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Abstract

We study the properties of the following midpoint rule for deter-
mining discrete quantities of different public goods under a budget
constraint. Each individual submits a proposal and the feasible alloca-
tions are ranked according to the sum of their distances (in the natural
metric) to the individual proposals. One of the allocations with mini-
mal aggregate distance is chosen. We prove that the midpoint rule is
strategy-proof if all individuals have symmetric single-peaked prefer-
ences.

1 Introduction

to be written

2 Basic Notation and Definitions

A society can spend an amount L on the provision of k different public goods
in discrete non-negative quantities. Throughout, we will assume that indi-
viduals have monotone preferences; moreover, for simplicity, we assume that
the public goods are measured in money terms. Together, these assumptions
allow us to model the allocation problem as the choice of an element of the
k − 1-dimensional simplex

X := {x ∈ Nk
0 :

k∑

i=1

xi = L},

where xi is the amount of public good i.
By d(x, y) := 1

2

∑
i | xi − yi | we denote the distance between x and y in

the simplex. The set X is naturally endowed with a graph structure such
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that two points x and y are connected by an edge if and only if d(x, y) = 1
(see Figure 1 for the case k = 3). The metric d is then the natural graph
distance given by the minimal number of edges needed to connect two points
by a path. A path connecting two points with a minimal number of edges
is called a shortest path; note that shortest paths need not be unique. We
write xNy if x and y are neighbors in the graph, i.e. xNy ⇔ d(x, y) = 1.
Furthermore, we write xNijy if xi = yi + 1, xj = yj − 1 and xl = yl for all
l �= i, j, i.e. if x and y are neighbors in the “ij-direction;” note that while
the binary relation N is symmetric, the relations Nij are asymmetric and
satisfy xNijy ⇔ yNjix.

The set of all points that lie on some shortest path between x and y is
also called the set of points between x and y and denoted by [x, y]. As is
easily verified, we have

[x, y] = {z : zi ∈ [xi, yi] for all i}

(see Figure 1 where [x, y] = {x, y, z, z′}). The set of all points which are
closer to x than to y, i.e. the set of all z such that d(z, x) < d(z, y) will be
denoted by 〉x, y〉. Note that 〉x, y〉 = {z : x ∈ [z, y]}, i.e. a point is closer to
x than to y if and only if x lies on a shortest path between the given point
and y. For neighbors, the set 〉x, y〉 has the following particularly simple
description (see Figure 1 in which xN31z),

xNijz ⇒ 〉x, y〉 = {w : wi ≥ xi and wj ≤ xj}. (1)
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Figure 1: Illustrating the sets [x, y], 〉x, z〉 and 〉z, x〉
The midpoint rule is defined as follows: Each individual submits a pro-

posal w ∈ X and allocations are ranked according to the sum of their re-
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spective distances to the individual proposals.1 Formally, denote by p the
distribution of the proposals on X, i.e. for each w ∈ X, pw is the num-
ber of individuals who proposed w. Furthermore, for all x ∈ X, denote by
R(x) :=

∑
pwd(x,w) the remoteness of x given p. An allocation m(p) ∈ X

is a midpoint if

m(p) = argminx∈X

∑

w∈X

pwd(x,w) = argminx∈XR(x),

i.e. a midpoint is a point with minimal remoteness. Let M(p) denote the
set of midpoints. Evidently, M(p) need not be a singleton but it is always
non-empty.

3 The Structure of the Set of Midpoints

In this section, we prove two important properties of the set of midpoints.
First, the set of midpoints is convex, i.e. all points on a shortest path between
two midpoints must also be midpoints (Proposition 1). Secondly, the set of
midpoints is “locally determined,” i.e. whether an allocation is among the set
of midpoints can be decided by comparing it only to the set of its neighbors
(Proposition 2).

In order to prove these results, we need two auxiliary lemmas. For two
neighbors x and y, we write xMy if p(〉x, y〉) > p(〉y, x〉), i.e. if the set of
allocations which are closer to x than to y has more mass than the set of
allocations which are closer to y than to x. Moreover, we write xIy if neither
xMy nor yMx. The first lemma shows that the ranking among neighbors
induced by the midpoint rule simply corresponds to majority voting, where
an individual is construed as “voting” for x in a binary comparison with y
if the individual’s proposal is closer to x than to y.

Lemma 1 For any distribution p and any two neighbors x and y, p(〉x, y〉)−
p(〉y, x〉) = R(y) − R(x). In particular, xMy if and only if R(y) > R(x).

Proof. The assertions are immediate from the following observations: for
all w ∈ 〉x, y〉, d(x,w)−d(y,w) = −1, for all w ∈ 〉y, x〉, d(x,w)−d(y,w) = 1,
and for all other w ∈ X, d(x,w) − d(y,w) = 0. �
The second lemma establishes a specific relationship in the respective out-
comes of the majority vote among neighbors “in the same direction” (see
Figure 2).

1The midpoint rule is related to other well-known aggregation procedures. In median
spaces, the midpoint rules coincides with issue-by-issue majority voting (see Nehring and
Puppe, 2007). In particular, in the classical case of single-peaked preferences on a line
the midpoint rule chooses the median of the individual peaks. Our main theorem below
thus entails the classical median voter theorem as a special case. Also outside median
spaces versions of the midpoint rule have been considered in the literature, for instance
by Kemeny (1959) in the context of the aggregation of preference orderings employing a
specific metric on the space of preference relations.
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Lemma 2 Let x, y be such that xi > yi and yj > xj. If xNijx
′ and y′Nijy,

then 〉y′, y〉 ⊇ 〉x, x′〉 and 〉y, y′〉 ⊆ 〉x′, x〉. Moreover, xMx′ ⇒ y′My and
yMy′ ⇒ x′Mx.

Proof. By (1) we have
〉
y′, y

〉
= {w : wi ≥ yi + 1, wj ≤ yj − 1},〉

x, x′〉 = {w : wi ≥ xi, wj ≤ xj},〉
y, y′

〉
= {w : wj ≥ yj, wi ≤ yi},〉

x′, x
〉

= {w : wj ≥ xj + 1, wi ≤ xi − 1},

which gives the first assertion. From this, we obtain p(〉x, x′〉) ≤ p(〉y′, y〉)
and p(〉x′, x〉) ≥ p(〉y, y′〉). Thus, if p(〉x, x′〉) > p(〉x′, x〉), then p(〉y′, y〉) >
p(〉y, y′〉), and if p(〉y, y′〉) > p(〉y′, y〉), then p(〉x′, x〉) > p(〉x, x′〉), which
proves the second claim. �
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Figure 2: Illustrating Lemma 2

Proposition 1 The set M(p) of midpoints is convex, i.e. all points on a
shortest path between two midpoints belong to the set of midpoints as well.

Proof. Let x, y be two distinct midpoints and consider a shortest path
between them. Suppose that there exists a point on this shortest path that
is not a midpoint, i.e. that has a strictly larger remoteness than either x
and y. Then, there must exist neighbors z, z′ along this path such that
R(z) < R(z′), hence by Lemma 1, zMz′. Say that z and z′ are neighbors
in ij-direction, i.e. zNijz

′. Since z, z′ ∈ [x, y], this implies that either (xi >
yi and xj < yj) or (yi > xi and yj < xj). Without loss of generality assume
the former and choose y′ such that y′Nijy. By Lemma 2 we obtain y′My
contradicting the assumption that y ∈ M(p). �
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The next result shows that in the context of our public goods allocation
problem the set of midpoints can be determined by “local” majority voting,
i.e. by a pairwise comparison of any given point with all its neighbors.

Proposition 2 An allocation x is among the midpoints if and only if x
does not lose in pairwise comparison against any of its neighbors, i.e. x ∈
M(p) ⇔ [¬(yMx) for all y such that yNx].

Proof. By definition, a midpoint cannot lose in pairwise comparison against
any of its neighbors. Conversely, let x ∈ X be such that xMx′ or xIx′ for all
x′ with xNx′. We will show that x ∈ M(p) by contradiction. Thus, suppose
that there is some other point z ∈ X with a strictly lower remoteness.
Choose two neighbors y, y′ on a shortest path from x to z such that yMy′

and y′ ∈ [x, y], and assume without loss of generality that y′Nijy. Since y′

is between x and y we must have xi > yi and xj < yj . Now consider x′ with
xNijx

′. By Lemma 2, yMy′ implies x′Mx which contradicts the assumption
that x does not lose against any of its neighbors. �
We conclude this section with the observation that a neighbor of a midpoint
is itself a midpoint if and only if it does not lose against it in pairwise
comparison.

Fact 1 Let x ∈ M(p) and yNx. Then, y ∈ M(p) ⇔ xIy.

Proof. By Lemma 1, y has the same remoteness as x if and only if xIy.
This proves the claim. �

4 Limited Manipulability of the Midpoint rule

Can an individual by submitting an appropriate non-truthful proposal in-
fluence the outcome of the midpoint rule to his or her advantage? Whether
this will be so depends on the assumptions on the individuals’ preferences; in
general, the answer is, yes, i.e. in general the midpoint rule is not strategy-
proof. However, in this section we prove the following remarkable property
of the midpoint rule in the present context: Suppose that each individual has
a unique most preferred allocation, his or her “peak.” Then, while individu-
als can change the shape of the set of midpoints by unilaterally submitting
different proposals, it is not possible to move this set “closer” to one’s true
peak by submitting a non-truthful proposal, as follows.

Fix an individual, say individual h with peak x, and denote by M(p) the
set of midpoints given the distribution p of proposals in which individual
h submits x. Furthermore, denote by p̃ the distribution of proposals that
differs from p only in the proposal of individual h who proposes, say x̃ �= x.
Then, the element of M(p) that is closest to x is at least as close to x than
the closest element in M(p̃); similarly, the element of M(p) that is farthest
away from x is at least as close to x than the farthest element in M(p̃).
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Theorem 1 For all x̃ �= x, minw∈M(p) d(x,w) ≤ minw∈M(p̃) d(x,w), i.e.
non-truthful proposals cannot move the closest midpoint closer to one’s true
peak, and maxw∈M(p) d(x,w) ≤ maxw∈M(p̃) d(x,w), i.e. non-truthful propos-
als cannot move the farthest midpoint closer to one’s true peak.

Proof. Let z be a midpoint with minimal distance to x, say d(x, z) = r. If
r = 0 there is nothing to show, thus assume r ≥ 1. For any i, j such that
zi > xi and zj < xj , let zij be the neighbor of z in direction of x, i.e. zNijzij.
Moreover, denote by Z−

x the set of all such neighbors, i.e.

Z−
x = {y ∈ X : yNz and d(x, y) = r − 1}.

Since z is a closest midpoint to x, we have zMy for all y ∈ Z−
x under the

distribution p, i.e. provided that the true peak x is reported. Since x already
supports any y ∈ Z−

x in the pairwise comparison with z, i.e. since x ∈ 〉y, z〉,
we must have zM̃y also under the distribution p̃, i.e. when x̃ is reported
instead of x. By Lemma 2, zM̃zij implies y′M̃y for all y ∈ 〉zij , z〉, where
y′Nijy. This shows that, for any zij , no element of 〉zij, z〉 can be midpoint
under p̃. The proof of the first assertion is completed by noting that

{y ∈ X : d(x, y) < r} ⊆
⋃

zij∈Z−
x

〉zij, z〉 .

Let now z be a midpoint with maximal distance to x, say d(x, z) = r. If
the maximal distance of a midpoint to x is to be reduced by non-truthfully
reporting x̃, z has to lose in pairwise comparison to some of its neighbors
under p̃ by Proposition 2. Partition the set of neighbors of z as follows,

Z−
x = {y ∈ X : yNz and d(x, y) = r − 1},

Z0
x = {y ∈ X : yNz and d(x, y) = r},

Z+
x = {y ∈ X : yNz and d(x, y) = r + 1}.

Since the truthful report x already supports any element in Z−
x in pairwise

comparison against z under p, z cannot lose against such element under p̃.
Thus, assume that, by reporting x̃, z loses against some z′ ∈ Z+

x , say z′M̃z
and z′Nijz. Then, by Lemma 2, any element w ∈ 〉z, z′〉 loses in pairwise
comparison against its neighbor in ij-direction, i.e. w′M̃w if w′Nijw. This
shows that no element of 〉z, z′〉 can be midpoint under p̃. Since

{y ∈ X : d(x, y) < r} ⊆ 〉
z, z′

〉
,

this shows that any midpoint under p̃ is at least as far away from x than z.
Finally, assume that by reporting x̃, z loses against some z′ ∈ Z0

x. Since x
neither supports z nor z′ in pairwise comparison, z′M̃z is only possible if
z′Iz. By Fact 1 above, this implies that z′ was already a midpoint under p.
There are now two possible cases. Either z′ remains a midpoint under p̃ in
which case the claim is proved, or z′ loses against one of its neighbors. In
the latter case, repeated application of the arguments just given shows that
eventually a midpoint with distance at least r to x is obtained. �
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5 Strategy-Proofness

The result of the previous section has the immediate implication that the
midpoint rule is strategy-proof provided that all individuals have “symmet-
ric” single-peaked preferences of the form y � z ⇔ d(x, y) ≤ d(x, z) for some
x ∈ X, and provided that strategy-proofness is defined with respect to any
extended preference relation �∗ over subsets of X satisfying

M �∗ M̃ whenever [min M � min M̃ and max M � max M̃ ].

The midpoint rule is not strategy-proof for larger domains of single-peaked
preferences, as shown by the following examples (see Figures 3, 4 and 5).

(0, 0, L)

(L, 0, 0) (0, L, 0)�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

z •
z′•

y
•

x̃ •

x•

�
�
�
��

�
�
�

�
�
�
��

�
�
�

Figure 3: Manipulating the set of midpoints

Suppose that in Figure 3, two individuals have their peak at y, one individual
at z, one individual at z′ and another individual, say h, at x. The resulting
set of midpoints the diamond-shaped set [y, z′]. By non-truthfully reporting
x̃ instead of x individual h removes z′ from the set of midpoints, changing
it to the points in the dashed triangle shown in Figure 3 (consisting of y,
x̃ and their joint neighbor in direction of z). Whether this will be to the
advantage of h depends on h’s preferences over sets of allocations. For
instance, it could be that h has (generalized) single-peaked preferences over
allocations (i.e. prefers allocations closer to her peak x, see Nehring and
Puppe, 2007) and furthermore prefers x̃ to the equally distant z′. In that
case, h might prefer excluding z′ from the set of midpoints (even if this does
neither change the best nor the worst allocation among the midpoints).

A similar example of a possible violation of strategy-proofness of the
midpoint rule is shown in Figure 4. Again suppose that two individuals
have their peak at y, one individual at z, one individual at z′ and another
individual, say h, at x. The resulting set of midpoints is the quasi-diamond-
shaped set indicated in Figure 4. By non-truthfully reporting x̃ instead of
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x individual h changes the set of midpoints to the dashed figure. Again, it
is easily verified that this yields a possible violation of strategy-proofness
for appropriately specified preferences over sets of outcomes. Note that, in
contrast, to the example shown in Figure 3, the manipulated set of midpoints
(i.e. the dashed set) is not a proper subset of the set of truthful midpoints.
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Figure 4: Another manipulation of the set of midpoints

The possible violations of strategy-proofness shown in Figures 3 and 4
hinge on an appropriate specification of preferences over sets of outcomes,
and in particular on the impact of potential outcomes that are intermediate
in preference between the best and worst elements. The following example
represents a more robust violation of strategy-proofness. Consider the situ-
ation depicted in Figure 5. If two voters have their peak at y, and one voter
at x and x̃, respectively, the unique truthful midpoint is y. However, if the
voter with peak x, say individual h, strictly prefers x̃ to y, it seems safe to
assume that h would strictly prefer to report x̃ instead of x, because this
would change the set of midpoints from {y} to {x̃, y}.
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Figure 5: A more robust violation of strategy-proofness
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6 More on the Structure of the Set of Midpoints

The set of midpoints has further interesting properties summarized in this
section. First, we show that allocations strictly between two midpoints can
have no mass, i.e. no individual can have proposed them.

Fact 2 Suppose that x, z ∈ M(p), y ∈ [x, z] and y �∈ {x, y}, then py = 0.

Proof. Without loss of generality assume that xNyNz, xi > zi, zj > xj and
xNijy. Let z′ be the element in X such that z′Nijz (z′ may be equal to y). By
Proposition 1, z′ ∈ M(p). By Lemma 2, 〉x, z′〉 ⊂ 〉y, z〉 and 〉z′, x〉 ⊃ 〉z, y〉.
Suppose, by contradiction, that py > 0. Then p(〉y, z〉) > p(〉x, z′〉) and
p(〉z, y〉) < p(〉z′, x〉) which implies yMz, contradicting the fact that z is a
midpoint. �
Next, we give a sufficient condition for the set of midpoints to be “small”
in the sense that all midpoints have distance of at most 1 to each other.
Let diamM(p) := maxx,y∈M(p) d(x, y) denote the diameter of the set of
midpoints, and say that a subset Y ⊆ X is connected if, for each pair
x, y ∈ Y , there is a path connecting x and y that lies entirely in Y .

Fact 3 If supp(p) is connected, then diamM(p) ≤ 1.

Proof. Suppose diamM(p) ≥ 2. Then, there exist x, y, z ∈ M(p) with
xNy, yNz, xi > zi, zj > xj and xNijy. Denote by z′ the point in X
with z′Nijz. By Proposition 1 z′ ∈ M(p). By Lemma 2 we have 〉x, y〉 ⊂
〉z′, z〉. Since all these points are midpoints one obtains xIy, z′Iz. Because a
midpoint strictly wins against neighbors which are not in the set of midpoints
and (by Fact 2) there cannot be any mass on allocations which are on a
shortest path between midpoints, one can easily show that p(〉x, y〉) > 0 and
p(〉z, z′〉) > 0. Since supp(p) is connected there exists a path from 〉x, y〉 to
〉z, z′〉 in X\ {〉x, y〉 ∪ 〉z, z′〉} which is in supp(p). As in Fact 2, one obtains
p(〉z′, z〉) > p(〉z, z′〉) which contradicts the assumption. �
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