed. 

4. New edges (for e.g., mayjsufferjrom) that are inferred from these rules 
may be added back to the system based on the results of the integration. 
Sophisticated data mining that determines the confidence and support for 
these new relationships might be invoked. 
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It may be noted that this iterative exercise may be done by an informatics-
aware cHnical or genomic researcher. Once the integration mappings have 
been tested and vaUdated, these mappings are pubHshed into the system and 
cHnical practitioners such as a nurse or a physician can view the results of 
the integration in the context of their respective applications (see Table 12-1 
in Section 3 for a list of potential applications). 
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Figure 12-6. RDF Representation of the Integrated Result 

5.5 The Value of RDF vs. Relational Databases 

The value proposition in using Semantic Web technologies such as RDF 
needs to be articulated clearly. In the context of data integration, the value 
proposition of using RDF vis-a-vis relational databases stems from multiple 
factors. The primary factor is that the RDF data model and query language, 
SPARQL [15], enable the querying and manipulation of highly expressive 
graph structures in a declarative manner. It could be argued that each of 
these examples could be implemented using relational tables and SQL. 
However, to achieve and implement optimized graph-based operations, one 
would require implementing all the graph related query operations on a 
relational data store. This functionality is available for free while using an 
RDF data store, some robust implementations of which are now available 
[17,18,19]. Furthermore, RDF graph structures are more intuitive to 
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investigate and propose mappings for informatics aware clinical and 
genomic researchers, as opposed to nested table structures that might be 
displayed to simulate RDF objects such as arbitrarily reified graphs and 
paths. Finally, even if it is conceivable that one creates an optimized 
relational database for biological data (e.g., KEGG pathway database [16]), 
in order to integrate multiple data repositories, one would need to understand 
the underlying database schema and other system details. This would require 
creation of one-off scripts to integrate these data sources, an activity that 
might be beyond the capability of clinical or genomics researcher. Our 
approach and architecture would enable abstracting out system and schema 
related details, so that users can specify mapping rules at the level of the 
semantics of information, thus changing the problem from one of coding to 
that of declarative configuration. We anticipate that this is likely to enable a 
huge savings in time and resources to implement data integration; and to 
make the integration process more flexible. The latter could lead to 
significant reduction in the time required to integrate data from a new data 
repository. Systems such as Discovery Link [33], Discovery Hub [34] and 
TAMBIS [35], have used mediation architectures for data integration. Our 
approach uses the mediation architecture in conjunction with semantics rich 
data and knowledge descriptions. Furthermore, the user (clinical or genomic 
researcher) is involved in discovering mappings across data and knowledge 
sources in an iterative manner. 

6. CLINICAL DECISION SUPPORT 

Various forms of clinical decision support functionality have been 
implemented in clinical systems used by healthcare delivery organizations. 
This functionality has been implemented in the context of various 
applications, where decision support logic supported by these applications is 
embedded within the invoking application and an attempt has been made to 
automate complex guidelines for clinical care [22]. Examples of typical 
applications are: (a) Computerized physician order entry (CPOE) 
applications, which allow physicians to enter orders (e.g., medications, 
laboratory and radiology tests) into the computer system interactively 
providing real-time decision support as part of the ordering process; (b) 
automatic alerting, which automatically identifies serious clinical conditions 
and notifies the patient's attending physician while suggesting potential 
treatments for patient's condition; (c) Adverse drug-events monitor (ADE), 
which reviews patients' medication profiles for pairs of interacting drugs 
(physiological changes, reflected in abnormal laboratory results, that may 
occur as a result of an adverse drug-drug interaction may be accounted for); 
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and (d) outpatient reminders and results manager; an application that helps 
clinicians review and act upon test results in a timely manner. 

In order to maintain the currency and consistency of decision support 
knowledge across all clinical information systems and applications, we are 
implementing a rules based approach for representing and executing decision 
support knowledge [23]. At Partners Healthcare System, we are in piloting a 
clinical decision support service implemented using a commercial industry 
strength business rules engine [20]. Various clinical applications will mvoke 
this clinical decision support services for their decision support needs. 

A logically centralized decision support service enables the maintenance 
of currency and consistency of various rule-bases across Partners Healthcare. 
At the same time, however, we have implemented an ontology-based 
approach for re-architecting our knowledge bases. In this section, we present 
an approach and architecture for implementing scalable and maintainable 
clinical decision support at the Partners HealthCare System. This is an 
evaluation in progress implemented using a Business Rules Engine and an 
OWL-based ontology engine to determine the feasibility and value 
proposition of the approach [21]. 

The architecture integrates a business rules engine that executes 
declarative if-then rules stored in a rule-base referencing objects and 
methods in a business object model. The rules engine executes object 
methods by invoking services implemented on the EMR. Specialized 
inferences that support classification of data and instances into classes are 
identified and an approach to implement these inferences using an OWL 
(Web Ontology Language) based ontology engine is presented. 
Architectural alternatives for integration of clinical decision support 
functionality with the invoking application and the underlying clinical data 
repository; and their associated trade-offs are also discussed. 

Consider the following decision support rule: 

IF the patient's LDL Test Result is greater than 120 
AND the patient has a contraindication to Fibric Acid 
THEN Prescribe the Zetia Lipid Management Protocol 

The steps for implementing the above clinical guideline are: 
L Create the Business Object Model that defines patient related classes and 

methods. 
2. Specify Rules to encode Decision Support logic. 
3. Delineate definitions characterizing patient states and classes and 

represent them in an Ontology 
We begin with presenting our clinical decision support architecture and then 
illustrating with the example given above, the steps for creation of 
appropriate ontologies and rule bases. 
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6,1 Clinical Decision Support Architecture 

265 

Our architecture for implementing clinical decision support is illustrated 
in Figure 12-7 below and consists of the following components. 
Clinical Data Repository: The clinical data repository stores patient-related 
clinical data. External applications, the rule engine (via methods defined in 
the business object model) and the ontology engine retrieve patient data by 
invoking services implemented by the clinical data repository. 
Standalone Rules Engine Service: A standalone rules engine service is 
implemented using a business rules engine. On receiving a request, the 
service initializes a rule engine instance, loads the rule base and business 
object model. The rule engine service then executes methods in the business 
object model and performs rule based inferences. The results obtained are 
then returned to the invoking application. 
In-process Rule Engine Component: This provides similar functionality to 
the rules engine service, except that the rule engine component is loaded in 
the same process space in which the application is executing. 
Ontology Engine: This will be implemented using an OWL-based ontology 
engine. On receiving a request, the ontology engine performs classification 
inferences on patient data to determine if a patient belongs to a particular 
category, e.g., a patient with contraindication to fibric acid. 

standalone 
Rules Engine 
Service 

APPLICATION 

In-process Rule 
Engine component 

Ontology 
Engine 

Clinical Data 
Repository 

Figure 122-7. Clinical Decision Support Architecture 

6.2 Business Object Model Design 

The business object model for the above clinical decision support rule 
could be specified as follows. 
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Class Patient: Person 
method get_name(): string; 
method has_genetic_test_result(): StructuredTestResult; 
method has_liver_panel_result(): LiverPanelResult; 
method has_ldl_result(): real; 
method has_contraindication(}: set of string; 
method has_mutation(): string; 
method has_therapy(): set of string; 
method set_therapy(string): void; 
method has_allergy(): set of string; 
Class StructuredTestResult 
method get_patient(): Patient; 
method indicates_disease{): Disease; 
method identifies_mutation(): set of string; 
method evidence_of_mutation(string): real; 
Class LiverPanelResult 
method get_patient(): Patient; 
method get_ALP() 
method get_ALT() 
method get_AST() 

real; 
real; 
real; 

method get_Total_Bilirubin(): real; 
method get_Creatinine(): real; 

The model describes patient state information by providing a class and 
set of methods that make patient state information, e.g., results of various 
tests, therapies, allergies and contraindications, available to the rules engine. 
The model also contains classes which represent classes corresponding to 
complex tests such as a liver panel result and methods that retrieve 
information specific to those tests, e.g. methods for retrieving creatinine 
clearance and total bilirubin. The methods defined in the object model are 
executed by the rules engine which results in invocation of services on the 
clinical data repository for retrieval of patient data. 

6.3 Rule Base Design 

The Business Object Model defined in the previous section provides the 
vocabulary for specifying various clinical decision support rules. Consider 
the following rule specification of the clinical decision support rule 
discussed earlier. 

IF.the_patient.has_ldl_result0 > 120 
AND ((the_patient.has_liver_panel_result().get_ALP() > <Normal> 

AND the_patient.has_liver_panel_result() 
AND the_patlent.has liver panel result() 
AND the_patient.has_liver_panel_result() 

AND the_patient.has_liver_panel_result() 

get ALTO ^ <Normal> 
get AST() > <Normal> 
get Total Bilirubin () > 

<Normal> 
get_Creatinine() > 

<Normal>) 
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OR ''Fibric Acid Allergy" G the_patient .has_allergy (} ) 
THEN the_patient. set_therapy (""Zetia Lipid Management Protocol" 

The above rule represents the various conditions that need to be specified 
(the IF part) so that the system can recommend a particular therapy for a 
patient (the THEN part). The following conditions are represented on the IF 
part of the rule: 
1. The first condition is a simple check on the value of the LDL test result 

for a patient. 
2. The second condition is a complex combination of conditions that check 

whether a patient has contraindication to Fibric Acid. This is done by 
checking whether the patient has an abnormal liver panel or an allergy to 
Fibric Acid. 

6.4 Definitions vs. Decisions: Ontology Design 

Our implementation of the clinical decision support service using a business 
rules engine involved encoding decision support logic across a wide variety 
of applications using rule sets and business object models. An interesting 
design pattern that emerged is described below: 
• Rule-based specifications of conditions that describe patient states and 

classes, for instance, ''Patient with contraindication to fibric acid\ They 
also involve characterization of normal or abnormal physiological patient 
states, for instance, "Patients with abnormal liver panel". These 
specifications are also called definitions, 

• Rule-based specifications that propose therapies, medications and 
referrals, for instance, prescribing lipid management therapy for a patient 
with a contraindication to fibric acid. These specifications are called 
decisions. 

The rule sets are modularized by separating the definition of a "Patient 
with a contraindication to Fibric acid\ from the decisions that are 
recommended once a patient is identified as belonging to that category. The 
definitions of various patient states and classes can be represented as axioms 
in an ontology that could be executed by an OWL ontology inference engine. 
At execution time, the business rules engine can invoke a service that 
interacts with the ontology engine to infer whether a particular patient 
belongs to a given class of patients, in this case, whether a patient has a 
contraindication to Fibric Acid. The ontology of patient states and classes is 
represented as follows: 
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Class Patient 
ObjectProperty hasLiverPanelResuit 
ObjectProperty hasAllergy 

Class LiverPanelResult 
ObjectProperty hasALP 
ObjectProperty hasALT 
ObjectProperty hasAST 
ObjectProperty hasTotalBilirubin 
ObjectProperty hasCreatinine 

Class Allergy 
Class FibricAcidAllergy 
FibricAcidAllergy c Allergy 

Class AbnormalALPResult 
Class AbnormalALTResult 
Class AbnormalASTResult 
Class AbnormalTotalBilirubinResult 
Class AbnormalCreatinineResult 

Class AbnormalLiverPanelResult 
= LiverPanelResult n VhasALP.AbnormalALPResult 
n VhasALT.AbnormalALTResult n VhasAST.AbnormalASTResult 
n VhasTotalBilirubin.AbnormalTotalBilirubinResult 
n VhasCreatinine.AbnormalCreatinineResult 

Class PatientContraindicatedtoFibricAcid 
= Patient n 
(3hasAllergy.FibricAcidAllergy u VhasLiverPanel.AbnormalLiverPanel) 

For simplicity, we have adopted a non-XML based notation although the 
final implementation will be based on the OWL specification. The class 
Patient and properties hasAllergy, hasLiverPanelResult and Others (nOt 
shown above for brevity and clarity) provide a framework for describing the 
patient. The class Pat ientwl thFibr icAcidContra indicat ion is a SUbclaSS o f all 
patients that are known to have contraindication to Fibric Acid. This is 
expressed using an OWL axiom. The class Aiiergy represents various 
diseases and subclasses of interest, FibricAcidAllergy. The classes 
AbnormalALPResult, AbnormalALTResult, AbnormalASTResult, 

AbnormalTotalBilirubinResult and AbnormalCreatinineResult represent 

ranges of values of abnormal ALP, ALT, AST, Total Bilirubin and 
Creatinine results respectively. Custom datatypes based on the OWL 
specifications, provide the ability to map XML Schema datatypes to OWL 
Classes. Range checking and other datatype inferences are also implemented 
on these classes. The class AbnormaiLiverPaneiResuit is defined using an 
axiom to characterize the collection of abnormal values of various 
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component test results (e.g., ALP, ALT, AST, etc.) that belong to a liver 
panel. 

The representation of an axiom specifying the definition of 
Pat ientwi thFibr icAcidContra indica t ion enables the knowledge engineer to 
simplify the rule base significantly. The classification of a patient as being 
contraindicated to Fibric Acid is now performed by the Ontology Engine. 
The simplified rule base can now be represented as: 

IF the_patient.has_contraindiction() contains 
''Fibric Acid Contraindication" 

THEN the_patient.set_therapy C'Zetia Lipid Management Protocol") 

The separation of definitions from decisions and their implementation in an 
ontology engine reduces the complexity of the rule base maintenance 
significantly. It may be noted that the conditions that comprise a definition 
may appear multiple times in multiple rules in a rule base. Our approach 
enables the encapsulation of these conditions in a definition, for e.g., 
PatientwithContraindicationtoFibricAcid. ThuS all rulcS CaU UOW reference 

the class PatientwithContraindicationtoFibricAcid which is defined and 

maintained in the ontology engine. Whenever the definition of 
PatientwithContraindicatiotoFibricAcid chaUgCS, the chaUgCS Can be 

isolated within the ontology engine and the rules that reference this 
definition can be easily identified. 

7. KNOWLEDGE MAINTENANCE AND 
PROVENANCE 

In the previous section, we discussed the role of ontologies and OWL 
specifications for characterization of knowledge needed to encode decision 
support logic in clinical systems. This enables a modularization of the rule-
base, due to which changes in decision support logic can be isolated. The 
location of these changes can be identified as belonging to a given ontology, 
and the rules impacted by the change can be easily determined. This is a key 
challenge in the healthcare and life sciences as knowledge continuously 
changes in this domain. Some requirements for knowledge maintenance and 
provenance that characterize these challenges are: 
• Knowledge Management (KM) systems should have the ability to 

manage knowledge change at different levels of granularity. 
• The impacts of knowledge change at one level of granularity should be 

propagated to related knowledge at multiple levels of granularity. 
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• The impacts of knowledge change of one type, e.g., definition of a 
contraindication should be propagated to knowledge of another type, e.g., 
clinical decision support rules containing references to that definition. 

• The impacts of knowledge on the data stored in the EMR. For instance 
changes in the logic of clinical decision support may invalidate earlier 
patient states that might have been inferred, or add new information to 
the EMR. 

There is a close relationship between knowledge change, the core issue in 
the context of knowledge maintenance; and provenance. Issues related to 
when, and by whom was the change effected are issues related to knowledge 
provenance and provides useful information for maintaining knowledge. The 
issue of representing the rationale behind the knowledge change involves 
both knowledge change and provenance. On the one hand, the rationale 
behind the change could be that a knowledge engineer changed it, which is 
an aspect of provenance. On the other hand, if the change in knowledge is 
due to the propagation of a change in either a knowledge component or 
related knowledge, it is an aspect of knowledge change propagation as 
invoked in the context of knowledge provenance. 
We address the important issue of knowledge change propagation in this 
section. Consider the definition in natural language of fibric acid 
contraindication (with OWL representation in Section 6.4). 

A patient is contraindicated for Fibric Acid if he or she has an 
allergy to Fibric acid or has an abnormal liver panel. 

Suppose there is a new (hypothetical) biomarker for fibric acid 
contraindication for which a new molecular diagnostic test is introduced in 
the market. This leads to a redefinition of a fibric acid contraindication as 
follows. 

The patient is contraindicated for Fibric Acid if he has an allergy 
to Fibric Acid or has elevated Liver Panel or has a genetic 
mutation 

Let's also assume that there is a change in clinically normal range of values 
for the lab test AST which is the part of the liver panel lab test. This leads to 
a knowledge change and propagation across various knowledge objects that 
are sub-components and associated with the fibric acid contraindication 
concept. A diagrammatic representation of the OWL representation of the 
new fibric contraindication with the changes marked in dashed ovals is 
illustrated in Figure 12-8 below. The definition of "Fibric Acid 
Contraindication" changes which is triggered by changes at various levels of 
granularity. 
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Figure 12-8. Knowledge Change Propagation 

A potential sequence of change propagation steps are enumerated below: 
1. The clinically normal range of values for the AST lab test changes. 
2. This leads to a change in the abnormal value ranges for the AST lab test. 
3. This leads to a change in the definition of an abnormal Liver Panel. 
4. This leads to a change in what it means to be a patient with an abnormal 

liver panel. 
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5. The definition of Fibric Acid contraindication changes due to the 
following changes. 

• The change in the definition of a patient with an abnormal liver panel 
as enumerated in steps 1-4 above. 

• Introduction of a new condition, viz., a patient having a mutation: 
"Missense: XYZ3@&%" (hypothetical). This is a new condition 
which could lead to a change what it means to be a patient with a 
contraindication to Fibric Acid. 

In our implementation, the OWL specifications of the knowledge 
illustrated in Figure 12-8 above and specified using a description logics-
based notation in Section 6.4 are imported into an OWL-reasoner. A change 
in the definition is implemented as a difference between two concepts and 
the OWL-reasoner is invoked to determine consistency and identify the other 
changes. Towards this end the OWL-reasoner performs both datatype 
reasoning (e.g., checking for ranges of values) and OWL-based inferencing. 
A vanilla encoding of the knowledge definitions into OWL will not give the 
desired functionality. However, there are equivalent OWL representations 
that enable the OWL-reasoner to identify change propagation. Approaches to 
create best practices for representation of knowledge are being explored in 
[24]. An approach using specialized encoding for taxonomic, partonomic 
(hierarchies of part-of relationships) and functional aspects of biomedical 
knowledge into description logics has been proposed in [25]. 

8. RESEARCH ISSUES 

In this section, we discuss research issues motivated by the functional 
requirements and semantics-based solutions presented in the previous 
sections. These research issues can be organized around three broad areas: 
(a) The expressiveness of data and process models to capture myriad data 
types and processes in the healthcare and life sciences; (b) The role of 
semantic and rule based inference and query languages; and (c) 
Architectures based on semantic web technologies. 

8.1 Data and Process Models 

A prelude to integrating information across the clinical and genomic 
domains is the issue of creating a uniform common data model that is 
expressive enough to capture the wide variety of data types and artifacts 
created, invoked and used. We begin by enumerating a list of data, 
information and knowledge artifacts that span the spectrum from biomedical 
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research to clinical practice which should be supported by semantic web 
specifications: 
Biomedical Research: Data types typically used include 2D representations 
of DNA and RNA sequences, single nucleotide polymorphisms (SNPs), 3D 
protein structures, representation of microarray experimental data and 
different types of pathway data such as protein expression and metabolic 
pathways. 
Clinical Practice: The electronic medical record is the primary source of 
clinical data. This includes structured data elements such as: History of 
Present Illness, Physical Assessment, Clinical Impression/Working 
Diagnosis data, Family History; unstructured free form text fields; and 
biomedical concepts and codes from controlled vocabularies such as 
SNOMED [26] and LOINC [27]. Other forms of clinical data are decision 
support and diagnostic rules; and clinical care pathways and guidelines. 

Some characteristics of artifacts observed in the healthcare and life 
sciences and the applicability of semantic web standards to represent, 
manage and reason with them are discussed next. 

8.1.1 Characteristics of healthcare and life sciences artifacts 

The wide spectrum of complex data types observed across the clinical-
genomic spectrum make the design of a uniform common data model a 
challenging task. Some interesting characteristics observed across this 
spectrum give us a pointer to the requirements that must be supported by a 
semantic web for the healthcare and life sciences. 
Multiple Granularities: Biomedical knowledge needs to represented at 
multiple granularities: 
Molecule -^ Genome ^ DNA/RNA ^ pathway -^ cell -^ tissue • • organ 
^ body part -^ patient "^ population. 
Uncertainty and Fuzziness: Diagnoses are always specified with a degree 
of certainty and there is uncertainty associated with positions of genes on the 
DNA. 
Temporal Information: Temporal information is an intrinsic component of 
clinical data, as it is important to track the progression of a disease in a 
patient over time. 
Spatial Information: The same set of bases in a protein could have multiple 
orientations in 3D space. Spatial information also plays a key role in 
diagnosis and therapy of various cardiac, lung and other related diseases. 

The following characteristics are observed in the context of managing data: 
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Rate of Change: A large body of knowledge discovery activity ensures that 
biomedical knowledge changes at a faster rate compared to knowledge in 
other domains. 
Interpretability: The interpretation and consequent modeling of biomedical 
data is heavily context dependent. For example a list of diseases may be 
treated as classes in a particular context and may be viewed as individuals in 
another. The line between schema and data becomes very blurred. 
Trust: Biomedical research is marked by varying degrees of belief and trust 
on scientific data and results by various researchers. 

8.1.2 Applicability of Semantic Web specifications 

The wide variety of complex data and knowledge types discussed above 
are not covered by any one semantic web specification. For instance, graph 
based data such as pathways and protein structures can be represented using 
RDF, whereas decision support rules can be represented using RuleML [28] 
and SWRL [29], and clinical care pathways and guidelines maybe best 
represented using the OWL-S standard. Given the characteristics discussed 
in the previous section, the following issues need to be considered: 
Expressiveness of RDF/OWL Data Models: The applicability of 
RDF/OWL as the common underlying representation for the wide variety of 
data types discussed in the Section 8.1.1 needs to be investigated. Graph-
based data models like RDF are likely to be more suitable for healthcare and 
life sciences data as opposed to tree-based XML data models. It is known 
that OWL-DL cannot represent spatio-temporal information. There is a need 
for rule based languages such as RuleML or SWRL to supplement this 
shortcoming. The ability of OWL-S [31] to model processes is also crucial 
as this can be used to represent clinical care processes and workflows. 
Role of Reification: Reification offers a promising approach to represent 
probabilistic and fuzzy information on one hand; and degrees of trust and 
belief and provenance on the other (Figures 12-5 and 12-6). An alternative 
would be to add constructs to the underlying data model for their 
representation. 
Modeling Flexibility: The same fragment of biomedical data or knowledge 
may need to be represented as a class or as an instance. The fractal nature of 
biomedical knowledge requires representation at multiple levels of 
granularity. There is a need for the modeling paradigm to be flexible enough 
to accommodate these requirements. 
Compatibility with Pre-existing Standards: For effective use, efforts 
should be made to harmonize pre-existing industry standards such as the 
HL7 Reference Information Model (RIM) [30] with the RDF/OWL data 
model. 
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8.2 Query Languages and Inference Mechanisms 

The primary advantage in adopting semantic web data and knowledge 
representation schemes is that they enable query processing and reasoning 
capability that can address various requirements such as data integration, 
decision support and knowledge maintenance discussed earlier in this 
chapter. The expressivity and performance of query processing and inference 
mechanisms will play a critical role in enabling novel healthcare and life 
science applications. Some interesting issues that need to be considered are: 
Efficiency and Performance: There is a need to implement efficient 
schemes for indexing, storage and manipulation of these data types. There is 
a need to create algebras for RDF-based query languages such as SPARQL 
on the lines of the relational algebra for SQL. This will create avenues for 
query optimization and highly efficient query languages for data types seen 
in the healthcare and life sciences. 
Human mediated processes: There is a need to support a hypothesis driven 
approach for defining mapping rules in an iterative and dynamic manner to 
support integration of data across multiple data sources. Either OWL or a 
rule based mapping language could be used to specify these mappings; the 
actual data integration could be implemented via a merging of RDF models 
which could either be implemented by a SPARQL query processor or rule 
engine. The user however may end up specifying spurious mappings. The 
role of the ontology is crucial in helping identify such spurious mappings. 
Inference mechanisms may be helpful in detecting potential inconsistencies 
between mapping rules specified by a user and the ontology. 
Capabilities of inferences and querying mechanisms: Classification 
inferences in the context of clinical decision support could involve spatio-
temporal constraints. Due to the limitations of OWL, it may be necessary to 
invoke a rules engine for the purpose. The interaction of OWL-based 
inferences and rule based inferences needs to be investigated in this context. 
We presented an illustrative example in Section 7, where we saw how a 
small change in a component knowledge object can be propagated across 
multiple knowledge objects at different levels of granularity. The ability to 
represent and reason with semantics is crucial in implementing this change 
propagation. A relational database approach is hampered by the expressivity 
of the relational data model which would require hard coding some of the 
propagation operations. Rule based engines offer a more flexible approach as 
one would then encode the propagation operations as rules which can be 
easily configured for different data models. However, if these inferences are 
within the realm of OWL reasoning then an OWL reasoner may offer the 
possibility of better performance. A hybrid reasoning approach involving a 
combination of OWL and rule based reasoning may offer an optimal solution 
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where the reasoner could navigate a semantic model of the knowledge and 
propagate the change. One could declaratively change the model at any time 
and the reasoner could potentially compute the new changes. 
Role of Uncertainty reasoning: Decision support in the healthcare and life 
sciences is likely to involve both knowledge-based (OWL, Rules) reasoning 
and statistical reasoning approaches. There is a need to explore hybrid 
knowledge-based and statistical reasoners for supporting decision support 
scenarios involving thousands of decision variables. 

8.3 Architectures for Rule and Ontology-based Systems 

We anticipate that hybrid OWL-based and rule-based reasoning will be 
the most likely approach for addressing healthcare and life sciences 
requirements, both for decision support and knowledge maintenance. There 
are multiple architectural scenarios possible depending on application 
performance and flexibility requirements. 

In cases, where there is a lot of interaction between the invoking 
application and the decision support component, including it as an in-process 
component may reduce the time taken for execution as network latency 
between rule engine invocations will be minimized. 

Caching of the patient state is likely to play a significant role in execution 
efficiency. For instance, in the case where specialized services check 
whether a patient has diabetes, is not available on the clinical data 
repository, the complete patient object will need to be populated so that the 
rule engine can check for existence of diabetes in the list of patient diseases. 
Efficient mechanisms to check, refresh and dispose of cached patient state 
information will be required. 

For large rule bases, the ability of the rule engine to leverage Rete Rule 
Matching computation to rapidly identify rules that are likely to fire will be 
crucial. Designing rule bases with a minimal set of rules will also be useful 
in speeding up rule engine execution, as it could lead to a lesser number of 
rules being loaded on the agenda. 

Identification of a set of classification inferences that can be implemented 
by an ontology engine and invoked as a service from the rules engine offers 
significant potential for creating modular maintainable rule bases and 
possibly speeding up execution performance of the rules engine. A 
significant proportion of clinical decision support involves classification and 
this could result in reducing overhead on the rules engine and speeding up 
execution performance. 
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9. CONCLUSIONS 

We have presented in this chapter a use case for translational medicine 
that cuts across various spheres of activity in the healthcare and life sciences, 
viz., various biomedical research areas, clinical research and clinical 
practice. A set of crucial functional requirements, i.e., data integration, 
clinical decision support and knowledge maintenance and propagation, were 
identified to enable realization of the use case scenario. Solutions based on 
semantic web specifications and semantic tools and technologies were 
presented. This was followed by a discussion on a set of research issues that 
emerged from our experiences. 

There is a growing realization that Healthcare and Life Sciences is a 
knowledge intensive field and the ability to capture and leverage semantics 
\via inference or query processing is crucial for enabling translational 
medicine. Given the wide canvas and the relatively frequent knowledge 
changes that occur in this area, we need to support incremental and cost-
effective approaches to support "as needed" data integration. Scalable and 
modular approaches for knowledge-based decision support that enable better 
maintenance for knowledge in the face of change is required. Automated 
semantics-based knowledge update and propagation is key to keeping the 
knowledge updated and current. Personalized/Translational Medicine cannot 
be implemented in a scalable, efficient and extensible manner without 
Semantic Web technologies 

REFERENCES 

[1] Kashyap V., Hongsermeier T., Aronson S. Can Semantic Web Technologies enable 
Translational Medicine? (Or Can Translational Medicine help enrich the Semantic 
Web?), Partners Healthcare System, Clinical Informatics R&D, Tech Report No. CIRD-
20041027-01, 
http: //www. partners. org/cird/pdfs/S emantic_Web_Translational_Medicine. pdf 

[2] American College of Cardiology, http://www.acc.org 
[3] Resource Description Framework, http://www.w3.org/RDF/ 
[4] OWL Web Ontology Language Review, http://www.w3.org/TR/owl-features/ 
[5] Bemers-Lee T., Hendler J., and Lassila O., The Semantic Web, Scientific American, 

284(5):34-43, May 2001. 
[6] http://www.translational-medicine.com/info/about 
[7] Kashyap V., Neumann E., and Hongsermeier T., Tutorial on Semantics in the 

Healthcare and LifeSciences, The 15*̂  International World Wide Conference (WWW 
2006) Edingburgh, UK, May 2006, 
http: //I ists. w3. org/Archives/Public/www-archive/2006 Jun/att-
0010/Semantics_for_HCLS .pdf 

[8] ILOG, Inc., Business Rules Management, http://www.ilog.fr 



278 Revolutionizing Knowledge Discovery in the Life Sciences 

[9] Blaze Advisor, Enterprise Decision Management, 
http://www.fairisaac.com/Fairisaac/Solutions/Enterprise+Decision+Management/Busin 
ess+rules/Blaze+Advisor/ 

[10] Cerebra, http://www.cerebra.com 
[11] Racer Systems, http://www.racer-systems.com 
[12] Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet/ 
[13] Health Language, http://www.healthlanguage.com/ 
[14] Apelon Inc., http://www.apelon.com 
[15] SPARQL Query Language for RDF, http://w^ww.w3.org/TR/rdf-sparql-query 
[ 16] KEGG Pathway Database, http ://www.genome.jp/kegg/pathway .html 
[17] Jena - A Semantic Web Framework for Java, http://jena.sourceforge.net 
[18] Chong E. ., Das S., Eadon G., and Srinivasan J. An efficient SQL-based RDF Querying 

Scheme, Proceedings of the 31st VLDB Conference, Trondheim, Norway, 2005. 
[19] Stephens S., Morales A., and Quinlan M. Applying Semantic Web Technologies to 

Drug Safety Determination, IEEE Intelligent Systems, Vol 21(1), January/February 
2006 

[20] Goldberg H., Vashevko M., Postilnik A., Smith K., Plaks N., Blumenfeld B. Evaluation 
of a Commercial Rules Engine as a basis for a Clinical Decision Support Service, 
Proceedings of the Annual Symposium on Biomedical and Health Informatics, AMIA 
2006 (in press). 

[21] Kashyap V., Morales A., and Hongsermeier T. Implementing Clinical Decision 
Support: Achieving Scalability and Maintainability by combining Business Rules with 
Ontologies, Proceedings of the Annual Symposium on Biomedical and Health 
Informatics, AMIA 2006 (in press). 

[22] Maviglia S.M., Zielstorff R.D., Patemo M., Teich J.M., Bates D.W., and Kuperman 
G.J., Automating Complex Guidelines for Chronic Disease: Lessons Learned, Journal 
of the American Medical Informatics Association (JAMIA), vol 10, 2003. 

[23] Greenes R.A., Sordo M., Zaccagnini D., Meyer M., and Kuperman G. Design of a 
Standards-Based External Rules Engine for Decision Support in a Variety of 
Application Contexts: Report of a Feasibility Study at Partners HealthCare System, 
Proceedings ofMEDINFO - AMIA, 2004. 

[24] W3C Semantic Web Best Practices and Deployment Working Group. 
http://www.w3 .org/2001/sw/BestPractices/ 

[25] Schulz S. and Hahn U. A Knowledge Representation view on Biomedical Structure and 
Function, Proceedings of AMIA 2002. 

[26] Snomed International, http://www.snomed.org 
[27] Logical Observations Identifiers, Names and Codes (LOINC), 

http ://www.regenstrief com/loinc 
[28] The RuleML markup initiative, http://www.ruleml.org 
[29] SWRL: A Semantic Web Rule Language combining OWL and Rule ML, 

http://www.w3.org/Submission/SWRL 
[30] HL7 Standards, http://www.hl7.org/library/standards_nonl.htm 
[31] OWL-S 1.0 Release, http://www.daml.0rg/services/0wl-s/l.0 
[32] W3C Semantic Web Healthcare and Life Sciences Interest Group, 

http: //www. w3. org/2001 /sw/hcls 
[33] Haas L.M., Schwarz P.M., Kodali P., Kotlar E., Rice J.E., and Swope W.C, Discovery 

Link, A System for Integrated access to Life Science Data Sources, IBM Systems 
Journal Special Issue on Deep Computing for the Life Sciecnes, 40(2), 2001. 



Can Semantic Web Technologies Enable Translational Medicine? 279 

[34] Chen J., Chung S.Y., and Wong L. The Kleisli Query System as a backbone for 
bioinformatics data integration and analysis. In Zoe Lacroix and Terence Critchlow, 
editors, Bioinformatics: Managing Scientific Data. Morgan Kaufmann, May 2003. 

[35] Goble C.A., Stevens R., Ng G., Bechhofer S., Paton N.W., Baker P.O., Peim M., and 
Brass A. Transparent Access to Multiple Bioinformatics, Information Sources. IBM 
Systems Journal Special Issue on Deep computing for the Life Sciences, 40(2), 2001. 



Chapter 13 

ONTOLOGY DESIGN FOR 
BIOMEDICAL TEXT MINING 

Rene Witte '̂̂ , Thomas Kappler^ and Christopher J. O. Baker '̂̂  
Universitdt Karlsruhe (TH), Germany; Concordia University, Montreal (Quebec), Canada; 
Institute for Infocomm Research, Singapore 

Abstract: Text Mining in biology and biomedicine requires a large amount of domain-
specific knowledge. Publicly accessible resources hold much of the information 
needed, yet their practical integration into natural language processing (NLP) 
systems is fraught with manifold hurdles, especially the problem of semantic 
disconnectedness throughout the various resources and components. Ontologies 
can provide the necessary framework for a consistent semantic integration, while 
additionally delivering formal reasoning capabilities to NLP. 

In this chapter, we address four important aspects relating to the integration of 
ontology and NLP: (i) An analysis of the different integration alternatives and their 
respective vantages; (ii) The design requirements for an ontology supporting NLP 
tasks; (iii) Creation and initialization of an ontology using publicly available tools 
and databases; and (iv) The connection of common NLP tasks with an ontology, 
including technical aspects of ontology deployment in a text mining framework. 
A concrete application example—text mining of enzyme mutations—is provided 
to motivate and illustrate these points. 

Key w ôrds: Text Mining, NLP, Ontology Design, Ontology Population, Ontological NLP 

1. INTRODUCTION 
Text Mining is an emerging field that attempts to deal with the overwhelming 

amount of information available in non-structured, natural language form [1,14, 
40,46]. Biomedical research and discovery is a particularly important application 
area as manual database curation—groups of experts reading publications and 
extracting salient facts in structured form for entry into biological databases— 
is very expensive and cannot keep up with the rapidly increasing amount of 
literature. 

Developing suitable NLP apphcations requires a significant amount of domain 
knowledge, and there already exists a large body of resources for the biomedical 
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domain, including taxonomies, ontologies, thesauri, and databases [8]. Although 
most of these resources have not been developed for natural language analysis 
tasks but rather for biologist's needs, text mining systems typically make use of 
several such resources through a number of ad-hoc wrapping and integration 
strategies. 

In contrast, in this chapter we show how to design an ontology specifically for 
NLP, so that it can be used as a single language resource throughout a biomedical 
text mining system. Hence, our focus is on analysing and explicitly stating 
the requirements for ontologies as NLP resources. In particular, we examine 
formal ontologies (in OWL-DL format) that, unlike the informal taxonomies 
typically used in NLP, also support automated reasoning and queries based on 
Description Logics (DL) [2] theorem provers. 

After completing this chapter, the reader should be able to decide whether 
(and how) to employ ontology technology in a text mining application, based 
on the discussed integration alternatives and their respective properties. The 
application scenario, a text mining system analysing full-text research papers 
for enzyme mutations, provides the background for a detailed discussion of 
ontology design, initialization, and deployment for NLP, including technical 
challenges and their solutions. 

Chapter outline. The next section analyses and motivates the connection 
between NLP and ontology in detail. A real-world scenario for biological 
text mining—enzyme mutations—is introduced in Section 3. We then provide 
a requirements analysis for ontology design in Section 4. How a concrete 
ontology fulfilling these requirements can be designed and initalized from 
existing resources is demonstrated in Section 5. And finally, we show in 
Section 6 how NLP tasks in a complex workflow can make use of the developed 
ontology, followed by a discussion and conclusions in Sections 7 and 8. 

2. MOTIVATION FOR ONTOLOGY 
IN BIOMEDICAL TEXT MINING 

Very little research has been done to show precisely what advantage ontologies 
provide vs. other representation formats when considering an NLP system by 
itself, i.e., not within a Semantic Web context. This discussion is split into two 
separate aspects: (1) Exporting NLP results by populating an ontology; and (2) 
Using an ontology as a language resource for processing documents. 

2.1 Ontology as Result Format 
Text mining results are typically exported in a (semi-)structured form using 

standard data formats like XML or stored in (relational) databases for further 
browsing or data mining. 
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Exporting text analysis results by instantiating a pre-modeled ontology, so-
called ontology population, is one of the most common applications of ontology 
in NLP [29]. In [34] this is also referred to as "ontology-based processing," 
where the ontology is not necessarily used during the analysis process itself, but 
rather as a container to store and organize the results. 

An obvious advantage of ontology population is that text analysis results 
are exported according to a standardised format (like OWL-DL), which can be 
stored, viewed, and edited with off-the-shelf tools. However, in cases where NLP 
results are fed directly into subsequent analysis algorithms for further processing, 
this advantage does not necessarily hold. Even so, there are further benefits 
that, in our view, outweigh the additional costs incurred by the comparatively 
complex ontology formats. 

Result Integration. In complex application domains, like biomedical 
research and discovery, knowledge needs to be integrated from different resources 
(like texts, experimental results, and databases), different levels of scope (from 
single macromolecules to complete organisms), and across different relations 
(temporal, spatial, etc.). No single system is currently capable of covering a 
complete domain like biology by itself. This makes it necessary to develop 
focused applications that can deal with individual aspects in a reliable manner, 
while still being able to integrate their results into a common knowledge base. 
Formal ontologies offer this capability: a large body of work exists that deals 
with ontology alignment and the development of upper level ontologies [36], 
which can serve as a superstructure for the manifold sub-ontologies, while DL 
reasoners can check the internal consistency of a knowledge base, ensuring at 
least some level of semantic integrity. 

Queries and Reasoning. By linking the structured information extracted 
from unstructured text to an ontology, semantic queries can be run on the 
extracted data. Moreover, using DL-based tools such as Racer [22] and its query 
languages, RQL and nRQL [52], reasoning by inference on T-Boxes (classes; 
concepts) and A-Boxes (individuals; instances) becomes possible. User-friendly 
interface tools like OntoIQ [5] allow even users without knowledge of DL 
to pose questions to an ontological knowledge base populated from natural 
language texts. Such functionality means that NLP-derived text segments used 
for automatically populating ontology concepts can subsequently be queried 
according to a user's familiarity with the domain content of the ontology. 

Given that a multitude of specific text segments are generated when text 
mining a large body of scientific literature, querying the ontology is the equivalent 
of interrogating a summary of the whole domain of discourse, saving significant 
time in finding and reading relevant literature. This may in turn lead scientists 
to adopt a new approach to information retrieval, which is cross-platform and 
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Figure 13-1. Querying an OWL-DL ontology populated by text mining full-text papers 

content-Specific rather than document-centric. Accessing the full text of a paper 
may become a secondary step occurring after the query of keyword-specific text 
segments or tiles from an NLP-instantiated ontology, invoked effortlessly from 
a user's desktop. 

An example for this is depicted in Figure 13-1, which shows the query 
interface of OntoIQ [5]. The nRQL syntax of the query '*Find all references to 
organisms that are known to produce xylanases" appears in the uppermost frame. 
The descriptors (Document-PMID, Sentence, Protein, and Organism) selected 
to appear in the query result are listed in the right hand frame below. The bottom 
frame shows the results returned through the interrogation of an NLP-populated 
ontology from the protein mutation domain that has been loaded into Racer. A 
user could now continue by examining the selected document sentences, connect 
with another ontology for further queries, or forward the selected instances to 
other (bioinformatics) tools for further automated processing. 

2.2 Ontology as NLP Resource 
Text mining systems require various language- and domain-specific resour

ces, such as lexicons, gazetteer lists, or wordnets. These are typically accessed 
through ad-hoc data formats, such as flat files or databases. On a purely technical 
level, everything that can be expressed in an (OWL) ontology can be represented 
in another format, which in addition often can be simpler to develop and process. 
So what precisely is the motivation for using an ontology? Two important reasons 
are their representational capabilities and the improved semantic consistency 
they bring within a text mining system. 
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Semantically Richer Representation. An ontology allows for a more 
structured and semantically richer representation than many of the resources 
typically used in text mining systems, like simple gazetteer lists. This is 
particularly useful when the application domain of the texts is complex, as in 
biology; In such cases, the additional capabilities of ontologies, like relations, 
restrictions, and subsumption, allow for more efficient domain representations 
than simple templates. An example of this can be seen in [54], where an ontology 
guides information extraction from botanical texts. 

Consistent Data Integration. Similar to the problem of result integration 
mentioned above, the various resources used throughout an NLP system need 
to be carefully managed to ensure semantic integrity. Currently, resources are 
typically not shared between analysis components (like a tokeniser, a noun 
phrase chunker, or a coreferencer), which can easily lead to inconsistencies. If 
an ontology can hold all the information necessary for the various analysis steps, 
only a single resource in one format needs to be developed and managed for 
the complete text mining system, thereby decreasing development effort while 
increasing overall semantic integrity. 

3. CASE STUDY: TEXT MINING 
ENZYME MUTATIONS 

In this section, we introduce a concrete application scenario for biological 
text mining, enzyme mutation mining. This example will be revisited several 
times in the following sections, e.g., in order to derive the requirements for an 
ontology supporting such an NLP system. 

3.1 Biological Scenario 

A large amount of biological knowledge today is only available from full-text 
research papers. Since neither manual database curators nor users can keep 
up with the rapidly expanding volume of scientific literature, natural language 
processing approaches are becoming increasingly important for bioinformatics 
projects. 

Enzymes have widespread industrial applications and significant resources are 
devoted to the discovery of new enzymes and their development into commercial 
enzyme products with enhanced or new capabilities. Within the gene discovery 
process, there are numerous tests that newly discovered enzymes must pass 
before they can be considered for development into commercial products. Even 
enzymes with positive performance characteristics undergo mutational changes 
to improve their properties. The technologies used to design better enzymes 
involve either random or targeted mutagenesis, but in both cases scientists will 



286 Revolutionizing Knowledge Discovery in the Life Sciences 

at some point review mutated residues in the 3D context of the protein structure. 
At this time the results of previous mutational analyses of the same or similar 
proteins are relevant and a review of the literature describing the mutations is 
necessary. 

For protein engineers, understanding the impact of all mutations carried 
out on a protein family requires a complex mapping of sequence mutants to a 
common structure. Concurrent access to protein structure visuaUsations and 
annotations describing the impacts of mutations is possible using the Protein 
Mutant Database (PMD).̂  The content of this database is limited, however, by 
the speed at which newly published papers can be processed: In 1999, the PMD 
authors already reported a three-year backlog of unprocessed publications [27]. 
Thus, there exists a pronounced need to speed up the extraction of mutation-
impact information from the scientific literature and make it more readily 
available to protein engineers. This has been our motivation for designing a text 
mining system capable of analysing enzyme mutation experiments described in 
full-text research papers: Mutation Miner. 

3.2 Mutation Miner 

The goal of this work is the annotation of 3D protein structures with segments 
of literature detailing the consequences of specific mutations. Mutation Miner 
[6, 53] is a sophisticated information system designed for this purpose that 
comprises an initial stage text mining subsystem linked to subsequent protein 
sequence retrieval and analysis subsystems. With Mutation Miner, a protein 
engineer can view structural representations of proteins (obtained from protein 
databases) combined with annotations describing mutations and their impacts 
(extracted through text mining from publications) within a unified visualisation 
using a tool like ProSAT [20] (Figure 13-2). 

3.2.1 Implementation 

The natural language analysis subsystem has been developed based on the 
GATE (General Architecture for Text Engineering) framework [16]. GATE 
is a component-based architecture, where documents are processed through 
pipelines of NLP components. This permits the dynamical assembly of a text 
mining application through adding, swapping, or re-ordering its components. 
Several standard components are supplied with the architecture, like a part-of-
speech (POS) tagger, a gazetteer that assigns semantic labels to tokens (words) 
in a text, and the JAPE language [17] for expressing grammar rules, which 
are compiled into finite-state transducers. Results are exchanged between the 

^Protein Mutant Database (PMD), h t t p : //pmd. ddb j . n i g . a c . j p / 
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Figure 13-2. ProSAT showing a 3D (Webmol) visualisation of the endo-l,4-j8-xylanase protein 
with mutations extracted through text mining, selected with the interface on the left. Sections of 
the extracted information are displayed on the buttons, the PMID for the original publication and 
the GI for the mutated protein are located above. 

components through document annotations using a form of stand-off markup. 
For more details on GATE, we refer the reader to the online documentation.-^ 

3.2.2 Ontology Extensions 

Mutation Miner has originally been developed without innate support for 
ontologies: Resources were converted from external formats (like databases or 
taxonomies) into structures supported by GATE (like gazetteer lists). For the 
reasons stated above, we pursued the integration of the various disparate NLP 
resources into a single ontology shared by all NLP analysis components within 
the system. 

At the same time, we also provide for result output in OWL-DL format 
(i.e., NLP-driven ontology population), which additionally enables semantic 
queries to instances of an ontological conceptualization, as shown in Figure 13-1. 
This becomes particularly interesting when the Mutation Miner ontology is 
integrated with other ontologies, as it allows cross-domain queries and reasoning. 
Instances generated by Mutation Miner alone provide information about impacts 
of mutational change on protein performance. These instances permit queries 
such as: ''Find the locations of amino acids in xylanase proteins y which when 
mutated have resulted in enhanced enzyme thermostability," Integration of the 
Mutation Miner ontology with the instantiated FungalWeb ontology [44] that 

^GATE documentation, h t t p : / / g a t e . ac.uk/documentation. html 
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represents knowledge about the enzyme industry and fungal species additionally 
permits cross-disciplinary queries. For example, queries asking ''Identify 
the industrial benefits derived from commercial enzyme products based on 
mutated xylanases'' or ''What commercial enzyme products are not the result 
of mutational improvement" become now possible. Depending on the user, 
access to this knowledge can assist in decision making for experimental design 
or product development. For further examples illustrating the use of formal 
ontology reasoning and querying in concrete application scenarios from fungal 
biotechnology, we refer the reader to [4, 7]. 

4. REQUIREMENTS ANALYSIS FOR 
ONTOLOGIES SUPPORTING NLP 

In this section, we discuss how to design an ontology explicitly for supporting 
NLP-related tasks. We do this in two steps: Section 4.1 briefly discusses the 
typical tasks performed by a (biomedical) text mining system. This is followed 
by a requirements analysis in Section 4.2, where we state what information 
precisely needs to be in an ontology to support the various NLP tasks. 

4.1 NLP Tasks 
In order to motivate our requirements for designing ontologies as NLP 

resources, we briefly outline some of the major subtasks during the analysis of 
a biomedical document. These processing steps are shown in the left half of 
Figure 13-3. 

4.1.1 Named Entity Recognition 

Finding Named Entities (NEs) is one of the most basic tasks in text mining. In 
biological texts, typical examples for NEs are Proteins, Organisms, or Chemicals. 

Named entity recognition, often also called semantic tagging, is a well-
understood NLP task. Basic approaches to finding named entities include 
rule-based techniques using finite-state transducers [17, 42] and statistical 
taggers, e.g., using Support Vector Machines (SVMs) [32] or Hidden Markov 
Models (HMMs) [33]. 

Scientific publications and other knowledge resources containing natural 
language text in the biomedical domain show certain characteristics that make 
term recognition unusually difficult [37]. There is a high degree of term variadon, 
partly caused by the lack of a common naming scheme for the above mentioned 
entities, like proteins or organisms. Often, identical names are used for a gene 
and the protein encoded by it, further complicating the automatic identification 
of genes and proteins. Moreover, there is an abundant use of abbreviations in 
the field, where their expansion into the non-abbreviated form is easy for expert 
human readers, but difficult for text mining systems. 
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Figure 13-3. Workflow of the Mutation Miner NLP subsystem 

While NE recognition is a well analysed task for the domain of newspaper 
and newswire articles, biomedical text mining requires further processing of 
detected entities, especially normalization and grounding. 

4.1.2 Entity Normalization 

Entities in natural language texts that occur in multiple places are often written 
differently: Person names, for example, might omit (or abbreviate) the first 
name, and include or omit titles and middle initials. Similarly, in biological 
documents, entities are often abbreviated in subsequent descriptions, e.g., the 
same organism can be referred to by both of the different textual descriptors, 
Trichoderma reesei and T. reesei. Likewise, the same protein mutation can be 
encoded using single-letter or three-letter amino acid references. It is important 
for downstream processing components that these entities are normalized to a 
single descriptor, e.g., the non-abbreviated form. For a thorough discussion on 
abbreviations in the biomedical domain, we refer the reader to [13]. 

4.1.3 Coreference Resolution 

A task related to normalization is coreference resolution. In addition to 
abbreviations, other variations in names often exist. Within a biological text for 
example, the same protein might be referred to as Xylanase II and endo-lA-^-
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Xylanase II. In addition, pronominal references like it or this can also refer to a 
particular entity [12]. Consider the following sentence:^ 

Interestingly, the Br0nsted constants for the hydrolysis of aryl j3-glucosides by 
Abg, a j8-glucosidase from Agrobacterium faecalis, and its catalytic nucleophile 
mutant, E358D, [...] are also identical, as also are Pig values for wild-type and 
E78D Bacillus subtilis xylanase (Lawson et al., 1996). 

In the part "hydrolysis of aryl j8-glucosides by Abg, a j3-glucosidase from 
Agrobacterium faecalis, and its catalytic nucleophile mutant, E358D," the 
pronoun its refers to the j3-glucosidase protein Abg, however, this is not obvious 
for an NLP system. 

Finding all the different descriptors referring to the same entity (both nominal 
and pronominal) is the task of coreference resolution. The resulting list of 
entities is collected in a coreference chain. Note that even after successful 
resolution, a normalized name still needs to be picked from the coreference 
chain. 

4.1.4 Grounding 

As a final step in NE detection, many entities need to be grounded with respect 
to an external resource, like a database. This is especially important for most 
biological entities, which have corresponding entries in various databases, e.g., 
Swiss-Prat for proteins. When further information is needed for downstream 
analysis tasks, like the automatic processing of amino acid sequences, grounding 
the textual entity to a unique database entry (e.g., assigning a Swiss-Prot ID to a 
protein entity) is a mandatory prerequisite. Thus, even if an entity is correctly 
detected from an NLP perspective, it might still be ambiguous with respect to 
such an external resource (or not exist at all), which makes it useless for further 
automated processing until the entity has been grounded. 

4.1.5 Relation Detection 

Finding entities alone is not sufficient for a text mining system: most of the 
important information is contained within the relations between entities. For 
example, the Mutation Miner system described above needs to determine which 
organism produces a particular protein iprotein^r-^organism relation) and which 
protein is modified by a mutation {mutation^protein relation). 

Relation detection can be very complex. Typical approaches employ pre
defined patterns or templates, which can be expressed as grammar rules, or 
a deep syntactic analysis using a full or partial parser for the extraction of 

^Example sentence from: A. M. MacLeod, D. Tull, K. Rupitz, R. A. J. Warren, and S. G. Withers: "Mechanistic 
Consequences of Mutation of Active Site Carboxylates in a Retaining beta-l,4-Glycanase from Cellulomonas 
fimi," Biochemistry 1996, 35(40), PMID 8855954. 
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predicate-argument structures [34]. The performance of a relation detection 
component can be improved given information about semantically possible 
relations, thereby restricting the space of possible combinations. 

4.2 Detected Requirements 
We can now state a number of requirements that an ontology needs to fulfill 

in order to support NLP analysis tasks. Note that, although we illustrate these 
requirements with the Mutation Miner scenario, they apply equally to a wide 
range of biomedical text mining systems. 

Requirement #0: Domain Model. As a prerequisite, the ontology needs to 
be structured according to the domain of discourse. Entities that are to be 
detected in an NLP system need to be contained in the ontology in form of 
classes (T-Boxes). 

Requirement #1: Text Model. Concepts that model a document's components 
are needed in the ontology in addition to the domain concepts, e.g., classes 
for sentences, text positions, or document locations. These are required for 
anchoring detected entities (populated instances) in their originating documents. 

Location is important to differentiate entities discovered in e.g. the list of 
references from those in e.g. abstract or introduction. Note that detecting the 
location requires additional text tiling algorithms, which we do not discuss 
within this chapter. 

Additional classes are needed for NLP-related concepts that are discovered 
during the analysis process, like the noun phrases (NPs) and coreference chains 
discussed above. 

Requirement #2: Biological Entities. The ontology needs instances (in form 
of A-Boxes) reflecting biological entities in order to be able to connect textual 
instances with their real-world counterparts. That is, if a biological entity is 
known to exist (for example, Laccase IV), it must have a counterpart in the 
ontology (namely, an instance in the enzyme subclass oxidoreductase). 

It might appear naive to assume that entities under consideration for text 
analysis are already available in biological databases, yet this is often the case: 
Publication in this subject domain requires the deposition of the entities under 
analysis (e.g., proteins) in publicly accessible databases. The challenge for text 
mining is in fact to discover within texts larger semantic connections between 
targeted entities (e.g., protein-protein interactions), which are not necessarily 
available in databases since it is access to this implicit knowledge that provides 
a competitive advantage to scientists. 
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In addition to the main entities of the domain in question, the ontology 
might include supplementary classes and relations, like fundamental biological, 
medical, or chemical information, which facilitate entity detection and other 
text analysis tasks. 

Requirement #3: Lexical Information. In order to enable the detection 
of named entities in texts, the ontology needs lexical information about the 
biological instances stipulated in requirement #2. Lexical information includes 
the full names of entities, as well as their synonyms, common variants and 
misspellings, which are frequently recorded in databases. If unknown or highly 
varying expressions need to be detected in texts, entity-specific pre- and postfixes 
(e.g., endo- or -ene) can also be recorded in the ontology. 

In addition, specialized NLP analysis tasks usually need further information, 
like subcategorization frames. For example, in order to correctly determine 
predicate-argument structures for proteins, postnominal phrases need to be 
attached to the correct noun phrase [43]. Storing the frame structures required 
for this step together with the entities in the ontology helps to maintain the 
overall semantic integrity of a system. 

Requirement #4: Database Links. As mentioned before, entities detected 
in documents need to be connected with their real-world counterparts in a 
so-called grounding step. In order to support this task, the ontology must contain 
information about database locations and IDs (unique keys) of the various 
entities. 

Grounding is needed in order to allow downstream analysis tasks to actually 
process entities detected in documents. For example, once a protein has been 
linked to a database like Swiss-Prot, its particular amino acid sequence can be 
retrieved from the database and processed by bioinformatics algorithms (e.g., 
BLAST^ for sequence alignment). 

Requirement #5: Entity Relations. Where available, biologically relevant 
relations between entities have to be encoded semantically in the ontology as 
well. This information is important for many steps, not only relation detection, 
where it helps disambiguating possible PP-attachments, but also for coreference 
resolution, normalization, and grounding. For instance, the normalized name 
of a protein can reflect both the protein function and the originating organism, 
which is important semantic information for the protein^organism relation 
detection task. 

"̂ Basic Local Alignment Search Tool (BLAST), h t t p : //www. n c b i . n lm.n ih .gov /BLAST/ 
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Table 13-1, Ontological concept definitions and instance examples for Mutation Miner 

Concept Definition Example Instances 

Cellular Subcellular structures, locations, and macromolecular 
Component complexes 
Plasmid Circular double-stranded DNA capable of autonomous 

replication found in bacteria 
Protein A complex natural substance that has a high molec

ular weight and a globular or fibrous structure com
posed of amino acids linked by peptide bonds 

Organism A virus or a unicellular or multicellular prokaryote or 
eukaryote 

Enzyme A protein that acts as a catalyst, speeding the rate at 
which a biochemical reaction proceeds but not altering 
the nature of the reaction 

Recombinant Enzymes produced from new combinations of DNA 
Enzyme fragments using molecular biology techniques 
Mutant Indicates that something is produced by or follows a 

mutation; also a mutant gene or protein 
Measurement Units of measurement 

Property The description of a biological, chemical or physical 
property of a protein that can be quantified 

Impact An examination of two or more enzymes (wild type or 
mutant) to establish similarities and dissimilarities 

Ribosome, 
Golgi, Vesicle 
pPJ20 

Protein, 
Immunoglobulin 

S. lividans, Clostridium 
thermocellum 
Xylanase A, 
endo-1,4-j3-xylanase 

Xylanase A+E210D 

E210D, Phe37Ala, 
Arg115 
half life (s), Kcat. hydrol
ysis efficiency, pH 
denaturation, catalysis, 
stabilization, unfolding 
shift, increase, more ac
tive, fold, destabilize 

5. BUILDING ONTOLOGICAL RESOURCES 
FOR BIOMEDICAL TEXT MINING 

This section shows in detail how to design and initialize an ontology that sup
ports the stated requirements. Although we focus our discussion on information 
required for the mutation scenario, the principles apply to other biological text 
mining tasks as well. 

5.1 The Mutation Miner Ontology 

An ontology that can house instances from Mutation Miner requires concepts 
for the main units of discourse—proteins, mutations, organisms—as well as 
supplementary concepts that characterize changes in enzyme properties, the 
direction of the change, and the biological property of the enzyme that has been 
altered (Req.#0). Table 13-1 shows the main concepts together with a brief 
definition and Figure 13-4 shows a part of the ontology graphically. 

The ontology is represented in OWL-DL [45] and was created using the 
Protege-OWL extension of Protege,^ a free ontology editor. Here, we made 

^Protege ontology editor, h t t p : / / p ro t ege . s tanford .edu/ 



294 Revolutionizing Knowledge Discovery in the Life Sciences 

DegreesCelsiiis Halfjife pH UnkiiownIm|)act Percent 

Figure 13-4. A part of the Mutation Miner ontology 

use of two OWL language elements that model important information about 
the domain. Firstly, using object properties^ which specify relations between 
class instances, we register several relationships between instances of ontology 
classes. For example, the Mutation class has a changedGene object property, 
which is defined as having the domain "Mutation'' and the range "Gene," linking 
a mutation instance to the instance of the gene it modifies. Secondly, cardinality 
restrictions are included to model the possible alternatives for denoting an 
organism. For example, the organism description in a text may consist of at 
most one genus, species, and strain, respectively, where strain is optional but 
only if both genus and species are given. 

Several other enhancements to the ontology's expressiveness are possible, like 
placing additional restrictions on relations. They are not necessary, however, for 
the ontology-enhanced NLP analysis, but could be added to improve reasoning 
over extracted entities, e.g., for advanced querying. 

^OWL Web Ontology Language Guide, Object Properties, h t t p : / / w w w . w 3 . o r g / T R / 2 0 0 4 / 
R E C - o w l - g u i d e - 2 0 0 4 0 2 1 0 / \ # S i m p l e P r o p e r t i e s 
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Before the ontology can be deployed in an NLP system, instances for the 
various classes like protein or organism need to be created. Since adding and 
maintaining these instances and their relations manually is not an option, we 
now show how ontology instances can be automatically created and updated 
with respect to external biological databases. 

5.2 Initializing the Ontology for Organisms 
The systematic classification of organisms is called taxonomy. The individual 

species are set in relation to each other according to the degree of their genetic 
relationship. The names of organisms consist of parts called taxonomic units, 
giving the position in the classification tree. Usually, the taxonomic units 
genus and species are used in biomedical texts, resulting in a name such as 
Escherichia coli. Sometimes a strain is also given, which designates a more 
precise identification. 

5.2.1 The NCBI Taxonomy Database 

We use the Taxonomy database [19] from NCBI^ to initialize our ontology 
(Req. #2). The Taxonomy database is "a curated set of names and classifications 
for all of the organisms that are represented in GenBank" (see [19] for a 
detailed description). GenBank^ is another NCBI database, containing "publicly 
available DNA sequences for more than 165,000 named organisms." As of 
2006-06-05, the Taxonomy database contained 310,756 classified taxa, with 
409,683 different names in total. 

In NCBI's database, every species and taxonomic unit has exactly one entry 
with a name classified as scientific name, as well as other possible variants. The 
scientific name is the "correct" one, and the others can be synonyms, common 
misspellings, or past names if the organism has been reclassified. Table 13-2 
shows an example entry, constricted to the most important columns, for the 
organism Escherichia coli (E, coli). It can be seen that there are seven synonyms 
and two common misspellings recorded in addition to the scientific name. 

5.2.2 Ontology Creation with Jena 

To convert the taxonomy data, it is possible to download the whole database, 
which is available as structured plain text files from NCBFs FTP server. A 
Python program was developed for this purpose, which reads these files and 
inserts their contents into an SQL database, preserving the structure by directly 
mapping each file to a database table and its columns to SQL columns in that 
table. 

^NCBI Taxonomy Homepage, h t t p : //www. n c b i . n lm. n i h , gov/Taxonomy/ 
^GenBank sequence database, h t t p : //www. n c b i . n i h . g o v / G e n b a n k / i n d e x . h t m l 
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The Mutation Miner ontology can now be populated from the contents of 
this database with a custom Java program using the Jena library. Jena^ is an 
open source "Semantic Web Framework for Java," providing an API for OWL 
generation. Figure 13-5 shows the function creating the Organism instances 
from the Taxonomy data. 

1 public static OntModel populateOrganisms( OntModel m ) { 
2 // Instantiate the necessary OWL properties. "mmNS" is the Mutation Miner namespace. 
3 DatatypeProperty organismName = m.getDatatypeProperty( mmNS+"organismName"); 
4 DatatypeProperty organismAIINames - m.getDatatypeProperty( mmNS+"organismAIINames"); 
5 DatatypeProperty ncbild = m.getDatatypeProperty( mmNS+"ncbild"); 
6 
7 // Plain text lists with mappings written out from the SQL DB. 
8 Map id2sciName = listToMap(id2sciNameFile); 
9 Map id2nonsciName = listToMap(id2nonsciNameFile); 

10 
11 Set oids = id2sciName.keySet(); 
12 String curOid, orgName; 
13 ArrayList otherNames; 
14 Individual curOrg; 
15 /* For each organism, get its scientific name and create the Individual, then 
16 * get the other names and store them in the organismAIINames property. */ 
17 for( Iterator oidsit = oids. iterator (); oidsit.hasNextQ ) { 
18 curOid = (String) oidsit .next(); 
19 orgName = (String)((ArrayList)id2sciName.get(curOid)).get(0); 
20 curOrg = m.createlndividual( mmNS+createClassName(orgName, curOid), organismClass ); 
21 curOrg.addProperty( organismName, orgName ); 
22 curOrg.add Property ( ncbild, curOid ); 
23 OtherNames = (ArrayList)ld2nonsciName.get( curOid ); 
24 If ( OtherNames != null) 
25 curOrg,addProperty( organismAIINames, otherNames.toStringO ); 
26 } 
27 return m; 
28 } 

Figure 13-5. Creating Organism instances in the Mutation Miner ontology using Jena 

The resulting comprehensive set of instances can be queried by all language 
processing components through GATE'S ontology layer (we explain the technical 
details for this in Section 6.1). 

5.2.3 Adding Lexical Organism Information 

In order to support named entity detection of organisms, the ontology must 
contain the taxonomical names so that they can be matched against words in a 
text using a gazetteer NLP component (Req.#3). This information can also be 
directly extracted from the NCBI database, including the names themselves and 
information like the hierarchical structure of taxa and organisms. 

Ĵena, http: //jena . sourceforge.net/ 
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Table 13-2. The NCBI Taxonomy entry for E. coli (tax_id 562, rank="species") 

name.txt 

"Bacillus coli" Migula 1895 
"Bacterium coli commune" Escherich 1885 
"Bacterium coli" (Migula 1895) Lehmann and Neumann 1896 
Bacillus coli 
Bacterium coli 
Bacterium coli commune 
Escherchia coli 
Escherichia coli 
Escherichia coli (Migula 1895) Castellani and Chalmers 1919 
Escherichia coli retron Ed 07 
Escherichia coli retron Ec67 
Escherichia coli retron Ec79 
Escherichia coli retron Ec86 
Eschericia coli 

name-Class 

synonym 
synonym 
synonym 
synonym 
synonym 
synonym 
misspelling 
scientific name 
synonym 
includes 
Includes 
Includes 
includes 
misspelling 

Together with the taxonomical information we store additional metadata, 
like the originating database and the "scientific name," for each instance. This 
becomes important when delivering provenance information to scientists working 
with the populated ontology. An additional advantage of replacing flat organism 
lists with an ontology is that the taxonomical hierarchy is directly represented 
and can be queried by e.g. grammar rules. An example for this is given in 
Section 6.2. 

5.2.4 Entity Normalization and Grounding 

The initialized ontology now also holds the information required for named 
entity normalization and grounding: Firstly, by encoding the taxonomic relations 
we can ensure that only valid organism names are extracted from texts. For 
example, we can reject a genus-species combination that might look like a valid 
name to a simple organism tagger, yet is not supported by the NCBI database 
and therefore cannot be grounded in the ontology. Secondly, by encoding the 
"scientific name" given by NCBI, we can assign each detected organism a 
normalized name, which is at the same time grounded in the taxonomic database. 
Here, we extract and encode the database IDs when creating the ontology, linking 
each instance to the external NCBI resource (Req.#4). 

5.3 Ontology Initialization for Proteins 
We now need ontology support for analysing protein information (Req,#2), 

just as for organisms. 
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^ - M uniProtKB/Swiss-Prot entry P36217 [XYN2_TRIRE] Cndo-l,4-beta-xylanase 2 - Mozilla F i r j v • [x] 
nie £tiit View* 5 0 EooknwrV.s Took Help 

Entry Informatlfin 
Entry nome 
Primary accession number 
Secondor/ accession numbers 
Integrated into SwissProt on 
Sequence v;as last modified on 
Annotations were last modiried on 

Name and origin of the prateir 
Protein name 
Synonyms 

Gene name 
From 
Taxonomy 

XYNZ.TRIRE 
P36217 
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Hypocreales; Hypocreaceae;JHypocrea. _ 

Figure 13-6, Swiss-Prot entry for Xylanase II 

5.3.1 The Swiss-Prot Protein Database 

The UniProt Knowledge Base [3] is a set of two protein databases, Swiss-
Prot^^ and TrEMBL. Both hold entries about proteins appearing in published 
works, including information about protein functions, their domain structure, 
associated organisms, post-translational modifications, variants, among others. 
Swiss-Prot, which consisted of 228,670 entries as of 2006-07-02, contains 
"manually-annotated records with information extracted from literature and 
curator-evaluated computational analysis,"^^ while TrEMBL is populated by 
automatic analysis tools. In the Mutation Miner system, we use the manually 
curated Swiss-Prot database to gain reUable grounding (see Section 4.2) of 
proteins found in biological documents (Req.#4). 

Figure 13-6 shows the Swiss-Prot entry for a variant of the xylanase 2 protein. 
The entries most important for NLP analysis are the various "Synonyms," as 
they can all appear in a given biomedical document (Req. #3), the canonical 
name ("Protein name") that can depend on its host organism, and a unique ID 
("Primary accession number") that allows unambiguous linking to the protein's 
entry. 

A further essential feature of Swiss-Prot is that its entries are linked to other 
databases, notably to the NCBI Taxonomy database described in the previous 
section. This can be seen in the "From" line where the ID of the host organism 
("TaxID") is recorded. Thus, proteins found in documents can easily be linked 
to their hosting organisms (Req. #5). 

^^Swiss-Prot protein database, h t t p : //www.expasy . o r g / s p r o t / 
^^Swiss-Prot manual, h t t p : //www. expasy. org/sprot /userman . html 
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The Swiss-Prot data can be downloaded from the Swiss-Prot website in XML, 
FASTA [38], and plain text format. We adapted our tool for writing NCBI data 
to an SQL database by exchanging its parser component in order to add the 
Swiss-Prot data to the database as well, thus enabling queries spanning the two 
datasets, using the NCBI ID recorded in both to join the results. 

The database entry corresponding to Figure 13-6 contains the fields ID for 
the unique identifier, DE for the possible names, GN for the corresponding gene's 
name, and OX for the identifier linking to the Taxonomy database: 

ID XYN2_TRIRE STANDARD; PRT; 222 AA. 
DE Endo-1,4-beta-xylanase 2 precursor (EC 3.2.1.8) (Xylanase 2) (1,4-
DE beta-D-xylan xylanohydrolase 2). 
GN Name=xyn2; 
OS Trichoderma reesei (Hypocrea jecorina). 
OX NCBI_TaxID=51453; 
RX MEDLINE=93103679; PubMed=1369024 ; 

The protein data is then encoded in the ontology, similar to the information 
concerning organisms. Thus, the ontology now has all the required information 
for detecting protein named entities, as well as assigning normalized names 
and grounding them to Swiss-Prot JDs (note that some additional processing is 
required for Protein analysis, including abbreviation detection [13], however, 
we cannot cover these steps within the scope of this chapter). 

Of particular interest are the relations between proteins and organisms inferred 
from the NCBI Tax ID value, which are also transferred into our ontology 
according to Req.#5 (note the o r g a n i s m P r o t e i n R e l relation in Figure 13-
4). We can now create relation instances, again using Jena (cf. Figure 13-5): 

ObjectProperty organismProteinRel = m.getOb]ectProperty( mmNS+"organismProteinRel"); 
for( Iterator protit = proteinClass. listlnstances (); protit .hasNext()) { 

[...] // Find the ncbild stored in ttie protein's record. 
// Query for the organism with this id 
org = (Object)rdfLiteralQuery( ox, ncbild, organismClass, m ); 
prot.addProperty( organismProteinRel, org ); 

} 

How we exploit the relation information from the ontology for the NLP analysis 
of entity relations is covered in Section 6.5. 

There is further potentially interesting information available in Swiss-Prot 
records that could also be transferred to the ontology, for instance the Medline 
and Pubmed IDs of the publications where primary information concerning 
the protein is found (shown in the RX line of the listing), as well as the protein 
sequence (see Figure 13-9) needed for further automatic processing of text 
mining results. 

5.4 Ontology Initialization for Mutations 
In protein engineering literature, mutations describe changes to amino acid or 

gene sequences. Mutations are somewhat different from the previously discussed 
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entities like proteins and organisms, in that they are not exhaustively listed in 
some database, which could be converted into an ontology. However, it is still 
necessary to model the different kinds of mutations to allow the population of 
the result ontology with the detected instances (Req.#0, see Figure 13-4). 

Mutations are typically identified using NLP techniques, like transducers (see, 
e.g., [26, 41]) or HMMs. To facihtate their detection, the ontology needs lexical 
information concerning amino acids, with their various textual representations 
(for instance, ''Asn'*- "N"="Asparagine" all denote the same amino acid). 
This lexical information is then evaluated for the detection of Mutation entities 
(Reqs.#2and#3). 

6. NLP-DRIVEN ONTOLOGY POPULATION 

This section discusses how to employ the modeled and initialized ontology for 
the various NLP analysis tasks stated in Section 4.2 (see Figure 13-3). For the 
sake of brevity, we omit several standard NLP analysis steps in this discussion, 
like part-of-speech (POS) tagging, noun phrase (NP) chunking, or stemming. 
Readers unfamiliar with these tasks should consult [23] and the GATE user's 
guide.̂ ^ 

6,1 Interfacing Ontology and NLP 
Before we go into detail on individual NLP analysis steps, we discuss some 

technical issues concerning current implementations when interfacing ontologies 
with NLP systems. This is an essential part of an ontology-centered system as 
outlined in Section 2, as it allows replacement of the different data resources 
needed within the various NLP tasks with an ontology as a single source that 
can then be queried by each component in different ways. 

Ontology Support in GATE. Starting with version 3.0, GATE has been 
featuring built-in ontology support in form of an abstraction layer between the 
components of an NLP system and the various ontology representations [9]. 
This layer is built on Jena as RDF-Store, enabling the use of OWL ontologies 
from within GATE. Also, an integrated SPARQL}^ query engine allows querying 
the ontology's RDF graph. With SPARQL it is possible to perform SQL-like 
queries, e.g., for selecting instances based on their ID. 

For example, in order to construct a SPARQL query for the Mutation Miner 
ontology to retrieve the scientific name of the organism with NCBI ID 1423, one 
has to ask for a name (variable ? name) that is the value of a s c i e n t i f icName 

^̂ GATE user's guide, h t t p : / / g a t e . ac . u k / s a l e / t a o / i n d e x . html 
^̂ SPARQL RDF query language, h t t p : //www. w3 . org/TR/rdf- sparq l -query / 
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property of an organism (variable ?organism), which in turn also has an 
n c b i T a x I d property with the value "1423": 

SELECT ?name 
WHERE { ?organism mm:scientificName ?name 

?organism mmrncbiTaxId 1423 } 

However, SPARQL is not OWL-capable in the sense that semantically richer 
queries considering the ontology classes and the class hierarchy, e.g., formally 
restricting the queried subjects to instances of the Organism class, can not be 
expressed. If this functionality is required, interfacing with an ontology reasoner 
(like Racer [22]) and using one of its supported query languages (like nRQL 
[52]) becomes necessary. 

Limitations of GATE'S Ontology Support. While the GATE architecture 
supports OWL-DL, very few NLP components are ontology-aware. In particular, 
the gazetteer as well as the JAPE transducer component can evaluate information 
from an ontology. However, at present they only make use of is-a relations 
between classes. For the gazetteer, this is sufficient because its sole purpose is 
to map ontology classes to names. It should be noted, however, that it currently 
cannot access an existing ontology via Jena, instead it must be provided with 
plain text lists whose entries are then mapped to ontology classes. Nevertheless, 
this is an implementation detail with little impact on the general ontology 
design; these lists can easily be generated from an ontology filled with the NCBI 
and Swiss-Prot data as described in Section 5. For an alternative approach to 
ontological gazetteering, see the Semantic Gazetteer component [39] developed 
within the KIM platform [29], which is also based on GATE. 

The JAPE transducer component also features only limited ontology support. 
It currently considers the feature c l a s s of an annotation to be special and 
takes the ontological hierarchy into account when equality tests are performed 
on its value in grammar rules. For example, if a grammar contains the pattern 
Token . c l a s s == "TaxonomicUnit" , the rule will also match if the 
value of c l a s s is "Species," as Species is-a TaxonomicUnit in the Mutation 
Miner ontology. 

Consequences for Ontology Design. The discussed implementation re
strictions also have an impact on ontology design, as illustrated in Figure 13-7. 
The left part shows the protein section, initialized with the Xylanase 2 protein, 
modeled using the full capabilities of OWL-DL: All proteins are instances of a 
single class and have a name property that is further subclassed to distinguish 
the standard name from its variants. On the right side, a design alternative is 
shown, where each protein is represented by its own subclass. 

The second design alternative allows direct leverage of the capabilities of 
GATE components to analyse texts with respect to an ontology despite their being 
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Figure 13-7. Ontology design alternatives for NLP analysis using GATE 

limited to is-a class relationships. When the first, somewhat cleaner version is 
used, it becomes necessary to use a custom query interface for accessing the 
encoded information. These implementation issues will most likely change, 
however, in future versions of GATE. 

6.2 Named Entity Detection 

The basic process in GATE for recognizing entities of a particular domain 
starts with the gazetteer component. It matches given lists of terms against the 
tokens of an analysed text and, in case of a match, adds an annotation named 
Lookup whose features depend on the Ust where the match was found. Its 
ontology-aware counterpart is the OntoGazetteer, which incorporates mappings 
between its term lists and ontology classes and assigns the proper class in case 
of a term match. For example, using the instantiated Mutation Miner ontology, 
the gazetteer will annotate the text segment Escherichia coli with two Lookup 
annotations, having their c l a s s feature set to "Genus" for Escherichia and 
"Species" for coli. 

In a second step, grammar rules written in the JAPE language are used 
to detect and annotate complex named entities. Those rules can refer to the 
Lookup annotation generated by the OntoGazetteer, and also evaluate the 
same ontology. For example, in a comparison like c l a s s = = " S p e c i e s ", the 
ontological hierarchy is taken into account so that also subspecies match, since 
a Subspecies is-a Species in the ontology. This can significantly reduce the 
overhead for grammar development and testing. 

Hence, to detect Organisms in texts, an OntoGazetteer instance first annotates 
all tokens in a text that match instances in the ontology corresponding to Genus 
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or Species (additional grammar rules are employed to detect Strains). Specific 
grammar rules can then detect legal organism notations, for example, [ genus 
s p e c i e s s t r a i n ? ] , which can be encoded in JAPE as: 

Rule: OrganismRulel 
Priority: 50 
( 

({Genus} ):gen 
({Species} ):spec 
(({Strain} ):str)? 

):orgl — > (right hand side of the rule) 

Similar processing takes place for detecting proteins, mutations, and other 
entities. The result of this stage is a set of named entities, which are, however, 
not yet normalized or grounded. 

6.3 Normalization and Grounding 
Normalization needs to decide on a canonical name for each entity, like a 

protein or an organism. Since the ontology encodes information about e.g. 
scientific names for organisms, a corresponding normalized entry can often be 
uniquely determined with a simple lookup. In case of abbreviations, however, 
finding the canonical name usually involves an additional disambiguation step. 

For example, if we encounter E, coli in a text, it is first recognised as 
an organism from the pattern "species preceded by abbreviation." The NLP 
component can now query the ontology for a genus instance with a name 
matching E* and a species named c o l i , and filter the results for valid genus-
species combinations denoting an existing organism. Ideally, this would yield 
the single combination of genus Escherichia and species coli, forming the correct 
organism name. However, the above query returns in fact four entries. Two 
can be discarded because their names are classified by NCBI as misspellings of 
Escherichia coli, as shown by the identical t a x _ i d (cf. Table 13-2). Yet the 
two remaining combinations, with the names Escherichia coli and Entamoeba 
coli, are both classified as "scientific name." A disambiguation step now has to 
determine which one is the correct normalized form for E. coli: This is the task 
of coreference resolution covered in Section 6.4 below. 

Once the normalized name (and thus the represented ontology instance) 
has been determined, in the case of organisms and proteins the corresponding 
database ID can be trivially retrieved from the instance, where it was stored 
as an OWL datatype property as described in Section 5.1. Since the database 
record can now be unambiguously looked up, the entity is grounded with respect 
to an external source. For our examples, these IDs are P 3 6217 for the xylanase 
variant shown in Figure 13-6, and 5 62 for E. coli, whose database entries are 
shown in Figure 13-2. 
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Figure 13-8, An organism annotation in GATE showing normalization and grounding of the 
textual entity B. subtilis to Bacillus subtilis with the NCBI database ID 1423 

The end result of this step is a semantic annotation of the named entities as 
they appear in a text, which includes the detected information from normalization 
and grounding, as shown in Figure 13-8. 

Mutation Normalization and Grounding. Mutation normalization and 
grounding exhibits some interesting additional properties. As mentioned in 
Section 5.4, protein mutations are first normalized to a single-letter format from 
their textual description, which can be easily achieved using the amino acid 
information stored in the ontology. 

More involved is the grounding of a mutation with respect to its protein 
sequence. Using the already grounded protein information, an amino acid 
sequence is retrieved from Entrez^^ using eFetch^^ (see Figure 13-9). Mutated 
residues can then be located on the retrieved sequences and only those mu
tation/sequence combinations bearing the declared wild type residues at the 
specified coordinates with the correct offset between multiple mutations are 
eUgible for subsequent processing. Single point mutations must match the 
amino acid at the designated coordinate exactly. Mutations detected in a text 
that cannot be grounded to its designated protein are discarded [53]. 

6.4 Coreference Resolution 

Coreference resolution (see Section 4.1.3) is another important step in a 
text mining system, as its results, coreference chains, form the basis for many 

'̂̂ Entrez, http: //www.ncbi .nlm.nih .gov/gquery/gquery. fcgi 
^̂ NCBI Entrez Programming Utilities (eUtils), h t t p : / / e u t i l s . n c b i . n l m . n i h . g o v / e n t r e z / 
query / s t a t i c / e u t i l s_he lp . html 
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1: P36217. Reports Endo-l,4-beta-xyl...[gi:549461] BLink, Domains, Links 

>gi|549461|sp|P36217|XYN2_TRIRE Endo-1,4-beta-xylanase 2 precursor 
(Xylanase 2) (1,4-beta-D-xylan xylanohydrolase 2) 

MVSFTSLLAASPPSRASCRPAAEVESVAVEKRQTIQPGTGYNNGYFYSYWNDGHGGVTYTNGPGGQFSVN 
WSNSGNFVGGKGWQPGTKNKVINFSGSYNPNGNSYLSVYGWSRNPLIEYYIVENFGTYNPSTGATKLGEV 
TSDGSVYDIYRTQRVNQPSIIGTATFYQYWSVRRNHRSSGSVNTANHFNAWAQQGLTLGTMDYQIVAVEG 
YFSSGSASITVS 

Figure 13-9, Protein sequence data in FASTA format for xylanase 2 retrieved from Entrez using 
the grounded protein entity P36217 obtained by NLP analysis 

downstream analysis tasks. Mutation Miner, for example, needs to identify the 
impact of a certain enzyme mutation. This requires the identification of all 
mentions of a mutation throughout the text, in order to examine their context, 
thereby extracting and summarizing the impact descriptions. 

While coreference resolution has been studied extensively in the general 
newspaper/newswire domain, the resolution of biological entities (nominal 
and pronominal) is a rather new area of research. Here, we only focus on 
the ontological extensions of coreference resolution, not the basic approaches 
covered in the literature [12,21,28,50]. In our system, we employ a fuzzy-based 
coreference resolution strategy using a number of heuristics that can use the 
instantiated ontology as a knowledge source. For example, coreference between 
an organism entity in abbreviated and several candidates in non-abbreviated form 
(cf. the last section) can be resolved by examining their context and picking the 
closest one of the candidates that was previously mentioned in non-abbreviated 
form. Entities that have been successfully grounded can be unambiguously 
identified as being equal by comparing their unique database IDs recorded in 
the ontology and thusly grouped in a coreference chain. 

A common problem during coreference analysis are ambiguities occurring at 
the linguistic level. Here, the ontology can facilitate disambiguation by allowing 
comparisons considering different hierarchy levels in the ontology. For example, 
the NCBI Taxonomy database records the "parent" for each species. Thus, 
when testing for coreferring entities of an organism classified as "species" in the 
taxonomic tree, not only other species but also all subspecies can be taken into 
account by retrieving their parent IDs and using them in the comparison. For 
the subspecies Batis mixta mixta, for instance, the hierarchical relationship to 
its parent species Batis mixta can be established without resorting to substring 
tests by comparing the parent ID of the subspecies with the species' ID. 

An example for successful coreference resolution on organisms can be seen in 
Figure 13-10, which shows GrOWL^^ visualising a segment of the result ontology 
for a document, with ontology classes depicted by filled boxes and class instances 

^^GrOWLontology visualiser, h t t p : / / eco informat ics .uvm.edu/dmaps/growl 
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Figure 13-10. Organism coreference chains from the NLP-populated result ontology 

by boxes with empty background. The Chain class representing coreference 
chains, here confined to Organism chains, is connected to its members by the 
object property hasNP. On the instance level, we see four chains, one for each 
organism found in the document. The chain for Cellulomonas fimi is expanded 
in the figure to show its eight members, which are instances of the Organism 
class. 

6.5 Relation Detection 
Relation detection, for example between organisms and proteins, requires 

more involved NLP analysis, like full or partial parsing for predicate-argument 
extraction [23, 31,51]. 

A common problem in relation extraction is the high amount of ambiguity, 
especially when using full parsers [55]. Employing an ontology encoding 
semantically valid relations (Req.#5) allows to constrain the number of detected 
relation candidates to the semantically vaUd ones, which ideally results in a 
unique relation and otherwise boosts precision [30]. 

We give an example for detecting and disambiguating protein-organism 
relations, which is illustrated in Figure 13-11. Information from Swiss-Prot, 
including protein synonyms and taxonomic origin, is encoded in our ontology 
as detailed in Section 5.3. We can use this information to resolve ambiguous 
entities in a relation by discarding possible combinations that are not supported 
by the ontology, as each protein in Swiss-Prot is linked to its hosting organism 
via the latter's NCBI Taxonomy ID. 

In the given example sentence, the phrase ''Bacillus subtilis xylanase" refers 
to a protein of the Xylanase family. This can be automatically determined by the 
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Figure 13-11. Protein disambiguation exploiting a detected relation 

named entity detection (see Section 6.2), semantically annotating "xyianase" as 
P r o t e i n and ''Bacillus subtilis'' as Organism. But it is not yet clear which 
protein is meant precisely. As can be seen in Figure 13-6, canonical protein 
names can change according to the organism they have been generated from: 
Xylanase 2 from Trichoderma reesei has the normalized name Endo-I,4-beta-
xylanase 2 [Precursor] and a grounded ID in Swiss-Prot of P36217. Querying 
the ontology for proteins with "xylanase" in their name yields no less than 72 
different proteins. However, in this example. Bacillus subtilis, which was tagged 
as organism by the NE component, can be unambiguously grounded, because it 
is a name occurring in the NCBI Taxonomy database, with the ID 1423 (see 
Figure 13-8). 

So, the ontology query can be refined by including the organism's NCBI ID, 
which is used in Swiss-Prot to record the organism producing a protein. The 
resulting query for a protein named "*xylanase*" that is linked to the NCBI entry 
1423 yields exactly one result, the correct protein ''EndO'l,4-beta-xylanase A 
precursor (EC 3.2.1,8) (Xylanase A) (1,4-beta-D-xylan xylanohydrolase A)." 

6.6 Exporting the Populated Ontology 
Finally, the instances found in the document and the relations between them 

are exported to an OWL-DL ontology. Note that for the instances and relations 
available in the external databases, the result ontology is a subset of the one 
populated initially (cf. Figure 13-3). 

In our implementation, ontology population is done by a custom GATE com
ponent, the OwlExporter, which is application domain-independent. It collects 
two special annotations, OwlExpor tClass and O w l E x p o r t R e l a t i o n , 
which specify instances of classes and relations (i.e., object properties), respec-
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Figure 13-12. Mutation Miner ontology populated by NLP visualised in GrOWL 

lively. These must in turn be created by application-specific components, since 
the decisions as to which annotations have to be exported, and what their OWL 
property values are, depend on the domain. 

The class annotation carries the name of the class, a name for the instance 
like the Swiss-Prot official name for a protein, and the GATE internal ID of 
an annotation representing the instance in the document. If there are several 
occurrences of the same entity in the document, the final representation annotation 
is chosen from the ones in the coreference chain by the component creating the 
OwlExpor tC lass annotation. 

From the representative annotation, all further information is gathered. When 
it has read the class name, OwlExporter queries the ontology via Jena for 
the properties of the class and then looks for equally named features in the 
representation annotation, using their values to set the OWL properties. 

The exported, populated ontology also contains document specific informa
tion; for example, for each class instance the sentence it was found in is recorded. 
Additional entity-specific information, like an automatically created summary 
for a mutation's impact, can also be exported. 

Figure 13-12 shows an excerpt of such an ontology populated by Mutation 
Miner, visualised using GrOWL. 

7. DISCUSSION 

In this chapter, we motivated and illustrated the use of ontology within a 
text mining system from an NLP perspective. When deciding on whether to 
employ ontology technology in a (biological) text mining application, one needs 
to be clear about the motivation in order to properly assess its cost/benefit 
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ratio. Partly due to its novelty and complexity, semantic web technology still 
requires significant upfront investments before one can reap the benefits of their 
integration. 

So what precisely are the benefits again? In Section 2 we discussed the various 
reasons for ontology integration. In short, exporting NLP into an OWL-DL 
ontology (ontology population) allows for standardised data exchange, which 
in particular includes reasoning tools that can be used to query the ontology, 
as shown in Figure 13-1. Using an ontology during NLP analysis allows 
one to consolidate the various resources, stored in different representational 
formats, into a single datastructure, thereby ensuring semantic integrity between 
the various analysis steps. In this case, however, ontology design needs to 
take the actual NLP analysis tasks into account, like named entity detection, 
normalization, entity grounding, coreference resolution, relation detection, and 
others. An ontology might be well-defined and instantiated, but lacking necessary 
relations, attributes, or other information to support those tasks, it will require 
expensive transformations or even a re-design before it can be used in a text 
mining system. 

But we believe that the most interesting benefits will emerge when both 
approaches are combined in a unified, ontological NLP system. Tasks like 
normalization, relation detection, and coreference resolution can be seen as 
different facets of the same problem, namely, the construction of ontology 
concepts, instances, and relations. For example, every member of a coreference 
chain must be normalized and grounded to the same external protein instance, 
which in turn requires consistent relations between the chain members and other 
entities in a text. Inconsistencies, caused by e.g. a pronoun with an incompatible 
relation to another textual entity, would be immediately flagged by an automated 
reasoner. Thus, current algorithms for these tasks could be enhanced or replaced 
by new ones employing formal reasoning over the ontology. This is, however, 
an ongoing research target (with still diverging views [49]), requiring extensive 
re-design of existing NLP tools and algorithms, which is why we presented a 
more gentle, canonical extension of existing, standard NLP tasks in this chapter. 

It is important to note that we covered only a single, very specific connection 
of ontology with biological text mining in this chapter. Other related work 
includes: Firstly, ontology learning, where NLP is used to determine potential 
classes and their relations from texts [10, 47]. However, at present these 
technologies are not capable of generating an ontology that would fulfill all 
the requirements we outlined in Section 4. Secondly, using text mining with 
existing ontologies, like the Gene Ontology (GO),̂ ^ to annotate database entries 
with segments from the literature [11, 15, 48]. Recent work in this area has 
also been carried out within the Critical Assessment for Information Extraction 

^̂ The Gene Ontology, h t t p : //www. geneontology.org/ 
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systems in Biology (BioCreAtlvE)^^ competition. Thirdly, information retrieval 
using ontologies that have been automatically linked to documents using NLP 
techniques. Examples for this category are systems like Textpresso [35] and 
GoPubMed [18]. And lastly, work concerning ontology proper, like ontology 
linking, merging, alignment, and ontology evaluation [47]. 

Note that v̂ e also did not discuss the evaluation of a text mining system 
[24, 25]. This is an issue largely orthogonal to ontology integration, since 
virtually all existing resources can, in a first step, be transformed from their ad-
hoc representations into an ontology without impacting a system's performance. 
Ontological NLP, in this respect, addresses software engineering concerns of 
text mining systems—an issue for which computational linguists often seem to 
have little love left. 

8. CONCLUSIONS 
This chapter describes the combination of two still emerging technologies— 

Semantic Web Ontologies and Text Mining—for the biomedical domain. The 
integration can take several forms: Ontology-based NLP simply exports results 
by populating an ontology, using other resources for the actual processing. 
Ontology-driven NLP actively uses ontological resources for NLP tasks, which 
requires ontologies that hold all the information needed for the various language 
analysis algorithms. A combined approach—Ontological NLP—offers the most 
benefits, including semantic consistency within a text mining system and formal 
reasoning capabilities for querying NLP-populated ontologies. 

We believe these advantages over ad-hoc NLP resource formats will lead to a 
rapid increase of ontology-enabled language tools, as well as ontologies encoding 
the necessary domain- and language-specific information. Frameworks like 
GATE already have basic ontology support; however, it will take much longer 
for individual NLP tools (like full or partial parsers, coreference resolution 
engines, word sense disambiguators) to adapt and make use of ontologies. This, 
in turn, requires more attention from the ontology community to recognize and 
deliver support for language analysis tasks. 

The emergence of ontological NLP is also likely to give rise to an increase in 
the abundance of instantiated ontologies serving as knowledge bases. Having 
domain-specific text segments from the scientific literature available in a formal 
and interoperable format is consistent with the vision of the Semantic Web. 
Given that the scientific community can see beyond the challenges of new query 
tools and workflows for information retrieval, it is reasonable to expect that 
NLP techniques connected with ontologies will contribute significantly to the 
discovery processes in the life sciences. 

^BioCreAtlvE, h t t p : / / b i o c r e a t i v e . sourceforge .ne t / 
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Abstract: There are now more than a thousand Web Services [22] offering access to 
disparate biological resources namely data and computational tools. It is 
extremely difficult for biological researchers to search in a Web Services (WS) 
registry for a relevant WS using the standard (primarily computational) 
descriptions used to describe it. Semantic Biological Web Services Registry 
(SemBOWSER) is an ontology-based implementation of the UDDI 
specification, which enables, at present, glycoproteomics researchers to 
publish, search and discover WS using semantic, service-level, descriptive 
domain keywords . SemBOWSER classifies a WS along two dimensions— the 
task they implement and the domain they are associated with. Each published 
WS is associated with the relevant ProPreO (comprehensive process ontology 
for glycoproteomics experimental lifecycle) ontology-based kej^words 
(implemented as part of the registry). A researcher, in turn, can search for 
relevant WS using only the descriptive kej^words, part of their everyday 
working lexicon. This intuitive search is underpinned by the ProPreO 
ontology, thereby making use of the inherent advantages of a semantic search, 
as compared to a purely syntactic search, namely disambiguation and use of 
named relationships between concepts. SemBOWSER is part of the 
glycoproteomics web portal 'Stargate'. 

Keywords: Semantic Web services, Web services registry, ProPreO ontology, 
SemBOWSER registry, WSDL-S, biomedical glycomics, service-level 
semantic annotation. 
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1. INTRODUCTION 

In silico methods, involving the use of computational tools for 
conducting research, are now integral to many life sciences experimental 
protocols. Complementing in-vivo or in-vitro methods, in-silico methods 
have allowed scientists to leverage the rapidly increasing potential of Web 
accessible data repositories and software applications, which use these 
datasets, to gain valuable information that can be used to formulate new 
hypothesis or validate existing hypothesis. 

In silico experimental methods are built around the notion of 
computational services that perform a well defined experimental task. These 
services may be used individually or chained together into multi-phase, 
complex processes to accomplish a more comprehensive objective. Atomic 
services, which are used individually, and composite services, which are 
constituted of multiple services, are relative concepts, as they are generally 
distinguished by the interface that the user interacts with to fiilfill a task. 
However, even services that are accessible via a single interface, and thus 
considered to be an individual service, may be composed of multiple 
services. Thus, an important aspect of an atomic resource is its capacity to be 
seamlessly integrated into a multi-step process. 

In silico life science research requires the collaboration of scientists with 
diverse technical backgrounds. For example, bioinformaticians develop 
computational tools and biologists use them to achieve a domain objective. 
These roles are not mutually exclusive and the ability of bioinformatics 
experts to grasp life sciences domain knowledge is of critical importance to 
enable them to develop relevant tools. e-Science is a term that comprises the 
role and characteristics of computational resources that are available to life 
sciences researchers. The variety of computational tools available include 
web accessible public databases, including NCBI databases [11], UniProt 
[36], and Pfam [5]; web based applications like BLAST search tools [2], 
structure and function prediction tools and visualization tools for biological 
pathways or structure of complex bioentities. 

Ideally, a life science researcher should be able to navigate seamlessly 
across different applications with the relevant data. In reality, the large 
heterogeneity in terms of data representation formats, database storage 
schemas and the input and output data structures used by different 
applications make it extremely difficult to use all available computational 
resources in an optimal and integrated manner. In response to this 
complexity, there is an increase in the use of the Web services framework to 
wrap computational tools that process biological data and make them Web 
accessible. This adoption of the Service Oriented Architecture (SOA) in the 
life sciences domain reflects the prevalent practice in the business sector. A 
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growing list of biological Web services can be found in the "̂ ^Grid project 
[22]. 

Semantic Web technology is being increasingly used to implement 
solutions that overcome many of the obstacles to the development and 
integration of Web services resources. This trend includes initiatives by the 
World Wide Web (W3C) consortium's Semantic Web Health Care and Life 
Sciences Interest Group (HCLSIG) [15]. One of the key efforts in this area 
has been the use of ontologies, which lie at the heart of the Semantic Web. 
Ontologies represent a consensus of the nomenclature used in a domain and 
capture domain knowledge in a form that can be consistently applied. This in 
turn, leads to better discovery, reuse and integration of both data and 
services. An ontology makes it possible to represent resources in a formal 
model that is 'understood' by software agents, thereby enabling the rapid 
automation of many processes in life sciences. This allows a reduction in the 
human intervention required in certain tasks of high-throughput experiment 
data management. In this way, informatics solutions can keep pace with the 
volume of data being generated. 

Using ontologies to annotate services has been addressed by several 
initiatives, including WSDL-S [19] and its follow on SAWSDL [16] under 
the W3C is expected to lead to a recommendation in early 2007. This will 
provide a language that supports use of ontologies to improve reuse, 
discovery and composition of Web services. 

In this chapter, we discuss the use of Semantic Web services (SWS) and 
focus on the importance of Web services registry and the use of semantic 
technology in a registry to enable researchers to search and discover relevant 
services easily and in a consistent manner. We focus on the Semantic 
Biological Web Services Registry (SemBOWSER) project to illustrate the 
use of semantics in a registry and briefly discuss the "̂ ^Grid and BioMoby 
projects as other examples of projects using semantic technology in a 
registry. 

1.1 Web Services in Biological Sciences 

Services, available as computational tools, are increasingly being 
developed and implemented in conformity with the Web services 
framework. As discussed in other chapters in this book, Web services are 
platform neutral, highly interoperable and hold the promise of being 
seamlessly integrated into Web-based multi-step processes. Web services 
form a critical part of the Web based e-Science initiative due to their 
common characteristics, namely: 
a) Web based programmatic access: Web services are independent entities 

that may be invoked by other software applications, over the Web, using 
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well-defined interfaces. This allows Web services to be the ideal 
platform for developing high volume data processing or management 
tools with minimal human intervention 

b) A documented model based interaction: Web services describe their 
interface, their input and output and exchange data in XML schema 
documents. Thus, using the widely accepted XML platform during their 
complete lifecycle enables Web services to be compatible with a wide 
range of requirements. 

c) Availability for integration into complex Web processes: Individual Web 
services may be chained together into multi-step processes to form Web 
processes. 
There are over 1000 Web services listed in the '"^Grid project [22]. This 

is an indication of the large number of Web services available in the life 
sciences domain ranging from genomics to biomedical glycomics [32]. As 
Web services are being rapidly adopted in a multitude of life sciences 
disciplines, there exist critical differences in terms of their functionality, 
input and output parameters, pre and post conditions, time to execute a 
particular task, reliability and other metrics that may also be loosely grouped 
into the Quality of Service (QoS) of Web services [6]. In this scenario of 
differing metrics, a life sciences researcher, not well-versed in the navigating 
XML schema based technical descriptions, which are used to describe Web 
services, has an extremely high initial barrier to adopt Web services. We 
believe life sciences researchers should not have to master technical aspects 
of Web service descriptions to allow them to use computational resources 
optimally. 

Another component that must be present if Web services are to be 
incorporated as part of the standard suite of life science research tools is a 
middleware platform. This allows researchers to search for relevant Web 
services and if needed, combine individual Web services into Web processes 
that provide workflow process capabilities in SOA and Web-centric 
environments. Formally, the in-silico experimental phase requires the 
following: 
a) Establishment of infrastructure with a common meeting point where 

service providers can 'publish' their services and consumers can 
'discover' relevant Web services. 

b) Standardization of the mode of interaction between service providers 
(bioinformatics professionals) and service consumers (life science 
researchers) - this is addressed via the SWS framework. 

c) Autonomous evolution of this 'town market' of SWSs into an 
established forum for providers and consumers. The concepts 'process 
portals' and 'process vortex' [34] are being developed for this purpose, 
allowing user supplied requirements and constraints to drive system 
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assisted semi-automated composition of multiple Web services into a 
Web process. 

1.2 Registry of Bioinformatics Web Services 

The business services domain has many established methods of soliciting 
required services from both known and unknown vendors. Request for 
proposal (RFPs), Request for quotations (RFQs) and electronic media based 
methods help customers and vendors to interact, negotiate and finalize a 
business transaction. In the life sciences domain, the increasing number of 
bioinformatics Web services requires a similar modality, allowing the 
researcher to search for Web services according to the required functionality, 
input and output, pre and post conditions and to combine these Web services 
into Web processes. A standard method for publishing, searching and 
discovering relevant Web services is critical in order to optimally leverage 
the increasingly complex computational resources available for life science 
research. This will provide a common meeting platform for service providers 
and service consumers. 

Similar to a town market, a registry of Web services in life sciences 
provides a foundation for the following: 
a) A platform that allows Web service providers to offer their services. The 

services must be described in a standard manner, in terms of 
functionality, input and output, pre and post conditions. 

b) Standard interfaces to allow users to search and discover Web services 
in a standard and repeatable manner. Users may define a set of 
requirements and constraints to narrow down their search to candidate 
Web services. 

To ensure that a Web services registry incorporates the above listed 
features, the publication of Web services is an important phase. Guidelines 
followed during the publication of a Web service should include: 
a) Description of interaction of the Web service, i.e. the functionality 

modeled as one or more operations 
b) Description of the input and output details for the specific Web service 
c) Description of the pre conditions that must be true before invoking the 

Web service and post conditions that will be true after the Web services 
ceases execution 

The association of these multiple types of metadata with each Web service is 
necessary in order to facilitate its discovery and integration with other Web 
services to form Web processes. Specifically, these include semantic 
metadata incorporated directly within the SWS or stored in the registry (in 
addition to other attributes describing the SWS) as illustrated in Figure 14-1. 
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Association of semantic metadata with Web services and registry allows 
software agents to use both in a complementary manner. This also allows the 
customization of the search interface according to user requirements. Since 
the search parameters and metadata associated with the Web services and 
registry are defined in a formal model, accuracy and relevance of the search 
results are higher compared to a purely syntactic search [10]. 

SEMANTIC 
ANNOTATION 

INPUT/OUTPUT-

OPERATION 

PRE/P03T 
CONDITION 

WEB SERVICE 

ONTOLOGY 

SEMANTIC 
ANNOTATION 

^!Web Service 

WEB SERVICES 

REGISTRY 

Figure 14-1. Semantic metadata for SWS may be incorporated into the SWS itself and also 
stored as part of the registry [30] 

UDDI WEB SERVICES REGISTRY 

2.1 Overview 

A Web services registry or multiple (and communicating) registries are a 
critical component in the path towards widespread adoption of Web services 
oriented bioinformatics. Consistent with key characteristics and capabilities 
underlying the Web services stack, it is logical to apply a common approach 
or standard to the development and implementation of the Web services 
registry. The Universal Description and Discovery Interface (UDDI) [14], 
maintained by the Organization for the Advancement of Structured 
Information Standards (OASIS), is the standard which we describe and refer 
to in this chapter. 
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The UDDI standard allows for the publishing, search and discovery of 
Web services using standard and repeatable methods. These activities are 
made possible through the association of descriptive data and metadata with 
the Web services listed in the UDDI registry. The UDDI descriptions and 
metadata are used to: 
a) Categorize the Web service 
b) Define the modality to interact with the Web service 
c) Serve as a platform for integration of multiple, compatible Web services 

into a Web process 
In the following section, we give further details of the UDDI model using 

roles of the providers, the Web services and the consumers as points of 
reference. 

2.2 UDDI Data Models 

The three data structures that we describe in the following sections model 
the information regarding the service providers, the domain functionality and 
the technical aspects of a SWS. 

2.2.1 Bioinformatics Web services provider 

Bioinformatics service providers are typically modeled in the UDDI 
standard using the business entity [14] data structure. The first step involves 
the correct interpretation of the problem being solved in context of the 
relevant domain. In order for Web services to have an equal footing with 
existing experimental research tools, they have to strictly adhere to the 
requirements and constraints of the problem domain. These may include the 
algorithm being used, the format and source of input data, and the 
assumptions made during the execution of the experimental method. 
Inclusion of these details (part of the provenance of the data), allows the user 
to evaluate the reliability of the results provided by the Web services. 

The business entity data model in UDDI includes information regarding 
the name of the provider, contact details and the set of services offered by it. 
To facilitating its discovery and evaluation as a candidate Web service to 
perform a specific desired task these details can be semantically described in 
terms of concepts that are defined in a controlled vocabulary or ontology and 
associated with the Web service. For example, in certain e-commerce 
applications, the RosettaNet [12] standard can play a vital role in defining 
concepts regarding interactions between trading partners. Thus, in the 
business domain, semantic annotation using an ontology incorporating the 
RosettaNet nomenclature and protocols can enable search and discovery of 
services by software applications using descriptions or parameters specific to 
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service providers. These interactions can be formalized and lead to better 
automation if a domain specific specification such as RosettaNet is modeled 
as an ontology^" .̂ [29] shows the use of an ontology based on RosettaNet and 
additional ontologies for WS-agreement matching. Similarly, in the life 
sciences domain, assuming confidence in certain providers, users may search 
for SWSs based on the criteria specific to service providers, whereby these 
SWSs are annotated with respect to relevant ontologies. 

2.2.2 Bioinformatics Web services 

A Web service can be modeled in the UDDI specification using domain-
specific descriptors for its functionality along with its technical and 
programmatic features. The business service data model in the UDDI 
standard [14] is used to describe the Web service's domain functionality. 

The domain specific description of the Web service specifies the task that 
it executes. This includes the categorization of the Web service in 
accordance with a classification framework. In the business domain there are 
many widely accepted classification frameworks. The North American 
Industry Classification System (NAICS) taxonomy is a popular example. In 
the life sciences, various controlled vocabularies and domain ontologies 
exist, such as SNOMED-CT [13], Gene Ontology (GO) [4], ProPreO (for 
proteomics experiments) [33] and many others that can be found at OBO [9]. 
The use of the ProPreO ontology in the annotation of Web services is 
illustrated in the following section on Semantic Biological Web Services 
Registry (SemBOWSER). 

The technical details of the Web service's programming interface, 
commonly referred to as the Application Program Interface (API), are 
modeled according to the binding template in the UDDI standard [14]. These 
technical details include the input and output data models used by the Web 
service, the methods or functions available as part of the Web service (the 
operations of the Web service). The Web Services Description Language 
(WSDL) [18] is used to describe the Web service technical interface. There 
has been a considerable focus on the semantic annotation of the interaction 
interface of Web services, particularly the.data types used in the input and 
output and the operations exposed by a Web service. The W3C has received 
four submissions for semantic annotation of Web Services, including 
WSDL-S [19] and OWL-S [17], that now have a wide research following. A 
W3C recommendation fashioned after WSDL-S called SAWSDL is 
anticipated in early 2007. These specifications support enriched description 

"̂̂  A partial RosettaNet ontology can be found at http://lsdis.cs.uga.edu/projects/meteor-
s/index.php?page=6. 
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of Web services by associating metadata with respect to ontologies or 
conceptual models. Research initiatives like the METEOR-S [10], BioMoby 
[24] and "̂ ^Grid [7] have used semantic technologies to add semantic 
annotations to Web services in various domains, including life sciences. 
Figure 14-2 is an excerpt of a WSDL-S file annotated using the ProPreO 
ontology. 
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Figure 14-2. Excerpt from WSDL-S file of a Web service to identify N-gfycosylated peptides 
from a list of identified peptides 

The final UDDI data structure we introduce is the tModel. The tModel 
models both the business service and binding template information. tModels 
are a precise model of reference that may be used to search, discover and 
integrate Web services listed in a Web services registry. 

2J .3 Users 

There are multiple ways for users to discover relevant Web services. A 
user may search for a Web service according to the functionality, the input 
and output data, the constraints related to performance or quality and service 
providers. However there are no data models for users in a Web services 
registry using the UDDI standard. 
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Hence, an application that seeks to implement customized search features 
for users unfamiliar with the XML-schema based search interfaces needs to 
store the requisite data in native data models of UDDI. In SemBOWSER we 
store such metadata about SWS in the existing data models of the UDDI 
framework. 

3. SEMANTIC BIOLOGICAL WEB SERVICES 
REGISTRY (SEMBOWSER) 

As introduced in preceding sections, there have been several initiatives 
using semantic technologies to ease the adoption of Web services as an 
integral experimental tool in the repertoire of a life sciences researcher. The 
different projects have focused on use of semantics on different aspects of 
Web services and their registry. One approach involves the use of semantics 
to describe the data types used by the Web services and the subsequent 
search, discovery and integration of Web Services using the compatibility of 
input and output data types [10]. Another approach involves the association 
of semantics with the operations exposed by the Web services as well as the 
input and output data models [26]. In contrast the SemBOWSER approach 
considers the Web services as single functional entities that perform a given 
task and hence associates the semantics to this feature of the Web service. 
SemBROWSER also associates semantics to the operations and data types 
using the WSDL-S specification. 

In the following sections we describe in detail the SemBOWSER project. 

3.1 Implementation of SemBOWSER 

As part of the Integrated Technology Resource for Biomedical 
Glycomics funded by the National Center for Research Resources (NCRR), 
we are using SWSs to allow the seamless sharing and use of computing 
resources and data by researchers in their routine work. The suite of 
glycoproteomics services uses the inherent advantages of SWSs namely, to 
be used in a platform-independent manner, the use of XML-based 
representation formats for exchange of data and ultimately the possibility to 
form multi-step, complex Web processes leveraging associated semantic 
metadata. The SWSs, developed as part of the biomedical glycomics project, 
include tasks such as data format transformations, filtering, categorization 
based on given sets of constraints, as well as search and identification of 
patterns in datasets. As discussed in the previous sections, the rapid increase 
in the number of available services in a registry makes it difficult for a 
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researcher, unfamiliar with the XML-schema based service descriptions, to 
search and discover Web services. Using the unique SemBOWSER 
approach to leverage Semantic Web technology, we aim to make the search 
and discovery of Web services more intuitive for researchers. 

3.1.1 Semantic annotation of Web services 

Software applications used in automated search and discovery of Web 
services cannot distinguish between Web services purely on syntactic 
definition of input, output, pre or post conditions and operations. For 
example, two Web services with similar pre and post conditions may 
perform significantly different functions. Moreover, two Web services 
performing similar functions may use different protocols or assume different 
experimental conditions. In the life sciences domain, these variations in 
protocols or experimental conditions assume significance and it is not viable 
to integrate or compare datasets obtained from two Web services with these 
differences. Hence, it is extremely important to use semantic descriptions of 
Web services to decide on the compatibility of two Web services for 
integration into a Web process or subsequent processing of their datasets. 

The WSDL-S specification defines WSDL based elements (using the 
extensible elements of WSDL) that can be used to semantically annotate a 
Web service, allowing publishers to unambiguously describe its 
characteristics. The WSDL-S specification is agnostic to the ontology 
specification language, unlike OWL-S or WSMO [31] which require use of 
specific conceptual models. The WSDL-S specification [19] also 
recommends the following guiding principles for semantic annotation of 
Web services: 
a) Use of existing standards in Web service and emerging standards in 

SWS to minimize disruption of existing Web services by newer 
implementations. 

b) Freedom of Web services publishers to choose the specific language for 
annotation, including OWL, Unified Modeling Language (UML) or Web 
Services Modeling Language (WSML) [21]. 

c) An accommodation for multiple annotations of each instance of a Web 
service that can be described using more than one classification term. 

d) An accommodation for semantic annotation of data types described in 
Web services using XML schema. This encourages reuse of interfaces 
described for Web services. 

e) Implementation of mappings between XML complex types and concepts 
defined in formal semantic models such as ontologies. 
SemBOWSER lists SWSs using the WSDL-S specification and the 

ProPreO ontology to describe the WSDL based elements. This enables 
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software applications to search and discover Web services using the WSDL-
S based semantic descriptions. As part of the METEOR-S project [10], tools 
have been developed to generate WSDL-S files of Web services using 
relevant ontologies [8]. Since the anticipated W3C recommendation 
SAWSDL is largely based on WSDL-S, we also expect this work will be 
very easily adapted to support this emerging standard. 

3.1.2 ProPreO ontology 

%:w^^<z^A,^mmm^;^^w ' ^ ^ % 
•i^!r:-^;-sii^i,;:ii:^^'^-,f-y <• 

Figure 14-3. ProPreO - process ontology with concepts used in the annotation of SWSs used 
in the Web process described in Figure 14-4 (Protege toolkit visualization) 
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ProPreO [33] is a process ontology designed to model the complete 
lifecycle of a glycoproteomics experiment. ProPreO models the different 
stages in a glycoproteomics experiment including the biological source of 
the sample (with its associated metadata regarding the source organism and 
the conditions that existed during growth of the tissue or cells from which 
the sample was extracted), the separation techniques (such as high-
performance liquid chromatography) used to isolate molecules of interest in 
the sample, the analytical techniques (such as mass spectrometry) used to 
identify and quantitate molecules in the sample, and finally the 
computational resources used to process the resulting datasets. 

ProPreO was modeled using the OWL-DL (Web Ontology Language) 
language [20]. There are 400 concepts and 32 properties with 200 
restrictions in ProPreO. The ProPreO ontology is populated with real world 
instances of tryptic peptides, parent proteins, theoretical chemical and 
monoisotopic mass concepts. The size of ProPreO ontology knowledge base 
is 3.2 million instances and 18.6 million triples or assertions. ProPreO is 
listed on the Open Biomedical Ontologies (OBO) repository and freely 
available for download. Figure 14-3 shows a section of the concept hierarchy 
of ProPreO. 

The top level concepts defined in ProPreO are: 
a) Data - which constitute the basic units of information. Data can include 

collections of information or individual units of information. Data can be 
experimental (measured) or theoretical (calculated) 

b) Material continuant - which is a real-world object 
c) Task - which is a process that is initiated or implemented by an agent 

These top level classes loosely follow the Basic Formal Ontology (BFO) 
approach [35]. This allows ProPreO to be used in conjunction with other 
biological ontologies which also conform to the BFO approach. ProPreO 
was developed for application in the semantic annotation of various 
resources, namely experimental data and Web services, and to formally 
model provenance data. 

3.1.3 Semantic annotation in SemBOWSER 

In addition to the WSDL-S specification based semantic annotation of 
WSDL elements of Web services SemBOWSER uses concepts in the 
ProPreO ontology for service-level annotation of Web services that it lists. 
In existing approaches using semantic techniques in Web services registry, 
the focus is on annotation with respect to the data types used in the 
input/output and the operations exposed by the Web services. 

To accomplish a task, the domain experts in glycobiology have to 
execute a number of sub-tasks, some sequentially and others in parallel. 
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Some of these sub-tasks form constituents of the process to accomplish 
many other tasks. For example, the isotopic distribution of a peptide depends 
on its elemental composition. The amino-acid sequence of a peptide is used 
to calculate the elemental composition of an ion observed in the mass 
spectrum, we name this sub-task as Calculate_ion_elemental_composition, 
This sub-task is used in many other scenarios namely identification of 
phosphate-related post translational modifications in proteins. Hence, we 
model this sub-task as single a SWS which is integrated in multiple Web 
processes. 
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Figure 14-4. Isotopomer distribution calculation as a Web process 
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We name such sub-tasks as one unit of task. The granularity of a unit of 
task was decided in consultation with domain users. The domain users, based 
on their experience, identified the sub-tasks of a process as unit of task based 
on its potential to be reused as component SWS in multiple Web processes. 
Each unit of task, modeled as a single Web service, usually has one publicly 
accessible operation. 

We use a process in glycoproteomics as an example to further explain the 
concepts introduced above. The process to calculate the isotropic distribution 
for a given molecule and generation of the corresponding mass spectral 
pattern can be combined to form a Web process (illustrated in Figure 14-4). 

Each atom of a particular chemical element (e.g., hydrogen, carbon, etc.) 
can exist as a different isotope whose mass depends on the number of 
neutrons in its nucleus. As atoms are combined to make a molecule, the 
presence of different isotopes leads to a distribution of masses for the 
molecule. This mass distribution is not random, but depends on the natural 
abundance of the different isotopes of each constituent element. This mass 
distribution is a distinctive feature of the molecule, and can be used to help 
identify it in mass spectral data. The isotopic distribution, which depends on 
the elemental composition of the molecule, can be calculated by a recursive 
algorithm based on probability theory, and the results can be plotted as a 
graph such that it approximates the observed mass spectral pattern. 

The approach to implement a unit of task as a Web service required 
suitably relevant semantic annotations to describe the Web service as one 
functional unit. In addition to applying WSDL element based annotations, 
SemBOWSER associates semantic keywords with each Web service that 
describes the functionality of the service as one logical unit. Thus, users not 
conversant with the technical details of a WSDL file can search for relevant 
Web services by using familiar, domain keywords to describe the task that 
they require the Web service to accomplish. 

We use three related Web services (illustrated in Figure 14-4) as 
examples to detail the SemBOWSER approach: 
a) Calculate_ion_elemental_composition SWS- the amino-acid sequence 

of a peptide is used to calculate the elemental composition of an ion 
observed in the mass spectrum. 
• Input: a string specifying the amino-acid sequence and the adduct 

(e.g., H^) that results in ionization 
• Output: a string specifying the elemental composition of the ion, 

with the number of atoms of each element separated by spaces. 
• Operation: AA2Ele() 
• Pre-condition: amino-acid composition known 
• Post-condition: ion composition known 
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b) Calculate_isotopic_distribution SWS - simulate the isotopic distribution 
envelope for the given ion composition 

Input: The elemental composition (calculated by AA2Ele) along with 
the ionic charge, required digitization, and mass spectral resolution 
Output: a table specifying a list of mass to charge {m/z) values and 
the corresponding signal intensity for each 
Operation: simulate_MS() 
Pre-condition: ion-composition known 
Post-condition: spectrum simulated 

c) x-y_Plot SWS - create an x,y-plot 
Input: a two-column table containing x,y-data to plot 
Output: an image file illustrating the x,y-plot 
Operation: xy_plot() 
Pre-condition: x,y data available 
Post-condition: x,y-plot generated 

At the time of publication of these Web services, the provider is 
prompted to associate semantic keywords with them, categorizing them 
along two axes of categorization: 
a) Domain: The broad life sciences sub-disciplines that are related to the 

Web service. The keywords for each of the relevant disciplines are 
associated with the given Web service, namely glycoproteomics, 
proteomics, ms-ms_data_analysis. These keywords are representative, 
and depending on the granularity used in modeling of the referred formal 
model, the associated semantic keywords may be extremely specific. 
Figure 14-5 shows the process publishers use to associate domain 
keywords with SWS published in SemBOWSER. 

b) Task: The unit of task executed by the Web service may be described by 
keyword(s), namely Calculate_ion_elemental_composition, 
Calculate_isotopic_distribution, x-y_plot. 

The service providers visually browse through the available categories 
and associate one or multiple, relevant keywords with a Web service. The 
two SWSs listed above as examples would be annotated in the following 
manner: 
a) Calculate Jon _elemental_composition. SWS: The semantic domain 

kejrwords associated are ion and elemental_composition and the 
semantic task keyword is calculate_elemental_composition, 

b) Calculate_isotopic_distribution SWS: The associated domain keywords 
are theoretical_massJo_charge_ratio, theoretical ion_abundance, and 
task keywords are simulate_ms_data, and 
calculate_isotopic_distribution. 
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c) x-y_Plot SWS: : The associated domain keywords are 
graphical_data_representation and x-y_plot and task keywords are 
plot_data and draw_x-y-plot 
The keywords that are available to be associated with a Web service are 

concepts defined in the ProPreO ontology, which is the formal model used 
for reference. The use of concepts from an ontology ensures that the 
keywords used in the annotation process are not only clearly defined but also 
allows the well defined named relations connecting these concepts to be used 
to discover related Web services. Moreover, using ProPreO enables us to 
apply disambiguation and mapping techniques to search for kejrwords used 
by users. 

For example, the users may use the synonyms of keywords associated 
with the SWSs instead of the exact keywords used by the publisher to 
describe a SWS. Since SemBOWSER uses ontology concepts as semantic 
keywords associated with SWSs, it can still find the relevant SWS by 
mapping the search keyword (input by the user) to the original keyword 
(used by the publisher). The synonyms of a concept, defined in an ontology, 
are also part of the ontology and are leveraged by SemBOWSER. 
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Figure 14-5. Classification of Web service according to 'domain' in SemBOWSER 
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In addition, if a user uses a keyword that is a subclass of the keyword 
associated by the pubHsher, SemBOWSER will return the correct SWS to 
the user. The search algorithm will compare the keyword input by the user to 
the keywords associated by the publisher of the SWS. If the user input 
keyword is not an exact match with publisher input keyword, but does match 
with its subclass, then the given SWS is the 'nearest' and most relevant 
result for the user. This uses the notion that a subclass of an entity is more 
refined concept than its superclass; hence the superclass is more general 
thereby encompassing more similarity with the concept than its siblings or 
c/z/W concepts. 

These features allows SemBOWSER to present a more domain oriented 
and user friendly interface for users without compromising on the level of 
accuracy and relevance in retrieval of Web services. 

Using the example of the SWS calculate_isotopic_distribution, if a user 
uses the synonym of the domain keyword theoreticaljnass Jo_charge_ratio 
namely theoreticaljn-z_ratio, a concept listed as a synonym of 
theoreticaljnassJo_charge_ratio in ProPreO, SemBOWSER will still 
return the CalculateJsotopicjiistribution SWS as a result. 

Another important advantage of using an ontology for the semantic 
annotation of Web services in a registry is the use of named relations 
between concepts in an ontology. Using the relations defined in the 
ontology, a registry can return logically related Web services that may be 
integrated together to form a Web process to achieve a broader goal. By 
using semantic relationships, the list of Web services returned to the user, 
even in the absence of exact matches, would be more relevant to the context 
of the user's search compared to a purely syntactic search of the services 
registry. 

In the presence of multiple relationships between concepts, the 
framework for ranking these relations is important. The ranking of semantic 
relationships [1], [3] between concepts, according to context or relevance, 
modeled in an ontology is an exciting new area of research in the Semantic 
Web field. Ranking of relationships between entities is conceptually similar 
to ranking Web pages by different search engines namely Google or Yahoo. 
[1] discusses the implementation of an application that ranks relationships 
using both the Semantic and statistical metrics. Semantic metrics include the 
'context' of the query, subsumption and, trust. Statistical metrics include 
'rarity' of occurrence of the relation, the 'popularity' of the relation and, the 
length of the 'associations' between entities in the relation. While highly 
relevant the use of ranking relationships between entities to return most 
relevant SWSs, is part of future work in SemBOWSER. 

At present, the ProPreO ontology is parsed to create data structures 
(Figure 14-6 gives a schematic representation of the data structures) to store 
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the set of keywords to define the domain and the task. These data structures 
are used as a reference to generate the graphical browsing interface for the 
users of the specified domain and task. The listing hierarchy created in the 
graphical interface uses the class hierarchy {is-a relationship) defined in the 
ontology. As stated earlier, these keywords associated by the service 
providers are in addition to the annotation using the WSDL-S specification. 
The keywords selected by the service provider are stored as part of the 
UDDI data structures. 
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Figure 14-6. Data structures in SemBOWSER to store the concepts from ProPreO ontology 

The user searching SemBOWSER for relevant Web services may use 
multiple search methods depending on the requirement. The user may search 
for Web services based on type of WSDL elements. The WSDL-S 
specification allows for the discovery of relevant Web services using 
semantic search parameters. Users may also search for Web services using 
domain keywords, part of the users' everyday working lexicon, that were 
associated with each Web service during their publication. SemBOWSER 
would allow users to graphically browse through the domain and task 
taxonomy of keywords and select relevant search terms. 
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4. DISCUSSION 

4.1 Related Work 

The ™^Grid project [7] seeks to create relevant middle layer services to 
facilitate and ultimately enable e-Science to incorporate provenance and 
standard data management practices. The ""^Grid project has developed tools 
to develop and execute in silico experiments. One such tool is the Tavema 
workbench, discussed in [28]. 

The ""^Grid project has also implemented a semantic discovery tool for 
searching Web services using the function, input and output parameters 
called Feta [25]. Feta assumes that the Web services it deals with have 
multiple operations that are functionally independent. This is in contrast to 
the notion of a single fimctionality Web service adopted in the 
SemBOWSER model. Feta also differentiates between the service and 
operation concepts as logically separate entities. The service entity 
encapsulates the information relating to published service namely, provider 
organization name, author of the service description and free text to describe 
the functionality of service. 

However, the Soaplab services in ""^Grid share similarity to the 
glycoproteomics Web services listed in SemBOWSER, since they are also 
implemented with the notion of a single operation per service. Feta itself 
describes the operations using multiple attributes namely task, method, 
application, and resource described in detail in [25]. For a more detailed and 
thorough description of the Feta approach, architecture and implementation, 
[25] is a good reference. The approach used by Feta project is suitable to the 
type of SWSs listed in the ™^Grid project, but could be improved along the 
lines of SemBOWSER to provide an intuitive user interface for naive life 
sciences researchers. 

The BioMoby project is another significant project using semantic 
technology for pubhcation, search and discovery of services [24]. 
Specifically, as part of the Moby-Services (Moby-S) project, the Moby 
central acts as a centralized registry that allows search by specification of 
input or output types augmented by graph crawling [24]. 

Though BioMoby features the most comprehensive attempt to use 
semantic technology to define data types used in SWSs, a user interface 
implementation, to allow life sciences researchers to look up relevant SWSs 
using only keywords they are already familiar with is also missing. The 
BioMoby Dashboard (an interface to help service providers for developing 
and deploying their services) and [27], which is an implementation using the 
BioMoby API, currently do not allow biologists to look up SWSs using 
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descriptive domain keywords underpinned by a domain ontology. We 
consider the incorporation of data type definitions using semantic 
annotation, according to WSDL-S specification, and service descriptions is a 
compelling solution to cater to both life sciences researchers and automated 
service discovery and composition using software applications. 

4.2 Future Work 

The use of Semantic Web technologies to allow life sciences researchers 
to effectively leverage available computational resources (mainly as SWSs) 
is still in its early stages of development and adoption. The projects 
discussed in this chapter have yet to employ one of the most potent 
advantages of the Semantic Web, i.e. relationships. Well defined 
relationships between concepts used to annotate Web services and registries 
(where the services are listed), should be used in the next step of SWSs 
registries development. In SemBOWSER, we plan to augment the retrieval 
process of SWSs using the underlying relationships between concepts 
associated with each Web service. Assuming that relationships in an 
ontology relate functionally close concepts, it is possible that related Web 
services can be retrieved to form a Web process. Thus, users searching for 
relevant SWSs to chain together to accomplish a complex task through the 
implementation of a Web process can be returned a list of semantically 
related Web services that have a greater probability of being successfully 
integrated into a Web process. This potentially means that the Web services 
will have semantically compatible input and output, their operations would 
form a logical chain of successive stages in a broad goal and their pre/post 
conditions will also be a series of compatible values. 

It is also important to note the exact behavior for identification of 
relevant SWS, based on inputs, may be implemented in multiple ways. The 
SemBOWSER implementation, using subsumption rules, reflects one such 
approach. Other approaches may involve solicitation of more search 
parameter details, from the user, to return relevant SWS. 

We are also working on the use of multiple ontologies, in addition to 
ProPreO, to semantically annotate the Web services listed in SemBOWSER, 
Consistent with one of the design principles of the WSDL-S specification, 
we plan to use relevant ontologies to describe the business entity data 
structure of UDDI associated with a Web service. We are also leveraging the 
potential of using relationships between concepts to retrieve related Web 
services that may be chained together to form a Web process to accomplish a 
broader objective. 

UDDI version 3.0 introduced the notion of an 'association' of Web 
services registries. Though there are no current implementations of this 
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notion in life sciences domain, we believe that major SWSs registries should 
collaborate to complement their strengths and minimize shortcomings. Since 
it is commonly accepted that multiple ontologies are needed to successfully 
model any given domain, we believe that multiple, cooperating Web services 
registries hold the key to the successful adoption of SWSs by researchers in 
the life sciences domain. 

5. CONCLUSIONS 

In this chapter, we have discussed the importance of a Web services 
registry that utilizes the Semantic Web technology to associate semantic 
metadata with listed Web services at both services and registry levels. With 
the rapid increase in adoption of the Web services framework to share 
computational resources in life sciences community, the Web services 
registry as platform to search, discover and integrate services into Web 
processes is critical. 

The heterogeneity in data representation formats, the input, output, 
operations and other Web services interface descriptions hamper the search 
for relevant Web services and integration into complex Web processes. 
Semantic Web technology in the form of annotations associated with Web 
services and stored as part of the Web services themselves or the registries 
offer a solution to these obstacles. These semantic metadata are referred 
from a formal model, namely an ontology. The formal models define 
concepts clearly and comprehensively to allow software applications to 
disambiguate between similar entities and use the well-defined relationships 
defined between these concepts to retrieve related resources (SWSs). 

Using SemBOWSER as a case study, we have described one approach to 
associate semantic metadata with Web services and a registry to enable users 
to easily find relevant Web services and integrate them into Web processes 
using familiar domain keywords. In this context we have briefly discussed 
the contending approaches used in the Feta registry (part of the ""^Grid 
project) and the BioMoby projects. 
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Chapter 15 

AGENT TECHNOLOGIES IN THE LIFE 
SCIENCES 

Albert Burger 
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Abstract: Software systems for the Life Sciences in the context of the Semantic Web 
will typically be driven by domain knowledge and distributed across the 
Internet, suggesting that software agent technology should play a key part in 
the development of such applications. This chapter introduces the reader to the 
areas of intelligent agents and multiagent systems, describes various Life 
Science applications that were built following the agent paradigm and reviews 
fiiture trends in agent technology and their relevance to the development of 
bioinformatics systems. Some of the obstacles that need to be overcome in this 
context are discussed. 

Keywords: Intelligent Agents, Multiagent Systems, Architecture, Planning, Interaction 
Protocols, Agent Roadmap, Distributed Problem Solving. 

1. INTRODUCTION 

Each new generation of bioinformatics software is characterized by 
activities that were previously carried out manually by biologists being 
pushed into the software layers. While, originally, computers were merely 
used to store and retrieve data from biological experiments on disks, rather 
than on paper, we now ask computer systems to compose and carry out 
entire workflows across multiple bioinformatics resources available on the 
Internet. This means that the software has to perform ever higher cognitive 
processes, which in turn requires additional reasoning capabilities based on 
extensive domain-specific knowledge. In addition, due to the location of 
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databases and computational resources across the Internet, most of these 
appUcations are normally distributed. It is this requirement for intelligent and 
distributed software that suggests a multiagent systems (MAS) approach as 
particularly suitable; indeed the field of MAS is often referred to as 
distributed artificial intelligence. 

The remainder of this chapter is divided into three main parts: section 2 
introduces some of the key concepts of MAS, section 3 discusses 
bioinformatics systems that have used a MAS approach. Future trends in 
agent technology and their relationship to bioinformatics are discussed in 
section 4. 

Although ontologies play a key role in agent systems, we will say very 
little about them in this chapter, since they are extensively discussed in other 
chapters of this book. 

2. INTELLIGENT AGENTS AND MULTIAGENT 
SYSTEMS (MAS) 

In this section we introduce some key concepts of agent technologies, 
specifically those we expect to play an important role in the fiiture 
development of an agent-oriented Semantic Web for the Life Sciences. 
Following about two decades of research and development in this area, there 
exits of course an extensive body of work on agents and we can only give 
the briefest of overview here. To the interested reader who is looking for 
fiirther material we recommend to start with one of the introductory text 
books that are available; Weiss [16] and Wooldridge [17] are two good 
examples. Additionally, on-line material can be found on numerous web 
sites; Europe's AgentLink site (www.agentlink.org) and the web site 
maintained by the American Association for Artificial Intelligence 
(www.aaai.org) are two useful starting points. 

2.1 What are Agents? 

When the object-oriented programming paradigm became popular, many 
people were asking: What are objects? To this date, there is no single 
definition that is universally accepted. However, certain aspects, such as 
classes and instances, data encapsulation, methods and inheritance are 
widely used to describe the object-oriented paradigm. Similarly, there is no 
single definition of what agents are. Worse still, terms such as 'agent', 
'intelligent agent', 'computational agent' and 'software agent' are frequently 
used without distinguishing between them. Just as in the case of objects. 



Agent Technologies in the Life Sciences 343 

there are, however, certain properties typically associated with agents. 
Perhaps the most important of these is the notion of autonomy and agents' 
ability to sense the environment in which they operate. Wooldridge [17] 
offers the following definition: 

"An agent is a computer system that is situated in some environment, and 
that is capable of autonomous action in this environment in order to meet 
its design objectives." 

The definition of autonomy itself is tricky, as one might argue that the 
encapsulation of state and the implementation of methods for an object also 
represent some level of autonomy. The counter argument here is that under 
the object model, once invoked (by another object) an object's method must 
be executed, whereas under the agent paradigm, once an agent has requested 
some action from another agent, the latter may or may not perform this 
request. This is sometimes summarised with the phrase: "objects do it for 
free; agents do it for money". 

There are plenty more definitions of agents, many of which reflect the 
particular research communities in which the agents are investigated, the 
primary two of these being the distributed computing community on the one 
hand and the artificial intelligence community on the other. For an award 
winning paper on intelligent agents, we refer the reader to Hendler [7]. 

2.2 Multiagent Systems and Architecture 

In general, agents do not act in isolation, but interact with each other to 
achieve their objectives, resulting in what are typically called multiagent 
systems (MAS). Different types of agents in a MAS have different 
responsibilities. Typical examples of agents include: 
• user agents: provide the interface between the human user and the rest of 

the system, often personalizing services for each user; 
• planning agents', formulate plans which if executed achieve the desired 

objectives, e.g. answer a query from the user; 
• scheduling agents: responsible for the scheduling and execution of plans; 
• resource agents: provide the interface between the MAS and external 

resources, e.g. databases; 

The above list is necessarily incomplete. In fact, other kinds of 
classifications - not based on the function of an agent - are possible (for 
more details see the agent textbooks cited above). 



344 Revolutionizing Knowledge Discovery in the Life Sciences 

It is the architecture of a MAS that determines its main building blocks, 
i.e. the main agent types and how they interact with each other. It is, 
therefore, the architecture that is critical with respect to the reuse and 
interoperability within and across MAS. The FIPA (Foundation for 
Intelligent Physical Agents) Abstract Architecture is the best known effort to 
define a standard in this area (see www.fipa.org). 

2.3 Agent Communication 

For agents to be able to work together, they must communicate with each 
other. Based on speech act theories, agent communication languages (ACLs) 
have been developed. For example, in the early 1990s the Knowledge 
Sharing Effort project, funded by DARPA, created KQML (Knowledge 
Query and Manipulation Language) and KIF (Knowledge Interchange 
Format), the former specifying a common format for messages, the latter 
providing a means to include domain knowledge as content in KQML 
messages. KQML defines a list of so-called performatives, such as 'ask-if, 
'teir, 'deny', etc., which provide high-level abstractions based on which 
dialogues between agents can be formed. Following on from KQML, FIPA 
specified its own ACL, with a different set of performatives, the two most 
important of which are 'inform' and 'request', used to communicate 
information and request agents to perform actions, respectively. 

While the primitives of an ACL determine the building blocks of 
interactions between agents, interaction protocols are required to constrain 
the communication to meaningful sequences of messages. For example, 
under the FIPA Request Interaction Protocol, an agent having received a 
'request' message will respond with either an 'agree or 'refuse' message. 
Various such protocols exist, reflecting the nature of interaction intended for 
the agents in a MAS. 

The third component required for agents to communicate are ontologies, 
which represent a common understanding of the underlying problem 
domain, e.g. bioinformatics. Ontologies can be used for an agent's internal 
reasoning, but also form the basis for the content of ACL messages and the 
description of agents' capabilities in directory services. Interoperability 
between agents critically depends on these ontologies. 

2.4 Task Composition and AI Planning 

Agents need to work together to successfully carry out complex tasks. 
This is typically referred to as distributed problem solving. The most 
common way of coordinating actions across multiple agents is via planning, 
the first phase of which deals with developing plans of actions that will 
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achieve the given goals, while during the second phase one of these plans is 
selected and then executed. Replanning must be supported in case a plan 
fails to achieve its goal, for example because a particular agent has become 
unavailable. In a MAS, plans are typically distributed, since the agents 
involved in their execution are located on different hosts. The process of 
creating the plans, however, may be either centralized or distributed. In the 
case of the latter, no single overall plan may be seen by any of the agents. 

One technique that has been suggested as particularly useful in the 
context of composition of web services is Hierarchical Task Network (HTN) 
planning [19]. An HTN plan consists of primitive and non-primitive tasks, 
where the latter can be decomposed into subtasks, which in turn can be 
primitive and non-primitive and require further decomposition, thus leading 
to a hierarchy of tasks. 

3. AGENT SYSTEMS IN THE LIFE SCIENCES 

3.1 On Agents and the Semantic Web 

What does agent technology have to offer to the bioinformatics 
community that cannot already be done without it, particularly considering 
all the progress that has been made by the Semantic Web community in 
recent years? 

The first point one should make is that quite a lot of what is seen today as 
central to the operation of the Semantic Web, such as semantic matching of 
services, has been looked at, and in many cases has its roots, in research on 
multiagent systems. The World Wide Web was first developed in the early 
1990s, and by the time Tim Bemers-Lee put forward his vision of the 
Semantic Web [2], projects such as Infosleuth, which started in the mid 
1990s, had already proposed solutions for semantically matching agents 
against tasks [15]. Similarly, ontologies played a key role in these systems, 
just as they do today for the Semantic Web. 

Hence, some technologies developed, at least partially, in the context of 
multiagent systems have already contributed to the development of the 
Semantic Web and thus indirectly to its application in the Life Sciences. Of 
course, matters have progressed since, e.g. we now have the Web Ontology 
Language (OWL) and various reasoning engines which were not available 
then. Various other chapters in this book discuss these topics, and hence, we 
will not cover them in any detail here. 

The remainder of this section focuses on bioinformatics systems whose 
design is explicitly agent-based. Compared to the overall efforts in the field 
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of distributed systems for the Life Sciences, their numbers are still relatively 
small, but their popularity is increasing in line with the general trend towards 
more agent-type abstractions for the Semantic Web. For example, entire 
workshops, such as MAS*BIOMED (International Workshop of Multi-
Agent Systems for Medicine, Computational Biology, and Bioinformatics) 
are now dedicated to this field of study. 

Rather than trying to review all of the currently existing Life Science 
MAS, we discuss representative examples for different kinds of MAS 
bioinformatics applications. For further reading and a recent overview of 
agents in bioinformatics we refer the reader to Merelly et al. [13]. 

3.2 MAS for Data Integration and Workflow in 
Bioinformatics 

One of the earlier efforts in using MAS technology in bioinformatics 
took place as part of the BioMAS project [6]. BioMAS is a multiagent 
system applied to the problem of genomic annotation and an example of an 
information gathering (data integration) system. It is based on the DECAF 
multiagent toolkit which in turn uses the RETSINA multi-agent organisation 
and includes information extraction agents (wrappers to external resources, 
e.g. databases), task agents (e.g. domain independent broker agents, and 
domain specific information processing agents) and interface agents (to 
interface with the user). DECAF agents communicate via KQML (or FIPA) 
messages. 

BioMAS is organised into four sets of agents, respectively responsible 
for: basic sequence annotation, functional annotation, querying, and 
processing of expressed sequence tags (ESTs). Example information 
extraction agents include wrappers for BLAST services at Genbank, access 
to the human-annotated part of SwissProt at the EBI, and access to 
organism-specific gene sequence databases. Task agent examples include the 
Annotation Agent which decides what information is annotated for each 
sequence, queries external data sources, and stores raw sequence data and 
annotations together with provenance data. The Sequence Source Processing 
Agent carries out internal consistency checks across sequences. There are 
also the Ontology and Ontology Reasoning Agents, the latter of which 
deduces GO (Gene Ontology) annotations for unknown gene products. 

Decker et al. point out that the multiagent implementation of BioMAS 
proved particularly useful (when compared to traditional database systems) 
with respect to dealing with dynamic information (changes to primary or 
derived data) and the addition and removal of information sources over time. 



Agent Technologies in the Life Sciences 347 

It illustrates how an agent framework provides a usefiil environment to 
deal with complex, distributed applications and how an agent architecture 
allows the efficient combination of pre-existing general agents with purpose-
built domain-specific agents. 

There are other agent systems that integrate bioinformatics resources, 
e.g. GeneWeaver [5], and although it is not explicitly agent-oriented, the 
'"^Grid project has many agent-like features and has been successfully 
applied to the study of Williams-Beuren syndrome [21]. For more 
discussion on bioinformatics integration and agent technology see 
Karasavvas et al. [8]. 

While systems such as BioMAS are more oriented towards the 
integration of databases, increasingly we see the need to combine access to 
databases with computational steps. For example. Lam et al. [11] describe a 
multiagent approach for analysis of gene expression data from microarray 
experiments, which involves the following three steps: data preprocessing, 
statistical analysis and biological inferencing. The architecture distinguishes 
between agents for the access to databases, agents for statistical analysis, 
agents for interaction with the users, and agents responsible for 
normalisation of microarray data. Coordination is handled by a 'master 
agent' and various interface agents. The master agent is responsible for 
organising the analysis pipeline by transferring results between agents. Lam 
et al. point at two particular advantages of using an agent framework: 
concurrent processing in the gene expression analysis map nicely to multiple 
agents running in parallel, and managing the complexity of the system has 
been significantly eased by the high-level decomposition of the system into 
an appropriate set of agents. 

Al planning techniques, introduced in section 2, are now seen as a 
promising approach for composition of services on the Internet [18,19]. This 
has also been looked at in the context of bioinformatics [20]. 

3.3 MAS for Modelling and Simulation in 
Bioinformatics 

Although data integration will remain a key challenge in bioinformatics 
for some time to come, more recently an increasing number of applications, 
several of which are based on the multiagent paradigm, have been developed 
for modelling and simulation of biological processes. This is consistent with 
the rapid extension of Systems Biology research, where such studies are 
essential, and evident in the number of papers published in this area. For 
example, in 2005, more than a third (5 out of 14) papers at the 
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MAS*BIOMED workshop described modelling/simulation multiagent 
systems. This includes work on modelling the dynamics of intracellular 
processes [4], immune system modelling [1], simulation of mitochondrial 
metabolism [10] and simulation of protein folding [3]. There is also 
significant interest in the simulation of stem cells. A discussion of the use of 
agent technology with respect to this topic can be found in [13]. 

Taking a closer look at one particular MAS simulation study in the 
biomedical domain will highlight why an agent approach is promising for 
such simulation/modelling tasks. Yergens et al. [22] developed the Infectious 
Disease Epidemic Simulation System (IDESS) to study the outbreak of an 
infectious disease in any geographic region. IDESS is following a MAS 
approach using two core agent types: a Person Agent (PA) and a Town 
Agent (TA). Just as in the real world, a PA operates in a town environment 
and might get infected by contact with other PAs. The model allows for the 
specification of PA parameters such as exposure and infection rates, 
incubation period, symptom period and illness period. The TAs are used to 
model population densities, connectedness between towns and containment 
strategies across regions with multiple towns. 

The overall behaviour of a complex system in the real world, be it at the 
molecular or the population level, is largely determined by the behaviour of 
its components and how they interact, such as persons in the confines of 
towns. Similarly, a MAS is defined by the actions of, and interactions 
between, its constituent agents, which just as their real world counterparts 
can display a certain amount of autonomous behaviour. It is this analogy 
between the real world and MAS which suggests that the agent paradigm is 
particularly well suited for modelling complex systems. 

One should, however, acknowledge, that there are performance 
limitations when a system consists of too many actors, and possibly 
therefore too many agents in the corresponding MAS model. It simply would 
not be possible to use a system such as IDESS to model the entire world 
population - computers currently cannot efficiently deal with billions of 
agents. For now, the optimal tradeoff between ease of modelling versus 
computational performance requirements remains an open research issue. 

3.4 Other Bioinformatics MAS 

Not all work on MAS in the Life Sciences directly falls into one of the 
two categories from above. Although Karasavvas et al. [9] are essentially 
dealing with integration issues in the context of gene expression data, their 
research illustrates how the autonomy of agents can be adjusted depending 
on the criticality of decisions made by these agents and how, based on a 
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particular interaction protocol, the balance between user and agent control 
over the applications' internal mechanisms can be managed. The feedback 
from biologists suggests that at least in some cases they prefer less 
transparency of processing than in principle could be offered by a system. 
For example, a biologist may wish to specify a particular BLAST service, 
e.g. from NCBI or EBI, instead of leaving that choice to the software. 

Using the example of data curation, Miles [14] suggests that the agent 
paradigm is particularly useful for the development of bioinformatics tools. 
He argues that agent's social ability and localised control allow for better 
personalisation and adjustment to the different needs of novice and expert 
users, and that the pro-activity of agents makes it easier to correctly 
automate tasks without a scientist having to manually trigger them. 

4. TRENDS IN AGENT TECHNOLOGIES 

It is of interest to consider those aspects of MAS that received significant 
attention from the agent research community, but which have not yet played 
a significant role in previous work on agent systems for the Life Sciences, 
and to look at predicted trends in the area of agent technology and what role 
they will play in bioinformatics agent systems. In particular, we are referring 
to higher level organisations of MAS, matters of architecture and interaction 
protocols, as introduced at the beginning of this chapter. 

In their Agent Technology Roadmap, Luck et al. [12], describe four 
phases of multiagent systems development. We will review these here and 
what they might mean for the bioinformatics agents community. 

Phase 1 (current) is characterised as closed, i.e. refers to MAS developed 
by a single design team, for a single corporate environment within a single 
domain. Interaction protocols are agreed by the specific development team. 

Most, if not all, of the currently existing bioinformatics agent systems fall 
into this category. The lack of openness here is clearly a limiting factor 
when trying to extend such systems beyond their originally intended scope, 
but as pointed out by Luck et al., closed systems will be quite adequate for 
many applications and the relatively high level of protection afforded by 
their closedness is of particular importance to commercial companies, such 
as in the pharmaceutical industry. 

The closed nature of this design does not necessarily eliminate all issues 
to do with semantic heterogeneity, since agents within the system may be 
accessing heterogeneous, external resources that use, for example, different 
underlying ontologies. The resolution of these differences, however, can be 
handled within the design team, assuming sufficient domain competence. 



350 Revolutionizing Knowledge Discovery in the Life Sciences 

without the need for community wide agreements, which is by far more 
difficult to achieve. 

In phase 2 (short-term future) , systems are predicted to be designed and 
developed by more than one site (corporate or academic), increasingly 
relying on standardisations, such as FIPA's Agent Communication Language 
(ACL), but still focusing on a common domain. By and large the systems 
will still be closed within a consortium. 

A typical bioinformatics scenario would be a multi-site project involving 
half a dozen sites collaborating on specific project objectives, such as 
developing a distributed gene expression information resource or distributed 
simulations, e.g. of cell behaviour, in a systems biology study. Heterogeneity 
will primarily still be resolved within the consortium and use of some non
standard interaction protocols is likely. 

A major shift towards more openness is expected in phase 3 (medium-
term ftiture) of agent development. This phase is characterised by having 
different design and development teams working on heterogeneous agents 
that will rely heavily on standard languages and protocols for agent 
interoperability, as well as domain specific knowledge representations, such 
as ontologies. The involvement of more than one domain will require some 
form of domain-bridging agents and the increased openness needs 
mechanisms to deal with malicious and faulty agents. 

In the Life Sciences the need for such increased openness is most likely 
to originate from Systems Biology and its need to cut across studies ranging 
from molecular biology - via cells, tissues and organs - to whole organisms. 
A reasonable assumption is that different agent networks will deal with 
particular levels of study and bridging agents will be deployed to link across 
these levels, e.g. to bridge the molecular with the cell level. One could also 
imagine a similar argument for bridging bioinformatics with health care 
informatics, a linkup which is becoming increasingly important. 

Phase 4 (long-term future) of the Roadmap foresees even more openness 
and flexibility, with agents learning appropriate behaviour to dynamically 
join and form coalitions and virtual organisations. It is not clear just how 
achievable this vision is and whether the complexity inherent in such a 
system will ever be manageable. If successful, it may offer the Life Science 
community a highly flexible, powerful means of integrating many aspects of 
its informatics support. There are, however, significant obstacles to 
overcome before any such futuristic scenario is likely to emerge, and one 
must be cautious not to raise expectations too high and then fail to deliver. 

The issues that arise from trying to develop the kind of open multiagent 
systems described in the Roadmap are not new. For example, interaction 
protocols, the formation of agent societies, and the bridging of different 
MAS, have been for some time and still are subject to active research in the 
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Artificial Intelligence community. While technologies such as Web Services 
and Grid computing deal with matters of distributed computation, they do 
not offer the same depth and breadth at the higher, more abstract levels of 
distributed architectures as offered by the agent paradigm. 

Why is this important? As stated in the introduction, with every new 
generation of bioinformatics systems, tasks that were originally carried out 
by biologists manually are pushed into increasingly sophisticated, intelligent 
software layers, requiring computers to execute ever higher cognitive 
processes that were previously the responsibility of the biologist, e.g. the 
composition and execution of a workflow. 

Over the next five years, this trend is likely to reflect the move from 
single actor activities, e.g. a single biologist composing or using a workflow, 
to multi-actor activities, e.g. a group of biologists negotiating how to 
collectively solve open research questions. It is particularly for this latter 
type of automation where the agent paradigm and its aspects of distributed 
problem solving will make the biggest contribution to the next generation of 
distributed bioinformatics systems. 

There are, however, challenges along the way. One area of particular 
concern is the ever increasing need for domain knowledge to be built into 
such systems. As is the case for the Semantic Web in general, there is a need 
for good biomedical ontologies that underlie the envisioned reasoning 
capabilities. Additionally, if we wish to deploy a planning agent, we will 
require domain knowledge about how to break higher level problems into 
subtasks that can then be allocated to specialised agents, i.e. a domain 
model. It is also not yet clear whether the kind of interaction protocols 
developed for MAS in general will be applicable to bioinformatics systems 
without the need to specialise them. 

Once moving to the more open versions of MAS (phases 3 and 4), there 
will also be an increased need to develop publicly agreed standards and 
ontologies, which in itself has proved challenging in the past. 

Experience with other technologies, e.g. object-oriented systems, has 
shown that real uptake of any such technology will only happen if high 
quality tools that support its paradigm and methodologies become widely 
available. Numerous agent development software tools have been made 
available (see the AgentLink site for details: www.agentlink.org), though 
most of these are research prototypes and the maturity of available products 
will have to grow. 

Finally, a word on the relationship between web services and agents, A 
common question is about what kind of applications require agent 
technology and cannot be developed using web services. A similar question 
was asked about the object-oriented programming paradigm. In both cases, 
the answer is none. This, however, is not the issue. The introduction of 
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paradigms such as object-orientedness and agents is about making it easier to 
develop complex applications - to reduce software development time and to 
increase the quality of software. Whilst there is no clear empirical evidence 
to support the claim that this is true ft)r agent technology over web services, 
there is general agreement that increasing complexity, in software 
development as well as in other areas, is best dealt with in terms of higher-
level abstractions, and surely agents are higher-level abstractions than web 
services. Through the addition of semantic descriptions to web services, we 
can already see the trend to push up the abstraction level of these services, 
and thus making them more like agents. It seems probable that fiirther 
additions to web services, e.g. in terms of interaction protocols between 
them, are going to make them even more agent-like. Whatever label will be 
attached to intelligent, distributed software components in the future, they 
will be heavily influenced by agent technology. 

5. CONCLUSION 

Multiagent systems have been investigated by the distributed computing 
and artificial intelligence communities for some time. In the Life Sciences 
context, agent-based systems have originally been targeting the data 
integration problem, but are now also available for other kinds of problems, 
e.g. simulation of biological processes. Future trends in agent technology 
towards larger, more complex and open agent environments appear to match 
the requirement for bioinformatics systems to automate higher-level 
cognitive processes in the software layers. However, for agent technology to 
be able to deliver real solutions, a significant effort will have to be spent on 
reaching sufficient agreement on matters such as ontologies, languages, 
architectures and interaction protocols, both, in general and for Life Science 
domain specific issues. 
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KNOWLEDGE DISCOVERY FOR BIOLOGY 
WITH TAVERNA 
Producing and consuming semantics in the Web of Science. 
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Abstract: Life Science research has extended beyond in vivo and in vitro bench-bound 
science to incorporate in silico knowledge discovery, using resources that have 
been developed over time by different teams for different purposes and in 
different forms. The "̂ ^Grid project has developed a set of software components 
and a workbench, Tavema, for building, running and sharing workflows that 
link third party bioinformatics services, such as databases, analytic tools and 
applications. Intelligently discovering prior services, workflow or data is aided 
by a Semantic Web of annotations, as is the building of the workflows 
themselves. Metadata associated with the workflow experiments, the 
provenance of the data outcomes and the record of the experimental process 
need to be flexible and extensible. Semantic Web metadata technologies would 
seem to be well-suited to building a Semantic Web of provenance. We have the 
potential to integrate and aggregate workflow outcomes, and reason over 
provenance logs to identify new experimental insights, and to build and export a 
Semantic Web of experiments that contributes to Knowledge Discovery for 
Tavema users and for the scientific community as a whole. 

Key words: workflow, in silico, services, Web Services, Semantic Web, Tavema, discovery, 
publication, provenance, metadata, annotation, LSID, ontology, "̂ ^Grid, 
experiment Web, e-Science. 



356 Revolutionizing Knowledge Discovery in the Life Sciences 

1. REVOLUTIONISING HOW WE DO 
KNOWLEDGE DISCOVERY ON THE WEB 

1.1 Knowledge Discovery by Hand 

Knowledge discovery is the process of finding novel, interesting, and 
useful patterns in data. Over the past decade. Life Science research has 
extended beyond in vivo and in vitro bench-bound science to incorporate in 
silico knowledge discovery; that is experiments whose procedures and 
protocols use computer-based information repositories and computational 
analysis to test a hypothesis, derive a summary, search for patterns, or 
demonstrate a known fact. These resources have been developed over time 
by different institutions and research teams, different disciplines (biology, 
chemistry, medicine), different sub-disciplines (proteomics, genomics, 
transcriptomics, metabolomics), for different purposes (sequence analysis, 
structure prediction, pathway analysis) and in different forms (publications, 
numerical data, text, images, algorithms, databases). 

The ability to perform biological in silico experiments has increased 
massively, largely due to the advent of high-throughput technologies that 
have enabled the industrialisation of data gathering. There are two principal 
problems facing biological scientists in their desire to perform experiments 
with these data. The first of these is distribution - many of the data sets have 
been generated by individual groups around the world, and they control their 
data sets in an autonomous fashion. Secondly, integration - biology is a 
highly heterogeneous field. There are large numbers of data types and of 
tools operating on these data types. Integration of these tools is difficult but 
vital. 

Biology has coped with this in an effective and yet very ad hoc manner. 
Almost all of the databases and tools of bioinformatics have been made 
available on the Web; the browser is becoming an essential tool of the 
experimental biologist. 

While this practice has worked well in the past, it has obvious problems. 
Many bioinformatics analyses use fragile screen-scraping technologies to 
access data. Keeping aware of the Web sites on offer is, in itself, a full-time 
and highly skilled task, mostly because of the complexity of the domain. 

The primary "integration layer" so far has been expert biologists and 
bioinformaticians. Using their expert knowledge of the domain, they will 
navigate through the various Web pages offering data or tool access. 
Information about new resources often comes by word of mouth, through 
Web portals or paper publications. Data transfer, between applications, is by 
cut and paste, often with additional data "massaging" (e.g. small alterations 
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in formatting, selections of subsets, simple local transformations such as 
DNA-to-protein translation). Automation of these processes is achieved 
largely by bespoke code, often screen-scraping the same Web pages that the 
manual process would use, sometimes using more programmatically 
amenable forms of access. 

1,2 Knowledge Discovery Using Formalised in silico 
Experiments 

This bespoke and ad hoc mechanism of publication and sharing does not 
scale to the data deluge now engulfing the Life Sciences. Two major 
initiatives have taken hold as a means of scaling this information integration 
activity: 
• Services: Resources (data and analytic tools) which are remotely 

computationally accessible with published interfaces, such as, but not 
necessarily, Web Services [1]. This move from Web Server to Web 
Services reflects the move from scientists manually reading the pages 
that front-end resources, to scientific programs automatically processing 
directly with the resources. The European Bioinformatics Institute (EBI, 
www.ebi.ac.uk) in Europe, The National Centre for Biotechnology 
Information (NCBI, www.ncbi.nlm.nih.gov) in the USA and the DNA 
Data Bank of Japan (DDBJ, www.ddbj.nig.ac.jp) have most of their 
resources accessible as Web Services, and initiatives such as BioMOBY 
[2] are built on Web Service technology. 

• Workflows: Explicit and exchangeable scripts for interoperating and 
linking these services [3]. A workflow makes it easier for scientists to 
describe and run their in silico experiments in a structured, repeatable and 
verifiable way. Workflows are assembled and managed from a 
workbench and execution environment. Typically, a workflow comes 
with a visual flow representation which helps to understand its behaviour 
and explain it to others. Workflows can be rendered at different levels of 
abstraction, depending on whether one is interested in its scientiflc task 
or in the service invocation mechanics. A variety of different scientific 
workflow systems have come from different types of e-Science [4-6] and 
the idea has caught hold. 

""̂ Grid (www.mygrid.org.uk) is an open source project developing a suite 
of software components that application developers and scientists can use for 
building and running in silico experiments. The software is driven by, and 
tailored for, the Life Sciences community [7]. It exemplifies the two 
initiatives of services and workflows. Over 3000 distributed services (remote 
Web Services, local scientist-specific Java applications, simple scripts) from 
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all over the world, covering the major publicly published resources, are 
accessible through ""^Grid's software suite. Our tools like Soaplab tool [8] 
convert legacy applications to become Web Services. 

At the heart of ""̂ Grid is the Tavema workbench [9, 10], an application 
that uses the Taverna workflow engine and other components in the ""̂ Grid 
software suite to find, build and run workflows, and examine their outputs. 
Workflows link together services which remain at their host sites. The 
workflows are developed by, and belong to, the scientist, and the data and 
metadata outcomes fi*om the workflows are usually stored locally with the 
scientist. Thus Tavema is a software application that you install locally and 
run over other people's services using your workflows and storing your 
results ft)r you to use as you wish. The workflows are written in a language, 
Scufl, designed by bioinft)rmaticians to reflect their experiment rather than 
the underlying technical problems of execution of different services at 
different sites. Figure 16-1 shows a screenshot of a typical session of the 
workbench. 

Tavema has been used for gene alerting, gene and protein sequence 
annotation, proteomics, fixnctional genomics, chemoinformatics, systems 
biology and protein structure prediction applications. Workflows have been 
used to identify a mutation associated with the autoimmune disorder Graves* 
Disease in the I kappa B-epsilon gene [11]. At the time of writing, Tavema 
has been downloaded over 15,000 times, and development continues as part 
of OMII-UK, the UK's Open Middleware Infrastmcture Institute 
(www.omii.ac.uk). 

Tavema was used to build the first complete and accurate map of the 
region of chromosome 7 involved in Williams-Beuren Syndrome (WBS) [7]. 
The genetic basis of WBS, a congenital disorder associated with the deletion 
of a region of Human Chromosome 7, is being investigated by members of 
St Mary's Hospital Academic Unit of Medical Genetics at the University of 
Manchester. The condition causes a complex, multi-system phenotype 
affecting the cognitive profile as well as the muscular, circulatory and 
nervous systems. The known WBS deleted region encompasses many genes, 
and the relationships between these missing genes and many aspects of the 
observed phenotypes are well documented, although there were other aspects 
that could not be explained. Flanking the deleted region were gaps in the 
known DNA sequence and there was significant interest in closing the gaps 
in the sequence and characterising any genes in these regions in order to gain 
insight into the missing genotype to phenotype relationships. 

When done by hand, the process would take days, interacting with web-
page based analysis tools, and following hyperlinks in results pages to gather 
fiirther information. This personal web that the scientist selectively 
navigated was transitory. No complete record remained to explain the origin 



Knowledge Discovery for Biology with Taverna 359 

of the final results. The mundane nature of the task often meant not all 
possible avenues were explored, because the scientist either missed possible 
routes or discarded apparently uninteresting results. As the underlying 
databases change regularly, the whole experimental protocol had to be 
repeatedly run, and the results compared and contrasted. 
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Figure 16-1. The Taverna workbench. (A) graphical diagram view of a workflow, (B) an 
explorer for the workflow components; (C) a palette of available services and pre-existing 
workflows; (D) service configuration panel; (E) workflow results. 

Taverna automated this process. Each web-based analysis tool and data 
resource was wrapped as a Web Service. Workflows were designed to 
orchestrate the access to these resources and dataflow between them 
automatically. The workflows to run the experimental protocol were evolved 
over many (40 or so) versions and repeatedly executed to identify and 
characterise any new sequence from the WBS disease region. One of the 
simpler workflows from the suite is shown in Figure 16-2 - we refer to it as 
WBSA in the rest of the chapter and use it as a running example. It first 
retrieves newly submitted human genomic sequences that extend into the 
gap. Repeat Masker (www.repeatmasker.org) is used to screen the sequence 
against repetitive elements and mask them out of the query. Similarity 
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searches are then made against a range of GenBank databases 
(www.ncbi.nlm.nih.gov/Genbank) using the BLAST sequence alignment 
program BLASTn [12]. Results are compared with previous results. 
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Figure 16-2. WBSA: A simple workflow designed for studying the chromosomal region 
affected by Williams-Beuren syndrome 

1.3 Supporting Collaborative in Silico Experimentation: 
Sharing, Discovery and Reuse 

Workflows are just part of a fuller experimental method, as shown in 
Figure 16-3. Workflows, and the resources they process, exist in a wider 
context of scientific data, scientific protocol and study management, all of 
which draw upon and contribute to an accumulated pool of knowledge and 
know-how shared between scientists. To support collaboration in Life 
Sciences via the Web, the experimental context of a workflow, its inputs, and 
its outcomes needs to be described and shared if it is to be discovered and 
reused with a confident and appropriate interpretation. 

A plethora of experiment components are collected during the lifetime of 
an in silico study, for example: 
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Experiment design: workflow specifications; notes describing 
experimental objectives and hypotheses; the third party databases and 
analytical tools to use; relevant publications and web pages. 
Experiment running: records for monitoring and "debugging" 
experiments; instances of services actually used; steers of simulations; 
Experiment publication: data results; records linking data inputs, 
configurations and outcomes with workflow runs; 
Experiment knowledge discovery: interpretations of outcomes; the 
analytical processes undertaken over outcomes of collections of 
workflow runs; predications and hypotheses to test in the wet lab (that is, 
in vivo and in vitro experiments; dry experiments are those where only 
computers are used). 
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Figure 16-3. The in silico experimental life cycle. Although the steps are numbered, there is 
no obligation to move serially through them. During design a workflow may be tentatively 
prototyped and evolved; during publication a data result is likely to be analysed. The dotted 
lines at the core show these cross step interactions and reflect the Experiment Web. 

The logging of this kind of information in lab books is routine in "at the 
bench" science, but not so common in bioinformatics. However, if Taverna 
collects this information systematically and easily we could build an 
Experiment Web that links designs with runs; a workflow with its outcomes; 
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data collected from public databases with data synthesised by a workflow 
run; a workflow with its previous and subsequent versions; a group of runs 
with a document discussing the conclusions and so on, to form a network of 
evidence. Consider WBSA executed repeatedly to catch changes in the 
underlying Genbank nuceliotide database that NCBI-BLAST runs over. 
Thus, an experiment web links external data webs - webs of interrelated data 
- provided by the third-parties such as entries in Genbank, to an internal 
experimental web of different workflow outcomes, produced by running a 
Tavema installation (Figure 16-4). 

Figure 16-4. A Web of Experiments: Linking experiments with results and with data held in 
external resources. The coloured node represents the same data item - say a GenBank record -
gathered from running many runs of WBSA, and consumed by a new workflow WBSB. 

This is the "Web of Science" as proposed by Hendler [13], which 
provides a comprehensive web of contextual information for understanding 
and investigating experiment results. A scientist has a personal Experiment 
Web (Figure 16-5). A group project accumulates a larger web combining 
and linking between those of its scientists. A community has a wider 
Scientific Semantic Web, pooling components selectively published to it by 
its scientific members. Specialist communities, like the ""̂ Grid project, 
provide specialist Webs, for example of links between descriptions of the 
numerous databases and analytic tools available and how they relate to each 
other - this Service Web is described in more detail in Section 3. 
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Laboratory 
Experiment Web 

Figure 16-5. Building up a Web of Science 

1.4 The Provenance and Context of Experiments 

Each component of the Experiment Web is a resource in its own right to 
be interpreted by different scientists and consumed by different experiments. 
Each resource must be described as richly as possible so that it is bound with 
its context. In a wet lab environment, biologists record large quantities of 
information about the materials, methods and goals of the experiments that 
they perform. They use these records of where, how and why results were 
generated in the process of analysing, validating and publishing scientific 
findings. These records are the provenance of an experiment and their 
experimental results: at its simplest, the knowledge of the origins and history 
of something. 

The results of an in silico experiment need the materials, methods, goals, 
hypotheses and conclusions of an experiment in order that they convey the 
appropriate context in which to interpret the results. Within bioinformatics 
databases much of this metadata is generated and stored by expert curators, 
often as free text (such as the PubMed citations within UniProt [14]) or 
loosely structured (such as the Evidence Codes within the Gene Ontology 
[15]). 

Workflows gather and generate data in large quantities, so storage of this 
data in an organised manner becomes essential for analysis within and 



364 Revolutionizing Knowledge Discovery in the Life Sciences 

between experiments. Although a scientist's primary interest is in the results 
of experiments, the context within which those results exist (its source, the 
key processes used, the parameters applied) is crucial for its interpretation. 
The precise record of "what, when, how and why" promotes the sharing and 
reuse of experimental knowledge as well as good scientific practice. 
Knowing "who" designed a workflow or produced a result gives credit, 
protects their intellectual property and informs others about quality. Thus, 
i\iQ provenance web is a substantial part of the experiment web. 

Scientists explore the provenance web focusing on individual results for: 
debugging experiments from a log of events recording what services were 
accessed and with which data; validity checking o/novel results to ensure it 
is worthy of further investigation before they commit to expensive 
laboratory-based experiments based on these results; and tracking the 
implications of updates when a service or dataset used in the production of a 
result changes. Supervisors and laboratory heads browse it to summarise 
progress and to aggregate across it from all their researchers. Service 
providers aggregate process-centric provenance information to gather 
intelligence about their services' performance and patterns of use. Outside 
research groups and regulatory authorities, who need to trust the validity of 
results, want a detailed, accurate and reproducible audit of the experiment 
and data outcomes. 

Typical questions over provenance records include: Which experiments 
used a workflow WBSA? How often is NCBI-BLAST executed in a 
workflow concerned with nucleotide sequence analysis? How many times 
did PSI-BLAST, also provided by NCBI, fail in the past week? Which 
services have never been executed? These and similar questions mine the 
provenance of workflows in order to aggregate knowledge about the 
experimental environment in which our scientists operate. 

The standardised facilities used by workflow systems such as Tavema to 
access resources enable the automatic and accurate gathering of the 
provenance metadata for data. The Tavema provenance model captures the 
data's derivation path that presents a datum's lineage, an audit trail of the 
experiment execution leading to the data, the context of the workflow and 
the evidence of the knowledge outcomes as a result of its execution. 
• Highly flexible and open models are required to cater for this 

accumulative body of knowledge; provenance metadata must be a 
faithful and immutable record, so statements of clarification, correction, 
contradiction and reinterpretation, can be accumulated but base 
statements cannot be changed. 

• Rich descriptions associated with data experiment components would 
enable better discovery and provide a metadata layer through which we 
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could analyse experiments, make connections between outcomes and 
combine and aggregate results. 

1.5 Experiment Reuse and Sharing 

Taverna's provenance metadata is chiefly focused on data reuse. We also 
need to share and reuse the experiments themselves. To help with this we are 
developing a web-based application called ""^Experiment 
(myexperiment.org) to support community-based sharing in the style of 
social networking systems like MySpace (www.myspace.com). Scientists 
are typically part of a research group and various research projects, inside of 
which they exchange knowledge. 
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Figure 16-6. Reusing and repurposing in silico experiments 

As more workflows are built, our scientists start sharing and reusing 
stand-alone compositions of services, or workflow fragments, within and 
between research projects; they adopt a "workflow by example" style of 
workflow construction by reusing and repurposing existing experience [16]. 
We saw this with the Williams-Beuren Syndrome workflows. The 
workflows were designed specifically for their purpose, but many of the 
elements were typical bioinformatics tasks, like predicting genes and 
characterising those genes and any resulting proteins. Consequently, these 
elements were suitable starting-points for the designers of other workflows. 
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For example, an in silico study of Graves' disease [11] involved elements of 
protein characterisation. It also involved microarray studies. A later study 
into trypanotolerance in cattle was able to reuse fragments of the microarray 
data analysis workflows from the Graves disease workflows (Figure 16-6). 

In this section we have discussed the motivation for in silico 
experimentation in the Life Sciences and how this is supported by services, 
workflows, provenance and publishing. We have illustrated the need for rich 
and flexible descriptions, associated with the workflows and with the 
underlying services, together with the need to facilitate sharing and reuse of 
these descriptions, whether internal to an organisation or "in the wild" of the 
public Web. Services and workflows alone will not cope as a scaling 
mechanism to handle the data deluge, but must be accompanied by the tools 
for sharing and reuse across the scientific community. 

2. THE SEMANTIC WEB AND ^^GRID 

We now consider the tools and techniques of the Semantic Web [17] as 
an approach to providing support for in silico experimentation in the Life 
Sciences. We illustrate this approach through the design of our '"^Grid 
software suite, and in particular our Tavema application. 

2.1 The Promise of the Semantic Web 

The Semantic Web is proposed as a universal medium for harvesting and 
harnessing the collective intelligence of the Web by making it easier to 
automate connections between largely decoupled content and people. The 
Semantic Web aims to promote discovery, information exchange and 
information integration by tagging, or marking up, annotating (whichever 
word you like) web content with machine processable descriptions of its 
meaning, and has developed a slew of technologies and infrastructure to do 
this. 

Biology is a knowledge-rich discipline whose community has a culture of 
sharing data, results and scientific findings. There are many data suppliers, 
and even more data consumers, distributed across the globe. Biological data 
in the public domain is fragmented, distributed, and volatile. To enable 
biologists to interpret others' findings, connect between these contents of 
these resources and combine results from many different resources, data is 
annotated (tagged) with the current distilled knowledge of the community by 
curators using shared controlled vocabularies, such as the Gene Ontology. 

Thus in silico Life Science and the Semantic Web match up. Linking 
content through metadata and ontologies is already practiced by the Life 
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Science community; it is just that the content and the mark-up are held in 
databases rather than web pages. Semantic Web technologies are promising 
candidates for addressing limitations and problems in knowledge 
dissemination and connections between distributed data in the Life Sciences. 

As with any new initiative, there is confusion and conflict about the 
scope of the Semantic Web, the relationship between the Semantic Web 
vision and its enabling technologies and the relationship between the 
Semantic Web, the Web and intelligent applications that may be deployed on 
the Web. There are two views of the Semantic Web in current circulation, 
both of which are relevant to our effort to generate an Experiment Web for 
our scientists arising from their Taverna runs: 
• Assigning contextual information to data improves understanding and 

enables greater connection between resources. In the Annotation Web, 
resources like web pages and documents (but also services and 
workflows) are annotated or tagged with metadata statements in RDF 
(Resource Description Framework) that assert the meaning of their 
content, with terms preferably drawn from a shared ontology. The 
annotations form a "metadata web" of descriptions and links between 
descriptions, based on shared ontology terms from RDF(S) (RDF 
Schema) or OWL (Web Ontology Language) or shared URIs/LSIDs [18]. 
Annotation is ab*eady commonplace in the Life Sciences, and recent 
"social tagging" initiatives such as Flickr and de.li.cious have promoted 
tagging using emergent "folksonomies" [19] rather than designed, top-
down ontologies. 

• As well as tagging data items, the structures of resources themselves 
often need to be integrated. In the Data Web^ databases are exposed on 
the Web in a common self-describing data model (RDF) that breaks 
down the schema silos between database applications to enable 
integration and unexpected or unanticipated reuse. Data from different 
data models can be integrated using common concepts and a global 
naming scheme (LSIDs), whilst retaining the provenance information for 
individual data items. 
The combination of these two views gives a contextualised data web 

which maximises the ability to work with and reuse all forms of 
experimental information in a flexible manner. 

2.2 ""̂ Grid as a Consumer and Producer of Semantics 

During the past four years, we have been exploring the use of Semantic 
Web technologies to support the different tasks of in silico experimentation 
shown earlier in Figure 16-3, supporting our descriptions of services, 
workflows, provenance and experiments. We can see this as creating 
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multiple overlapping Semantic Webs (or, equivalently, as multiple 
perspectives on one interlinked Semantic Web): 
• Computer aided design of in silica experiments. Workflow designs are 

typically built from a combination of existing work, be it data, services or 
workflows. In ""^Grid's software suite, a range of different semantic 
technologies and techniques support resource [20-22] and workflow 
discovery [23-25] and the workflow composition process [26-28]. We 
build a Semantic Web of services, workflows and the data types they 
operate over. 

• Publication and sharing of in silica experiments. The flip side of 
design is publishing. Self-describing in silico experiments and 
provenance-enhanced data enable easier sharing and reuse of know-how 
and knowledge. Self-contained packages of experimental components 
provide a first step in this direction. Semantics help to bring the different 
aspects together and offer a unified view. We build a Semantic Web of 
provenance that links experiments and their outcomes to their context 
[29, 30] (as illustrated in Figure 16-4). 

• Computer aided running of in silica experiments. The running of 
workflows can be aided by the results of earlier runs. Quality of Service 
data enables recovery and repair strategies when things go wrong during 
execution, whereas analysis of provenance logs enables smart runs, 
resuming workflows from a given point during their past execution. We 
use a Semantic Web of provenance to support experiments. 

• Better interface to science in the wet lab. The feedback cycle between 
in vivo and in vitro experimentation and the in silico work needs 
documenting. It is possible to use Semantic Web technology to describe 
real world workflows and results, too, and to document the link with the 
in silico complement. Our ultimate vision is to build a semantic 
experiment web that could draw upon and feed a global Semantic Web of 
Science (as illustrated in Figure 16-5). 

Joined up provenance records from laboratory bench to scholarly output 
is also the underlying philosophy of the CombeChem project, with its notion 
of "publication at source"; i.e. capturing comprehensive provenance 
information in order to facilitate interpretation and reuse of results [31]. 
Using RDF to interlink information in multiple datastores, both internally 
and externally, CombeChem has established a "Semantic DataGrid" 
containing tens of millions of RDF triples [32]. The provenance record 
commences in RDF at the laboratory bench [33]. Combechem is also 
exploring the area of interactions between repositories of primary research 
data, the laboratory environment in which they operate and repositories of 
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research publications into which they ultimately feed - the Repository for 
the Laboratory (r41.eprints.org), 

2.3 The ""^Grid Architecture 

""̂ Grid is designed for openness and ease of extension: it is a loosely coupled, 
extensible set of components that can be adopted independently by tool 
developers but which are designed to work together in a distributed service-
oriented architecture. They work together by being organised conceptually 
around two communication "buses", shown in Figure 16-7, that ""^Grid's 
software services plug into. The use of two buses effectively decouples the 
business of creating the experimental environment from the business of 
managing the rich e-Science content. 

The Experiment Interoperation "bus" is an event-enabled 
communication infrastructure that couples together during the running of the 
software: 
• Common core ""̂ Grid services for creating, deleting, publishing and 

managing data and metadata. These are part of the software suite and not 
the actual databases or analytical tools that will form steps of the 
workflows; 

• The core Taverna workflow enactor for running experiments that interact 
with the Core ""̂ Grid services; 

• Core ""̂ Grid clients such as the Taverna workbench, which has its own 
plug-in architecture (i.e. new fiinctions can easily be added using 
programs which comply with its software interfaces), and provenance 
browsers; 

• Domain specific and external client-side applications that use those 
services and clients, for example the Utopia sequence visualisation 
application [34]. 
The Semantic Information "bus" carries the persistent semantic and 

data content and models that the core services share, provide and consume; 
for example the provenance model and service discovery model. The 
information flowing on this bus is the annotated experimental data. On the 
one side are the services and even the client-side applications that can tap 
into this semantic infrastructure; on the other side are the services for 
creating and storing the semantic content. The Semantic bus is the Semantic 
infrastructure for ""^Grid, and is effectively our Semantic Web of 
experiments. 

Taverna refers to both a workbench and a workflow enactment 
environment that can be run separately from the workbench by a third party 
application such as Utopia. The Taverna workbench is a ""̂ Grid application 
that services and clients plug-into, and allows the scientist to design and run 
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workflows. The ""^Experiment web-based collaborative environment that we 
are currently developing, will allow the scientist to organise, communicate, 
publish and share their experiments and their outcomes. Tavema provides 
and consumes the Semantic Web of experiments for an individual scientist; 
""^Experiment provides an environment for exploring and contributing to a 
wider Semantic Web of science. 
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Figure 16-7. The myGrid middleware: joining up in silico experiments with semantics 

The ""̂ Grid team provide the ontologies and keep a registry of the 
services, and a repository of workflows that the scientist can draw upon or 
use their own. The domain services that the workflow enactor invokes are 
separate from the ""̂ Grid software suite and are hosted by their own service 
providers. The provenance and data results are stored locally with the 
scientist or they can configure shared stores as they wish; they are not held 
centrally in a resource owned by ""̂ Grid. 

This architecture is designed to support the flows of semantic information 
within the scientific process. Our experience of building and using "̂ ^Grid 
effectively provides an evaluation of the promise of the Semantic Web 
against the real requirements of the Life Scientist. In the next two sections 
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we focus on our approaches for designing, publishing and running 
experiments, and the experiences gained. 

3. THE DESIGN OF IN SILICO EXPERIMENTS 

To design a workflow we need to (a) discover and reuse pre-existing 
workflows that we can use as a starting point; (b) discover new, or find 
already known, resources that will make up the steps of our workflow; (c) 
assemble the workflow in such as way as it is valid; and (d) evolve the 
workflow through a series of try-out versions until it is satisfactory. In this 
section we focus on service and workflow discovery: 
• By annotating our services, workflows and data with flexible 

descriptions in RDF, RDF(S) and OWL we build a kind of annotation 
web of past experiments and available resources that is pooled as part of 
the ""̂ Grid Semantic Bus for all ""̂ Grid services to plug into. 

• By reasoning over the annotations we can infer whether two services are 
incompatible and identify services that could make them compatible. We 
can also explore the services and workflows available to a scientist. 

3,1 Service and Workflow Discovery Services 

At the outset of the project there were very few services, available from a 
limited number of locations. Discovering a particular service involved 
scrolling through a list of those available. However, a steady rise in the 
number of bioinformatics services means that through the Taverna 
workbench a scientist can access more than 3000. Service discovery is now 
an obstacle to adoption. The problem is not only the volume of services, but 
also the variable amount of documentation associated with them. Similarly, 
as more scientists adopt workflow-based in silico experimentation, there is a 
boom in available workflows, which also come with variable (if any) 
documentation. 

Discovery in this context is therefore finding the right service or 
workflow, knowing how to invoke it, and knowing how it can be 
incorporated into a user's existing context. This depends on effective and 
appropriate advertising, which means tagging with annotations. These 
annotations must document the function of the service or workflow and the 
parameters required to invoke it. We provide: 
• A suite of ontoiogies - a "̂ ^Grid domain service ontology, a shim service 

ontology, a service mismatch ontology, a workflow ontology and third 
party domain ontologies for populating annotations; 



372 Revolutionizing Knowledge Discovery in the Life Sciences 

Publication services using automated processing and manual tools, for 
adding semantic annotations to services and workflows. A set of utility 
tools extract low-level descriptions of different styles of services that 
could be used to form a service description skeleton, to be further 
enriched with the annotation vocabulary. The absence of formal 
structuring (e.g. XML Schema types) for most bioinformatics data types 
limits this. Most of the work is by-hand manual annotation using tools 
like PedRO data entry tool [35], which is used by expert curators. Service 
providers and end-users need lighter weight tools that need to be 
developed. 
Discovery services for the Tavema workbench or the scientist to 
subsequently discover them (Feta [20], described in section 3.4). 

Scientist 

Figure 16-8. The '"^Grid Suite's Discovery and Publication Services 

The service and workflow annotations can be held in a service registry, 
such as Grimoires [36] or a light weight WebDav service; the workflow 
XML documents are held in a repository or published as web documents; the 
services themselves remain at their source. Figure 16-8 sketches the 
architecture. 
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3.2 The ""̂ Grid Domain Service Ontology 

373 

We designed the ontologies from the perspective of supporting discovery 
rather than ease of publication. The ontology suite is made up of: (a) a 
""̂ Grid domain service ontology, for describing the largely third party 
services that form the steps of the workflows; (b) a shim service and a 
mismatch ontology which describe a special class of Taverna service 
designed by the workflow builders to cope with the incompatibilities 
between domain services; (c) a workflow ontology, which extends the 
domain service ontology to describe workflows and workflow fragments and 
(d) the domain ontologies that describe the biological concepts that the 
services and workflows consume and produce and their tasks, and are 
external to ""̂ Grid. 
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Figure 16-9. Example class hierarchy from the ""̂ Grid Domain Service Ontology (fragment 

on left), used to populate the properties of the '"^Grid Services Ontology (fragment on right). 

The ""̂ Grid domain service ontology [37] is limited to supporting service 
discovery by scientists. It is logically split into two components. The first is 
the service sub ontology which describes the dimensions with which a 
service can be characterised from the perspective of the scientist, i.e. the 
physical and operational features of services, such as its inputs, outputs, task, 
owner, quality of service etc. The major classes and their relationships in the 
service ontology are given in Figure 16-9. The core entity in the model is the 
O p e r a t i o n , which represents a unit of functionality (i.e. the service) for 
the user. Operations could be grouped into units of publication represented 
by S e r v i c e . An Operation has input and output parameters. In turn, each 
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input and output parameter has a name, a description and belongs to a certain 
namespace denoting its semantic domain type. This abstraction of a service 
as an operation means that we avoid descriptions at an implementation level 
and keep them at the level a biologist would search for, similar to WSMO's 
tasks [38]. In efforts such as OWL-S [39] and WSDL-S [40], the underlying 
implementation technology is apparent through the descriptions. 

The second component is the domain sub ontology, which describes the 
bioinformatics research domain, and acts as an annotation vocabulary 
including descriptions of core bioinformatics data types and their 
relationships to one another. In order for the ontology annotation approach to 
be effective, the ontology must accurately reflect the domain it describes and 
must be extensible to adapt to changes in that domain. At present, this sub 
ontology contains 395 classes and 35 properties. The following concepts 
cover its scope: 
• Informatics: captures the key concepts of data, data structures, databases 

and metadata. 
• Bioinformatics: captures domain-specific data sources (e.g. the model 

organism sequencing databases), and domain-specific algorithms for 
searching and analysing data (e.g. the sequence alignment algorithm, 
NCBI-BLAST), 

• Molecular biology: captures the higher level concepts used to describe 
the bioinformatics data types used as inputs and outputs in services, such 
as protein sequence, and nucleic acid sequence. Figure 16-9 shows a 
small section of the molecular biology hierarchy, highlighting the 
relationships between different types of biological sequence. 

• Tasks: captures the generic tasks a service operation can perform, such 
as retrieving, displaying, and aligning, 

• Services: captures the concepts required to describe the function of 
services and their parameters. 

3.3 Service and Workflow Discovery 

Service selection is a core task in the user-driven composition of 
workflows. It involves locating the major services able to carry out the units 
of work that constitute the in silico experiment. Feta is our Semantic 
Discovery service component used by Tavema [20]. The objectives of Feta 
are to search over annotations and integrate the discovery mechanism to the 
workflow design environment. Feta has two components: a registry backend 
holding the annotations and a query user interface integrated into the 
Taverna workbench. Feta operates over the user-oriented model of our 
service ontology as it turns out that most users ask simple questions, such as, 
"show me all the services that perform multiple sequence alignments" or 
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"show me all the services that accept single protein sequences". The result is 
a suitable short-list rather than a perfect match. 

Users build-up service search requests through a simple user interface 
shown in Figure 16-10, which is seeking a BLAST service that runs over 
GenBank. The dimensions of service mark-up (i.e. tasks, methods and data 
resources related to an operation and semantic types of its parameters) are 
search criteria. Results are returned to the user as a list together with a form-
view of details of the semantic description of each result. The final selection 
of a service or workflow is by the user, added to their workflow design by a 
drag and drop. In addition to mark-up based searches Feta supports keyword 
based searches over names and descriptions of services. Feta is implemented 
using Jena (jena.sourceforge.net) and Sesame [41]. 
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Figure 16-10. Feta user interface for building service search requests, here to seek BLAST 
service that runs over GenBank 

3.3.1 Service mismatch and shim service discovery 

When services are put together within a workflow, their interfaces (inputs 
and outputs) need to interoperate. The services composing the experiments 
usually have heterogeneous interfaces. This is not surprising: Life Science is 
an open world with no common type system. Services can be located 
anywhere and the input and output formats of these services are determined 
by the service providers. Services in bioinformatics tend to be autonomous 
and are hardly ever designed to work together. Consider WBSA in Figure 
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16-2. The output of the NCBI-BLASTn operation and input of the Comparer 
operation are incompatible. The former is a BLAST report whereas the latter 
is a simplified alignment report. 

Discovering incompatibilities among service interfaces is the first step to 
resolving mismatches. Structural incompatibilities are caused by mismatches 
between data structures of the input and output of service operations. 
Semantic incompatibilities are mismatches between meanings between the 
output and input parameters of services; for example two connected output 
and input of data type String, but representing a DNA and Protein, 
respectively, are not compatible [26]. Automatic semantic incompatibility 
identification requires richer semantic service annotations than those needed 
for scientists, and uses a mismatch ontology for additional support. 

Once incompatibilities between service parameters have been detected, 
they can be resolved using shims [42]. A shim is a software component that 
performs an alignment of inputs and outputs between consecutive services. 
Typically, these services are implemented on demand as ad hoc client-side 
scripts; in Tavema as BeanShell scripts, regular expressions, or Local Java 
Widgets. In three workflows developed for studying Sleeping sickness in 
cows, of their 115 service operations 70 were shims. 

Given two services that do not fit together, using the semantic 
annotations of their respective inputs and outputs we must discover a service 
that makes joining them possible. In the case of WBSA, in order to resolve 
the incompatibility between the output of the NCBI-BLAST operation and 
the input of Comparer a shim (called "Simplifier") must be identified that is 
able to translate the BLAST report into a simplified format before being 
compared to the results of the previous run using the Comparer operation. 
Discovering shim services requires richer annotations and more accurate 
matching than needed for domain service discovery by scientists. 

3.3.2 Workflow discovery 

Akin to the boom in biological services, we are witnessing a sharp rise in 
biological workflows. At the time of writing, the ""̂ Grid workflow repository 
contains over 200 freely available workflows developed by our different 
users that they have decided to share. As more workflows are built, 
searching manually through the existing pool of workflows becomes 
awkward. A survey of "̂ ^Grid users indicates they would discover workflows 
in two ways [23], based on workflow signature in the same way as they do 
for services, and secondly based on the workflow contents, such as the 
services contained in a workflow, the specific subtasks addressed by the 
workflow or to start from existing template workflows. This suggests 
discovery based on the structure and behaviour of a workflow. For example. 



Knowledge Discovery for Biology with Taverna ?>11 

given a protein sequence and motif structure, have these been connected up 
in an existing base of workflows? Given a DNA sequence analysis service 
and a protein sequence visualisation service, what existing workflows 
connect these two services together? Discovery requires annotations of the 
workflow signature in terms of the domain service ontology, and annotated 
workflow contents. 

3.4 Workflow Design Using Webs of Provenance 

When designing a new workflow, it is economic and efficient if a 
scientist is able to learn from previous designs with a similar hypothesis, or 
performing a similar task. There are potential difficulties when adopting 
designs from different projects, built by different workflow tools. Using the 
RDF model as a common data model for provenance, we integrate the 
"Semantic Web of provenance" that comprises the experiment runs with all 
the other metadata about experiments (Figures 16-4 and 16-5). As part of the 
Semantic Bus of Figure 16-7, semantic annotations of services developed for 
service discovery are used for annotating provenance metadata. Thus the two 
sets of metadata are deeply intertwined. Semantic annotations asserted over 
the services in a workflow run, and workflow itself, are part of the Semantic 
Web of provenance arising from the running of the workflow. 

This integrated Semantic Web of provenance is used by the scientist to 
learn how to compose and configure services in a previous workflow design 
and migrate them to their own experiment environment. Also the 
performance and quality information about services performing similar tasks 
or accepting the same type of inputs can be mined from provenance of 
repeated executions. This information is helpful for the scientist to choose 
between alternative services. 

The process of reusing and repurposing a workflow feeds back as the 
evolution history of many versions of a workflow. This is mainly the 
experiment provenance. Tracking evolution history allows scientists to learn 
from the evolution, roll-back to a snap-shot version and keep the intellectual 
properties of these workflows. 

3.5 Using Semantic Web Techniques 

Using Semantic Web technology we build a semantic annotation web 
linking services and workflows that also link across to the data in our 
experiments via shared terms describing data types of the data and the data 
types of the input and output parameters of our services and workflows, as 
we showed in Figure 16-5. 
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3.5.1 Ontology building and maintenance 

All the ontologies are developed in OWL. We exploit the reasoning 
support in OWL to gain consistency checking and classification during 
ontology development. Manually created classifications of services are 
inflexible and hard to manage when they become large, detailed and multi-
axial [43]. Concepts should be self-coherent and consistent with respect to 
others in the classification. The ontology is used as a means of classifying 
services, and thus should evolve as the service descriptions evolve, for 
instance when changes occur in the functionality of a service or when 
additional known behaviour is added (i.e. one service can perform several 
tasks). Based on the reasoning support, we can keep service descriptions, 
classification and constraint management tightly coupled. 

3.5.2 Publication and Discovery over Annotations 

How we deploy an ontology is different to how we build it. The question 
is when to perform reasoning during a service's annotation lifecycle. We 
originally aimed to exploit the OWL-DL technologies at ontology 
construction, publication and discovery. The shim service and mismatch 
ontologies are both built and deployed as OWL-DL, enabled classification-
based reasoning at discovery time because we needed to infer accurately and 
automatically that two services could be combined [27]. Attempts to use 
OWL-DL for finding similar workflows proved more difficult [24]. The 
domain service ontology is built in OWL so that we can exploit OWL's 
reasoning capabilities to build a consistent classification. This lattice is then 
exported into RDF(S) for use within the semantic discovery tool. We use 
simple RDF(S) querying over the ontology class hierarchy. 

A great deal of research on Semantic Web Services advises on how we 
should go about describing services. We have explored two: describing 
services using a knowledge description enables reasoning over them, 
effectively building a knowledge base of services [37]; and a controlled 
vocabulary that enables simple groupings of terms into a taxonomy, assisting 
in the discovery process of Scientists rather than that of computational 
agents [22]. 

4. THE PUBLICATION AND RUNNING OF IN 
SILICO EXPERIMENTS 

Our second focus, having addressed the design of experiments, is running 
those experiments. Associated with this we consider the ways in which we 
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publish experimental data. Hence in this section we look more closely at the 
way that provenance is handled in ""^Grid. 

Running a workflow is a means to an end for the Life Scientist. The 
workflow environment enables them to achieve integrated access to a large 
number of resources and generate potentially large and complex results. 
Keeping track of these workflow experiments and the relationships between 
results within and between workflows is therefore a large undertaking. In 
""̂ Grid this is mediated by the Provenance Services. To help scientists when 
running and interpreting workflows, the process, outcomes and all of the 
intermediate results are recorded. Scientists can therefore compare results 
between different invocations of the same workflow, or compare results 
across different experiments. This contextual information can also be 
published. 
• By representing our provenance metadata in RDF we can flexibly self-

describe our results as a uniform data web of workflow outcomes without 
prescribing a fixed schema, bridge between different provenance 
metadata models from different experiments and different data models 
from external services; 

• By annotating our provenance metadata with OWL and RDF(S) terms 
shared with other "̂ ^Grid software services and other databases we can 
build a multi'layered annotation web for our results; 

• By integrating annotation webs and fusing data webs we can discover 
connections between results, discover new information about data from 
different sources and combine and aggregate evidence from results; 

• By reasoning over the annotations we can infer whether two services are 
incompatible and identify services that could make them compatible. We 
can also explore the services and workflows available to a scientist. 

4.1 Provenance Captured by Taverna 

There are three related, layered models of provenance arising from 
running workflows with Taverna: experiment provenance, workflow 
provenance, and knowledge provenance [29, 44]. The different views 
support a personalised web of provenance data for different user 
requirements. 

4.1.1 Experiment Provenance - what, who and why 

Contextual information relating to the scientist, their organisation, the 
purpose and hypothesis of the research study and the design of the 
experiment is manually disclosed by the scientist. This contextual 
information provides material for organising and exploring resources, and a 
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means by which we can integrate provenance logs, based on a common user, 
a common hypothesis, or a common design. This contextual information is 
crucial if a workflow's outcomes are to be interpreted correctly. Experiment 
provenance records who, when and where contextual information was 
created and how it evolves during experiments. For example, Dr Stevens 
works for the University of Manchester; he designed the workflow WBSA 
whose purpose was to identify new nucleotide sequences spanning the gaps 
in the WBS region on chromosome 7. This workflow was modified and 
repurposed for the next step in the Williams-Beuren syndrome experiment to 
identify the genes associated with these nucleotide sequences. This kind of 
provenance is hard to get and cannot be guaranteed. 

4.1.2 Workflow Provenance ~ how, when and who 

Workflow provenance is observed and generated automatically during 
workflow enactment. Workflow provenance logging is implemented as a 
Taverna plug-in that listens to events generated by the workflow enactor. 
Figure 16-11 shows a fragment of workflow provenance log in RDF for 
WBSA. This workflow provenance includes two parts: 
• Process provenance, which is similar to traditional event logs, records 

the order of services called and data inputs and parameters used for these 
services, to describe the origin of an execution process and the process of 
the execution. For example, in one execution of WBSA, the NCBI-
BLAST version 3.1 run over the NCBI GenBank version 41 on 
04/05/2004 at 13:34 GMT was invoked with a nucleotide sequence 
identified by gi:15145617 and successfiiUy executed in 2.1 seconds. 

• Data provenance builds a derivation graph of data products arising from 
a workflow run, including data inputs to a workflow, parameters for 
services, and the data products generated throughout the workflow. For 
example, a collection of similarity search results were created by NCBI-
BLAST, version 3.1, run at the NCBI over GenBank version 41 and were 
derived from the input nucleotide sequence um:datal. Each datum thus 
has a lineage record connecting it to its antecedent and successor data. 

4.1.3 Knowledge provenance ~ what and why 

Knowledge outcomes from a workflow include domain specific 
understanding about experiments and the scientist's personal conclusions 
from studying data and knowledge outcomes from multiple executions or 
multiple workflows. For example, the outputs of an NCBI-BLAST service 
are not just "derived from" the nucleotide sequence that was the input to 
BLAST, but are a "similar sequence to" it (Figure 16-11). Shim services are 
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faithfully recorded by the workflow provenance model but add noise to the 
results. "Scientists need to be insulated from these format transformation 
details to see the bigger, experiment, especially as the Shim to Domain 
service ratio is so high. Knowledge provenance overlays the workflow 
provenance collected by observing execution events, and is greatly aided by 
the service annotations outlined in section 3. 

Uniprot p = 5 | GenBank 1 

External web of data 

Figure 16-11. A fragment of the provenance graph generated from running the workflow 
WBSA 

4.2 Semantic Webs of Provenance 

We used a mixture of RDF(S) and OWL ontologies to represent the 
provenance model, assist RDF provenance collection and support knowledge 
discovery by analysing the provenance logs. RDF represents the Web of 
relationships between resources by associating semantic information with 
these resources and their relationships. Since RDF is based on a graph 
model, representing our provenance model as an RDF schema gives us 
sufficient flexibility to link across provenance metadata and to extend this 
experimental metadata by extracting and annotating some experiment. 
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project, or user-specific links between resources. RDF(S) or OWL ontology 
terms type the experiment resources and bring domain knowledge about 
these heterogeneous resources, along with their experimental relationships. 

Figure 16-11 shows the provenance graph generated from running the 
workflow WBSA and annotated with two levels of semantics, analogous to 
the way we describe services and workflows with semantics. A provenance 
ontology describes the experiment, workflow and knowledge provenance, 
and the classes of resource that can be linked together. The domain service 
ontology, introduced in section 3, classifies the types of resources such as 
data type (e.g. BLAST report), and service type (e.g. sequence alignment 
service). These two ontologies enable Taverna to collect provenance in two 
aspects: annotations that describe data and derivation graphs that link data. 
The former is a kind of annotation web; the latter a data web. 

4.2.1 Semantic annotation and provenance 

Annotations describe an experimental object or collection of 
experimental objects, such as a service or workflow. Experiment provenance 
is largely of this kind. For example, Figure 16-11 shows that the executed 
service urn:BLASTNinvocation3 performed the task of 
sequence_similarity_search, a concept from the ""̂ Grid domain 
ontology. The annotations could be concepts drawn from a controlled 
vocabulary, an ontology, free-text, a structured schema or a link to another 
resource. 

RDF is an ideal technology for associating facts with an object. The 
flexibility of the RDF model means that the annotations gathered can be 
equally flexible, vary from experiment to experiment and from scientist to 
scientist. Annotations are also asserted over any statement. For example, the 
output of a BLAST service contains sequence that are 
similarSequenceTo the input. The open nature of RDF means that 
annotations can be added as new information comes to light, for example, as 
the outcomes of an experiment emerge or the results are reinterpreted by 
different scientists or the owner at different times. RDF provides a well-
defined, but not overly constraining association with an ontology. This 
guides what can be said about an entity, but does not limit description to this 
schema. These annotations can be integrated to be compared or combined to 
give a greater, accumulative and aggregated knowledge picture. This heavily 
annotated provenance can be used to answer complex questions such as 
"which workflow produced a sequence that is similarSequenceTo the 
one that encodes a human_genome_geneT 
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4.2.2 Semantic Webs of data lineage 

The trace of a workflow's processor execution and the resulting outcomes, 
or the trace of a workflow's design as it changes over time as the scientist's 
protocol evolves to match their understanding, constitute important 
derivation graphs. RDF provides a flexible graph based model with which 
we relate results and integrate them with their annotations. Process and data 
provenance are largely of this kind. It has classes to type experiment entities: 
Experiment Instance describes the workflow execution process and 
Servicelnvocation describes the Web Service process; and 
Scientifi cDa turn identifies the input and output of an execution process. 
It also describes the relationships, i.e. derivation paths, of these classes. The 
provenance of an Experiment instance includes: it is definedBy an 
ExperimentDefinition and is createdBy a Person, etc. Data can be 
linked to the services that used them, to other data they were generated from, 
and to the source they came from with a version snapshot. For example, the 
origin of a Web Service output (i.e. a ScientificDatum) is derivedFrom 
the Web Service inputs (i.e. a ScientificDatum) and createdBy the 
Web Service (i.e. a Servicelnvocation). 

The overlaid knowledge provenance abstracts away from the Simplifier 
shim in WBSA, and add additional semantics to the properties of the 
provenance graph, in order to show that urn:genbank:gil9747251 is 
not just derived from urntdatal but is actually a 
similarSequenceTo it. 

4.3 Integrating Semantic Webs of Provenance 

The real power of Knowledge Discovery comes when we can bridge 
between different data models. By using the OWL concepts, LSIDs and 
URIs as bridges we merge fragments of RDF graphs together, aggregating 
knowledge but without losing the context of its origin. We can use the 
provenance semantic infrastructure to interpret, share and improve our in 
silico experiment design and execution. Our provenance network contains 
facts about the interrelationships between data. Hypothesis validation and 
generation works over these facts. 

RDF is based on an explicit identification system (URIs) for resources to 
merge metadata about a resource from several sources. LSIDs [18] are URIs 
which uniquely and persistently identify and resolve a data resource and its 
associated metadata and link them together. An LSID provides a unique 
identity to each ""̂ Grid internal experiment outcome. The use of LSIDs also 
brings the openness of our provenance for integrating with the increasing 
number of Life Science databases published through LSIDs. Thus, the 
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metadata resolved from each LSID contains the ""̂ Grid experimental 
understanding of an experiment entity as well as some domain annotations 
published by domain databases. 

Using a common RDF data model simplifies conventional data 
integration. Our internal experimental web holds the dynamic, to-be-
investigated data products, while the external data webs hold the static, 
examined data resources. Aggregating these two webs benefits both 
scientists and data providers. Scientists can seamlessly investigate their 
experiment results against the previous knowledge stored in the external 
webs. The published data resources can be studied and verified under their 
experiment context, which consequently increases their trust. Since an RDF 
version of UniProt and PubMed are publicly available and many other 
databases and publication bodies, like Nature, PDB etc, are picking up RDF, 
our flexible RDF provenance data can be extended and merged with the 
external RDF graphs, realising the benefits for both scientists and data 
providers. 

For example, a fragment of this provenance Semantic Web for WBSA is 
shown in Figure 16-11. Using URIs and LSIDs: 
• We built the connections between experiment entities and their 

provenance within one execution, e.g. urmdataS is derivedFrom 
urn:data2, or across multiple workflows, e.g. 
urn:genbank:gii5l456l7 is an input to the service invocation 
urn:genscaninvocationS of another workflow WBSB. We use the 
gene as a "pivot point" between the two workflows. 

• We built connections of our provenance with the open world, e.g. 
sequence output urn:genbank:gil5l456l7 can be connected with 
metadata about this sequence published by GenBank, which can cross-
reference to the UniProt sequence database, etc. Since an RDF version of 
UniProt is publicly available, our flexible RDF provenance data can be 
extended and merged with the external RDF graphs. 

• The OWL ontological descriptions of experiment objects manage to 
bridge the domain understanding of these objects with the experiment 
contexts in which they were produced. The relationships among concepts 
that are defined in an ontology may help extract implicit relationships 
between experiment data. In the future, if different external ontologies 
are associated with an experiment object, our provenance repository can 
be integrated with other knowledge repositories. 

This joining up based on identity is not simple, as the same data item can 
gamer multiple identities [45]; hence the need for an Identity Service to 
recognise and reconcile polysonomous data. 
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4.4 The Taverna Provenance Architecture 
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The Taverna workbench and the ""^Experiment environment collect 
experiment provenance from the scientist via plug-in tools. The basic 
architecture for gathering and processing workflow provenance is shown in 
Figure 16-12. The Taverna workflow enactor produces workflow and 
knowledge provenance via a Provenance Capture plug-in that sits on the 
Experiment Interoperation Bus (Figure 16-7) and listens to events generated 
by the enactor. Data products, gathered from databases or newly computed, 
arising from running a Taverna workflow, are stored in a domain-specific 
database (as an activity of the workflow), the local "catch all" store 
relational database (BACLAVA) or as flat files. All data products are 
allocated an LSID by the Taverna LSID authority, part of the Identity 
Service. This identity is associated with the data product when it is stored or 
passed to invoke other services by the enactor. 
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Figure 16-12. Architecture for gathering and processing workflow and knowledge provenance 

The workflow provenance is stored in the Knowledge Annotation and 
Verification of Experiments (KAVE) RDF metadata store [27]. To produce 



386 Revolutionizing Knowledge Discovery in the Life Sciences 

knowledge provenance the user designs a template document that goes with 
the Scufl workflow specification. 

KAVE benefits from the flexibility of the RDF schema. This allows 
statements to be added outside the fixed schema of a relational database, 
such as BACLAVA. KAVE enables other components in ""̂ Grid to store 
statements about resources and later query those statements using different 
RDF query languages. Client applications consume metadata and data from 
KAVE and BACLAVA using the LSID protocol, supported by a Provenance 
Query and Answer service (ProQA), which implements interfaces for 
constructing queries over KAVE to support the knowledge discovery tasks 
outlined in Section 3. The KAVE has been implemented using Jena and 
Sesame [41]. 

4.5 Smarter Experimentation 

Collecting and collating information between and across experiments is 
an important aspect of supporting the in silico experiment. The provenance 
architecture in Tavema implements this with a range of Semantic Web 
technologies. The point of doing this is to aid knowledge discovery. Those 
described so far have been largely based on scientists browsing and querying 
stores of provenance data. Figure 16-13 shows a browser for one workflow 
run's provenance seen through the workflow. The provenance behind one 
workflow tracks the history of a data product is produced, which services 
were used, and traces the origin of a data product, e.g. which database is it 
extracted from, which intermediate data results is it derived from etc. The 
ownership and intellectual property of each run, e.g. who ran it, when it was 
run, which organisation the user is from, etc is published along with the 
experiment. 

The underpinning technologies also enable machine processing of 
provenance data to help the scientist improve workflow efficiency and 
recover failed workflows. One example is the smart re-running of a 
workflow. The process graph can be used to repeat the workflow execution, 
as a recipe rather than a history and rerun the workflow from a particular 
point. If a workflow takes weeks or months to run and a service fails after 
several weeks of computations, the scientist will not want to start again from 
the beginning. Instead they will want to restart from the point of failure. 
From a data perspective, data resources that underpin the workflows are 
constantly changing. A change in a resource, or an update to a service, could 
impact the results of a workflow if it were rerun. A smart rerun only reruns 
that part of a workflow that is necessary and has been impacted by a change 
elsewhere. We can use the data and process graph viewpoint to analyse 
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which part of a workflow is required to be re-run as a consequence of a 
perturbation in the environment or reproduce a data product by retrieving the 
intermediate results or inputs that this data was derived from. As the 
resources are identified by URIs in the Semantic Web of Provenance, we can 
propagate this analysis to multiple workflows and executions which are 
affected by an environment perturbation. 
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Figure 16-13. The workflow provenance browser, with the RDF buried 

4.6 Context-Based Publication of Experiments and Data 

Whenever data is published its provenance annotation, in a possibly 
modified form, can be published too. Whenever data is accessed, its 
provenance annotation can also be made accessible. The LSID protocol 
distinguishes between retrieving data and retrieving metadata. By extending 
the protocol, upon resolution of an LSID for a data item its metadata can be 
returned as a set of RDF triples, which in turn can be integrated with other 
triples or analysed as a graph. This enables us to publish provenance as the 
evidence together with a data product. A question here is just how far the 
provenance should go for a data item - should it include the workflow 
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identity, the immediate precursors of the data, the transitive closure of the 
graph for that data etc. 

Bioinformaticians divide their initial experiment hypothesis into a 
sequence of sub-hypotheses and design w^orkflows to perform each atomic 
experiment task for each sub-hypothesis. Results from repeated executions 
of each workflow can feed back as inputs to another experiment or drive a 
new hypothesis. When a result is reused, the data content as well as its 
provenance should also be mirrored to the new experiment context. Thus 
provenance annotation associated with a data product could be migrated and 
merged with the provenance of this data generated in multiple executions, 
providing incremental and integrated context for this data. 

The notion of "self-describing experiments" is taking hold through 
initiatives such as King's EXPO ontology of scientific experiments [46]; 
calls to the scientific publishers to annotate papers at publication with 
ontologies [47] and responses by publishers such as Nature to embrace 
collaborative tagging systems like Connotea (www.connotea.org). The 
Friend-Of-A-Friend (www.foaforg) initiative from the folksonomy 
community is also being adopted for science and scientific publications, such 
as SciFOAF (www.urbigene.com/foaf). 

5. DISCUSSION 

Our claim is that Knowledge Discovery in Life Sciences is accelerated by in 
silico tools such as Tavema. Our work on ""̂ Grid has demonstrated how the 
Semantic Web provides important and fundamental technology to enable an 
in silico experimental platform such as Tavema. We have concrete 
experiences of applying state of the art Semantic Web technologies to 
examples of building, publishing and reusing experiments. 

Maturity of experience. The extent of our experiences reflects the 
maturity of the semantic support available set against the maturity of our 
understanding of how scientists develop and really use in silico experiments 
(as shown in Figure 16-14). As much as we can anticipate need, to really 
understand the issues in a way that is of genuine practical value we need 
these experiences "in the wild". For example we need a large number and 
diversity of domain services before we can understand effective service 
discovery, many service providers before we can understand the problems 
with semantic service application, and a substantial bedrock of provenance 
metadata before we truly understand the implications of provenance capture 
and mining across provenance logs. We are yet to be in a position to 
understand fiilly the implications of experimental data reuse and smart 
reruns using Semantic Web technologies. 
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Figure 16-14. Our spectrum of maturity. The use of Semantic Web technology in '"^Grid is 
trailing the evolution of in silico experimentation 

A cycle of semantic production and consumption. In the four aspects 
of in silico experiment introduced in Section 1 and Figure 16-3 (design, 
running, publication, and discovery with the wet lab), we showed how each 
is a consumer and a producer of semantics. The key idea is to add semantics 
so that the information consumed or produced is interpretable or 
interoperable by a third party, or at a later date by the originator, or for a 
different application - a feedback loop of consumption and production of 
semantics. We can think of the Semantic Web both supporting and being 
generated by Taverna, so that Taverna becomes both a consumer of, and a 
factory for, the Semantic Web (Figure 16-15). This Semantic Web is 
effectively the Semantic Bus tapped into by service discovery, design, 
presentation etc, as shown in Figure 16-7. 

Semantic Infrastructure is infrastructure. The crucial point is that the 
Semantic Web is a Semantic infrastructure in its own right - and like any 
other infrastructure it has issues of security, lifecycle, interfaces for third-
party programs and applications, requu-ements for presentation and storage, 
and the need to be distributed and scalable. This infrastructure adds an extra 
complexity to the Web which makes it less simple than it was. Extra 
infrastructure can be an impediment and an obstacle to adoption because it 
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has to be created and managed. In fact currently it does not really exist. At 
this time we have the skeleton of this infrastructure, i.e. languages for 
describing its content and some basic mechanisms for creating it. 

Semantic Webs in captivity and in the wild. In Tavema we use 
Semantic Web technologies to enable intelligent applications, for example 
being able to support workflow validation. We have built what might be 
termed "walled gardens"; i.e. Semantic Webs where we can control the 
content, for example provenance, generated from running Tavema. The real 
challenge comes when we need to link this Semantic Web developed in 
captivity with Semantic Web in the wild, with the data web being produced 
by external data resources and experiments with provenance arising from 
other sciences. 

Capturing Semantic Content. The most crucial component of the 
Semantic Web is its content. Content acquisition is the bottleneck, 
demanding semantic availability of descriptions of services, descriptions of 
data, descriptions of workflow etc. There are many reasons why semantics 
are unavailable: no matter how low the threshold of effort is to providing 
annotation, if that threshold exists then services will not be annotated. 
Concerns of privacy and intellectual property are a fiirther obstacle. We have 
a paradox. On one hand we need a great deal of semantic content to fuel the 
Semantic Web, which in turns fuels ""^Grid's semantic infrastructure and its 
services, but on the other hand it is expensive to obtain. We need to adopt a 
slew of techniques: harnessing experts to ontologies and annotate services 
and workflows, enabling "the crowd" to tag services loosely; and developing 
automated processes doing best effort semantic extraction from legacy 
systems. Quality will vary depending on whether we are addressing 
Semantic Web "in the wild" or "in captivity" - internally generated 
annotation is much more controllable than externally attributed annotations. 
We have to acknowledge and cope with the whole spectrum. 

Multiple interpretations need multiple descriptions. The motivation 
for an expensive but potentially highly effective semantic layer is to enable 
interpretation for reuse and sharing. If we were not to reuse or share then we 
would lock down our schema to suit ourselves. As usual there may be many 
interpretations, so the annotation web is context specific. Interpretation of 
services, for example, depends on whether the reader is a scientist, a service 
provider or a piece of automated machinery for inter-service compatibility. 
In some senses we are trying to anticipate the un-anticipatable by producing 
a world where we can try to describe as much as possible, then layer on top 
fiirther descriptions as we learn more. As yet nobody knows how to manage 
such a stratified model, a kind of knowledge archaeology, and we cannot 
fully predict challenges until this has been achieved. 
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Figure 16-15. Production and consumption of semantics on the Semantic Web of Science 
scale 

Mining and archaeology. Once we are successful and able to build these 
webs, we need to be able to mine and explore this knowledge - like 
archaeologists. So we need tools and good interfaces to the infrastructure, in 
a way that Semantic Web can really harness the community's natural 
enthusiasm and inquisitiveness and curiosity. In the same way that Google 
has enabled "mash-ups" through a lightweight mechanism [48], we need to 
be able to have "Semantic experiment mash-ups", where a few small 
services that work together can provide a whole new access to knowledge. 

Let people think. We also need to recognise that people are smarter than 
machines. Whereas much Semantic Web research has focused on 
sophisticated reasoning in logic languages, more emphasis ought to be 
placed on sophisticated interaction models and interfaces with people. In 
other words, we must concentrate on presentation that enables thinking 
rather than being distracted by infrastructure that attempts reasoning. After 
all we are developing a knowledge discovery environment where people will 
ultimately do the discovery - we are supporting them in achieving this. 

Contributing to collective scientific intelligence. The point of Science 
is to add to the collective intelligence of the community, which means 
publishing our findings. However, generating semantics is not the same as 
publishing semantics. For example, we may want to control what others see 
and to clean up our results. The point of annotation is interpretation, so the 
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fear of misinteq^retation is great - we must put into the hands of scientists 
the ability to control how the semantic context is published along with 
experiment data and publications. 

Through ""̂ Grid we have demonstrated how the Semantic Web addresses 
the needs of an in silico experimental platform, particularly with respect to 
services, workflows, provenance and publishing. Our work has been 
motivated by the needs of the Life Scientist as experimental and scientific 
practice evolves, and we believe it illustrates a significant synergy between 
the Semantic Web and the needs of scientists within the Life Science 
community - producing and consuming semantics on the Web of Science. 
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Abstract: The Semantic Web today is a vision of transparent search, request, manipulation, 
and delivery of information to the user by an interconnected set of services. This 
vision would change the way scientists interact with data, computations, and even 
each other. Realizing it begins with understanding the needs of biologists and 
the dynamic continuum of factors that will determine whether, in what form, and 
at what rate the Semantic Web is likely to be adopted as a scientific tool by this 
community. In this chapter I look at this continuum and hazard some predictions. 

Key words: adaptability, community, cost, fanfare, fate of technology, friction, impetus, need, 
performance, persistence, support 

1. PROLOGUE 

What are the factors that lead biologists to adopt particular technologies? 
How do these affect the prospects for the Semantic Web in the biological com
munity? 

In the last twenty years of computational biology/bioinformatics, I've noticed 
five different primary fates of computational technologies: those that were 
adopted and endured; those that were adopted and became obsolete; those that 
received much fanfare, but little or no adoption; those that were adopted and 
failed; and those that were never adopted. Computational technologies change 
so rapidly that it is easy to imagine there is little pattern in the half-lives of 
technologies. In this essay I suggest that for biologists, certain factors strongly 
influence the adoption and longevity of computational technologies; and I apply 
these to guessing the future of the Semantic Web with this group. 

There is enough enthusiasm in the wider world for the Semantic Web and 
semantic technologies to support a meeting (Semantic Technologies) for the last 
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two years [41]. But this enthusiasm is driven primarily by commercial appli
cations, which tend to be semantically much simpler than scientific, especially 
biological, ones, and relatively few biological applications have emerged from 
it so far. So I will pretend the biological community is separate from this larger 
world, both because it simplifies the analysis and because it largely is. 

In what follows, I will use "biologist" to denote anyone trying to understand 
biological phenomena, whatever his or her primary methodology and training. 
I will use "resource" to denote a database, search engine, portal, or other server 
of computations to the Internet. Similarly, I will use "curator" to denote some
one involved with accessioning, verifying, and maintaining the biological data 
a resource uses or produces, whether that resource is a database or a predic
tion algorithm. Finally, I will use "technology" to mean any computational 
technique intended for biological or more general purposes. Thus, the Internet 
itself, a database management system, ontologies, CORBA, XML, the Se
mantic Web, grid computing, Ajax, support vector machines, and Java are all 
examples of technologies: but specific algorithms or ontologies, say for protein 
fold prediction or plant structure, or hardware, are not. 

2. WHAT MATTERS? 
It's not uncommon to formulate mathematical models of complex human 

processes: economists do it routinely. In that tradition (and with tongue firmly 
in cheek), I propose the following model for the fate of new technologies. For 
simplicity I assume the factors sum, except for those that obviously multiply. 

Consider the field of computational biology a closed system into which 
new technologies are introduced from time to time. The fate of a technology, 
/(A^, t) — a{N^ t) + p(Ar, t), is a function of its adoption by the community, 
a{N^ t), and the persistence of its use, p{N^ ty. Observation suggests that at 
least two factors influence adoption: the impetus to adopt a techonology, i, and 
a "friction", r, which includes the factors that militate against adoption [19]. 
So one has 

f{N,t) = i-r+p. (1) 

Looking more closely at impetus, one can distinguish an objective impetus (io) 
— the hard-nosed, rational, practical case for adoption — and a subjective 
impetus, is, the emotional enthusiasm for a new technology; so i == io + ig. 
Objective impetus is easier to "quantify": we may set it to 

io = md + (1 - c) + e + o + 5 (2) 

^ Since all of the functions I'll discuss are parameterized by distributions over the members of the population 
of resources, N, and time t, I'll simply drop the (iV, t)s from what follows to simplify the presentation. But 
it's essential to remember that all of the factors I discuss are functions that change as the group of adopters 
and users changes over time, often very radically. For example, a technology's adoption by others can be 
accelerated once a sufficient group of (*'early") adopters exists [19, 40]. 
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where m is the size of the potential adopting community; d, the intensity of 
that community's need for the technology; c, the financial cost of adoption (in
cluding personnel costs); e, the technical ease of adoption (for example, ease of 
installation and maintenance); o, the technology's objective performance {e, g., 
petaflops, complexity, or network latency, for each locale)^; and 5, the support 
a technology receives from funding agencies, vendors, or the community, again 
translated into a financial parameter that estimates the cost of pro bono work. 

Subjective impetus, is, is proportional to the fanfare, n, that a technology 
receives in the scientific and popular press and by word of mouth (the "buzz"). 
Friction can be defined as 

r - c + (1 - e) + (1 - o) + (1 - 5), (3) 

and persistence as 
p = aa + s, (4) 

where a is the technology's adaptability to other purposes for which it was not 
originally designed, manifested only after its adoption. This model has been 
concocted so that after substitution and grouping one has 

f{N, t) oc (1 + a) {md + 2{e + 0 + s - c - 1) + n} + s. (5) 

What does this excursion really tell us? First, that the size and composition 
of a community interact with its need for a technology, such that their product 
can dominate any other variable. Second, that cost does matter, but it can be 
overcome by community, need, ease of adoption, and objective performance, 
even if support is negligible. Third, that while massive financial support can 
overcome many barriers, it won't necessarily be sufficient. Fourth, that ease 
and objective performance really do matter, especially compared to support and 
cost. Finally, that fanfare helps, but is not necessarily decisive. 

2,1 m: Community Size and Composition 
How large and how diverse is the target community? The World-Wide Web 

(WWW) became wildly successful because it turned out a substantial fraction 
of the world's people and organizations wanted a simple, low-cost means of 
broadcasting and receiving information. Schoolchildren, the elderly, pomogra-
phers, scientists, corporations, hobbyists, criminals, and governments all found 
web sites easy, fun, and worthwhile to create and read. 

In the case of biologists, there are five relevant subcommunities. (Any one 
person can be a member of all five groups simultaneously, depending on his or 

^Whether implementations of a technology are mutually compatible has a significant impact on adoption 
[18]. Here I assume that the Semantic Web functions as intended in that all requests can be serviced by all 
semantically appropriate resources; partial compatibility would further reduce performance. 
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her relationships with a particular resource.) The first is the general scientific 
user: the person who queries PubMed, InterPro, Wikipedia, or KEGG to find 
out something, either as part of a literature search or simply for background 
information. For many, the first stop is Google or another search engine, rather 
than directly searching plausible sources. This group is probably the most 
sensitive to inconvenience and vulnerable to misleading or incorrect results. 

The second is the specialist user of particular resources, such as the maize 
or mouse geneticist querying the model organism databases or a physician 
searching electronic medical records. They usually have, or are acquiring, a 
solid background in the characteristics of and discourse about their organism 
or specialty, and often have a local physical community of colleagues with 
whom they can check odd-seeming results. Often they have contributed data 
to the database or algorithms to the server, and want to retrieve their data in 
the context of a more global retrieval so they can compare the data. They 
have a strong incentive to learn to navigate a particular site's idiosyncrasies of 
menu placement and data semantics (and to complain about egregious errors 
and faults). For example, in searching MaizeGDB, is les^ any lesion gene of 
maize, an unmapped lesion gene, or any recessive lesion mutation [25]? Lastly, 
they continuously accumulate data, hypotheses, or algorithms, and are potential 
users and critics of various "standards", such as controlled vocabularies and 
ontologies, for example to encode laboratory, clinical, or field observations in 
their personal spreadsheets, palmtops, notebooks, databases, or patient medical 
records. 

The third is the curators of a resource. They have direct responsibility for 
assuring the integrity and biological consistency of the resource's informa
tion, monitoring both the data themselves and the consistency of the resource's 
semantics. They are one of the major audiences for and potential users of on
tologies, and if an existing resource retrofits an ontology they usually have the 
primary responsibility for ensuring the quality and consistency of the newly 
assigned semantics. They are generally the first consumers of a resource's in
terfaces and results after its developers, and often (though not invariably) their 
evaluation of the alpha product is incorporated into subsequent revisions by the 
resource's developers. They frequently describe new algorithms to developers 
in an informal pseudocode, and many of them eventually program at least some 
tasks themselves, such as simple Perl scripts. Depending on their computa
tional fluency, this group may make or influence technical decisions, such as 
the choice of data model {e. g., relational v̂ -. object-oriented). This group can 
merge fluidly with members of the second and fourth groups, depending on the 
resource and the people. 

The fourth group is the designers and programmers of a resource. Being 
responsible for the computational aspects of a resource, they tend to make all of 
the technological decisions and frequently many of the user-oriented decisions 
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as well (for example, the look and feel of interfaces). They may be responsible 
for the resource's scientific and policy decisions as well as its technical ones, 
such as whether to adopt web services and which protocol to use. Depending 
on their scientific background, they may also function as curators, at least to 
the extent of checking algorithmic results or attempting to use a new interface 
to enter data. 

The last relevant group is the computational biologists not directly involved 
in a resource. They may wish to harvest data to develop algorithms, compare 
the results of a resource's algorithms with their own, or in some fashion connect 
a resource with another they are developping. Like the second group, they usu
ally have strong specialist knowledge of a particular organism, computational 
problem, or field of research, but they often detect errors and inconsistencies 
by computational means, not necessarily through an intimate knowledge of the 
data (for example, compiling and inspecting thousands of small molecule names 
to find nomenclatural inconsistencies). Consistency of syntax and semantics 
within and among resources is crucial for them. 

2.2 d: Need 

In 1990, NCBI adopted the ASN.l syntax for exporting data to other 
applications [31]. The idea was to structure the syntax of information such 
as DNA sequence data in an easily parsed form. An ISO standard, the syntax 
encapsulated data between tags whose semantics was listed separately, much 
like today's XML, RDF, and OWL. Although NCBI aggressively promoted 
ASN.l , it was never widely adopted by the community (though it is used by 
BIND, for example; see [3]). Why? 

Part of the reason is that very few people at that time perceived a need for 
an exchange syntax: the vision outraced practice. It's easy to write parsers 
against the flat-file version of GenBank, which is much more compact than 
ASN.l , and several of those had already been written by the time ASN.l 
was introduced. Moreover, the utility of ASN.l was restricted to the very 
small community of developers, which at that time was probably about fifty 
people; any benefits accruing to the larger community (groups one and two) 
were invisible to it. ASN.l met an unrecognized need of a very small group, 
and the wider scientific and commercial communities largely ignored it. 

This cautionary tale prompts the question: who needs the Semantic Web 
and how much do they need it? Groups one and two would benefit only from 
computations that couldn't be done any other way than using the Semantic Web: 
what they would notice and appreciate would be new functionalities or more 
accuracy for existing functionalities. (Improvements in computational speed 
will only be visible if a user is confident the bottleneck isn't his or her network 
connection.) Two examples must suffice. Rapidly returning putative protein 
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identifications with expectations from a mass spectrum and images of 2D gels 
of other organisms obtained by others with the putative proteins or sequence-
similar proteins circled and time-course data on those proteins compiled from 
both the literature and high through-put data with error estimates and full-text 
articles from the literature would be a noticeable improvement. On the other 
hand, doubling the signal/noise in search engine results is probably too subtle 
an improvement to be noticeable (though a ten-fold increase would be readily 
apparent). 

The case for curators needing the Semantic Web is rather muddy. There is a 
genuine need for fast, accurate delivery of relevant information in ways that do 
not overwhelm humans. The keys here are accuracy, relevance, and compre-
hensibility: newly delivered information must be highly reliable scientifically 
and relevant to the users' questions. Methods to validate the scientific semantics 
of the delivered information and provide truth maintenance will be particularly 
important for this group (and members of groups two and five). The type of 
delivery is also very important: more lists of links to click will be far more 
frustrating that summaries of texts or astutely designed graphical displays that 
combine (and appropriately scale) information from many different resources. 
The "workbenches" and "dashboards" that have been developed give a hint of 
the sort of interface that will be needed to make sense of the cornucopia, but 
much more will need to be done [30, 39]. 

The people who need the Semantic Web the most are probably the developers 
of resources. Any sort of programming interface to the content and computa
tional capability of the WWW's resources would be a significant improvement 
over the present state of bidirectional parsers, families of scripts, simple links, 
and hand-crafted schemata reconciliations and calls. Over the last twenty years, 
many approaches to easier interoperability of distributed, disparate resources 
have been proposed, first for databases and eventually scaled up to the W W W 
(for example, see [9, 13, 14, 21, 37, 38]). That there have been so many ap
proaches shows how hard the problem really is and illustrates the intensity of 
the need. 

The last group is the computational biologists. Their needs are a combination 
of those of groups two - four: better programming interfaces plus reliably ac
curate information. Presumably they have less need of interfaces that integrate 
and compare information from various sources than groups one - three, since 
they would develop their own. Whether they would benefit significantly from 
the ability to distribute data and computations over the grid is very individual, 
so it is difficult to make a uniform prediction of need. IVIy impression is that the 
intensity of their needs is somewhat less than group four, roughly equivalent to 
the curators (group three). 

In assessing need, it is critical to distinguish the need for the Semantic Web 
from any need for controlled vocabularies, ontologies, semantic translation 
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schemes, and the like. While the Semantic Web relies heavily on ontologies, 
the reverse is not true. To the contrary; the latter have long and distinguished 
histories in many areas of biology and medicine, beginning with Aristotle, Hip
pocrates, Galen, Linnaeus, and the Bartrams (see [2, 11, 17, 27, 29, 28, 33, 35] 
for random modem examples) independent of the interest in the Semantic Web. 
Controlled vocabularies and nomenclatures have been crucial in standardizing 
usage in fields, though it can take years for preferred terms to percolate through 
the body of scientific practitioners. Ontology building is becoming more com
mon in biological projects, and will surely be aided by the establishment of the 
Open Biological Ontologies project (OBO), the release of Protege as an open 
source project, and the continued development of tools that reason over ontolo
gies [12, 24, 26, 28, 32]. However, their eventual importance to bench and field 
scientists, or even the non-ontology, non-text mining, computational biology 
community, is much less clear just now. Given the slow kinetics of nomen-
clatural change, it is not surprising that most working scientists in groups one 
and two ignore or find wanting the current ontologies (E. Coe, M. Schaeffer, 
P.Shapshak, and L.Vincent, personal communications). This slow uptake of 
ontologies offers a ray of hope for the Semantic Web's diffusion into groups one 
- three, since it is intended to turn the almost inevitably unwieldly ontologies 
into something directly useful to human beings. Ifmd turns out to be very large, 
it is likely to drive development and deployment of the ontologies on which the 
Semantic Web, in its present formulation, depends. 

2.3 e: Ease 

Like need, ease varies with the subpopulation. Groups one and two will 
expect things to work effortlessly ("just push a button": J. S.Gots, personal 
communication). Ontology development and deployment is extremely difficult 
and time-consuming, and curators are on the front lines of any (re)annotation, 
semantic refactoring, ontology development, and retrofitting efforts. If the 
present conception of the Semantic Web is to be widely adopted, better and less 
labor-intensive ways to develop ontologies, validate them scientifically (not 
just for internal logical consistency, as important as that is), and retrofit them 
to existing resources will be needed. Interestingly, it's relatively easy to write 
"quick and dirty" ontologies that rapidly create additional problems (one reason 
why ontologies tend to proliferate, rather than to be re-used). Thus, it would 
also be desirable to algorithmically prevent construction of semantically flawed 
ontologies, or at least to encourage their improvement during development. 

Naturally, those who can will pick the "easiest" — which often means the 
most familiar — development tool, as the ASN.l case illustrates. For devel
opers, a fair amount of the most basic infrastructure for simple applications 
has been built, e.g., RDF, OWL, and SOAP [4, 7, 15, 26, 38], though there 
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is a fundamental concern the language is insufficiently expressive for biology 
[22]. It's not clear these tools are so idiotically easy to use that the learning 
curve is very shallow for most developers not already committed to imple
menting the Semantic Web. And it is fair to say that it is still too difficult to 
develop the kinds of semantically rich and scientifically accurate applications 
that summarize and integrate very disparate but related types of information. 
Such applications would go well beyond existing portals, which concentrate 
on a particular domain {e.g., PredictProtein; see [34, 36]). One important 
bottleneck is likely to be in our understanding of how to convey piles of very 
complex information on a two dimensional tool. Reducing data is difficult 
enough, but reducing it so that the underlying data and their interactions are 
still retrievable is even harder. Improvements in scientific visualization and data 
summarization and truth maintenance — and then building development tools 
to make those improvements easy to incorporate or remotely call in one's code 
(a next generation integrated development environment, a la e c l i p s e , see 
[10]) — are imperative. Moreover, selecting and understanding the semantics 
of candidate ontologies are still time-consuming and difficult; my impression 
is that these difficulties contribute to the observable proliferation of ontolo
gies. The situation for computational biologists combines those of curators and 
developers. 

2.4 o: Performance 
The Semantic Web has four kinds of performance issues, and to a first ap

proximation the first three affect all users equally. The first is the usual problem 
of slow network speeds and transiently unavailable servers. The second is 
the computational performance of locale-specific algorithms that do interesting 
computations, such as spot identification on gels, visualization, or text mining, 
and serve the results on request. These services could form the ultimate bottle
neck, especially since many are offered on a largely pro bono basis (as the last 
specific aim on the grant, for example). 

The third is the efficiency and scalability of the resource finding, term map
ping, and inference algorithms and services that lie at the heart of the Semantic 
Web's ability to join data from disparate resources. The Semantic Web is 
particularly vulnerable to elastic term semantics and ambiguity, logically and 
scientifically weak inference and the combinatorial explosion of inferences and 
term resolution [22]. The assumption that the Semantic Web will scale usually 
rests on the argument that individuals will post and use resource definitions in a 
bilateral fashion and that there will be relatively few paths through the Semantic 
Web. Given the way the W W W has developed over the last fifteen years, these 
assumptions seem naive. If the number of paths is even moderate in relation to 
the size of the Semantic Web, or if significant inference is performed at several 
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steps on the path, traversing the Semantic Web by relying on computations at 
many local, decentralized services won't perform well. An analogy would be 
to imagine searches if Google did not index web sites and their terms. It seems 
likely that some form of large-scale inference and traversal service, not just 
resource identification, will arise if the Semantic Web starts to succeed: poor 
performance simply cannot be tolerated. 

As bad as they are, the fourth issue over-rides the other three: the scientific 
accuracy and relevance of the returned data or of the intermediate data used to 
traverse the Semantic Web. For all groups of users, but especially scientists of 
either the experimental or computational persuasion, returning bogus or suspi
cious results will cause immediate worry and loss of interest in the Semantic 
Web, escalating with the frequency of the occurence. At the very minimum, 
users are entitled to an estimate of the probability that the returned results are 
scientifically correct; it would be better to provide a trace through the data 
calls and inference steps that were used in generating the returned data, along 
the lines of truth maintenance systems. Both of these are necessary, but not 
sufficient, steps to building a scientifically trustworthy Semantic Web. 

2.5 SI Support 

Support for the Semantic Web so far falls into three categories. The first 
is research support on fundamental Semantic Web technologies via grants and 
contracts. At present the focus is probably on fundamentals and infrastructure, 
though this book demonstrates a number of applications. There clearly has 
been financial support for the development of related technologies, such as 
description logics, biological ontologies, and ontology tools. The second is 
the pro bono support of volunteers, especially through the W3C. This again 
is mainly focussed on the articulation of fundamental standards, primarily for 
languages and resources [8, 26, 32]. Without their explicit reporting, it is 
difficult to attach a monetary value to the volunteers' efforts. The third form 
of support is that of meetings sponsoring sessions devoted to this topic, most 
recendy at the Pacific Symposium on Biocomputing [1]. 

It's difficult to guess how much support might be possible for biological 
applications. I suggest it is far likelier that Semantic Web application develop
ment will form part of larger proposals rather than be their sole or even primary 
focus, just as the development of algorithms, databases, and services usually 
form components of more broadly aimed proposals. Should this be the case, 
the magnitudes of m, d, e, and o will all have to be greater than they would be in 
more luxuriously funded climates. The experience with open source develop
ment makes me cautious about assuming that all the really important work can 
be done with completely unpaid volunteers. In the end their costs must be cov
ered in some way, even if it is simply through the indulgence of employers and 
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families; and sustaining the effort to solve difficult problems or develop break
through applications can be onerous without some financial support. Bumping 
into code with gaps in functionalities, bugs, and exhausted developers will di
minish one's enthusiasm, particularly if one lacks the time or skills to address 
the technical issue. It might be helpful to assemble a list of challenge problems 
to pique the interest of the open source community in biological applications, 
or to sponsor a competition for the most important ones. 

2.6 c: Cost 

How expensive will this be? Obviously delivering a robust and reliable sys
tem will take years and substantial investment. Several difficult (and therefore 
likely to be expensive) obstacles have been mentioned in passing; all would 
require significant effort and support. As a baseline, one might consider the 
state of biological ontologies so far. The resources that have adopted the Gene 
Ontology have had to dedicate substantial personnel and financial resources 
to the transition and maintenance (my observations suggest an average of one 
- three FTEs per resource), and the vast majority of the Gene Ontology and 
other ontologies are developed by relatively small groups of specialists (three 
- ten FTEs, depending on the group), again with extensive support. Now mul
tiply this by every resource, and the cost becomes daunting if we cannot find 
economies of scale. 

2.7 n: Fanfare 

The Semantic Web has been blessed with eloquent and effective proponents, 
beginning with Tim Bemers-Lee [5]. But to the best of my knowledge no 
strong champions in the wider biological community have emerged, and the 
entire topic is still of interest only to a few specialists. It will take multiple 
appearances in Science, Nature, The New York Times and equivalents before 
the fanfare reaches a sufficient level. Of course, compelling applications are 
essential to persuading the community, and very helpful in attracting the interest 
of the scientific and lay press. 

2.8 a: Adaptability 

One only really knows adaptability in retrospect. One of the best ways to 
assess adaptability prospectively is to show a tool to many people with different 
problems and see what uses for it they dream up. In that sense, this volume 
provides a preliminary estimate of the Semantic Web's adaptability. Another 
measure will be how easily ordinary mortals — not developers — can glue 
the Semantic Web's components together in new uses. The ability to rapidly 
prototype applications in simple, non-geeky ways will be important to groups 
one and two. 
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Overly specifying a tool's purpose or capabilities can be inhibitory. ASN. 1 
again provides an instructive example. Though the syntax was general, what 
NCBI promoted was limited to sequence information. Thus, information on 
phenotypes, genotypes, biochemistry, anatomy, taxonomy, etc, were all omitted 
in the early definitions. The net result was that the syntax seemed far less 
extensible than it really is. 

The uses heretofore proposed for the Semantic Web tended towards database 
lookups rather than numerical computations, no doubt in part because of the 
underlying emphasis on text [5]. In principle, however, there is no reason why 
the Semantic Web couldn't be extended to that area (or visualization, for exam
ple), provided the semantics can be more precisely defined and married to the 
efficient distribution of computational tasks, along the lines of grid computing. 
Efforts to develop mark-up languages and ontologies for systems biology give 
an idea of what might be done [6, 16, 23]. 

3. PROSPECTS 

So where does this leave us? I'll assume the fanfare (n) will take care of 
itself, and focus on the other variables in the model. It's fair to say that groups 
one and two far out-number the remaining groups (m), with curators probably 
being the smallest. So the natural assumption would be that the "killer app" that 
catalyzes the widespread adoption of the Semantic Web should be aimed at this 
largest subset. Therein lies the rub, for this is the hardest group to persuade, 
particularly with a technology that is designed to be invisible to the ordinary 
user. To a first approximation, rad for this group is the smallest at present. 
But this group's needs {d) may be larger than one might think: it's striking 
how many bench biologists are learning Linux and Perl and using R, BioPerl, 
BioPython, and other open source tools. Tools that let anyone easily construct 
imaginative and efficient applications using the Semantic Web could well find 
a ready, if demanding, audience: for them especially, ease will be at a premium 
(e). 

If one shifts the focus to groups three - five, m becomes smaller but d in
creases. The largest d, as has been mentioned, is of the developers, and I've 
already mentioned classes of tools and technologies that could reduce the bur
den of development (thereby increasing e). Development and ontology tools, 
better ontologies, and ontology alternatives would all serve to reduce cost, c, 
though they would clearly require additional support {s). Developers need 
ontologies that are well-designed, expressive, stable, clearly defined, flexible, 
routinely used by biologists to collect or describe data (so that the literature 
gradually uses the ontologies), and actually implemented in a number of sites. 
These conditions are essential to controlling the cost of the Semantic Web's 
development and improving its performance (o) if ontologies are to form its 
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backbone. Today's ontologies meet some of these criteria, but clearly not all 
of them. They may never, if for no other reasons than that biological language 
is extremely elastic and that the usage of language changes rapidly as science 
advances [20]. So it behooves us to investigate methods to translate among 
ontologies or terms, reason among them, or computationally define the seman
tics of biological ideas, so that the Semantic Web is not held hostage to an 
unscalable or unstable technology. More s\ 

Enabling anyone to easily do whatever one can imagine harks back to the 
original vision of the WWW, and methods to enfranchise development may 
truly be the Semantic Web's "killer app". An interesting and very complex 
prospect indeed! 
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Chapter 18 

SEMANTIC WEB STANDARDS: LEGAL AND 
SOCIAL ISSUES AND IMPLICATIONS 

Dov Greenbaum^ and Mark Gerstein^ 
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Abstract: Bioinformatics represents a paradigm shift in basic science research, requiring 
the interoperability of numerous diverse and distinct databases. The Semantic 
Web, through its standards, tools and languages, will give research labs, 
particularly bioinformatics labs, the ability to easily and automatically 
integrate across the varied biological databases. Although Bemers-Lee 
eschewed proprietary standards in the creation of the Web, favoring royalty 
free standards, there are still numerous legal concerns with regard to the 
standard setting process, particularly implications for antitrust and intellectual 
property law. This chapter will describe the social process of creating 
standards within academic science, and outline some of the legal concerns -
particularly related to antitrust and intellectual property issues, making some 
suggestions that might assist the regulation of difficulties of a legal nature in 
standardizing data and prevent a legal morass from arising out creating and 
setting standards for the Semantic Web. 

Key words: standards, bioinformatics, antitrust, intellectual property, policy. 

INTRODUCTION 

The growing abundance of Web based science data has resulted in the 
development of diverse tools and algorithms for accessing data. The 
Semantic Web, as a methodology for making all data on the Web machine-
readable, is an ideal technology for e-Science. In our view, the 
standardization necessary to accomplish the goals of an e-Science-ready 
Semantic Web requires the incorporation of intellectual property by a 
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standard setting body into the underlying standards of the Semantic Web, 
and the promulgation of these standards throughout academic and 
commercial science. The creation of standards, particularly when they 
involve intellectual property,' can raise antitrust issues," although the courts 
are somewhat vague as to the extent of the specific antitrust concerns. A 
further issue is the possibility of standards arising out of academia -both as 
owners of intellectual property incorporated into the standard, and as actual 
actors in the standard setting process; the courts have been even vaguer as to 
the antitrust consequences associated with non-commercial academic 
actions. 

The surprising idea that academic institutions would be involved in 
creating industry wide computer and software standards that could 
potentially involve university owned patents that control real and relevant 
antitrust concerns is a product of a pair of paradigm shifts: Bayh Dole, in 
introducing intellectual property rights to American academic research as a 
way to foster innovation,'" has prompted a shrinking of the public domain, an 
expansion of academic patent portfolios, and the abandonment of many of 
the Mertonian norms that supposedly differentiated academia fi*om 
industry.'^ 

Additionally, high throughput research techniques in genomics and 
proteomics have led to an influx of data, large-scale, real-time 
collaborations, and computationally heavy applications through on-line 
research tools and databases. Bioinformatics labs have produced a vast array 
of databases and tools designed to mine and analyze the data deluge. There 
is however, rarely any consistency among the interfaces of these tools 
leading to significant interoperability issues (For more on interoperability 
issues, both legal and scientific see, e.g. [1]). This situation necessitates the 
need for technologies such as the Semantic Web to provide interoperability 
to the vast universe of Web-based scientific data. 

One of the many interesting issues in the creation of the Semantic Web is 
an understanding of how technologies and ontologies originate. Scientists in 
their particular specialisms need to collaborate in standardizing ontologies 
and other Semantic Web technologies; this is not a simple task: for instance, 
an ontology that describes a person's directory entry, his location, a fi*iend, 
his parents and so on and so forth, and has to standardize all these terms. 
This is fairly straightforward to do in familiar context, however, when 
setting standards for a specialized scientific context such as that which 
relates to genomics or proteomics, it is immediately clear that the relations 
and the definitions are going to be somewhat complicated: one might have to 
define a link fi*om a protein to its original gene sequence or to the gene's 
location on the chromosome or to another protein that it interacts with. Each 
of these relations has to be specified. 
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Further, the process of setting standards in relation to genomics and 
bioinformatics is complex. When trying to create an ontology one would like 
the direct participation of the people with the technical knowledge. 
However, these people are rarely the most knowledgeable regarding the 
structure of an orderly social process to enable a definitive and consistent 
consensus to be reached. Additionally, most people are blind to the resulting 
legal issues that may arise from the setting of standards. 

2. STANDARDIZATION 

Standards are critical to the long term commercial success of the Internet 
as they can allow products and services from different vendors to work 
together. They also encourage competition and reduce uncertainty in the 
global marketplace. Premature standardization, however, can "lock in" 
outdated technology. Standards also can be employed as de facto non-tariff 
trade barriers, to "lock out" non-indigenous businesses from a particular 
national market. The United States believes that the marketplace, not 
governments, should determine technical standards and other mechanisms 
for interoperability (a Framework for Global Electronic Commerce: 
www.w3.org/TR/NOTE-framework-970706.html). 

2.1 Standards 

Standards can be broadly defined as "any set of technical specifications 
that either provides or is intended to provide a common design for a product 
or process." [2] These range from the complex - set of application-
programming interfaces that defines compatibility with Microsoft Windows, 
to more simple things like electrical plugs and outlets which have 
standardized voltage, impedance, and plug shape. 

2.2 Need for Standards 

With the diversity of interfaces and tools there comes a critical need for 
standards to create a more homogenous, and efficient environment for 
scientific research. In addition to the considerable time expended to massage 
diverse datasets (see, e.g., [3]), there are also a concerns relating to the 
extensive error that is introduced through the integration process of these 
assorted data sets.^ 

Winning the acceptance of any standard within a scientific discipline is 
never easy. Standards have existed throughout science's history, the majority 
of them a failure.''* Too basic, more information needed. It can become even 
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more difficult if someone, some university, or some corporation has the 
intellectual property rights to the standard. 

The Semantic Web may help ameliorate many of the general 
standardization issues, or at least address most of them relatively early, 
through the use of new technologies that change the way we interface with 
Web-based scientific data. Principally, the Semantic Web aims to change 
much of the human contribution to data integration. Through the creation of 
widely accepted standards, the Semantic Web promises to make Web based 
data machine readable and parsable through the creation of "common 
formats for interchange of data, ... [and a] language for recording how the 
data relates to real world objects," i.e.: metadata 
(http://www.w3.org/2001/sw/). 

The Semantic Web is a creation of Tim Bemers-Lee, the original 
inventor of the World Wide Web. It comprises a number of layered and 
interlinked technologies such as explicit metadata, ontologies, as well as 
logic, inferencing, and intelligent layers. Present technologies include: XML, 
RDF and OWL [4]. The key idea in the Semantic Web is that whereas in the 
original Web technologies there is no meaning or semantics associated with 
hyperlinks connecting different Web pages, in the Semantic Web, each 
hyperlink is in turn linked to a special ontology definition file that defines 
the type of link or the meaning behind the link. For instance, one might have 
a link from a person to his directory entry and this link would then in turn be 
described as a directory entry link. In this way, one can traverse the Web in a 
more meaningfiil way. Thus, the Semantic Web and its tools promise to be 
particularly usefiil for automatic computer parsing and interpretation, and 
will be especially useful for e-Science. 

Uniform standards are essential not only because they are required for 
interoperability, but also because in this instance, as in many instances of 
new technology and innovation, standards are required to lessen the risk for 
innovators. Moreover, uniform standards further promote innovation by 
creating a "technical baseline for incremental product improvement" and 
development [5]. With the "Semantic Web technologies ... still very much 
in their infancies ... there seems to be little consensus about the likely 
direction and characteristics of the early Semantic Web." 
(http://infomesh.net/2001/swintro/). Thus, the need for a well designed and 
rigorous standard setting process that both incorporates the best technology 
available, but avoids potential societal and legal pitfalls, cannot be 
understated. 
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2.3 Types of Standards 

There are generally two types of standards employed by standard setting 
bodies: Open and closed (proprietary) standards. Open standards, i.e. those 
that are typically favored by many non-commercial bodies and the W3C 
(http://www.w3.org/Consortium/Patent-Policy-20040205/), are not 
controlled by any single party: all market participants are free to access the 
specifications, source code, and APIs to incorporate them into their product. 
Note however that even so-called open standards are sometimes somewhat 
proprietary; e.g. many open-source software programs are licensed under the 
General Public License (GPL) which, while free, does impose (potentially 
legal (See, e.g., [6])) liability and requirements on its signatories.""" While 
there are many reasons to favor open standards in developing technologies, 
including price competition among developers and the resulting consumer 
surplus [7], often we have to balance perceived benefits of open standards 
against consumer welfare that may be better off through the incorporation of 
better technology available only via closed standards."""' 

Open standards also lend themselves to fragmentation, which may hurt 
downstream users in the long run. UNIX is a prime example of such an 
instance wherein many of the different forms emanating from the Bell Labs 
precursor of UNIX were no longer compatible with each other.''' Intellectual 
property rights can, to some degree, prevent this fragmentation.'' Finally, a 
requirement for open standards may also be potentially illegal under 
American antitrust law.''' 

Closed or proprietary standards usually depend on patents owned either 
by other members of the standard setting body, or individuals and firms 
outside of the standard setting organization. And while many antitrust issues 
are limited to issues of closed standards, '̂ ^ closed standards are typically of 
greater benefit to the standard setting bodies as often better technologies rely 
on patents to recoup the costs of development.""' 

"There is a voluminous literature on the relative value of open and closed 
standards, especially in network industries, and a vociferous debate over the 
merits of both approaches."[2] 

Often standards may be a hybrid of both open and closed components. 
The sheer volume of standards may necessitate this result since, especially 
with complex technologies, standards will often affect someone's intellectual 
property.""" 
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2.4 Methods for Setting Standards 

Standards are set by numerous different organizations with varying 
degrees of compliance, formality and enforcement. Depending on many 
different aspects of the standard and the organization setting the standard, 
they can be viewed as either a burden or a positive aspect within the 
industry. 

Typically though, what tends to happen is that various proposals will 
spring up and some will immediately catch on and predominate. In other 
situations, one will see a number of competing proposals - and these will be 
sorted out by various mechanisms. Sometimes there are meetings where all 
the participants get together and agree to put together their respective 
standards into a common standard. At other times government directives 
may lead to one standard being preferred to another. 

The scientific community involved in creating particular technological 
standards and ontologies obviously receives a lot of credit from the adoption 
of these standards, in a similar fashion to the way a company would want to 
receive payments or royalties from the adoption of it's standards. Thus, many 
vested interests usually come into play when people are arguing about 
standards. 

Another complicating factor, is that for many of these technical areas -
the technical areas themselves are incompletely understood at the time the 
standard is devised. The field evolves while the standard is being defined -
and one of the most powerful mechanisms for reaching consensus on 
standards is for the field to evolve beyond two competing standards. And for 
the respective opponents of those standards to realize that the field has 
moved beyond them and that they have to update and perhaps merge their 
standards. This has happened to some degree in relation to gene expression 
and protein interaction definitions - where the field is very quickly evolving, 
and the original definitions were seen as fairly simplistic and although they 
had to be modified to keep up. In the software industry, often just the pure 
rate of technological innovation will rapidly cause one standard to be 
superceeded. 

Independent of the process for creating standards, they are only usefiil if 
they are accepted throughout academia or industry. To this end, there are 
numerous ways that standards are created and become accepted by the 
community at large: (i) Standards can be created through market and 
network effects, where the standard is chosen primarily by the consumers, 
the first company to enter the market, or the corporation with the largest 
market share, (ii) Standards can be created by standard setting organizations 
with varying degrees of formality; and (iii) the government can impose a set 
of standards on an industry. 
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2.4.1 Network effects 

Network effects are often the result of complex social organizations and 
multifaceted hierarchical structures that result in the consumer, sometimes 
randomly, choosing one standard over another.'''' For example: In choosing 
VHS over the Betamax standard, consumers on their own gradually 
abandoned the superior Beta for the VHS standard. As the market for Beta 
movies began to shrink, more and more consumers opted for VHS, thus 
enhancing the network effects driving people over to VHS. Network effects 
that result in de facto standards lack any defining affirmative collective 
manipulation by competitors in the field, and as such rarely become an issue 
with regard to antitrust. 

2.4.2 Government standards 

Through promulgating regulations, government bodies can apply 
widespread and enforceable standards on an industry (e.g. telephone 
interfaces or HDTV). One area of concern here is the advantage that a well 
placed lobbying group can obtain through the incorporation of their 
intellectual property into a government enacted regulation that may spell out 
government mandated requirements. Moreover, those companies that 
successfully petition to have their intellectual property accepted as part of 
the government standard are often immune, under antitrust doctrine from 
antitrust liability. 

2.4.3 Standard Setting Bodies 

There are a multitude of different types of standard setting bodies with 
varying degrees of regulation and enforceability: Standards may be set up by 
ad hoc consortia that form primarily to choose a unified standard or 
standards, or they can be set by longstanding bodies such as ANSI or IEEE. 
Most, if not all standard setting bodies are voluntary in nature.'''" 

While Standard Setting Organisations (SSO) are generally perceived to 
relieve inefficiencies in the market, primarily by requiring interoperability 
between different interacting components as well as limiting overlap and 
waste associated with competing technologies, there are often a number of 
inefficiencies associated with standard setting organizations that are often 
not appreciated. 

Standard setting bodies are made up of self interested groups and 
individuals, often unwilling to pay royalties for someone else's intellectual 
property when they can establish a standard (potentially, substandard) that is 
not controlled by a third party's intellectual property portfolio and that 
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would be royalty free. In economic terms though, this could potentially be 
bad for society. Succinctly put, royalty payments are a transfer payment 
from the IP user to the IP owner with no net loss or waste to society (If the 
IP systems functions as it should). Thus, while corporations may be 
unwilling to pay a royalty for usage of a technology in their standards, that 
royalty fee has no cost to society as a whole, but the decision to choose a less 
than optimal standard, precisely because of a royalty fee could be 
significantly harmful to consumers.''''" 

Although there are potential negative effects resulting from the setting of 
standards, there are also numerous pro-competitive effects resulting from the 
setting up of interoperability standards through standard setting bodies. 
Standardization within an industry facilitates price competition between 
rivals for products that are truly interchangeable because they are based on 
the same set of standards; standardized interoperability avoids duplication of 
efforts, such that there are not two or more competing teams that are 
involved in incompatible and non-interoperable innovations; and finally, 
standardized interoperability can promote innovation by providing stability 
to the industry.̂ """̂  

3. BACKGROUND TO THE LEGAL ISSUES IN THE 
U. S. A. 

3.1 Patents 

The United States Constitution provides for patent rights for inventors in 
an effort to promote the progress of science and the arts.''''' Patents differ 
from tangible property in that they are not truly property: rather they are 
entities, bundles of government granted rights, whose boundaries are 
designed by Congress, dictated by law, and have the overarching goal, at 
least in the US, to maximize utility.'"' 

To obtain patent protection on an invention, a patentee must, in addition 
to disclosing her invention and providing detailed descriptions as to the 
optimal implementation of that invention, prove to the United States Patent 
and Trademark office that the invention is novel, non-obvious and useful. In 
return the USPTO grants the patentee the rights to exclude others, including 
competitors, from making, using or selling the invention in the United States 
for 20 years. This provides incentives to innovate, disseminate information, 
and allow for structures that can be used to commercialize inventions (i.e.: 
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licensing patents). It is intended that at the end of the patenting process the 
invention will be brought to the market for public consumption and benefit. 

There are some downsides to intellectual property, including the 
discouraging of follow-on innovation [8]. Also note that the laws and 
regulations of intellectual property do not require that the patentee ever 
license the innovation, potentially tying up technology for the duration of the 
patent protection.''''' 

The usefulness of patents is constantly debated and many distinguish 
their usefulness among different industries, i.e. drug development vs. 
software development. 

The United States and only a handful of other countries allow for the 
patenting of software.''''̂ ' Some allow such patenting only indirectly, through 
association with a patented machine.''''"* It has been noted that the software 
industry has been, and continues to be, very successful, seemingly without 
relying on patents,""'"' and some commentators argue that patents in this area 
may not provide additional incentive to innovate.""'' Many even claim that 
they are anti-innovative.""''* Still, computer software manufacturers, 
particularly those that produce the off-the-shelf, utility-type software, 
apparently rely heavily on intellectual property protections, particularly 
given the ease of pirating software.""""" The Federal Trade Commission has 
noted many problems with the level of software patenting in the United 
States, suggesting that it can "deter follow-on innovation and unjustifiably 
raise costs to businesses and, ultimately, to consumers.""""'"' Still, the present 
situation will not change in the near future and many algorithms and other 
software components associated with the Semantic Web may be protected 
through intellectual property rights such as copyright and patent. 

3.2 Antitrust 

Although the American Federal Courts have never found a definitive 
statement of policies to define the Sherman Act, the wellspring from which 
all subsequent antitrust policies arise, one of the main goals of antitrust laws 
is to make sure that the markets are competitive and promote efficiency [9]. 
While, somewhat elaborated on by the Federal Trade Commission and 
Clayton Acts of 1914, the concise Sherman Act of 1890 represents the 
keystone of antirust law in the United States. The Sherman Act is divided 
into multiple sections, of most relevance here are the first two: Section one 
states that "Every contract, combination in the form of trust or otherwise, or 
conspiracy, in restraint of trade or commerce among the several States, or 
with foreign nations, is declared to be illegal."""'" Section 2 states that 
"Every person who shall monopolize, or attempt to monopolize, or combine 
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or conspire with any other person or persons, to monopoHze any part of the 
trade or commerce among the several States, or with foreign nations, shall be 
deemed guilty of a felony.'"^'' This section would potentially come into play 
if a firm unilaterally refuses to license their patent if that allows them to 
maintain monopoly power, and that monopoly power does not benefit 
consumers.'''̂ * However, the courts have ruled that in the absence of 
extraordinary circumstances it would not hold a refusal to license as being 
anticompetitive. 

The Act, while enforced by the Federal Trade Commission (FTC) and 
the Department of Justice (DOJ), still allows individuals a right to sue others 
for antitrust violations.'^" 

In the past, courts were swayed by the Chicago School of antitrust 
policies,'''^'" i.e. where consumer welfare is given a prominent place in the 
evaluation of monopolistic policies. More recently scholars and courts have 
begun to take into account other important policies in antitrust issues, 
including network effects and large-scale innovation concerns [5]. 
"Innovation becomes more and more the engine that drives consumer 
welfare ... In many ways, innovation is the heart of the new economy.'"^'^ 

The courts in a putative antitrust action examine any and every 
potential restraint of trade through one of two lenses. Actions that are 
inherently anticompetitive are deemed, without further inquiries, under a 
'per se' rule, to be illegal, independent of the purported consumer benefit or 
social welfare goals.'^'' Alternatively, actions that are not inherently 
anticompetitive in their nature, but are potential antitrust violations are 
viewed under the 'rule of reason' lens, where courts weigh numerous factors 
within the context of the entire market to determine whether an antitrust 
violation has occurred. 

While the Sherman Act would seem to apply principally to businesses 
and to other for profit entities, academic institutions have recently also 
become targets of antitrust cases. Since the 1970's it has nevertheless been 
somewhat unclear as to whether the courts had set an antitrust exemption for 
academic institutions, in particular when they are not involved directly in 
commercial efforts, such as financial aid. Courts have tended to grant 
professional and academic organizations a little bit more leeway in antitrust 
issues, usually viewing any purported antitrust violation, even those 
commercial in nature, through the rule of reason lens.'^''' 



Semantic Web Standards: Legal and Social Issues and Implications 423 

4, STANDARDS & ANTITRUST 

4.1 Potential Problems 

The monopolistic powers granted to owners of intellectual property 
rights would seem to conflict with the stated goals of antitrust legislation. 
Nevertheless, the US government has come to the conclusion that 
"competition [laws] and patents are not inherently in conflict.'''"'''" Patent and 
antitrust [laws] are actually complementary, as both are aimed at 
encouraging innovation, industry, and competition." '°°^'''^' 

Thus, according to the FTC and the DOJ, patents do not necessarily 
confer monopoly power and do not unreasonably restrain or serve to 
monopolize markets. Moreover, even when it seems that a patent does confer 
monopoly power, those powers are limited by patent rules and regulation 
and, as such, antitrust laws and regulations recognize that patents can 
promote greater completion and significant gains to consumers. 

Both the FTC and the DOJ note that patents can have a detrimental effect 
on competition, and conversely, that antitrust laws can potentially 
"undermine the innovation that the patent system promotes if overzealous 
antitrust enforcement restricts the pro-competitive use of a valid patent.'""'''''' 
Of particular interest are the safe harbor provisions that allow for the 
licensing of intellectual property without the fear of antitrust implications. 
Under these provisions, the DOJ and the FTC recognize the pro-competitive 
nature of intellectual property and the licensing of that property and will, if 
necessary only analyze IP licensing under a rule of reason framework. This 
allows for the assessment of both the pro-competitive and anticompetitive 
issues before coming to any conclusions with regard to antitrust 
infringement."^ 

Standards with or without associated patents raise numerous issues at the 
intersection of antitrust and intellectual property." '̂ Standards are pro-
competitive when they promote innovation or ensure product quality, 
potentially even improving competition among competitors. 

In other situations, however, standards can illegitimately raise prices, 
facilitate collusion, restrict competition or deny membership to competitors, 
keeping them out of the market; antitrust regulators are always wary of 
multiple parties getting together in commercial settings. The following non-
exhaustive list describes possible reasons for such concerns. 
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1. Boycott: Primarily, there is a perception that all parties who have chosen 
to accept a standard will endure a de facto boycott by those other 
competitors who are disfavored by the standard.'^" 

2. Vested Interests: Abuses may occur when the standards are devised in 
line with vested interests of a few of the participants, at the expense of 
the public, especially when the standards go beyond the needs of 
interoperability.'^'" 

3. Coordinated Monopolies: Standards can serve to reduce the 
differentiation between competing products which might further facilitate 
and promote coordinated behaviors that would raise antitrust concerns.'^''' 

4. Consumer Deprivation: Consumers may be deprived of innovation that 
would have occurred had the particular standard not been accepted 

5. Consumer Welfare: Consumer welfare may suffer through the sole 
incorporation of open standards at the expense of closed standards. Teece 
and Sherry note that, in terms of overall economic efficiency, royalty 
payments by members of a standard to an owner of intellectual property 
associated with the standard is a transfer payment that represents no net 
cost to society.'^'' 

6. Consumer Manipulation: Consortia can manipulate consumers into 
accepting a standard that hinders innovation in a market that might 
otherwise progress faster via 'leapfrogging innovation."'^''' The end result 
would be the creation of monopolistic powers. It is also possible that the 
existence of monopolistic powers can hinder innovation before it can 
occur. In both cases, however, consumers are forced to accept particular 
standards in the face of alternatives: The costs associated with 
abandoning one technology in addition to the uncertainty that others will 
also choose the alternative technology and make leaving one standard a 
very costly ordeal for any one consumer.'̂ ^" 

7. Innovation Deterrent: Individual innovating firms are deterred from 
pursuing some avenues that may not gain industry-wide approval.''̂ ^"' 

8. Anti-Competitive Licensing: There is also the potential for anti
competitive licensing agreements: either restricting the use of the 
technology or imposing significant royalties on other users.''̂ ''' 

9. Commercial Advantage: There is a fear of potential unfair commercial 
advantages and windfalls by individual members of a standards body 
fraudulently manipulating the standard setting process.^ Members can 
gain unfair windfalls either passively, through non-disclosure of a 
relevant patent, or actively, through lobbying for the acceptance of the 
relevant patent; and then, when the patent is incorporated into the 
standard, demanding a royalty from all adopters of the standard. While 
many would argue that the potential for a patent holder to do this might 
act as an incentive to have open standards, especially given the 
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impossibility of actual finding such a patent.̂ ^ An alternative view is to 
claim that the more patents associated with a standard the less bargaining 
power is held within the hands of each individual patent holder.^" 

Only one appellate court has found the refiisal to license a patent to be an 
antitrust violation.̂ "^ 

Given their uncertainty within the skein of antitrust law, many standard 
setting bodies have vague and wide ranging rules relating to intellectual 
property to avoid antitrust liabilities.^''' While some antitrust issues are 
minimized through the usage of vague rules, such rules raise the alternative 
potential of litigation surrounding the exact interpretation of the rules. Thus, 
many standard setting bodies are faced with a Hobbesian Choice of either 
implementing strong and clear rules relating to the licensing of patentŝ "" and 
risk antitrust issues, or leave their policies vague and run the risk of litigation 
among the members of the group.*''' 

4.2 Academia and Antitrust 

At first glance it would seem that the Sherman Act is designed for 
policing commercial entities,*''" and that some entities or actions, particularly 
those related to academia lack a "sufficiently commercial character to 
warrant regulation."*''"' 

The courts have more recently applied antitrust laws against parties that 
mix educational and/or not-for-profit components with business.*''' 
Nevertheless, the Supreme Court, in a footnote has noted that:*"" "The public 
service aspect, and other features of the professions, may require that a 
particular practice, which could properly be viewed as a violation of the 
Sherman Act in another context, be treated differently."*'" 

This aforementioned footnote*'"' has been used on multiple occasions to 
limit antitrust decisions against non-profits and educational institutions.*'"" 
The judicial system has also, in the past, been somewhat deferential to 
doctors and professional defendants in antitrust suits.*""' (Outside of busting 
MD medical cartels. *"") Most challenges to particular practices of the 
medical community have been unsuccessful. But the courts have been 
adamant in asserting that an antitrust claim revolves around the impact of a 
competitive decision made by a party, independent of any non-economic 
benefits that may accrue from the infringing action. Recent cases highlight 
the DOJ ambivalence towards academic institutions within the realm of 
antitrust*""' 
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4,3 University Research Labs - Commerce or Not? 

Although the courts have been reluctant to see academia as falling under 
antitrust regulations, this might change. Research labs are changing to seem 
more like than unlike commercial labs. '̂'''" Jennifer Washburn [10] and Derek 
Bok [11], among others, note how universities are becoming more 
intertwined with large corporations. There are growing concerns that this 
commercialization of academia has resulted in publications delays or data 
that is kept secret or altered to satisfy corporate backers or patent law 
regulations ("data withholding is common in biomedical science" [12]). 

Thus, overall, it is important to discern where academic science sits in 
the eyes of public opinion and by extension, the DOJ and FTC.̂ ''''*" Neither 
the courts nor the administrative agencies have promulgated any particular 
rules with regard to academia. Even without complete certainty to 
academia's place in antitrust, it is important to recognize that academia may 
no longer be immune to antirust actions resulting from standards created by 
academic members of standard setting organization. Given that their actions 
will most probably have effects on commerce and they may even have 
business interests as their primary goal, how would the government deal 
with a mixed group of academic researchers and industry members within a 
standard setting organization? Will there be a necessary minimum number of 
industry members before the standard setting organization is deemed 
commercial? Can industry funded research even be termed academic or non
profit? 

It is clear from our analysis that the proliferation of standard setting 
bodies within science will continue as more diverse data is created and the 
need for interoperability grows. The advent of standard setting for the 
emerging Semantic Web provides yet another opportunity to test the antitrust 
waters, i.e. whether standard setting aids or hinders competition. 

What remains unclear from this analysis is the effect of the law and 
judicial doctrine on academic standard setting bodies that may create 
standards involving intellectual property owned by a member or non-
member of the body. 

There is endemic confusion, lack of direction and no clear consensus [2]. 
It remains unclear to as to how the DOJ and the FTC will view academic 
standard setting bodies whose primary goal is academic advancement, but, 
given the present shift to an intellectual property aware society, who will 
also have a secondary goal of IP ownership and potential royalties and 
profits. 

This uncertainty is not good. More so than most industries, academia is 
very risk averse. Clarity in both rules for standard setting organizations is 
needed, as well as clarity with regard to the relevant antitrust agencies.̂ ''̂ '' 
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The agencies charged with enforcing antitrust need to be explicit as to their 
position in relation to academic standard setting bodies. 

5. POLICY CONSIDERATIONS 

What is needed for academia, in light of its participation in the 
establishment of the Semantic Web, is consistency among all the relevant 
standard setting bodies.^'" Academics, more than lacking the time, tend to 
lack the will to involve themselves in subject matter that is deemed outside 
the scope of their research. It is very important that the Semantic Web's 
standard setting rules and regulations regarding intellectual property be 
straightforward and consistent. Academics are also unaware of the antirust 
issues, issues that are relevant both for their own patent portfolios as well as 
for those of their institutions. 

Given the growing number of patents within the academic community, 
primarily in the sciences, it is important that the Semantic Web standard 
setting bodies allow for standards to contain intellectual property. Because 
getting it right the first time is a key component of a successful standard, 
there ought to be no limitations on the IP status of the standard. Moreover, it 
is often important that someone own the standard as it prevents 
fragmentation and ftiture interoperability issues (see, e.g., [13]). 

That said, there should be clear compulsory licensing provisions built 
into each standard setting body's rules. These licenses should be enforced 
independent of whether the patent holder knew of their intellectual property 
rights at the time of infringement, and independently of whether they 
disclose it or not. A requirement for membership ought to be the total 
willingness to abide by compulsory licensing for any and all of their 
intellectual property. Those who do not abide by these rules might be 
appropriately ostracized by their scientific community. 

Standards do not have to be voluntary in nature. It may be more efficient 
for the government to impose the standards. This could be through the 
National Institutes of Health or the National Science Foundation. As the 
primary granting agencies in the country they can make it a requirement for 
receiving funding, that the researcher provide their research data and results 
within the framework of an interoperability standard. The standard itself 
does not have to be devised by a government agency. In fact it may receive 
wider support if it's a grass roots rather than a grass tips sort of 
standardization process. 

Finally, standard setting bodies ought to be as clear and transparent as 
possible and the rules and regulations ought not to be technically onerous for 
the members. If the technicalities of remaining in a standard setting group 
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are too difficult to handle, there may be attrition from the group, which isn't 
good for anybody. 
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See section 3.1 for a brief introduction to the relevant patent laws. 
See section 3.2 for a brief introduction to the relevant antitrust laws. 
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"' While controversial, the purported successes of Bayh-Dole has led to its promotion and 
adoption in numerous other countries as well. Dubbed: "[p]ossibly the most inspired piece of 
legislation to be enacted in America over the past half-century." 
http://www.economist.com/science/displaystory.cfin?story_id=1476653 although since 
somewhat recanted by the Economist in Bayhing for blood or Doling out cash? (Dec 20th 
2005);http://www.economist.com/science/displayStory.cfin?story_id=5327661 Economist 
Technology Quarterly claims that "[m]ore than anything, this single policy measure help to 
reverse America's precipitous slide into industrial irrelevance. See, also: Statement of the 
Honorable F. James Sensenbrenner regarding the H. Con. Res. 319, the Bayh-Dole 
Resolution March 15, 2006. The Bayh-Dole Act transformed research and development in 
America. The technology boom that daily changes our lives arises from a combination of 
basic research, applied research, and ultimately, the commercialization of innovation. The 
passage of the Bayh-Dole Act obliged U.S. universities, hospitals and research institutions 
to invest significantly in the process of managing the intellectual property that emerges 
from research. The revenues arising from these commercial and licensing activities are all 
directed back into the university community. Anecdotal evidence has supposedly shown 
and numerous studies have attempted to prove how BayhDole has affected or distorted the 
academic mission of American universities, or how it has reallocated scarce research away 
from basic science research, or how it has turned white coated, pure hearted curious 
scientists into money grubbing corporatists. See, generally, Henry Etzkowitz, Mats Benner 
Lucia Guaranys, Anne Marie Maculan & Robert Kneller Managed Capitalism: Intellectual 
property and the rise of the entrepreneurial university in the U.S., 
Sweden, Brazil and Japan; http://www.epip.ruc.dk/Papers/Etzkovitz.pdf 

'̂  "The openness that used to characterise university life has given way to a culture akin to 
that of the business world." Jennifer Washbum, Selling Out: Shouldn't we be pleased that 
universities are inaeasingly business minded? New Scientist February 12,2005. 
See, e.g. Richard Dweck, Sifting Through the Standards Bio-IT WORLD (March 10, 2003) 
http://www.bio-itworld.com/archive/031003/horizons_standards.html 

"[ Dweck supra note v. 
"̂ Text is available at: http://www.gnu.org/copyleft/gpl.html. See, also http://gpl-

violations.org/ (regarding enforecement attempts vis-a-vis the GPL license: "In the 
situations where violations have been found and action taken enforcement has been 
successfiil. This includes out of court settlements with several large vendors and a legal 
injunction against Sitecom. We strive to resolve issues amicably. When this fails we 
resolve them through legal actions.") 

"''" Thus note that "if the standard is not objective or if its purposes are not reasonable, it can be 
found unlawfiil because it operates like a boycott in persuading customers not to purchase 
non-approved products or services. See, e.g., Wilk v. Am. Med. Ass'n, 895 F.2d 352,357-62 
(7th Cir. 1990)." Sagers infra note xlii. See also Janice M. Mueller, Patent Misuse Through 
the Capture of Industry Standards Berkeley Tech. L.J. 17, 623 (2002) C'[A]ny per se 
exclusion from patenting of technical innovation encompassed in industry standards would 
be unwise . . . More importantly, without patenting's promise of timelimited exclusionary 
control to permit recoupment of innovation costs, it is unlikely that an optimal level of 
research and development would occur . . . In the case of standards technology . . .the 
availability and quality of the standard may depend on the reward provided, or not 
provided, by intellectual property law. The first-mover advantage simply may not be 
enough . . . The development of compact disc ("CD") technology and the extensive patent 
holdings that allowed Philips and Sony to dominate the CD industry (and later, the Digital 
Versatile Disc ("DVD") market) are a powerftil example.") (citations omitted). 

^^ See, e.g. Daniel Gifford, Developing Models for a Coherent Treatment of Standard-Setting 
Issues under the Patent Copyright and Antitrust Laws, IDEA 43, 331 (2003) (noting that 
JAVA was another technology threatened by fragmentation). 

"" Id 
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'̂  See, e.g. Lemley [2], "Both the Antitrust Division of the U.S. Department of Justice 
("DOJ") and the FTC have taken the position in individual cases that an SSO rule that 
prohibits members from owning IP rights in a standard may violate the antitrust laws. And 
at least one court has found that an antitrust claim alleging that an SSO conspired to 
demand a low "reasonable" royalty rate survived a motion to dismiss. [Sony Elecs., Inc. v. 
Soundview Techs., Inc., 157 F. Supp. 2d 172, 183 (D. Conn. 2001).]" (Citing in re 
American Society of Sanitary Engineering, 106 F.T.C. 324, 329 (1985), "wherein the FTC 
entered into a consent decree with the American Society of Sanitary Engineering that 
forbade it from rejecting proposed standards solely on the grounds that they were 
patented.") 

''" Curran supra note ix. 
"^^ Farber[7]. 
'̂ '̂  RFID is "rumored to implicate over four thousand" patents. Lichtman, Douglas Gary, 

"Patent Holdouts and the Standard-Setting Process" U Chicago Law and Economics, Olin 
Working Paper No. 292, (May 16, 2006) http://ssm.com/abstract=902646 See, also Teece, 
David and Edward Sherry, Symposium: The Interface Between Intellectual Property Law 
and Antitrust Law: Standards Setting and Antitrust, Minn L. Rev. 87,1913 (2003) 

'̂ ^ For an excellent and clear read on this, see: Albert-Laszlo Barabasi Linked: How Everything 
Is Connected to Everything Else and What It Means, (Perseus Books Group, Cambridge, 
2002). See for a more technical explanation: Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein 
M. Genomic Analysis Of Essentiality Within Protein Networks, Trends Genet. 20, 227 
(2004). 

^"^ See, generally, Alvis Brazma, Maria Krestyaninova and Ugis Sarkans, Standards for 
Systems Biology, Nature Reviews Genetics 7, 593-605 (August 2006): 
http://www.nature.com/nrg/joumal/v7/n8/full/nrgl922.html, for a discussion of some 
science standard bodies in systems biology, including: MIAME: Minimum Information 
About a Microarray Experiment (mged.org); The Life Sciences Research group (a 
consortium of pharmaceutical companies, academic institutions, software vendors and 
hardware vendors within the Object Management Group (OMG)) 
http://www.omg.org/lsr/index.html; and. Gene Ontology Ashbumer, M. et al. Gene 
Ontology: a tool for the unification of biology. Nature Genet. 25,25-29 (2000); 
Teece and Sherry Supra note xiv at 1931-1932. 
Id at 642 
Article I, Section 8, US Constitution: "To promote the Progress of Science and usefiil Arts, by 
securing for limited Times to Authors and Inventors the exclusive Right to their respective 
Writings and Discoveries" 
Although European intellectual property rights are predicated on a 'natural right' the droit 
d'auteur it would seem that the majority of jurists view American intellectual property from 
the standpoint of the first, utilitarian theory, that is it is thought of as a distinct and limited 
bundle of rights granted by the Constitution for the purpose of promoting science and the 
arts, in the best interests of the general public. 
Although see, "The European Commission has taken a decision ordering IMS HEALTH 
(IMS), the world leader in data collection on pharmaceutical sales and prescriptions, to 
licence its "1860 brick structure . . . a national standard in the German pharmaceutical 
industry ... IMS's refijsal to licence it and derived structures has led the pharmaceutical 
industry in Germany to be economically locked-in to the brick structure and to foreclosing 
of the market to competition. The Commission has ruled that the 1860 brick structure, 
which is covered by copyright, must be licensed on commercial terms.. .The Commission has 
granted interim measures ordering IMS to license the use of the 1860 brick structure to its 
current competitors on non-discriminatory, commercially reasonable terms. The royalties to 
be paid to IMS will be agreed by IMS and the party requesting a licence, or in case of 
disagreement, will be determined by independent experts on the basis of transparent and 
objective criteria." Commission imposes interim measures on IMS HEALTH in Germany 
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(July 3,2001): http://www.cptech.org/ip/health/cl/cl-eu.html. 
'^' Even then, there is no official definition of what a software patent is in the United States, 

the major software patenting country. Robert M. Hunt & James Bessen, Working Paper No. 
03-17/R: An Empirical Look at Software Patents (2004) 
http://www.researchoninnovation.org/swpat.pdf 
On the other hand, the position of the UK Patent office is that "patents are for technological 
innovations. Software should not be patentable where there is no technological innovation, 
and technological innovations should not cease to be patentable merely because the 
innovation lies in software." UK Patent Office, Should Patents be Granted for Computer 
Software or Ways of Doing Business?: The Government's Conclusions (Mar. 2001) 
http://www.patent.gov.uk/about/consultations/conclusions.htm. 

'™" For example, the European Patent office, on the basis of Article 52, has patented over 
30,000 software related products. Robert Bray, The European Union "Software Patents" 
Directive: What Is It? Why Is It? Where Are We Now?, Duke L & Tech Rev. 2005,11 
(2005). 

^^ Id. (noting the open source movement and UNIX as two examples that did not rely on 
patent protection). Apache, BIND, Linux, Mozilla, Perl, and Sendmail are other common 
examples. Marcus Maher, Open Source Software: The Success of an Alternative 
Intellectual Property Incentive Paradigm, Fordham Intell Prop. Media & Ent. L J. 10,619 
(2000). Note, however, that many soflAvare companies rely instead on trade secret to protect 
their software. Also note that open source software is inherently revenue unfi'iendly, and its 
proponents often do not represent the mainstream software innovator. "This revenue-
unfiiendly model is Utopian in its design." See, e.g John Carroll, Proprietary software: A 
defense, 16:35 Pec. 16,2003) zdnet.com. 

'"^ See generally Hunt, supra note xxvi, at 14. 
"^^^ See, e.g.. Statement by Georg C.F. Greve, United Nations World Summit On The 

Information Society, Patents, Copyrights And Trademarks (PCT) Working Group Of Civil 
Society, At The Third Inter-Sessional, Inter-Governmental Meeting On A Development 
Agenda For WIPO (Geneva, 20-22 July 2005) (citing numerous studies that "show that 
software is an area in which patents are harmfiil: they stifle innovation and pose a 
significant threat to competition"). See also Carroll, "R&D was actually REDUCED in the 
presence of a vibrant software patent system." (emphasis in the original). 

'̂ ^" There is a general fear, though, in developing nations that off the shelf software 
applications that are protected by patent law will develop proprietary systems "where secret 
protocols and file formats make it hard to move to a competing solution." If the software 
was un-patentable and open source software was promoted this may not be the case. See 
John Carroll, supra note xxiv. 

xxvui j ^ Promote Innovation: The Proper Balance of Competition and Patent Law and Policy A 
Report by the Federal Trade Commission, 10, October 2003. xxix 15 United States Code §1 
(emphasis added). 

' ^ Id The Supreme Court in United States v. Grirmell Corp., 384 U.S. 563, 571 (1966) notes 
that under §2 there has to be a defmitive intent to monopolize; and that "the willftil 
acquisition or maintenance of that power [is] distinguished fi-om growth or development as a 
consequence of a superior product, business acumen, or historic accident." 

'''"' Balto & Wolman supra note xxiv. 
"^l 15 u s e §15. 
''^" The Chicago school of antitrust thinking is presentiy lead by proponents such as Judges 

Bork and Posner. 
^^^^ Michael J. Mandel, Mike France & Dan Carney, The Great Antitrust Debate Focus on 

innovation? Or stick to pricing issues? The outcome is critical. Business Week (June 25, 
2000) http://www.businessweek.coni/2000/00_26/b3687080.htm, citing the Federal Trade 
Commission Chairman, Robert Pitofsky. 
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^^^ The contrasting idea of a per se legal use of monopoly power was established by the 
Supreme Court ruling in United States v Colgate & Co. wherein the court found that some 
actions such as terminating retailers that failed to adhere to suggested pricing was per se 
legal, and setting the stage to allow further courts to find other potential antitrust violations as 
per se legal. 250 U.S. 300 (1919). 

"^"^ See, e.g. United States v. Brown University, 5 F.3d. 658 (3'"^ Cir. 1993). See also. National 
Society for Professional Engineers V. United States, 435 U.S. 679 (1978). 

'^^^ "Intellectual property is thus neither particularly fi-ee fi-om scrutiny under the antitrust laws, 
nor particularly suspect under them." U.S. Department of Justice and Federal Trade Comm'n, 
Antitrust Guidelines for the Licensing of Intellectual Property, (April 6, 1995): 
http://www.usdoj.gov/atr/public/guidelines/ipguide.pdf. 

'^^"' Federal Trade Commission and US Department of Justice compiled in the Report: To 
Promote Innovation: The Proper Balance of Competition and Patent Law and Policy A 
Report by the Federal Trade Commission October 2003 

xxxix j ^ 

^ Giflford supra note ix 
"^^ Although see, e.g. Schachar v. Am. Acad of Ophthalmology, Inc., 870 F.2d 397 (7th Cir. 

1989) ("when a trade association provides information (there, gives a seal of approval) but 
does not constrain others to follow its recommendations, it does not violate the antitrust 
laws."). 

"^^ Allied Tube & Conduit Corp. v. Indian Head Inc., 486 U.S. 492 (1988). The conduct of 
manufacturers of steel electrical conduit, and other interested parties, in attempting to 
influence a private fire protection association's promulgation of electrical systems product 
standards so as to prevent the recognition of plastic conduit as an acceptable alternative to 
steel conduit~by agreeing among themselves to recruit numerous individuals to join the 
association and vote as a bloc against a proposal to include plastic conduit in the standards-
is not immune fi"om federal antitrust liability. See, generally, Christopher L. Sagers, Antitrust 
Immunity And Standard Settmg Organizations: A Case Study In The Public-Private 
Disfinction, Cardozo L Rev. 25, 1393 (2004). 
Gifford Supra note ix citing Radiant Burners v Peoples Gas Light & Coke Co,. 
Douglas Leeds Raising The Standard: Antitrust Scrutiny of Standard-Setting Consortia in 
High Technology Industries, Fordham Intell Prop. Media & Ent. LJ. 7,641 (1997). 
Teece and Sherry supra note 20. 
Id. 
Id. Citing the QWERTY keyboard standard. 
Gifford Supra note ix. 
Id Note however that "A unilateral, unconditional refiisal to license a valid patent cannot, by 
itself result in antitrust liability under U.S. law." R. Hewitt Pate, Competition And Intellectual 
Property In The U.S.: Licensing Freedom And The Limits Of Antitrust, Presented at the 
2005 EU Competition Workshop, Florence, Italy, June 3,2005. 

1 E.g. Rambus, Inc. v. Infineon Techs., ^G, 318 F.3d 1081 (Fed. Cir. 2003). 
'' For example, under the Judicial Doctrine of Equivalence the scope of the claim, i.e., the area 

that the patent covers, can be extended to concepts not specifically covered in the patent's 
claim, but yet deemed equivalent. Thus, until a patent is litigated and the doctrine of 
equivalence is applied, it is nearly impossible to determine exactly what is covered by the 
patent. 

'" See, e.g. Lichtman supra note xiv. 
'"' Technical Serv. Eastman Kodak, 125 F3d 1195 (9^ Cir. 1997). Contra, see, Verizon 

Communications Inc. v. Law Offices of Curtis V. Trinko, LLP, 540 U.S. 398 (2004) (not 
requiring Verizon to deal with its competitors). 

•'" Lemley [2]. 
'̂  Antitrust enforcement agencies tend not to bring antitrust actions against players who lack 

restrictive licensing arrangements and will often demand those consortia suspected of 
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antitrust violations to create rules that require non-restrictive and non-exclusive licensing 
arraignments. Leeds infra note xliv. 

'"• Curran [5]. 
Marjorie Webster Junior College, Inc. v. Middle States Association of Colleges and 
Secondary Schools, Inc 432 F.2d 650,654 (DC Cir. 1970) "the proscriptions of the Sherman 
Act were "tailored . . . for the business world, "not for the noncommercial aspects of the 
liberal arts and the learned professions. In these contexts, an incidental restraint of trade, 
absent an intent or purpose to affect the commercial aspects of the profession, is not sufficient 
to warrant application of the antitrust laws." 
Nelson O. Fitts, A Critique Of Noncommercial Justifications For Sherman Act violations 
Colum. L Rev. 99,485-87 (1999) (citing legislative history to show congressional intent to not 
include all actions or entities as actionable under the Shemian Act). 

lix United States v. Brown University, 5 F.3d 658 (3rd Cir. 1993). 
Although, the court in Brown notes that when non-profits "perform acts that are the 
antithesis of commercial activity, they are immune from antitrust regulation." Brown at 665 
noting also that the immunity granted to these organizations is "narrowly circumscribed" as 
it will not be extended to 'public-service aspects' of commercial transactions. Brown at 666 
Therefore: when there is an exchange of money for services "even by a nonprofit 
organization, is a quintessential commercial transaction." Id. 
Goldfarbv. Virginia State Bar. All US 773,788 (1975). 
a self described piece of dictum: "We intimate no view on any other situation than the one with 
which we are confronted today" Id. 
Note that in some instances, when the court cites this footnote it may actually leave out the line 
assigning it to dictum. See, e.g. Brown at 671. 
California Dental Ass'nv. FTC, 526 US 756 (1999). 
See, e.g. Furrow BR Greaney TL, Johnson SH, Jost TS, Schwartz RL, Health Law (West 
Group, St. Paul Minn. 2000). 
National Society of Professional Engineers v United States, 435 US 679 (1978), United 
States V Brown University 5 F.3d 658 (3̂ ^ Cir. 1993) Jung v Association of American Medical 
College 2005 U.S. App. LEXIS 12685 (2005) is as of yet unresolved. 
See, e.g. David Baltimore On Doing Science in the Modern World The Tanner Lectures on 
Human Values Delivered at Clare Hall, Cambridge University, March 9, 10. 1992. 
"Science [...] has gone from being the province of gentiemen to being a central force of 
society; from a financially marginal part of governmental outiays to a significant one; from a 
minimal part of the academic enterprise to a dominant one." 
See, e.g. comments by Jennifer Washburn supra note iv: "If we want to rein in the 
commercialism that is destroying our public research institutions, they must all be held to 
the same high standards." 
Unfortunately it would seem that the FTC will continue to be somewhat of a maverick and 
unpredictable in its application of antitrust claims. 
See, e.g. Lemley [2]. ("What is most striking about the data is the significant variation in 
policies among the different SSO's ... TTiere was greater variation, however, with 
respect to what must be disclosed. . . . [and even though] many SSOs . . .required [IP 
owners] to license their rights on reasonable and nondiscriminatory terms, it isn't clear what 
those obligations mean in practice.") 

Ixii 

Ixiv 

Ixv 

Ixix 



Index 

Abox, 209 

Abstract syntax, 5, 163, 166, 167, 173, 

178,220 

Accuracy, 66, 75, 139, 148, 150, 322, 

334,407 

Adaptability, 399, 401, 408 

Adoption, 399 

Agents, 2, 7, 36, 58, 76, 161, 329, 341, 

342, 343, 344, 345, 346, 347, 348, 

349,350,351,352,353 

agent communication language, 350 

intelligent, 160,341,343 

multiagent, 341, 342, 343, 345, 346, 

347, 349, 350 

Ambiguity, 13, 65, 80, 88, 93, 103, 110, 

146, 149 

Annotation, 34, 37, 58, 66, 79, 98, 155, 

340, 346, 367, 385, 395 

functional, 14, 21, 55, 58, 77, 78, 229, 

346 

pipeline,58, 59, 60,61,66, 73 

properties, 217 

semantic, 327, 329, 377, 382 

web, 367 

Antitrust, 413, 421,423,425, 428,429, 

430,431,432 

Architecture, 7, 136, 169, 200, 232, 240, 

242, 243,253, 254, 257, 263,264, 

265, 336, 340, 344, 347, 349, 369, 

370, 372, 385, 386, 393, 395 

ASN. 1,403 

Axiom, 208, 213, 215, 216, 240, 241, 

268, 269 

B 
Bayh Dole, 414 

Bemers-Lee, 28, 29, 159, 179, 202, 203, 

277,345,353,393,413,416 

Binding Template, 324, 325 

BioCreAtlvE, 61, 62, 65, 66, 67, 76, 79, 

80,97,145,150,154 

Bioinformatics, xx, 2, 3, 7, 16, 29, 31, 32, 

33, 50, 55, 58, 64, 72, 76, 77, 78, 81, 

85,97,98,99,101,157,226,227, 

228, 230,233, 238, 244, 245,246, 

247, 279,318, 320, 321, 322, 340, 

341, 342, 344, 345, 346, 347,349, 

350,351,352,353,354,355,356, 

361, 363,365, 371, 372, 374, 375, 

393,413,415 



436 Revolutionizing Knowledge Discovery in the Life Sciences 

Biology 

cell biology, 42, 46, 62, 66, 91, 130, 

131, 151, 226, 228, 231, 240, 273, 

350 

molecular biology, 11, 12, 33, 54, 79, 

97,98, 154,226,350,374 

systems biology, 30, 85, 87, 91, 97, 

99,113,247,350,353,358,430 

Biomedical Glycomics, 317, 320, 326 

BioMoby,319,336,338 

BLAST, 228, 229, 247, 318, 346, 349, 

360, 362, 364, 374, 375, 376, 380, 

382, 393 

Business 

entity data model, 323 

object models, 250 

rules management server, 250 

service data model, 324 

Class 

descriptions, 167, 225, 234, 237, 245 

hierarchy, 170, 209, 210, 211, 218, 

335,373,378 

overlapping, 128 

sub-class, 40, 127, 164, 165 

UML diagrams, 172, 179 

Classification, 1, 6, 62, 64, 66, 77, 107, 

113,134, 144,147,154, 156, 157, 

168, 170, 171, 206, 225, 228, 229, 

230, 232, 234,237,238, 239, 240, 

241, 242, 243, 244,245, 246, 264, 

265, 269, 276, 324, 327, 378 

Clinical 

decision support, 113, 118, 249, 251, 

255, 263, 264, 265, 266, 267, 270, 

275, 276, 277 

information, 102 

phenotypes, compositionality, 109, 

116 

Closed-world, 193, 235, 236 

CombeChem, 368, 392 

Commerce, 98, 323, 421, 426 

Community, 2, 4, 8, 11, 26, 30, 85, 92, 

93, 95, 97, 109, 118, 153, 160, 228, 

230, 238, 240, 246, 338, 343, 345, 

349, 350, 351, 355, 357, 362, 365, 

366, 367, 388, 391, 392, 399, 401, 

418,425,427,429 

Completeness, 5, 140, 143, 152, 205, 206, 

218,236 

Complexity, 26, 101, 102, 109, 110, 128, 

140, 143, 153, 162, 163, 181, 182, 

191, 195, 200, 208, 209, 211, 218, 

226, 269, 318, 347, 350, 352, 356, 389 

Conceptual graphs, 212 

Conceptual schema, 170, 171 

Consumer, 389, 417,419, 422, 424 

Controlled vocabulary, 86, 88, 90, 91, 97, 

122, 128, 323, 378, 382 

Coreference resolution, 289, 304 

Cost, 18, 36, 54, 56, 68, 71, 75, 76, 77, 

141, 258, 277, 399, 401, 408, 420,424 

Curation, 64, 65, 75, 353 

Currency, 56 

D 
DAML+OIL, 158, 161, 162, 178, 180, 

206, 219, 395 

Data 

and process models, 250, 272 

integration, 15, 32, 51, 97, 116, 154, 

158,219,249, 256, 257, 346, 394 

model, 13, 15, 26, 88, 109, 110, 122, 

123, 272,273, 274, 275, 324, 325, 

326,367,377,379,383 

warehouse, 3, 11, 14, 15, 18, 21, 25, 

258 

Web, 367 

Datatype, 164, 167, 173, 174, 175, 216, 

235, 268,272 

property, 164, 167,216,235 



Index 437 

Decidability, 17, 143, 161, 162, 181, 182, 

206 

Declarative programming, 31, 51 

Department of Justice, 422, 430, 432 

Description Logics, 17, 30, 159, 161, 162, 

167,176,179,180,181,182,248, 

282, 394 

Development tools, 406 

Diagnostic and Statistical Manual of 

Mental Disorders, 4th Edition (DSM-

IV), 107 

Directed Acyclic Graph (DAG), 105, 106 

Disambiguation, 148, 317, 333 

Distributed, 29, 115, 317, 341, 353, 393 

architecture, 351 

computing, 343, 352 

data, 7, 367 

ontologies, 175 

problem solving, 344, 351 

services, 357 

simulations, 350 

DL 

see also Description Logics, 5, 6, 17, 

154, 161, 162, 163, 167, 168, 169, 

170, 172, 173, 174, 175, 178, 180, 

181, 205, 206, 208, 209, 211, 212, 

215, 216, 218, 225, 226, 233, 235, 

236, 237, 378 

visualization, 211 

DLG2, 5, 185, 187, 192, 193, 194, 195, 

196,197,198,199,200,201,203 

DNA, 148, 226, 227, 273, 357, 358, 376, 

377 

Domain 

context, 123, 131 

keywords, 317, 331, 332,333, 335, 

337,338 

requirements, 144 

Drug 

discovery, 53, 55, 67, 68, 70, 72, 75 

E 
Ease, 401, 405 
EcoCyc, 60, 79 
Ecosystem Services Database (ESD), 217 

Entity, 1, 13, 14, 53, 56, 65, 68, 69, 75, 

76, 103, 123, 134, 145, 147, 149, 189, 

191, 289,297, 323, 334, 336, 337, 

373, 382, 384 

normalization, 149,289, 297 

Enzyme, 17, 91, 236, 237,240,285 

e-Science, 318, 319, 336, 339, 355, 357, 

369,392,393,394,413,416 

Experiment, 125,361,362, 363, 365, 

367, 369,379, 380, 382, 385,430 

web, 361, 362, 363, 367 

Expressivity, 143 

ezOWL,210 

Family History, 250, 259, 273 

Fanfare, 399,401,408 

Fate of 

a technology, 400 

computational technology, 399 

Federal Trade Commission, 421, 422, 

431,432 

Federated database, 14, 15, 21, 26 

FIPA, 344, 346, 350 

First-order logic, 141 

FlyBase, 64 

F-measure, 65 

Folksonomy, 393 

Friction, 399, 400, 401 

f-SWRL, 175, 176, 181 

GATE, 286, 300, 301 

Gazetteer, 301, 302 

Gene 



438 Revolutionizing Knowledge Discovery in the Life Sciences 

gene expression, 11, 12, 20, 21, 28, 29, 

64,70,81,92, 113,347,348,350, 

418 

Gene Ontology (GO), 29, 33, 34, 37, 51, 

78,80,85,86, 112, 117, 119, 136, 

185, 186, 187, 188, 199, 200, 247, 324 

Genetic Variants, 249 

Genetics, 29, 226, 428 

Genomics 

functional, 95, 115, 123, 133, 136, 358 

genome, 6, 18, 30, 58, 61, 63, 65, 77, 

78,79, 101, 113, 119,225,228, 

231, 232, 239, 242, 243, 245, 246, 

247,248,259,278,382 

pharmacogenomics, 54 

Genotype, 112, 118,255,358 

GMOD (Generic Model Organism 

Database), 63 

GOA (GO Annotation), 66 

Gold standard, 113,146, 151 

GONG, 147 

Google, 219, 334, 391 

GPL, 417, 429 

Granularity, 14, 62, 109, 110, 111, 140, 

269,270,274,275,331,332 

Graphical coding, 212 

Grounding, 194, 290, 292, 297, 303, 304 

GrOWL, 5, 190, 191, 202, 205, 206, 207, 

210,211,212,213,214,216,217, 

218,219 

visualization model, 206,207, 212, 

213,214,216,218 

H 

Hierarchy, 26, 34, 88, 92, 126, 134, 135, 

142, 145, 168, 170, 209, 216, 234, 

329,335,345,374 

html, 13,45, 47, 65, 73, 99, 116, 119, 

137,160, 179, 181,202,203,219, 

220,236, 278, 339, 395, 415, 429, 

430,431 

Hypertrophic Cardiomyopathy, 249 

IGF, 150, 156 

Impetus 

objective, 400 

subjective, 400, 401 

In silico 

experiments, 245, 336, 356, 357, 365, 

368, 370, 378, 388 

Inference, 6, 26, 66,123, 132, 136, 141, 

142, 143, 144, 148, 150, 169, 178, 

225, 233,234, 236, 249, 255, 267, 

272, 275, 277 

Information 

extraction, 79, 97, 150 

retrieval, 98 

visualization, 205, 207, 208, 220 

In-silico, 119,318,320 

Instance, 41, 87, 89, 91, 92, 93, 95, 96, 

122, 128, 129, 131, 132, 142, 143, 

164, 166, 168, 171, 175, 189, 191, 

192, 193, 194, 195, 196, 197, 199, 

200, 201, 208, 214, 215, 234, 235, 

237, 238,239, 241, 252, 265, 267, 

270, 274, 276, 327, 378, 414, 416, 417 

checking, 168 

Store, 239, 241, 248 

Integration, 1, 2, 3, 11, 13, 14, 17, 19, 24, 

30, 31, 36, 49, 53, 54, 57, 70, 72, 77, 

85,87,91,93,95,96,97,108,109, 

110,111,112,113, 114, 117,136, 

140,154,158,162,163,181,246, 

247, 249,251, 254, 256, 257, 258, 

261, 262, 263, 264, 275, 319, 320, 

321, 323, 326, 327, 338, 347, 348, 

353,356,357,366,367,415 

Capability Maturity Model, 152, 154 

clinical and genomic databases, 111 

data, 15, 18, 25, 26, 31, 33, 48, 50, 57, 

92,101,150,249,251,256,257, 



Index 439 

258, 261, 262, 275, 277, 279, 346, 

347,352,384,394,416 

database, 2, 3, 14,29, 116 

layer, 356 

literature, 9 

ofphenotypes. 111 

ontology, 93 

terminologies, 108 

warehouse, 15 

with Natural Language Processing, 

112 

Intellectual property, 413,428, 430,431, 

432 

Interaction protocols, 344, 349, 350, 351, 

352 

Inter-annotator agreement, 144 

Interoperability, 2, 13, 75, 85, 93, 194, 

344,350,413,414,415,416,419, 

420,424, 426, 427 

Interpretation, 8, 12, 55, 60, 73, 133, 167, 

168, 193, 194,230, 231, 245, 274, 

323,360, 364, 368, 390, 391, 416, 425 

Intrinsic property, 122 

is_a,40,43,44, 146, 150 

IsaViz, 190,202,210,211,220 

Isotopic distribution, 330, 331, 332 

JAPE, 286, 301, 302, 303 

Java, 31, 36,40, 47,48,49, 51, 193, 213, 

278, 357, 376 

JavaScript, 22, 217 

Jena, 278, 296, 299, 300, 308, 375, 386 

K 

KEGG, 60, 76, 79,263, 278 

Killer app, 409 

Knowledge 

base,36,68,88,94, 116, 118, 143, 

148,161,208,209,212,213,216, 

219, 233, 253, 255, 256, 264, 329, 

378 

maintenance and provenance, 249, 

251,256 

representation, 2, 3,4, 5, 6, 7, 16, 17, 

87,88,99,102,109,136,141,161, 

174,202,217,233,275,350 

Ligand, 70 

LinkHub, 3, 11, 17, 21, 22,23, 24, 25 

Logic programming, 31, 48, 142 

Logical Observation Identifiers Names 

and Codes (LOINC), 107 

LSID, 27, 355, 383, 385, 386, 387 

M 

Mapping technique, 333 

Mediator, 15 

Medline, 37, 38, 70, 80 

Metadata, 152, 158, 179, 203, 355, 394 

authoritative, 194,200 

METEOR-S project, 328 

Microarray, 11, 12, 13, 29, 73, 92, 113, 

121, 123, 124, 125, 127, 130, 131, 

273, 347, 366 

MINT, 61,79 

Model 

data, 13, 15,26, 88, 109, 110, 122, 

123,272,273, 274,275, 324, 325, 

326, 367, 377, 379, 383 

object, 172,264, 265,266, 267, 343 

organism, 53, 55, 61, 63, 64, 67, 72, 

73,109,111, 113,374 

reference, 123,125, 133, 135 

visualization, 5, 205, 207, 208, 212, 

216,218 

Modeling, 203, 247, 274, 327, 339, 340, 

395 

Molecular Diagnostic Tests, 249 

Monohierarchy, 105, 106 



440 Revolutionizing Knowledge Discovery in the Life Sciences 

Multiple inheritance, 91, 125, 128, 130, 

189,209 

Mutation detection, 299 

Mutation Miner, 286, 293, 295, 299, 302 

my Experiment, 365, 370, 385 

myGrid, 7, 246, 319, 320, 325, 336, 338, 

347,354,355,357,358,362,366, 

367, 368, 369, 370, 371, 372, 373, 

376, 379, 382, 383, 386, 388, 389, 

390, 392, 393 

N 

Named entity 

detection, 288, 302 

Naming convention, 134 

National Centre for Biomedical 

Ontology, 123 

Natural language, 2, 53, 68, 112, 116, 

118,136,141,148,151, 157, 186, 

192,270,281 

processing, 2, 53, 68, 112, 116, 118, 

136,148,281 

Navigation technique, 188, 189, 191,200, 

210 

Network effects, 418, 419, 422 

Normalization, 147, 303, 304 

o 
Object 

oriented, 193,210 

property, 164, 167, 193, 216, 235, 236, 

294 

OIL, 161, 162, 163, 180,395 

Online Mendelian Inheritance in Man 

(OMIM), 118 

OntolQ, 236, 283 

Ontological NLP, 309, 310 

Ontology 

accrediatation, 152 

alignment, 85, 95, 96, 146, 155, 175 

anatomy, 91, 95 

as NLP resource, 284 

Basic Formal Ontology, 329 

biomedical, 26, 125, 156 

BioPAX, 17,91,97,99, 147 

camera, 208, 218 

clinical, 101, 102, 104, 105, 106, 112 

consistency, 168 

core, 33, 130 

Definition Metamodel ODM, 172, 211 

design,4, 121, 123, 125,200,281, 

291,293,301 

development, 4, 5, 75, 85, 90, 93, 96, 

122, 123, 124, 125, 130, 141, 144, 

153,185,188,203,217,378 

domain, 123, 133,257, 258, 337, 382 

engineering, 4, 5, 85, 86, 87, 88, 93, 

94, 122, 133, 139, 144, 152, 185, 

192 

entailment, 162 

evaluation, 5, 93, 121, 125, 139, 140, 

141,143,144, 145,148, 151,153, 

154, 155, 156, 157 

EXPO, 123, 133, 134, 135, 136, 388 

exporting, 307 

FMA, 130, 134, 147 

formal, 103, 156 

FuGO, 123, 130, 133, 135, 137 

FungalWeb, 17, 88, 217, 236, 248, 287 

Gene Ontology see also Gene 

Ontology (GO), 5, 12, 14, 16, 21, 

29,31,33,34,35,37,39,40,42, 

43,44,45,49,51,64,73,78,79, 

81,85,86,97,98,107,109,112, 

117,118,128,145,147,149,150, 

153,155,156,157,158,230,247, 

324, 339, 346, 363, 366, 393, 430 

generic, 121, 133, 136 

Health Level Seven (HL7), 110, 150, 

157,274,278 

initialization, 295, 297 

instantiation, 94, 96 

interfacing with NLP, 300 



Index 441 

International Classification of Primary 

Care, Second Edition (ICPC-2), 
107 

International Statistical Classification 

of Diseases, 106, 107, 110, 112, 

113,128 

lifecycle, 152 

maturity model, 148, 152 

Medical Subject Headings (MeSH), 

85,86,91,92,95,98, 105, 106, 

107,117 

MGED, 121 

Mutation Miner, 293, 295 

NCI Metathesaurus, 105, 106, 108, 

114 

Phenotype Attribute Ontology (PAtO), 

107 

population, 75, 76, 94, 283,287, 307, 

309 

presentation, 188 

process ontology, 33, 317, 328, 329 

ProPreO ontology, 317, 324, 325, 327, 

328, 329, 333, 334, 335 

reference, 146 

representation, 188 

structure, 125 
SUMO, 123, 132, 134, 137 
Systematized Nomenclature of 

Medicine (SNOMED CT), 106 

systems biology, 87, 91 

Unified Medical Language System 

(UMLS),96, 116, 147 

upper, 123, 124, 125, 126, 130, 131, 

133, 135, 140, 143 

validation, 141 

versioning, 76 

visual ontology language, 5, 185, 188 

visualization, 5, 183, 185, 186, 188, 

202,205,207,218 

Ontology Definition Metamodel, 172, 

181,194,203,211 

Ontology-based processing, 283 

Ontology-based search, 85, 92 

OntoTrack, 210 

Open Biomedical Ontologies (OBO) 

Foundry, 93, 94, 98 

Open-world assumption, 193, 235, 236 

Operations, 373 

Orthogonal specifications, 194, 200 

OWL 

abstract syntax, see also Abstract 

syntax, 209, 211 

extension of, 172, 174 

OWL-DL, 5, 6, 17, 141, 158, 162, 

163, 166, 167, 168, 169, 172, 173, 

174,176,178,180,181,203,205, 

206,208,209, 211,212, 220,225, 

233,234,235, 236,237, 238, 240, 

274,282, 283, 293, 301, 309, 329, 

378 

OWL-Eu, 173 

OWL-FA, 169, 181 

OWL-Full, 141, 162, 169,206 

OWL-Lite, 162, 163,206,233 

OWL-QL, 26,28, 177, 178, 179 

OWL-S, 274, 278, 324, 327, 339, 374, 

395 

OWL Viz, 191,202,210,220 

reasoners, 27, 250, 255 

Web Ontology Language, 154, 179, 

181,277 

Patents, 414,417,420,421, 423, 425, 

427,428,430,431 

Pathway, 11, 12, 16, 17, 19,30, 55, 60, 

69, 72, 73, 77, 91,263, 273, 278, 356 

PAtO Information Model, 111 

Performance, 15,18,26, 49, 61, 63, 66, 

72,75,139,149,150,151,152,161, 

207,211,217,218,241,242,275, 

276, 325, 329, 348, 364, 377, 399, 

401,406 



442 Revolutionizing Knowledge Discovery in the Life Sciences 

Perl, 36, 431 

Persistence, 241, 399, 400, 401 

Pfam, 12, 14, 21, 23, 24, 29, 230, 247, 

318,339 

Phenomics, 114, 118 

Phenotype, 66, 102, 103, 112, 113, 118, 

255,358 

Philosophical realism, 150 

Phosphorylation, 62, 231, 247 

Planning, 343, 344, 345, 347, 351, 354 

Policy, 413, 417, 427,428, 431, 432 

Polyhierarchy, 105, 106 

Portion of reality (POR), 151 

Predicate-argument structures, 292 

Prefuse (visualization library), 208, 217, 

220 

Procedure, 128 

Prolog, 31, 36,47 

Property, 8, 16, 19, 20, 25, 67, 106, 122, 

126, 132, 143, 162, 164, 165, 166, 

167, 168, 169, 175, 192, 194, 195, 

209, 212, 214, 216, 234, 235, 364, 

386, 390, 413, 414, 416, 417, 419, 

420, 421, 423, 424, 425, 426, 427, 

429, 430, 432 

datatype, 167,235 

intellectual, 413, 428, 430, 431, 432 

intrinsic, 122, 126, 132 

object, 167, 193,216,235,294 

restrictions, 209, 212, 214 

Protege, 90, 98, 178, 180, 181, 190, 202, 

210,293,328 

Protein, 3, 6, 13, 14, 19, 20, 21, 23, 24, 

25, 28, 30, 31, 32, 33, 34, 35, 37, 38, 

39, 41, 42, 44, 45, 46, 47, 53, 55, 56, 

57, 58, 59, 60, 61, 62, 66, 67, 69, 70, 

71, 72, 73, 74, 77, 78, 79, 80, 87, 88, 

91,96,97,130, 147,150, 158,225, 

226, 227, 228, 229, 230, 231, 233, 

237,238, 239, 240, 241, 242, 243, 

244, 245, 246, 247, 248, 273, 274, 

340, 348, 357, 358, 366, 374, 375, 

377,393,414,418 

classification, 225, 228, 238, 245 

interaction, 79 

phosphatases, 225,231, 237, 238, 239, 

241,242,244,245,246,247 

Protein Data Bank, 31, 42, 51 

Protein Mutant Database, 286 

Proteomics, 28, 74, 87, 252, 324, 332, 

356,358,414 

glycoproteomics, 7, 317, 326, 329, 

331,332,336 

Prova, 3, 31, 35, 36, 37,47,48, 49, 50, 51 

Provenance, 363, 377, 379, 380, 381, 

383, 385, 386, 387, 394, 395 

Publishing, 3, 121, 321, 323, 363, 366, 

368,369,371,388,391,392,446 

PubMed, 31, 32, 33, 34, 35, 36, 38, 39, 

40, 43, 45, 46, 47, 51, 60, 65, 73, 75, 

92, 107, 226, 363, 384 

Query, 6, 19, 26, 27, 31, 48, 49, 50, 159, 

176, 178,236,272,275 

nRQL, 27, 30, 176, 178, 180, 236, 

283,301 

OWL-QL, 26, 28, 177, 178, 179 

patterns, 31, 236 

processing, 250 

RDF, 19, 27, 386 

RQL, 19,20,48,176, 180,283 

SPARQL, 27, 176, 177, 181, 262, 275, 

278,300 

Quick Medical reference (QMR), 113, 

119 

R 

Racer, 28, 30, 161, 180, 236, 239, 278, 

283, 301 

RDF 

data model, 262, 384 



Index 443 

database, 2, 11, 17, 25, 26, 27, 28 

FA, 169 

graph, 198 

RDF/XML syntax, 163, 178 

RDF-based visualization, 210 

Resource Description Framework, xix, 

3,11,16,89,160,168,180,249, 

251 

schema, 16, 17, 18, 30, 89, 159, 161, 

162, 169, 176, 179, 181, 182, 198, 

211,219,367 

syntax, 205, 209, 210 

triples, 195, 368, 387 

XML, 15, 163, 178, 186, 187,201 

RDF-Gravity, 191,210,211 

RDFS(FA), 169, 181 

Reasoner, 181,278 

Reasoning 

automated, 125, 139, 143, 150, 151, 

238 

reasoning service, 17, 88, 161, 162, 

168,170, 171,172,233,234,237 

Recall, 71 

Receptor, 70, 89,230,232, 240, 241,244 

Relation, 93, 171 

detection, 290, 306 
part-of, 86, 87, 91, 93, 128, 272 

Relational Database, 18, 22, 25, 27, 31, 

37, 50, 171, 182, 193, 203, 235, 241, 

262,275,385,386 

Reuse, 360, 365 

RNA, 128, 273 

Role, 134,135, 136, 137, 248, 274, 276 

RQL, 19,20,48, 176, 180,283 

RSS, 18 

Rules, 6, 26, 31, 36, 43, 49, 58, 69, 85, 

96, 174, 175, 180, 181, 189, 240, 249, 

254,255, 257,258,261, 263, 264, 

265, 266, 267,269,270, 273, 274, 

275, 276, 278, 337,423, 425, 426, 

427,433 

Satisfiability, 153, 161, 168, 174, 180, 

234 

Scalability, 32, 49, 278 

SEEK, 217, 221 

Semantic 

annotation of web service, 327 

distance, 145 

inference, 250 

interoperability, 16, 76, 139, 140 

metadata, 322 

relationships, 109, 113, 334 

representation, 56, 58, 121, 136 

similarity, 92, 98, 139, 145 

Semantic Web 

best practice, 172, 173, 278 

services, 340, 378, 395 

technologies, xx, 2, 3, 6, 11, 26, 30, 

56,57,67,68,74,75,76,77,121, 

122,249, 262, 277, 319, 327, 337, 

338,367, 368, 377, 386, 388, 389, 

390,414,416 

SemBOWSER, 317, 319, 324, 326, 327, 

329, 331, 332, 333, 334, 335, 336, 

337, 338 

Semi-structured data, 31, 40, 42 

Service 

discovery, 337, 340, 369, 373, 375, 

376, 377, 388, 389, 393 

provider, 364, 372 

Services 

decision support, 254 

Ecosystem, 5, 205, 206, 207, 217, 219 

inference, 225,233,234, 236 

Moby-Services, 336 

my Grid services, 369, 371 

provenance, 379 

reasoning, 17, 88, 161, 162, 168, 171, 

233,234,237 

Web Services Registry, 317 



444 Revolutionizing Knowledge Discovery in the Life Sciences 

Simulation, 181, 347, 348, 353, 354 

unification, 31,42, 43 

SOAP, 336, 358, 393 

SOFG, Standards and Ontologies for 

Functional Genomics, 98 

SQL, 19, 26, 27, 50, 262, 275, 278 

Standard Setting, 417, 418, 419, 420,425, 

426,427 

Standards, xiv, 62, 87, 91, 139, 274, 278, 

322, 413, 415, 417, 418, 419, 423, 

424,427, 429, 430 

closed, 417, 424 

Subsumption, 154, 168, 171, 208, 220, 

234, 235, 334, 337 

Swiss-Prot, 58, 60, 298, 299 

SWRL, 142, 174, 175, 176, 180, 181, 

274,278 

Synonyms, 13 

Systems biology, 30, 85, 87, 91, 97, 99, 

113,247,350,353,358,430 

Table-based visualization, 210 

Task, 64, 65, 148, 149, 172, 179, 329, 

332,344,345,346,353 

unit of, 331,332 

Tavema, 7, 58, 59, 65, 78, 336, 340, 355, 

358, 359, 361, 364, 365, 366, 367, 

369, 371, 372, 373, 374, 376, 379, 

380, 382, 385, 386, 388, 389, 390, 

392, 393 

Taxonomy, 17, 81, 88, 156, 171, 234, 

237, 295, 299, 324, 335, 378 

database, 295,299 

TBox, 166, 209, 212, 213, 215, 216 

Text Mining, 2, 3, 6, 53, 55, 56, 57, 60, 

61, 63, 64, 67, 68, 69, 70, 71, 72, 75, 

76,77,78,92,111,114, 119, 123, 

136,154,281,285,286,288,300 

GATE architecture, 286 

of enzyme mutations, 285 

steps, 288 

Thesaurus, 30, 147, 150, 156 

tModel, 325 

Transcription, 63, 70, 71, 148 

Transducer, 89, 286, 288, 301 

Translational Medicine, 6, 249, 250, 253, 

255, 258, 259, 277 

TREC Genomics, 65, 76 

Tree-based visualization, 210 

TrEMBL, 58, 77, 298 

u 
Unified Modeling Language, 193, 203, 

327 

UML class diagram, 170, 172 

UML-based visualization, 211 

UniProt, 12, 14, 16, 21, 23, 24, 29, 31, 

32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 

45,46,51,96,243,298,318,340, 

363, 384, 393 

Universals, 140, 151 

Unix, 417, 431 

USPTO, 420 

UVM Ecoinformatics CoUaboratory, 217, 

218 

Visual 

ontology language, 5, 185, 188 

structure, 5, 185, 188, 189,200 

Visualization, 185, 188, 202, 205, 207, 

210,212,257,258 

algorithms, 217 

model, 5,205, 207, 208, 212, 216, 218 

w 
W3C, xix, XX, 5, 8, 40,41, 50, 154, 159, 

160, 162, 168, 172, 173, 174, 176, 

178,179,180,181, 182,206,219, 

220, 258,278, 319, 324, 328, 339, 

392, 417 



Index 

Web 

of Science, 355, 362, 363, 368, 391, 

392 

process, 320, 321, 323, 326, 327, 328, 

330,331,334,337,338 

Service, 7, 35, 155, 317, 319, 321, 

324, 326, 327, 339, 340, 351, 354, 

355, 357, 359, 383, 392, 394, 395 

Services, 7, 58, 77, 142, 317, 318, 319, 

320, 321, 322, 323, 324, 325, 326, 

327, 328, 329, 331, 332, 333, 334, 

335,336,337,338,339 

Services Registry, 317, 319, 324, 326 

Web Ontology Language (OWL), xix, 

225,249,251,345 

Williams-Beuren Syndrome, 8, 354, 358, 

365, 392 

WordNet, 137, 151, 155 

Workflow, 34, 36, 39, 40, 41, 43, 67, 76, 

254, 346, 368, 371, 374, 376, 377, 

380,392, 394 

445 

WSDL, 317, 319, 324, 325, 326, 327, 

329, 331, 335, 337, 339, 374, 395 

Xcerpt, 3,31, 35,42, 43, 44, 45, 48, 49, 

50,51,52 

XML, 3, 7, 15, 16, 17, 19, 20, 26, 30, 31, 

33, 34, 35, 37, 38, 39, 40, 41,42, 43, 

48,49,50,51,115, 117,122,155, 

159,163,173, 174, 178,193,203, 

210, 211,268, 274, 320, 326, 327, 

372,416 

XML-schema, 326, 327 

XPath,31,33,35,39,40,48 

XQuery, 3, 26, 31, 33, 35, 40,41, 42, 48, 

49,50,51 

YeastHub, 3, 11, 17, 18, 19, 24,25, 30 



Notes 

Throughout this volume the use of the URL has been permitted. The 
editors do not guarantee the longevity of these links. They were known to be 
active at the time of publishing. 




