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Introduction

Through the ostensibly infallible process of logical deduction, Euclid of Alexandria (ca. 300
B.C.) derived a colossal body of geometric facts from a bare minimum of genetic material: five
postulates — five simple geometric assumptions that he listed at the beginning of his masterpiece,
the Elements. That Euclid could produce hundreds of unintuitive theorems from five patently
obvious assumptions about space, and, still more impressively, that he could do so in a manner
that precluded doubt, sufficed to establish the Elements as mankind’s greatest monument to the
power of rational organized thought. As a logically impeccable, tightly wrought description of
space itself, the Elements offered humanity a unique anchor of definite knowledge, guaranteed to
remain eternally secure amidst the perpetual flux of existence — a rock of certainty, whose truth,
by its very nature, was unquestionable.

This universal, even transcendent, aspect of the Elements has profoundly impressed Euclid’s
readers for over two millennia. In contrast to all explicitly advertised sources of transcendent
knowledge, Euclid never cites a single authority and he never asks his readers to trust his own
ineffably mystical wisdom. Instead, we, his readers, need not accept anything on faith; we are
free and even encouraged to remain skeptical throughout. Should one doubt the validity of the
Pythagorean Theorem (Elements I.47), for example, one need not defer to the reputation of “the
great Pythagoras”. Instead, one may satisfy oneself in the manner of Thomas Hobbes, whose first
experience with Euclid was described by John Aubrey, in his Brief Lives, in the following words.

He was 40 years old before he looked on Geometry; which happened accidentally. Being
in a Gentleman’s library, Euclid’s Elements lay open, and ’twas the 47 E. Libri I. He
read the Proposition. By G —, says he, (he would now and then sweare an emphaticall
Oath by way of emphasis) this is impossible! So he reads the Demonstration of it,
which referred him back to such a Proposition; which proposition he read. That referred
him back to another, which he also read. Et sic deincips and so on that at last he was
demonstratively convinced of that truth. This made him in love with Geometry.

The Elements was an educational staple until the early twentieth century. So long as reading
it remained a common experience among the educated, Euclid’s name was synonymous with
demonstrable truth1. It is not an exaggeration to assert that Euclid was the envy of both philosophy

1 At the very least, the demonstrations in the Elements were acknowledged as the strongest possible sort of which the
rational mind is capable. “It is curious to observe the triumph of slight incidents over the mind: — What incredible weight
they have in forming and governing our opinions, both of men and things — that trifles, light as air, shall waft a belief
into the soul, and plant it so immovably within it – that Euclid’s demonstrations, could they be brought to batter it in
breach, should not all have power to overthrow it.” (Laurence Sterne, The Life and Opinions of Tristram Shandy. Book
IV, Ch. XXVII)

xi
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xii Lobachevski Illuminated

and theology. In his Meditations, Descartes went so far as to base his certainty that God exists
on his certainty that Euclid’s 32nd proposition is true. This was but a single instance out of many
in which theology has tried to prop itself up against the rock of mathematics. Euclid’s Elements,
for all its austerity, appeals to a deep-seated human desire for certainty. This being the case, any
individual with the impertinence to challenge Euclid’s authority was certain to inspire reactions
of both incredulity and scorn.

But how exactly can one challenge Euclid’s authority? Euclid asks us to accept nothing
more than five postulates, and all else follows from pure logic. Therefore, if there is anything to
challenge in the Elements, it can only be in the postulates themselves. The first four seem almost
too simple to question. Informally, they describe the geometer’s tools: a straightedge, a compass,
and a consistent means for measuring angles. The fifth postulate, however, is of a rather different
character:

That, if a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet on
that side on which are the angles less than the two right angles.

This is Euclid’s famous parallel postulate, so called because it forms the basis for his theory
of parallels, which, in turn, forms the basis for nearly everything else in geometry. Modern
geometry texts almost invariably replace this postulate with an alternative, to which it is logically
equivalent: given a line and a point not on it, there is exactly one line that passes through the point
and does not intersect the line. Particularly when expressed in this alternate form, the parallel
postulate does strike most as “self-evident”, and thus beyond question for any sane individual. It
would seem, therefore, that Euclid has no significant weaknesses; his geometry is the geometry —
impregnable, inevitable, and eternal.

The timeless, almost icy, perfection that characterizes Euclid’s work made it not only a
logical masterpiece, but an artistic one as well. In this latter aspect, commentators often singled
out the parallel postulate as the unique aesthetic flaw in the Elements. The problem was that the
parallel postulate seemed out of place: it read suspiciously like a theorem — something that Euclid
should have proved from his earlier postulates, instead of adjoining it to their ranks. This structural
incongruity — a postulate that “should be” a theorem — disturbed many mathematicians from
antiquity to the 19th century. We may safely presume that Euclid tried and failed to prove the
postulate as a theorem. We know that Euclid’s followers and admirers tried to do as much, hoping
to perfect their master’s work by polishing away this one small but irritating blemish. Many
believed that they had succeeded.

Records of flawed “proofs” rarely survive, as there generally seems no reason to preserve
them, so the astonishing number of alleged proofs of the parallel postulate that have come down
to us should serve to indicate just how much attention was given to this problem. Proclus, a
5th-century neo-Platonic philosopher, who wrote an extensive commentary on the first book of
the Elements, describes two attempts: one by Posidonius (2nd century B.C.), the other by Ptolemy
(the 2nd-century A.D. author of the Almagest, the Bible of geocentric astronomy). Both arguments,
Proclus points out, are inadmissible because they contain subtle flaws. After detailing these flaws,
Proclus proceeded to give his own proof, thus settling the matter for once and all — or so he
thought. Proclus’ proof, for all his critical acumen, was just as faulty as those he had criticized.

We have flawed proofs by Aghanis (5th century) and Simplicius (6th-century), two Byzantine
scholars. Many others by medieval Islamic mathematicians have survived, including attempts
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by al-Jawhari and Thabit ibn Qurra in the 9th century, al-Haytham and Omar Khayyám in
the 11th, and Nasir-Eddin al-Tusi in the 13th. There are even a few specimens from medieval
Europe, such as those conceived by Vitello in the 13th century and Levi ben Gerson in the
14th. A veritable horde of later Europeans left purported proofs of the postulate (to cite just a
few examples: Christopher Clavius in 1574, Pietro Antonio Cataldi in 1604, Giovanni Alfonso
Borelli in 1658, Gerolamo Saccheri in 1733, Louis Bertrand in 1788, and Adrien Marie Legendre,
who published many attempts between 1794 and 1832). Indeed, in 1763, G.S. Klügel wrote a
dissertation examining no less than twenty-eight unsound “proofs” of the postulate. Interestingly,
most would-be postulate provers followed Proclus in explicitly criticizing one or more of their
predecessors’ attempts before giving their own flawed “proof to end all proofs”.2

Adhering to long-standing custom, Nikolai Ivanovich Lobachevski (1792–1856) began many
of his own works on the subject by criticizing the alleged proofs of his immediate predecessor,
Legendre. However, instead of forging the chain’s next link, Lobachevski suggested that the chain
be discarded altogether. He insisted that the parallel postulate cannot be proved from Euclid’s
first four postulates. In this sense, Lobachevski was a great defender of Euclid: he felt that Euclid
was fully justified in assuming the parallel postulate as such; indeed, he believed that Euclid had
no other way to obtain it.

In another sense, Lobachevski believed that Euclid was wholly unjustified in assuming the
parallel postulate, for we cannot be certain that it accurately describes the behavior of lines in
physical space. Euclidean tradition declares that it does, but the universe is not obliged to respect
humanity’s traditional beliefs about space, even those codified by its great authority, Euclid of
Alexandria. Lobachevski considered the validity of the parallel postulate an empirical question,
to be settled, if possible, by astronomical measurements.

Unorthodoxy quickly led to heresy: proceeding from the assumption that the parallel postu-
late does not hold, Lobachevski began to develop a new geometry, which he called imaginary
geometry3, whose results contradicted Euclid’s own. He first described this strange new world
on February 24, 1826, in a lecture at the University of Kazan. His first written publication on the
subject dates from 1829. Several others followed, and after a decade of failed attempts to convince
his fellow Russians of the significance of his work, he published accounts of it in French (in
1837) and German (in 1840), hoping to attract attention in Western Europe. He found none. By
the time that he wrote Pangeometry (1855), he was blind (he had to dictate the book), exhausted,
and embittered. He died the following year.4

In fact, although Lobachevski never knew it, his work did find one sympathetic reader in his
lifetime: Karl Friedrich Gauss (1777–1855), often classed with Isaac Newton and Archimedes
as one of the three greatest mathematicians who have ever lived. Gauss shared Lobachevski’s
convictions regarding the possibility of an alternate geometry, in which the parallel postulate does

2 For detailed descriptions of many alleged proofs of the postulate, consult Rosenfeld (Chapter 2) or Bonola (Chapters
1 and 2).
3 By the end of his life, he preferred the name pangeometry, for reasons that will become clear by the end of The Theory
of Parallels. Other common adjectives for Lobachevski’s geometry are non-Euclidean (used by Gauss), hyperbolic
(introduced by Felix Klein), and Lobachevskian (used by Russians).
4 His French paper of 1837, Géométrie Imaginaire, appeared in August Crelle’s famous journal, Journal für die Reine
und Angewandte Mathematik (Vol. 17, pp. 295–320). His German publication of 1840 was The Theory of Parallels;
its full title is Geometrische Untersuchungen zur Theorie der Parallelinien (Geometric Investigations on the Theory of
Parallels). Lobachevski wrote two versions of Pangeometry, one in French and one in Russian.
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not hold. He reached these conclusions earlier than Lobachevski, but abstained, very deliberately,
from publishing his opinions or investigations. Fearing that his ideas would embroil him in
controversy, the very thought of which Gauss abhorred, he confided them only to a select few
of his correspondents, most of them astronomers. When Gauss read an unfavorable review
of Lobachevski’s Theory of Parallels, he dismissed the opinions of the reviewer, hastened to
acquire a copy of the work, and had the rare pleasure of reading the words of a kindred, but
more courageous, spirit. Gauss was impressed; he even sought out and read Lobachevski’s early
publications in Russian. To H.C. Schumacher, he wrote in 1846, “I have not found anything in
Lobachevski’s work that is new to me, but the development is made in a different way from the
way I had started and, to be sure, masterfully done by Lobachevski in the pure spirit of geometry.”

True to his intent, Gauss’ radical thoughts remained well-hidden during his lifetime, but
within a decade of his death, the publication of his correspondence drew the attention of the
mathematical world to non-Euclidean geometry. Though the notion that there could be two
geometries did indeed generate controversy, the fact that Gauss himself endorsed it was enough
to convince several mathematicians to track down the works of the unknown Russian whom
Gauss had praised so highly. Unfortunately, Lobachevski reaped no benefit from this interest;
he was already dead by that time, as was the equally obscure Hungarian mathematician, János
Bolyai (1802–1860), whose related work also met with high praise in Gauss’ correspondence.

Bolyai had discovered and developed non-Euclidean geometry independently of both
Lobachevski and Gauss. He published an account of the subject in 1832, but it had essen-
tially no hope of finding an audience: it appeared as an appendix to a two-volume geometry text,
written by his father, Farkas Bolyai, in Latin. Farkas Bolyai, who had known Gauss in college,
sent his old friend a copy of his son’s revolutionary studies. Gauss’ reply — that all this was
already known to him — so discouraged the young János, that he never published again, and
even ceased communicating with his father, convinced that he had allowed Gauss to steal and
take credit for his own discoveries. Father and son were eventually reconciled, but Bolyai was
doubly disheartened some years later to learn that his own Appendix could not even claim the
honor of being the first published account of non-Euclidean geometry: Lobachevski’s earliest
Russian paper antedated it by several years.

As mathematicians began to re-examine the work of Lobachevski and Bolyai, translating it
into various languages, extending it, and grappling with the philosophical problems that it raised,
they changed the very form of the subject in order to assimilate it into mainstream mathematics. By
1900, non-Euclidean geometry remained a source of wonder, but it had ceased to be a controversial
subject among mathematicians, who were now describing it in terms of differential geometry,
projective geometry, or Euclidean “models” of the non-Euclidean plane. These developments
and interpretations helped mathematicians domesticate the somewhat nightmarish creatures that
Lobachevski and Bolyai had loosed upon geometry. Much was gained, but something of great
psychological importance was also lost in the process. The tidy forms into which the subject had
been pressed scarcely resembled the majestic full-blooded animal that Lobachevski and Bolyai
had each beheld, alone, in the deep dark wild wood.

Today, in 2011, the vigorous beast is almost never seen in its original habitat. Just as we
give toy dinosaurs and soft plushy lions to children, we give harmless non-Euclidean toys, such
as the popular Poincaré disc model, to mathematics majors. We take advanced students to the
zoo of differential geometry and while we are there, we pause — briefly, of course — to point
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out a captive specimen of hyperbolic geometry, sullenly pacing behind bars of constant negative
curvature.

If we are to understand the meaning of non-Euclidean geometry — to understand why it
wrought such important changes in mathematics — we must first recapture the initial fascination
and even the horror that mathematicians felt when confronted with the work of Lobachevski
and Bolyai. This, however, is difficult. The advent of non-Euclidean geometry changed the
mathematical landscape so profoundly that the pioneering works themselves were obscured in
the chaos of shifting tectonic plates and falling debris. Mathematical practices of the early 19th
century are not the same as those of the early 21st. The gap of nearly two centuries generally
precludes the possibility of a sensitive reading of Lobachevski’s works by a modern reader. This
book is an attempt to rectify the situation, by supplying the contemporary reader with all of the
tools necessary to unlock this rich, beautiful, but generally inaccessible world. But where does
one start?

Gauss left us nothing to work with. Bolyai’s Appendix is out of the question; his writing is
often terse to the point of incomprehensibility. Lobachevski is far clearer, but he too makes heavy
demands on his readers. Perhaps we should read his earliest works? In 1844, Gauss described
them (in a letter to C.L. Gerling) as “a confused forest through which it is difficult to find a
passage and perspective, without having first gotten acquainted with all the trees individually.”
At the other chronological extreme, Lobachevski’s final work, Pangeometry, is inappropriate for
beginners since it merely summarizes the elementary parts of the subject, referring the reader to
The Theory of Parallels, his German book of 1840, for proofs. Pangeometry does make a logical
second book to read, but the book that it leans upon, The Theory of Parallels, remains the best
point of ingress for the modern mathematician.

Accordingly, the following pages contain a new English version of The Theory of Parallels,
together with mathematical, historical, and philosophical commentary, which will expand and
explain Lobachevski’s often cryptic statements (which even his contemporaries failed to grasp),
and link his individual propositions to the related work of his predecessors, contemporaries,
and followers. Resituated in its proper historical context, Lobachevski’s work should once again
reveal itself as an exciting, profound, and revolutionary mathematical document.

The complete text of Lobachevski’s Theory of Parallels appears twice within the pages of
this book. In the appendix, it appears as a connected whole, in its first English translation since
Halsted’s in 1891. In the body of the book, the complete text appears a second time, but broken
into more than 100 pieces; I have woven my illumination around these hundred-odd pieces. Lest
there be any confusion as to whose voice is speaking at any given place in the book, Lobachevski’s
words have been printed in red, while everything else is printed in black.
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A Note to the Reader

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

—Alice in Wonderland, Chapter 12

Although following the King of Hearts’ advice may be the most rigorous way to read Lobachevski
Illuminated, it is hardly the only way. Beginning at the beginning is always a sensible idea, but
one need not feel compelled to “go on” through the details of each and every auxiliary proof
that I provide along the way. Many readers, first-time readers in particular, will simply want an
overview of Lobachevski’s accomplishments and methods. If you are such a person, then you
should feel free to skip any technical proofs that threaten to divert you from the main narrative
thread.

Ideally, one should at least read the statements of the propositions that I prove in the notes.
What one chooses to do with them will then vary from reader to reader. Some will want to
try coming up with their own proofs. Others will simply read mine. Still others will take the
statements on faith and move on, confident in the knowledge that the proofs are there, patiently
waiting, should they ever need to be consulted. All of these are reasonable approaches.

Of course, the further one travels into the counterintuitive non-Euclidean countryside, the less
confidence one will have in dismissing anything as “obvious”, “trivial”, or “a mere technicality”.
If you have never left the Euclidean world before, then be forewarned: you are about to embark
on a thoroughly disorienting (but strangely exhilarating) journey. Some readers will be more
comfortable taking one tiny step at a time into this new land, mapping the terrain slowly and
carefully, proving everything in detail, until even its most alien features take on a kind of
unexpected familiarity. Others will charge boldly ahead, skipping many proofs, eager to reach
the dark heart of the matter as quickly as possible; they will get there, of course, but are likely
to find themselves so thoroughly befuddled that they will almost certainly want to go back and
carefully retrace their steps so as to make some retrospective sense of the strange sights they have
beheld. Again, both approaches are fine, and are ultimately a matter of individual psychology.
An approach somewhere between these two extremes is probably best.

Of course, there will be some readers who will want considerably more technical detail than
I’ve provided. In particular, some may desire a rigorously-argued Hilbert-style examination of
the foundations of geometry. Others won’t stop even there, and will want to dig into the primal
matter of logic itself. But as with its readers, so a book’s author must draw the line somewhere.

I have laid out the meal. Fall to it and eat. Only you can decide what to put on your plate.

xvii
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. “Géométrie Imaginaire.” Journal für die reine und angewandte Mathematik. Vol. 17 (1837), pp.
295–320.
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Appendix: Nicolai Ivanovich Lobachevski’s
Theory of Parallels

In geometry, I have identified several imperfections, which I hold responsible for the fact that
this science, apart from its translation into analysis, has taken no step forward from the state
in which it came to us from Euclid. I consider the following to be among these imperfections:
vagueness in the basic notions of geometric magnitudes, obscurity in the method and manner of
representing the measurements of such magnitudes, and finally, the crucial gap in the theory of
parallels. Until now, all mathematicians’ efforts to fill this gap have been fruitless. Legendre’s
labors in this area have contributed nothing. He was forced to abandon the one rigorous road,
turn down a side path, and seek sanctuary in extraneous propositions, taking pains to present
them—in fallacious arguments—as necessary axioms.

I published my first essay on the foundations of geometry in the “Kazan Messenger” in the
year 1829. Hoping to provide an essentially complete theory, I then undertook an exposition of the
subject in its entirety, publishing my work in installments in the “Scholarly Journal of the Univer-
sity of Kazan” in the years 1836, 1837, and 1838, under the title, “New Principles of Geometry,
with a Complete Theory of Parallels”. Perhaps it was the extent of this work that discouraged my
countrymen from attending to its subject, which had ceased to be fashionable since Legendre. Be
that as it may, I maintain that the theory of parallels should not forfeit its claim to the attentions
of geometers. Therefore, I intend here to expound the essence of my investigations, noting in
advance that, contrary to Legendre’s opinion, all other imperfections, such as the definition of
the straight line, will prove themselves quite foreign here and without any real influence on the
theory of parallels. Lest my reader become fatigued by a multitude of theorems whose proofs
present no difficulties, I shall list here in the preface only those that will actually be required later.

1) A straight line covers itself in all its positions. By this, I mean that a straight line
will not change its position during a rotation of a plane containing it if the line passes
through two fixed points in the plane.

2) Two straight lines cannot intersect one another in two points.

3) By extending both sides of a straight line sufficiently far, it will break out of any
bounded region. In particular, it will separate a bounded plane region into two parts.

4) Two straight lines perpendicular to a third will never intersect one another,
regardless of how far they are extended.

5) When a straight lines passes from one side to the other of a second straight line,
the lines always intersect.
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6) Vertical angles, those for which the sides of one angle are the extensions of the
other, are equal. This is true regardless of whether the vertical angles lie in the plane
or on the surface of a sphere.

7) Two straight lines cannot intersect if a third line cuts them at equal angles.

8) In a rectilinear triangle, equal sides lie opposite equal angles, and conversely.

9) In rectilinear triangles, greater sides and angles lie opposite one another. In a
right triangle, the hypotenuse is greater than either leg, and the two angles adjacent
to it are acute.

10) Rectilinear triangles are congruent if they have a side and two angles equal, two
sides and their included angle equal, two sides and the angle that lies opposite the
greatest side equal, or three sides equal.

11) If a straight line is perpendicular to two intersecting lines, but does not lie in
their common plane, then it is perpendicular to all straight lines in their common
plane that pass through their point of intersection.

12) The intersection of a sphere with a plane is a circle.

13) If a straight line is perpendicular to the intersection of two perpendicular planes
and lies in one of them, then it is perpendicular to the other plane.

14) In a spherical triangle, equal angles lie opposite equal sides, and conversely.

15) Spherical triangles are congruent if they have two sides and their included angle
equal, or one side and its adjacent angles equal.

Explanations and proofs shall accompany the theorems from now on.

Proposition 16
In a plane, all lines that emanate from a point can be partitioned into two classes with respect to
a given line in the same plane; namely, those that cut the given line and those that do not cut it.

The boundary-line separating the classes from one another shall be called a parallel to the
given line.

D

D′
A

E

G

H

K′

C
F

B

K

E′

H ′
From point A (see figure at right), drop the

perpendicular AD to the line BC , and erect the
perpendicular AE upon it. Now, either all of the
lines entering the right angle �E AD through A
will, like AF in the figure, cut DC , or some of
these lines will not cut DC , resembling the perpen-
dicular AE in this respect. The uncertainty as to
whether the perpendicular AE is the only line that
fails to cut DC requires us to suppose it possible
that there are still other lines, such as AG, which do not cut, no matter how far they are extended.

At the transition from the cutting lines such as AF to the non-cutting lines such as AG, one
necessarily encounters a parallel to DC . That is, one will encounter a boundary line AH with the
property that all the lines on one side of it, such as AG, do not cut DC , while all the lines on the
other side of it, such as AF , do cut DC .
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The angle �H AD between the parallel AH and the perpendicular AD is called the angle
of parallelism; we shall denote it here by �(p), where p = AD. If �(p) is a right angle, then
the extension AE ′ of AE will be parallel to the extension DB of the line DC . Observing the
four right angles formed at point A by the perpendiculars AE , AD, and their extensions AE ′ and
AD′, we note that any line emanating from A has the property that either it or its extension lies
in one of the two right angles facing BC . Consequently, with the exception of the parallel E E ′,
all lines through A will cut the line BC when sufficiently extended.

If �(p) < π/2, then the line AK , which lies on the other side of AD and makes the same
angle �D AK = �(p) with it, will be parallel to the extension DB of the line DC . Hence, under
this hypothesis we must distinguish directions of parallelism.

Among the other lines that enter either of the two right angles facing BC , those lying between
the parallels (i.e. those within the angle �H AK = 2�(p)) belong to the class of cutting-lines.
On the other hand, those that lie between either of the parallels and E E ′ (i.e. those within either
of the two angles �E AH = π/2 − �(p) or �E ′ AK = π/2 − �(p)) belong, like AG, to the
class of non-cutting lines.

Similarly, on the other side of the line E E ′, the extensions AH ′ and AK ′ of AH and AK are
parallel to BC ; the others are cutting-lines if they lie in the angle �K ′ AH ′, but are non-cutting
lines if they lie in either of the angles �K ′ AH ′ or �H ′ AE ′.

Consequently, under the presupposition that �(p) = π/2, lines can only be cutting-lines or
parallels. However, if one assumes that �(p) < π/2, then one must admit two parallels, one on
each side. Furthermore, among the remaining lines, one must distinguish between those that cut
and those that do not cut. Under either assumption, the distinguishing mark of parallelism is that
the line becomes a cutting line when subjected to the smallest deviation toward the side where
the parallel lies. Thus, if AH is parallel to DC , then regardless of how small the angle �H AF
may be, the line AF will cut DC .

A

C

B

D

E

K

F

GH

Proposition 17
A straight line retains the distinguishing mark of parallelism at
all its points.

Let AB be parallel to C D, with AC perpendicular to the
latter. We shall examine two points, one chosen arbitrarily from
the line AB and one chosen arbitrarily from its extension beyond
the perpendicular.

A

C

B

D

E′

K′ G′

F ′ F

G

Let E be a point on that side of the perpendicular in which
AB is parallel to BC . From E , drop a perpendicular E K to
C D, and draw any line E F lying within the angle �B E K .
Draw the line through the points A and F. Its extension must
intersect C D (by TP 16) at some point G. This produces a
triangle �ACG, which is pierced by the line E F . This line,
by construction, cannot intersect AC ; nor can it intersect AG
or E K a second time (TP 2). Hence, it must meet C D at some
point H (by TP 3).

Now let E ′ be a point on the extension of AB, and drop a perpendicular E ′K ′ to the extension
of the line C D. Draw any line E ′F ′ with the angle �AE ′ F ′ small enough to cut AC at some point
F ′. At the same angle of inclination towards AB, draw a line AF ; its extension will intersect C D
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(by TP 16) at some point G. This construction produces a triangle �AGC , which is pierced by
the extension of line E ′F ′. This line can neither cut AC a second time, nor can it cut AG, since
�B AG = �B E ′G ′ (by TP 7). Thus, it must meet C D at some point G ′.

Therefore, regardless of which points E and E ′ the lines E F and E ′F ′ emanate from, and
regardless of how little these lines deviate from AB, they will always cut C D, the line to which
AB is parallel.

Proposition 18

A

C

G

B

D

F

E

H

K

L

Two parallel lines are always mutually parallel.
Let AC be perpendicular to C D, a line to which AB is parallel.

From C , draw any line C E making an acute angle �EC D with C D.
From A, drop the perpendicular AF to C E . This produces a right
triangle �AC F , in which the hypotenuse AC is greater than the side
AF (TP 9).

If we make AG = AF and lay AF upon AG, the lines AB
and F E will assume positions AK and G H in such a way that
�B AK = �F AC . Consequently, AK must intersect the line DC at some point K (TP 16),
giving rise to a triangle �AK C . The perpendicular G H within this triangle must meet the
line AK at some point L (TP 3). Measured along AB from A, the distance AL determines the
intersection point of the lines AB and C E . Therefore, C E will always intersect AB, regardless
of how small the angle �EC D may be. Hence, C D is parallel to AB (TP 16).

Proposition 19

A

B

C

D

E

In a rectilinear triangle, the sum of the three angles cannot
exceed two right angles.

Suppose that the sum of the three angles in a triangle is
π + α.

Bisect the smallest side BC at D, draw the line AD, make
its extension DE equal to AD, and draw the straight line EC .
In the congruent triangles �ADB and �C DE (TP 16 and TP 10), we have �AB D = �DC E
and �B AD = �DEC . From this, it follows that the sum of the three angles in �AC E must also
be π + α. We note additionally that �B AC , the smallest angle of �ABC (TP 9), has been split
into two parts of the new triangle �AC E ; namely, the angles �E AC and �AEC .

Continuing in this manner, always bisecting the side lying opposite the smallest angle, we
eventually obtain a triangle in which π + α is the sum of the three angles, two of which are
smaller than α/2 in absolute magnitude. Since the third angle cannot exceed π , α must be either
zero or negative.

B

A C
D

p

q

Proposition 20
If the sum of the three angles in one rectilinear triangle is equal to two
right angles, the same is true for every other triangle.

If we suppose that the sum of the three angles in triangle �ABC
is equal to π , then at least two of its angles, A and C, must be acute.
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From the third vertex, B, drop a perpendicular p to the opposite side, AC . This will split the
triangle �ABC into two right triangles. In each of these, the angle sum will also be π : neither
angle sum can exceed π (TP 19), and the fact that the right triangles comprise triangle �ABC
ensures that neither angle sum is less than π .

q

p

p

q

p

q

p

q

p

p

p

q

p

p

q

p

q q qF G

E H
In this way, we obtain a right triangle

whose legs are p andq; from this we can obtain
a quadrilateral whose opposite sides are equal,
and whose adjacent sides are perpendicular.
By repeated application of this quadrilateral,
we can construct another with sides np and q,
and eventually a quadrilateral E FG H , whose
adjacent sides are perpendicular, and in which
E F = np, E H = mq , H G = np, and FG =
mq, where m and n can be any whole num-
bers. The diagonal F H of such a quadrilateral
divides it into two congruent right triangles, �F E H and �FG H , each of which has angle sum π .

N L J

M

K

The numbers m and n can always be chosen so large that any given
right triangle �J K L can be enclosed within a right triangle �J M N , whose
arms are N J = np and M J = mq , when one brings their right angles into
coincidence. Drawing the line L M yields a sequence of right triangles in
which each successive pair shares a common side.

The triangle �J M N arises as the union of the triangles �N M L and
�J M L . The angle sum exceeds π in neither of these; it must, therefore,
equal π in each case in order to make the composite triangle’s angle sum equal to π . Similarly,
the triangle �J M L consists of the two triangles �K L M and �J K L , from which it follows that
the angle sum of �J K L must equal π .

In general, this must be true of every triangle since each triangle can be cut into two right
triangles. Consequently, only two hypotheses are admissible: the sum of the three angles either
equals π for all rectilinear triangles, or is less than π for all rectilinear triangles.

Proposition 21

A

B D E C
α

From a given point, one can always draw a straight
line that meets a given line at an arbitrarily small
angle.

From the given point A, drop the perpendicular
AB to the given line BC ; choose an arbitrary point
D on BC ; draw the line AD; make DE = AD, and
draw AE . If we let α = �ADB in the right triangle
�AB D, then the angle �AE D in the isosceles tri-
angle �ADE must be less than or equal to α/2 (TP 8
& 19)1. Continuing in this manner, one eventually obtains an angle �AEB that is smaller than
any given angle.

1 I have corrected an apparent misprint occurring in Lobachevski’s text and perpetuated in Halsted’s 1891 translation of
TP. In these sources, Lobachevski cites TP 20 at this point, rather than TP 19. This makes little sense; TP 20 relates the
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Proposition 22
If two perpendiculars to the same straight line are parallel to one another, then the sum of the
three angles in all rectilinear triangles is π .

A

C

B

DE

a

b
F

Let the lines AB and C D be parallel to one another
and perpendicular to AC . From A, draw lines AE and AF
to points E and F chosen anywhere on the line C D such
that FC > EC . If the sum of the three angles equals π − α

in the right triangle �AC E and π − β in triangle �AE F ,
then it must equal π − α − β in triangle �AC F , where α

and β cannot be negative. Further, if we let a = �B AF and
b = �AFC , then α + β = a − b.

By rotating the line AF away from the perpendicular AC , one can make the angle a between
AF and the parallel AB as small as one wishes; one reduces the angle b by the same means. It
follows that the magnitudes of the angles α and β can be none other than α = 0 and β = 0.

From what we have seen thus far, it follows either that the sum of the three angles in all
rectilinear triangles is π , while the angle of parallelism �(p) = π/2 for all lines p, or that the
angle sum is less than π for all triangles, while �(p) < π/2 for all lines p. The first hypothesis
serves as the foundation of the ordinary geometry and plane trigonometry.

The second hypothesis can also be admitted without leading to a single contradiction, es-
tablishing a new geometric science, which I have named Imaginary Geometry, which I intend to
expound here as far as the derivation of the equations relating the sides and angles of rectilinear
and spherical triangles.

Proposition 23

A
A′ A″ K F C

M

H

B

B ″

B′

G D

α

For any given angle α, there is a line p such that �(p) = α.
Let AB and AC be two straight lines forming an acute

angle α at their point of intersection A. From an arbitrary
point B ′ on AB, drop a perpendicular B ′ A′ to AC . Make
A′ A′′ = AA′, and erect a perpendicular A′′ B ′′ upon A′′;
repeat this construction until reaching a perpendicular C D
that fails to meet AB. This must occur, for if the sum of the
three angles equals π -a in triangle �AA′ B ′, then it equals
π − 2a in triangle �AB ′ A′′, and is less than π − 2a in
�AA′′ B ′′ (TP 20); if the construction could be repeated
indefinitely, the sum would eventually become negative,
thereby demonstrating the impossibility of the perpetual construction of such triangles.

The perpendicular C D itself might have the property that all other perpendiculars closer to A
cut AB. At any rate, there is a perpendicular FG at the transition from the cutting-perpendiculars
to the non-cutting-perpendiculars that does have this property. Draw any line FH making an acute
angle with FG and lying on the same side of it as point A. From any point H of F H , drop a
perpendicular H K to AC ; its extension must intersect AB at some point; say, at B. In this way,

angle sum of one triangle to the angle sums of all triangles – an issue having scarcely anything to do with the present
proposition’s modest concerns. - SB
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the construction yields a triangle �AK B, into which the line F H enters and must, consequently,
meet the hypotenuse AB at some point M . Since the angle �G F H is arbitrary and can be chosen
as small as one wishes, FG is parallel to AB, and AF = p. (TP 16 and 18).

It is easy to see that with the decrease of p, the angle α increases, approaching the value
π/2 for p = 0; with the increase of p, the angle α decreases, approaching ever nearer to zero for
p = ∞.

Since we are completely free to choose the angle that shall be assigned to the symbol �(p)
when p is a negative number, we shall adopt the convention that �(p) + �(−p) = π , an equation
which gives the symbol a meaning for all values of p, positive as well as negative, and for p = 0.

Proposition 24
The farther parallel lines are extended in the direction of their parallelism, the more they approach
one another.

A E B

D

G

FC

Upon the line AB, erect two perpendiculars AC = B D, and
join their endpoints C and D with a straight line. The resulting
quadrilateral C AB D will have right angles at A and B, but acute
angles at C and D (TP 222). These acute angles are equal to one
another; one can easily convince oneself of this by imagining
laying the quadrilateral upon itself in such a way that the line
B D lies upon AC , and AC lies upon B D. Bisect AB. From the
midpoint E , erect the line E F perpendicular to AB; it will be perpendicular to C D as well, since
the quadrilaterals C AE F and F E B D coincide when one is laid on top of the other in such a way
that F E remains in the same place.

Consequently, the line C D cannot be parallel with AB. On the contrary, the line from point
C that is parallel to AB, which we shall call CG, must incline toward AB (TP 16), cutting from
the perpendicular B D a part BG < C A. Since C is an arbitrary point of the line CG, it follows
that the farther CG is extended, the nearer it approaches AB.

Proposition 25
Two straight lines parallel to a third line are parallel to one another.

We shall first assume that the three lines AB, C D, and E F lie in one plane.

A G
C

E

H

B D F

K

If one of the outer lines, say AB, and the middle line, C D, are parallel
to the remaining outer line, E F , then AB and C D will be parallel to one
another. To prove this, drop a perpendicular AE from any point A of AB
to E F ; it will intersect C D at some point C (TP 5), and the angle �DC E
will be acute (TP 22). Drop a perpendicular AG from A to C D; its foot
G must fall on the side of C that forms an acute angle with AC (TP 9).
Every line AH drawn from A into angle �B AC must cut E F , the parallel
to AB, at some point H , regardless of how small the angle �B AH is
taken. Consequently, the line C D, which enters the triangle �AE H , must cut the line AH at

2 This refers to Lobachevski’s declaration at the end TP 22 that he would work in imaginary geometry from that point
forward. Had he carried out this construction earlier, he would not have been able to deduce that the angles at C and D
were acute; in neutral geometry, they could be either acute or right. - SB
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some point K , since it is impossible for it to leave the triangle through EH. When AH is drawn
from A into the angle �C AG, it must cut the extension of C D between C and G in the triangle
�C AG. From the preceding argument, it follows that AB and C D are parallel (TP 16 and 18).

A C

E

B D F

K
L

M

If, on the other hand, the two outer lines, AB and E F , are both
parallel to the middle line C D, then every line AK drawn from A into
the angle �BAE will cut the line C D at some point K , regardless of how
small the angle �B AK is taken. Draw a line joining C to an arbitrary
point L on the extension of AK . The line C L must cut E F at some point
M , producing the triangle �MC E . Since the extension of the line AL
into the triangle �MC E can cut neither AC nor C M a second time, it
must cut E F at some point H. Hence, AB and E F are mutually parallel.

A

E

C

L

DF

B

K
H

Suppose now that two parallels, AB and C D, lie in two
planes whose line of intersection is EF. From an arbitrarily
chosen point E of E F , drop a perpendicular E A to one of the
parallels, say to AB. From the foot of this perpendicular, A,
drop a new perpendicular, AC , to C D, the other parallel. Draw
the line EC joining E and C , the endpoints of this perpendicular
construction. The angle �B AC must be acute (TP 22), so the
foot G of a perpendicular CG dropped from C to AB will fall
on that side of AC in which the lines AB and C D are parallel. The line EC , together with any
line E H that enters angle �AE F (regardless of how slightly E H deviates from E F), determines
a plane. This plane must cut the plane of the parallels AB and C D along some line C K . This line
cuts AB somewhere – namely, at the very point L common to all three planes, through which the
line E H necessarily passes as well. Thus, E F is parallel to AB. We can establish the parallelism
of E F and C D similarly.3

Therefore, a line E F is parallel to one of a pair of parallels, AB and C D, if and only if E F is
the intersection of two planes, each containing one of the parallels, AB and C D. Thus, two lines
are parallel to one another if they are parallel to a third line, even if the lines do not all lie in one
plane. This last sentence could also be expressed thus: the lines in which three planes intersect
must all be parallel to one another if the parallelism of two of the lines is established.

A

B

C

A′

B′

C′

Proposition 26
Antipodal spherical triangles have equal areas.

By antipodal triangles, I mean those triangles that are formed on
opposite sides of a sphere when three planes through its center intersect
it. It follows that antipodal triangles have their sides and angles in
reverse order.

By antipodal triangles, I mean those triangles that are formed on
opposite sides of a sphere when three planes through its center intersect
it. It follows that antipodal triangles have their sides and angles in
reverse order.

3 For the sake of clarity, I have taken the liberty of changing the names of some of the points in this passage: the points
that I have called H , K , and L are all called H in Lobachevski’s original. −SB
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A

B

C
A′

B ′

C ′ O

D

D′

The corresponding sides of antipodal triangles �ABC
and �A′ B ′C ′ are equal: AB = A′ B ′, BC = B ′C ′, C A =
C ′ A′. The corresponding angles are also equal: those at A,
B, and C equal those at A′, B ′, and C ′ respectively.

Consider the plane passing through the points A, B,
and C . Drop a perpendicular to it from the center of the
sphere, and extend this perpendicular in both directions; it
will pierce the antipodal triangles in antipodal points, D
and D′. The distances from D to the points A, B, and C, as
measured along great circles of the sphere, must be equal,
not only to one another (TP 12), but also to the distances
D′ A′, D′ B ′, and D′C ′ on the antipodal triangle (TP 6). From this, it follows that the three
isosceles triangles that surround D and comprise the spherical triangle �ABC are congruent to
the corresponding isosceles triangles surrounding D′ and comprising �A′ B ′C ′.

As a basis for determining when two figures on a surface are equal, I adopt the following
postulate: two figures on a surface are equal in area when they can be formed by joining or
detaching equal parts.

Proposition 27
A trihedral angle equals half the sum of its dihedral angles minus a right angle.

C

A

B
D

A

C

B
P

Let �ABC be a spherical triangle, each of whose sides is less than
half a great circle. Let A, B, and C denote the measures of its angles.
Extending side AB to a great circle divides the sphere into two equal
hemispheres. In the one containing �ABC , extend the triangle’s other
two sides through C , denoting their second intersections with the great
circle by A′ and B ′. In this way, the hemisphere is split into four triangles:
�ABC , �AC B ′, �B ′C A′, and �A′C B, whose sizes we shall denote by
P , X , Y , and Z respectively.

Clearly, P + X = B, and P + Z = A. Moreover, since the size Y of the spherical triangle
�B ′C A′ equals that of its antipodal triangle �ABC ′ [TP 26], it follows that P + Y = C .
Therefore, since P + X + Y + Z = π , we conclude that P = 1

2 (A + B + C − π ).

*

It is also possible to reach this conclusion by another method, based directly upon the postulate
on equivalence of areas given above [in TP 26].

B

H
GE

CA

F D

In the spherical triangle �ABC , bisect the sides AB and BC ,
and draw the great circle through D and E , their midpoints. Drop
perpendiculars AF , B H , and CG upon this circle from A, B, and C .

If H , the foot of the perpendicular dropped from B, falls between
D and E , then the resulting right triangles �B DH and �AF D will
be congruent, as will �B H E and �EGC (TP 6 & 15). From this, it
follows that the area of triangle �ABC equals that of the quadrilateral
AFGC .
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B

E=H=G

CA

F
D

B

HG
E

CA

F
D

If H coincides with E (see figure at left), only two equal
right triangles will be produced, �AF D and �B DE . In-
terchanging them establishes the equality of area of triangle
�ABC and quadrilateral AFGC .

Finally, if H falls outside triangle �ABC (see figure at
right), the perpendicular CG must enter the triangle. We may
then pass from triangle �ABC to quadrilateral AFGC by
adding triangle �F AD ∼= �DB H and then taking away triangle �CG E ∼= �E B H .

Since the diagonal arcs AG and C F of the spherical quadrilateral AFGC are equal to one
another (TP 15), the triangles �F AC and �ACG are congruent to one another (TP 15), whence
the angles �F AC and �ACG are equal to one another. Hence, in all the preceding cases, the
sum of the three angles in the spherical triangle equals that of the two equal, non-right angles in
the quadrilateral.

Therefore, given any spherical triangle whose angle sum is S, there is a quadrilateral with
two right angles of the same area, each of whose other two angles equals S/2.

A
D

B

CH

G

E

F

Let ABC D be such a quadrilateral, whose equal sides AB
and DC are perpendicular to BC , and whose angles at A and D
each equal S/2. Extend its sides AD and BC until they meet at
E; extend AD beyond E to F , so that E F = E D, and then drop a
perpendicular FG upon the extension of BC . Bisect the arc BG,
and join its midpoint H to A and F with great circle arcs.

The congruence of the triangles �E FG and �DC E (TP 15) implies that FG = DC = AB.
The right triangles �AB H and �H G F are also congruent, since their corresponding arms are
equal. From this it follows that the arcs AH and AF belong to the same great circle. Thus,
the arc AH F is half a great circle, as is the arc ADE F . Since �H F E = �H AD = S/2 −
�B AH = S/2 − �H FG = S/2 − �H F E − �E FG = S/2 − �H AD − π + S/2, we con-
clude that �H F E = 1

2 (S − π ). Equivalently, we have shown that 1
2 (S − π ) is the size of the

spherical lune AH F D A, which in turn equals the size of the quadrilateral ABCD; this last equal-
ity is easy to see, since we may pass from one to the other by first adding the triangles �E FG
and �B AH , and then removing triangles that are congruent to them: �DC E and �H FG.

Therefore, 1
2 (S − π ) is the size both of the quadrilateral ABC D, and of the spherical triangle,

whose angle sum is S.

Proposition 28
If three planes intersect one another along parallel lines, the sum of the three resulting dihedral
angles is equal to two right angles.

A

C

D

B

A′

B′
C′

Suppose that three planes intersect one another along three
parallel lines, AA′, B B ′, and CC ′ (TP 25). Let X , Y , and Z
denote the dihedral angles they form at AA′, B B ′, and CC ′,
respectively. Take random points A, B, and C , one from each
line, and construct the plane passing through them. Construct
a second plane containing the line AC and some point D of
B B ′. Let the dihedral angle that this plane makes with the plane
containing the parallel lines AA′ and CC ′ be denoted by w.
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Draw a sphere centered at A; the points in which the lines AC , AD, and AA′ intersect it
determine a spherical triangle, whose size we shall denote by α, and whose sides we shall denote
p, q, and r .

A

C

D

B

X
w

r

q

p

A′

B′

C′

If q and r are those sides whose opposite angles have measures w and X respectively, then
the angle opposite side p must have measure π + 2αgw − X . (TP 27)

Similarly, the intersections of C A, C D, and CC ′ with a sphere centered at C determine a
spherical triangle of size β, whose sides are denoted by p′, q ′, and r ′, and whose angles are: w

opposite q ′, Z opposite r ′, and thus, π + 2β − w − Z opposite p′.
Finally, the intersections of D A, DB, and DC with a sphere centered at D determine a

spherical triangle, whose sides, l, m, and n, lie opposite its angles, w + Z − 2β, w + X − 2α,
and Y , respectively. Its size, consequently, must be δ = 1

2 (X + Y + Z − π ) − (α + β − w).
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C

D

B

X

w
r

q

q′
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p′
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n

m

l
Y

Z

A′

B′
C′

If w decreases toward zero, then α and β will vanish as well, so that (α + βgw)can be
made less than any given number. Since sides l and m of triangle δ will also vanish (TP 21),
we can, by taking w sufficiently small, place as many copies of δ as we wish, end to end,
along the great circle containing m, without completely covering the hemisphere with triangles
in the process. Hence, δ vanishes together with w. From this, we conclude that we must have
X + Y + Z = π .
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Proposition 29
In a rectilinear triangle, the three perpendicular bisectors of the sides meet either in a single
point, or not at all.

A

B

C

E F

G

D

Suppose that two of triangle ABC’s perpendicular bisec-
tors, say, those erected at the midpoints E & F of AB and BC
respectively, intersect at some point, D, which lies within the
triangle. Draw the lines D A, DB, and DC , and observe that the
congruence of the triangles ADE and B DE (TP 10) implies that
AD = B D. For similar reasons, we have B D = C D, whence it
follows that triangle ADC is isosceles. Consequently, the perpen-
dicular dropped from D to AC must fall upon AC’s midpoint, G.

This reasoning remains valid when D, the point of intersec-
tion of the two perpendiculars E D and F D, lies outside the triangle, or when it lies upon side
AC .

Thus, if two of the three perpendiculars fail to intersect one another, then neither of them
will intersect the third.

Proposition 30
In a rectilinear triangle, if two of the perpendicular bisectors of the sides are parallel, then all
three of them will be parallel to one another.

In triangle �ABC , erect perpendiculars DE , FG, and H K from D, F , and H , the midpoints
of the sides. (See the figure.)

C

A B

D F

H

E K
G

L
P

M

We first consider the case in which DE and FG are parallel,
and the third perpendicular, H K , lies between them. Let L and M be
the points in which the parallels DE and FG cut the line AB. Draw
an arbitrary line entering angle �BLE through L . Regardless of how
small an angle it makes with L E , this line must cut FG (TP 16); let
G be the point of intersection. The perpendicular HK enters triangle
�LG M , but because it cannot intersect MG (TP 29), it must exit
through LG at some point P . From this it follows that HK must be
parallel to DE (TP 16 & 18) and FG (TP 18 & 25).

C

A B

D F

H

E
K GA′ B ′C ′

b

b a

a
c c

In the case just considered, if we let the sides BC = 2a, AC =
2b, AB = 2c, and denote the angles opposite them by A, B, C , we
can easily show that

A = �(b) − �(c) B = �(a) − �(c) C = �(a) + �(b)

by drawing lines AA′, B B ′, CC ′, from points A, B, C , parallel to
H K− and therefore parallel to DE and FG as well (TP 23 & 25).

Next, consider the case in which H K and FG are parallel. Since DE cannot cut the other
two perpendiculars (TP 29), it either is parallel to them, or intersects AA′. To assume this latter
possibility is to assume that C > �(a) + �(b).
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C

A B

2c′
Q

2c

If this is the case, we can decrease the magnitude of this angle
to �(a) + �(b) by rotating line AC to a new position C Q (see the
figure). The angle at B is thereby increased. That is, in terms of the
formula proved above,

�(a) − �(c′) > �(a) − �(c),

where 2c′ is the length of B Q. From this it follows that c′ > c (TP 23).
On the other hand, since the angles at A and Q in triangle �AC Q are equal, the angle at

Q in triangle �AB Q must be greater than the angle at A in the same triangle. Consequently,
AB > B Q (TP 9); that is, c > c′.

Proposition 31
We define a horocycle to be a plane curve with the property that the perpendicular bisectors of
its chords are all parallel to one another.

In accordance with this definition, we may imagine generating a horocycle as follows: from a
point A on a given line AB, draw various chords AC of length 2a, where �(a) = �C AB. The end-
points of such chords will lie on the horocycle, whose points we may thus determine one by one.

C

A B
E
G
L

H

F

K

D

The perpendicular bisector DE of a chord AC will be parallel
to the line AB, which we shall call the axis of the horocycle. Since
the perpendicular bisector FG of any chord AH will be parallel
to AB, the perpendicular bisector K L of any chord C H will be
parallel to AB as well, regardless of the points C and H on the
horocycle between which the chord is drawn (TP 30). For that
reason, we shall not distinguish AB alone, but shall instead call all
such perpendiculars axes of the horocycle.

Proposition 32
A circle of increasing radius merges into a horocycle.

B
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A
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D   −
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β

β

α

α

H
Let AB be a chord of the horocycle. From its endpoints, A

and B, draw the two axes AC and B D; these will necessarily
make equal angles, B AC = AB D = α, with the chord AB (TP
31). From either axis, say AC , select an arbitrary point E to be
the center of a circle. Draw an arc of this circle extending from
A to F , the point at which it intersects B D. The circle’s radius
E F will make angle AF E = β on one side of the chord of the
circle, AF ; on the other side, it will make angle E F D = γ

with the axis B D.
Now, angle γ will decrease if we move F toward B along axis B F while holding the center

E fixed (TP 21). Moreover, γ will decrease to zero if we move the center E down axis AC while
holding F fixed (TP 21, 22).

As γ vanishes, so does α – β, the angle between AB and AF . Consequently, the distance
from point B of the horocycle to point F of the circle vanishes as well. For this reason, one may
also call the horocycle a circle of infinite radius.
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Proposition 33

B
B′

A′
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′C C′

t

s s

t′

Let AA′ = B B ′ = x be segments of two lines that are parallel in the
direction from A to A′. If these parallels are axes of two horocycles,
whose arcs AB = s and A′ B ′ = s ′ they delimit, then the equation s ′ =
se−x holds, where e is some number independent of the arcs s, s ′, and
the line segment x , the distance between the arcs s ′ and s.

Suppose that n and m are whole numbers such that s : s ′ = n : m.
Draw a third axis CC ′ between AA′ and B B ′. Let t = AC and t ′ = A′C ′

be the lengths of the arcs that it cuts from AB and A′ B ′ respectively. Assuming that t : s = p : q
for some whole numbers p and q , we have

s = (n/m)s ′ and t = (p/q)s.

If we divide s into nq equal parts by axes, any one such part will fit exactly mq times into
s ′ and exactly np times into t . At the same time, the axes dividing s into nq equal parts divide s ′

into nq equal parts as well. From this it follows that

t ′/t = s ′/s.

Consequently, as soon as the distance x between the horocycles is given, the ratio of t to t ′

is determined; this ratio remains the same, no matter where we draw CC ′ between AA′ and B B ′.
From this, it follows that if we write s = es ′ when x = 1, then s ′ = se−x for every value of x .
We may choose the unit of length with which we measure x as we see fit. In fact, because e

is an undetermined number subject only to the condition e > 1, we may, for the sake of computa-
tional ease, choose the unit of length so that the number e will be the base of the natural logarithm.

In addition, since s ′ = 0 when x = ∞, we observe that, in the direction of parallelism, the
distance between two parallels not only decreases (TP 24), but ultimately vanishes. Thus, parallel
lines have the character of asymptotes.

Proposition 34
We define a horosphere to be the surface generated by revolving a horocycle about one of its axes,
which, together with all the remaining axes of the horocycle, will be an axis of the horosphere.
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Any chord joining two points of the horosphere will be equally
inclined to the axes that pass through its endpoints, regardless of
which two points are taken.

Let A, B, and C be three points on the horosphere, where
AA′ is the axis of rotation and B B ′ and CC ′ are any other axes.
The chords AB and AC will be equally inclined toward the axes
passing through their endpoints; that is, �A′ AB = �B ′ B A and
�A′ AC = �C ′C A (TP 31). The axes B B ′ and CC ′ drawn through
the endpoints of the third chord BC are, like those of the other
chords, parallel and coplanar with one another (TP 25).

The perpendicular DD′ erected from the midpoint D of chord AB in the plane of the two
parallels AA′, B B ′ must be parallel to the three axes AA′, B B ′, CC ′ (TP 31, 25). Similarly, the
perpendicular bisector E E ′ of chord AC in the plane of parallels AA′, CC ′ will be parallel to the
three axes AA′, B B ′, CC ′, as well as the perpendicular bisector DD′.
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Denote the angle between the plane of the parallels AA′, B B ′ and the plane in which triangle
�ABC lies by �(a), where a may be positive, negative, or zero. If a is positive, draw DF = a
in the plane of triangle �ABC , into the triangle, perpendicular to chord AB at its midpoint D;
if a is negative, draw DF = a outside the triangle on the other side of chord AB; if a = 0, let
point F coincide with D.

All cases give rise to two congruent right triangles, �AF D and �DF B, whence F A = F B.
From F , erect F F ′ perpendicular to the plane of triangle �ABC .

Because �D′ DF = �(a) and DF = a, F F ′ must be parallel to DD′; the plane containing
these lines is perpendicular to the plane of triangle �ABC .

Moreover, F F ′ is parallel to E E ′; the plane containing them is also perpendicular to the
plane of triangle �ABC .

Next, draw E K perpendicular to E F in the plane containing the parallels E E ′ and F F ′. It
will be perpendicular to the plane of triangle �ABC (TP 13), and hence to the line AE lying in this
plane. Consequently, AE , being perpendicular to E K and E E ′, must be perpendicular to F E as
well (TP 11). The triangles �AE F and �C E F are congruent, since they each have a right angle,
and their corresponding sides about their right angles are equal. Therefore, F A = FC = F B.

In isosceles triangle �B FC , a perpendicular dropped from vertex F to the base BC will fall
upon its midpoint G.

The plane containing FG and F F ′ will be perpendicular to the plane of triangle �ABC ,
and will cut the plane containing the parallels B B ′, CC ′ along a line that is parallel to them,
GG ′. (TP 25).

Since CG is perpendicular to FG, and thus to GG ′ as well [TP 13], it follows that �C ′CG =
�B ′ BG (TP 23).

From this, it follows that any axis of the horosphere may be considered its axis of rotation.
We shall refer to any plane containing an axis of a horosphere as a principal plane. The

intersection of the principal plane with the horosphere is a horocycle; for any other cutting plane,
the intersection is a circle.

Any three principal planes that mutually cut one another will meet at angles whose sum is π

(TP 28). We shall consider these the angles of a horospherical triangle, whose sides are the arcs
of the horocycles in which the three principal planes intersect the horosphere. Accordingly, the
relations that hold among the sides and angles of horospherical triangles are the very same that
hold for rectilinear triangles in the ordinary geometry.

B
A

C

B′

C′
A′

B

C′′

′′

p

q

r

a b

c

Proposition 35
In what follows, we shall use an accented letter, e.g. x ′, to
denote the length of a line segment when its relation to the
segment which is denoted by the same, but unaccented, letter
is described by the equation �(x) + �(x ′) = π/2.

Let �ABC be a rectilinear right triangle, where the hy-
potenuse is AB = c, the other sides are AC = b, BC = a, and
the angles opposite them are �B AC = �(α), �ABC = �(β).
At point A, erect the line AA′, perpendicular to the plane of
triangle �ABC ; from B and C , draw B B ′ and CC ′ parallel to
AA′.
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Π(a)

Π(c)
Π
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Π( )b
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k

n

B

C A

a
c

b

β

α

β

The planes in which these parallels lie meet
one another at the following dihedral angles:
�(α) at AA′, a right angle at CC ′ (TP 11 &
13), and therefore, �(α′)at B B ′ (TP 28).

The points at which the lines B B ′, B A,
BC intersect a sphere centered at B determine a
spherical triangle �mnk, whose sides are mn =
�(c), kn = �(β), mk = �(a), and whose oppo-
site angles are, respectively, �(b), �(α′), π/2.

Thus, the existence of a rectilinear triangle
with sides a, b, c and opposite angles �(α), �(β), π/2 implies the existence of a spherical
triangle with sides �(c), �(β), �(a) and opposite angles �(b), �(α′), π/2.

Conversely, the existence of such a spherical triangle implies the existence of such a recti-
linear triangle.

Indeed, the existence of such a spherical triangle also implies the existence of a second
rectilinear triangle, with sides a, α′, β and opposite angles �(b′), �(c), π/2. Hence, we may pass
from a, b, c , α , β to b, a, c, β, α, and to a, α ′, β, b′, c, as well.

If the horosphere through A with axis AA′ cuts B B ′ and CC ′ at B ′′ and C ′′, its intersections
with the planes formed by the parallels produce a horospherical triangle with sides B ′′C ′′ = p,
C ′′ A = q , B ′′ A = r and opposite angles �(α′), �(α), π/2.

Consequently (TP 34),

p = r sin �(α) and q = r cos �(α).

B

A

C

B′

C′

A′

B″

C″

B

B′

a

b

c r

q

p

B″

t

D

Along B B ′, break the connection of the three principal planes,
turning them out from one another so that they lie in a single plane.
In this plane, the arcs p, q , r unite into an arc of a single horocycle,
which passes through A and has axis AA′.

Thus, the following lie on one side of AA′: arcs p and q; side b
of the rectilinear triangle, which is perpendicular to AA′ at A; axis
CC ′, which emanates from the endpoint of b, then passes through
C′′, the join of p and q , and is parallel to AA′; and the axis B B ′,
which emanates from the endpoint of a, then passes through B′′, the
endpoint of arc p, and is parallel to AA′. On the other side of AA′

lie the following: side c, which is perpendicular to AA′ at point A,
and axis B B ′, which emanates from the endpoint of c, then passes through B′′, the endpoint of
arc r , and is parallel to AA′.

Moreover, we see (by TP 33) that

t = pe f (b) = r sin �(α)e f (b).

If we were to erect the perpendicular to triangle �ABC ’s plane at B, instead of A, then the
lines c and r would remain the same, while the arcs q and t would change to t and q, the straight
lines a and b would change to b and a, and the angle �(α) would change to �(β). From this it
follows that

q = r sin �(β)e f (a).
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Thus, by substituting the value that we previously obtained for q, we find that

cos �(α) = sin �(β)e f (a).

If we change α and β into b′ and c, then

sin �(b) = sin �(c)e f (a).

Multiplying by e f (b) yields

sin �(b)e f (b) = sin �(c)e f (c).

Consequently, it follows that

sin �(a)e f (a) = sin �(b)e f (b).

Because the lengths a and b are independent of one another and, moreover, f (b) =
0 and �(b) = π/2 when b = 0, it follows that for every a,

e− f (a) = sin �(a).

Therefore,

sin �(c) = sin �(a) sin �(b)

sin �(β) = cos �(α) sin �(a).

Moreover, by transforming the letters, these equations become

sin �(α) = cos �(β) sin �(b)

cos �(b) = cos �(c) cos �(α)

cos �(a) = cos �(c) cos �(β).

In the spherical right triangle, if the sides �(c), �(β), �(a) and opposite angles �(b),
�(α′)are renamed a, b, c, A, B, respectively, then the preceding equations will assume forms
that are known as established theorems of the ordinary spherical trigonometry of right triangles.
Namely,

sin(a) = sin(c) sin(A)

sin(b) = sin(c) sin(B)

cos(B) = cos(b) sin(A)

cos(A) = cos(a) sin(B)

cos(c) = cos(a) cos(b).

From these equations, we may derive those for all spherical triangles in general. Conse-
quently, the formulae of spherical trigonometry do not depend upon whether or not the sum of
the three angles in a rectilinear triangle is equal to two right angles.
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A B D
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B
D
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( )

(c +β) ( )

β

β

β

α

Proposition 36
We now return to the rectilinear right triangle �ABC with
sides a, b, c, and opposite angles �(α), �(β), π/2. Extend this
triangle’s hypotenuse beyond B to a point D at which B D =
β, and erect a perpendicular DD′ from B D. By construction,
DD′ is parallel to B B ′, the extension of side a beyond B.
Finally, draw AA′ parallel to DD′; it will be parallel to C B ′

as well (TP 25).
From this, we have �A′ AC = �(b) and �A′ AD =

�(c + β), from which it follows that

�(b) = �(α) + �(c + β).

A

B

Cb

c
a

( )

( )E

E C

c

A

β

β
β

α

Now let E be the point on ray B A for which B E = β. Erect
the perpendicular E E ′ to AB, and draw AA′′ parallel to it. Line
BC ′, the extension of side a beyond C , will be a third parallel.

If β < c, as in the figure, we see that �C AA′′ = �(b) and
�E AA′′ = �(c − β), from which it follows that

�(c − β) = �(α) + �(b).

In fact, this last equation remains valid even when β = c, or
β > c.

A

B

C
b

c=b a
( )

E =A C

( )

A

B

C
b

c a
( )

C

( )

E

E
b–c

b

A

α
α

β

If β = c (see figure at left), the per-
pendicular AA′ erected upon AB is par-
allel to BC , and hence to CC ′, from
which it follows that �(α) + �(b) =
π/2. Moreover, �(c − β) = π/2 (TP
23).

If β > c (see figure at right), E
falls beyond point A. In this case, we
have �E AA′′ = �(c − β), from which
it follows that

�(α) + �(b) = π − �(β − c) = �(c − β) (TP 23).

Combining the two equations yields

2�(b) = �(c − β) + �(c + β)

2�(α) = �(c − β) − �(c + β),

from which follows

cos �(b)

cos �(α)
= cos[ 1

2�(c − β) + 1
2�(c + β)]

cos[ 1
2�(c − β) − 1

2�(c + β)]
.
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Using the substitution

cos �(b)

cos �(α)
= cos �(c) (from TP 35)

yields

tan2

(
�(c)

2

)
= tan

(
�(c − β)

2

)
tan

(
�(c + β)

2

)
.

Because the angle �(β) at B may have any value between 0 and π/2, β itself can be any
number between 0 and ∞. By considering the cases in which β = c, 2c, 3c, etc., we may deduce
that for all positive values of r ,4

tanr

(
�(c)

2

)
= tan

(
�(rc)

2

)
.

If we view r as the ratio of two values x and c, and assume that cot(�(c)/2) = ec, we find
that for all values of x , whether positive or negative,

tan

(
�(x)

2

)
= e−x ,

where e is an indeterminate constant, which is larger than 1, since �(x) = 0 when x = ∞.
Since the unit with which we measure lengths may be chosen at will, we may choose it so

that e is the base of the natural logarithm.

Proposition 37
Of the five equations above (TP 35), the following two

sin �(c) = sin �(a) sin �(b)

sin �(α) = cos �(β) sin �(b)

suffice to generate the other three: we can obtain one of the others by applying the second
equation to side a rather than side b; we then deduce another by combining the equations already
established. There will be no ambiguities of algebraic sign, since all angles here are acute.

Similarly, we obtain the two equations:

(1) tan �(c) = sin �(α) tan �(a)

(2) cos �(a) = cos �(c) cos �(β).

A B

C

b a

c–xx

p

D

We shall now consider an arbitrary rectilinear triangle with sides
a, b, c and opposite angles A, B, C .

If A and B are acute angles, then the perpendicular p dropped
from C will fall within the triangle and cut side c into two parts: x ,
on the side of A, and c − x , on the side of B. This produces two right
triangles. Applying equation (1) to each yields

4 Where I have r , Lobachevski uses the symbol n. Whatever one calls it, it stands for any positive real number. I have
switched to rso as to conform with the convention of reserving nfor natural numbers.
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A

C

b

c

a=p

B=D

tan �(a) = sin(B) tan �(p).

tan �(b) = sin(A) tan �(p).

A B

C

b
a

c x–c

p

D

These equations hold even if one of the angles, say B, is right or
obtuse. Thus, for any rectilinear triangle whatsoever, we have

(3) sin(A) tan �(a) = sin(B) tan �(b).

Applying equation (2) to a triangle with acute angles at A and B yields

cos �(x) = cos(A) cos �(b)

cos �(c − x) = cos(B) cos �(a).

These equations hold even when one of the angles A or B is right or obtuse.
For instance, when B = π/2, we have x = c; in this case, the first equation reduces to

equation (2) and the second is trivially true. When B > π/2, applying equation (2) still yields
the first equation; in place of the second, it yields cos �(x − c) = cos(π − B) cos �(a), which,
however, is identical to the second, since cos �(x − c) = − cos �(c − x) (TP 23), and cos(π −
B) = − cos(B). Finally, if A is right or obtuse, we must use c − x and x , instead of x and c − x ,
so that the two equations will hold in this case also.

To eliminate x from the two equations above, we observe that

cos �(c − x) =
1 −

[
tan

(
�(c−x)

2

)]2

1 +
[
tan

(
�(c−x)

2

)]2

= 1 − e2x−2c

1 + e2x−2c

=
1 −

[
tan

(
�(c)
2

)]2 [
cot

(
�(x)
2

)]2

1 +
[
tan

(
�(c)
2

)]2 [
cot

(
�(x)
2

)]2

= cos �(c) − cos �(x)

1 − cos �(c) cos(x)

If we substitute the expressions for cos �(x) and cos �(c − x) into this, it becomes
from which it follows that

cos �(a) cos(B) = cos �(c) − cos �(A) cos �(b)

1 − cos �(A) cos �(b) cos �(c)
, 5

5 In Lobachevski’s original, the positions of this equation and the preceding one are reversed: presumably this was a
printer’s error. The fact that Halsted perpetuated it in his 1891 translation leads me to suspect that Halsted, realizing that
one could reach the conclusions of TP 37 by simpler arguments than Lobachevski’s own, did not bother to look very
closely at the details as they stand.
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and finally,

(4) [sin �(c)]2 = [1 − cos(B) cos �(c) cos �(a)] [1 − cos(A) cos �(b) cos π (c)] .

Similarly, we also have

[sin �(a)]2 = [1 − cos(C) cos �(a) cos �(b)] [1 − cos(B) cos �(c) cos �(a)]

[sin �(b)]2 = [1 − cos(A) cos �(b) cos �(c)] [1 − cos(C) cos �(a) cos �(b)] .

From these three equations, we find that

[sin �(b)]2 [sin �(c)]2

[sin �(a)]2 = [1 − cos(A) cos �(b) cos �(c)]2 .

From this it follows, without ambiguity of sign, that

(5) cos(A) cos �(b) cos �(c) + sin �(b) sin �(c)

sin �(a)
= 1.

The following expression for sin �(c) follows from an alternate form of (3):

sin �(c) = sin(A)

sin(C)
tan �(a) cos �(c).

If we substitute this expression into equation (5), we obtain

cos �(c) = cos �(a) sin(C)

sin(A) sin �(b) + cos(A) sin(C) cos �(a) cos �(b)
.

If we substitute this expression for cos �(c) into equation (4), we obtain

(6) cot(A) sin(C) sin �(b) + cos(C) = cos �(b)

cos �(a)
.

By eliminating sin �(b) with the help of equation (3), we find that

cos �(a)

cos �(b)
cos(C) = 1 − cos(A)

sin(B)
sin(C) sin �(a).

On the other hand, permuting the letters in equation (6) yields

cos �(a)

cos �(b)
= cot(B) sin(C) sin �(a) + cos(C).

By combining the last two equations, we obtain

(7) cos(A) + cos(B) cos(C) = sin(B) sin(C)

sin �(a)
.
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Thus, the four equations that describe how the sides a,b,c and angles A, B, C are interrelated
in rectilinear triangles are [equations (3), (5), (6), (7)]:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(A) tan �(a) = sin(B) tan �(b)

cos(A) cos �(b) cos �(c) + sin �(b) sin �(c)

sin �(a)
= 1

cot(A) sin(C) sin �(b) + cos(C) = cos �(b)

cos �(a)

cos(A) + cos(B) cos(C) = sin(B) sin(C)

sin �(a)

When the sides a, b, c of the triangle are very small, we may content ourselves with the
following approximations (TP 36):

cot �(a) = a,

sin �(a) = 1 − 1

2
a2,

cos �(a) = a,

where the same approximations hold for sides b and c also.
In the scholarly journal of the University of Kazan, I have published several investigations

into the measurements of curves, plane figures, surfaces, and solids, as well as the application of
imaginary geometry to analysis.

In and of themselves, the equations (8) already constitute sufficient grounds for believing
that the imaginary geometry might be possible. As a result, we have no means other than
astronomical observations with which to judge the accuracy that follows from calculations in
the ordinary geometry. Its accuracy is very far-reaching, as I have demonstrated in one of my
investigations; for example, in all angles who sides we are capable of measuring, the sum of the
three angles does not differ from π by so much as a hundredth of a second.

Finally, it is worth observing that the four equations (8) of plane geometry become valid
formulae of spherical geometry if we substitute a

√−1, b
√−1, c

√−1 for the sides a, b, c ; these
substitutions will change

sin �(a) to
1

cos a
,

cos �(a) to
√−1 tan a.

tan�(a) to
1√−1 sin a

,
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and similarly for sides b and c. Hence, these substitutions change equations (8) into the following:

sin A sin b = sin B sin a

cos a = cos b cos c + sin b sin c cos A

cot A sin C + cos C cos b = sin b cot a

cos A = cos a sin B sin C − cos B cos C.
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Klügel, G.S. xiii, 39

Lambert quadrilateral 39
Lambert, Johann Heinrich 16, 38–41, 50, 53–55,

120–121, 193
Lambert’s “third hypothesis” 39, 41, 53,

120–121
Laplace, Pierre Simon de 42–43, 191–192
L-curve 99
Legendre, Adrien Marie xiii, 1, 2, 30–32
Legendre’s first theorem 34
Legendre’s second theorem 35
Leibniz, Gottfried Wilhelm 20
Levi ben Gerson xiii
line of slope 8
Lobachevski, N. I.: circumspice, lector!

mark of parallelism 23
Minding, Ferdinand 136

Napier’s rule 165
Nasir-Eddin al-Tusi xiii, 41
Newton, Isaac xiii, 86

oppositely congruent 68
Ostrogradski, Mikhail 190

Pangeometry xiii, xv, 165, 190
parallel lines (definition) 11
parallel postulate xii, xiii, 2, 6, 7, 9, 11, 12, 14, 16,

18, 20, 21, 28–33, 35, 38, 39, 41, 43, 47–49, 59,
60, 69, 72, 79, 85, 86, 98, 107, 121, 122, 132,

134, 137, 138, 149, 158–160, 163, 189,
196

parameter 115
Pascal, Blaise 4
Pasch, Moritz 19, 23–24
Pasch’s axiom 24, 62, 100
pencil (of parallels) 97, 101, 108, 122–125, 130,

166
Perminov, V. Ya. 194
perpendicular plane criterion 128
perpendiculars, common 46
Plato 3, 5, 7, 18, 21, 108
Playfair’s axiom 16, 28
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