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Phenotypic variation is the result of selection on traits that are relevant in a given ecological context. Phylogenetic 
history, genetic drift, and any developmental or structural constraints may, however, limit variation in trait expression. 
It has been proposed that organismal performance traits take up a pivotal role in driving variation in morphology 
due to their central role in survival and reproductive success. However, how strong the links are between morphology 
and performance, and how the strength of this relationship impacts the rate of evolution of form and function need 
to be studied across a wider variety of systems to better understand the origin and evolution of biodiversity. Here we 
used data on the jaw system (muscle architecture and head dimensions) of liolaemid lizards to investigate the drivers 
of in vivo bite force variation and test for differences in evolutionary rates in morphology and performance. Our 
results show high rates of evolution for performance traits compared to morphological traits such as external head 
dimensions. Many-to-one mapping of morphology to performance, that is the possibility that different anatomical 
trait combinations lead to similar levels of performance, appears to be common in the jaw system of these lizards. 
Finally, traits showing greater mechanical sensitivity (muscle cross-sectional areas) showed higher rates of evolution 
compared to traits involved in other functions and that are probably subject to trade-offs (e.g. head width).

ADDITIONAL KEYWORDS:  bite force – diet – evolutionary drivers – jaw system – liolaemid – many-to-one 
mapping.

INTRODUCTION

Phenotypic variation is the result of selection on traits 
relevant in a given ecological context, phylogenetic 
history, genetic drift, and any developmental or 
structural constraints that may limit variation in 
trait expression (Arnold, 1993; Wainwright, 2007). 
Selection is often considered to act at the level of 
the whole organism. As such, it has been proposed 

that organismal performance traits take up a 
pivotal role in explaining the adaptive variation 
of phenotypic traits (Arnold, 1983). Variation in 
performance traits is known to influence fitness 
(Huey & Stevenson, 1979) as they impact survival 
and reproductive success. Given that selection acts 
directly on these ecologically relevant performance 
traits, the relationships between morphological and 
performance traits can be expected to be strong, 
especially for biomechanically relevant traits that 
are direct drivers of variation in performance (Muñoz 
et al., 2017; Muñoz, 2019). How strong these links 
are between morphology and performance, and how 
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the strength of this relationship impacts the rate 
of evolution of form and function across different 
systems remain relatively poorly known despite 
several recent studies addressing these questions 
(e.g. Muñoz et al., 2017, 2018).

Many-to-one mapping, the process by which many 
different anatomical trait combinations can give rise 
to similar levels of performance, has been shown to 
be common in biomechanical systems (Alfaro et al., 
2004, 2005; Wainwright et al., 2005; Wainwright, 
2007). Based on this expectation, one can predict that 
rates of evolution should be lower for morphological 
traits compared to whole-organism performance 
traits which are dependent on the interactions of 
many morphological structures. Interestingly, rates 
for different morphological traits have been shown to 
vary considerably (Adams, 2012; Muñoz et al., 2018), 
suggesting that selective pressures may drive higher 
rates specifically in functionally relevant traits. The 
few studies comparing evolutionary rates across 
different types of traits have suggested that sexually 
selected traits evolve faster than other morphological 
or life-history traits (see Pitchers et al., 2014). Yet, 
whether whole-organism performance traits such as 
bite force, locomotor speed or manoeuvrability evolve 
at the same rate as morphological traits such as head 
size or limb length remains largely unknown. Most 
studies investigating how many-to-one mapping may 
impact the rate of evolution of higher level performance 
traits have used four-bar linkage systems (i.e. the 
simplest movable closed-chain linkage consisting of 
four bars or links connected in a loop by four joints). 
These linkage systems provide relatively simple and 
tractable arrangements with clearly and a priori 
defined relationships between morphology and the 
kinematic output of the system as the mechanical 
output of the system is predefined by its geometry 
(Alfaro et al., 2004, 2005; Wainwright et al., 2005; 
Muñoz et al., 2017, 2018). Consequently, the mechanical 
output of the system is predefined by its geometry. 
However, most biomechanical systems underlying 
ecologically relevant performance traits are not well 
represented by four-bar linkage systems. Rather, 
many biomechanical systems related to locomotion 
or feeding are driven by more-or-less complex lever 
systems where muscles and bones interact to produce 
the biomechanical output of the system (McHenry, 
2012). Consequently, the mechanical output of these 
lever systems cannot be predicted by their geometry. 
Whether the same patterns can be observed in these 
systems where many muscles and bones interact, 
compared to four-bar linkages, remains unknown. 
Despite their complexity, these biomechanical systems 
provide the advantage that the functional output of 
the system can be quantified in vivo rather easily by 

measuring whole-organism performance traits such as 
sprint speed or bite force.

Bite force is an excellent example of an ecologically 
relevant whole-organism performance trait (Arnold 
et al., 1983; McBrayer & White, 2002; Anderson et al., 
2008). Bite force has been suggested to be related to 
diet (Aguirre et al., 2003; Herrel et al., 2008a; Sagonas 
et al., 2014; López-Darias et al., 2015), intra- and 
interspecific competition (male–male interactions, 
aggression, etc.; Herrel et al., 1999, 2009; Huyghe 
et al., 2005; Lappin & Husak, 2005; Husak et al., 
2006; Vanhooydonck et al., 2010; Donihue et al., 
2016; Dufour et al., 2018), and defence (Herrel et al., 
2007). Previous studies have shown that bite force is 
correlated with variation in external morphological 
traits including head size and shape (Herrel et al., 
2001; López-Darias et al., 2015; Zablocki-Thomas 
et al., 2018), as well as biomechanical traits such as 
lever arms (Meyers et al., 2018). However, muscle size 
(Wittorski et al., 2016) and its architecture (Herrel 
et al., 2008b), and physiology (Herrel et al., 2007) also 
play an important role in driving variation in bite force 
and may provide alternative pathways to increase 
bite force. Bite force is thus an ideal performance 
trait to investigate whether many-to-one mapping 
impacts the evolutionary rate of performance relative 
to morphological traits.

Liolaemid lizards are an ideal test case to 
investigate the proximate drivers of bite force 
variation as disparity in diet as well as sexual 
and head size dimorphism exist in these animals. 
Moreover, data on in vivo bite force are available 
(Vanhooydonck et al., 2010), providing an in vivo 
estimator of performance and allowing us to test 
for differences in evolutionary rates in morphology 
and performance. We predict (1) differences between 
males and females in the traits (muscle architecture, 
lever arms, external head dimensions) that drive 
variation in bite force, given that bite force is driven 
more by sexual selection in males whereas this is not 
the case in females, where variation is in relation 
to diet (Vanhooydonck et al., 2010). We also predict 
that (2) muscles, and more specifically their cross-
sectional area, should be the strongest drivers of 
bite force variation given their direct impact on the 
input force of the system. Of all the jaw adductors 
important in generating bite force, we predict that the 
pseudotemporalis muscle will particularly strongly 
impact bite force (i.e. will have a high mechanical 
sensitivity) given its orientation perpendicular to 
the jaw and its position away from the jaw joint, 
providing it with the largest moment arm of all jaw 
adductors (Fig. 1). Variation in lever arms is also 
predicted to be a significant driver of variation in 
bite force together with differences in external head 
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dimensions. Finally, we predict that (3) the rates of 
evolution should be greater for performance traits 
(i.e. bite force) relative to morphological traits due to 
the many-to-one mapping of morphology to function 
(i.e. the same functional output can be achieved by 
many different combinations of underlying traits; 
Alfaro et al., 2004, 2005; Wainwright et al., 2005; 
Collar & Wainwright, 2006).

MATERIALS AND METHODS

SpecimenS

Specimens from 26 species of Liolaemidae lizards were 
collected by hand or noose at different localities in 
Argentina, from Andean regions of northern Argentina 
(Salta and Catamarca provinces) to southern 
Patagonia of Argentina (Supporting Information, 
Table S1), at the end of February 2009, when lizards 
are post-reproductive (see Medina & Ibargüengoytía, 
2010). We empirically observed that females were in 
good condition, even after egg-laying. The fact that 
experiments were conducted in the post-reproductive 
season implies that motivational differences between 
the sexes are reduced. Lizards were transferred to 
the lab where bite force was measured in vivo. While 
they remained in captivity, lizards were released 
into a terrarium (1.2 × 0.6 × 0.4 m, L × W × H) every 
3 days, for 4 h. A 150-W infrared bulb on one side of the 
terrarium provided heat; illumination was provided 
by parabolic aluminized reflector (PAR) lights. While 
in the terrarium, lizards were fed crickets (Achaeta 
domestica) ad libitum and were sprayed with water 
at least twice a day. We added flowers in the case of 
herbivorous species. Once in vivo measurements were 
completed, lizards were killed, fixed in 4% formalin, 
and stored in 70% ethanol. The specimens were 
then deposited in the herpetological collection of the 
Instituto de Herpetología of the Fundación Miguel 
Lillo in Tucumán, Argentina (FML), and used for 
dissection. Species were collected with the approval 
of all Argentinean provinces (Fauna authorities: 
S. Montanelli, Chubut-; L. B. Ortega, Santa Cruz; 
M. Faillá, Rio Negro; F. Lonac, Neuquén; P. Barlanga, 
Mendoza; L. Fra, Catamarca; A. Ortin, Salta; A. Norino, 
La Rioja; W. López, Buenos Aires; and M. Jordán, San 
Juan) and National Parks of Argentina administration 
(L. Buria). This investigation was performed under 
the institutional animal care guidelines established 
by CONICET, and with the approval of ANPCyT 
(Argentinean National Agency for Promoting Research 
and Technology in Spanish) for the procedures and 
methodology.

DiSSectionS

The muscle nomenclature of Haas (1973) is used 
throughout. All jaw muscles from the left side of 
the head were removed on each specimen (Fig. 1). 
Muscles were weighed using a digital scale (model 
ABT 5DM, Kern, Balingen, Germany). Note that all 
specimens were treated identically and data thus 
were comparable despite the known reduction in 
muscle mass due to fixation and preservation in 
ethanol (Vervust et al., 2009). Next, fibre lengths were 
obtained by submerging the muscles in a 30% aqueous 

Figure 1. Lateral view of the head of Liolaemus 
pseudoanomalus illustrating the muscles dissected. A, 
superficial view after removal of the skin; B, deeper view 
after removal of the external adductor group. Indicated 
in A are the line of action of the m. adductor mandibulae 
externus superficialis (dotted line) and its moment arm 
(rMAMES; dashed line). In B the line of action of the 
m. pseudotemporalis (dotted line) and its moment arm 
(rPsT; dashed line) are indicated. Note how the moment 
arm of the m. pseudotemporalis is much greater than that 
of the m. adductor mandibulae externus superficialis.
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nitric acid (HNO3 30%) solution for a minimum of 
24 h to dissolve all connective tissue. Muscle fibres 
were then put in a 50% aqueous glycerol solution to 
stop further digestion. Fibres were teased apart and 
pictures with a scale were taken. Fibre lengths were 
quantified using ImageJ v.1.47 (W. Rasband, National 
Institutes of Health, Bethesda, MD, USA). Next, we 
calculated the average length of the fibres for each 
muscle. Finally, the physiological cross-sectional area 
(PCSA) of each muscle was calculated by dividing 
muscle mass by the product of muscle density and 
fibre length (see Table 1 for the species means). We 
then summed muscle cross-sectional areas for each 
muscle group: the m. adductor mandibulae externus 
(Mame), m. adductor mandibulae posterior (MAMP), 
m. pseudotemporalis (MPsT) and m. pterygoideus 
(MPt) areas were calculated. We also estimated the 
summed muscle cross-sectional area of all closer 
muscles (closers).

HeaD DimenSionS

Six morphological measurements were taken for 
all specimens (26 species) before dissection (see 
Table 1 for the species means). We used the same 
measurements as illustrated in Herrel & Holanova 
(2008) and Vanhooydonck et al. (2010). Snout–vent 
length (SVL) was measured from the tip of the snout 
to the posterior edge of the anal scale, head length 
(Headl) from the back of the parietal bone to the tip of 
the upper jaw, head width (Headw) at the widest part 
of the head (at the level of jugal bones), head height 
(Headh) at the highest part of the head (posterior to 
the orbits), lower jaw length (lower jaw) from the back 
of the retroarticular process to the tip of lower jaw, 
snout length (tip-coron) from the tip of the lower jaw 
to the posterior edge of the jugal (as an indicator of the 
position of the coronoid), and jaw outlever (tip-quadr) 
from the tip of the lower jaw to the anterior edge of 
the ear opening (corresponding to the posterior edge of 
the quadrate). Both lower jaw length and the distance 
from the tip of the jaw to the coronoid reflect the 
biomechanics of the jaw system. By subtracting ‘tip-
coron’ from ‘tip-quadr’ we calculated the length of the 
jaw closing in-lever (close). All measurements (Table 2) 
were taken using digital callipers (CD-20DC, Mitutoyo, 
Kawasaki, Japan; precision: 0.01 mm), and were taken 
on the left side of the specimens whenever possible. 
If measurements could not be taken on the left side 
because the head was damaged, then measurements 
were taken on the right side.

Bite Force

In vivo bite forces for 23 liolaemid species (Table 1) were 
taken as follows, 18 from Vanhooydonck et al. (2010) 

and five additional species (Liolaemus lineomaculatus, 
L. magellanicus, L. poecilochromus, L. scrocchii and 
Phymaturus tenebrosus). Only data for adults were 
used in this study. Bite forces were measured using 
an isometric Kistler force transducer (type 9203, range 
7500 N; Kistler, Zurich, Switzerland) mounted on a 
purpose-built holder and connected to a Kistler charge 
amplifier (type 5995A, Kistler; for more detailed 
descriptions of the setup and data collection see Herrel 
et al., 1999; Vanhooydonck et al., 2010). Gape angle 
(30°) and bite position were standardized across all 
trials. Gape was adjusted to lizard size by moving the 
bite plates and the angle was chosen based on studies 
of lizard feeding kinematics showing that lizards 
regularly crush hard prey at gape angles of around 30° 
(e.g. Herrel et al., 1996); bite position was standardized 
such that lizards bit at the front of the tooth row, and all 
bites were bilateral. Bite plates were not covered with 
leather or rubber as this decreases maximal bite forces 
by dissipating part of the force in the deformation of 
the material. Bite force were higher for all species 
tested (over 50) when using metal bars compared to 
bars covered with rubber or leather, at least in lizards 
(A. Herrel, unpubl. data). This is not the case for birds 
and mammals where a significantly lower force is 
observed when biting on metal (A. Herrel, unpubl. 
data). In vivo bite forces were not available for three 
of the species in our anatomical data set (Liolaemus 
cuyanus, L. multimaculatus, L. pseudoanomalus). 
All lizards were post-reproductive when measured 
and the repeatability of the measurements was high, 
suggesting that the motivational state was similar 
across individuals and species.

StatiStical analySeS

All muscular and morphological variables were 
logarithmically transformed (log10) before analyses to 
fulfil assumptions of normality and homoscedasticity. 
Given the known dimorphism in head dimensions and 
bite force (see Vanhooydonck et al., 2010) we ran all 
subsequent analyses for males and females separately 
where possible. Species are not independent data 
points and, as such, phylogeny needs to be taken 
into account (Felsenstein, 1985). Thus, our analyses 
considered phylogeny; for this we ran a phylogenetic 
analysis by using DNA extractions from tissues of 
the studied lizard species. The phylogenetic tree of 26 
liolaemid species studied was reconstructed using DNA 
(1726 bp) sequences spanning the mitochondrial DNA 
gene regions ND1 to COI and includes complete and 
partial sequences representing three protein-coding 
genes and eight tRNA genes. Sequences were aligned 
using the molecular protocols and alignment structure 
described by Schulte et al. (2000). Mitochondrial DNA 
sequences representing the species reported here have 
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been deposited in GenBank and the alignment used 
for phylogenetic tree reconstruction is available in 
TreeBASE (https://www.treebase.org/treebase-web/
search/study/summary.html?id=14692). GenBank 
accession numbers for all species are available from 
Schulte (2013). The phylogenetic tree was estimated 
using a priori partitioned mixed model maximum 
likelihood (ML) analysis of species for which bite force 
and muscle cross-sectional area were obtained (Fig. 2).  
For the analysis, model testing was performed in 
MEGA 5.05 (Tamura et al., 2011). The models with 
the highest likelihood value for model testing were 
GTR+Г+I, and the default model in RAxML 7.2.8 
on XSEDE (Stamatakis et al., 2008) on the CIPRES 
Science Gateway (Miller et al., 2010) is GTR+Г 
(Tavaré, 1986). Due to this limitation, GTR+Г was 
used for all analyses with model parameter values 
estimated from the data. For partitioned analyses, we 
assumed a priori partitions based on codon position 
with three partitions (codon positions 1, 2, 3) for all 
three protein-coding genes (ND1, ND2, COI) combined, 
and one partition for combined tRNA and non-coding 
positions for a total of four partitions. There are other 
possible partitioning schemes but after the results of 
Schulte & de Queiroz (2008) and studies cited therein, 
partitioning by codon position most often explains the 
data better than other partitioning schemes using 
likelihood ratio tests or Bayes factor estimates. Branch 
lengths were estimated using the evolutionary model 
above and the tree was converted to be ultrametric 
using r8s (Sanderson, 2003) and setting the root node 
representing the common ancestor of Liolaemus and 
Phymaturus to have diverged 100 Mya. This age is 
within the time frame estimated by Schulte (2013).

We tested for phylogenetic signal (the tendency 
of related species to resemble each other more than 
expected than species drawn at random from the same 
tree) in all variables (muscles, head dimensions, body size 
and bite force) by calculating Blomberg’s K (Blomberg 
et al., 2003) using a randomization test implemented 
in R (‘phytools’, Revell, 2012). Analyses of phylogenetic 
signal were carried out for the overall sample and for 
each sex separately (Supporting Information, Table S2).

To analyse drivers of variation in bite force we 
ran phylogenetic generalized least squares (PGLS) 
model analyses. Analyses were done in the ‘caper’ 
(Orme et al., 2012) and ‘ape’ (Paradis et al., 2004) 
libraries in R (R Development Core Team, 2014). 
This procedure is preferred as it has been shown to 
outperform or be equivalent to phylogenetic or non-
phylogenetic procedures depending on the λ value 
obtained (Revell, 2010). Because of the large number 
of predictor variables, we divided the analyses into 
two sets, one for muscle-related traits and the other 
for the external head variables. PGLS were run for the 
overall sample, and for males and females separately. L
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Table 2. List of species studied by sex

Species N Mame (±SE) MAMP (±SE) MPsT (±SE) MPt (±SE) Closers (±SE)

Liolaemus baguali 2 0.0165 (±0.084) 0.0045 (±0.058) 0.0032 (±0.138) 0.0241 (±0.110) 0.0483 (±0.098)
L. baguali 2 0.0121 (±0.043) 0.003 (±0.140) 0.0027 (±0.057) 0.0124 (±0.089) 0.0301 (±0.072)
L. bibroni 2 0.0051 (±0.014) 0.0012 (±0.054) 0.0015 (±0.053) 0.0068 (±0.050) 0.0146 (±0.038)
L. bibroni 2 0.0023 (±0.020) 0.0005 (±0.076) 0.0005 (±0.088) 0.0056 (±0.147) 0.009 (±0.093)
L. canqueli 2 0.0285 (±0.005) 0.0027 (±0.013) 0.0058 (±0.109) 0.0306 (±0.033) 0.0676 (±0.026)
L. canqueli 2 0.0131 (±0.030) 0.0021 (±0.062) 0.0024 (±0.000) 0.0115 (±0.035) 0.029 (±0.023)
L. ceii 2 0.0172 (±0.057) 0.0039 (±0.012) 0.0039 (±0.049) 0.0175 (±0.048) 0.0425 (±0.049)
L. ceii 2 0.0138 (±0.021) 0.0027 (±0.051) 0.0034 (±0.032) 0.0101 (±0.025) 0.03 (±0.019)
L. coeruleus 2 0.0067 (±0.013) 0.0008 (±0.053) 0.0020 (±0.034) 0.0065 (±0.030) 0.0160 (±0.019)
L. coeruleus 2 0.0046 (±0.007) 0.0008 (±0.046) 0.001 (±0.068) 0.0041 (±0.031) 0.0105 (±0.018)
L. cuyanus 2 0.0511 (±0.008) 0.0079 (±0.019) 0.0209 (±0.073) 0.0420 (±0.026) 0.1219 (±0.021)
L. cuyanus 1 0.0325 (NA) 0.0035 (NA) 0.013 (NA) 0.0207 (NA) 0.0697 (NA)
L. elongatus 2 0.0138 (±0.055) 0.0028 (±0.114) 0.0031 (±0.018) 0.0162 (±0.041) 0.0359 (±0.050)
L. elongatus 2 0.0101 (±0.029) 0.002 (±0.100) 0.0022 (±0.026) 0.0097 (±0.027) 0.0241 (±0.034)
L. escachardosi 2 0.0118 (±0.002) 0.0031 (±0.029) 0.0030 (±0.037) 0.0194 (±0.009) 0.0373 (±0.006)
L. escachardosi 1 0.0064 (NA) 0.0011 (NA) 0.0014 (NA) 0.0048 (NA) 0.0137 (NA)
L. fitzingerii 2 0.0156 (±0.018) 0.0032 (±0.011) 0.0022 (±0.069) 0.0176 (±0.036) 0.0387 (±0.006)
L. fitzingerii 1 0.013 (NA) 0.0021 (NA) 0.0029 (NA) 0.0106 (NA) 0.0285 (NA)
L. hatcheri 2 0.0068 (±0.071) 0.0007 (±0.000) 0.0012 (±0.039) 0.0063 (±0.021) 0.0148 (±0.030)
L. hatcheri 2 0.0096 (±0.148) 0.0007 (±0.055) 0.0009 (±0.043) 0.0043 (±0.035) 0.0155 (±0.073)
L. kingii 2 0.0147 (±0.000) 0.0043 (±0.064) 0.0039 (±0.048) 0.0251 (±0.059) 0.0418 (±0.000)
L. kingii 2 0.0115 (±0.027) 0.0019 (±0.056) 0.0024 (±0.007) 0.0136 (±0.007) 0.0294 (±0.011)
L. kolengh 2 0.0059 (±0.030) 0.0010 (±0.075) 0.0010 (±0.065) 0.0053 (±0.066) 0.0132 (±0.023)
L. kolengh 2 0.0047 (±0.017) 0.0005 (±0.069) 0.0005 (±0.072) 0.004 (±0.008) 0.0097 (±0.011)
L. lineomaculatus 2 0.0066 (±0.052) 0.0018 (±0.034) 0.0018 (±0.017) 0.0076 (±0.011) 0.0177 (±0.029)
L. lineomaculatus 2 0.005 (±0.012) 0.001 (±0.104) 0.0011 (±0.008) 0.0043 (±0.001) 0.0114 (±0.013)
L. magellanicus 2 0.0053 (±0.041) 0.0009 (±0.053) 0.0008 (±0.104) 0.0064 (±0.051) 0.0134 (±0.043)
L. magellanicus 2 0.0028 (±0.102) 0.0003 (±0.013) 0.0006 (±0.055) 0.0032 (±0.053) 0.0069 (±0.069)
L. mapuche 2 0.0237 (±0.085) 0.0042 (±0.025) 0.0034 (±0.084) 0.0198 (±0.054) 0.0511 (±0.014)
L. mapuche 2 0.0079 (±0.032) 0.0016 (±0.042) 0.0016 (±0.055) 0.006 (±0.041) 0.0171 (±0.020)
L. multimaculatus 1 0.0064 (NA) 0.0013 (NA) 0.0023 (NA) 0.0053 (NA) 0.0152 (NA)
L. multimaculatus 2 0.0077 (±0.006) 0.0011 (±0.047) 0.0022 (±0.055) 0.0071 (±0.009) 0.0181 (±0.004)
L. petrophilus 2 0.0146 (±0.024) 0.0032 (±0.005) 0.0039 (±0.009) 0.0168 (±0.038) 0.0386 (±0.027)
L. petrophilus 2 0.0083 (±0.000) 0.0024 (±0.012) 0.0018 (±0.000) 0.0104 (±0.003) 0.023 (±0.000)
L. poecelochromus 2 0.0091 (±0.008) 0.0024 (±0.056) 0.0026 (±0.030) 0.0098 (±0.010) 0.0239 (±0.002)
L. poecelichromus 1 0.0062 (NA) 0.0009 (NA) 0.0006 (NA) 0.0062 (NA) 0.0139 (NA)
L. pseudoanomalus 2 0.0159 (±0.056) 0.0026 (±0.060) 0.0030 (±0.051) 0.0158 (±0.081) 0.0372 (±0.066)
L. pseudoanomalus 1 0.0057 (NA) 0.0007 (NA) 0.0016 (NA) 0.0039 (NA) 0.012 (NA)
L. rothi 2 0.0152 (±0.003) 0.0048 (±0.005) 0.0039 (±0.049) 0.0183 (±0.020) 0.0422 (±0.012)
L. rothi 2 0.01 (±0.026) 0.0022 (±0.000) 0.0019 (±0.012) 0.0109 (±0.005) 0.025 (±0.007)
L. scapularis 1 0.0155 (NA) 0.0053 (NA) 0.0050 (NA) 0.0173 (NA) 0.0431 (NA)
L. scapularis 2 0.0061 (±0.023) 0.0012 (±0.062) 0.0016 (±0.020) 0.0059 (±0.057) 0.0148 (±0.040)
L. scrocchii 1 0.0187 (NA) 0.0003 (NA) 0.0036 (NA) 0.0252 (NA) 0.0477 (NA)
L. scrocchii 2 0.0165 (±0.005) 0.0025 (±0.095) 0.0022 (±0.026) 0.0124 (±0.025) 0.0336 (±0.017)
L. tenuis 2 0.0053 (±0.005) 0.0015 (±0.074) 0.0019 (±0.003) 0.0059 (±0.010) 0.0146 (±0.002)
L. tenuis 2 0.0033 (±0.027) 0.0008 (±0.080) 0.0009 (±0.002) 0.0032 (±0.073) 0.0083 (±0.047)
L. xanthoviridis 2 0.0170 (±0.000) 0.0058 (±0.034) 0.0036 (±0.042) 0.0201 (±0.010) 0.0438 (±0.031)
L. xanthoviridis 3 0.0113 (±0.071) 0.0019 (±0.108) 0.0023 (±0.067) 0.0107 (±0.083) 0.0262 (±0.078)
L. zullyae 2 0.0125 (±0.082) 0.0029 (±0.151) 0.0024 (±0.022) 0.0132 (±0.126) 0.0309 (±0.099)
L. zullyae 2 0.0097 (±0.046) 0.0016 (±0.112) 0.002 (±0.170) 0.0093 (±0.184) 0.0226 (±0.115)
Phymaturus tenebrosus 2 0.0117 (±0.000) 0.0026 (±0.011) 0.0033 (±0.020) 0.0134 (±0.007) 0.0311 (±0.012)
P. tenebrosus 2 0.0101 (±0.001) 0.0016 (±0.059) 0.0029 (±0.001) 0.0107 (±0.005) 0.0253 (±0.006)

N is the number of dissected specimens for muscle measurements for each species. Mame, MAMP, MPsT, MPt and closers are the mean cross-sectional 
areas (cm2) of the jaw muscles (Mame, m. adductor mandibulae externus; MAMP, m. adductor mandibulae posterior; MPsT, m. pseudotemporalis; MPt, 
m. pterygoideus, respectively). Data are presented for males (white rows) and females (grey rows).
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We first calculated the residuals of each trait (external 
head dimensions, muscle cross-sectional area, bite 
force) based on a PGLS of the trait against SVL. For 
this procedure we used the phyl.resid function in the 
‘phytools’ library (Revell, 2012). We then regressed 
residual traits against residual bite force to estimate the 
mechanical sensitivity of the different morphological 
traits (Table 3). Mechanical sensitivity was defined 
by Anderson & Patek (2015) as ‘small morphological 
changes in one part of a mechanism causing a large 
shift in the magnitude of the biomechanical metric’. 
Here we used the slope of the PGLS regression as our 
indicator of mechanical sensitivity as higher slopes 
will result in greater changes in the performance trait 
(bite force) given changes in the morphological trait. 
However, Anderson & Patek (2015) also state that 
mechanical sensitivity is indicated by the tightness 
of the correlation between a trait and the mechanical 
output of the system, which would be represented by 

the r2 value of the regression of a morphological trait 
on bite force. Here we use both metrics (slope and r2) 
to explore mechanical sensitivity.

We then explored which anatomical trait (or 
combination thereof) best explained variation in 
bite force (Supporting Information, Table S3). PGLS 
simultaneously returns Akaike information criterion 
values for each model (AICc, for small sample sizes), 
allowing us to choose the best fit among the candidate 
models through the AIC (Burnham & Anderson, 2004). 
We used the Akaike weights (AICw) and ΔAICc as 
measures of strength for each model as an indicator 
of the probability that a given model is the best among 
a series of candidate models (Burnham & Anderson, 
2004). The complete output of all PGLS models is 
shown in Table S3 (A to F).

We also estimated evolutionary rates expressed as 
σ 2 while comparing different traits (see Supporting 
Information, Table S4 for the full output of these 

Figure 2. Phylogenetic relationships of the Liolaemus and Phymaturus species studied here for which we have bite force 
data inferred using mitochondrial DNA sequence data spanning the region from ND1 to COI and maximum likelihood 
criterion. Branch lengths scale (in million years) is shown below the tree. The illustration was made in R (function contMap, 
package ‘phytools’; Revell, 2012). Arrows show the major transitions after Bayesian estimates (anc.Bayes)/MLE estimates 
(fastAnc), a function of ‘phytools’ (Revell, 2012).
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analyses). To do so, we used the ratebytree module in 
‘phytools’ v.6.99 (Revell, 2012). This procedure is based 
on contemporary phylogenetic studies in which the 
evolutionary rates between traits are compared using 
the rate parameter, σ 2 (O’Meara et al., 2006; Revell, 
2008; Revell et al., 2008, 2018). This method also was 
used to compare the rate of evolution between sexes 
(Table 4). Here we compared the relationship between 
pairs of traits and their rate of change (σ 2). While 
doing so we consider error in the estimation of species 
means and error in the phylogeny following Revell 

et al. (2018), and for this we used the standard errors 
(SE) shown in Tables 1 and 2. We used the function 
nnls.tree in ‘phangorn’ 4.0 (Schliep, 2011) to force the 
tree to be ultrametric.

Finally, we tested whether the rate of evolution 
and our proxies for mechanical sensitivity are 
associated with trait variance (quantified here as 
standard deviation; see Supporting Information, 
Tables S5 and S6).

Data availaBility

Data of collection sites for the species studied 
here are given in Supporting Information Table 
S1. Mitochondrial DNA sequences representing 
the species reported here have been deposited in 
GenBank and the alignment used for phylogenetic 
tree reconstruction is available in TreeBASE 
(https://www.treebase.org/treebase-web/search/
study/summary.html?id=14692). GenBank accession 
numbers for all species are available from Schulte 
(2013). Morphometric data are available upon 
reasonable request.

RESULTS

pHylogenetic Signal

Our analyses showed moderate phylogenetic signal in 
external head dimensions for both males and females 
but not in bite force nor the in-lever for jaw closing, a 
biomechanical trait calculated based on external head 
dimensions (Supporting Information, Table S2). Of the 
muscles only the cross-sectional area of the pterygoid 
muscle showed a moderate degree of phylogenetic 
signal in the overall analysis. Unexpectedly, there was 
no phylogenetic signal in the muscle and SVL data 
when analysing males only. In contrast, the signal 
was moderately high for most muscle traits except 
for the m. adductor mandibulae posterior in females. 
Phylogenetic signal in the external morphological 
traits was, on average, slightly higher for females than 
for males.

mecHanical SenSitivity

In the overall analyses, the summed cross-sectional 
area of all jaw closer muscle groups had the greatest 
mechanical sensitivity followed by the external 
adductors in terms of slope (see Table 3). However, 
the pseudotemporalis muscle showed the highest 
r2 value and thus the tightest relationship with bite 
force. In females, the m. pseudotemporalis and the 
Mame showed the greatest mechanical sensitivity 
in terms of slope, with the m. pterygoideus showing 
the greatest r2. In males, the overall jaw closer 

Table 3. Phylogenetic generalized least squares (PGLS) 
models of different traits (phylogenetic residuals of muscle 
cross-sectional area and external head dimensions vs. bite 
force)

Model r2 Slope P

All
Maxbite ~ closers 0.352 0.959 0.001*
Maxbite ~ MPt 0.369 0.321 0.001*
Maxbite ~ MPsT 0.588 0.578 0.001*
Maxbite ~ MAMP 0.246 0.528 0.009*
Maxbite ~ Mame 0.383 0.793 0.001*
Maxbite ~ Headl 0.031 0.202 0.565
Maxbite ~ Headw 0.065 −0.428 0.125
Maxbite ~ Headh 0.025 0.344 0.222
Maxbite ~ Close 0.028 −0.152 0.541
Males
Maxbite ~ closers 0.268 0.653 0.006*
Maxbite ~ MPt 0.081 0.123 0.102
Maxbite ~ MPsT 0.227 0.344 0.012*
Maxbite ~ MAMP 0.115 0.418 0.062
Maxbite ~ Mame 0.192 0.568 0.021*
Maxbite ~ Headl 0.013 0.191 0.411
Maxbite ~ Headw 0.019 0.117 0.457
Maxbite ~ Headw 0.001 0.211 0.328
Maxbite ~ Close 0.027 0.107 0.533
Females
Maxbite ~ closers 0.088 0.503 0.091
Maxbite ~ MPt 0.344 0.692 0.001*
Maxbite ~ MPsT 0.102 0.809 0.075
Maxbite ~ MAMP 0.321 0.465 0.002*
Maxbite ~ Mame 0.249 0.639 0.008*
Maxbite ~ Headl 0.172 0.545 0.027*
Maxbite ~ Headw 0.008 −0.391 0.288
Maxbite ~ Headh 0.216 0.631 0.014*
Maxbite ~ Close 0.009 0.230 0.385

We conducted these analyses for the species means based on all indi-
viduals, only males and only females. r2 corresponds to the adjusted co-
efficient of determination. We also provide the slope of each variable 
in the models. Asterisks indicate significance. The two morphological 
traits with the highest slope (highest mechanical sensitivity) are indi-
cated in bold. The two best predictors of bite force (highest r2) are under-
lined. Mame, m. adductor mandibulae externus; MAMP, m. adductor 
mandibulae posterior; MPsT, m. pseudotemporalis; MPt, m. pterygoideus; 
Headl, head length; Headw, head width; Headh, head height; Maxbite, 
maximum bite force; Close, in-lever for jaw closing.
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cross-sectional area showed the greatest mechanical 
sensitivity in terms of slope and r2, with the Mame 
also showing high sensitivity in terms of slope and the 
m. pseudotemporalis in terms of r2 (Table 3). External 
head dimensions generally showed low sensitivity 
irrespective of whether using slope or r2 as a metric 
of sensitivity. With the exception of the r2 in males, 
none of our estimators of mechanical sensitivity 
was correlated with standard deviation (Supporting 
Information, Table S6).

DriverS oF Bite Force

Our model on the species means for females and males 
combined showed that the best model explaining 
variation in bite force retained the cross-sectional area 
of the m. pseudotemporalis only. For females, a model 
including the m. adductor mandibulae posterior, the 
m. pterygoideus and the summed cross-sectional area 
of all jaw closers was retained. For males, the best 
model retained both the external adductor and the 
m. pseudotemporalis. In contrast to the global analysis 
and the analysis for males, in females a significant 
model with external head dimensions was also 
retained and included head width and head height as 
best predictors of variation in bite force (Supporting 
Information, Table S3).

compariSon oF rateS oF evolution

Overall, the rates of evolution of the cross-sectional 
areas of muscles and body mass were higher than 
those for external measurements of the head and 
SVL (Supporting Information, Table S4; Fig. 3). Bite 

force showed a similar (albeit slightly higher) rate of 
evolution compared to the muscular cross-sectional 
areas and body mass, yet showed a significantly 
higher rate than the one observed for head dimensions 
and SVL (see Table S4, Fig. 3). We did not observe 
differences between males and females in the rate 
of evolution of muscle cross-sectional area, head 
dimensions or bite force, except for the rate of 
evolution of the m. pseudotemporalis which was higher 
in females than in males (Table 4). Rates of evolution 
were significantly associated with trait variance when 
considering both the overall sample and data sets 
separated by sex (Table S6). This suggests that trait 
variance impacts our measures of the rate of evolution 
and that these should be interpreted with caution.

DISCUSSION

The phylogenetic signal in the muscular cross-
sectional area was generally low. This is common 
for traits that are thought to be adaptive and evolve 
convergently (Mahler et al., 2013). Alternatively, 
the lack of phylogenetic signal in some traits may 
suggest that Brownian motion is not a good model 
for representing the evolution of these traits, but this 
remains to be tested.

Our results showed that mechanical sensitivity was 
greatest for either the total summed cross-sectional 
area of the jaw adductors (overall analysis and males) 
or the cross-sectional area of the m. pseudotemporalis 
in the case of females. This is not unexpected as the 
total summed cross-sectional area should be driving 
variation in bite force and small changes in this trait 
should have a large impact on bite force. For females, 

Table 4. Rate comparison between males (♂) and females (♀) in the Liolaemidae species studied

Trait σ 2♂ σ 2♀ σ 2 ♂/σ 2 ♀ r likelihood P(χ 2)

Mame 0.298 0.322 0.925 0.023 0.878
MAMP 0.713 0.29 2.459 2.861 0.091
MPsT 0.128 0.568 0.225 6.436 0.011*
MPt 0.323 0.255 1.267 0.201 0.653
Closers 0.276 0.28 0.986 0.007 0.933
SVL 0.032 0.023 1.391 0.331 0.565
Body m 0.318 0.242 1.314 0.265 0.606
HeadL 0.022 0.014 1.571 0.563 0.452
HeadW 0.029 0.021 1.381 0.25 0.616
HeadH 0.042 0.035 1.200 0.184 0.667
Close 0.063 0.039 1.615 0.192 0.661
Maxbite 0.325 0.152 2.072 1.355 0.244

Rate of change = σ 2, the relationship between rates in males and females, the relative likelihood (r likelihood) and P-values corresponding to χ 2. Aster-
isks indicate significant differences between males and females. Mame, m. adductor mandibulae externus; MAMP, m. adductor mandibulae posterior; 
MPsT, m. pseudotemporalis; MPt, m. pterygoideus; SVL, snout–vent length; Body m, body mass; Headl, head length; Headw, head width; Headh, head 
height; Maxbite, maximum bite force; Close, in-lever for jaw closing.
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as predicted, the muscle with the greatest moment 
arm, the m. pseudotemporalis (Fig. 1), appeared to 
have the greatest mechanical sensitivity. This muscle 
was the only muscle showing differences in the rate 
of evolution between sexes, evolving faster in females 
than in males (Table 4). This observation may be 
explained by the fact that males tend to invest more 
in muscles positioned lateral to the head such as the 
external adductor or the m. pterygoideus (Herrel et al., 
1996, 1999). In addition to allowing for the presence 
of larger muscles as they are not constrained by the 
space available inside the adductor chamber, these 
muscles also make the head look wider. This has been 
shown to be an important visual cue in many lizards, 
often accentuated with bright colours (Carothers, 1984; 
Cooper & Vitt, 1988; Molina-Borja et al., 1998; Huyghe 
et al., 2005). The difference between males and females 
may thus reflect the role of sexual selection in driving 
the jaw system in males.

Differences between the sexes were also evident 
in our model selection analysis (Table 2). Whereas in 
the overall analysis and the analysis for males only 
muscles were the sole significant predictors of bite 
force, in females, external head dimensions were also 
good predictors of bite force (Table 3) and explained 
even more of the variation in residual bite force than 
muscles. Specifically, females with tall, narrow heads 
showed greater bite force (Table 3). Interestingly, the 
muscles that best predicted bite force also were different 
between the sexes. Whereas the external adductor and 
to some degree also the m. pseudotemporalis were 
the best predictors of bite force in males, in females 
the m. adductor posterior, the pterygoideus and the 
summed cross-sectional area of the adductors were the 
best predictors. Male–male interactions in liolaemid 
lizards are mainly visual (Martins et al., 2004) and 
there are many species that are dichromatic; however, 
male combats can be observed in both Liolaemus and 
Phymaturus species (F. B. Cruz et al., unpubl. data). 
Additionally, males show larger and broader heads in 
different groups of Liolaemus and Phymaturus lizards 
(for details, see Pincheira-Donoso & Tregenza, 2011; 
Cabrera et al., 2013; Valdecantos et al., 2019) and 
sexual head size dimorphism is mostly male-biased. In 
our sample, males were slightly larger than females 
in all cases.

Our comparison between traits for the overall data 
set (rate by tree analyses) demonstrates that both 
bite force and muscular cross-sectional area show a 
rate that was 2.5–10 times higher than the rate of 
external head dimensions and SVL (see Supporting 
Information, Table S4, Fig. 3). However, as rates 
are strongly correlated with trait variance this may 
underlie this observation (Table S6). Interestingly, 
no major differences in the rate of change between 
males and females were observed, except for the 

pseudotemporalis muscle as mentioned above. 
Overall, these data suggest that bite force and 
muscular cross-sectional area had the higher rates 
of evolution, above those of external measurements 
(Table S4). These results make intuitive sense as 
external head dimensions and SVL are constrained 
by features other than those purely related to bite 
force. Muscle cross-sectional areas, on the other 
hand, are direct drivers of variation in bite force 
and can be expected to evolve faster than external 
head dimensions. As bite force is the combination of 
variation in muscle cross-sectional area, the space 
available for jaw muscles and the lever arms of the 
jaw system, we expected that rates would have been 
higher for bite force. Yet, this was not the case and 
rates of evolution for bite force and muscle cross-
sectional areas are of similar magnitude. Muscle 
cross-sectional areas showed the highest mechanical 
sensitivity and were good predictors of bite force, in 
accordance with our predictions which may explain 
the similarity in rate. This suggests that variation 
in lever arms or external head dimensions are less 
important as drivers of variation in bite force. Our 
a priori predictions suggesting that in systems 
where variation in multiple traits impact a single 
performance trait, and where rates of change are 
lower for morphology than for performance are thus 
only partly confirmed.

Yet, our results are coherent from a biomechanical 
perspective. Muscles such as the m. pseudotemporalis 
or the external adductors that are well positioned to 
generate bite force showed generally high sensitivity 
and were good predictors of bite force. This is in 
accordance with Muñoz et al. (2018), which suggests 
(based on linkage systems) that traits with greater 
sensitivity evolve faster. Mechanical sensitivity is 
greater for muscle cross-sectional areas. Indeed, 
whereas force increases with the square of linear 
dimensions such as external head dimensions, it is 
directly proportional to muscle cross-sectional area. 
As suggested previously (Muñoz et al., 2017), we 
found an association between mechanical sensitivity 
and rate of evolution, with rates being higher for 
those traits that have the greatest impact on the 
mechanical output of the system (i.e. muscle cross-
sectional areas). Our results further showed rather 
high evolutionary rates, at least for some traits. Biting 
is known to relax trait integration in some taxa and 
may increase the evolvability of the trait (Collar et al., 
2014). A more modular structure also increases the 
potential for many-to-one mapping and may augment 
rates of evolution in cranial shape. However, in some 
cases greater modularity may reduce the rate of 
morphological evolution (Claverie & Patek, 2013) 
at an interspecific level as it relaxes constraints on 
individual structures.
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In conclusion, our results show high rates of 
evolution for performance and some morphological 
traits in a system where many-to-one mapping 
is common. Furthermore, traits showing greater 
mechanical sensitivity, such as muscle cross-
sectional areas, generally showed higher rates 
than those involved in other functions (external 
head dimensions). Finally, few differences between 
males and females are observed in how fast the 
cranial system evolves, suggesting strong selection 
for bite force in both sexes, probably related to diet. 
Yet, differences in which muscles showed greater 

mechanical sensitivity and the predictors of variation 
in bite force between sexes suggest an additional 
role of sexual selection in driving variation in the 
jaw system in males.
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