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Abstract

On the basis of its CO2 compensation concentration, Brassica gravinae Ten. has been reported to be a C3–C4

intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in

B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also

examined in B. gravinae, B. napus L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia (L.) DC. (C3–C4) by

immunogold electron microscopy to elucidate Rubisco expression during the evolution from C3 to C3–C4

intermediate plants. The bundle sheath (BS) cells of B. gravinae contained centrifugally located chloroplasts as well

as centripetally located chloroplasts and mitochondria. Glycine decarboxylase P-protein was localized in the BS

mitochondria. Brassica gravinae had low C4 enzyme activities and high activities of Rubisco and photorespiratory
enzymes, suggesting that it reduces photorespiratory CO2 loss by the glycine shuttle. In B. gravinae, the labelling

density of Rubisco was higher in the mesophyll chloroplasts than in the BS chloroplasts. A similar cellular pattern

was found in other Brassicaceae species. These data demonstrate that, during the evolution from C3 to C3–C4

intermediate plants, the intercellular pattern of Rubisco expression did not change greatly, although the amount of

chloroplasts in the BS cells increased. It also appears that intracellular variation in Rubisco distribution may occur

within the BS cells of B. gravinae.

Key words: Brassica gravinae, Brassicaceae, bundle sheath cell, C3–C4 intermediate plant, glycine decarboxylase, leaf

anatomy, photorespiration, ribulose 1,5-bisphosphate carboxylase/oxygenase.

Introduction

C3–C4 intermediate plants have photosynthetic character-

istics intermediate between those of C3 and C4 plants. Their

leaf anatomy and CO2 exchange characteristics, including
CO2 compensation concentrations and O2 inhibition of

photosynthesis, are in between those of C3 and C4 plants.

Low rates of photorespiration in C3–C4 intermediates result

mainly from the intercellular localization of glycine decar-

boxylase (GDC), a key photorespiratory enzyme that is

involved in the decarboxylation of glycine (Rawsthorne,

1992; Monson and Rawsthorne, 2000). GDC is a multien-

zyme complex consisting of four components, P-, T-, L-,
and H-protein, all of which are required for GDC activity

(Douce et al., 2001; Bauwe, 2011). In the leaves of C3

plants, all four subunits of GDC occur in the mitochondria

of photosynthetic cells, primarily the mesophyll (M) cells. In

the leaves of C3–C4 intermediate plants, however, at least
the P-protein of GDC is lacking in the mitochondria of M

cells, although all of the subunits are present in the

mitochondria of the bundle sheath (BS) cells (Morgan

et al., 1993). Thus, the intermediate metabolite glycine,

which is generated in the M cells, must be transferred into

the BS cells to be decarboxylated by GDC. This

biochemical mechanism is accompanied by cellular special-

ization of the BS cells, which includes the presence of high
numbers of chloroplasts and mitochondria, and enables the

recapture of CO2 released by the decarboxylation of glycine.

Abbreviations: BS, bundle sheath; GDC, glycine decarboxylase; LS, large subunit; M, mesophyll; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase.
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This pathway, called the glycine shuttle, functions as

a recycling system for photorespiratory CO2 in the BS cells

(Rawsthorne, 1992; Monson and Rawsthorne, 2000). This

photosynthetic mechanism to reduce photorespiration

occurs in at least nine families of higher plants (Bauwe,

2011). In some C3–C4 intermediate species of Flaveria

(Asteraceae), a C4 cycle operates together with the glycine

shuttle (Monson and Rawsthorne, 2000).
Most species in the Brassicaceae are C3 type, but some

C3–C4 intermediate species occur in the genera Moricandia,

Diplotaxis, and Brassica (Apel et al., 1997). The C3–C4

intermediates in Moricandia and Diplotaxis reduce photo-

respiration only by the glycine shuttle, without a C4 cycle

(Hunt et al., 1987; Rawsthorne, 1992; Ueno et al., 2003). In

Brassica, B. gravinae has been reported to be a C3–C4

intermediate species on the basis of its low value of CO2

compensation concentration (22.7 lmol mol�1) and the

presence of many chloroplasts in the BS cells (Apel et al.,

1997). However, it is still unknown whether this species

reduces photorespiration only by the glycine shuttle, as

in the C3–C4 intermediate species of Moricandia and

Diplotaxis, or by both the shuttle and a C4 cycle, as in some

species of Flaveria. The genus Brassica includes many

vegetable and oil C3 crops with high agronomic value, and
within the Brassicaceae inter- and intrageneric hybridization

is relatively easy (Apel et al., 1984; Bang et al., 1996, 2009;

O’Neill et al., 1996; Yan et al., 1999). In the future,

B. gravinae may become a valuable genetic resource as a parent

plant with C3–C4 intermediate photosynthesis for use in the

improvement of commercially important Brassica species.

The evolutionary processes giving rise to C3–C4 interme-

diate and C4 plants remain to be elucidated. Previous
studies have suggested that C4 plants gradually evolved

from C3 plants through various stages of C3–C4 intermedi-

ates. This progression included the structural and

biochemical modification of leaves: the development of

organelles in the BS cells, the localization of GDC in the

BS mitochondria, enhanced expression and appropriate

distribution of the C4 enzymes in the M and BS cells, and

exclusive distribution of Rubisco in the BS chloroplasts
(reviewed in Sage, 2004). However, less is known about

whether a change in the intercellular expression of Rubisco

occurred between M and BS chloroplasts during the

evolution from C3 to C3–C4 intermediate plants. There are

several plants that have C4-like characteristics but still

accumulate small amounts of Rubisco in the M chloroplasts

(Bauwe, 1984a; Reed and Chollet, 1985; Ueno and

Wakayama, 2004; Ueno and Sentoku, 2006). The existence
of C4-like plants suggests that, during the evolutionary

course from C3–C4 intermediate through C4-like to true

C4 plants, the levels of Rubisco were reduced in the

M chloroplasts relative to those in the BS chloroplasts, and

Rubisco was finally restricted to the BS chloroplasts.

The BS cells of C3–C4 intermediate plants in the Brassica-

ceae include centrifugally located chloroplasts as well as

centripetally located chloroplasts (Ueno et al., 2003, 2007). It
is still unknown whether these two types of chloroplasts play

distinct functional roles within the BS cell. However, it is

likely that the centripetal chloroplasts play a role in the

recapture of photorespiratory CO2 released from the mito-

chondria, whereas the centrifugal chloroplasts are responsible

mainly for the fixation of CO2 from the intercellular spaces

(as in the M chloroplasts) rather than for the refixation of

photorespiratory CO2 (Ueno et al., 2003). Thus, it is of

interest whether the level of Rubisco is the same or different

in centrifugal and centripetal chloroplasts.
This study reports the structural features and activities

and intercellular localization of photosynthetic and photo-

respiratory enzymes in leaves of B. gravinae and character-

izes the photosynthetic metabolism in this species. The

study also investigated whether the intercellular patterns of

Rubisco accumulation in M and BS cells differ between C3

and C3–C4 intermediate species in the Brassicaceae. In

addition, the intracellular accumulation of Rubisco within
a BS cell was examined for some species. These findings

would contribute to a better understanding of the cellular

regulation of Rubisco expression during the course of

evolution from C3 to C3–C4 intermediate plants.

Materials and methods

Plant materials

Five C3 and C3–C4 intermediate species in the Brassicaceae were
examined: Brassica napus L. (C3), B. gravinae Ten. (C3–C4),
B. rapa L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia
(L.) DC. (C3–C4). Seeds of B. gravinae were provided by the
National Germplasm Resources Laboratory of the United States
Department of Agriculture (USDA), Agricultural Research Ser-
vice, Beltsville, Maryland, USA. Seeds were sown in 8.0 l pots
filled with a commercial soil mix for vegetables (ISEKI, Tokyo,
Japan). Plants were grown in a growth chamber with temperatures
maintained at 27 �C in the light (14 h) and 20 �C in the dark (10 h).
Photon irradiance was provided by metal halide lamps at a photon
flux density of 350 lmol m�2 s�1 (wavelength 400–700 nm). For
the enzyme assay, Panicum maximum Jacq. was also grown in the
chamber as a control C4 plant. Plants were watered daily. Fully
expanded uppermost leaves were examined 1–1.5 months after
planting.

Anatomical and ultrastructural studies

A single leaf was examined from each of three plants of B. gravinae
and each of two plants of B. napus. Samples taken from the
midsections of leaves were fixed in 3% (v/v) glutaraldehyde in
50 mM sodium phosphate buffer (pH 6.8) and post-fixed in 2%
OsO4 in phosphate buffer. Samples were then dehydrated through
an acetone series and embedded in Spurr’s resin, as described by
Ueno et al. (2003). Transverse ultrathin sections of the leaves were
stained with lead citrate or with phosphotungstic acid followed by
lead citrate and viewed under a transmission electron microscope
(Hitachi H-7000, Hitachi Co. Ltd., Tokyo, Japan) at 75 kV.
Semithin sections (about 1 lm) of leaves on glass slides were
stained with toluidine blue O.

The sizes of the mitochondria and chloroplasts in the M and BS
cells were measured for each leaf, because the sizes of the organelles
differed somewhat between leaves of different plants, even within
a species, but the ratios of organelle sizes between BS and M cells
were similar in different leaves of the same species. Mitochondrial
diameter was determined by using electron micrographs at 325 000
magnification and represented the means of 28–66 measurements.
Chloroplast length (long axis) was determined from electron micro-
graphs at 32000 or 33000 magnification and represented the means
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of 21–40 measurements. For BS cells, centrifugally and centripetally
located chloroplasts were separately measured. Centrifugally located
chloroplasts were defined as those located at the outer wall (wall
adjacent to intercellular space) and the outer half of the radial walls
(walls adjacent to neighbouring BS cells). The centripetally located
chloroplasts were those located at the inner tangential walls (walls
adjacent to vascular tissue) and the inner half of the radial walls.

Protein A–immunogold electron microscopy

Small segments of leaves were fixed with 3% (v/v) glutaraldehyde in
50 mM sodium phosphate (pH 6.8), dehydrated through an ethanol
series, and embedded in Lowicryl K4M resin (Chemische Werke
Lowi GmbH, Waldkraiburg, Germany), as described by Ueno et al.
(2003). Ultrathin sections were immunolabelled with an antiserum
to the P-protein of GDC or to the large subunit (LS) of Rubisco
with protein A–colloidal gold particles (EY Laboratories Inc., San
Mateo, CA, USA), as described by Ueno et al. (2003). For controls,
the antiserum was replaced by non-immune serum. The antiserum
against the P-protein of GDC isolated from pea leaf mitochondria
was kindly provided by Dr DJ Oliver (University of Idaho,
Moscow, ID, USA); the antiserum against the LS of Rubisco
isolated from pea leaves was kindly provided by Dr S Muto
(Nagoya University, Nagoya, Japan; now deceased). The antiserum
against GDC P-protein was used at a dilution of 1:500, whereas that
against Rubisco LS was at a dilution of 1:1000. In a preliminary
examination, it was confirmed that such dilution ratios of the
antisera produced the most reliable results, as was found in our
previous studies (Ueno et al., 2003; Ueno and Wakayama, 2004;
Yoshimura et al., 2004; Ueno and Sentoku, 2006). The density of
labelling for these enzyme proteins was determined by counting the
gold particles on electron micrographs at 325 000 magnification
and calculating the number per unit area (lm�2).

Intercellular distribution of GDC P-protein and Rubisco LS

In the immunolabelling study, one leaf from each of two plants
was examined for B. gravinae, B. napus, and D. tenuifolia, and one
leaf from a single plant was examined in the case of R. sativus. The
labelling density was measured on several immunolabelled sections
of each leaf, because the labelling densities showed similar ratios
between BS and M cells within a leaf but varied among leaves,
probably because of differences in the amount of protein in each
leaf. To assess the intercellular distribution of P-protein, between
12 and 26 individual cells were examined. The labelling density was
calculated as the mean of 27–65 measurements of mitochondria.
To assess the intercellular distribution of Rubisco LS, between 5
and 11 individual cells were examined. The labelling density was
calculated as the mean of 9–17 measurements of chloroplasts.
Areas occupied by starch grains were excluded from the estima-
tions of the sectional areas of chloroplasts.

Intracellular distribution of Rubisco LS within a BS cell

Labelling density was measured on several immunolabelled sections
of the same leaf from a representative plant of each species. For the
C3–C4 intermediate species B. gravinae and D. tenuifolia, three
representative cells were selected from the BS cells surrounding the
same small vascular bundle. The centrifugally and centripetally
located chloroplasts within a BS cell were examined for labelling
density of Rubisco LS. The number of chloroplasts examined per
BS cell was between five and 10 in the centrifugal location and
between six and 11 in the centripetal location. Brassica napus (C3)
had fewer centripetally located chloroplasts in the BS cells than did
the C3–C4 intermediate species; the number was insufficient for
comparing the labelling densities of Rubisco LS among chloroplasts
within individual BS cells. Thus, mean values were calculated from
six centrifugally located chloroplasts and four centripetally located
chloroplasts within three BS cells selected from the BS cells
surrounding the same small vascular bundle.

Enzyme assays

Three plants each of B. gravinae and B. napus and one plant each
of B. rapa and P. maximum were used for the enzyme assays. Leaf
samples were frozen in liquid nitrogen and stored in a deep freeze
(approximately –80 �C) until enzyme extraction. Leaves (0.25 g)
were ground on ice, using a pestle in a mortar containing 0.5 g of
sea sand, 25 mg of polyvinylpyrrolidone, and 1 ml of grinding
medium. The grinding medium contained 50 mM HEPES-KOH
(pH 7.5), 0.2 mM dithiothreitol, and 0.7% (w/v) bovine serum
albumin. The homogenates were filtered through gauze, the
filtrates were centrifuged at 10 000 g for 5 min at 4 �C, and the
supernatants were used for the enzyme assays. All enzymes were
assayed spectrophotometrically in 1 ml reaction mixtures at 25 �C,
as described by Ueno et al. (2003, 2005).

Statistical analysis

Student’s t test was used to test the significance (P <0.01) of any
differences in the sizes of mitochondria and chloroplasts between
the M and BS cells, differences in labelling densities of GDC
P-protein and Rubisco LS between the M and BS cells, and
differences in labelling densities between the centrifugally and
centripetally located chloroplasts within a BS cell.

Results

Leaf anatomy of B. gravinae and B. napus

The mesophyll in leaves of B. gravinae was differentiated

into palisade and spongy tissues (Fig. 1A), as seen in the

leaves of the C3 species B. napus (Fig. 1B). The BS cells of

B. gravinae exhibited an elongated shape, which is some-

what similar to the adjacent M cells (Fig. 1A, C), and they

contained a large group of chloroplasts in the centripetal

position (Fig. 1C, G). In the area of the BS cell exposed to

intercellular space (the centrifugal location), chloroplasts
were arranged in a single row along the wall, as in the

M cells (Fig. 1C, E). The BS cells of B. napus contained

only a few chloroplasts in the centripetal position (Fig. 1D,

H) but many chloroplasts in the centrifugal location

(Fig. 1D, F). The BS cells of B. gravinae contained

many mitochondria which were located between the inner

tangential walls adjacent to the vascular tissue and the

centripetally located chloroplasts (Fig. 1G). By contrast, the
BS cells of B. napus contained fewer mitochondria which

were distributed throughout the cell (Fig. 1H).

In B. gravinae the BS mitochondria were significantly

larger than the M mitochondria (Table 1) whereas, in

B. napus, the BS mitochondria were significantly smaller than

the M mitochondria. In both species, the BS chloroplasts

were smaller than the M chloroplasts (Table 1). Within the

BS cells of B. gravinae, there was no significant difference in
size between the centrifugally and centripetally located

chloroplasts. Within the BS cells of B. napus, however, the

centrifugally located chloroplasts were significantly larger

than the centripetally located chloroplasts (P <0.01).

Intercellular distribution of GDC P-protein in M and BS
cells

In B. gravinae the BS mitochondria were densely labelled

for GDC P-protein, whereas the M mitochondria contained
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almost no label (Fig. 2A, C; Table 2). In B. napus both

M and BS mitochondria were labelled for GDC P-protein

(Fig. 2B, D). The labelling density was somewhat higher in

the M mitochondria than in the BS mitochondria (Table 2).

Intercellular distribution of Rubisco LS in M and BS cells

In B. gravinae both M and BS chloroplasts were densely
labelled for Rubisco LS (Fig. 3A, C, E), but the labelling

density was somewhat lower in the BS chloroplasts than in

the M chloroplasts (Table 2). The results for B. napus were

similar: the chloroplasts of both M and BS cells were

densely labelled for Rubisco LS (Fig. 3B, D, F), and the

labelling density was somewhat lower in the BS chloroplasts

than in the M chloroplasts (Table 2). Similar patterns of

intercellular enzyme distribution were also obtained for the

C3–C4 intermediate species D. tenuifolia and the C3 species

R. sativus (Table 2). The ratio of labelling density of Rubisco
LS in the BS chloroplasts to that in the M chloroplasts did

not differ widely among the four species, although it was

somewhat lower in the C3–C4 intermediate species than in

the C3 species.

Intracellular distribution of Rubisco LS within individual
BS cells

In B. gravinae, three BS cells surrounding the same vascular
bundle were examined for the intracellular distribution of

Rubisco LS (Fig. 3C, E; Table 3). In these cells, the

labelling density of Rubisco LS was significantly higher in

centrifugally located chloroplasts than in centripetally

located chloroplasts (Table 3). The ratios of labelling

Table 1. Sizes of organelles in the M and BS cells of Brassica

species

Species and
organelle

M cells
(mm)

BS cells
(mm)

Ratio (BS:M
cell size)

B. gravinae (C3–C4)

Mitochondria 0.3160.07 (35) 0.6260.13 (35)** 2.00

Chloroplasts 5.3360.95 (40) Cf 4.1360.89 (40)** 0.77

Cp 3.9860.63 (40)** 0.75

B. napus (C3)

Mitochondria 0.7960.25 (33) 0.4960.11 (31)** 0.62

Chloroplasts 7.7361.43 (40) Cf 5.7461.21 (40)** 0.74

Cp 4.3060.81 (21)** 0.56

Values are given as means 6SD. Numbers in parentheses show the
numbers of organelles examined. Representative data obtained from
several sections of the same leaf are shown. M, mesophyll; BS, bundle
sheath; Cf, centrifugally located chloroplasts; Cp, centripetally located
chloroplasts. Asterisks indicate a significant difference between the M
and BS cells at P <0.01.

Fig. 1. Leaf anatomy of B. gravinae (A, C, E, G) and B. napus

(B, D, F, H). (A, B) Leaf anatomical structures. (C, D) BS cells

surrounding a vascular bundle. Arrows in (C) indicate centripetally

located chloroplasts in the BS cells of B. gravinae. (E) Centrifugally

and centripetally located chloroplasts in a BS cell. Centrifugally

located chloroplasts are at the upper left, adjacent to the

intracellular space; centripetally located chloroplasts are at the

bottom right. Mitochondria are at the bottom right. (F) Centrifugally

located chloroplasts in a BS cell. (G, H) Centripetally located

chloroplasts and mitochondria in a BS cell. BSC, BS cell;

c, chloroplast; IS, intercellular space; MC, M cell; mit, mitochondrion;

PM, palisade M; SM, spongy M; VB, vascular bundle. Bars¼100 lm

(A, B), 25 lm (C, D), 5 lm (E), 3 lm (F, H), and 2 lm (G).

Fig. 2. Immunogold labelling of the P-protein of GDC in M and BS

cells of B. gravinae (A, C) and B. napus (B, D). (A, B) M cells; (C, D)

BS cells. c, Chloroplast; cw, cell wall; mit, mitochondrion; s, starch

grain. Bars¼0.5 lm.
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density of the centripetal to centrifugal chloroplasts ranged

from 0.78 to 0.86. BS cells of B. napus showed no significant

difference in the labelling densities of Rubisco LS between

the centrifugally and centripetally located chloroplasts

(Fig. 3D, F; Table 3). As in B. napus, the BS cells of

D. tenuifolia showed no significant difference in the labelling
densities of Rubisco LS in chloroplasts differing in in-

tracellular location (Table 3). In the analysis of B. gravinae

and D. tenuifolia, the BS cells examined were located in

different positions around the same vascular bundle, but

there were no large differences in the ratios of labelling

density of the centripetal to centrifugal chloroplasts among

the BS cells within each species (Table 3).

Activities of photosynthetic and photorespiratory
enzymes

Brassica gravinae had higher activity of Rubisco than the

control C4 plant, P. maximum, although the activity was

somewhat lower than those of the control C3 plants, B. napus
and B. rapa (Table 4). The activity of the C4 photosynthetic

enzyme phosphoenolpyruvate carboxylase of B. gravinae was

similar to that measured for C3 plants. This was also the case

for the activities of three C4-acid decarboxylating enzymes:

NADP-malic enzyme, NAD-malic enzyme, and phospho-

enolpyruvate carboxykinase (Table 4). The activities of

glycolate oxidase and catalase, which are involved in the

glycolate pathway, were also comparable with those of the
control C3 plants but higher than those of P. maximum.

There was no large difference in activity of another glycolate

pathway enzyme, hydroxypyruvate reductase, among

B. gravinae and the control C3 and C4 plants (Table 4).

Discussion

Structural and biochemical characteristics of
photosynthesis in B. gravinae

This study confirmed that B. gravinae has a leaf anatomical

structure typical of C3–C4 intermediate plants, as observed

by Apel et al. (1997). Electron microscopic observation was

performed to characterize the more detailed structural

Table 2. Immunogold labelling of the GDC P-protein and Rubisco LS in the M and BS cells of Brassicaceae species

Species and enzyme Cell fraction Number of gold particles (mm�2) Ratio (BS:M cell label density)

M cells BS cells

B. gravinae (C3–C4)

GDC P-protein Mitochondria 10.4611.7 (34) 350.7664.2 (36)** 33.7

Cyt+other 0.860.4 (13) 0.360.4 (7)

Rubisco LS Chloroplasts 381.9648.5 (9) 275.2641.9 (9)** 0.72

Cyt+other ND (6) ND (5)

B. napus (C3)

GDC P-protein Mitochondria 265.5660.0 (29) 205.8680.9 (30)** 0.78

Cyt+other 1.861.1 (14) 0.660.7 (14)

Rubisco LS Chloroplasts 338.8628.6 (9) 288.0631.3 (9)** 0.85

Cyt+other 4.364.2 (7) ND (9)

D. tenuifolia (C3–C4)

Rubisco LS Chloroplasts 207.9625.5 (15) 139.5619.0 (17)** 0.67

Cyt+other 1.161.7 (10) 1.361.5 (10)

R. sativus (C3)

Rubisco LS Chloroplasts 70.9611.0 (17) 58.966.1 (10)** 0.83

Cyt+other 0.360.6 (11) 0.160.3 (9)

Numbers of gold particles per unit area (lm�2) are given as means 6SD. Data obtained from several immunolabelled sections of the same leaf
are shown. Numbers in parentheses show the numbers of organelles or cell profiles examined. Cyt+other, cytosol+other organelles; ND, not
detectable. Asterisks indicate a significant difference between the M and BS cells at P <0.01.

Fig. 3. Immunogold labelling of Rubisco LS in M and BS cells of

B. gravinae (A, C, E) and B. napus (B, D, F). (A, B) Chloroplasts in

M cells; (C, D) centrifugally located chloroplasts within BS cells;

(E, F) centripetally located chloroplasts within BS cells. c, chloroplast;

cw, cell wall; mit, mitochondrion; s, starch grain. Bars¼0.5 lm.
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features of the leaves. The BS cells contained many
chloroplasts in the centripetal position, although chloroplasts

were also distributed in the centrifugal position. The BS

mitochondria were larger than the M mitochondria, and all

of the BS mitochondria were located between the centripetal

chloroplasts and the inner tangential walls. The immunogold

labelling study demonstrated that the GDC P-protein was

expressed strongly in the BS mitochondria, whereas the

protein was essentially absent from the M mitochondria.
Brassica gravinae had high Rubisco activity but low activities

of C4 photosynthetic enzymes. These data suggest that the C4

cycle does not operate to any significant extent in the leaves

of B. gravinae. Among grass species, the activities of the

photorespiratory enzymes glycolate oxidase and catalase are

much lower in C4 grasses than in C3 grasses (Ueno et al.,
2005). Brassica gravinae also had higher activities of these

photorespiratory enzymes than the control C4 species. The

activity levels are comparable with those found in the C3

species B. napus and B. rapa. Previous studies of C3–C4

intermediate species, including Moricandia arvensis, have

reported that they had relatively high activities of photo-

respiratory enzymes (Rawsthorne et al., 1988; Devi and

Raghavendra, 1993). Taken together, the structural and
biochemical results suggest that B. gravinae is a C3–C4

intermediate species that reduces photorespiratory CO2

loss by using the glycine shuttle. It seems that the photosyn-

thetic carbon metabolism is similar to that of the C3–C4

intermediate species of Moricandia and Diplotaxis.

Table 4. Activities of photosynthetic and photorespiratory enzymes in leaves of B. gravinae and control C3 and C4 plants

Enzyme Activity (mmol mg�1 Chl h�1)

B. gravinae (C3–C4) B. napus (C3) B. rapa (C3) P. maximum (C4)

Rubisco 322628 483633 628 202

Phosphoenolpyruvate carboxylase 58610 1563 52 527

NADP-malic enzyme 3462 2764 37 13

NAD-malic enzyme 2365 1663 24 83

Phosphoenolpyruvate carboxykinase 1663 ND ND 389

Glycolate oxidase 49612 5266 102 16

Hydroxypyruvate reductase 526642 308611 607 647

Catalase 89 60065100 54 900612 100 97 300 16 300

Values of B. gravinae and B. napus are given as the means 6SD of three plants. Values for B. rapa and P. maximum were each obtained from
a single plant. ND, not detectable.

Table 3. Comparison of labelling densities of Rubisco LS in centrifugally and centripetally located chloroplasts within BS cells of C3–C4

intermediate and C3 species

Species and BS cells Cell fraction Number of gold particles (nm�2) Ratio

Cf Cp (Cp:Cf label density)

B. gravinae (C3–C4)

BS cell 1 Adaxial cell Chloroplasts 368.3648.2 (5) 318.3634.1 (9)** 0.86

Cyt+other ND (5) 0.360.8 (6)

BS cell 2 Abaxial cell Chloroplasts 347.9628.6 (6) 297.8622.4 (8)** 0.86

Cyt+other ND (4) ND (6)

BS cell 3 Abaxial cell Chloroplasts 329.5630.2 (10) 258.1646.0 (11)** 0.78

Cyt+other ND (8) ND (5)

B. napus (C3)

BS cells 3 abaxial cells Chloroplasts 314.5629.3 (6) 318.7625.4 (4) NS 1.01

Cyt+other 1.162.7 (6) ND (4)

D. tenuifolia (C3–C4)

BS cell 1 Adaxial cell Chloroplasts 135.464.6 (6) 145.4613.5 (8) NS 1.07

Cyt+other 0.260.4 (6) 0.260.2 (5)

BS cell 2 Lateral cell Chloroplasts 144.8614.7 (7) 138.863.4 (7) NS 0.96

Cyt+other ND (7) 0.260.1 (6)

BS cell 3 Abaxial cell Chloroplasts 130.968.2 (5) 128.7615.5 (9) NS 0.98

Cyt+other ND (5) 0.460.3 (6)

Numbers of gold particles per unit area (lm�2) are given as means 6SD. Numbers in parentheses show the numbers of chloroplasts or cell
profiles examined. Measurements were made for BS cells surrounding the same vascular bundle on several immunolabelled sections of the
same leaf. Cf, centrifugally located chloroplasts; Cp, centripetally located chloroplasts; Cyt+other, cytosol+other organelles; ND, not detectable.
Asterisks indicate a significant difference between the centrifugally and centripetally located chloroplasts at P <0.01. NS, not significant.
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In leaves of B. gravinae, the M layer was clearly

differentiated into palisade and spongy tissues. This structure

differed from that found in the C3–C4 intermediates

M. arvensis and D. tenuifolia, in which the M layer was not

clearly differentiated into palisade and spongy tissues (Ueno

et al., 2003, 2007). Within the tribe Brassiceae, the genera

Brassica and Diplotaxis belong to the subtribe Brassicinae,

and the genus Moricandia to the subtribe Moricandiinae
(Warwick and Black, 1993, 1994). Thus, it is unlikely that the

difference in M structure reflects the phylogenetic relation-

ships among these three genera. The M structure found in

B. gravinae might represent a primitive feature of C3–C4

intermediacy relative to that in the C3–C4 intermediates of

Moricandia and Diplotaxis, because the M layers of C3

species in the Brassicaceae are clearly differentiated into

palisade and spongy tissues (Ueno et al., 2003, 2006, 2007).
Apel et al. (1997) reported that the CO2 compensation

concentration of B. gravinae was 22.7 lmol mol�1 whereas

those of M. arvensis and D. tenuifolia were 11.1 and 4.9–15.2

lmol mol�1, respectively. These data may also reflect the

evolutionary status of C3–C4 intermediacy in B. gravinae.

Cellular distribution of Rubisco during the evolution from
C3 to C3–C4 intermediate plants

The immunogold labelling procedure used here would be the

best method with which to evaluate the cellular accumulation

of protein accurately. However, it is important to point out

that there are limitations in the interpretation of the data.
A difference in labelling density for a given protein does not

always represent a difference in the absolute quantity of the

protein, if compared between different species, because the

cross-reactivity of the antiserum may differ between species.

Thus, the lower labelling densities of Rubisco LS in R. sativus

than in other species (Table 2) do not indicate a lower

absolute quantity of this protein in R. sativus. This is also the

case for the analysis of different proteins within the same
species. For example, the labelling densities of GDC P-protein

and Rubisco LS were similar within B. napus (Table 2), but

this does not mean that the two proteins are accumulated to

similar levels. However, it is possible to assess the relative

amounts of a given protein in different cells within the same

leaf. Thus, the ratios of labelling density between the BS and

M cells could be compared among different species of the

Brassicaceae.
This study demonstrated that, in the C3–C4 intermediate and

C3 species of the Brassicaceae, the density of Rubisco protein

per unit area (unit volume) of chloroplast is lower in BS

chloroplasts than in M chloroplasts. In both B. napus (C3) and

B. gravinae (C3–C4), the BS chloroplasts were smaller than the

M chloroplasts. In the Brassicaceae, therefore, it is likely that

the structural and biochemical characteristics of M and BS

chloroplasts were maintained during the evolution from C3

to C3–C4 intermediate plants, without large modification.

However, an increase in chloroplast number occurred in the

BS cells of C3–C4 intermediate plants, accompanied by

an increase in the number of mitochondria (Brown and

Hattersley, 1989). This increase in chloroplast number would

be largely responsible for the increased partitioning of Rubisco

into BS cells relative to M cells in C3–C4 intermediate plants

as compared with C3 plants. In addition, a comparison of the

size ratio of the BS chloroplasts to the M chloroplasts in

B. napus and B. gravinae suggests that enlargement of

centripetally located chloroplasts occurred during the evolu-

tion of C3 to C3–C4 intermediate plants. This structural event

could also have contributed to the increased partitioning of
Rubisco into the BS cells of C3–C4 intermediates. Moore et al.

(1988) reported that Rubisco activities on the basis of

chlorophyll content were almost the same in the M and BS

cells of Flaveria ramosissima, a C3–C4 intermediate with

C4-cycle activity. Bauwe (1984b) showed that there was no

large difference in the kinetic properties of Rubisco between

C3 and C3–C4 intermediate species of Moricandia. In the

leaves of other C3–C4 intermediates, the kinetic constants of
Rubisco are C3-like (Wessinger et al., 1989; Hudson et al.,

1990; Kubien et al., 2008). It is unknown, however, whether

the kinetic properties of Rubisco differ between the M and BS

cells of C3–C4 intermediate plants.

As discussed earlier, the BS cells of C3–C4 intermediate

species in the Brassicaceae possess both centrifugally and

centripetally located chloroplasts (Ueno et al., 2003, 2007).

This intracellular location of chloroplasts differs from that
in the BS cells of NAD-malic enzyme type C4 plants, in

which all chloroplasts are located in the centripetal position

(Yoshimura et al., 2004). In B. gravinae the size of BS

chloroplasts did not differ between the two positions.

C3 plants also include chloroplasts in the BS cells (Yoshimura

et al., 2004; Tsutsumi et al., 2008), although there are fewer

than in the BS cells of C3–C4 intermediate plants (Brown

and Hattersley, 1989). In the BS cells of B. napus, the
centripetally located chloroplasts were smaller than the

centrifugally located chloroplasts. Thus, it is evident that

a BS cell can develop chloroplasts of different sizes,

although the developmental mechanism remains unknown.

This study indicated that the labelling density of Rubisco is

the same in the centrifugally and centripetally located chlor-

oplasts within the BS cell of D. tenuifolia (C3–C4). In B. napus

(C3), the same accumulation pattern was found in the two
types of BS chloroplasts, although comparisons could not be

made within individual BS cells because of the small number

of chloroplasts per cell. In B. gravinae, however, the labelling

density of Rubisco was lower in the centripetally located

chloroplasts than in the centrifugally located chloroplasts,

indicating that Rubisco may accumulate to different levels

among the chloroplasts within a single BS cell. Further studies

with a greater number of samples will be required to confirm
these results. In single-celled C4 plants of the Chenopodiaceae,

however, it has been reported that Rubisco protein is

differentially accumulated in chloroplasts at different loca-

tions within a photosynthetic cell (Voznesenskaya et al., 2001,

2002), although the regulatory mechanism is unknown.

The functional role of BS cells in C3 plants remains

elusive (Yoshimura et al., 2004; Leegood, 2008; Tsutsumi

et al., 2008; Janacek et al., 2009; Kangasjarvi et al., 2009).
This study and others (Ueno et al., 2003; Yoshimura et al.,

2004; Tsutsumi et al., 2008) have demonstrated that the BS
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cells in C3 plants accumulate photosynthetic and photo-

respiratory enzymes, as do the M cells. However, the

amounts of enzymes are much lower in the BS cells than in

the M cells, suggesting reduced capacities for photosyn-

thetic and photorespiratory functions in the BS cells. In the

BS cells of C3–C4 intermediate plants, glycine exported

from the M cells is decarboxylated by GDC in the

mitochondria. Therefore, it is thought that high CO2 partial
pressure is maintained within the BS cells, enabling Rubisco

to maintain a reduced level of oxygenase activity (von

Caemmerer, 2000; Bauwe, 2011). A gradient of CO2 partial

pressure may occur from the proximal end to the distal end

of the BS cell, because glycine decarboxylation occurs in the

mitochondria located in the proximal end. The intercellular

gradient of density of Rubisco found between the M and BS

cells of C3–C4 intermediate species, and the possible in-
tracellular gradient of Rubisco observed within the BS cell

of B. gravinae, may reflect differences in the CO2 concentra-

tion experienced by these photosynthetic cells.

This study examined several aspects of the evolutionary

transition from C3 to C3–C4 intermediate plants lacking C4

cycle activity, with special attention to cellular expression of

Rubisco. At present, it is still unknown how the expression

of Rubisco became restricted to BS cells during the
evolutionary transition from C3–C4 intermediate to C4

plants. Further studies will be required to elucidate the

process of cellular compartmentalization of enzymes that

accompanied the structural modification of leaf cells during

the evolution from C3 to C4 plants.
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